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ABSTRACT

The deterioration of the condition of a physical system that produces output

with linear relationship with the input can manifest in the data generated by

such system via change-points. As a result, timely detection and analysis of a

change-point  in  such  systems  form  a  significant  element  in  providing

pragmatic  solutions  towards  the  smooth  operation  of  the  system.  In  this

regard, the thesis considered novel Variational Bayes methods for modeling,

detection,  and  inference  of  change-point  in  linear  systems.  In  particular,

Variational Lower Bound Difference(VLBD), Variational Bayes Information

Criteria (VBIC), and Variational Akaike Information Criteria (VAIC) ratio-

based change-point detectors are developed for a single change-point detection

in linear systems. The methods are assessed with linear change-point datasets

in  both  simulation  and  real  data  of  a  refinery  process,  and  their  utility  is

soundly  illustrated.  Interestingly,  the  Variational  lower  bound  difference-

based detector  shows robustness  over  its  VBIC and VAIC counterparts  in

situations where there exist multiple change-points. This was evidenced by the

real-data application.
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CHAPTER ONE

INTRODUCTION

Background to the Study

             The Problem of detection and estimation of change-points or switch

points  in  linear  regression  models  has  received  a  lot  of attention  in  the

literature,  particularly,  in  statistical  computations  and  analysis  due  to  the

awareness of its importance in many applications. The change-point problem

was pioneered by (Page, 1957, 1955, 1954), who proposed a search procedure

for detecting  a parameter  change at  an unknown point, and thus prove the

existence of a switching point (Chen, Gupta and Pan, 2006; Chen and Gupta,

2001). His goal was to detect a shift in the mean of Gaussian variables that

were  independently  and  identically  distributed  (iid)  for  the  purposes  of

industrial  quality  control. Thereafter,  the  problem  of  detection  of  change-

points related to changing sequences of random variables has been explored

extensively. Also, one particular version of a change-point problem termed the

two-phase  and,  or  switching  regression  problem  has  received  enormous

attention in many fields including economics, finance, bioinformatics, medical

research,  genomics  research,  signal  processing,  psychology,  geology,

econometrics,  etc.,  and  even  in  our  daily  lives  (Chen  &  Gupta,  2001).

According to Adams and MacKay, (2007) change-points are abrupt changes in

a generative process of a sequence of random variables. In other words, shift

point in statistical applications generally defines a location or time point of a

data generative system and that the observations before and after that change-

point  follow different  distributions  (Basalamah,  Said,  Ning,  & Tian,  2021;

Chen & Gupta, 2001; Kang, 2015).
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The process of making an informed and precise statistical  statement

about  an unknown population  based on a  representative  random sample  is

paramount in Statistical inference. The process involves modeling, estimation,

hypothesis testing, and decision making. The inference is key in any modeling

framework. In particular, in the change-point modeling framework, statistical

inference  about  change-point  is  usually  in  two  folds,  exhibiting  process

patterns like following a two-stage modeling framework. However, all the two

folds  happen within  one  modeling  framework.  The first  component  of  the

above two folds’ process involves the detection of whether or not there exists

a change in the observed sequence of random variables. The second focused

on the estimation of the number of changes and their respective locations if

there exists a change-point. (Chen & Gupta, 2001; Holbert, 1982).

Several  studies  have  been  conducted  over  the  years  on  the

identification of change-points issues related to; change-in-mean, change-in-

variability,  or  both,  and  also  change  in  regression  parameters  from  a

prospective and retrospective view point. The prospective change-point issue,

also known as the online change-point detection problem, seeks to identify

changes  in  the  distributional  features  of  model  parameters  in  a  real-time

scenario  sequentially  or  as  soon as  they  occur  (Adams & MacKay,  2007;

Truong, Oudre, & Vayatis, 2020).  In contrast,  for the retrospective change-

point issue, inferences about changes in model parameters are formed based

on  the  entire  dataset  or  necessitate  the  participation  of  all  sample  points

received or seen,  and it  is  also known as offline or posterior  change-point

detection (Truong et al., 2020).

2
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The existence of a change-point in a system might cause a structural change or

a switch in regression parameters, affecting any or all of the model parameters.

In many applications, these conditions have different theoretical and practical

ramifications  (Chaturvedi  &  Shrivastava,  2016).  A  structural  change  is

considered to have occurred if at least one parameter of the linear regression

model  changed at  a  specific  position  (referred  as  change-point)  across  the

whole  sample  period.  A change-point  could  represent  a  transition  between

states,  outliers,  or  anomaly  of  a  system.  These  changes  (states)  may  be

informative on some interesting features or phenomena such as early signs of

an emergency situations. Thus, timely detection of such changes can serve as a

benchmark  for  saving  unforeseen  accidents.  One  practical  example  is  in

industry. Such a change in a production system, could be an indication of the

process being out of control that might lead to defective products for which

health implications are enormous. The existence of change in the generative

process of systems manifests in the data generated by such systems. Another

level of challenge is also seen in the probabilistic modeling of such data as the

underlying distribution of the data may be changed in such a manner that a

single distribution may not be fit such dataset. Thus, an intrinsic transfer of

challenge to a statistician in terms of modeling and decision making. 

In  many  theoretical  and  practical  circumstances,  a  statistician  or

researcher faced the challenge of determining the number of jumps or change-

points and their corresponding locations (referred as change-point problem) in

a  generative  process  or  system (Chen,  1998).  The  impact  of  change-point

problem is seen in a wide range of practical situations from several disciplines,

and  understanding  of  these  changes  and  their  implications  is  essential  for

3
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avoiding wasteful losses and finding alternative solutions for development and

constructive transition (Chen & Gupta, 2012).

The intrinsic nature of physical systems of varied types and operations

due to the recent  technological  advancements  has resulted in an increasing

generation  of  change-point  datasets  of  different  dimensions,  sizes,  and

covariate information, in many modern scientific applications. The availability

of change- point datasets coupled with their impact in varied forms has led to

the  revival  of  an  unparalleled  surge  of  interest  in  inferential  methods  for

change-point analysis within the statistical community recently. Nevertheless,

the  application  of  standard  statistical  methods  to  change-point  datasets  is

highly challenged, leading to a new learning paradigm termed change-point

modeling  framework.  In  this  framework,  standard  statistical  methods  are

modified or adapted in order to develop model and inferential  schemes for

making informed decisions about change-points.  For instance,  in regression

analysis, it is appropriate to present more than a single statistical model to fit

the observations if the structure of the dataset changes at a certain point in

time. The use of a single statistical model with no account of the change-point

in such situations obviously leaves the data poorly explained (Chen & Gupta,

2012; Chen, 1998). The introduction of change-point hypothesis in statistical

analyses has sparked study of modeling and inference of switching regression

models and has taken center stage in regression analysis. The study of change-

point  problems has  expanded the The process  of  making an informed and

precise  statistical  statement  about  an  unknown  population  based  on  a

representative  random  sample  is  paramount  in  Statistical  inference.  The

process  involves  modeling,  estimation,  hypothesis  testing,  and  decision

4
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making. The inference is key in any modeling framework. In particular, in the

change-point modeling framework, statistical inference about change-point is

usually  in two folds, exhibiting process patterns like following a two-stage

modeling framework. However, all the two folds happen within one modeling

framework. The first component of the above two folds’ process involves the

detection of whether or not there exists a change in the observed sequence of

random variables.  The second focused on the estimation  of the number of

changes and their respective locations if there exists a change-point. (Chen &

Gupta, 2001; Holbert, 1982).

Several  studies  have  been  conducted  over  the  years  on  the

identification of change-points issues related to; change-in-mean, change-in-

variability,  or  both,  and  also  change  in  regression  parameters  from  a

prospective and retrospective view point. The prospective change-point issue,

also known as the online change-point detection problem, seeks to identify

changes  in  the  distributional  features  of  model  parameters  in  a  real-time

scenario  sequentially  or  as  soon as  they  occur  (Adams & MacKay,  2007;

Truong, Oudre, & Vayatis, 2020). In contrast,  for the retrospective change-

point issue, inferences about changes in model parameters are formed based

on  the  entire  datasets  or  necessitate  the  participation  of  all  sample  points

received or seen,  and it  is  also known as offline or posterior  change-point

detection (Truong et al., 2020).

The existence of a change-point in a system might cause a structural

change or a switch in regression parameters, affecting any or all of the model

parameters. In many applications, these conditions have different theoretical

and  practical  ramifications  (Chaturvedi  &  Shrivastava,  2016).  A  structural

5
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change is considered to have occurred if at least one parameter of the linear

regression  model  changed  at  a  specific  position  (referred  as  change-point)

across the whole sample period. A change-point could represent a transition

between states, outliers, or anomaly of a system. These changes (states) may

be informative on some interesting features or phenomena such as early signs

of an emergency situations. Thus, timely detection of such changes can serve

as a benchmark for saving unforeseen accidents. One practical example is in

industry. Such a change in a production system, could be an indication of the

process being out of control that might lead to defective products for which

health implications are enormous. The existence of change in the generative

process of systems manifests in the data generated by such systems. Another

level of challenge is also seen in the probabilistic modeling of such data as the

underlying distribution of the data may be changed in such a manner that a

single distribution may not be fit such datasets. Thus, an intrinsic transfer of

challenge to a statistician in terms of modeling and decision making. 

In  many  theoretical  and  practical  circumstances,  a  statistician  or

researcher faced the challenge of determining the number of jumps or change-

points and their corresponding locations (referred as change-point problem) in

a  generative  process  or  system (Chen,  1998).  The  impact  of  change-point

problem is seen in a wide range of practical situations from several disciplines,

and  understanding  of  these  changes  and  their  implications  is  essential  for

avoiding wasteful losses and finding alternative solutions for development and

constructive transition (Chen & Gupta, 2012).

The intrinsic nature of physical systems of varied types and operations

due to the recent  technological  advancements  has resulted in an increasing

6
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generation  of  change-point  datasets  of  different  dimensions,  sizes,  and

covariate information, in many modern scientific applications. The availability

of change- point datasets coupled with their impact in varied forms has led to

the  revival  of  an  unparalleled  surge  of  interest  in  inferential  methods  for

change-point analysis within the statistical community recently. Nevertheless,

the  application  of  standard  statistical  methods  to  change-point  datasets  is

highly challenged, leading to a new learning paradigm termed change-point

modeling  framework.  In  this  framework,  standard  statistical  methods  are

modified or adapted in order to develop model and inferential  schemes for

making informed decisions about change-points.  For instance,  in regression

analysis, it is appropriate to present more than a single statistical model to fit

the observations if the structure of the datasets changes at a certain point in

time. The use of a single statistical model with no account of the change-point

in such situations obviously leaves the data poorly explained (Chen & Gupta,

2012; Chen, 1998). The introduction of change-point hypothesis in statistical

analyses has sparked study of modeling and inference of switching regression

models and has taken center stage in regression analysis. The study of change-

point  problems  has  expanded  the  scope  of  fitting  regression  models  and

generating predictions.  Following the detection and location of the change-

point  in  the  regression  models,  some  previously  poorly  fitting  regression

models were appropriately fitted to the datasets  when the change-point has

been detected and identified (Chen & Gupta, 2012). The significance of the

study of switching regression models in the wake of change-point problem is

self-evident.  detection  and  location  of  the  change-point  in  the  regression

models, some previously poorly fitting regression models were appropriately

7
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fitted to the datasets when the change-point has been detected and identified

(Chen & Gupta, 2012). The significance of the study of switching regression

models  in  the  wake  of  change-point  problem  is  self-evident.  In  practice,

regression  relationships  may  vary  at  unknown  change-points  (epochs),

resulting in multiple regression regimes that must be detected and identified. A

change-point  model  is  considered  a  two-or  multiple-phase  regression,

switching  regression,  segmentation  regression,  two-stage  least  squares

regression,  or  broken-line  regression  in  the  regression  literature  (Hahn,

Banerjee, & Sen, 2017; Khodadadi & Asgharian, 2008; Shaban, 1980).

Considerable work has been done in the past on the various problems

of estimation and inference associated with single and multiple change-points

and also the switching linear regressions for both univariate and multivariate

cases and the references given in this work are by no means exhaustive (Carlin

et al, 1992). Most of these researched works are also related to both abrupt and

gradual  changes  in  the  literature.  The  conventional  approaches  to  solving

change-point problems in the literature have been the usual Bayesian and Non-

Bayesian (Classical) methodologies based on different modeling contexts, for

example, the parametric and non-parametric. There exists a rich literature on

the above approaches for change-point problems. For details on the parametric

change-point approaches see, for example, (Chernoff & Zacks, 1964; Hinkley,

Chapman, & Runger, 1980; Hinkley, 1970; James, James, & Siegmund, 1987;

Worsley, 1979; Worsley, 1986). On the nonparametric approaches, readers are

referred  to,  for  example,  (Brodsky  & Darkhovsky,  1993;  Lombard,  1987;

Pettitt, 1979).

8
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Appealing alternative methods to handle the change-point problems are

the information criterion and the decision-theoretic methods. However, several

authors in most of the recent studies have proposed solution schemes to handle

change-point  problems from the  Bayesian framework.  In  the  literature,  the

standard regression modeling approaches to tackling change-point issues and

its  effects  have  been  extensively  studied,  employing  both  Bayesian  and

classical  methodologies.  Many  researchers  have  explored  the  change-point

problems  related  to  regression  models  using  both  classical  and  Bayesian

approaches in this regard. In particular,  (Acitas & Senoglu,  2020; Hinkley,

1969,  1971;  Quandt,  1958,  1960;  Sprent,  1961),  have discussed two-phase

regression in a classical point of view.

Also,  Ferreira  (1975)  used  the  Bayesian  paradigm  to  explore  the

sampling features of various Bayesian estimates. However, several studies of

change-point related problems in the context of fitting regression models in

the Bayesian framework used the exact Bayesian measures, which requires a

high  level  of  integration  except  for  simple  models  with  appreciable

complexity, generating tractable posterior distributions. Choy and Broemeling

(1980),  for  example,  utilized  Bayesian  inference  techniques  to  investigate

switching linear models. Holbert (1982) also examined the switching simple

linear regression models and switching multiple regression models using an

exact Bayesian technique. Basically, the integrations associated with the exact

Bayesian methods are extremely challenging  to perform, either numerically or

analytically  in  the  case  of  a  complex  and intractable  posterior  distribution

(Pandya & Sheth, 2016). As a result, a growing interest in the usage of the

9
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approximate Bayesian approaches to handle complex and intractable posterior

distribution inference for change-point problems. 

A  considerable  study  of  change-point  problems  in  the  context  of

regression models in the Bayesian viewpoint has been carried out using the

two main  approximate  Bayesian methodologies  namely,  the Markov Chain

Monte Carlo (MCMC) sampling methods and the Variational Bayes methods.

The MCMC (Barry & Hartigan, 1993; Chib, 1998; Green, 1995; Lavielle &

Lebarbier,  2001) sampling techniques  using Metropolis-Hasting and, Gibbs

sampling  has  dominated  the  probabilistic  solutions  in  the  literature  with

regards to change-point detection problem. 

Moreover,  very  little  work  can  be  found  treating  the  change-point

detection in a sequence of random variables and even in the linear regression

model for both univariate and multivariate systems by the Variational Bayes

approach than the MCMC counterpart. In particular, there exists only single

work  done  on  Variational  Bayes  application  to  change-point  detection  in

speaker change detection in signal processing. The development of Variational

Bayes solution for a change-point problem is not straightforward owing to the

nature of the change-point problem and its associated changes, especially, the

appropriate choice of prior distributions for the change-point random variable.

This  study  will  approach  the  change-point  problem  from  the  Bayesian

framework, particularly,  the Variational  arm of the Bayesian methods.  The

variational Bayes methods will be explored to develop appropriate Bayesian

switching linear regression models for the univariate systems, with Variational

Bayes inferential schemes model parameters. Furthermore, information-based

criteria  in the context  of the Variational  Bayes  methods will  be developed

10
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using Variational statistics of the developed models for the detection of the

change- point and its location.

Statement of Problem

Statistical approaches to finding solutions to change-point problems in

the linear systems based on MCMC sampling methods have been extensively

explored in theory and practice, for example, (Barry & Hartigan, 1992; Blei,

Kucukelbir,  &  McAuliffe,  2017;  Chen,  1998;  Choy  &  Broemeling,  1980;

Holbert, 1982; Kang, 2015). However, it is well known that MCMC does not

scale  well  in  terms  of  computation  for  complex problems generating  large

datasets,  which  is  the  case  of  change-point  problems.  Though  MCMC  is

known to yield exact solutions, the development of MCMC algorithms may

result in intrinsic challenges inherited from the complexity of the change-point

problem in terms of model calibration since the MCMC adopts the Bayesian

framework based on a choice of prior models. An appealing fast approximate

yet deterministic alternative to the MCMC technique is the Variational Bayes

method.

Nevertheless,  the  application  of  the  Variational  Bayes  methods  to

change-point problems has not been as extensively explored in the literature.

This may be due to the underlying complexity associated with the change-

point problems in terms of modeling random parameters such as the change-

point  location  variable.  A  recent  attempt  to  apply  the  Variational  Bayes

techniques to  detect change-points in a sound in signal processing has been

demonstrated  by   (Valente  &  Wellekens,  2005a).  Valente  &  Wellekens,

(2005b) developed a novel Variational Bayes speaker change detector based

on the lower bound difference between a switching(change-point) model and a
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non-switching  (non  change-point)  model  assumed  for  speaker  data.  The

Variational  lower  bound  also  known  as  the  free  energy  is  a  by-product

generated by an assumed Variational fitting algorithm. For models of the same

complexity,  the Variational  lower bound, naturally  serves the purpose of a

modeling  selection  tool,  in  choosing  an  optimal  model  among  competing

models. 

In  this  regard,  it  is  straightforward  to  see  the  applicability  of  the

difference in lower bounds mentioned above in detecting change-point. The

work of (Valente & Wellekens, 2005a) based inference on the decision rule as

the  positive  differences  and  applied  a  window  approach  in  the  detection

because  a  threshold  on  the  positive  difference  was  needed  to  make  an

inference. Basically, inference as such that a change-point exists if the lower

bound difference is positive within a given window, then a change-point is

detected otherwise no change has occurred in such window, otherwise,  the

window varied and the process continues until a change-point is detected and

identified.  However,  the  use  of  a  window  and  its  associated  variation

contribute extra  computational  or detection complexity,  especially  for large

change-point datasets. Also, there exists another issue of choice of window,

starting window as well as the choice of window length. 

Furthermore, it appears that there are other intrinsic drawbacks. For a

linear system, if it  is of interest  to detect and locate a single change-point,

there might be a situation with the following possibilities. The difference in

the lower bound could

1. all be positive;

2. all be negative;
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3. result in a positive and a negative and, or all difference being zero.

These  suggest  that  the  threshold  adopted  by  them  may  not  work  for  all

situations. Another detection issue is for example, in the situation where the

complexity  in  the null  model  is  almost  the same as that  of  the alternative

model the difference does not work, it is negligible and this may result in no

change-point  detected  in  the  system,  on  the  basis  of  their  detection  rule,

although a change-point might  exist.  As a  result,  the detector  or searching

scheme may not be able to detect and locate a change-point accurately in the

linear system even though it may exist. This will render the detector or search

algorithm ineffective for the detection problem. 

Alternatively,  information criteria can be applied if the change-point

problem  is  considered  in  the  context  of  model  selection  problem.  The

application of information criteria such as the Akaike Information Criterion

(AIC)  and  its  counterpart  Bayesian  Information  Criterion  (BIC)  as  a

conventional  approach  to  solving  a  change-point  problem  is  widely

established  in  the  literature.  See,  for  example,  (Chen  & Gupta,  2012)  for

details on theory and its application. On the other hand, their corresponding

Variational  Bayes  versions  namely  the  Variational  Akaike  Information

Criteria (VAIC) and Variational Bayesian Information Criteria (VBIC) have

been used for typical modeling selection in many modeling contexts, but not

in  change-point  analysis.  For  details,  see,  for  example,  (You,  Ormerod,  &

Mueller, 2014) for model selection in linear regression models.

For  change-point  problem  analysis  within  the  Variational  Bayes

framework, the application of VAIC and VBIC are not trivial and they have

not been explored, due to the unknown switching nature of the problem. In the
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light of these, there is the need for a solution system that is robust and takes

into account all the possibilities aforementioned, in particular, a Variational

Bayes detector that can find the optimum change-point. This study seeks to

develop  Bayesian  switching  linear  system  with  inferential  methods  in  the

Variational Bayes framework for parameter inference. In addition, the robust

decision rules based on VLBD, VAIC, and VBIC as well as their differences

will  be developed for detection    single change-point  and its  location in a

linear system oriented in either positive plane or negative plane.

Objectives of the Study

The main objective of this  study is  to develop an appropriate  Bayesian

approach for modeling and inference for change-point datasets generated by

linear systems in which the linear relationship existing among the response

variable  and predictors  are  oriented  in  either  a  positive  or  negative  plane.

In  order  to  facilitate  this  objective,  the  following  specific  objectives  are

outlined:

1. Development  of  appropriate  Bayesian  switching  and  non-switching

linear regression models

2. Development of Variational Bayes fitting algorithms for the developed

models

3. Development of Variational Bayes change-point detection schemes.

4. Application of developed schemes for change-point analysis  in both

simulated and real datasets.  

Significance of the Study

         The significance of this study can be categorized into three main areas.

Firstly, on methodology. This study throws more light on the applicability of
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the  Variational  Bayes  technique  to  change-point  problems  of  varied  types

based  on  the  successful  application  to  detection  of  single  change-point  in

multiple linear regression models. This will motivate interest in change-point

research  in  different  scientific  fields.  Secondly,  this  study  exhibits  the

potential to motivate the development of lightweight computational methods

and their  integration into prototype devices  used in many physical systems

such as medical devices for detecting changes in medical (health) conditions.

A practical  application can be seen in the detection of breaks (changes) in

blood pressure, an early sign of hypertension,  and strokes. This is possible

because  of  the  fast  and  deterministic  nature  of  the  associated  Variational

algorithms. Thirdly,  this  study  can  inform  fast  industrial  quality  control

procedures if adopted. In particular, for industrial processes where the quality

of finished products can change at any time during the manufacturing process

due to machine or system error or generation of an unknown compound based

on blending of two or more raw materials.

Delimitations

The  study  is  based  on  the  detection  of  a  single  change-point  in

univariate  linear  systems in which  the  data  generated  allows  the  fitting  of

multiple linear regression models with error models being normal. For such

data,  there  exists  only  change  in  the  mean  process  with  somewhat  fixed

variability  in  the  variance  process.  The  study  focussed  on  full  Bayesian

methods specifically Variational Bayes but not exact Bayesian methods via the

MCMC for inference. Further, illustrative examples were tailored toward both

simulations and real data application using industrial systems in line with the

objectives of the study.
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Limitations

The  study  explored  the  use  of  a  Variational  lower  bound  for  the

detection  and  identification  of  change-point  in  linear  systems  where  there

exists one switch in the mean process. As result, linear systems with changes

in both mean and variances were not considered. In addition, inferences for

multiple  change-points  within  a  given  dataset  for  linear  systems  were  not

treated.  In  terms  of  computation  methods,  approximate  inference  in  the

MCMC framework was not considered due to the challenges associated with

the specification of change-point distributional properties that will allow the

application of the above methods. Finally, issues of time since the thesis are

bound to be completed within two years with one year of research.

 Definition of Terms

Change-Point Problem: This is the task of identifying and locating a change-

point or step when the probability  distribution of a data generative process

changes.

Variational Marginal Likelihood:  It is interpreted as the approximation of

the true posterior distribution with a Variational distribution.

Variational  Lower  Bound:  It  is  a  lower  bound on the  probability  of  the

observed data under a model.

Organization of the Study

This  thesis  is  organized  into  five  chapters:  Introduction,  Literature

Review,  Methodology,  Analysis  and  Summary,  Conclusions,  and

Recommendations. 

Chapter  1  introduces  the  thesis.  It  provides  the study's  background,

problem  statement,  objectives,  significance  of  the  study,  delimitation,
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limitation,  definition  of  terms,  and  organization  of  the  study.  Chapter  2

reviews  literature  related  to  the  study.  It  performs an  extensive  review of

existing  literature  on  change-point  detection  and  its  application  in  linear

systems  in  the  Bayesian  paradigm.  Chapter  3  focuses  on  methodological

development.  In  particular,  the  fundamental  theoretical  aspects  of  the

statistical  and computational  methods that  were developed.  This entails  the

modeling  framework,  inferential  methods,  and  analysis  of  data.  Chapter  4

focuses  on the implementation  of  the  developed computational  methods  in

simulation and real data and the findings from the application of the various

developed  models.  Finally,  Chapter  5  summarizes  the  work,  presents  the

conclusions, recommendations and suggesting for further studies.

Chapter Summary

The study aims  at  developing regression methods  using  Variational

Bayes  computation  approaches  that  incorporate  switching  information  for

modeling and estimation. The primary goal of this chapter, however, has been

to address the problem under study. This chapter provided an introduction to

this study report highlighting issues, covering aspects such as the background

to the study, problem statement, objectives, and proposition guiding the study,

as  well  as  the  significance  of  the  study.  In  addition  to  these,  is  the  thesis

organization. The chapter concludes with this summary.
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CHAPTER TWO

LITERATURE REVIEW

Introduction

 This chapter provides a brief review of relevant literature on change-

point  issues  in  linear  regression  settings  within  the  Bayesian  framework.

Bayesian switching multiple  linear  regression model,  Bayesian approach to

inference  and  its  characterization  as  well  as  approximate  Bayesian

computations  will  also  be  introduced  in  brief.  A  further  review  of  the

approximate Bayesian inference approach for complex Bayesian models in the

context of Variational Bayesian methods and relevant empirical evaluations is

carried out in the work.

Change-Point

 The change-point analysis and its connected issues is an ever-growing

field,  resulting in a colossal literature discussing  numerous aspects of such

change-point  problems.  The  change-point  problem  spans  the  detection  of

existing change-point(s) and identification of the location of such a change if it

exists. This development features a wide range of applications, from industry,

finance, medicine,  and biological sciences,  so on, and  additionally provides

rise to multiple methodologies several of the change-point problems. There are

many  studies  that  have  explained  or  outlined change-points  from  totally

different fields.

According  to  Adams  and  MacKay  (2007),  change -points  are

considered to be abrupt changes in a process generating a sequence of random

variables. A change-point can also be thought of as the date or place where at

least one parameter of a statistical model  (e.g, mean, variance,  intersection,

18

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



trend)  undergoes  an  abrupt  change (Seidou,  Asselin  & Ouarda,  2007).

Furthermore, a change-point is defined as a location or point in time at which

the distributions of observations before and after this point differ (Chen and

Gupta, 2001; Kang, 2015). These and many other definitions of change-points

have  been  considered  and  explored in  various  aspects  of  change-point

analysis. Additionally, the change-points could represent different conditions

in a wide variety of application areas and deserve the special attention of a

researcher and/or practitioner when it comes to modeling and inference. For

example,  in  medicine  and health,  a  change-point  could  represent  a  system

anomaly and is frequently encountered in medical and health research (Zhou

& Liang, 2008). According to MacNeil and Mao (1993), young people have

relatively stable cancer incidence rates but change dramatically after a certain

age. Further, in economic theory, fluctuations in any stock price are normal,

but  many of  these  shifts  or  changes  are  abnormal  and deserve  the  special

attention of an investor (Chen and Gupta, 2012). These emphasize the need to

detect  and  locate  changes  (change  points),  anomalies,  or  thresholds  in  a

system at the right time to avoid its effects  on the system and also to find

alternative remedies for it advancement and the benefit of the transition. They

can  also  involve  positive  results,  for  example  in  quality  control,  when  an

intervention is implemented,  the result is expected to evolve into a desired

positive result.

 Change-Point Detection Approaches

Change-point detection or change detection has become a crucial part

of regression studies because the presence of  a change-point can indicate a

significant  change  in  the  regression  model  or  the  data  generation  process.
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Change-point detection approaches are used to detect and or identify abrupt

and  gradual  changes  in  the  process  of  generating  sequential  data  due  to

distributive or structural changes  (Sharma, Swayne, & Obimbo, 2016).  The

ability to detect and react accurately and in a timely manner to sudden changes

(change-points)  is  extremely  desirable  and  also  crucial  for  practical

applications  in  most  applied  science  and  real-life  scenarios.  For  example,

validation of an untested scientific hypothesis (Henderson & Matthews, 1993),

monitoring and evaluation of safety-critical processes (Elsner, Niu, & Jagger,

2004),  and  validation  of  hypothesis  modeling  (Fryzlewicz  &  Rao,  2011)

among others are studies carried out on the issue of change-points.

Basically,  the  change-point  detection  approaches  have  been divided

into two main branches, namely the offline change-point detection problem,

and the online change-point detection problem. Offline change-point detection

methods (called retrospective detection) require the full or fixed dataset for

statistical analysis and detect changes when all datasets are accounted for and

processed  simultaneously  (Truong  et  al.  al.,  2020).  Detecting  the  offline

change-  point  is  sometimes  referred  to  as  segmentation  and  is  generally

considered  to  be  more  accurate  because  it  involves  all  of  the  data  in  the

analysis.  In  contrast,  online  change-point  detection  is  used  on  live  or

sequential broadcast datasets and tries to detect changes when they occur in a

real-time frame.  Online  change-  point  detection  is  also  known as  event  or

anomaly detection and is typically used for constant monitoring or immediate

anomaly detection (Truong et al., 2020). These are very common phenomena

in a wide range of disciplines. In the literature, it is possible to find a range of

disciplines  and  a  large  number  of  underlying  techniques  or  approaches  to
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check whether or not there has been a change and also find where the change-

point is located, if it exists. In this study, the offline change-point detection

approach is used.

Probabilistic Approach to Inference

Statistical  inference  mainly  concerns  making  valid  and  precise

statements about the parameters of a given population, mainly represented by

a random variable. This process requires the development of statistical models

and estimation of uncertainty of the unknown parameters that characterize the

given family of distribution of the data or population. Modeling the random

variable implies modeling the population and after an appropriate model has

been accepted, an appropriate approach to estimate the parameters is adapted

to initiate the inference process. A broad range of inference methodologies is

available in the literature of computational statistics. This section gives a brief

exposition on the statistical inference method in the Bayesian Paradigm also

referred to as the Bayesian inference method.

Bayesian Inference

The Bayesian paradigm is a probabilistic method based on a rigorous

theory  and  which  essentially  represents uncertainty  using  probability

distributions.  In  the  Bayesian  framework, probabilities  provide  a

quantification  of  uncertainty  of  the  unknown.  Probability theory  seeks  to

combine  uncertain  information  from  different sources  to  make  optimal

decisions  under  conditions  of  uncertainty.  This philosophy  is  based  on

probability  as  logic  and  provides  a  powerful  basis for  the  application  of

Bayesian inference  (Beck, 2010; Cox, 1946, 1961; Jaynes, 2003) as well as

Bayesian  formulation  and  estimation(Bishop,  2006).  The  rationale  of  any
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Bayesian  analysis  is  mainly  a  probabilistic  model  which  represents  the

uncertainty  on a parameter of a  population. In the Bayesian framework,  the

probability distributions represent precisely, at all stages of statistical analysis,

what is known and unknown  on each variable of  interest. This probabilistic

framework allows  a consistent quantification of uncertainties  by taking due

account of all available information and is interpreted as subjective degrees of

belief(Chick, 2006). The probability distribution often referred to as the degree

of conviction expresses the degree of the expert belief in the truth of a certain

proposition in  the light of new information,  which is  the plausibility of the

truth of a certain proposition,  and is  always  conditional  to our  background

knowledge or information.

Bayesian inference is a way to modify or update one's belief given the

observed data using the Bayes theorem. The Bayesian framework allows the

formal  quantification  of  current  beliefs  as  the  prior  distribution  of  the

parameter. This expresses the uncertainty about the parameter value before the

data is observed and the information provided by the new data or the data

model, also called probability which reflects our beliefs about the data.   Given

a particular parameter value and applying Bayes theorem, one is able to update

the beliefs and form the posterior distribution. The prior and posterior beliefs

can  be  quantified  as  prior  and  posterior  distributions  respectively,  and

represent the uncertainty of the unknowns before and after the analysis of the

information. 

In the Bayesian paradigm, all statements of estimation and statistical

inference  depend  on  the  posterior  distribution.  A  detailed  introduction  on

Bayesian inference can be found in (Box & Tiao, 2011; Bernardo & Smith,
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2009; Lee, 2004). The parameters of a prior distribution are often referred to

as hyper-parameters and are distinguished from that of the model parameters

(Θ).  In the applicability of the Bayes' theorem, the product of the likelihood

and  prior  distribution  is  normalized  to  provide  the  conditional  density

(posterior probability distribution) of the data. Moreover, the prior distribution

to  large  extent  may  have  a  great  impact  on  the  Bayesian  estimates  (for

example,  posterior  distribution)  under  certain  conditions  (Du,  Edwards,  &

Zhang, 2019).  Regarding Bayesian inference,  Prior probability  distributions

have been divided into two major types: informative priors and uninformative

priors. In this study, four classes of prior distributions, namely, informative,

weakly  informative,  less  informative,  and  uninformative  are  presented

according to information and the purpose of using the prior. 

Prior Parameter Modeling

The  prior  distribution  is  used  in  Bayesian  inference  to  describe

knowledge  about  an  unknown  parameter.  The  posterior  distribution  (a

probability distribution updated) is the optimal inference and decision-making

component  within  the  Bayesian  paradigm.  It  is  the  product  of  the  prior

distribution  and  the  probability  of  new  data  (likelihood  function)  (Berger,

2006). The prior distribution (often called the prior) presents the researcher’s

subjective belief about the unknown parameter(s) before the data is observed.

The pre-data knowledge or belief about the parameter is quantified to provide

a probabilistic statement about the parameter θ  and is denoted as, p(θ ) , called

the prior probability distribution. The prior distribution as mentioned earlier

plays a defining role in Bayesian analysis and yet remains the most debatable
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component  of  Bayesian  measurements  unless  there  is  a  physical  sampling

mechanism to justify a choice.

Basically, the prior ought to be found by contemplation and thought of

all  accessible  accurate  knowledge  about  the  unknown  parameters  before

considering  the  information  on  observations  (data).  However,  due  to  the

subjective nature of prior beliefs, an important question in Bayesian analysis is

how to choose or define a  prior density in order to make an accurate  and

optimal  inference  about  an  unknown for  reliable  decision  making.  Studies

have  shown  that,  the  prior  has  a  considerable  impact  on  the  resulting

inference, and that for accurate and reliable statistical inference, the choice or

selection  of  the  prior  must  be  conducted  with  the  utmost  care  (Du et  al.,

2019).According to  Ghaderinezhad  and Ley (2020),  the effect  of  the prior

diminishes as the sample size grows under certain regularity conditions. As a

result,  if  the data size is  large enough, especially  for identical  independent

distributions,  prior  distribution  has  little  influence  on  inference  results.

Conversely,  when  the  size  of  the  data  is  small,  the  type  of  inference  is

significantly  more affected  by the prior choice.  Furthermore,  in  a situation

where the data distribution  and prior information  are significantly different

from  each  other,  with  a  potential  conflict  between  the  two  sources  of

information,  the conditional  density  for  the model  under  certain  conditions

may be  strongly  influenced  by the  prior  information (O’Hagan  & Forster,

2005; Rahman, Gao, D’Este, & Ahmed, 2016). The selection or specification

of priors is obviously a key element of the Bayesian framework, as it may

have an impact on inference results. As with many aspects of Statistics, there

are several  ways, and reasons for choosing different  prior distributions.  As
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mentioned early in this work, informative priors and uninformative priors are

the  two main  types  of  prior  distributions  that  have  historically  been  used.

Under  these  two  headings,  there  are  a  number  of  important  groups  that

describe various prior properties.               

To  facilitate  the computation,  the priors  are  often  chosen  such  that  the

resulting posterior distribution and the prior probability distribution belong to

the same family of distributions. In statistical models, when a posteriori and a

priori  distributions  are  from  the  same  family  of  distributions,  the  prior

distribution  choice  is  called  conjugate  prior  (Seber  & Lee,  2003).  In other

words, a prior conjugate is one for which the application of the Bayes' theorem

results in posterior with the same family of distribution as the prior (Rahman

et al., 2016).

Practically, conjugate prior distributions have the advantage of being

easy to handle both from a computational and interpretative point of view. It

may not fully represent its belief accurately, but it is chosen for the analytical

tractability of the corresponding posterior distribution. That is, it  allows the

results to be derived in a closed conjugate form (Seber & Lee, 2003).  In the

Bayesian framework, Conjugate priors yields analytically tractable Bayesian

integrals. It has an intuitive interpretation as an expression of the results of

previous (indeed imaginary) observations under the model. Given a standard

form of distributions, an a priori conjugate is proper, however, it may belong

to  an  a  priori  non-informative  family,  depending  on  the  hyper-parameters

values.

In defining a prior, the choice of hyper-parameters (prior parameters)

is  crucial.  In  the  case  of  sufficient  prior  information  about  an  unknown
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parameter,  the  prior  option  should  strongly  reflect  one's  prior  belief.

According to  Son and Kim (2005),  default  priors  such as  non-informative

priors or uniform priors are acceptable in Bayesian experiments with no prior

knowledge  of  model  parameters  and/or  when  just  a  limited  amount  of

information about an unknown is provided. The hyper-parameters in such a

situation  should  be  well  specified  so  that  a  non-informative  prior  can  be

presented (Bernardo & Smith, 2009). For example, using a prior distribution

with large uncertainty (variance), a Gaussian or a normal prior is proper but

reflects little knowledge about an unknown parameter.

A  proper  prior  with  a  strong  prior  belief  about  an  unknown,  not

necessarily  being  conjugate,  can  be  referred  to  as  an  informative  prior.  It

should match one’s belief, as with insufficient data a wrong selection of prior

may lead to an inappropriate posterior distribution. In a situation where little

prior  knowledge  is  available  or  the  researcher  tries  to  impart  as  little

information as possible in order to allow the data to carry as much weight as

possible in the posterior distribution, a prior should be designed to express the

ignorance  about  an  unknown.  Reference  priors,  locally  uniform  priors,

Jeffery’s prior also called Jeffrey’s rule, and Flat, diffuse or vague priors are

some examples of non-informative priors  (Bernardo & Smith, 2009). These

priors do not belong to the family of standard distributions. They are improper

densities, i.e. they do not sum or integrate to one ( ∫P(θ )dθ=∞ ). A proper

prior is one in which the prior probability distribution integrates to one and, an

improper  prior  is  one  in  which  the  prior  probability  distribution  does  not

converge to one.
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According to  Son and Kim (2005),  the majority  of  non-informative

priors are improper and so it is instructive to pay attention to whether they are

proper or improper. This is due to the fact that improper priors can result in

logical inconsistencies as well as unspecified constants being incorporated into

the Bayesian framework (Dawid, Stone, & Zidek, 1973). A typical example of

such  improper  priors  could  be  a  uniform  density  over  an  infinite  range,

reflecting no specific, definite prior knowledge about the parameter. Improper

priors may yield proper posterior distributions i.e. must integrate to 1, with a

sufficiently informative data likelihood. A detailed discussion on such non-

informative and improper priors can be found in (Box & Tiao, 2011). 

       Moreover, for a vector of parameters, 𝜃 (vector) i.e. θ={θ1 ,θ2 ,θ3 , .. . ,θ r−1 ,θ r} ,

the prior distribution can be specified as independently on each component on

𝜃 or  jointly  on  the  entire  vector  or  decomposing  the  joint  distribution  as

product of conditionals as marginal as 

P(θ1 , θ2 , . .. , θr )=P (θ1 )P(θ2 /θ1 ). .. P(θr /θ1 ,θ2 ,. ..θr−1 )  so  that,  it  starts  with  a

marginal prior for θ1 , conditional prior for θ2  given θ1 , conditional prior for

θ3  given (θ1 , θ2 ) and so on. 

Likelihood Information Modeling 

The likelihood function is a function of parameters and describes the

joint  probability  density  of  the  sample  data.  It  plays  a  significant  role  in

Bayesian analysis in the formulation of posterior distributions. Let y  denote a

random variable and f ( y ;θ ) , the probability density function of an unknown

parameter, θ .  This  parameter  identifies  the  population  or  family  given  the

restriction that it must satisfy. Let consider a random sample of size n drawn
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independently  from f ( y;θ ). Let  y1 , y2 , y3 , .. . y n  be  the  sample.  That  is,

y1 , y2 , y3 , .. . y n ~ f ( y ;θ ) . The model that is defining a relationship between a

parameter,  θ  and a  set of observed data denoted as y = { y1 , y2 , y3 , .. . y n } is

expressed  through  a  conditional  probabilistic  statement  and  written  as,

P( y ;θ ) , or P( y|θ ) .  The term P( y|θ ) is a function of data, y given a fixed

(unknown)  value  of θ . The likelihood  function  of  the  parameter  θ  of  a

statistical model, given observed data y, denoted by L(θ|y ) .

It can be expressed as 

              L(θ|y )=P( y|θ )                                                       (2.1)

Assumed independent and identically distributed (iid) random variables,

              y=( y1 , y2 , …, yn ) ,    

we have,

           
L(θ|y )=∏

i=1

n

P( y|θ)
                                                       (2.2)

The likelihood function is a tool for summarizing the evidence of the

data for unknown parameters, and it encapsulates all of the information about

the parameter offered by the data and draws inferences from it so as to extract

all  the potential  information  contained in  the  data.  The likelihood function

L(θ|y )  ,is the function by which the data y alters prior knowledge of, θ  and

it can thus be seen as conveying information about the parameter derived from

the  data  (Box & Tiao,  2011).  The  basic  information  it  provides  about  the

parameter, θ  is how likely the observed sample is generated by the possible

parameter values. The likelihood L(θ|y ) is not a probabilistic statement over
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parameter, θ  given data, y. Unlike P( y /θ) , it is not a p.d.f. of θ . It should not

be expected to integrate to one (Vatsa, 2011).

Posterior Information about a Parameter

All  inference  regarding  unknown  parameters  in  the  Bayesian

framework is based on the posterior distribution (Bernardo & Smith, 2009).

The posterior may be thought of as a belief or knowledge about an unknown

parameter  based on seen data,  as well  as a probability  density,  denoted by

p(θ|y )   that summarizes what is known about uncertain variables following

data observation. It combines the prior probability density and the likelihood

function to determine information contained in the observed data,  which is

referred to as "new evidence" (Bernardo & Smith, 2009; Box & Tiao, 2011).

Furthermore, all valid Bayesian inferential claims about parameter values are

included  in  the  posterior  probability  density p(θ|y ) ,  which  integrates  the

data information with any additional information contained in the prior density

P(θ ).

We assumed   and  as continuous random vectors.

Given  the  likelihood  L(θ|y ) and  a  prior  distribution P(θ ) ,  via  the  Bayes’

theorem, conditional probability  p(θ|y ) can be obtained as:

              
p(θ|y )=

p( y|θ) p(θ )
p( y )

                                     
         (2.3)

              
p(θ|y )=

p( y|θ ) p(θ )

∫ p( y|θ) p(θ )dθ

                               

         (2.4)

                            =   
likelihood × prior

integrated likelihood
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For a  given set  of  data,  y,  the  posterior  distribution  of  parameters  can  be

represented  proportionally  to  the  product  of  prior  distribution  and  data

probability(likelihood). i.e.

               p(θ|y ) α P(θ )P( y|θ)                                                               (2.5)

                  Posterior ∝ Likelihood ∗ Prior

The term P( y )
 in Equation (2.3) is called the marginal likelihood or model

evidence and obtained as;  

                
P( y )=∫

θ
p ( y|θ ) p(θ )dθ

                                             (2.6)

The integrated likelihood  
∫
θ

p( y|θ) p(θ )dθ
, form the normalising constant of

the true posterior  distribution and the integral  is  taken over the admissible

range  of  the  parameter θ .  And  it  is  important  to  ensure  that  the  posterior

p(θ|y ) is a valid probability densities and integrates  or  sums (for discrete

case) to one (Bishop, 2006; Box & Tiao, 2011).

Marginal likelihood provides an empirical basis for choosing suitable

prior  models  or  is  often  used  in  model  checking,  for  example,  the  Bayes

factor.

The posterior distribution p(θ|y )  in Equation (2.4) is normalized to express

it  as a  probability  density  function  with a total  probability  of  one and the

marginal likelihood
∫
θ

p( y|θ) p(θ )dθ
, serves as the normalization constant for

a valid posterior. The term in Equation (2.5) is called the posterior normalized.

This form is known as the posterior non-normalized joint distribution, and it
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may be used to make inferences. In most statistical problems, the parameter θ ,

is multidimensional; θ = {θ1 ,θ2 ,. . ., θr } ,with some nuisance parameters.

In other words, a nuisance parameter is one that is included in a model's joint

posterior distribution but is not of primary concern. One method for removing

these bothersome factors is  to integrate  out or minimize the joint posterior

distribution  with  regard  to  them.  Define θ=(φ , ω )  where  φ  represents  the

major parameters of interest and where ω  represents the nuisance parameters.

The  marginal  posterior  density  of  the  major  parameters  of  interest, φ  is

obtained as;

            P(φ|y )=∫ P(φ ,ω|y )dω                                                  (2.7)

As a result, in Bayesian inference, the marginal unnormalized joint posterior

distribution  is  used  to  estimate  unknown  parameters.  To  estimate  the

parameters,  for example,  one may use the MAP technique to calculate  the

mode  of  the  marginal  unnormalized  joint  posterior  distribution.  These

estimates are some function of posterior distributions which again require the

computation of some multidimensional integrals. Solving integrals is therefore

a necessary task in Bayesian computation. More often, the multidimensional

integrals are either computationally intensive or intractable  (Vatsa, 2011). In

such cases, we rely on distributional or simulation type approximations for

example  Markov  Chain  Monte  Carlo  (MCMC)  sampling  technique  and

Variational Bayesian approximation discussed later in the chapter.  It is critical

to  recognize  that  some types  of  conflicts  may be created  by  the  data  (for

example, outliers) and prior information. In such cases, the disagreement may

have a significant impact on the posterior distribution, potentially leading to
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inconsistency/inappropriate  statistical  conclusions  (Andrade  &  O'Hagan,

2006). 

Posterior Inference via Summary Statistics

In Bayesian statistics,  the posterior density function contains all  the

information about the parameter we already know and that we would like to

know.  As  a  result,  several  summary  statistics  can  be  computed  from  the

posterior for inference about the parameter.  A plot of the posterior density is

frequently helpful; that is, the nature of the posterior density may be visually

evaluated  using  graphs  such  as  scatter  plots,  box  plots,  histograms,  and

contour  plots,  among  others. Some  of  the  numerical  summary  statistics

representing the center of the posterior density that are commonly used are its

mean, median, and mode.  Each of these might be used as a Bayesian point

estimate for parameter inference.

 The posterior mean is computed as:                        

                    μθ=E [ P(θ/ y ) ]

                          = ∫θ P(θ/ y )dθ ,                                                             (2.8)

The posterior  mean  μθ  is  defined  as the parameter's  expectation  in

relation to the posterior probability. On the other hand, the posterior mode is

obtained as:    

                         θmod=argmaxθ {P(θ/ y ) }                                              (2.9)

The value of  the parameter  of interest  that  maximizes  the posterior

density  is  defined  as  the  posterior  mode.  For  continuous  posterior

distributions, the estimate of the modality can be obtained using the principle
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of differentiation. The process can be difficult if the posterior has a complex

structure.  However,  in  such  a  situation,  the  maximum  posterior  estimate

(MAP) is used which is the overall model of a posterior distributions. It is

computed as:   

                       θMAP=argmaxθ P(θ )P( y /θ )                                           (2.10)

A MAP estimate plays a vital role in Bayesian analysis. Even if the

posterior distribution is intractable,  a MAP estimate can be found by some

optimization  methods,  Newton’s  optimization  method.   Also,  if  the  prior

distribution is non-informative the MAP reduces to the ML estimation of the

parameter.  A  MAP  estimate  facilitates  the  approximation  of  complex  or

intractable  posterior  distributions,  such  as  a  Laplace  approximation  or  a

Gaussian approximation.   Moreover, the measures of dispersion (spread) of

the posterior distribution might be summarised, for example, by its variance or

standard deviation. Not only that but also the posterior interquartile range and

other quantiles are applicable (Mensah, 2010).

In the Bayesian framework, posterior measures of spread are used to

represent the variability or spread of the parameter's posterior distribution.

The most common and frequently used are the posterior variance and standard

deviation defined as follows: The posterior variance is

Var (θ/ y )=∫(θ−μθ )
2 p(θ/ y )dθ ,                                             (2.11)

Where  μθ  represents  the  posterior  mean  and  V  also  represents  posterior

variance.

The posterior standard deviation is given by

V θ= √∫ (θ−μθ )
2 p (θ/¿ y )dθ , ¿

                                                     (2.12)
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The posterior knowledge of a parameter contained in its posterior distribution

can be summarized not only by point estimates but also interval estimates. An

interval estimate summarizes the posterior uncertainty of the parameter.

The  interest  may  lie  in  specifying  an  interval  that  includes  most  of  the

posterior density and for the interval estimates for parameters, an analog of the

confidence  interval  in  the  classical  approach,  called  Bayesian  credible

intervals are utilized. The credible interval defines the domain of the posterior

probability or predictive distribution. 

As previously mentioned, the purpose of Bayesian inference is to infer

the  posterior  probability  distribution  of  a  collection  of  parameters  given

observed  data. However,  in  most  circumstances,  these  posteriors  are

intractable,  making  direct  quantifications  of  marginal  distributions  of

parameters or other variables (estimates) of interest impracticable. Given the

challenges of directly utilizing these posterior distributions, statistics literature

has  utilized  two  main  methods  for  approximating  the  intractable  posterior

probability  density  and  fitting  Bayesian  models:  Markov  Chain  method,

especially MCMC  (Gelfand, Hills, Racine-Poon, & Smith, 1990; Geman &

Geman, 1984) and Variational Bayesian approximations methods  (Dempster,

Laird,  & Rubin,  1977) to  accomplish  the  inference  task.  However,  in  this

study,  we  consider  a  Variational  Bayesian  approximation  technique

particularly  the  Variational  Bayesian  method  (referred  to  as  Variational

Bayes) for all our inferences.

Variational Probability Models as Approximation to True Models

Variational  approximations are deterministic  approaches for drawing

conclusions for parameters in complex statistical  models. Variational Bayes
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approaches  have  long  been  employed  in  control  theory,  physics  and

mathematical  applications  (Jaakkola  & Jordan,  2000).  According to  Jordan

(2004),  Variational  approximation  has now become an important  aspect  of

traditional  computational  approach,  mostly  utilized  to  address  issues

including, document retrieval, voice recognition, and genetic link analysis, to

mention a few examples.  Variational  approximation approaches  have lately

benefited  from  increased  application  and  development in  statistical  issues

(Jordan, Ghahramani,  Jaakkola,  & Saul,  1999)  by authors such as (Bishop,

2006;  Jordan  ,2004  &  Titterington,  2004). In  the  year  2008, a  software

program  based  on  Variational  Bayes  approximation called  Infer.NET  was

developed under the pretext that it has the capability to deal with extensive

issues (Minka, Winn, Guiver & Kannan, 2008). Variational Bayes techniques

for  approximating  complicated  calculi  have  their  origins  in  calculus  of

variations and contain a wide variety of tools for evaluation of integrals and

functions.

 In  general,  calculus  of  variations  fundamentally  deals  with

optimization  problems.  It  is  the  case  of  optimizing  a  given  function  on  a

particular class of functions on which this function is dependent. When a set of

functions  is  constrained  in  some manner,  generally  to  increase  tractability,

approximate  solutions  emerge  (Ormerod  & Wand,  2010). In  spite  of  their

enormous  significance,  Variational  approximations  methods  are  rarely

employed  in  the  statistical  community.  For  making  approximate  inference,

Markov Chain Monte Carlo methods have dominated and are more significant

than Variational approximation methods and Laplace approximation methods

(Gelfand & Smith,  1990; Hastings,  1970). Despite  the fact that Variational
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techniques  are  routinely  utilized  in  the  field  of  machine  learning  in  the

statistical  community,  Bishop  (2006)  demonstrated  that  Variational  Bayes

solutions  are  efficient  and  effective  alternatives  to  MCMC  solutions  for

Bayesian computation and inference. In the case of large models, for example,

Variational approaches provide a quick alternative to MCMC and has lately

acquired prominence in the literature.  Variational  Bayes approximations,  in

particular,  are  significantly   faster  deterministic  alternative  to  the  MCMC

sampling approach  for Bayesian computation and  facilitating approximate

intractable posterior inference of complex statistical models (see, for example,

Attias, 2000; Jordan et al., 1999; Waterhouse, MacKay, Robinson, & others,

1996) for early developments of the method and  (Jordan, 2004; Ormerod &

Wand, 2010; Titterington, 2004) for non-technical overviews and also seen as

a productive sets of methods and ranked high than the Laplace approach. The

Variational  approximations  however  are  restricted  in  their  approximations

accuracy as compared to the Markov chain Monte Carlo (MCMC) counterpart

which  can  result  in  high  accuracy  if  the  Monte  Carlo  sample  sizes  are

increased (Robert & Casella, 2004; Ormerod & Wand, 2010).

In  the  machine  learning  and  statistics  literature,  Variational

approximations  methods  have  recently  gained  traction   (Corduneanu  &

Bishop, 2001; Jordan et al., 1999; Ueda & Ghahramani, 2002). Some of these

studies  developed  and  published  a  new  Variational  approximations

methodology for specific applications. Examples include the works  (McGrory

&  Titterington,  2007;  McGrory,  Titterington,  Reeves,  &  Pettitt,  2009).

Titterington  and Wang,  (2006)  also  discussed  the  statistical  properties  of

estimation obtained through Variational computations. The use of Variational
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approximations  is  enormous for  statistical  inference,  in  particular  Bayesian

inferences.  According  to  Ormerod  and  Wand  (2010),  the  application  of

Variational Bayes approximations is far more crucial for Bayesian inference in

situations with intractable computing challenges. As a result, the majority of

Variational Bayes approximation descriptions are used for Bayesian analysis.

It is important  to note that,  Variational Bayes approximations solutions are

beneficial and closely correlate to MCMC solutions.  

 However, the MCMC approach is inefficient for some issues.

These are  useful  when we need an estimated  conditional  probability  faster

than a typical MCMC method can generate it, such as when the data sets are

large or the models are complex.

In these circumstances, Variational Bayes inference offers a fast and powerful

alternative  for  Bayesian  solutions  (Blei  et  al.,  2017).  It  could  be  a  cost-

effective and reliable method for analyzing larger datasets  (You et al., 2014).

Variational Inference for Bayesian Models

           A critical component of Variational inference is the measures of the

approximate posterior density also referred to as the conditional density.  The

essential  concept  is  to  handle  this  problem  through  optimization.  The

optimization seeks the member of a group of densities, as an estimation to the

conditional density (posterior distribution) of interest based on certain distance

measures  like  Kullback-Leibler  divergence.   This  measure  quantifies  the

difference  present  in  the  approximate  posterior  density  referenced  to  the

conditional  density (true posterior).  In Bayesian solutions, the closet or the

minimum Kullback-Leibler divergence measure is preferred. That is to find an
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approximate density that is maximally similar to the true posterior distribution,

p(θ|y ) .

Blei  et  al.  (2017) provided  Variational  evidence  suggesting  that  the  fitted

Variational  density  derived  through  Variational  Bayesian  methods,  for

example  ‘‘Variational  Bayes’’,  acts  as  a  proxy  for  the  true  conditional

densities.  Variational Bayesian inference presents a class of approaches with

inference  optimization  duality  (Jang,  2016).  Statistical  inference  problems,

such  as  determining  the  values  of  parameters  that  minimize  particular

objective functions may be viewed as optimization problems. Furthermore, the

optimal  quantity  in the Variational  Bayesian framework is the Varioational

Lower Bound (VLB, also known as evidence lower bound (ELBO), and its

relevance pervades Variational Bayesian derivations and inference.

The Variational Lower Bound as Approximate Information 

Using  a  general  Bayesian  model  of  parameter  vector   and

observed data vector  , for the purposes of Bayesian inference, the posterior

distribution is generated as: 

                 

p(θ|y )=
p( y , θ)
p( y )

=
p ( y|θ ) p (θ)

∫
θ

p( y ,θ )dθ
                                       (2.13)

The  phrase  is  marginal  likelihood,  and  (Kass  &  Raftery,  1995).  We  will

assume that and are continuous random vectors. The discrete case is handled

in the same way, but with additions rather than integrals.

The  term   marginal  likelihood  it  is  the  basis  for  comparing

competing models using Bayes factors  (Kass & Raftery, 1995). We assume
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both parameters   and  as continuous random vectors. The discrete case is

handled similarly, but using summation but not integrals.

Assumed an arbitrary density function, , over υ . As a result, the Variational

lower bound (i.e., evidence lower bound) to the log (marginal) probability of

the observations determined by (Beal ,2003) using Jensen's inequality.

as;

       
log p( y )=log∫

θ
p ( y|θ ) p (θ )dθ=log∫

θ
p ( y , θ )dθ

                           (2.14)

         
= log∫

θ
p( y , θ)

q(θ )
q(θ )

dθ
                                                         (2.15)

        
=log (Εq [ p ( y ,θ )

q (θ ) ])
                                                            (2.16)

                      
¿ Εq [ log p( y , θ )

q (θ ) ]
                                                              (2.17)

                     ¿ Εq [ log p ( y , θ )]−Εq [ log q(θ )]                                          (2.18)

The  Variational  lower  bound,  often  called  evidence  lower  bound,  is

represented in Equation (2.18). In Variational Bayes framework, we employ

the distribution  q (θ ) in Equation (2.16) to estimate the posterior distribution

p(θ|y ) .  The Jensen's  inequality  for the concave log function is given by

Equation (2.17).

The  lower  bound  of  the  evidence  is  less  than  or  equal  to  the  marginal

logarithmic probability of the observations. Altogether, the Evidence Lower

Bound (ELBO) for a probability model p( y ,θ ) and approximation q (θ )  to the

posterior denoted as L is:

L=Εq [ log p ( y ,θ )]−Εq [ log q (θ)]                                                (2.19)

39

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



where  −Εq [ log q(θ )]   is termed the Shannon entropy.

As a result, instead of maximizing the marginal probability, we can maximize

its Variational lower bound in some instances. With each update in the VB

approximations,  the  lower  bound  on  the  marginal  probability  increases  or

remains  constant.  When  the  Variational  approximation  distribution  is

extremely close to the conditional density, a tight bound is established. 

As a result, the VB technique can approximate the posterior distribution as:

p(θ|y )≈q(θ|y ) . That is, approximation distributions that are as close to the

true posterior distribution as practicable, and we achieve this by determining

the parameter settings that get q close to the required posterior. Obviously,

approximation  distributions  should  be  somewhat  easy  and  tractable  for

inference. The Kullback-Leibler (KL) divergence is a standard statistic used to

quantify  the  closeness  of  the  two  distributions.  This  metric  computes  the

differences between the approximated distribution q (θ )   and the true

posterior  distribution p(θ|y )   .  The  lower  bound  can  alternatively  be

described in terms of a Kullback-Leibler divergence for Variational inference

as; 

KL [q (θ )||p (θ|y )]=∫
θ

q(θ ) log q(θ )
p(θ|y )

dθ
                                                (2.20)

=−(∫θ q (θ) log p ( y , θ )
q (θ )

−∫
θ

q(θ ) log p( y ))dθ
              (2.21)

=−∫
θ

q(θ ) log p( y ,θ )
q (θ )

dθ+ log p ( y )∫
θ

q(θ )dθ
              (2.22)

=−L+ log p( y )                                                (2.23)

40

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



where L denotes the previously defined Variational lower bound. It is worth

noting that the KL divergence from the true posterior is equal to the negative

ELBO plus a constant. The normalization constraint 
∫
θ

q (θ)dθ=1
 yields as in

Equation (2.23)

we rearrange the equations to obtain; 

          L= log p( y )−KL [q (θ)||p(θ|y )]                                                 (2.24)

KL divergence is always a nonnegative quantity (i.e., KL divergence ¿0 . and

zero when p=q )  (Kullback, 1997; Kullback & Leibler, 1951). 

In  Variational  inference,  the  approximated  posterior  density, is  to  a

large  extent  tractable  than  the  marginal  likelihood  ,when  density

transform approach is employed. Tractability is achieved when q is restricted

to a manageable class of densities and then maximized over that specific class.

Considering Equation (2.24), the optimization of the Variational lower bound

becomes achievable when maximizes or minimizes the KL-divergence

of the two quantities; that is q and  (Ormerod & Wand, 2010).

The Variational Bayes Perspective of Model Selection 

          A fundamental practical issue in many statistical investigations is the

problem of model selection and has become an important part of regression

analysis and inference. Model selection is a technique that statistically selects

an appropriate  model  from a set  of  competing  models,  for  a  given dataset

(Skonishi, Ando & Imoto, 2004). However, for several candidate models, the

model that best fits a dataset is often not easily determined. For example, in

the  case  of  many  complex  observable  datasets,  and  no  one/single  model
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explains  the  data-generating  process  for  all  datasets.  The  application  of  a

model  selection  criteria  is  one of  the most  extensively  utilized  methods to

handling  change-point  related  problems.  The  number  of  components  to

include in a switch model is a challenging task to solve. 

           Fully Bayesian solutions are critical for model selection due to the fact

that  they  include  an  implicit  penalization  term  for  the  model  complexity.

Variational Bayesian methods for model selection directly aim at estimating

the Bayesian integral even though in an approximated form. As a result, real

or  true  posterior  distributions  over  model  parameters  are  substituted  with

approximated distributions referred to as Variational distributions that allow

for tractable approximation.

Variational Information Criteria

The  Variational  Information  Criteria  is  a  developed  approximation

technique for marginal log-likelihood that offers an automatic model selection

framework  with  tractable  inference  algorithms.  Valente  and  Wellekens

(2005a);  You  et  al.(2014) are  perhaps  among  the  few  major  studies  on

Variational information criteria construction and applications for the purposes

of  model  selection  problem.  The  Variational  Bayes  approximation  of  the

frequentist  information  criteria,  that  is,  the  deviance  information  criterion

(DIC),  Bayesian information criterion (BIC)  (Spiegelhalter,  Best,  Carlin,  &

Linde,  2002),  and  its  variants  are  of  particular  interest  to  us.  These

approximate approaches have become a key component of Bayesian solutions

for model selection criterion and its related problems. 

           Approximation of difficult-to-compute probability densities is not

trivial  in  modern  statistics.  This  phenomenon  is  common  in  Bayesian
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statistics,  where  all  inference  about  unknown  quantities  is  framed  as

calculations with the posterior density. Most of the time, the intractability of

some  classes  of  complex  posterior  distributions  has  made  it  difficult  to

maximally  extract  information  and  put  a  sort  of  restrictions  for  Bayesian

inference.  These  limitations  seemed  to  be  overcome  by  the  advent  of

Variational  Bayes  approximate  approach,  which  yields  more  tractable

posterior  distributions  and  enhances  maximally  extraction  of  useful

information for effective and broader Bayesian inference. 

In  the  context  of  selecting  a  linear  regression  model,  You  et  al.  (2014)

proposed a Variational Bayes version of Bayesian Information Criterion (BIC)

(Schwarz,  1978)  and  Akaike  information  criterion  (AIC)  (Akaike,  1973),

referred  to  as  Variational  Akaike  Information  Criterion  (VAIC)  and

Variational Bayes Information Criterion (VBIC). They asserted that the VAIC

and VBIC have a high-performance rate and accuracy level and converge with

the  classical  AIC  and  BIC  solutions  respectively,  under  a  mild  regularity

condition (Yang, 2005). 

Increasingly,  an appreciable  number of researchers and practitioners

have modified existing methods and applied novel model selection techniques

based on information-theoretic-  approaches  to the analysis  of their  change-

point  problem.  One  of  the  most  extensively  used  strategies  for  detecting

change-points  is  the  model  selection  criteria  (Jiang,  2015).  According  to

Ninomiya (2015), A change-point model must contain an irregularity that calls

for  a  different  approach from asymptotic  theory as  a  whole. According to

McGrory  and  Titterington  (2007),  the  DIC  and  BIC  for  Bayesian  model

selection can be extended to the change-point model framework, in our case,
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for  linear  systems,  by  using  a  Variational  approximation.  The  researchers

noted  that  estimates  of  these  information  criteria,  particularly  VAIC  and

VBIC,  provide  an  additional  model  selection  tool  that  can  be  used  as

alternative  to  MCMC  sampling  approaches  for  change-point  detection  in

linear systems. It is important to note that VAIC and VBIC have never been

used  to  solve  change-point  detection  problems  in  the  context  of  model

selection in linear systems.

Variational Akaike Information Criterion 

          In recent  years,  research has been expanded to include  complex

structural models for better representation of real-world datasets, necessitating

the  development  of  some  appropriate  criterion  to  facilitate  comparison  of

competing  models.  In  model  comparison,  model  complexity  is  a  vital

fundamental issue and trade-off between model fits and model complexity is

required.  Model  selection  has  become  a  critical  component  in  Bayesian

solutions, and with increasingly complex models, a robust searching criterion

is  required.  Spiegelhalter  et  al.  (2002)  proposed the  Deviance  Information

Criterion(DIC), a model selection criterion that utilized Bayesian estimates of

model complexity and model fit. This is arguably one of the most remarkable

progress in the Bayesian framework for the Model Selection problem. From a

Bayesian  viewpoint,  deviance  information  criterion  (DIC)  viewed  as  an

approximate  model  selection  method  aims  to  explicitly  balance  the  model

complexity  with  fit  to  the  data  and  server  as  a  Bayesian  version  and  a

Multilevel modeling generalization of the AIC. 
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The  Akaike  Information  Criteria  (AIC)  (Akaike,  1973)  is  a  well-known

criterion that defines the best model in a competing set as the one with the

lowest AIC and is defined as: 

           AIC = -2Iog (maximum likelihood) + 2 (number of parameters) 

The log-likelihood has been found to favor models with more parameters and

to be penalized by the inclusion of the number of parameters term. In this

perspective,  the  AIC is  viewed as  a  criterion  that  balances  model  fit  with

model complexity. However, it has been claimed that the AIC selects a model

with more free parameters than is required (Shibata, 1976). Spiegelhalter et al.

(2002) present a model selection criterion that combines Bayesian evaluations

of model fit or adequacy and the model's complexity. 

The DIC is defined as

              DIC = 2 PD−2 log p( y|θ
~
)                                         (2.25)

 where y represents data and θ , represents unknown parameters vector on the

parametric density p(⋅|θ ) . Having θ
~

 as a Bayesian estimator for θ , That is, θ
~

is the expectation of θ , 𝔼 (θ|y )  and p( y|θ )  is the likelihood function and

PD= { 𝔼 (θ / y ) [−2 log p( y|θ )] }+ 2 log p ( y|θ ) .                   (2.26)

The  model  that  minimizes  the  DIC is  a  logical  choice  for  an  appropriate

model; that is, smaller values of DIC are preferred than large values of DIC.

The difference between the posterior mean of the deviation and the deviance

evaluated at the posterior mean or mode, θ
~

, say, of the relevant parameters, is

defined as the measure  PD . It represents estimate of the effective number of

parameters in a model and is seen as a penalty term for model complexity,
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with  the  goal  of  preventing  overfitting.  In  the  DIC formulations,  the  term

−2 log p ( y|θ
~
)  in  Equation  (2.25)  represents  a  measure  of  the  model's

goodness of fit. When non-information or improper priors are used, the DIC

might  be  helpful  for  model  comparison.  Explicit  computation  of  the  DIC

necessitates  knowledge  about  the  model's  posterior  distribution,  which  is

sometimes difficult to get precisely, especially in the case of a complex and

intractable posterior distribution.

In practice, numerous studies have discussed  the MCMC simulation-

based approach to approximate the intractable distributions to obtain tractable

posterior distributions for easily computation of DIC  (Gelfand et al.,  1990;

Green, 1995; Robert, Ryden, & Titterington, 2000). You et al., (2014) on the

other hand, provided a Variational Bayes approximation based on the work of

(McGrory  &  Titterington,  2007) to  approximate  DIC.  Their  proposed

procedure was presented substituting true posterior distribution p(θ|y ) by the

approximation  distributions  q (θ ) and  yielded  to  the  Variational  Akaike

information criterion(VAIC) as an approximation of the DIC.

VAIC defined as;

VAIC     ¿−2 log p( y|θ¿ )+2 P
¿
D

                                        (2.27)

Where  θ¿= Eq(θ ) and  P
¿
D=2 log p( y|θ¿ )−2 Eq [ log p( y|θ )] .  As  pertaining

to information criterion, the smaller values of VAIC are preferable.

Variational Bayesian Information Criterion 

According to (You et al., 2014), the variational version of the Bayesian

information criterion (BIC) of (Schwarz, 1978) is a valuable tool for modern

Bayesian model  selection.  The  Schwarz,  (1978) Criterion,  is  a  well-known
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model selection approach that selects more parsimonious models over more

complex models. It is consistent in selecting an optimal model from a set of

candidate  models.  This  was  accomplished  by  including  a  penalty  term

dependent on the number of free parameters evaluated in the model (Raftery,

1995; Schwarz, 1978). It is obtained as;

BIC ¿[−2 log p( y|θ̂ML)+P log (n )]                                           (2.28)

Where the term p( y|θ̂ML )  in Equation (2.28) denotes maximum likelihood,

P , the number of model parameters and n , the number of observations.

According to Raftery (1995), the Bayesian information criterion (BIC) offers

less assistance for additional effects or parameters and that, for effective and

efficient applications of this popular criterion, it is necessary to determine the

number  of  free  parameters  in  advance,  which  is  a  challenging  task  where

complex  hierarchical  models  abound  with  intractable  posterior  probability.

(You et al., 2014) considered Variational estimates updates for BIC for high

dimensional distributions and complex hierarchical models by means of the

Variational Bayes algorithms and called it Variational Bayesian information

criterion (VBIC). It is obtained as:

VBIC ¿[ 2(−Eq log p−q( y )+Eq log p(θ )) ]                           (2.29)

The goal is to update the approximation distributions all through the process to

approximate the true posterior distributions while still functioning effectively

when free parameters and observations are not clearly defined. According to

You et al., (2014), the smaller values of the information criteria, specifically

VAIC and VBIC,  are  desirable  in  the  application  of  Variational  Bayesian

model selection.
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Empirical Reviews

Detection and estimation of change-points or switch points in linear

regression  models  has  long  been  a  concern  for  statisticians.  A  significant

variety  of  strategies  have  been  investigated  to  identify  and  estimate  the

change-point and its location in systems. The most commonly used include the

Bayesian analysis test, maximum likelihood ratio test, stochastic process test,

and non-parametric test, among others.

Empirical Studies on Change-Point Problem in the Bayesian Paradigm

          Chernoff and Zacks (1964) investigated the first change-point issues in

the  Bayesian  paradigm  and  estimated  the  real  current  mean  of  a  normal

distribution subjected to temporal changes. They used Bayesian inference as a

technological tool to gain insight into the change-point problem, which led to

simple robust procedures. The Bayesian estimate of a current mean for an a

priori probability density over the entire real line was performed with a normal

prior distribution for the mean and amount of change but, with a uniform prior

distribution for the change-points. Broemeling (1972) studied Bayesian mean

change-point  in  relation  to  a  sequence  of  normally  distributed  random

variables  with  fixed  variability.  For  all  of  the  parameters,  he  used  a  non-

informative  prior.  It  is  important  to  note  that  in  the  Bayesian  technique,

everyone, without exception, has utilized just the uniform prior distribution for

the switch and this study is no exception. In practice, detecting change-points

is a complex process since number of change-points in the system is unknown.

Smith (1975) proposed a Bayesian method to solving a change-point problem

in a sequence of random variables when the underlying distribution changes.

The posterior probability density of the possible change-points was used to
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make  the  inferences.  With  a  numerical  demonstration,  he  offered  a

comprehensive study on change-point detection and estimation for binomial

and normal distributions.

            Bayesian techniques have been used with single and multiple changes

with known or unknown number  of change-points.  Gelfand,  Hills,  Racine-

Poon and Smith (1990) investigated Bayesian analysis of change-points for a

range of normal data models, including regression with unequal variances and

a fixed number of change-points.

Stephens (2000) based his Bayesian analysis on multiple change-point issues

where the number of the change-points remained uncertain. Examples of such

techniques  that  assumed  a  fixed  number  of  change-points  are  as  follows:

(Carlin, Gelfand, & Smith, 1992). Other writers approached the topic in such a

manner that the data series comprised just one change-point.

Empirical  Studies  on  Change-Point  Problem  for  Linear  Regression

Models

A considerable number of studies in the literature examined the topic of

change- point related with regression models, and several ways for verifying

whether a change exist or not in the real values of a linear system have been

extensively investigated.  In the literature, two problems are encountered in

detecting and identifying change-points in the linear regression model: jump

discontinuity (change-point)  and linked lines or continuous lines,  both with

known  or  unknown  change-points  (Chen,  Chan,  Gerlach  & Hsieh,  2011).

Quandt  (1958) introduced  the  idea  of  abrupt  switch  in  the  simple  linear

regression  models  for  the  first  time.  He  considered  a  number  of  pairs  of

observation ( y i , x i ); i=1,2 ,. . .n  such that
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Y i=α1+ β1 x i+ei ; i=1,2 ,. . .k                                            (2.30)

Y i=α2+β2 x i+ei ;  i=k+1 , k+2 , … , n                      (2.31)

Where  α 1 , α2 , β1  and  β2  represents  the  r  model  parameters,  and  k is  the

change-point at which the second structure of the model differs from the first,

and is referred to in the literature as two-phase simple linear regression model.

He used an iterative maximum likelihood estimation (MLE) approach to solve

jump discontinuity change-point problem. The scheme selected rule was based

on  the  maximum  likelihood  measures  of  k which  corresponded  to  the

maximum likelihood function. Thus, first, the switch point in the system is

estimated  and  then,  based  on  the  switch  point,  the  ML estimators  of  the

regression parameters were derived. He also developed a test procedure based

on an asymptotic (LR method) and a small sample test to investigate a change-

point linear regression model, and he also used the methodology to analyze

some real-world data meaningfully.

Two  years  later,  Quandt  (1960) with  generated  data,  empirically

investigated  the  distribution  of  −2 log λ , where λ  is  the  LR  statistics  and

demonstrated that the term  −2 log λ  is not a chi square distribution. On the

basis, he also derived an empirical table of percentage points for  −2 log λ , to

detect a single change-point in the system. Based on the numerical study, he

observed that the logarithm likelihood ratio λ  was independent on the length of

the series. In his studies, he described a small sample property of tests like, a t-

test and F-tests, based on the ‘’crossed residuals” which depend upon dividing

the  observations  in  to  two  non-overlapping  groups.  In  this  context,  he
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remarked that it is preferable to divide the two groups arbitrarily than to use

the MLE for the switching point as the dividing limit. 

Finally,  he recommended that the F-test  be used to solving change-

point  problem  in  system  changes.  The  two-phase  simple  linear  model  of

Quandt  (1958) was later  extended to multi-phase multiple  linear  regression

models by (Chow, 1960) on the assumption that the number of switch points is

known (multiple change-points problems). 

Sprent (1961) outlined a hierarchy of potential hypotheses of interest in

relation to the two-phase simple linear regression model, and he also indicated

that the outcome of an initial investigation should indicate the hypothesis to be

considered.  He utilized the F-test  procedure to detect  the change-point and

explore  least  square  estimates  (LSE)  of  the  parameters.  He  applied  his

proposed methods to real-life data consisting of three sets of data with each

one  relating  to  a  two-phase  regression  or  two-line  regression  model  and

discussed the problem of identifying the terminal point of buds of spur of the

apple and concluded that the results correctly identified the original situation

of the problem.

Farley and Hinich (1970) explored the abrupt change-point problem in a linear

regression model by developing an LMPT for the stable and the switch linear

regression models. They proposed the use of MCMC approach and observed

that  a  shift  that  occurs  at  extreme  ends  of  the  data  are  challenged  to  be

detected than a change-point that occurs in the neighbourhood of the center of

the  data.  These  works  reviewed  above  all  belong  to  the  classical  (non-

Bayesian) approach to solving the change-point problems in linear systems.
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Bacon and Watts (1971) presented an empirical model that may support both a

smooth and abrupt change from one linear model to another. They defined a

set of transition functions and considered the joining point and nature of the

transition.  They  utilized  the  Bayesian  technique  and  non-informative  prior

distribution  for  all  model  parameters.  They  obtained  a  joint  and  marginal

posterior  distribution  of  the  parameters  utilizing  numerical  integration

techniques or exact Bayesian computations. They also applied their techniques

to certain experimental data from R. A. Cook. They stated that their model is

not  sensitive  enough to  identify  changes  in  slope.  They also  said  that  the

analysis  of  their  approach is  applicable  to  multiple  joint  points  and linear

intersection functions.

Ferreira (1975) studied the abrupt change problem corresponding to two-phase

linear model from the Bayesian viewpoint. He employed three different forms

of  priors  for  the  change-point  and  a  uniform  prior  for  all  of  the  other

parameters.  Mean biases and MES of the Bayesian estimates were computed

and compared with those of the ML, estimates through Monte Carlo studies.

The MSE of the Bayesian estimates was found to be uniformly smaller than

those of ML estimates. He also analysed Quandt’s data using the Bayesian

methodology employing his three types of priors and got results which were

almost identical.

Choy and Broemeling (1980) generalized the results of (Ferreira,1975) using

Bayesian  Methodology  and  a  uniform  prior  for  the  change-point  and  a

conjugate  prior  for  all  other  parameters.  They  obtained  the  posterior

distributions of all the parameters and demonstrated how to obtain point and

interval  estimators  for  the  parameters.  These  techniques  were  applied  to
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(Quandt,  1958) data  and  they  arrived  at  results  that  converged  to  that  of

Quandt’s.  They also derived the HPD region for the regression parameters

whose  posterior  distributions  were  a  mixture  of  t  distributions.  They

conducted a number of numerical studies and noted that the estimates were

quite close to the actual values.  In addition to the work of Tsurumi (1980),

Bacon and Watts (1971) investigated the gradual change problem in multiple

linear  regression system,  with the assumption that  the changes  occurred in

only one of the regression parameters. He considered non-informative priors

for  all  parameters  and  a  uniform  prior  distribution  for  the  change-point

location.   The joint  marginal  posterior density  of the change-point  and the

transition parameter were obtained using three types of transition functions.

This proposed method was applied to U.S. petroleum data analysis to study the

parameter shift in the supply and demand functions. He remarked that when

data obey two different regimes and are treated as one homogeneous group

would produce an erroneous result.  This technique was also applied to the

simultaneous  equations  model.  As  stated  earlier  in  the  work,  approximate

Bayesian methodologies are used for Bayesian inference in many situations

where  the  conditional  density,  which  is  the  key  component  for  Bayesian

inference, is intractable.

           Holbert (1982) also used Bayesian methodology to solve the problem

of  two-phase  or  switching  simple  linear  regression  for  both  discrete  and

continuous cases, and he considered non-informative priors for all parameters

and derived the parameter posterior distributions. He also obtained the highest

posterior density (HPD) region for the point where the two regression lines

intersected and described a test procedure for testing the hypothesis relating to
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the  intersecting  points  and  utilized  the  ratio  of  the  posterior  distribution's

ordinates. He also illustrated the procedure by using some data from (Pool &

Borchgrevink (1964) which was used earlier by (Hinkley, 1971) to illustrate

the  MLE  method.  On  the  basis  of  his  numerical  study,  Holbert,  (1982)

concluded that his results compared quite favourably with those of Hinkley’s.

It should be remarked here that Hinkley’s results were based on a certain chi-

square  approximation  whereas  no  such approximation  was  involved in  the

result  of  Holbert.  Again,  Holbert  (1982)  investigated  the  change-point

detection in multiple linear regression models from a Bayesian perspective. 

             The online detection of change-points in a linear regression model has

been of  much interest  in  many applications  in  recent  years.  Geng,  Zhang,

Huie,  and Lai  (2019) discussed the online change-point  detection  in  linear

regression settings and assumed a known pre-change coefficient of a linear

model but an unknown post-change coefficient of the linear regression system.

An efficient online scheme was considered to identified a change-point using

both Classical and Bayesian formulations. They proposed a novel technique,

the  parallel-sum  algorithm  which,  despite  its  modest  computational

complexity,  ranked  high  in  terms  of  the  performance  indicators  of  the

corresponding  parameter  estimates.  They  concentrated  on  the  impact  of

detection delay on the likelihood of detecting the true change-point. Liu, Zou,

and  Zhang  (2008)  discussed  a  nonparametric  technique  and  empirical

likelihood  for  detecting  a  change-point  in  a  linear  regression  model's

coefficient. They examined the effectiveness of empirical likelihood ratio test

statistics versus the usual parametric likelihood technique. As a consequence,

the  two  converge  on  an  asymptotic  null  distribution.  They  evaluated  the
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maximum empirical likelihood change-point estimator and discovered it to be

reliable. The results also show that their proposed approach is sensitive and

robust.

Empirical Studies on Change-Point Models as Model Selection Problem 

In addition to the classic (likelihood ratio test, LRT) and Bayesian tests

that dominated change-point analysis, the change-point problem has recently

been viewed as a model  selection  problem,  with the most  commonly  used

methods  being  the  Akaike  Information  Criterion  (AIC),  the  Bayesian

Information  Criterion  (BIC),  and  their  variants.  These  criteria-based

information  techniques  and  the  variants  serve  as  an  additional  tool  for

handling the change-point problem. In this regard, the change-point problem is

considered to be a model selection problem. Changes in the dataset necessitate

the selection of a better model to match the data from among the models given

null and alternate assumptions. These approaches are primarily based on the

parametric distribution of the parameters of interest, and the departure from

specified parametric model may result in contradictions (Zhang & Siegmund,

2007). 

           Chen (1998) proposed an information criterion method such as  the

Schwarz Information Criterion (SIC) (Schwarz, 1978) to identify the location

of the change in the switching of single and multiple linear regression models.

Chen (1998) argued that the switch in the model was caused by changes in the

coefficients  of  the  linear  regression  parameters.  It  was  instructive  to  use

maximum likelihood estimates to compute the SIC values of the null model

and  alternative  models  for  all  free  parameters,  including  the  change-point

location.  The  minimal  information  content  concept  has  been  extensively
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explored  in  order  to  identify  the  location  of  the  change-point  k in  linear

systems,  if  it  exists.  In  the  context  of  model  selection,  the  Bayesian

information criterion presented by (Schwarz, 1978) is defined as follows:

                       BIC t=−2 log L(Θ̂)+t log n , t=1,2. . .. .. T                         (2.32)

Where t represents the number of free parameters, L represents the maximum

likelihood of the relevant model, and T’s represents the number of all potential

parameters in the model. The single model that minimizes the BIC is deemed

the best model based on the principles of the minimal information content.

That is, we accept H0  if 

            BIC H 0
(n )<min1<k<n BICH 1

(k )                                                     (2.33)

It thus implies that there is no change-point in the system.  On the other hand,

we reject H1  if 

BIC H 0
(n )>BICH 1

( k )                                                               (2.34)

for some k ,and this signifies the existence of at least a single change-point in

the model. As a result, the change-point location can be computed by k̂  such

that 

             BIC H 0
(n )=min1<k <n BICH1

(k )                                                    (2.35)

Some research explored the use of SIC approaches  for single and multiple

change-point  detection  in  switching  regression  models,  and  they  used  the

binary  segmentation  techniques  proposed  by  (Vostrikova,  1981)  and

implemented by (Chen & Gupta, 2012).

In terms of statistical inference for model selection, with regards to detection

and estimation  of  change-point,  the  SIC,  and or  other  information  criteria,

such as MIC, (Basalamah et al., 2021) has proven to be a very efficient and

56

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



effective  methods  for  detection  and  identification  of  change-point  and  its

location in linear systems. They utilize the same data as Holbert  (1982) to

demonstrate the SIC approach for determining the switching transition point in

linear  regression.  They noted that  their  finding is  consistent  with Holbert's

utilizing  his  technique.  They  noted  that,  while  they  and  Holbert  (1982)

discovered the same change- point, Holbert's result is less affirmative, and that

there is a propensity for a relative maximum at the endpoints when applying

his  Bayesian  posterior  density.  They  supported  the  argument  that  the  SIC

technique is an appealing approach that is simple to use, as well as assessing

the change locations concurrently, which reduces the number of computations

significantly when compared to the classic likelihood-ratio technique.

                  Furthermore, Cai, Said, and Ning (2016) and Ngunkeng and Ning

(2014)  examined  the  change-point  with  bathtub  shape  exponential  model

utilizing Schwarz information criteria (SIC). However, Chen, Gupta, and Pan

(2006) pointed out that in the context of the change-point problem, Schwarz

information  criterion  (BIC)  techniques  do  not  fully  account  for  the

contribution of the change location in the penalty term. That is, when there is a

change at the extreme ends of the data, one of the two sets of the model's

parameters based on SIC becomes entirely redundant. The reason for this is

that  in  such cases,  the complexity  of  the  null  and the alternative  model  is

almost identical. Furthermore, search algorithms or detectors based on the SIC

may fail to detect a change-point if it occurs at the model's extremes. They

suggested  a  unique  modified  information  criterion  (MIC),  which  tries  to

improve on the traditional SIC-based criterion by refining model complexity

as a function of change location in the context of the change-point problem.
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Ngunkeng  and  Ning  (2014)  also  said  that  the  SIC  approach  may  fail  to

identify  changes  at  the  model's  extreme ends,  and that  there  is  a  need for

enough data  to generate  MLEs of the parameters,  which interns is  used to

compute  the  values  for  the  BIC statistics.  In  light  of  these  findings,  they

developed a SIC-based (modified SIC) approach for detecting change-points

in  the  skew-normal  distribution's  characteristics.  Basalamah  et  al.  (2021)

presented  a  modified  information  criterion  (MIC)-based  test  strategy  for

detecting points of change in a linear regression model with normal errors.

This modified information criterion was considered as a modified version of

Schwartz's information criterion (SIC) (Chen et al., 2006). The location of the

change  was  included  into  the  alternative  model's  penalty  term  during  the

derivation and calculation of the MIC values. They also applied the minimum

MIC concept  to determine the location of the change-point  k in the simple

linear  regression  model.  Based  on  simulation  experiments,  the  suggested

procedure's  performance  was  compared  to  that  of  a  conventional  SIC

technique. Regarding performance metrics, they discovered that the powers of

the two tests rise as sample size grows, and that the two powers are stronger

when  the  change  happens  around  the  center  of  the  data  compared  to  the

changes  at  the  ends  of  the  model.  They  found  that  the  MIC  technique

outperformed  the  classic  SIC  procedure  with  different  sample  sizes  and

modification positions. They recommended the application of MIC approach

as  a  highly  competitive  method  for  change-points  detection.  Finally,  the

proposed technique  was successfully  applied to NASA data to  identify the

change-point. Utilizing the NASA real-world calibration dataset, Mahmoud,

Parker, Woodall, and Hawkins (2007) used parametric approaches to study the
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detection  and  estimation  of  change-points  in  simple  linear  models. They

assumed a normal  distribution of error. They observed the results indicated

that there  was a  change in  the  interception. The application  of Variational

Bayes methods to change-point problems, particularly the linear change-point

issue,  has  garnered  considerable  attention  in  recent  times  in  the  literature.

Valente  and  Wellekens  (2005a) discussed  Bayes'  Variational  methods  for

detecting the  point  of  changing  speaker  with  an  approximate  learning

algorithm. They developed a novel Variational Bayes lower bound difference

statistic  (VBLD)  and  compared  its  performance  to  the  usual  Bayesian

information  criteria  (BIC).  They  observed that  using  the  1996 Hub4

experimental data set and the window approach, the proposed Bayes variation

scheme improved detection performance  by 7% compared to the usual  BIC.

This study  will  adapt  and  modify  the  VBLD  proposed  by  (Valente  &

Wellekens, 2005a) and will explore its applications and those of a developed

Bayes  Variational  information criterion,  VAIC and VBIC to linear change-

point systems.

Chapter Summary

This  chapter  presents  procedures  for  detecting  change-points  in  the

Bayesian  switching  linear  regression  model  with  Variational  Bayes

computational approaches which take into account the location information for

modeling change-point detection schemes. The chapter addresses the change-

point problem which contains a known and unknown location of the changes.

It  also  reviews  the  various  Variational  information  criteria  and  the  lower

bound. Empirical review of works done in the Variational Bayes Paradigm are

presented.
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CHAPTER THREE

RESEARCH METHODS

Introduction

Data  generating  models  can  provide  insight  into  the  processes

associated with how a given system performs in terms of the desired output

based on the required inputs. As a result, the ability to model and calibrate the

system  using  observed  data  is  key  to  the  discovery  of  important  features

underlying the system as well as its monitoring. This will enable the detection

of  mal-functioning  component(s)  of  the  system  and  provide  pragmatic

solutions. In this chapter, the statistical foundation in the Bayesian framework

for  developing  the  data  generative  models  for  performing  change-point

analysis of linear systems is formally introduced.

The chapter  is  organized as follows. First,  Bayesian data  generative

models for switching and non-switching systems exhibiting linear patterns are

formally  introduced.  Second,  an  introduction  to  Variational  inference  for

Bayesian switching and non-switching is provided in brief. Variational Bays

approach for obtaining tractable Bayesian marginal likelihoods for switching

models are introduced. Application of the Variational Bayes ideas to models

considered is outlined.  Next, change-point detectors based on the Variational

Bayes lower bound as well as Variational Bayes information and its Akaike

information are developed. Finally, the chapter ends with the implementation

of the developed Bayesian models and their illustrations using both simulation

and refinery manufacturing process change-point dataset.
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Bayesian Switching Model  

Consider a sequence of response predictor pair  ( y1 , x1 ) , ( y2 , x2) , . . .,

( yn , xn )  observed  from  some  system.  Suppose  the  response  and  the

predictors are linearly dependent and that the nature of the underlying data

pattern changes beyond a given point, say,  k .  The challenge is determining

the true location of change-point in a data generative system. Assuming that

the switch  affects  the  mean but  not  the  variance.  We consider  a  Bayesian

switching model.

H0 : y i=X ' β+εi , i=1,2 ,. . ., n                                  (3.1)

ε ~ N (0 , σ
ε2) ,      

σ
ε2 ~ IG (a

ε0 ,b
ε0 )

β0~ N( P+1)( μβ0
,∑β 0

)
 

where 

β0=[ β0
0

, β1
0 , . . ., β p

0 ] , x i=[1 , x i1 , x i2 , . . ., x ip ] against the alternative 

H1 : y i=xi
' β+εi , i=1 , 2 , . . ., k .                               

yi=x i
' θ+εi , i=( k+1) , (k+2 ) , . . ., n                             (3.2)

ε ~ N (0 , σ ε
2 ) ,      σ ε

2 ~ IG (aε , bε )

 
β ~ N r ( μβ ,∑β

) ,
    

θ ~ N r (μθ ,∑θ
) ,

 r=( p+1)

where β1=[ β0
1 , β1

1 , . . ., β p
1 ] , θ=[θ0 , θ1 , . . ., θp ]

To complete  the  model  specification,  k  is  given  a  random treatment  with

uniform distribution
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p(k )= 1
n−2 p

,
    k=p+1, . . ., n−p .

Stacking the observation level models based on appropriate convention

for  notation,  both  the  null  and the  alternative  models  can  be  expressed  in

vector notation. Now, write the design matrices corresponding to the switching

and its  non-switching counterpart  as follows. Write  Xk   and  Xnk  for the

design matrices associated with the switching model so that,

Xk
1=[ a , X1 ,  X2 , . . ., Xk ] ,   X j=[ xi1 , x i2 , . . ., xip ] ,   i=1 , 2, . . ., k

Xnk
1 =[ b , 

X ( k+1 ) ,  
X (k+2 ) , . . ., 

X (n) ] ,    X j=[ xi1 , x i2 , . . ., x ip ] , 

i=( k+1) , (k+2 ), …, n .  Where a and b  are column vectors of lengths k  and

( n−k )  respectively containing 1s.  

Also  let,  X=[ c ,  X1 ,  X2 , .  .  .,  X p ] ,  X i=[ x i1 , x i2 , .  .  .,  x ip ] ,

i=1 , 2, … , n . Denotes the design matrix for the non-switching model defined

by H0 with c being a column vector of length n. The corresponding responses

are also written in the following forms:

 Y k=[ y1 , y2 , . . ., yk ] , 
Y nk=[ y( k+1 ) , y(k+2) ,

. . ., 
y(n ) ]  and 

 Y=[ y1 , y2 , . . ., yn ]  

For  H 1  and  H0 , respectively. With the above convention for notation, the

non-switching model (3.1) and the switching model (3.2) can be expressed as

follows,     

          H0 :Y=Xβ0+ε                                                                       (3.3)
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          H1 :Y k=X k
1 βa+εk  ,  Y nk

1 =Xnk
1 θ+εnk                                    (3.4)

The compact forms of the models defined in Equations (3.3) and (3.4) were

employed for the development of computational inference framework.

 Variational Inference for Bayesian Model Switching

   Bayesian inference is completely determined by the availability of the

updated  prior  distribution  based  on  conditional  probabilities  termed  the

posterior  distribution.  The number of free parameters for a given Bayesian

model  determines  the  model  complexity  given  that  the  data  is  observed.

Complex models usually have many free parameters; thus generates complex

likelihood  functions  that  are  not  easy  to  marginalize  in  terms  of  some

parameters or all the parameters. This leads to intractable likelihood functions.

As  the  likelihood  function  is  one  of  the  core  elements  of  the  Bayesian

inference,  its  nature  (i.e.  tractable  or  intractable)  directly  influences  the

posterior  distribution.  Variational  Bayes  inference  methods  offer  standard

ways to handle intractable posterior distribution by varying the posterior using

an easy to handle class of distributions and determining the departure from the

true via optimizing Kullback-Leibler divergence (Attias, 2000; Bishop, 2006;

Ormerod & Wand, 2010; Waterhouse et al., 1996).

 Change-point  problems  present  another  area  in  which  Variational

Bayes methods can be explored due to complex likelihood functions generated

by  such  problems.  Considering  Bayesian  inference  for  change-point  data,

demands building comparative Bayesian solutions for both the change-point

data and its non-change point counterpart. This is because the difference in the

complexities  of  the  two  models  can  provide  essential  information  for  the

existence of a change in the data under consideration. For a change-point data,
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{Z ,ω }, where Z defines a response vector, which is linearly dependent on the

design matrix, ω. Suppose the generative model underlying the data is of the

form, 

Zk=ωk γ+u , Zk¿=ωk ¿ ϕ+u ,                                   (3.5)

Whereu N (0 , σu
2),γ , ϕ,  are  set  of  regression  parameters  and  u are

measurement  errors,  k ¿=n−k , k  denotes  the  location  of  existing  change-

point. The corresponding change-point design matrices are defined as follows, 

, (3.6)

Because  the  location  of  the  change-point  is  uncertain,  it  is  treated  as  a

parameter assumed random. Suppose the  k ,  is discrete uniformly distributed

between the second data point and the (n−2) data point, so that it contributes

a  constant  value  over  the  interval  [ 2 , n−2 ] , otherwise  0.  Let  the  set  of

unknown  parameters  be  denoted  by  ϑ c=(γ ,ϕ ,σ u
2 , k ) . Furthermore,  if  there

exist no break at position, k , the data can be modeled with single Bayesian

model of the form;

   Z=ωβ+u                                                                                  (3.7)

The set parameters corresponding to model (3.7) is of the form, ϑ o=(β , σu
2 ) . 

It is straightforward to see that the difference in the free parameters in models

in  Equations  (3.5)  and  (3.7)  will  define  the  underlying  model  complexity

associated  with  the  models.  Thus,  Bayesian  inference  schemes  will  differ

64

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



accordingly. Let the defining prior distributions for ϑ c and  ϑ 0 be g(ϑ c)  and

g(ϑ 0),  respectively such that    

  g (ϑc )=g (ϕ ) g ( γ ) g (σu
2 ) g (k )   and   g (ϑ o )=g ( β ) g (σu

2 ) . 

Posterior  inference for   ϑ c and  ϑ 0  can be synced using the updated prior

distributions. 

f ( ϑc|Z ,ω¿= f (Z|ω, ϑ c¿
g ( ϑc )

h (Z|ω¿
¿

= {f ( Zk|ωk , γ , σ u
2¿

g (γ ) g (σu
2 ) g (k )

h (Zk|ωk¿
¿}¿      

    α  {f ( Zk|ωk , γ , σ u
2¿

g (γ ) g (σu
2 )

h ( Zk|ωk¿
¿}{f (Zk¿|ωk¿ , ϕ ,σ u

2¿
g (ϕ ) g (σu

2 )
h ( Zk¿|ωk ¿¿

¿}                (3.8)

and 

           f ( ϑ0|Z ,ω¿=f ( Z|ω ,ϑ 0¿
g (ϑ0 )

h (Z|ω¿
¿

¿ f ( Z|ω, β , σu
2 ¿

g ( β ) g (σu
2 )

h (Z|ω¿
¿                                            (3.9)       

where    

       h ( Zk|ωk ¿=∬ f ( Zk|ωk , γ , σu
2¿¿ g ( γ ) g (σu

2 ) dγd σu
2                        (3.10)       

      h ( Zk ¿|ωk ¿¿=∬ f (Zk ¿|ωk¿ ,∅, σu
2¿¿ g (∅ ) g (σu

2 )d ∅d σu
2                     (3.11)   

           h ( Z|ω ¿=∬ f (Z|ω , β ,σu
2 ¿¿g ( β ) g (σu

2 ) dβd σu
2                            (3.12) 

Variational Bayes Marginal Likelihood for Switching Models

Bayesian  switching  models  involving  an  appreciable  number  of

parameters  often  yield  Bayesian  marginal  likelihoods  that  are  somewhat

complex  and  thus  complicate  posterior  inference  if  not  render  posterior

inference  intractable.  It  can be noticed that  the integrals  involved both the
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change  point  and  non-change  points  models  defined  in  Equations  (3.10),

(3.11)  and  (3.12)  are  multiple  integrals.  Thus,  comes  with  some  inherent

complexity and difficulty obtaining the marginal likelihoods associated with

the  models.  Based  on  Equations  (3.8)  and  (3.9),  the  following  posterior

distribution  expressions  can be  deduced for  the  alternative  model  (change-

point model) and null model (non-change point model) respectively.

h '( Z|ω )=
f (Z|ω, ϑ c)g (ϑc )

f (ϑc|Z , ω )

        
=

{f ( Zk|ωk , γ , σu
2) f (Zk ¿|ωk¿ , φ , σu

2 )g( γ )g( k ) g(φ )g (k¿ )g( σu
2)}

f (ϑ c|Z , ω )  (3.13)

h '( Z|ω )=
f (Z|ω, ϑ0 ) g(ϑ 0)

f (ϑ0|Z , ω)

            
=

f (Z|ω, β ,σu
2 ) g( β ) g(σu

2 )
f (ϑ0|Z ,ω )                                                        (3.14)

The  Variational  Bayes  method  Ormerod  and  Wand,  (2010) introduced  in

Chapter  2  provides  a  formal  probabilistic  approach  to  handle  intractable

marginal  likelihoods  by  lower  bound  them  with  model  specific  tractable

integrals.  In  what  follows,  the  Variational  Bayes  techniques  for  treating

complex Bayesian likelihoods are illustrated in brief.

Let q (ϑ c )  and q (ϑ 0 )  be two distributions belonging some distribution families

such that    

    ∫q (ϑc )dϑ c=1    and     ∫q (ϑ0 )dϑ0=1                                                 (3.15)

Then,  the  marginal  likelihoods  h ' ( Z|ω ) and  h( Z|ω )  can  be  written  as

follows, using Equations (3.13) and (3.14)
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∫q (ϑc ) log h' (Z|ω )dϑc=∫q (ϑc ) log [ f (Z ,ω, ϑc

q (ϑc ) ]dϑ c+∫q (ϑc ) log [ q (ϑc )
f (ϑc|Z ,ω ) ]dϑc

(3.16)

∫q (ϑ0) log h( Z|ω )dϑ0=∫q (ϑ0) log [ f ( Z ,ω ,ϑ 0 )
q(ϑ 0 ) ]dϑ 0+∫ q(ϑ0) log [ q (ϑ0 )

f (ϑ 0|Z ,ω) ]dϑ0

(3.17)

The  decomposition  logarithm  of  the  corresponding  marginal  likelihoods

Equations  (3.16)  and  (3.17)  into  two  integrals  terms  were  made  possible

through the use of  properties  of the  q distributions,  q (ϑ c )  and  q (ϑ 0 ) :  The

integrals

       
KLc=∫q (ϑc ) log [ q(ϑ c)

f (ϑ c|Z ,ω) ]dϑ c
                                                   (3.18)

 and 

       
KL0=∫ q(ϑ 0 ) log [ q (ϑ0 )

f (ϑ0|Z ,ω ) ]dϑ0
                                                    (3.19)

represents the Kullback-Leiber (KL) divergence (Kullback & Leibler, 1951)

for  the  change-point  model  and  the  alternative  model,  respectively.  More

importantly, the following statements are true for  KLc and KL0  (Ormerod &

Wand, 2010):

                           KLc≥0 ,    KL0≥0                                                         (3.20)

 for all q (ϑ c )  and q (ϑ 0 )  densities. 

Also if and only if,    
q (ϑ c )= f (ϑc|Z ,ω )     and    q (ϑ 0 )= f (ϑ0|Z ,ω)
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 then,        KLc=0 ,   and  KL0=0                                                          (3.21)

By Equation (3.20), it is straightforward to deduce from Equations (3.16) and

(3.17), the following inequalities,

∫q (ϑc ) log h' (Z|ω )dϑ c≥∫q (ϑc ) log [ f (Z ,ω,ϑc )g (ϑc )
q (ϑc ) ]dϑ c

                      (3.22)

∫q (ϑ0) log h( Z|ω )dϑ0≥∫q (ϑ0 ) log [ f ( Z ,ω ,ϑ 0)g (ϑ 0)
q(ϑ 0) ]dϑ0

                    (3.23)

Obviously, the roles of the integrals

Lc(q )=∫ q(ϑ c) log [ f ( Z ,ω ,ϑ c )g(ϑ c)
q(ϑ c) ]dϑ c

                                           (3.24)

L0( q)=∫ q(ϑ 0 ) log [ f (Z , ω, ϑ0 ) g(ϑ0 )
q (ϑ0 ) ]dϑ0

                                             (3.25)

become clearly  visible  based on Equations  (3.22) and (3.23).  In particular,

Lc(q )  and  L0( q)  act  as  lower  bounds  on  the  logarithm  of

∫q (ϑc ) log h' (Z|ω )dϑc  and ∫q (ϑ0) log h( Z|ω )dϑ0  respectively.

Interestingly, the associated lower bounds obtained as a by-product of

the  Variational  method  are  usually  easy  to  compute  with  closed-form

expressions  existing  for  most  models.  The  choice  of  the  q densities  has

received much attention for which practical guidance and directions are well

postulated  in  the  literature.  For  further  information  on  the  choice  of  the

Variational posterior distributions, readers are referred to (Ormerod & Wand,

2010). The maximization of  Lc(q )  and  L0( q)  results in iterative algorithms

termed  the  Variational  Bayes  fitting  algorithm  in  the  Variational  Bayes
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literature, see, for example,  ( Ormerod & Wand, 2010; Bishop, 2006; Attias,

2000; Waterhouse et al., 1996).

Application of Variational Inference to Developed Models

Here in the study, we make an application of the Variational inference

methods discussed in the first few sections to the models developed.  Inference

in the Variational Bayes (VB) context is based on the Variational posterior

distributions  assumed  appropriate  for  approximating  the  true  posterior

distribution.  Obtaining the optimal  Variational  posterior distribution is very

key  in  Variational  decision  making  in  practice,  taking  into  account  the

observed data and the assumed prior distributions. In VB techniques, optimum

Variational  posterior  distributions  are  achieved  by  either  maximizing  a

Variational  lower  bound  on  the  logarithm  of  marginal  likelihood  or

minimizing a Kullback-Leibler divergence for the Variational posteriors. This

yields  an  iterative  optimization  algorithm  termed  the  Variational  Bayes

algorithm.  For  our  switching  and  non-switching  models,  setting

ϑc=( βa ,θ , σ∈
2 , k )  and ϑ0=( β ,σ ∈

2 ) ,  it  is  possible  to  consider  the  VB ideas.

Now, applying the Variational approximation technique, to the true change-

point and non-change-point posteriors, 

p ( βa , θ , σ ε
2 , k|Y )=

p (Y|βa ,θ ,σ ε
2 , k ) p( βa ) p (θ ) p (σ ε

2 ) p (k )
p(Y )        (3.26)

p( β , σε
2|Y )=

p(Y |β , σε
2 ) p( β ) p(σ ε

2)
p (Y )                                           (3.27)

respectively, the following Variational approximations are adopted

             q (ϑ c )=q ( βa )q (θ)q (σε
2 )q(k )                              (3.28)
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              q (ϑ 0)=q ( β )q( σε
2 )                                            (3.29)

where 

        q (θ )=N (μθ
q ,∑θ

q
), q (βa )=N ( μ

βa
q ,∑βa

q
¿) , ¿

         q (σε
2 )=IG (aε

q ,bε
q) , q (β )=N ¿¿

The corresponding Variational lower bounds based on Equations (3.24) and

(3.25) can be expressed as follows. 

          
Lc

k( q)=∑
k
∭q( βa )q (θ )q( σε

2 )q (k ) log ( M a )dβa dθdσ ε
2

         (3.30)

               α∭q ( βa )q (θ )q (σ ε
2 ) log [ M a] dβadθdσ ε

2
                 (3.31)

where

         
M a=

p (βa ,θ , σε
2 , k|Y ) p( βa ) p(θ ) p (σε

2 ) p (k )

q( βa )q(θ )q(σ ε
2)q (k )

     
L0( q)=∫ q( β )q (σ ε

2 ) log [ p ( β , σ ε
2|Y ) p ( β ) p( σε

2 )

q( β )q (σε
2 ) ]dβdσ ε

2

                 (3.32)

The lower bounds specified in Equations (3.30) and (3.31) are computable and

closed-form expressions  are  available  for  the  development  of  optimization

algorithms.  Details  of the derivations  and computations  are  outlined  in  the

Appendix A.2. Optimal parameter values are obtained via iterative Variational

algorithms  based  on  the  optimization  of  Equations  (3.30)  and  (3.32).  The

iterative algorithm for the non-switching model (3.1) is outlined in algorithm

1. Algorithm 2 gives the iterative algorithm corresponding to the switching

model (3.2).
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Algorithm 1: Variational Algorithm for Null Model (1) 

Initialize: bε
q=0 . 5 ,∑β

q
¿ I , μβ

q=μβ 0+√var ( y )

   Set aε
q← n

2 +bε
0

, tol<∞ .

Do until the change in L0( q)<tol :

 ∑β

q
←¿¿

 μβ
q←∑β

q
¿¿


  bε

q←[ ( y−X μβ
q )' ( y−X μβ

q )+t r ( X ' X ∑
β

q

❑)]
   End 

Algorithm 2: Variational Algorithm for Switching Model (2)  

Initialize : bε
q=bε ,∑βa

q
=∑β a

¿ ,∑θ

q
¿=∑θ

¿ , μβa

q =μβ a
, μθ

q =μθ ¿¿¿

  Set  aε
q← n

2 +bε
0

, tol<∞ .

For k = 2,…, n−2 , do until the change in Lc
k( q)<tol :


∑βa

q
←¿¿¿


μβa

q ←∑β a

q
¿¿¿

 ∑θ

q
←¿¿

 μθ
q←∑θ

q
¿¿

 bε
q←¿¿

 D=( ynk−X nk μθ
q )' ( ynk−Xnk μθ

q )+tr ¿¿

End 
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Variational Bayes Change-Point Detector

This  part  of  the  study  focuses  on  the  development  of  appropriate

Variational Bayes schemes for detecting switches in linear systems based on

the  Variational  information  criteria  introduced  in  Chapter  2.  Key  to  the

schemes  considered  here  is  the  Variational  lower  bound  and  information

criteria  obtained  based  on  the  Variational  Bayes  approximation.  The

Variational  Bayes  method  usually  results  in  a  bye-product  termed  the

Variational lower bound with the capability to serve as a model selection tool.

As  a  result,  it  has  enjoyed  extensive  usage  in  myriad  scientific  problems

within  the  Bayesian  modeling  community.  The computation  of  Variational

information criteria considered here are light-weight, thus does significantly

affect  the  computation  complexity  of  the  developed  Variational  detection

algorithms.

Variational Lower Bound-Based Approach

The ability to quantify the information content of a model allows easy

development of statistics for assessing some vital properties of the developed

model.  The  Bayesian  approach  to  calibration  of  information  content  of  a

model  assumed  for  a  given  data  via  probabilistic  modeling  provides  a

principled  technique  for  quantifying  the  complexity  of  the  data  generative

model.  For  a  change-point  model,  the  difference  in  model  complexities

associated  with  the  non-change-point  model  and  the  change-point  model

provide insights on the development of a formal approach for assessing the

presence or otherwise of switching in the underlying structures in the data.

This insight on the above difference can be preserved, adopting an appropriate
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modeling framework that has the potential to properly quantify and keep intact

the complexities in both models. Thus, allowing developed fitting algorithms

to inherit such features for precise inference on change-point parameters.

The Variational  Bayesian formalism allows tractable  calibration and

quantification  of  complex  model  evidence  (information)  using  Variational

probability  models,  simplifying  Bayesian  decision-making  in  complex

statistical models. With the above and other appealing features of Variational

Bayes such as its  fast  and deterministic  nature,  it  has been widely used in

many scientific applications. However, its application of linear change-point

problems has received little attention. In particular, a recent application of the

Variational Bayesian (VB) technique in analysing speaker change is seen in

Signal  processing  (Valente  &  Wellekens,  2005a).  Valente  and  Wellekens

(2005a)  explored  the  utility  of  the  VB  methods  to  speaker  change-point

detection with an approximate Variational learning algorithm that improved

detection performance of the usual Bayesian Information Criterion (BIC) by

7%;  using  Hub4  1996  experimental  dataset.  Their  approach  focused  on

Variational lower bound difference between the models generated by the null

model L0( q)  and that generated by the alternative model Lc(q )  being positive.

That is inference on the existence of a change-point was based on the statistic,

           Ld
k (q )=Lc

k (q )−L0 (q )                                                   (3.33)

for all possible values of k say,  k=k0 ,. .. , n−k0    and a decision rule, Ld>0

suggesting  existence  of  change-point  in  the system.  In addition,  the set  of

possible change-point locations are partitioned into subsets termed windows.

Detection  is  done window-wise starting  with an  initial  window and varied

73

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



according to  a  pre-specified  window length  until  a  change is  detected  and

identified.  Although,  the  above  proposal  is  appealing,  it  is  limited  in  the

following ways. It appears that two or more different conditions may attract

the same decision. For example,

     1.  if   Lc
k( q)=L0(q ) ,    Ld

k (q )=0 , k=k0 ,  …, n−k0

     2.  if   L0( q)>Lc
k (q ) ,   Ld

k (q )<0 ,   k=k0 ,  …, n−k0

These two conditions seem to yield the same decision. However, there was no

clear exposited in their work. Also, the use of window and the window length

variation can be problematic for complex change-point problems, since it can

introduce  extra  computational  cost,  leading  to  an  increased  computational

burden associated with change-point analysis. In this regard, we propose the

Variational lower bound difference-based as in Equation (3.33) decision rule

in a unique way, for detection and estimation of a single change-point in linear

change-point data.  Let  Lm
k

 denotes the maximum value of  Lc
k( q)   for each

possible value of k  as specified in Equation (3.33). Further, let Lm
s

 denotes the

smallest value of  Lc
k( q)  .Also, let  k¿

be the unique  k  that generated  Lm
s ;  so

that we can write 

                        
Lm

s =L(k¿ )=mink0<k<(n−k0)
(Lm

k )

Then, the VB lower bound change-point detector is based on the statistic

                 L¿=Lm
s −L0(q )                                                                          (3.34)
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with the decision rule that there exist a change-point if  L¿>0  if not, then no

switch exist in the datasets. The location of the change-point is then estimated

by k̂ such that k̂=k¿
                                                                (3.35)

Algorithm 3 outlines the Variational  lower bound difference-based change-

point detector algorithm.

Algorithm 3: Variational Lower Bound-Based Detector Algorithm

Initialize:  k=k0 , bε
q=bε , Σ

βa
q=Σβ a

, Σθ
q=Σθ , μβa

q =μβa , μβ
q=μθ Σβ

q=I ,

μβ
q=μβ0

+√var ( y ).

 Run algorithm 1 and obtain Lo (q )

 For k=k0 ,. .. ,(n−k0 ) , execute algorithm 2.

 Obtain Lc
υ(q )=(Lc

k 0(q ) , Lc
k1 (q ), .. . . , Lc

n−k0( q)) .

 Compute L(k¿ )=max ( Lc
υ(q )) , and set Lm=L(k¿ ) . 

 Compute L¿=Lm−Lo (q ).

 If L¿>0 , change-point exist. Set k=k¿
and use variational posterior

corresponding to k¿
for parameter inference. Otherwise, there is no

change-point, use output of algorithm 1 for inference.

End 

Variational Information-Based Approach

The Variational information criterion is adopted to develop comparable

VB information-based detectors for learning the linear change-point problem.

The Variational information criterion is a well-known model selection tool in

the  Bayesian  context.  In  particular,  the  Variational  Aikake  information
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criterion  (VAIC) and Variational  Bayes  information  criterion  (VBIC) have

been extensively applied for model selection in diverse fields.  For detailed

information  on  the  above  model  selection  tools  in  terms  of  derivation,

computation,  and  application,  readers  are  referred  to  (  You  et  al.,  2014;

McGrory  &  Titterington,  2007;  Spiegelhalter  et  al.,  2002).  The  VAIC

computes  the  Variational  approximation  to  the  usual  deviance  information

criterion proposed by (Spiegelhalter et al., 2002). On the other hand, the VBIC

can  be  considered  as  Variational  formulation  of  the  Bayesian  information

criterion (BIC) of (Schwarz,1978).

The typical information-based model selection inference is centred on

the  minimum information  value.  Although  the  application  of  the  above  in

model selection problem may seem simple, its use in switching model analysis

is non-trivial  due to differences in the information under the non-switching

and switching models. Nevertheless, it must be pointed out that the Schwarz

Information Criterion (SIC) introduced by Schwarz (1978) has been employed

in change-point problems  (Chen & Gupta,  2012). We propose the use of a

Variational information ratio statistic-based schemes for seeking a solution to

the linear change-point problems. Let VAIC0  and VAICa  denote respectively,

the  Variational  Bayesian  information  for  the  null  and  alternative  models.

Then, we consider the following VAIC and VBIC schemes for change-point

detection and estimation.                                          

  
δ A

¿ =
VAIC s

VAICo                                                     (3.36)

               
δB

¿ =
VBIC s

VBIC o                                                                                (3.37)

where 
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VAICs=VAIC ( k¿ )=mink 0<k<(n−k 0)

(VAICa(k ))

and    

                 
VBIC s=VBIC (k¿ )=mink 0<k<(n−k 0)

(VBIC a(k ))

The  decision  rule  based  on  the  above  information  schemes  are  such  that

existence  of  a  change-point  if  δ A
¿ <1 and  δB

¿ <1 for  VAIC  and  VBIC

respectively or otherwise, there is no switching in the data. Further, change-

point location is estimated in both information based schemes by k   such that

k̂=k¿
.

The computations of the VAIC and VBIC are achieved when the Variational

algorithms 1 and 2 have converged. Details of the derivation and computation

of the VAIC and VBIA are provided in the Appendix A 3. Algorithm 4 gives

the Variational information change-point detection algorithm.

Algorithm 4: VAIC and VBIC Ratio-Based Detection Algorithm

Initialize:  k=k0 , bε
q=bε , Σ

βa
q=Σβ a

, Σθ
q=Σθ , μβa

q =μβa , μβ
q=μθ Σβ

q=I ,

μβ
q=μβ0

+√var ( y ).

 Run algorithm 1 and obtain VAICo ,VBICo
 

 For k=k0 , . . ., (n−k0) , execute algorithm 2.

 Compute VAICa (k ),VBICa(k ) , and set

VAICυ=(VAIC a(k 0) , VAICa (k1 ) ,. .. , VAICa (n−k0 ))

VBICυ=(VBICa (k0 ) ,VBIC a( k1), . .. ,VBICa(n−k0 ))
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 Compute

                 VAICs=min(VAICa (k ))   

                 VBIC s=min(VBICa( k ))

 Compute

        

−δ A
¿ =

VAIC s

VAICo

           

      

−δ B
¿ =

VBIC s

VBIC o

 If    δ A
¿ , δB

¿ <1 , change-point  exist.  Set  k̂=k¿
 and  use  Variational

posterior corresponding to k¿
for parameter inference. Otherwise, there

is no change-point, use output of algorithm 1 for inference. 

End      

Performance Evaluation

In this part of the study, the statistical measures of performance of the

proposed methods are considered.  In particular, we consider more than one

performance  measures  spanning  accuracy  of  estimation  of  change-point

parameters,  model  fitting  performance,  change-point  detection  performance

etc. For the parameter estimation assessment, the focus will be on the accuracy

of parameter estimates quantified in statistical measures such as mean absolute

error  (MAE)  and  root  mean  squared  error  (RMSE).  In  addition,  their

relationship with the change-point location  k will be subjected to analysis to

establish dynamics of the errors as the change detection progresses. The MAE

and  RMSE of  change-point  parameters  were  computed  based  on  N  =  30
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randomly  generated  datasets.  The  corresponding  MAE  and  RMSE  of  the

parameters,  βa
 and θ  are defined as follows.

MAE( βa )=c0∑
j=1

m

|β
ja
−β

ja
|

,    
MAE(θ )=c0∑

j=1

m

|θ j−θ j|
                         (3.38)

RMSE( βa )=√c0∑
j=1

m

( β
ja
−β j

a )2

, 
RMSE(θ )=√c0∑

j=1

m

(θ j−θ j )
2

             (3.39)

Where c0=
1
m ,  β j

a
 and θ j are the posterior means of βa

and θ  respectively,

for the jth dataset. 

The use of the Variational algorithms is dependent on their ability to

perform the required task as demanded by the fundamental  features  of the

Variational Bayes theory. Since the VB algorithms are constructed based on

the  maximization  of  the  Variational  objective  function  termed  the  lower

bound, the nature of the lower bound should provide valuable information for

assessing whether the developed algorithm is doing what is expected of it. In

this regard, the appropriateness of the developed VB fitting algorithms will be

assessed  for  both  the  switching  model  and the  non-switching  model.  This

assessment  will  be fully  conducted  in  the  first  illustrative  example.  In  the

subsequent examples, the focus will be on the detection of change-point, its

calibration, and identification. The performance assessment will be based on

both  simulation  studies  and  real  data  applications.  For  the  simulations,

different  scenarios  will  be  considered  spanning  fixed  known  change-point

locations,  random but  known change-point  locations.  Details  of  the  above

considerations in terms of simulations settings and assumptions are outlined

under each case in this chapter.

Implementation
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The implementation of the proposed methods can be done in two major

ways. The first way is through the outline of the algorithms provided in pages

67 and 68, and so executing algorithms 1 and 2 separately. This might impact

on the computational burden as Variational algorithm 1 and algorithm 2 are

implemented twice.  An appealing alternative solution with the potential  for

reducing the computational  challenges involves combining the execution of

algorithms 3 and 4 in a single run, in which algorithm 1 and algorithm 2 are

not  run separately.  For the programming of  the algorithms into  executable

codes, the R statistical software was utilized. The running of the written codes

was done using an Intel (R) Core (TM) i7, 6700 processor Windows PC 3:40

GHz workstation.

Application of Methods to Datasets

The thesis  at  this  point focuses on the application of the developed

methods to datasets in order to assess their fitting performance as well as their

practical applicability.

Example 1: Simulated Study Based on Fixed k

In this example, we consider the first simulation study to illustrate the

developed  methods  for  linear  change-point  analysis.  The  simulation

considered here is centred on the following assumptions. First, we assume that

the change-point location in the linear system is known and fixed. Second, we

also assume that there exists a linear system in which the response is predicted

by four (4) predictors. Based on the above assumptions,  our linear change-

point dataset is generated as follows. We considered a data size of n = 300; the

actual change-point location, k = 160; the number of predictors, p = 4, and the
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number of different change-point systems to be N = 30: Next, we generate the

true change-point model parameters and such that

β t
a~iid N (0 .55 ,0 . 052)

, 
θt ~iid N ( 0. 95 , 0 . 052 )

 
t=1,2 ,. .. ,5

so that an intercept term is considered. Based on the assumed value of 
k; the

linear  predictors  are  generated  using  the  alternative  model  (4),  such  that

Xk
1=[1 , x1 , x2 , .. . , xk ]′ , 

x j=[ x j 1 , x j2 , x j 3 , x j 4 ]  j=1,2 , . .. , k

Xnk
1 = [1, x(k+1) , x(k+2) , . .. , x(n) ] ,  x i=[ x i1 , x i2 , x i3 , x i4 ]′ , i=( k+1) ,(k+2 ) ,. .. , n

where 

x j 1 ~iid N (0 . 5,0 .01 ) , x j 2 ~iid N ( 0,1) , x j 3 ~iid N (0. 85 , 0 .05) x j 4 ~iid N (0 .85 ,0.05 )

x i1 ~iid N (0 .65 ,0 .01) , x i2 ~iid N (0,1) , x i3 ~iid N (0 . 85 ,0 . 022 ) x i4 ~iid N (0 . 9,0 . 02)

 Finally,  given  βa , θ and  the  design  matrices  Xk
1

 and  Xnk
1

,  the  vector  of

observations   Y=[ y1 ,. .. , yk , y( k+1 ) ,. . ., yn ]′    is  generated  using  model  (2)  in

Equation (3.4).

         y i ~ N (( Xk
1 βa )i , 0 . 0022)  , i=1,2 ,. . ., k

         yi ~ N (( Xnk
1 θ )i , 0 .0022 ) ,  i=( k+1) ,(k+2 ) , . .. , n .

A total of N different linear change-point datasets of each of size n =

300  are  simulated  based  on  the  above  settings  for  the  assessment  of  the

develop methods in this example. On the prior hyper parameter value setting,

we consider the following change-point and non-change-point normal prior
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models,
β0 ~ N r ( μβ0

, Σ β0) , βa ~ N r ( μβ , Σβ ) ,
θ ~ N r (μθ , Σθ) , we set  

μβ0
=0 .95

,

μθ=0 , 
Σβ0

=Σθ =100 I r    so that vague normal priors are utilized.

The  remaining  inverse  gamma  prior  hyper  parameters  were  set  as

aε
0=aε=5 , and bε

0=bε=0 . 1. We run algorithms 1,2, 3 and 4 using the above

simulated datasets. In particular,  the run of algorithms 1, 2 will be used to

assess the appropriateness of developed VB algorithms for the task of linear

change-point detection and estimation. The simulation study aided in training

the models that were developed before the real dataset was applied.

Example 2:  Real Data Application: Manufacturing Process in Refinery

In this example, we consider the application of the developed methods

to  the  analysis  of  change-point  in  linear  systems  generated  in  the

manufacturing processes. In particular,  the focus is on a secondary data on

manufacturing process in the refinery.  The dataset under consideration was

obtained as a result of an investigation of a refinery's manufacturing process,

in which an octane rating of a specific petroleum product was considered as a

function  of  three  raw  materials  and  a  variable  that  characterized  the

manufacturing  conditions.  The  three  raw materials  considered  are  labelled

material  1;  material  2  and material  3.  The resulting  dataset  is  a  matrix  of

dimension  84 ¿ 5  on  variables  characterized  as  octane  rating,  amount  of

material  1, amount of material  2, amount of material  3, and manufacturing

conditions. It was of interest to learn the linear relationship existing among the

above  variables.   Most  importantly,  the  question  of  interest  was  whether

octane rating is predicted by the remaining variables.

Chapter Summary

82

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



This  chapter  aims  to  presenting  the  foundation  of  the  statistical

methods  considered  in  developing  the  data  generating  models  namely,  the

linear  switching  and  non-switching  models  with  Bayesian  computation

approaches for modeling and inference framework for change-point datasets.

The chapter starts by developing non-switching model and switching linear

model  which contain  a  single fixed change-point  in  a  linear  system which

follows Bayesian process. Capturing switching and non-switching information

and  incorporating  such  information  into  statistical  models  is  non-trivial.

However,  the  use  of  prior  probability  models  and  hierarchical  modeling

concepts within the assumed Bayesian framework allowed an easy encoding

of such information and its integration into the assumed models.  

The chapter also considered Variational Bayes inference computational

approaches which incorporate  the switch information for modeling change-

point  has  been  introduced  and  thoroughly  discussed.  The  chapter  further

considered the Variational  Bayes  marginal  likelihood for  switching models

and this was used to obtained the Variational lower bounds estimates and also

to compute the estimates for the Bayesian information Criteria. The chapter

also  considered  Variational  change-point  detectors  by  the  two  approaches

mentioned in the study, namely the Variational lower bound based approach

and the Variational information based approach. It also presents the developed

Variational Bayes algorithms for the developed models and detectors for the

evaluation of the performances using methods of inference developed further

in the study. Lastly, the chapter presented the data generative processes for

both  secondary  and  simulated  data  and  analysis  using  the  R  statistical

software.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

The performances of the proposed methods are assessed in comparison

with  VAIC  and  VBIC-based  methods  through  simulation  studies  and  real

datasets  application.  In  this  chapter  of  the  study,  we  focus  on  the  results

obtained from the application of the developed methods to both simulated and

real datasets of Bayesian linear switching systems. The real data application

involves change-point  dataset  of  linear  systems  generated  in  the

manufacturing processes. The simulations are based on the statistical models

developed in Chapter  Three. In addition,  the discussions on the results  are

considered in brief. The presentation begins with the simulation, followed by

that of the real data application.  All the codes were written in R statistical

software and run on an Intel (R) Core (TM) i7 – 6700 processor Windows PC

3.40 GHz workstation. 

Application to Simulated Data 

 We considered the simulation based on the following assumptions. 

1. We  assume  that  the  change-point  location  in  the  linear  system  is

known and fixed. 

2. We assume that there exists a linear system in which the response is

predicted by four (4) predictors. 

Based on the above assumptions, our linear change-point dataset is generated

as follows: We set the data such that a total of N = 30 different linear change-

point datasets of each of size n = 300; the true change-point location, k = 160;

the number of predictors,  p = 4,  and the number of different  change-point
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systems are simulated based on the above settings for the assessment of the

develop methods in this example.

Figure  1  and  Figure  2  show the  nature  of  the  simulated  switching

model for twelve randomly selected datasets out of the 30 datasets considered.

It  can  be  observed  that  all  the  datasets  selected  exhibit  the  linear  pattern

defined  by  the  simulation  settings.  In  particular,  the  generated  regression

parameters values assumed fixed and known to be the true values resulted in a

positively  oriented  pattern.  Also,  the  clustering  of  the  points  within  the

switches exhibit some obvious marginal differences with Figure 1 recording a

bit  of  variant  pattern  for  plots  from that  of  Figure  2.   In  Figure  2,  some

datasets  for example,  plots  1,  2 and 5,  numbering row-wise and clockwise

seem  to  show  unclear  location  of  change-point.  However,  this  can  be

attributed to the random generation.

Furthermore, although the true location of the switch in each dataset is the

same, the varying nature of the observed patterns within each switch existing

among  the  different  datasets  is  clearly  evident.  In  summary,  the

appropriateness of the simulated datasets for the illustration of the utility of the

proposed methods is clearly evident based on the nature of the models.
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Figure  1:  Randomly selected  sample  simulated  datasets  for  switching
linear system.

                                                                                                          
Figure 2:  Randomly selected sample simulated linear system.
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Example 1: Simulated Based on Fixed k

This  subsection  presents  the  results  for  simulated  linear  switching

datasets. First, we access the applicability of the Variational Bayes methods

for linear change-point analysis. The Variational Bayes algorithms considered

in this study were built based on the maximization of Variational lower bound

on the marginal likelihood. Thus, a simple analysis of the pattern exhibited as

the iteration progresses can help to check whether the algorithm is appropriate

before it is utilized in change-point data modeling. It can be recalled that the

simulation studies considered 30 different linear change-point datasets. 

Figure  3  presents  the  lower  bound  attained  at  convergence  by  the

Variational algorithm 2 for 6 randomly selected  k values based a randomly

selected  dataset  out  of  the  30  datasets  considered  for  the  simulation.  The

corresponding data selected at random is the 11 dataset. From left to right are

the  plots  for  the  6  candidates  of  k values,  184;  235;  237;  271;  90  and

81respectively. The dataset was randomly selected. 

Figure 3: Switching model plot of Variational lower bound attained at  

                convergence for 6 randomly selected k candidates for dataset 11. 
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Figure  4  also  presents  the  nature  of  the  Variational  lower  bound

attained  at  convergence  by  algorithm  1  for  6  randomly  selected  datasets

corresponding to datasets  24; 28; 14; 3;  17 and 11: The increasing pattern

exhibited  by  algorithm  1  and  algorithm  2  is  clearly  evident.  Thus,  the

Variational algorithms for both the switching and non-switching models are

functioning  appropriately  as  expected  of  Variational  algorithms  based  on

optimizing a lower bound over marginal likelihood. From left to right are the

plots for datasets, 24; 28; 14; 3; 17 and 11 respectively.

Figure 4: Non-switching model plot of Variational lower bound attained at 

               convergence for 6 randomly selected datasets. 

 The  dynamics  of  parameter  estimation  for  the  randomly  selected

dataset (dataset 11) as the change-point detection by the developed algorithms

progresses are illustrated in Figure 5 and Figure 6. The black curves are the
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parameter estimates for the first half of the switching model ( β s) and the red

curves represents the parameter estimates of the second half of the switching

model ( θs ). The blue dash lines are the corresponding true parameter values

for  the  selected  simulated  dataset.  It  can  be  noted  that  the  change-point

parameters  mimic  the  switching  pattern  underlying  the  simulated  linear

change-point data as the location k, changes. 

In particular, the pattern exhibited by the  βs  clearly shows that they

are parameters of the first half of the switch model. In the same way, the θs

also depicts  a pattern confirming their  rightful  position with regards to the

model. Furthermore, the parameter estimation accuracy is affected by  k with

some saturation or stability for some values of k: Considering the first half of

the switch model, the  β s are poorly estimated at the boundary, particularly

for  2≤k≤4  or k ∈(2; 4 ) .  However, the estimation accuracy is improved for

values of k in the range 5 to 160: However, the poor estimation is exhibited for

161≤k≤298 , evidenced by the vast separation between the blue and black

lines. The reverse is seen in the second half of the switching model.  The θs

are well estimated for values of k ∈ (161; 289), with the accuracy in estimation

dropping for 290≤k≤298 . Also, a wide departure of the blue line from the

black line is depicted for values of k in the range 2 -160. Thus, trend exhibited

by the parameters based on the estimation progress as a function of k clearly

confirms the switching nature of the model and the rightful position of  β s

and θ s.
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Figure 5:  Nature of parameter estimates  ( β0 , β1 , β2 ,θ0 , θ1 , θ2)  of switching  
     model for a randomly selected dataset over k values.
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Figure 6: Nature of parameter estimates  (β3 , β4 ,θ3 ,θ4 )  of switching model  
for a randomly selected dataset over k values

The  overall  parameter  estimation  performance  of  the  developed

change-point detectors quantified in statistical measures namely mean absolute

error (MAE) and root mean squared error (RMSE) are shown in Figure 7 and

Figure  8  respectively.  From left  to  right  are  the  plots  MAEs and RMSEs

against the possible change-point locations k for the β s and θ s respectively.

Clearly,  the  general  pattern  exhibited  by the  parameters  as,  k, increases  is

shown in the errors (MAE and RMSE). It can be observed that MAE deceases

as the  k increases until  k = 160 and then it increases from k = 161 until  k =

298: Interestingly, the minimum MAE is attained at k = 160: 
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Figure 7:  Mean Absolute Error (MAE) pattern of switching model parameters

     over k values

Figure 8:  Plot of RMSE switching model parameters against k values.

Figure 9 illustrates  the detection  dynamics  of  the Variational  lower

bound difference VLBD and Variational Bayes information Criteria,  VAIC,

and VBIC detectors in relation to the possible change-point locations,  k. The

black, red, and green curves are respectively the plots of the VAIC (VAIC
ν
),

VBIC (VBIC
ν
) and the maximum Variational lower bound value, obtained for

93

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



the switching model  over  the  range of  k.  Interestingly,  all  the three  linear

change-point  detectors  are  able  to  detect  switches  in  the  simulated  linear

system and estimate their location correctly. Most importantly, they all report

the same estimate  of  change-point  location,  this  is  evident  in the common

elbow  at  the  same  location  exhibited  by  all  the  detectors.  However,  the

detection  path,  as  well  as  the  dynamics,  exhibits  visible  differences.  In

particular, the VBLD reaches the true change-point location,  k = 160 faster

than its Variational Bayes information counters. With regards to the VAIC and

VBIC, it is clearly evident that the VAIC also gets to the true change-point

location, k = 160 before VBIC.

Figure 9:  Dynamics of Variational Bayes Information criterion and the Lower

     Bound over switching positions k.

Considering the common elbow exhibited by all the three detectors in Figure

9, it will be interesting to explore their nature in the neighbourhood of the true

change-point location. This will aid in gaining better insight into the typical

detection characteristics of the developed linear change-point detectors. In this

regard,  we explore  the detection  features  of  the VBLD, VAIC, and VBIC
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within  k ∈  (151; 160). Table 4.1 reports some vital detection statistics of the

VBLD, VAIC, and VBIC over the range of k considered above. Also,  the

statistics  of  the  null  model  ( H0 )  required  for  change-point  analysis  are

reported. In particular, for the null model ( H0 ), the lower bound attained at

convergence,  L(q )
0

,  the  Variational  Akaike  information  criteria  and  its

Variational Bayes counterpart values computed under  H0  are reported. On

the other hand, Table 1 reports the statistics,  k , Lm
s

 in columns 1 and 2, VAIC

ν
 and VBIC

ν
 in columns 3 and 4,  Lm

k
,  δ A

¿

, and  δ B
¿

 in columns 5, 6 and 7

respectively for switching model ( Ha ). The red-coloured statistics are those

that the three detectors yield as linear change-point detection statistics (results)

upon application of the algorithms. 

Interestingly, it is clearly seen that the maximum lower bound attained

at convergence, for the VBLD decreases as  k  increases till k = 160 then an

increasing pattern registered again after 160. Thus, the minimum of the values

of Lm
s

 is recorded at k = 160 with Lk
¿=−39 .1756

Now comparing with the corresponding H0  value, L(q )
0 =−200. 7394 ,

the  value  of  observed  for  the  statistic,  Lk
¿

 is  computed  as.

Lk
¿=−39 .1756−(−200 .7394 )=161. 5638 .  Obviously,  VBLD declares  that  a

switch  exists  in  the  simulated  dataset  since  Lk
¿>0  and  in  particular,  at  a

location k = 160. Therefore, VBLD estimates k with k=160.
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Also,  it  can  be seen that  all  the  values  of  Lk
¿

 are  positive  and the

smallest  value  among  all  is  161.5638.  Furthermore,  for  VAIC  and  VBIC

detectors, the similar decreasing pattern for increasing change-point location, k

is exhibited by each one.  Interestingly, the minimum VAIC and VBIC values

were  respectively, −5710 .8532  and −1411. 1697   occurred  at  the  same

position, k = 160. These VAIC and VBIC values resulted to the corresponding

estimates for the statistics, 
δ A

¿

 and  δB
¿

  as  δ A
¿ =−0.117  and  δB

¿ =−0. 255 .

Since  δ A
¿ <1  and  δ B

¿ <1 , change-point inference based on both VAIC and

VBIC is that there exists a switch at location k = 160 and k is estimated using

k  = 160.

Another interesting observation fundamental to VAIC and VBIC based

detectors is that the δ A
¿

  and δB
¿

 that generated the best estimate of the change-

point location k are the smallest among all the negative values of δ A
¿

 and δB
¿

respectively. In general, the basic automatic selective feature encoded via the

design  of  the  proposals,  VBLD,  VIAC,  and  VBIC,  allow  them  to  avoid

computing all Lk
¿

 values before making a choice. The aspect of the proposals

that ensures computational savings.
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Table  1:   Comparison  of  Change-Point  Statistic  Estimates  Based  on
VLBD, 

     VAIC, and VBIC using the Null Model Statistics,

                L(q )
0

= - 200. 7394, VAIC0=  668.7677,   VBIC0= 360. 5402.
VLBD VAIC VBIC

K
( Lm

s
) ( VAICυ

) ( VBICυ
) L¿ δ A

¿ δ B
¿

151 6117.693 6787.571 11100.589 6318.433 0.099 0.032
152 6040.421 6637.219 10948.333 6241.161 0.101 0.033
153 5214.143 4982.069 9299.690 5414.882 0.134 0.039
154 4437.701 3419.910 7747.222 4638.441 0.196 0.047
155 3368.350 1337.438 5642.070 3569.089 0.500 0.064
156 2495.223 -411.019 3900.322 2695.963 -1.627 0.092
157 1674.521 -2041.164 2269.554 1875.260 -0.328 0.159
158 1140.980 -3068.361 1225.277 1341.719 -0.218 0.294
159 444.574 -4450.568 -157.846 645.314 -0.150 -2.284
160 -39.176 -5710.853 -1411.170 161.564 -0.117 -0.255
161 20.3530 -4213.280 -859.061 221.092 -0.159 -0.420
162 91.310 2502.365 -286.315 292.050 -0.267 -1.259
163 97.226 -2040.766 136.618 297.966 -0.328 -2.639
164 97.863 -1973.897 -115.028 298.603 -0.339 -3.134
165 99.322 -1798.212 -58.172 300.062 -0.372 -6.198
166 100.336 -1652.887 -11.226 301.075 -0.405 -32.117
167 101.057 -1533.735 27.084 301.797 -0.436 13.312
168 101.320 -1480.797 44.081 302.068 -0.452 8.179
169 101.484 -1447.155 55.131 302.223 -0.462 6.540
170 101.669 -1412.166 66.390 302.408 -0.474 5.431
 Source: Researcher’s Construct (2021)

Table 2 presents the change-point estimates obtained from the VBLD,

VAIC, and VBIC detectors. For the regression parameters,  βa
 and  θ , their

95% Bayesian credible intervals are also reported.  The values in the round

brackets are the true parameter assumed for the simulation. It can be observed

that the change-point parameters are well estimated.
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Table 2: Comparison of Change-Point Parameter Estimates Based on     

               VLBD, VAIC, and VBIC

Ha VLBD VAIC VBIC 95% BCI 95%
BCI

95%
BCI

K ( kVBLD ) ( kVAIC ) ( kVBIC )     kVBLD kVAIC kVBIC

β0
a(0 .6058) 0.6053 - - [0.353,0.732] [-] [-]

β1
a(0 . 4743 ) 0.4754 - - [0.492,0.578] [-] [-]

β2
a(0 .5247 ) 0.5247 - - [0.593,0.602] [-] [-]

β3
a(0 . 5239) 0.5244 - - [0.427,0.873] [-] [-]

β4
a (0 .5186 ) 0.5178 - - [0.524,0.590] [-] [-]

θ0 (0 .8965 ) 0.8686 - - [0.698,1.105] [-] [-]

θ1( 0. 8965 ) 0.9453 - - [0.902,0.985] [-] [-]

θ2 (0. 9214 ) 0.9682 - - [0.917,0.925] [-] [-]

θ3 (0 .9737 ) 0.9530 - - [0.749,1.178] [-] [-]

θ4 (0 .9868) 1.0294 - - [0.958,1.016] [-] [-]

 Source: Researcher’s Construct (2021)

 Real Data Application: Manufacturing Process in Refinery                       

Using the octane rating as a response, y; and the remaining variables as

predictors, and with the same prior settings considered in the simulation in

Chapter  Three,  we  apply  the  developed  methods  to  refinery  dataset.  The

nature of the linear switching system underlying the octane rating as well as its

relationship with the other variables is shown in Figure 10. It can be seen that

the octane rating exhibits multiple fluctuations with the major one occurring at

location 75.  It  is pretty much obvious that  the switch at  location 75 is the

crucial  change-point  in the data compared to  the others.  This is  because it

stands  out  among  the  other  possible  switches.  There  appears  to  be  small

switches at locations 38 and 64, however the most crucial switch occurred at

75.

Again  in  Figure  10,  a  careful  observations  of  the  behaviour  of  the

various variables against the response variable that is, octane rating indicates
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some kind of linear relationship between octane rating, the response variable

and  the  predictor  variables  exists.  It  is  easy  to  observe  from  the  plot  of

material 1 that the points on the graph are somewhat clustered around the 65

point. In the second scenario involving the response variable and the material

2, there appears to be a linear relationship oriented in a positive plane. In the

third  scenario  however,  it  can  be  seen  that  there  exists  a  negative  linear

relationship between the octane rating and material 3(variable x3). The fourth

observation however shows a positive linear relationship between the octane

rating and the material 4.

Figure 10:   Nature of linear system generated by refinery manufacturing    

                     process.

Figure 11 shows the inter-relationships existing among the variables. It

can be seen that the correlation coefficient between material 1 and material 2

is a negative value of (-0.59) indicating a strong negative linear relationship

between them. It is clearly evident that octane rating has a linear relationship
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with all the four predictor variables. It can be seen further that material 1 and

material 3 shows negative linear relationship with octane rating. However, the

predictor  variables,  material  2  and  material  4  indicate  positive  linear

relationship  with  the  octane  rating  with  material  2  recording  the  least

correlation coefficient (0.39).

Figure 11:   Plot of data obtained from refinery manufacturing process.

Figure  12  presents  the  nature  of  the  lower  bound  attained  at

convergence for 6 randomly selected k candidates, namely, 10, 70, 55, 31, 74

and 49, for the real data application. As noted in the stimulated study that the

Variational  lower bound exhibits  an increasing trend, the same observation

can  be  made  here  too.  That  is,  the  lower  bound records  an  upward  trend

illustrating the appropriateness of the developed Variational algorithms for the

purpose of change-point modeling and detection.  From left  to right are the

plots for k values, 10; 70; 55; 31; 74 and 49, respectively.
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Figure 12: Lower bound attained at convergence for 6 randomly selected k 
       candidates for real data application. 

The  dynamics  of  parameter  estimation  for  the  real  dataset  as  the

change-point detection by the developed algorithms progresses are illustrated

in Figure 13.  The black curves are the parameter estimates for the first phase

of  the  switching  model  ( β s)  and  the  red  curves  represent  the  parameter

estimates of the second phase of the switching model ( θs ). It is evident that

the  pre-change  estimates  exhibit  virtually  the  same features  as  that  of  the

corresponding post-change estimates.
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Figure 13: Pattern of switching model parameter estimates over k

Table 3 represents summary detection statistics results of the VBLD,

VAIC and VBIC over  the  range of  k ∈(61 ,80 )  for  the real  dataset  under

consideration.  Also,  the  null  model  statistics  required  for  the  change-point

inference are reported. More importantly, the Variational lower bound attained
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at  convergence,  L(q )
0

,  the  VAIC0
,and   VBIC0

  values  for  the  null  model

( H0 )  are  reported.  Further,  other  statistics,  in  particular,  k ,  Lm
s

,  VAICν
,

VBIC ν
, Lk

¿

, δ A
¿

 and δB
¿

 for the switching model ( Ha ) are reported in columns

1 to 7 respectively. The coloured estimates are those that the Variational lower

bound-based detectors yielded as linear change-point detection results for the

real datasets.  It  can be observed that all  the statistics reports some kind of

irregular values patterns or fluctuations over the range of  k ∈(61 ,80 ) .  The

maximum lower bound attained at convergence, Lm
s

  for the VBLD decreases

as k, increases till k =65, with a sharp increase at k = 66. 

The estimates are seen to have a decreasing pattern recorded after k =

66 till k = 75, and then another increasing pattern is evident after k = 75. More

so,  the  minimum  values  of  the  statistics  Lm
s

 and  Lk
¿

were  recorded  as  (-

15.6571) and (185.2131) respectively and occurred at k =75. It can be recalled

that, VBLD declares that a switch exists in a dataset, if Lk
¿

> 0. It is evidently

clear from the table that all the values of VBLD detector, Lk
¿

 , are positive and

that the smallest value among the set of values is recorded as (185.2131) and

occurred at the location, k = 75. This corresponds to the location of the major

change-point  existing  in  the  real  dataset.  Furthermore,  for  the  Variational

information-based statistics, corresponding to the VAIC and VBIC, the same

decreasing and increasing pattern for increasing change-point location,  k, is

depicted by each one of these schemes. 
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A careful observation shows that, the minimum estimated values of the

VAIC and the VBIC were 850.8256 and 442.1871 respectively, and occurred

at the same location,  k = 64. The estimates for the Variational  information

ratio  statistics,  δ A
¿

and  δB
¿

 corresponding  to  the  smallest  VAIC and VBIC

values stated above, were recorded as δ A
¿ =1 .5841   and δB

¿ =1 .4197 .   It can

be recalled that VAIC and VBIC declare the existence of a switch at a certain

location, k, if δ A
¿ <1  and δB

¿ <1 , respectively, for which k is estimated using k .

It  is  clearly  evident  that,  the estimates  for  both  δ A
¿

 and  δB
¿

 are  all

positive and greater than one, suggesting that there is no switch existing in the

data  generative  process.  This  results  seems  to  contradict  the  fundamental

principle  of  VAIC and VBIC -based detectors  proposed that,  the detection

statistics  δ A
¿

 and  δB
¿

 that  generate  or  compute  the  best  estimates  of  the

location k, of the change-point are the smallest among all values of δ A
¿

 and δ B
¿

respectively.
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Table 3:  Real Data:  Comparison of Statistic Estimates Based on VLBD,
                VAIC, and VBIC using the Null Model Statistics

                L0( q)=   - 200.8703,  VAIC0= 537.1086, VBIC0= 311. 448.

VLBD VAIC VBIC
k

( Lm
s

) ( VAICυ
) ( VBICυ

) L¿ δ A
¿ δ B

¿

61 0.4182 860.4668 453.6293 201.2885 1.6020 1.4565
62   -1.2088 857.2386 450.2683 199.6615 1.5960 1.4457
63   -4.1723 851.6207 444.2210 196.6980 1.5856 1.4263
64 -5.4517 850.8256 442.1671 195.4185 1.5841 1.4197
65  -5.9237 861.7519 444.8441 194.9466 1.6044 1.4283
66 10.4550 896.0747 448.7680 190.4153 1.6683 1.4409
67 -12.1677 915.0724 452.6454 188.7025 1.7037 1.4534
68 -12.3448 926.8837 457.0974 188.5255 1.7257 1.4677
69 -12.3286 941.2118 463.3454 188.5416 1.7524 1.4877
70 -12.9012 952.0461 467.0458 187.9691 1.7725 1.4996
71 -14.5922 980.4615 473.2731 186.2781 1.8254 1.5196
72 -13.8360 1010.5587 485.3799 187.0342 1.8815 1.5585
73 -13.9351 1037.4071 495.3226 186.9351 1.9315 1.5904
74 -14.0258 1088.2290 516.6033 186.8445 2.0261 1.6587
75 -15.6571 1154.8372 543.1124 185.2131 2.1501 1.7438
76 -15.2025 1405.5619 660.8841 185.6677 2.6169 2.1220
77 -12.4214 12872.5603 6377.8585 188.4488 23.9664 20.4781
78 -12.8180 19659.0904 9768.5145 188.0522 36.6017 31.3648
79 -12.3963 31909.6141 15891.9519 188.4740 59.4100 51.0260
 80 -11.2465 40306.7856 20084.2658 189.6238 75.0440 64.4867
      Source: Researcher’s Construct (2021)

Table 4 presents the change-point estimates obtained from the VBLD,

VAIC, and VBIC detectors. For the regression parameters,  βa
 and  θ , their

95% Bayesian credible intervals are also reported. The change-point location

estimates via the three proposed detectors were reported. It can be observed

that, the VBLD-detector, the VAIC-detector and the VBIC-detector estimated

k  as  75,  38  and  64  respectively.  Clearly,  the  change-point  regression

parameters estimate for βa
and the corresponding, θ , are the same, based on

each detector.  
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Table 4:  Real Data. Comparison of Change-Point Parameter Estimates 

                Based on VLBD, VAIC, and VBIC

Ha VLBD VAIC VBIC 95% BCI 95% BCI 95% BCI

k kVBLD kVAIC kVBIC ( kVBLD ) ( kVAIC ) ( kVBIC )
β0

a 0.912 0.921 0.912 [0.520,1.2] [0.330,1.51] [0.404,1.40]

β1
a 0.915 0.932 0.915 [0.406,1.4] [0.334,1.54] [0.357,1.45]

β2
a 0.915 0.929 0.927 [0.380,1.4] [0.357,1.45] [0.374,1.48]

β3
a 0.920 0.920 0.927 [0.237,1.4] [0.346,1.51] [0.336,1.53]

β4
a 0.920 0.920 0.927 [0.237,1.4] [0.346,1.51] [0.336,1.53]

θ0 0.912 0.921 0.912 [0.520,1.2] [0.330,1.51] [0.404,1.40]

θ1 0.915 0.922 0.915 [0.406,1.4] [0.334,1.54] [0.357,1.45]

θ2 0.915 0.929 0.927 [0.380,1.4] [0.357,1.45] [0.374,1.48]

θ3 0.920 0.920 0.927 [0.237,1.4] [0.346,1.51] [0.336,1.53]

θ4 1.920 0.920 0.927 [0.237,1.4] [0.346,1.511] [0.336,1.54]

Source: Researcher’s Construct (2021)

Figure 14 presents the dynamics of the change-point detectors (VLB

difference, VAIC ratio, and VBIC ratio methods) in terms of the statistics of

the  detectors  when applied  to  the  real  manufacturing  process  dataset.  It  is

clearly evident that the two Variational information criteria, VAIC and VBIC

exhibit virtually the same features or pattern. It can be seen also that, Max.LB

and the LBD detectors exhibit virtually the same decreasing features as the

magnitude  of  location  range  increases.  Interestingly,  there  exists  a  clear

difference between the patterns exhibited by the Variational information-based

detectors  (VAIC and VBIC)  and VLBD detectors,  in  comparison  with  the

observations from the simulated data application.
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Figure 14:  Dynamics of change-point detectors (LB difference, VAIC ratio  
                   and VBIC ratio methods)

Figure 15 reports the change-point detection characteristics of the three

detectors  (VBLD,  VAIC,  and  VBIC),  based  on  the  refinery  dataset.  The

coloured lines are the estimated change-point locations detected by each of the

proposed detectors. The red, green and blue lines corresponding respectively

to the VAIC-ratio detector, VBIC -ratio detector and VLBD detector.  Aslo,

the calibration  in  the data  in  terms of  how each detector  sees  and label  a

change-point in the data is plotted.  It can be observed that the VBLD detector

is able to detector the major change-point located at 75, which was of interest.

In this regard, we see that the VLBD detector exhibits some robustness than its

competitors in the case where there exists more than one change-point with

one being dominant.
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Figure 15: Performance of change-point detectors (LB difference, VAIC ratio 

and VBIC ratio methods)

Chapter Summary

Chapter  four  considered  the  implementation  of  the  developed

algorithms using both simulated and real datasets. The simulation was based

on the developed variational Bayesian switching and non-switching linear data

generative models where specific parameter settings for parameter values as

well  as  prior  hyperparameter  values  were  employed  in  line  with  existing

literature. The  real  data  implementation  considered  real-time  data  on  the

manufacturing process in a refinery. The dataset is a result of the investigation

of  the  manufacturing  process  in  a  refinery  in  which  the  octane  rating  of

particular petrol product was considered as a function of three raw materials

and a variable that characterizes the manufacturing conditions.

108

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



The chapter considered the performance of the developed algorithms

and the nature of the parameter estimates for randomly selected  k values for

real data and fixed k values for simulated data. The results from the simulation

indicated  that  the  Variational  Lower  Bound  Difference-based  scheme  is

computational friendly and outperforms all the other Variational information-

based schemes in particular VAIC- ratio and the VBIC- ratio in determining

the underlying  simulated  trend based on some statistical  measures  such as

RMSE and MSE.

Furthermore, regarding the ability of the methods to model, detect and

locate  a single  change-point  in  a  linear  system, it  was  established that  the

VBLBD exhibits better performance and robustness than its information-based

counterparts.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Introduction

 This final chapter of the study presents a summary of the findings of

the  entire  study.  It  includes  the  conclusions  from  the  study,  and  some

recommendations arrived at from the study.

Summary

This study explored and developed flexible and robust computational

methods in the Bayesian framework for modeling and inference for change-

point  datasets  generated  by  some  linear  systems  in  which  the  linear

relationship among the response variable and the predictors is oriented in the

positive or negative plane. This was facilitated by the development of various

Variational Bayes inference schemes. In Chapter One, the study opened with

an introduction to the Variational Bayes concept and looked at issues relating

to the background of the study, problem statement raised in the study was how

to  develop  Bayesian  solutions  for  the  change-point  problems  in  the  linear

regression context. 

In particular,  how the Variational lower bound can be employed for

linear  change-point  analysis.  The  main  objective  was  to  develop  an

appropriate  Bayesian  model  and  inference  methods  for  detecting  change-

points in linear systems. It was discussed that one importance of the study of

this work is to explore the capabilities of the Variational Bayes technique to

detect  a  change  in  linear  systems  as  this  approach  is  seen  to  be

computationally tractable,  fast,  and deterministic.  One limitation realized in

the study was that the framework developed is not an all-encompassing one

110

©University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



that  can  be  used  to  detect  all  change-  points.  The  chapter  ended  with  a

summary of the most salient points identified in the work. Chapter two began

with the review of important theorems in the Bayesian framework. Change-

point was discussed as an abrupt change in a generative process of a sequence

of random variables.  Furthermore,  a brief review of change-point  detection

using MCMC was outlined.

Variational Bayesian inference approach was developed in particular a

Variational  Bayes  Lower  Bound  and  Variational  Information  Criteria  for

inference about the change-point detection. In addition, an empirical review of

some relevant studies on the change-point detection literature was made. The

chapter  ended  with  a  chapter  summary.   Bayesian  switching  and  non-

switching models were developed for the methodology in chapter three. Other

Variational inferences are also developed for the switching and non-switching

models. Four algorithms were developed and implemented in chapter three.

Simulations were carried out using the algorithms and the datasets generated

were used to assess the various schemes that were developed in the course of

the study.  Also,  real  data  implementation  considered  real-time data  on the

manufacturing process in a refinery. The dataset is a result of the investigation

of the manufacturing process in a refinery in which the octane rating of petrol

was  considered  as  a  function  of  three  raw  materials  and  a  variable  that

characterizes  the  manufacturing  conditions.  The  two  application  scenarios

were  reviewed  thoroughly.  The  implementations  of  the  algorithms  were

evaluated and the results indicated that the algorithms were performing well.

The Chapter ended with a chapter summary.
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Chapter  Four  commenced  with  the  results  of  the  application  of

developed methods to both simulated data and real data of the Bayesian linear

switching and non-switching systems that were developed earlier in chapter

three. The chapter evaluated the performance of the developed algorithms and

characteristics of the parameter estimates for randomly selected datasets for

both real and simulated datasets. The results from the real data and simulation

applications show that the Variational lower bound difference-based scheme

outperforms all the other Variational information-based schemes even though

they all performed well. A comparison of the statistical measurement of error

parameters also indicated that the Variational lower bound difference scheme

performed better than the rest and exhibited robustness. The fourth chapter

ended with a chapter summary. 

Conclusions

We  have  proposed  and  implemented  novel  Bayesian  methods  for

modeling, fitting, and detecting change-points in linear systems that generate

data that exhibits  linear  patterns.  Particularly,  Bayesian switching and non-

switching  models  were  developed  for  linear  systems.  Also,  appropriate

Variational Bayes inference schemes were developed for parameter inference.

Furthermore, the methods adopt the Variational Bayes framework and make

use  of  its  bye-product  termed  Variational  lower  bound  as  well  as  its

information criterion to develop appropriate change-point detectors.

The Variational  information-based schemes were built  based on the

properties of the usual Variational Bayesian Information Criteria (VBIC) and

Variational  Akaike  Information  Criteria  (VAIC).  The  Variational  lower

bound-based detector uses the lower bound difference between the switching
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and  non-switching  models  for  all  possible  candidates  of  the  change-point

location, k. 

The  proposed  Bayesian  non-switching  and  switching  models  assume  the

following general structures respectively. 

H0 :Y=Xβ0+ε

H1 :Y k=X k
1 βa+εk , Y nk

1 =Xnk
1 θ+εnk

All  unknown  parameters  were  treated  as  random  and  modeled  with  the

appropriate probability models.

The change-point detectors depend on the Variational Bayes parameters as a

result, switching and non-switching specific Bayesian models are built with

Variational  inference  methods  developed  for  parameter  inference.  The

applicability  of  the  proposed  methods  for  change-point  analysis  in  linear

regression is illustrated using both simulation and real data from the refinery

manufacturing  process  dataset.  The Variational  lower bound–based method

exhibits robustness over its Variational information counterparts, especially, in

datasets with unclear multiple switches with one outstanding switch. This was

the case with the real data application.

Recommendations 

This part of the thesis focuses on some vital recommendations based on

the proposed methods and its implementation using both simulated and real

datasets.   Also, some possible directions for extension of the proposals are

outlined  in  brief.  Beginning  with  the  recommendations,  we  consider  the

following. We recommend

1. the  use  of  Variational  lower  bound-based  statistics  such  as  the

difference  in  lower  bounds  between  switching  and  non-switching
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models for change-point detection and calibration in linear regression

models in order to properly model dataset generated by linear systems.

2. the  integration  of  Variational  lower  bound-based  change-point

detectors in industrial process control ecosystems since it is fast and

light computationally.

3. the proper or accurate calibration of prior models of hyper-parameter

in  Bayesian  change-point  models  before  its  use  in  change-point

detection.  This  is  because  the  wrong choice  of  prior  models  yields

misleading results. It is thus vital to allow the data to direct the choice

of prior settings.  

Suggestions for Further Studies

 On direction for furthering work of the proposals in this thesis, we outline

the following.

1. The linear regression-based change-point detectors considered can be

extended  to  non-linear  or  functional  change-point  modeling  and

detection.

2. In this thesis, change-point detection was restricted to mean change,

fixing the variability.   Another direction of extension is to consider

both mean and variability change-point modeling and detection within

the Variational Bayes framework.

3. Another potential extension could be in the direction of modeling the

change-point parameter using different probability instead of uniform

assumed in this thesis. 

4. One  can  also  explore  the  use  of  MCMC methods  for  change-point

detection.
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APPENDICES 

APPENDIX A

DERIVATIONS FOR THE NULL MODEL

This section of the appendix is tailored towards the derivations of the required

Variational  updating  equations  for  the  development  of  the  non-switching

model,  the  Variational  optimization  function,  and  the  derivation  of  the

Variational  Akaike  Information  Criteria  (VAIC)  and the  Variational  Bayes

Information Criteria (VBIC) and their derivatives for change-point detection’

Appendix A. 1: Derivation of Variational Updates for Null Model

In this section, the Variational updates for the null models are derived. The

derivation begins with the identification of the joint posterior distribution and

its Variational counterpart.  The joint posterior based on the assumed priors

and defining data likelihood function for the null can be express in the form;

                                  
p(ϑ0|y )  α

p( y|ϑ 0) p (ϑ 0)

                                                  α
p( y|β0 , σ∈

2 ) p ( β0 ) p (σ∈
2 )                        (35)

where  ϑ0=( β0 , σ∈
2 )  denotes  the  set  of  parameters  in  the  model.  The

corresponding Variational distributions assumed for (47) is separable of the

form

                           q (ϑ 0)=q ( β0 ) q (σ∈
2 )                                                         (36)

where  q ( β0 ) ~ N (μβ
q , Σβ

q ) , , q (σ∈
2 )~ IG (a∈

q , b∈
q ) .  Using  equation  (47),  the

required  updates  for  the  parameters  are  obtained  based  on  the  following

equations.

                  q ( β0 )  α
exp [E−q( β0)

log { p( y|β0 , σ∈
2 ) p( β0)} ]                            (37)
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and    

                 q (σ∈
2 )  α

exp [E−q(σ∈
2 )

log {p ( y|β0 , σ∈
2 ) p (σ∈

2 )} ]                            (38)

Based on equations (48) and (51), the following are true.

                q ( β0 )  α
exp [E−q( β0)

log { p( y|β0 , σ∈
2 ) p( β0)} ]                             (39)

                          α
exp [E−q( β0)

log {N ( y ; Xβ , σ∈
2 I n )N ( β0 , μβ

0 , Σβ
0 )} ]           (40)

It can be deduced that

N ( y ; Xβ0 , σ∈
2 I n) N ( β0; μβ

0 , Σ β
0 ) α

exp {− 1
2 σ∈

2 Σ β
0 [Σβ

0 D ( y , X , β0)+σ∈
2 D (β0 , μβ

0 ) ]}
                                        (41)

Where  D ( y ; X , β0 )=( y−Xβ )' ( y−Xβ ) , D ( β0 , μβ
0 )=( β0−μβ)' ( β0−μβ) .

Completing squares in β of the exponent gives 

N ( y ; Xβ0 , σ∈
2 I n) N ( β0; μβ

0 , Σ β
0 ) α  

exp {− 1
2 Σβ

¿ [ (β−μβ
¿ )' ( β−μβ

¿ ) ]}
, 

where 

                                  
Σβ

¿ =
σ∈

2 Σβ
0

Σβ
0 X ' X+σ∈

2
,

μβ=
Σβ0

y ' X+σ∈
2 μβ

0

Σβ
0 X ' X+σ∈

2 I n

We now take log,  and compute  the expectation  with respect  to  variational

distributions q (σ∈
2 ) . After this, q ( β0 )  can be expressed as

                                    q ( β0 ) ~ N ¿¿                                               (42)

Σβ

q∗¿=[ a∈
q

b∈
q

X ' X+ Σ
β
0−1]

−1

¿ , μβ

q∗¿=Σ
β

q∗¿[a
∈
q

b
∈
q

y
'

X +μ
β
0

Σ
β
0−1]

¿
¿

Now, the updating equations for q ( β0 )  are obtained by comparing N ( μβ
q , Σ β

q )

with  N ¿¿  in  (42).  This  leads  to  the  following  expressions  for

estimating μβ
q

 and Σβ
q
.

                            Σβ
q←Σβ

q∗¿ ¿  ,  μβ
q← μβ

q∗¿ ¿
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The updating equations for q (σ∈
2 )  can be obtained using (51) as follows.

         q (σ∈
2 )  α

exp [E−q (σ ∈
2 )

log ( p ( y|β , σ∈
2 )) p (σ∈

2 )]

                    α
exp[ E

−q (σ∈
2 )[ log {N ( y ; Xβ0 , σ∈

2 I n )}+ log {IG (σ∈
2 , a∈

0 , b∈
0 )}]]

                     α

exp[ log (σ∈
2 )

−( n
2 +a∈

0 )−1
− 1

σ∈
2 [ 1

2 {μy }+b∈
0 ]]

                         ~
IG(( n

2
+a∈

0 ) , 1
2

μ y+b∈
0 )

                                                  (43)

where  μy=( y−X ' μβ
q )' ( y−X ' μβ

q )+tr ( X ' XΣβ
q ) .  By  comparing  Now,

IG (a∈
q , b∈

q )  and  (43),  it  is  easy  to  see  the  resulting  updating  equations  for

estimating the scale and shape parameters of  q (σ∈
2 )  are 

a∈
q ←

n+2 a∈
0

2 , 
b∈

q ← 1
2 [ ( y−X ' μβ

q )' ( y−X ' μβ
q )+tr ( X ' XΣβ

q ) ]+b∈
0

Appendix A. 2: Computation of Variational Optimization Function.

The Variational lower bound defined by the null model based on the assumed

Variational distributions in (26) can be written as;

L0( q)=Eq [ log p( y|β0 , σ∈
2 )]+ Eq [ log p ( β0 ) ] Eq [ log p (σ∈

2 ) ]−Eq [ log q ( β0) ]−Eq [ logq (σ∈
2 ) ]    (44)

The component of (44) are computed as follows.

Eq [ log p( y|β0 , σ∈
2 )]=Eq [log N ( y ; X ' β0 ) ]

=−n
2

log (2 π )−n
2 [ log (b∈

q )]−ψ (a∈
q )−

a∈
q

2b∈
q [( y−X ' μβ

q )' ( y−X ' μβ
q )+tr ( X ' XΣβ

q )]

Eq [log p ( β0 ) ]=Eq [ log N ( β0 ; μβ
0 ,Σ β

0 )]

  
=− r

2
log (2 π )−1

2
log|Σβ

0|− 1
2 [( μβ

q−μβ
0 )' ( μβ

q−μβ
0 )+tr (Σβ

0−1
Σ β

q )]
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Eq [ log p (σ ∈
2 ) ]=Eq [ log IG (σ ∈

2 ;a∈
0 , b∈

0 ) ]

                     
=a∈

0 log ( b∈
0 )− log Γ (a∈

0 )−(a∈
0 +1) [log( b∈

q )−Ψ (a∈
q )]−b∈

0 a∈
q

b∈
q

Eq [ log p ( β ) ]=Eq [ log N ( β; μβ
q , Σβ

q )]

                   
=− r

2
log (2 π )−1

2
log|Σ β

q|− r
2

Eq [ log p(σ ∈
2 ) ]=a∈

q log(b∈
q )−log Γ (a∈

q )−(a∈
q +1 )[ log (b∈

q )−Ψ (a∈
q ) ]−a∈

q

Appendix A.3: Computation of VAIC and VBIC for Null Model

In  this  subsection  of  the  thesis,  the  VAIC  and  VBIC  computational

expressions are derived for the non-switching model.  First  we consider the

general structures of the above information criterions. The VAIC and VBIC

can be defined for the null model as;

                         VAIC=−2 log p( y|ϑ0
¿ )+2 pD

¿

                                         (45)

                          pD
¿ =2 log p ( y|ϑ 0

¿ )−2 Eq [ log p ( y|ϑ 0 )]

                         VBIC=−2 L0(q )+2 Eq [ log p(ϑ 0)]                                      (46)

The component can be obtained from the Appendix A .1. and Appendix A. 2.

In particular, we have

Eq [log p (ϑ0 )]=Eq [log p ( β0 ) ]+Eq [ log p(σ ∈
2 )]

Eq [log p ( y|ϑ 0) ]=Eq [ log p ( y|β0 , σ∈
2 ) ]

log p( y|ϑ0
¿ )=log p( y|β

0∗¿ ,σ ∈

2∗¿)− n
2

log (2 π )− n
2

log (σ
∈

2∗¿ )−
1

2σ

∈
2∗¿

[( y −Xμ

β
q

)
'

( y− Xμ

β
q

)]¿

¿

¿
¿

where σ∈

2∗¿=E
q[q (σ ∈

2 )]=
b∈
q

a∈
q −1

,a∈
q >1 .

¿
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APPENDIX B

DERIVATIONS FOR THE SWITCHING MODEL

This section of the Appendix focuses on the derivations for the change-point

model.  The  computation  of  the  Variational  updates  for  the  Variational

algorithm,  derivation  of  computational  formulas  for  the  Variational

information  namely,  the  VAIC,  VBIC  and  the  Variational  optimization

function termed the lower bound.

Appendix B.1: Derivation of Variational Updates for Switching Model

We consider the Variational parameter updating equations required for fitting

algorithm. The defining structure for the 

               p(ϑc / y )
α

p( y /ϑc ) p (ϑc )

                              α p( y / βa , θ , k , σ∈
2 ) p ( βa) p(θ ) p( σ∈

2 ) p( k )                     (47)

where  ϑc=( βa ,θ , k , σ ∈
2 ) denotes  the  set  of  parameters  in  the  switching

model. The Variational updating equations are derived as follows.

               q (βa ) α
exp [E−q( βa)

log { p( yk ¿ βa, θ , k , σ∈
2 ) p ( βa)} ]                     (48)

                       α
exp [E−q( βa)

log {N ( yk ; X k βa ,σ ∈
2 I k )N ( βa; μβ , Σ β )}]

It can be deduced that

N ( yk ; X k βa , σ∈
2 I k ) N ( βa ; μβ , Σβ ) α

exp {− 1
2σ∈

2 Σβ
[ Σβ D( yk , Xk , βa )+σ ∈

2 D( βa , μβ )]}
,                       (49)

where  D( yk , X k , βa)=( yk−Xk βa)' ( yk−Xk βa) ,

D( βa , μβ )=( βa−μβ )' ( βa−μβ ) . Completing squares in β yields S
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N ( yk ; X k βa , σ∈
2 I k ) N ( βa; μβ , Σβ ) α

exp {− 1
2σ∈

2 Σβ
[( β−μ

βa
¿ )'( β−μ

β a
¿ )]}

,

where 

Σ
βa
¿ =

σ∈
2 Σ β

Σ β X k
' X k+σ∈

2 I k , 
μβ=

Σβ yk
' Xk +σ∈

2 μβ

Σβ Xk
' Xk+σ∈

2 I k

 Taking log, followed by expectation with respect to q (σ∈
2 ) , q (βa ) yields

                                 q (βa )~  N ( μ
βa

q∗¿,Σ β a
q∗¿) , ¿

¿                                 (50)

where 

               Σ
βa

q∗¿=[a∈
q

b∈
q X k

' X k+Σ β
−1]

−1

¿ ,  μ
βa

q∗¿=Σ
βa

q∗¿[ a∈
q

b∈
q yk

' Xk+μβ Σ β
−1]

. ¿
¿

The  updates  for  q (β0 ) are  obtained  by  comparing  N ( μβ
q , Σ β

q ) with

N ( μ
βa

q∗¿, Σ
β a
q∗¿) ¿

¿ in (53). Thus, we have the following expressions for estimating

μ
βa
q

and 
Σ

βa
q .

             
Σ

βa
q ← Σ βa

q∗¿ ¿
,    

μ
βa
q ←μβ a

q∗¿ ¿

Next, we consider the updates for q (θ ) .

q (θ ) α
exp [E−q( βa)

log {N ( ynk ; Xnk θ , σ ∈
2 Ink )N (θ ; μθ , Σθ )}]                           (51)

It can be deduced that,

N ( ynk ; Xnk θ , σ ∈
2 I nk )N (θ ; μθ , Σθ ) α

exp {− 1
2 σ∈

2 Σθ
[ Σθ D 1( ynk , Xnk , θ )+σ∈

2 D 1(θ , μθ )]}
                                       (52)

where  D1( ynk ; Xnk ,θ )=( ynk−Xnk θ )' ( ynk−X nk θ )  ,

D1(θ , μθ )=(θ−μθ)
' (θ−μθ ) . Completing squares in β yields.
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N ( ynk ; Xnk θ , σ ∈
2 I nk )N (θ ; μθ , Σθ ) α

exp {− 1
2 σ∈

2 Σθ
¿ [(θ−μθ

¿ )' (θ−μθ
¿ )]},

where 

Σθ
¿=

σ∈
2 Σθ

Σθ Xnk
' X nk+σ∈

2 I nk ,
μθ=

Σθ ynk
' X nk+σ∈

2 μθ

Σθ Xnk
' Xnk+σ∈

2 I nk

Taking log, followed by expectation with respect to  q (σ∈
2 ) , q (θ ) yields

                     q (θ )~ N ( μθ

q∗¿ , Σθ
q∗¿) ,

¿
¿         

where   Σθ

q∗¿=[a∈
q

b∈
q Xnk

' Xnk +Σθ
−1]

−1

¿ , μθ

q∗¿=Σθ

q∗¿[a∈
q

b∈
q ynk

' X nk+μθΣθ
−1].

¿
¿                  

 The  updates  for  q (θ ) are  obtained  by  comparing  N ( μθ
q , Σθ

q ) with

N ( μθ

q∗¿ , Σθ
q∗¿)

¿
¿ in (53). Thus, we have the following expressions for estimating

μθ
q

and Σθ
q .

                       Σθ
q← Σθ

q∗¿ ¿ ,    μθ
q←μθ

q∗¿ ¿ .

          q (σ∈
2 )  α

exp [ E−q(σ∈
2 )

log ( p ( y / β , θ , k , σ∈
2 ) p (σ∈

2 )]

                     α
exp[ E

q (σ ∈
2 )  [ log {N ( yk ; Xk βa , σ∈

2 I k )N ( y nk ; Xnk θ ,σ∈
2 I nk )}  +

                            +log {IG (σ∈
2 , a∈

0 , b∈
0 }] ]

                   α  [
log(σ ∈

2 )
−(n

2 +a∈ )−1
− 1

σ∈
2 [ 1

2 {B1( yk , Xk , βa )+B2( ynk , Xnk , θ}+b∈] ]

                      ~ IG (( n
2 +a∈) , 1

2 [ B1+B2 ]+b∈)                                       (54)

Where 

     
B1=( yk−Xk

' μ
βa
q )' ( yk−X k

' μ
βa
q )+tr ( Xk

' Xk Σ
βa
q )

,    

     B2=( ynk−X nk
' μθ

q )' ( y nk−Xnk
' μθ

q )+tr ( Xnk
' Xnk Σθ

q ) . 
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By comparing now, IG (a∈
q , b∈

q )  and (54), we have the updating equations for

q (σ∈
2 ) .

            a∈
q ← n

2 +b∈ , b∈
q ← 1

2 ( B1+B2 )+b∈ .

Appendix B. 2: Computation of Variational Optimization Functions for   

 Switching Model.

Based on the Variational approximation defined in (25), the structure of the

variational lower bound defined by the switching model is of the form,

Lc(q )=Eq [ log p ( y /βa ,θ ,σ ∈
2 ]+ Eq [ log p( βa )]+Eq [ log p(θ )]+Eq [ log p (σ∈

2 )]

+Eq [ log p (k ) ]−Eq [ log q( βa )]−Eq [ logq (θ )]−Eq [log q (σ∈
2 )]−Eq [ logq (k )] . (55

)

The computational expressions for the components of (55) are as follows.

Eq [log p( y / βa , θ , σ∈
2 )]= Eq [log Nk ( yk ; Xk βa , σ∈

2 I k )]

+Eq [log N (n−k )( y(n−k ); X (n−k )θ , σ∈
2 )]−n

2 log(2 π )−n
2 [ log (b∈

q )−ψ (a∈
q )]     

−
a∈

q

2b∈
q [( yk

' yk + ynk
' ynk−2 y k

' X k μβ
q −2 ynk

' Xnk μθ
q+ D1+D2 ]

          

Eq [log p ( βa )]=Eq [log N ( βa ; μβ , Σβ )]

=− r
2 log (2 π )− 1

2 log|Σ β|−
1
2 [(μ

βa
q −μβ )

'( μ
βa
q −μβ )+ tr( Σ β

−1 Σ
β a
q )]

Eq [ log p (θ )]=Eq [ log N (θ ; μθ ,Σθ )]

=− r
2 log (2π )− 1

2 log|Σθ|−
1
2 [( μθ

q−μθ )
' ( μθ

q−μθ )+tr (Σθ
−1 Σθ

q )]

Eq [log p(σ∈
2 ) ]=Eq [log IG(σ ∈

2 ;a∈ , b∈)]
=a∈ log ( b∈)−log Γ (a∈)−(a∈+1) [log( b∈

q )−ψ (a∈
q )]− b∈a∈

q

b∈
q .
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Eq [ log p (k ) ]=Eq [ log 1
(n−2 p) ]=− log (n−2 p)

Eq [ log q( β ) ]=− r
2

log(2 π )− 1
2

log|Σ
βa
q |− r

2

Eq [ log q(θ )]=− r
2 log (2 π )− 1

2 log|Σθ
q|− r

2

Eq [log q (σ∈
2 )]=a∈

q log (b∈
q )−log Γ (a∈)−(a∈+1 )[ log (b∈

q )−ψ (a∈
q )]−a∈

q

Eq [ log q(k )]=− log(n−2 p )

D1=tr ( (μβ
q μβ

q '
+Σβ

q )X k
' X k) , D1=tr ( (μθ

q μθ
q '
+Σθ

q ) Xnk
' Xnk) , Xnk=X(n−k ) ,

ynk= y(n−k ) .

Appendix  B.  3:  Computation  of  VAIC  and  VBIC  for  the  Switching

Model.

The computation of the VAIC and VBIC for the switching model follows from

that of the non-switching model in Appendix A. 3. We can write

                               VAIC=−2 log p( y /ϑ c
¿ )+2 pD

¿

                                       (56)

                                 pD
¿ =2 log p ( y /ϑc

¿ )−2 Eq [ log p ( y /ϑc )]
and

                          VBIC=−2 Lc
k(q )+2 Eq [ log p(ϑ c )]                                     (57)

Eq [log p (ϑc )]=Eq [ log p( βa )]+Eq [ log p (θ) ]+Eq [ log p(σ ∈
2 )]+Eq [ log p (k ) ]

Eq [log p ( y /ϑc
¿ )]=Eq [ log p( y /βa ,θ , σ∈

2 )]

     log p( y /ϑc
¿ )= log p( y /β

a∗¿ , θ¿, σ
∈

2∗¿)−
n
2

log (2 π )−
n
2

log (σ
∈
2∗¿ )

¿

¿
¿

         
− 1

2(σ∈
2∗¿ ) [( yk−X k μ

β a
q )' ( yk−Xk μ

β a
q )+( ynk−X nk μθ

q )'( ynk −Xnk μθ
q)] , ¿

where σ∈

2∗¿=E
q[q (σ ∈

2 )]= b∈
q

a∈
q −1

¿ , 
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