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ABSTRACT 
. . 

In this thesis, an investigation is conducted on the nonlinear polarization effects in a 

birefringent single mode optical fiber. The thesis begins with an introduction that gives 

current interests as well as a general review of polarization behavior in a birefringent , 

single mode fiber. The theory on propagation of light in single mode optical fibers is also 

introduced to serve ~ a basis for understanding the concepts of nonlinear polarization 

effects. Then Stokes parameters and the Stokes formalism are introduced and related 

to the traditional measures of light polarization such as ellipticity and azimuth. The 

use of Stokes parameters to analyze polarization effects as the beam propagates in a 

birefringent optical fiber forms the central theme of this thesis. The evolution equations 

for Stokes parameters when the optical fiber is considered linear are derived using the 

methods of Brown's Unified Formalism for Polarization Optics. Several Mueller matrices 
.. 

which characterize the polarization effects of birefringence and dichroism are obtained 

analytically. This provides a means to model the evolution of the Stokes parameters as 

function of fiber length and orientation angle. Graphical illustrations showing the output 

polarization change are presented in this thesis. Furthermore, general solutions to the 

Stokes parameters evolution equations when the optical fiber is considered nonlinear 

have been obtained analytically in terms of the Jacobian elliptic functions . Graphical 

illustration showing the nonlinear behavior of the output polarization are ;:tl.so presented. 

xvi 
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A fundamental and noteworthy aspect of the results presented in this thesis is that 

when the fiber is considered linear the output Stokes parameters are either periodic or 

constant with length or orientation angle depending on whether the fiber is assumed to 

:have losses or not. When the solutions are periodic, the three Stokes parameters are 

observed to have the same periods. However, when the fiber response to propagation 

is considered nonlinear, the output Stokes parameters are generally doubly periodic and 

the three Stokes parameters do not have the same periods. Some cases of aperiodicity 

are observed and presented. 

Another interesting and novel result presented in this thesis is that when an intense 

elliptically polarized beam propagating along a birefringent optical fiber undergoes a 

change in both its shape and orientation, the critical input intensity at which the light­

induced birefringence cancels the existing fiber birefringence will increase. 

xvii 
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Chapter 1 

INTRODUCTION 

In recent years, single mode optical fibers have become the transmission medium of 

choice for long-distance telecommunications networks [1]. These networks take advantage 

of the high-data-rate characteristics of a single mode fiber. In addition, these fibers are 

not only utilized in applications such as local area networks, cable TV networks, sensors 

and intergrated optical device components but also as tools to facilitate measurement 

objectives in a variety of scientific and teclmological areas. In these applications, a 

thorough understandiJ?g of polarization and its effects are fundamental to the design and 

characterization of all these devices. 

This research investigates the nonlinear polarization effects in a birefringent single 

mode fiber. It also involves the simulation of a model that determines the nonlinear po­

larization behavior of the fiber as a function of the input field intensity and polarization. 

Such a research is significant because the nonlinear effects resulting from polarization 

behavior lead to various applications including pulse shaJ,li.:1g, optical switching, intensity 

discriminators and all-optical logic gates [2]. Some of the nonlinear polarization depen­

dent effects are also of keen interest in optical fiber telecommunications. This research, 

therefore, addresses problems related to the nonlinear polarization dynamics in single 

mode optical fibers. 

1 
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In an ideal optical fiber, it is generally supposed that the fiber has perfect circular 

symmetry and that the polarization vectors are degenerate. However, in real optical 

fibers, the degeneracy is split by birefringence that may be introduced either intentionally 

or randomly. Birefringence may be defined as the difference between the two effective 

mode indices of refraction and can be either due to intrinsic geometrical asymmetries 

and imperfections in the fiber or due to extrinsic externally applied perturbations such 

as bending, squeezing, or twisting of the fiber [3J. In general, the pair of orthogonal 

modes are coupled by perturbations which vary along the length of the fiber. Therefore, 

the propagating optical field in a birefringent fiber can be expressed as a superposition of 

two orthogonal linearly polarized modes. The birefringence induces a phase shift between 

the modes. 

It was usually assumed that the birefringence is locally linear in a single mode fiber 

[4J. However, in recent years, the availability of fibers with low dichroism has led not only 

to a revolution in the field of optical fiber communications [5J but has also given birth 

to the field of nonlinear fiber optics [6J. Dichroism relates to the polarization dependent 

loss effects of a fiber. It represents the attenuation of the light power transmitted by the 

fiber and arises from intrinsic material properties such as absorption or scattering and 

from waveguide properties due to manufacturing influenc~ .. . It has been reported that 

polarization dependent losses influence systems containing several elements connected by 

optical fibers [78J . Several nonlinear phenomena including optically induced birefringence 

[7], polarization instability [8 --.: 11], and solitoru; [4,11 J have led to important advances 

from the fundamental as well as technological point of view. Self-induced birefringence 

is a nonlinear coupling between the two orthogonally polarized components of an optical 

wave resulting in changes in the fiber refractive index by different amounts for th~ two 

components. The nonlinearity in fibers is responsible for a nonlinear exchange in energy 

between the orthogonal modes [12J. In addition, interest in nonlinear fiber optics is ex-
" .J • 

pected to develop further in view of the current emphasis on photonics-based technologies 

for information management. Photonics summarizes and symbolizes the current effort to 

2 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



replace and/or supplement electronics with optics in signal processing, computing, and 

related technologies. In fact, a polarization diversity detection system for distributed 

sensing of polarization mode coupling in high birefringence fibers has been implemented 

using a pump-probe architecture based on the optical Kerr effect (79). Optical Kerr effect 

is a nonlinear process in which the birefringence in a medium is caused by an intensity­

induced change in the refractive index of the medium. Single mode fibers offer lUlique 

opportunities for observing nonlinear phenomena in relatively simple experimental con­

ditions. These fibers exhibit nonlinear behavior depending on the power density which 

travels through them. In spite of the weak nonlinear response of silica, fibers are capable 

of confining the electromagnetic field over small cross-sections (typically ten squared mi­

crons) and for long distances with little loss (down to O.2db/km) [ll). In contrast with 

other fields of application such as plasma physics and fluid mechanics, in fiber optics, 

one needs a minimum level of approximation in order to derive a set of coupled equations 

from the basic principles for a small number of modal amplitudes. This ·is true for the 

linear [73, 74) and nonlinear (75) regime of pulse propagation in fibers, Whereas in the 

linear case, a weak transverse anisotropy of the linear susceptibility tensor and IQgitu­

dinal inhomogeneities of the fiber act as perturbing terms and lead to mode coupling, 

in the nonlinear case the role of the perturbation is played by the presence of a weak 

nonlinearity. In both linear and nonlinear cases, the seperation between transverse and 

logitudinal variables that is at the basis of the coupled mode theory allows one to deal 

with only two independent variables, namely the time and the distance traveled along the 

logitudinal axis of the fiber. Coupled mode theory is a powerful method used to study 

the change in the propagation characteristics of the light caused by perturbations in an 

optical medium. A detailed discussion on this theory as it pertains to an optical fiber is 

presented in subsequent chapters. 

This research, therefore, involves the study of the propagation of 8.:ll optical field 

through a single mode fiber with small nonlinearity and anisotropy in the framework of 

the coupled mode theory and in terms of a rather simple formalism. The emphasis will 

3 
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be on the analytical approach to solving the problem of nonlinear polarization effects in 

single mode fibers. The use of Stokes parameters to calculate polarization changes as the 

beam propagates along a birefringent optical fiber will form the central theme throughout 

this thesis. This will permit an immediate global insight into the physical properties 

of the solutions for both linear and nonlinear polarization effects in an optical fiber. 

Where necessary, geometrical considerations will be provided to enhance the visualization 

of the resulting effects. The approach used in this work is based on the qualitative 

theory in this field aQ.vanced in a recently published textbook [12]. The investigation 

in this thesis is limited to the study of induced nonlinear birefringence 'resulting from 

coupling between the two orthogonally polarized components of an optical wave in a 

single mode fiber. The coupling between the polarization components of the optical 

wave is then analyzed after including the effects of both intrinsic linear birefringence 

and optically induced nonlinear birefringence. Thus, this research investigates the effects 

and interplay of both linear and nonlinear birefringence in single mode optical fibers and 

their implications for communications as well as their potential for device applications. 

Nondegenerate three-wave mixing modes in regimes where dispersion plays a crucial role 

will not be considered since the full wave dynamics in the fiber would be governed by 

partial differential equations in 1+1 dimensions [11]. In other words, dispersion is not 

considered a critical factor in this work. This assumption has several advantages. There 

is no group velocity dispersion .(GVD) which is responsible for pulse broadening. Other 

effects such as solitonS and pulse compression which depend on the presence of GVD will 

not be considered in this research. However, even though dispersion is neglected, it can be 

included to first order for analysis on polarization mode dispersion in birefringent ~bers 

[14,83]. Lastly, the analysis in this research is purely deterministic so that stochastic 

effects resulting from randomly varying birefringence are not given consideratioll. 

The above discussions signifiy the importance of polarization phenomena in bulk 
; 1 I , . 

optics, fiber optics, and photonics. It is the aim of this thesis, therefore, to analyze the 

polarization behavior of a single mode fiber with special emphasis on nonlinear effects. 
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The methods of the m:tified formalism for polarization optics [1] and the Jacobian elliptic 

functions [61,77] are used to obtain and interpret the physical behavior of the fiber based 

on its local and nonlocal properties. 

The plan for the rest of this thesis is as follows: chapter 2 provides the historical 

background and propagation theory on single mode fibers to serve as the basis for un­

derstanding the concepts presented in later chapters. Stokes parameters and Mueller 

matrix theory are introduced in chapter 3 to describe, respectively, the propagating field 

polarization and characteritics of the fiber. The derivation of Stokes parameter equation 

of motion is also presented to establish the connection between the field amplitudes and 

the optical properties of the fiber. Stokes equation of motion form the unifying feature 

common to both the linear and nonlinear cases under investigation. In chapter 4, an 

overview of the unified formalism for polarization optics is presented to provide the ana­

lytical approach used for modeling the fiber considered in this work. In addition, Mueller 

matrices describing polarization effects for specific cases of optically active fibers with 

and without dichroism when nonlinear effects are neglible are deduced and presented. 

Chapter 5 focuses on polarization effects that occur when the incident power and fiber 

length are such that nonlinear effects occur. Evolution equations for Stokes parameters 

in a nonlinear fiber are also derived and presented. Central in this section is the pre­

sentation of a Mueller matrix which contains terms that depend on the cubic optical 
r., _ . 

nonlinearity of the fiber. Chapter 6 is on the discussions of the analytical and numerical 

results obtained for all possible effects observed within the scope of this research. Chapter 

7 is on the conclusions of the thesis. Several suggestions and comments on the different 

cases of physical interests emanating from the results of this thesis are also presented in 

this section. 

.' ~ 'J.' 
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Chapter 2 

BACKGROUND AND THEORY 

OF PROPAGATION IN SINGLE 

MODE FIBERS 

Single mode fibers have been used in polarization-dependen~ applications and have also 

been the topic of several research over the past thirty years. Quite recently, interest 

has also grown in research on nonlinear polarization effects and its usefulness in single 

mode fiber applicatiops. This' chapter is intended to present a review of some of the 

past and current studies concerned with polarization in fibers. Also i~cluded in this 

chapter are definitions of key terms and fllildamental concepts on single mode fibers 

as well as an analysis that describes the coupling between the modes of the fibElr. It 

is the aim of this chapter to provide the backgrollild required for llilderstancling the 

physical interpretation of what occurs when light propagates along a fiber without giving 
- . ': 

initially detailed rigorous mathematical derivations. Such all approach is intended to aid 

in understanding the remaining chapters without difficulty. 
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2.1 Historical Review of Polarization Phenomena in 

Single Mode Fibers 

There has been a rapid expansion in the use of single mode optical fibers not only 

in optical telecommunication systems but also in the area of sensor applications. These 

technological advancement owe their success in part to a firm theoretical, experimental, 

and technical understanding of the basic underlying physics. The relevant fiber parame­

ters, such as numerical aperture, index profile, core diameter, dispersior;t, attenuation, 

spot size, cut-off wavelength and polarization which control the physical behavior of the 

fiber structures need to be properly understood. Perhaps, more importantly, are the dic­

tates of these parameters when the fiber is under a functional performance as it interacts 

with light. Many interesting features occur as the light propagates along the fiber and 

this has led to various applications. Since the focus of this work is on nonlinear polar-
I ,~ 

ization effects in single mode fibers, the discussion here is limited to only polarization 

features and their applications. 

Several excellent books have been written to describe polarization phenomena in lin­

ear optics including some recently published [15,16] . A number of other famous texts 

such as [17 - 19] have devoted significant attention to the subject of polarization dynam­

ics. Nonlinear optics also covers a comprehensive monographic range and from among 

the well-known texts i!l this subject a few [20 - 23] are cited here. Even though nonlinear 

optics enjoys a wide coverage, one of the few texts devoted exclusively to polarization 

effects in nonlinear optics was published recently in 1998 [13]. Research in polarization 

phenomena in linear and nonlinear optics is enormous and very diverse. There is in­

creasing interest in polarization effects in nonlinear optics and spectroscopy as evidenced 

by the number of research publications and the numerous exciting results produced in 

material science, chemistry, biology, and physics. However, since this work is concerned 

with single mode fibers (fibers that support only one transverse mode), the discussion to 
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follow will present a short historical review of research crucial for the development and 

understanding of the subject of this thesis. 

Long before the advent of lasers, Wawilov and Lewshin in 1926 reported the observa­

tion of the first nonlinear optical effect of departure from the Beer-Lambert absorption 

law with light of high intensity. In 1950, twenty four years later, Wawilov suggested 

that nonlinear polarization effects should be seen in birefringence, dichroism and po­

larization rotatory power [13]. In 1964, Maker, Terhune and Savage demonstrated the 

self-interaction of a plane wave in a nonlinear isotropic medium and observed that for 

elliptically polarized light, the ' major axis of the ellipse rotates as a function of prop­

agation length and that a nonlinear cubic crystal can exhibit an induced birefringence 

proportional to the light intensity [24]. This work stimulated further study of other non­

linear polarization phenomena such as nonlinear optical activity which was first predicted 

and described by Akhmanov and Zharikov in 1967 [25]. In this paper, they indicated 

that in a dichoric, gyrotropic, isotropic, nonlinear medium, there takes place a rotation 

of an initially linearly polarized incident wave that is proportional to the intensity of 

the light. In this case, light initially linearly polarized will become elliptically polarized 

with ellipticity increasing with intensity. Several papers [13] have provided theoretical 

analyses of the wave picture and of the different mechanisms of this effect. Nonlinear 

optical activity has also been intensively studied experimentally [80]. All of these authors 

studied the polarization dynamics using a straightforward method of calculating how the 

electric field varies as the wave. propagates along the medium. In such an approach, an 

understanding of how. the polarization evolves as the beam propagates is not immedi­

ately obvious from the complex slowly varying electric field amplitude approximation. 

However, several other authors use an alternative approach of the dynamical equ.ation 

for Stokes parameters to describe the polarization changes of a wave propagating in a 

nonlinear medium. The use of Stokes parameters has an advantage of providing a rather 

straightforward analytical definition of different polarization f;ltates of light. Sala [26] and 

Gregori and Wabnitz [27] used Stokes parameters in studying the propagation of a plane 
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wave through a nonlinear medium in the presence of dc-field-induced birefringence. Ttat­

nik and Sipe also considered the polarization dynamics of a pulse propagating through 

an arbitrary nonlinear medium.using the full SO (3) covariance of the Stokes parameters 

[28]. 

Analysis on polarization effects of isotropic media was also extended to optical fibers. 

Winful obtained exact solutions for the intensity dependent polarization state of a. light 

wave in a birefringent optical fiber [29] and Daino et al analysed the evolution of the state 

of polarization along a nonlinear single-mode birefringent fiber using Stokes parameters 

and gave exact solutions by means of a Poincare sphere representation. Other effects 

such as polarization instabilities [8 - 11,30] and intensity discrimination in straight [12] 

and twisted [9,29] birefringent optical fibers have been reported. In 1986, the polar­

ization instability in a birefringent optical fiber was experimentally observed [10]. The 

nonlinear propagation of light pulse in optical fiber has been investigated both classically 

and quantum mechanically [31]. All of these studies have made immense contribution 

to the understanding of the concepts on polarization dynamics in materials of cubic 

nonlinearities. 

A short review of research on polarization phenomena in linear optics is presented .. " 
here for completeness. Two texts [15,17] from a number of specialized books [16,81] 

devoted to the description of light polarization in linear optics were referred to during 

tlllS investigation. However, since this work deals specifically with fibers, much of the 

reference materials used to establish the concepts and develop the principles emanated 

from review articles. The analytical approach used in this work is based mainly on the 

unified formalism for polarization optics developed by Brown and Bak in 1995. The for­

malism utilized the Stokes-Mueller matrix equation with the Lorentz group to provide a 

framework for understanding complicated polarization phenomena in optical fibers. The 

formalism was applied successfully to modeling deterministic polarization phenomena 

occuring in a twisted single-mode fiber sensor helically wound around a vibrating cylin­

drical shell [32]. The ~ormalism has also been applied to a nonuniform-core single mode 
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fiber [33). The elegance of this formalism stems from the method used to deduce the 

matrix form that mal(es the analytical approach more transparent in knowing the nature 

of the effects on the polarization vector. The formalism also incorporates other popular 

approaches (namely, the Jones calculus, the Mueller calculus, and the coherency matrix 

approach) into a single unified formalism. Several other papers [34 - 55) were helpful in 

the development of the analysis for this investigation. 

2.2 Concepts and Definitions 

Tllis section presents the concepts and underlying assumptions and defines the ter­

nlinologies used in thi's thesis to avoid ambiguity and confusion. 

The conventional single mode optical fibers may be considered as a cylindrical di­

electric waveguide that consists of an inner core of radius smaller than the surrounding 

cladding. Tllis geometry of the fiber allows a suitable use of the cylindrical coordinate 

system (r, ¢, z) for a simplified analysis of the propagating fields along the z axis which 

coincides with the fiber's axis of symmetry. The dielectric cylinder which models the fiber 

permits total internal reflection at the cylindrical boundary with the cladding resulting 

in a standing wave across the core and a decaying field in the cladding [56]. 

A birefringent single mode fiber is one that propagates a fundamantal mode with two 

distinct orthogonal polarizations at different speeds owing to the difference of refractive 

index for waves pola.rized along orthogonal directions, say x- and y- Cartesian coor­

dinates axes, respectively. If the birefringence is very high the fibers are referred to as 

polarization mainta.i~ng fibers· because they become capable of preserving the state of 

linear polarization over relatively long lengths. This polarization holding ability is de­

rived from the high intrinsic birefringence introduced by core a..c:;ymmetry or by applying 

an asymmetric stress distribution on the core. In the linlit of zero intrinsic birefringence, 

the dominant mode of a conventional single mode fiber is composed of two degenerate 
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eigenmodes with equal propagation velocities. However, the high intrinsic birefringence 

of polarization preserving fibers removes the degeneracy of the two orthogonal compo­

nents of the fundamental mode resulting in the two distinct eigenmodes with different 

propagation velocities. 

A waveguide mode is a coherent distribution of light that is localized in the vincinity 

of the core by total internal reflection and that propagates along the fiber with a well­

defined phase velocity" For a given waveguide mode, the electric and magnetic fields are 

given by 

E (r, rp, z, t) = E (r, rp) exp [i (kzz - wt)) (2.1) 

and 

H (r, rp, z, t) = H (r, rp) exp [i (kzz ~~t)) (2.2) 

where w is the radian frequency and kz is the axial phase constant. 

The fundamental mode supported by the fiber is called HEn or LPOl modes [56]. 

More discussions on this dominant mode of the fiber will be presented in a later section. 

The theory in this thesis, like in all electromagnetic field theory, begins with the use 

of Maxwell's equations to describe the fields propagating in the fiber. Generally, the 

number of variables in Maxwell's equations is greater than the nlUllber of equations, and 

therefore these equations alone are not sufficient for describing light propagation in a 

medilUll. There is a need for an additional relationship befween the optical response of 

the medium and the wave fields. This additional relationship accounts for the material 

properties ofthe medium and could have the general form P = P (E, H) . However, this 

relation reduces to the following functional for an optical fiber: 

P = P (E) (2.3) 

since the fiber is a nonmagnetic material. Such equations are referred to as constituitive 

equations. P is the polarization response of the fiber. The polarization is induced in 

the fiber and is responsible for coupling the light to the fiber. The polarization acts as a 
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source term in Maxwell's wave equations. Solutions of the wave equations are obtained 

in terms of the propagating fields . . 
Also, the form of Maxwell's equations further simplifies since the fiber is a dielectric. 

There are no excess charges and external currents flowing in the fiber. Thus, terms rep­

resenting the electric current and charge densities in Maxwell's equations are suppressed. 

The specific form of the constituitive equations for linear and nonlinear optical re­

sponse of the fiber are usually expressed in terms of susceptibility tensors. The suscepti­

bility tensors relate components of the induced polarization vector to various components 

of the optical field vectors and have symmetry properties of the medium. As a result, 
. " .1- . 

they restrict the combinations of vector components of the various optical fields that 

can be used effectively. In some situations, the tensor properties are important only in 

determining which combinations of vector component can be used for the optical fields 

and the induced polarizations, and beyond that the optical susceptibilities' can be treated 

as scalars. However, in this thesis which concern situations involving .nonlinear optical 

processes that change the polarization vector of the optical wave, the tensor properties 

play a central role in the nonlinear interaction. The magnitudes of the susceptibilities 

are usually determined by measurement and in some cases calculated using various the­

ories. They can also be estimated with varying degree of accuracy from products of 

the refractive indices at the various wavelengths involved [45]. Thus, the susceptibility 

characterizes and describes all the properties of the fiber and its knowledge permits one 

to know the linear and nonlinear response of the fiber. 

The relation in Eq.(2.3) indicates implicitly that the induced polarization P depends 

on space coordinates and on time. As such, Eq.(2.3) must obey the causality princi­

ple [13], That is, at any given moment, the value of P is determined by current and 

preceeding values of the propagating fields but not by future excitations .. It is this ret­

rospective relationship between P and E that leads to the"optical response dependence 

on the frequency of the wave. Similarly, the optical response is not' necessarily local 
. 

and therefore could depend on excitations not only at the point of observation but also 
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on the surrounding vicinity at earlier moments. Such nonlocality leads to the optical 

response dependence on the wave vector of the propagating light. This is the well-known 

phenomena of spatial dispersion. 

In addition, for intense fields, the relationship between P and E could be such that 

an increase in the magnitude of E results in a nonlinear change in P. In such cases, a 

nonlinear constituitive equation becomes appropriate for the description of these optical 

effects, which are ultimately a matter of primary concern in this thesis. 

It is worth noting that in linear optics, P ex E, whereas in nonlinear optics, P ex 

En, where {n E Z: n;::: 2} where Z is an integer. The upper index n, which is not 

necessarily an exponent since these are vector quantities, represent the order of the 

induced polarization with respect to the electric field strength. The higher order terms are 

assumed smaller than the preceeding lower order terms so that the polarization response 

can be expressed mathematically as a series 

(2.4) 

where w(n) is referred, to as the response function related to the local and nonlocal sus­

ceptibility tensors of the medium. w(1), W(2), and W(3) are respectively first, second, and 

third order response functions. to is the permittivity of free space and serves as the 

constant of proportionality. The first term on the right-hand side of Eq.(2.4) describes 

the linear optical response. 

2.2.1 Constituitive Equations: The Linear Case 

In tIllS thesis, the fiber is assumed to respond instantaneously to an applied field so 

that dispersion is not a critical factor in the analysis . Furthermore, with this assumption, 

the polarization response of the fiber can be written as a convolution of the response 
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function 

pP) (r, t) = L [drl [00 dt l wg) (r - rl; t - t l ) Ej (rb td 
] 

(2.5) 

In addition, the integral in Eq. (2.5) accounts for the nonlocality and ~ausality of the 

fiber linear response to the input field . w~y (r - rl; t - t l ) which is a tensor of rank two 

describes the optical response at point r and time t resulting from the electric field at a 

point rl at an earlier time t l . The optical property of the fiber like any other medium 

depends crucially on how the function w~Y (r - rl; t - t 1) depends on p = r - rl and 

T = t - t l . For example, if the response of the fiber at a particular location only depends 

on excitation at that location, the function wW (p, T) is nonzero only at P = 0, and the 

medium is said to have a local optical response. The indices i and j represent components 

of the fields in an arbitrary reference coordinate system. 

It is fuxther assumed that the light is strictly monochromatic. Then, with help of 

Fouxier Transform, the electromagnetic wave of frequency w can be written in terms of 

its spectral amplitude as E (w, r) and the corresponding optical response as p(l) (w , r) in 

frequency domain as 

E (r,t) = E (w, r) exp (-iwt) + C.c. (2.6) 

and 

p(l) (r ,t) = p{l) (w, r) exp (-iwt) + C.c. (2.7) 

so that Eq.(2.5) can be written as 

p';(I) (w , r) = L j dp l'" dTW~y (p, T) eiWT Ej (w, r - p) 
j v 0 

(2.8) 

The notation c.c. indicates complex conjugate. The electric field can be expanded in 

Taylor Series about r as follows 

[)E (w, r) [)2E (w, r) 
E(w, r-p)=E(w,r)+ [)(-P)+LL [) [) (PiPk)+'" (2.9) 

r i k Ti Tk 
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This expansion is necessary because lIJlY (r - rI; t - t I) will normally have a maximum at 

P = 0 that is when r = ri. The first term on the right-hand side of Eq.(2.9) is called the 

local approximation, the second is the first-order spatial dispersion approximation and 

the third are second-order spatial dispersion effects. In this work, second order effects 

will be neglected since the field amplitude is assumed to be a slowly varying function 

of r so that a;~t,.:) PiPk « aE~~,r) (p) . This approximation is suitable for the nonlinear 

consideration in this work since solitonic effects will not be considered. In expansion 2.9, 

i and k are dummy indices. 

After substituting .expansion (2.9) into Eq. (2.8) yields the following linear constitu­

itive equation 

1 1 '" (1) ~ (w,r) - 471" .L.Xij (w)Ej (w,r) 
J 

E2.10) 

~ "''''r(I) ( ) 8Ej (w,r) 
+4 .L..L. 'Jm W ):l 

71" j m urm 

where 

(2.11) 

is the material local susceptibility tensor and 

(2.12) 

is the material nonlocality susceptibility tensor. It is worth noting that the local suscep­

tibility can also be expressed in terms of the dielectric tensor as 

02.13) 

where Oij is the Kronecker delta symbol and Eij (w) is the material dielectric tensor. 

Henceforth, Einstein's summation convention for tensors, that is addition is done over 

repeated coordinate indices, will be used. Eq.(2.1O) can then be written in a condensed 
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form as follows 

p/ (w, r) = 4~ {X~Y (w) E j (w, r) + rUJ.. (w) V'mEj (w, r)} 

or, in time domain as 

pi (r, t) = ~ {x~Y (w) E j (r,t) + r~~J.. (w) V'mEj (r, t)} e-iwt + c.c. 
47r 

In equations (2.14) and (2.15), the symbol V' = a/arm is the gradient operator. 

(2.14) 

(2.15) 

An electromagnetic wave propagating with wave vector k has a spectral amplitude 

E (w, r) that depends harmonically on the coordinate r such that E (w, r) = A exp { ik . r}. 

Then Eq.(2.14) takes the form 

pI (w r) = ~ {X(l) (w) + ik r(l) (w)} A ·ei(k.r) 
l' 47r 1J · Tn 1Jm J (2.16) 

The above constituitive equation (2.16), will be used widely in this thesis·. 

2.2.2 Constituitive Equations: The Nonlinear Case 

The constituitive equations to describe nonlinear optical effects in a fiber are in terms 

of higher order expressions in the electric field strength of the propagating wave as indi­

cated in Eq.(2.4). When the principles of causality and nonlocality are accounted for in 

a mediwn, the following equations are obtained: 

(2.17) 

t '.: . 

16 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Similarly, the third-order optical response, cubic in the electric field strength is given by 

where the third order local and nonlocal susceptibility tensors are given by 

and 

Iv dPl Iv dP2 Iv dP3 Ier d71 1000 

d72 1000 

d73 } 

X W~]ll (PI' 71; P2, 72; P3, 73) exp i (Wp71 + Wq72 + Wr73) 
(2.24) 

-3 Iv dPIPln Iv dP2 Iv dP3 1000 

d71 Ier d72 1000 

d73 } 

XWml (PI' 71; P2, 72; P3, 73) expi (Wp71 + Wq72 + Wr73) 
(2.25) 

The forms of the constituitive equations dictate some restraints on the susceptibility 

tensors. In addition, symmetry conditions of the medium also impose severe restrictions 

on the susceptibility tensors. These restrictions often result in relatioIl;s between the 

susceptibility tensor components that can simplify the analysis of the optical effects of 

the medium under consideration. Knowledge of the symmetries aids in applying the 

constituitive relations correctly. It is desirable therefore, to identify the symmetries of 

the susceptibilities. 

2.2.3 Symmetry Conditions for Susceptibility Tensors 

General features of the optical response of a fiber can be analysed using the structure 

of the constituitive equations and the symmetry of the susceptibility tensors. This allows 

the symmetries of a medium such as an optical fiber to be related to the symmetries of 

the equation of motion describing the fields. 
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Symmetry occurs naturally because of regularity in nature. The conditions that a 

medium imposes on the observability of optical effects may be formulated as requirement 

on the optical susceptibility tensors. The lower the symmetry of a crystal, the wider 

the range of optical and nonlinear effects that can be observed. In a media with high 

symmetry, many optical effects are forbidden. Usually, the symmetry of a medium forces 

some elements of the susceptibility tensors to be zero and sets up relationships between 

others. The higher the symmetry of a medium, the smaller the number of nonzero 

elements and the more relationships there are between elements. 

Before proceeding further, it is important to indicate that Eq.(2.20) and Eq.(2.23) 

are the most general forms of relations between an optical excitation and the response 

functions which are written in terms of optical susceptibilities. Henceforth, considerations 

will be given to important cases that specify light propagation in a fiber. 

Reality Condition 

The electric fields that propagate along a fiber have intensities that are real and the 

induced polarization fields are also physically measurable quantities. Thus, this imposes 

the following symmetry restrictions known as the reality condition or Hermiticity on the 

susceptibility tensors: 

(2.26) 

and 

[r
eI) ( )]. _ (1) ( ) 
ijm W - rijm -W (2.27) 

for the first order local and nonlocallinear responses. The relation which exist for second 

order local and nonlocal nonlinear responses are 

(2.28) 
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and 

(2.29) 

and for the third order local and nonlocal nonlinear susceptibilities 

(2.30a) 

and 

(2.31) 

The asterick symbol (*) in the above expressions indicates complex conjugation. Thus, 

the reality condition may be reasoned as follows: that simultaneous reversal of the signs 

of frequency arguments is equivalent to complex conjugation of the susceptibility tensors. 

It should also be observed that the reality condition permits negative frequencies. 

Inversion Symmetry 

An inversion is simply a reflection about the origin of a reference coordinate system. 

Polar vectors change sign upon inversion, that is, E = - E, P = - P, and r = - r. Tensors 

transform in the same manner as product of the coordinates. For example, X~~y upon 

inversion becomes xi~x)(-x)(-y) = -x~~y. A typical exani.pl~ for X~~zx upon inversion 

is xi~x)(-y)(-z)(-x) = x~~zx· Thus X~~zx is invariant under inversion. If a material is 

invariant under inversion symmetry it is called centrosymmetric. FUrthermore, it can 

be shown that even-order susceptibility tensors are zero in centrosymmetric materials. 

Fused Si02 which is used to make optical fibers is a centrosymmetric crystal. Therefore, 

second order susceptibilities are henceforth neglected in this work. 

20 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Intrinsic Permutation Symmetry 

This symmetry condition requires that simultaneous permutation of frequencies in the 

argument of the local susceptibility should not alter the optical response. This can be 

deduced from Eq.(2.23). The local response must be clearly independent of the order in 

which the spectral components E j (wp, r), Ek (Wq, r) and El (wr, r) appear in the equa­

tion. Therefore, the local third-order susceptibility does not change under a simultaneous 

permutation of the Cartesian indices j, k, and l. In other words, the indices except the 

first, can be interchanged if the corresponding frequencies are also interchanged. For 

example, 

- Xml(Wp+Wq+Wr;Wq,Wp,Wr) (2.32) 

- XWk (wp + Wq + Wr; Wr, wp, wq) 

- Xmk (wp + Wq + Wr; wp, Wr, wq) 

If nonlocality is considered, the optical response depends not only on the spectral com­

ponents of the fields but also on their gradients. The spectral component that is acted 

on by the gradient operator is distinguishable from other fields and is consequently not 

permutable with the other sp~ctral components of the field. Therefore, the nonlocal 

contribution to the optical response is independent only of the order 0f the spectral 

components of the electric field having indices k and l in Eq.(2.23). Thus, 

(2.33) 

It is important to note that this symmetry condition is not appropriate for first order 

susceptibility tensors because they depend on only one frequency. 
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Full Permutation Symmetry 

The full permutation symmetry is an additional frequency permutation relation which 

may be deduced from energy conservation laws. It is applicable to absorption-less me­

dia in which the overall loss of energy of the propagating waves is negligible at optical 

frequencies far from resonance. In this case, one can interchange all the indices of the 

susceptibility tensors if the corresponding frequencies are also interchanged. 

In order to fully understand the full permutation relation for xU> (w), it is important 

at tIns stage to introduce some of its properties. x~Y (w) is a symmetric tensor of rank 

two and thus have nine elements which can be represented by a 3 x 3 matrix. In general, 

xU) (w) is complex with its imaginary part related to the absorption. If there is no ab­

sorption, then x~y (w) has real components implying that the matrix must be Hermitian. 

Therefore, for the firs~ order local susceptibility, the following permutation relations hold 

(2.34) 

In the case of the first order nonlocal susceptibility rU1n (w), it is an antisymmetric tensor 

also of ranl< two with imaginary part related to absorption. Hence, 

(1) () [ (1) ( )] * r ijm W = - r jim W (2.35) 

The absence of absorption imposes the following restraints on the cubic susceptibilities 

(2.36) 
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and 

(2.37) 

- 0 

Kleinman's Symmetry 

This symmetry requirement holds for media that are dispersionless and lossless at all 

frequencies. In this case, one can interchange all indices without regard to the frequencies . 

That is, permutation of susceptibility indices are allowed without regard to the order 

of the frequencies. This implies that the susceptibility is independent of frequencies. 

This is possible under low frequency excitation, when the system is assumed to respond 

instantaneously to the applied field. For example, 

(2.38) 

All of the above arguments have shown that the medium symmetry imposes 3: very 

serious restraint on the symmetry of the optical response. 
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2.2.4 Constituitive Equations for Optical Effects in a Single 

Mode Fiber 

Suppose an electromagnetic wave of frequency w propagates along a single mode fiber. 

Then, the optical response of the fiber can be expressed in terms of first and third order 

susceptibilities given in equations (2.10) and (2.23). It has already been established that 

a fiber posseses inversion symmetry and thus second order susceptibilities are negligible. 

Accordingly, since negative frequencies are admitted in fre,quency domain, the electric 

field associated with the light wave at the frequency w has two complex-conjugated 

spectral components related by the reality condition E (w, r) = [E (-w, r)]*. This implies 

that the summation in Eq.(2.23) is taken over wp = ±w, Wq = ±w and Wr = ±w. As 

a result the sum in Eq.(2.23) will have eight terms and the polarization response has 

spectral components at frequencies ±3w and ±w. Thus 

Xml (3w ;w, w,w) Ej (w, r) Ek (w, r) El (w, r) 

+r~Jklm (3w; w,w, w) Ek (w, r) El (w, r) 'VmEj (w, r) 

+3Xml (w; w,w, -w) Ej (w, r) E'k (~,~) Et (w, r) 

+2rmlm (w; w,w, -w) Ek (w, r) Et (w, r) 'VmEj (w, r) 

+rmlm (w; -w,w,w) Ek (w,r) El (w, r) 'VmEj (w, r) 

(2.39) 

Clea.rly, the light wave at frequency w generates in the fiber an optical response oscillating 

at the frequency of the third optical harmonic and at the frequency of the incident wave. 

From Eq.(2.39), the equation f9r the spectral component of the optical response at the 

operating frequency w can be written as 
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p~3)(w,r) - +3Xml (w;w,w,-w)Ej (w,r) Edw,r) Et(w,r) 

+2r~]klm (w; w,.w, -w) Ek (w, r) Et (w, r) 'ilmEj (w, r) 

+rmlm (W; -W, W, W) Ek (W, r) El (W, r) 'ilmEj (w, r) 

(2.40) 

To obtain equations (2.39) and (2.40), intrinsic permutation relations were applied. The 

constituitive equation (2.40) describes the optical response of the fiber at the incident 

frequency when the incident electric field has an arbitrary coorclinate dependence. In 

particular, this equation is suitable when there are several light waves of the same fre­

quency propagating in different clirections. However, this thesis considers a single light 

wave of frequency w propagating along the axis of the fiber. Therefore, in this case, the 

spectral fields which depend harmonically on the coordinate z can be simply expressed 

as E(w , z) = Aexp(ikzz) so that Eq.(2.40) can be rewritten as 

[ 

(3) ( . ) . (3) ( . ) 1 (3) _ 3Xijkl w,w,w,-w +22kzrijklz w,w,w,-w . * ikzz 
P i (w , r) - (3) . AJAkAle 

-rilkjz (w, -w,w,w) 
(2.41) 

In Eq.(2.41) , the optical response depends on Aj and A k , which are symmetrical with 

respect to permutation of the indices j and k. Therefore, only the part of the tensor 

r~]L (w;w,w, -w) which is symmetrical with respect to the interchange of j and ~ will 

contribute to the second term on the right hand side of Eq.(2.41). Thus, the valid 

constituitive equation (2.41) may be rewritten in terms of the spectral component of the 

optical response as follows 

P(3) ( ) _ [3 (3) ( . ) + 2'k r(3) ( . )] A A A* ikzz ;. w,r - Xijkl w,w,w,-w Z z ijklz w,w,w,-w j k Ie (2.42) 
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2.3 Characteristics of Single Mode Fibers 

Single-mode optical-fiber cables have very splendid characteristics such as wide band­

width that is possible for multiplexing in an electrical domain, the possibility of wave­

length division mutiplexing, and a very low loss profile. Other characteristics such as 

flexibility, strength or durability, light weight, and radiation hardness are key components 

in application requirement for fibers. Many network topologies have been developed for 

optical transmission because of the suitability of these characteristics. This section gives 

a brief review of some of the fibers characteristics relevant to this work. 

2.3.1 Refractive Index Profile 

A single mode optical fiber is formed through a process called modified chemical 

vapor deposition (MCVD) as a glass thread usually made of silica doped with desired 

combination of germanium and fluorine [63]. There exists other fabrication methods such 

as outside vapor deposition (OVD) [64], and vapor-phase axial deposition (VAD) [65]. 

The inner layer of the fiber which is referred to as the core has an index of refraction 

that is larger than that of the surrounding cladding. This configuration is necessary to 

allow for the propagating wave to be kept within a confined region of the fiber. The 

cladding is normally quite thick so that fields are attenuated rapidly as the distance from 

the core-cladding interface increases (except at cutoff). 

A key quantity used in describing one of the properties of a single mode fiber is the 

parameter V given in terms of the core radius a, core index '17,1 and cladding index ''17,2 as 

V = kaJ'17,i - '17,~ (2.43) 

26 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



where k = w / c = 27r / A is the propagation constant of the input optical field in vacuum. 

Thus, V is proportional to the operating frequency if the indices are not significantly 

frequency dependent. V is also ,proportional to the size of the core. The remaining factor 

in Eq.(2.43), which ~easures the difference between the refractive indices of core and 

cladding is called the numerical aperture and abbreviated N A. 

(2.44) 

The pa.rameter V determines which modes can propagate along the fiber a.nd how tightly 

bound they are to the core. A reasonable number of modes can propagate if V is reason­

ably small. For example, the dominant mode operation of a single mode fiber requires 

that V < 2.4 [56]. Thus, to maintain a reasonably small V, the numerical aperture must 

be very small also and this requires that the core and cladding index of refraction be 

quite close to each other. Therefore, the core and cladding glasses must be dissimilar, 

yet have nearly the same refractive indices n1 and 71.2. In practice, this is achieved by 

introducing different concentrations of dopants for the same original type of glass to 

achieve the required difference in indices. 

Since 71.1 ~ 71.2, it is convenient to define the relative difference 

(2.45) 

Then the quantity that determines the numerical aperture can be approximated by 

(2.46) 

so that provided D. is small, Eq.(2.43) can be rewritten as 

(2.47) 

Since V depends on the relative magnitude of the core radius and on, the operating 
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wavelength of the field, its value could still remain relatively large because a typical fiber 

has core diameter that are many wavelengths in diameters. For example, a fiber designed 

for operation at A = 0.8JLm with core diameter of 2a = 50JLm will have the parameter 

V ~ 200N A. Even when the core index is about ~% greater than the cladding index, 

that is 6. = 0.005, the parameter V ~ 30 (which is still fairly large) for a fiber with 

refractive index 1.5. When V exceeds 2.4048, more than one mode can propagate and 

sh3J:e the available power. Therefore, to achieve single-mode operation, the core diameter 

has to be of the order of a few micrometers so that the product ka in Eq.(2.47) becomes 

reasonably small. Such fibers have now been developed with core radius made small 

enough to maintain V < 2.4 even for reasonable differences of refractive indices of the 

core and cladding. For example, a single mode fiber designed for operat"ion at A = 1.3JLm 

may have a core diameter of 8JLm, while the cladding diameter, which should be at least 

an order of magnitude thicker than the core, may be the standard 125JLm. It may have a 

numerical aperture of about NA = 0.115, so that it remains single-mode down to about . ' ;: . 
A = 7r (2ajV) N A = 1.2JLm. 

Evidently, fibers in general can allow the propagation of many guided modes even 

when the core and cladding have refractive indices that are quite close to each other. 

These modes which have spatial distributions that are solutions of the two-dimensional 

Helmholtz equation 

(2.48) 

also satisfies appropriate boundary conditions at the core and cladding interface. In 

addition, a fiber can support a continuum of unguided radia~iQn modes. These radiation 

modes do not play an important role in the discussion on nonlinear effects as long as 

the fiber is assumed to have a perfect cylindrical geometry. However, radiation n;odes 

are crucial in problems involving the transfer of power between bounded and radiation 

modes. In Eq.(2.48), Ez is the axial component of the electric field amplitude and 

(2.49) 
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where ,8 is the axial phase constant in the fiber and n is the refractive index for a fiber 

of core radius r = a given by 

{ 
nl r < a } 

n= n2 r>a 
(2.50) 

Eq.(2.49) is usually referred to as a dispersion relation. It should be noted that. the 

same relation as in Eq. (2.48) holds for the magnetic component of the propagating wave. 

Because of the cylindrical symmetry of the fiber it is convenient to express the wave 

equation (2.48) in cylindrical coordinates to obtain second-order nonconstant-coefficient 

ordinary differential equation whose solutions are the celebrated Bessel functions. The 

Bessel function is oscillatory and vanishes at infinitely many discreets points f. These 

nulls genera.lly are not evenly spaced like the nulls of the sinusoids but are evenly spaced 

by 7r for large arguments. 

It has already been shown above in. this section that a single mode fiber has core 

index of refraction nl.that should slightly exceed that for the cladding n2, to get bound 

modes. The core being dense translates mathematically into the fact that f3 < knl and 

that the cladding is less dense is expressed by f3 > kn2 [56] . Thus, the .phase constant f3 

should take some value kn2 < f3 < knl so that rapidly decaying fields may be expected 

in the cladding but not in the core. 

Therefore, it is reasonable to define the tenns p and q: since f3 < knl in the core, the 

difference of squares of these parameters be p2 while, for the cladding, since f3 > kn2' the 

difference is to be _q2 so that 

(2.51) 

After eliminating f3 from Eq.(2.51), it can be shown that 

(2.52) 
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2.3.2 Fiber Modes 

The waves that propagate along the fiber can be entirely expressed in terms of the 

axial fields Ez and Hz but the :waves do not separate completely into transverse electric 

and magnetic (TM and TE) modes as they do for conducting waveguides or dielectric 

slab waveguides. This is due mainly to the nature of the fiber boundary condition and 

to the curvature of the boundary. The curvature of the core-cladding interface, together 

with the field continuity condition at the interface has the effect of mixing the transverse 

modes into what are referred to as hybrid modes. These hybrid modes have electric and 

magnetic fields both of which have axial components. Both axial fields are needed to 

satisfy all the conditions at the core-caldding interface. 

Because of the circular geometry, the standing wave in the core is not sinusoidal but 

has the form of an oscillitory Bessel function J e (pa) and the decaying fields in the cladding 

are not exponential but follow a modified Bessel function , ~e (qa) . Applying boundary 

condition that the tangential components of E and H must be continuous across the core­

cladding interface requires that axial and transverse components are the same when r = a 

is approached from inside or outside the core. The equality of these field components 

at 7' = a leads to a characteristic equation whose solutions determine the propagation 

constant f3 for the fiber modes. The characteristic equation which is well known in the 

literature [56] is expressed in terms of Je (pa), Ke (pa) and their derivatives. It has in 

general several solutions for each integer value of l. When graphed, the characteristic 

equation has a curve with many branches because Je (pa) is oscillatory. Also, Eq.(2.52) 
~ ,. I 

. ' 

plots simply as a circle of radius V which is proportional tCI the operating frequency since 

the refractive indices are considered to be frequency independent. As such, each branch 

of a plot of the characteristic equation corresponds to a possible mode of propagation 

attainable if the frequency is high enough for an intersection with the circle of radius V 
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to occur. To plot the characteristic equation conveniently, recursion relations are used 

to eliminate the derivative of the Bessel functions from the characteristic equation. The 

intersection of the branches with a typical circle of radius r = V gives the number of 

modes propagating in the fiber. 

It is customa.ry to express the solution to the characteristic equation by f3ern where 

both e and m take up integer values. Each eigenvalue f3em corresponds to one mode 

which a fiber can support. It is well known [56] that there are two types of fiber modes, 

designated as H Eem and EHem. When e = 0, these modes are analogous to the transverse 

electric (TE) and transverse magnetic (TM) fields of planar waveguides since the axial 

component of the electric field or magnetic field vanishes. However, when e > 0, the fiber 

modes a.re hybrid and all six components of the electromagnetic field are nonzero. 

Clearly, the number of modes supported by a fiber at a given wavel~ngth depends 

on the design parameters, namely the core radius and the core-cladding index difference. 

Another important parameter for each mode is its cut-off frequency' below which no 

real value of the phase constant 13 can be found. The waveguide dispersion relation of 

Eq.(2.49) can be rewritten as 

(2.53) 

indicating that the operating frequecy W must exceed the cut-off frequency We in order 

for the mode to propagate with phase constant 13. The phase velocity at frequency W 

above cut-off frequency is v = w/f3 = c/n. To obtain Eq.(2.53), the important relation 

I = we/v was used. Below cut-off frequency, W < We and 13 is no longer real since 132 

becomes negative. This corresponds to oscillation (at frequency w) wit.hout propagation 

but with attenuation in the direction away from the source. The wave gets weaker as 

the distance from the· source increases and it is then said to be an evane~cent mode, or 

to be "cut off" when the frequency is below We· The cut-off frequency is obtained by 

the condition q = O. The value of p when q = 0 for a given mode determines the cut-off 

frequency. Thus, the cut-off points correspond to pa at qa = 0 and from these the cut-off 

frequency for each mode is pa = V at cut-off. This is obtained using Eq.(2.52) when 

31 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



qa --+ o. As operating frequency increases, more and more intersections with bra~ches 

of the characteristic curve are possible. Those branches that lie above the level pa = V 

can have no intersection with the circle of radius V and are thus cut off. For e = I, 

however, there is one branch that reaches down to the origin of the qa-pa plane, and 

there is intersection with the circle no matter how small its radius. This branch thus has 

no cut-off frequency and is designated as the HEll mode. All other modes have cut-off 

frequency. Two branches emanate from each nonzero null of the J 1 (pa) Bessel function 

on the pa-axis; the corresponding modes are denoted HElm and EHlm. For e > I, the 

branches for the H Eem and EHem modes emanate from separate cut-off points on the 

pa-axis (the axis for qa = 0, at cut-off). For e = 0, the exceptional transverse modes exist 

for the mth branch designated as TEom and TMom. Therefore for spiraling waves, e =f 0, 

the modes are hybrid, with both axial field components Ez and Hz nonzero, designated 

by H E em and EHem. The lowest value of pa that permits transverse modes to propagate 

is pa = J01 = 2.4048 and V must exceed this value for these modes to be above cut-off 

frequency. The procedure to determine the different values of V at which different modes 

reach cut-off is rather complicated and have been treated in many texts [56] . . 

Since this thesis is mainly interested in single-mode fibers, the discussion is limited 

to the cut-off condition that allows the fiber to support only one mode. A single mode 

fiber supports only the HEll mode that is also referred to as the fundamental mode. 

All other modes are "cut off" if the parameter V < v", where v" is the smallest solution 

of Jo (v,,) = 0 or v" = 2.405. The actual value of Vc is a critical design parameter and 

practical fibers are designed such that V is close to v". 

The fundamental mode H Eu with corresponding field distribution ~ (r, e, z, t) has 

three nonzero components expressed in polar coordinates as En Eo, E z or in cartesian 
" 

coordinates as Ex, Ey, and E z . Among these, either Ex or Ey dominates. Therefore, 
, 

the fundamental fiber mode is linearly polarized in either x or y direction depending 

on which of Ex or Ey dominates. In this respect, it can be concluded that a single 

mode fiber is strictly not single mode because it can support two modes of orthogonal 
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polarizations. The notation LPmn is sometimes used to denote lineraly.polarized modes. 

In tllis notation, the dominant fiber mode HEll corresponds to LP01 ' 

Under ideal conditions, the two orthogonally polarized modes of a single-mode fiber 

have the same propagation constant and are therefore degenerate. In a real fiber, however, 

irregularities such as geometrical asymmetries in the core diameter along the length of the 

fiber break the degeneracy thereby resulting in the random mixing of the two polarization 

components causing the polarization of the incident light to scramble as it propagates 

down the fiber. 

2.3.3 Fiber Losses 

Among the transmission characteristics of optical fiber, the most important is the 

attenuation of the power transmitted by the fiber [57]. Fiber loss depends on the wave­

length of the light. Fig.(2.1) shows the loss spectrum of a single mode fiber. The fiber 

exhibits a minimum loss of about O.2dE / km near 1.55f-Lm. The loss is considerably higher 

at shorter wavelengths reaclling a level of 1 - lOdE / km in the visible regions. 

The bound modes of a fiber propagate with attenuation due to losses. The attenuation 

a.rises from intrinsic material properties and from waveguide properties. In high-silica 

glasses, which are widely used to manufacture low-loss single mode fibers, the attenuation 

sources are due to absorption and Rayleigh scattering. The absorption loss is composed 

mainly of ultraviolet (UV) and infrared ' (I R) absorption tails of pure silica. The basic 

absorption is due to the electronic absorption band edge of the silica host materials at 

ultraviolet wavelength region and the molecular absorption.1~ge of the silica host and its 

dopant at the infrared region. 

In addition, impurity ions can also contribute to the absorption bands. The usual 

impurities that lead to absorption effects in the wavelength range of interest are the 
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Figure 2-1: Measured loss profile of a single-mode fiber. Dashed cure represents the intrin­
sic loss profile resulting from Rayleigh scattering and absorption in pure silica (Ref.63). 

sition metal ions (Fe , Cu, Co, Mn) and water in the form of the hydroxly ion OH. The 

concentration of transition meta.ls ions has been reduce(~ to a negligibie amount during 

the past decade. However, water thus remains practically the must impcrtant impurity 

affecting fiber losses. The ion has a fundamental vibrational absorption peale cClli;ered 

at 2.73J.Lm which presents overtones responsible for the dominant peale in Fig. (2.1)'near 

the 1.37 J.Lm and a smaller peak near the 1. 23J.Lm. During the fabrication process, special 

precautions are taken through a very careful drying process to ensure an OH-impurity 

level of less than one part in hundred million. 

The loss effects of dopants such as Ge02, P205, F, and B20 3 which are incorporated 

into the silica to decrease the manufacturing temperatlln: and 1,0 ~lOdify the refractive 

index profile have been studied. Early study has shown(57. 58) that Ge02 has liW.l':. effect 

on the I R absorption tail and more recently that care must be taken with fiber dld.wing; 

temperature if a high Ge02 cont"mt is used. The }Jr~ence of P20 5 brings absorption Pp.ak 

a.t 3.8J.lxn anel 3.7 J.Lm. It. is "lso. known that in obta.ining ultra-low losses at A ~ 1.3J.Lm 

requires that B20 3 not be present at radial distances smaller than five time::; the core 
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radius, ane! P20S should be kept out of the core. 

The Rayleigh scattering loss which is due to microscopic inhomogeneities of material 

refractive index, varies as A -4 and is dominant at short wavelengths. Rayleigh scattering 

is a fundamental loss mechanism arising from random density fluctuations frozen into the 

fusee! silica during manufacturing. Local fluctuations in the refractive index scatter the 

light in all directions. This loss is intrinsic to the fiber and sets the ultimate limit on the 

fiber loss. The intrinsic loss level is shown by a dashed line in Fig.(2-1). At A = 1.55p.m, 

the fiber loss is dominanted by Rayleigh scattering. 

Other factors that. may contribute to losses due to fiber structure arise from power 

lea.kage, bending losses and boundary losses (scattering at the core-cladding boundary) . .. ' 
The total loss of a fiber link in optical communication systems also includes splice loss 

that occurs at joints between fibers. 

A measure of power loss during transmission of an optical signal inside the fiber can 

be expressed as 

P T = Po exp (-aL) (2.54) 

where a is the attenuation constant commonly referred to as fiber loss. Po is the initial 

power into the fiber of length Land PT is the transmitted power. The fiber loss is 

customarily expressed in units of dB / km by using the relatioll [6] 

10 (PT ) adB = -r; log Po = 4.343a (2.55) 

where the coefficient of a results from conversion of the logarithm of base 10 to the 

natural logarithm. 
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2.3.4 Dispersion in Single Mode Fibers 

Fields propagating along an optical fiber are not only attenuated but also undergo 

some degTee of distortion. Different frequency components in the spectrum of the signal 

are transmitted at different speeds and therefore arrive at the output at different times. 

The property of the fiber that makes different frequencies travel at different speeds is its 

dispersion 

There are two major sources of dispersion in optical fibers. One is an inherent property 

of the glass and the other relates to the variety of waves that can travel along the fiber, 

each with its own speed of propagation. The former source of distortion can be mitigated 

by choosing a special operating frequency at which the inherent dispersion of the glass 

material is eliminated or minimized. The other cause for dispersive signal distortion can 

be dealt with by suitable design parameter. 

An information-bearing signal is comprised of an entire spectrum of frequencies. How 

the spectrum is affected when the signal is conveyed is very important. If a fiber con­

stituitive parameters /1-, E, and n are frequency dependent then the fiber is said ~o be 

dispersive. However, for narrow-band signals (i.e. slow modulation of a high-frequency 

carrier), the spectrum is confined to a relatively narrow range of frequencies and the 

information-bearing signals do not get distorted in a dispersive medium since they are 

transmitted at a speed different from that of any frequency component. 

A practical light source is not precisely monochromatic and thus does not provide 

a pure single carrier frequency w as it propagtes along a media. When the light wave 

interacts with the bound electrons of a dielectric such as ~~ optical fiber, the response 

of the fiber in general depends on the optical frequency. This property is referred to as 

chromatic dispersion and is manifested through the frequency dependence of the refrac­

tive index n (w) and results in a: spread of the propagating pulse. The origin of chromatic 

dispersion is related to the characteristic resonance frequencies at which a medium ab-
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2.3.4 Dispersion in Single Mode Fibers 

Fields propagating along an optical fiber are not only attenuated ·but also undergo 

some degree of distortion. Different frequency components in the spectrum of the signal 

are transmitted at different speeds and therefore arrive at the output at different times. 

The property of the fiber that makes different frequencies travel at different speeds is its 

dispersion 

There are two major sources of dispersion in optical fibers. One is an inherent property 

of the glass and the other relates to the variety of waves that can travel along the fiber, 

each with its own speed of propagation. The former source of distortion can be mitigated 

by choosing a special operating frequency at which the inherent dispersion of the glass 

material is eliminated or minimized. The other cause for dispersive signal distortion can 

be dealt with by suitable desi~ parameter. 

An information-bearing signal is comprised of an entire spectrum of frequencies. How 

the spectrum is affected when the signal is conveyed is very important. If a fiber con­

stituitive parameters /-L, E, and n are frequency dependent then the fiber is said ~o be 

dispersive. However, for narrow-band signals (i.e. slow modulation of a high-frequency 

carrier), the spectrum is confined to a relatively narrow range of frequencies and the 

informa.tion-bearing signals do not get distorted in a dispersive medium since they are 

transmitted at a speed different from that of any frequency component. 

A practical light source is not precisely monochromatic and thus does not provide 

a pme single carrier frequency w as it propagtes along a media. When the light wave 

interacts with the bound electrons of a dielectric such as an optical fiber, the response 
1\ ' . 

of the fiber in general depends on the optical frequency. This property is referred to as 

chromatic dispersion and is manifested through the frequency dependence of the refrac­

tive index n (w) and results in a: spread of the propagating pulse. The origin of chromatic 

dispersion is related to the characteristic resonance frequencies at which a medium ab-
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sorbs the electromagnetic radiation through oscillations of bound electrons. Even when 

nonlinear effects are not important, dispersion-induced pulse broadening can be detri­

mental for optical communication systems. In the nonlinear regime, the combination of 

dispersion and nonlinearity can result in the generation of special kinds of waves known 

as solitons that can propagate undistorted over long lengths of fiber. 

The effects of fiber dispersion can be accounted for by expressing the propagation 

constant k in a Taylor series expansion about the center frequency Wo as follows: 

where k' is related to the group velocity of the pulse envelope and k" is the chromatic 

dispersion term responsible for pulse broadening. The primes indicate derivative with 

respect to w. In silica glass, k" vanishes at a wavelength ~fabout 1.3/Lm and becomes 

negative for longer wavelength. This wavelength at which k" = 0 is referred to as the 

zero-dispersion wavelength. However, it should be noted that operation at the zero­

dispersion wavelength requires consideration of higher-order dispersive effects which can 

distort optical pulses both in the linear and nonlinear regimes [6). In actual fibers, the 

zero-dispersion wavelength is shifted towards longer wavelengths because of the presence 

of dopants and because of fiber. design parameters such as core radius and core-cladding 

index difference. This feature can be used to shift the zero-dispersion wavelength to the 

vicinity of 1.5/Lm where the fiber loss is a minimum. Such dispersion-shifted fibers [66) 

have applications in optical communications systems and are also useful for the ~tudy 

of many nonlinear effects whenever an experiment requires tailoring of the dispersion 

parameter. 

. 1 ' ., , 
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2.4 Propagation in Single Mode Fibers - Coupled 

Mode Theory 

The evolution of the fields along a fiber is analyzed using coupled-mode theory [39] . 

In a real single mode fiber, imperfections like bending, twisting, and squeezing all of 

which induce stress in the fiber and deformation in the core geometry would cause a 

split in the degeneracy of the phase velocity of the two modes. The two guided modes 

which contribute to this evolution are coupled due to the anisotropies resulting from 

these perturbations and imperfections which may be introduced either intentionally or 

randomly during the fabrication process. The effects of coupling are characterized by 

coupling coefficients which can. be deduced from the details of the imperfections on the 

fiber. 

Coupled-mode theory is a powerful method used to study changes in the propagation 

of light caused by perturbations of geometry or material properties. In this formalism, 

dielectric tensors represent the perturbations that change the polarization properties of 

the single mode fiber. The theory starts with the derivation of the coupled wave equations 

in terms of modes of an ideal waveguide. In this case, a "natural" frame has to be used 

to represent the basic modes of the unperturbed fiber and the dielectric tensor of the 

perturbation. Tang has shown [54] that there exists a "natural" frame in an unperturbed 

(isotropic) wave guide for an arbitrarily curved line in space, for which the solutions of 

the wave equation become orthogonal. This approach results ~n a simple expression for 
:" .. . 

the coupling coefficients. The exact coupled mode theory for a real fiber is then applied 

to the problem of coupling between the simplified waveguide modes. 

The coupled wave .equations when integrated yield solutions describing the evolution 

of the transverse mode amplitudes. This evolution can be represented by a variety of 

graphic methods. Two useful representations are the Poincare sphere [17,67) and the 

phase plane [68,69]. In particular, the Poincare sphere representation provides a rurect 

geometrical description of the evolution of polarization along a single mode fiber. The 
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birefringence effects on the fiber can be shown clearly from illustrations on the sphere. 

The phase plane representation also shows an evolution of the polarization state in a 

birefringent fiber 

In subsequent chapters, the coupled mode theory is used to analyse the fields in a 

single mode fiber that is subjected to linear and nonlinear perturbative eti'ects resulting 

from internal and external sources. 

,: , . , 

. : ~ ' . 

,I ; 
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Chapter 3 

POLARIZATION PHENOMENA 

IN SINGLE MODE OPTICAL 

FIBERS 

3.1 Definition and Evolution of Polarization 

Christian Huygen was the first to suggest that light was not a scalar quantity [15] and 

that the spatio-temporal fields of electromagnetic waves are vectors. The vectorial nature 

of light is called its polarization. Light consists of plane electromagnetic wave with 

their electric and magnetic field vectors perpendicular to the direction of propagation. 

If the direction of propagation is chosen to be the z-axis of a right-handed Cartesian 

coordinate frame, the optical field in free space is described by transverse componehts of 

its amplitudes and arbitrary phases. 

Such a field can be considered a wave forming a narrow spectral band around the 
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central frequency w expressed as 

Ex,y (z, t) = Ax,y (z, t) ei(kz-wt) + C.c. (3.1) 

The subscripts x and y refer to the field components in the X and Y directions. Ex and Ey 

are referred to as polarized or polarization components of the optical field. Here A is the 

wave amplitude and k is the wave number. Such a wave represents a plane wave because 

its wavefront is seen as a plane to an observer facing the optical source; the vector 

E oscillates in the XY plane perpendicular to the direction of propagat.ion. Equation 

(3.1) suggests that anisotropy along the direction of propagation is small so that the 

wave remains generally transverse. The anisotropy results in different evolution rates for 

Ax (z, t) and Ay (z, t) with propagation distance z. This difference in the evolution rates 

of the field amplitudes results in a change in the light polarization state. It is assumed 

that for a wave with narrow spectral band, the amplitude changes insignificantly over 

the period of the wave [13] 

aAx,y (z, t) IA ( )1 at «w x,y z,t (3.2) 

As the field propagates, the components Ex (z, t) and Ey (z,·t) give rise to a resultant 

vector as this vector describes a locus of points in space over the distance of propagation. 

If Ex and Ey oscillate in p~ase, so that the amplitude Ax (z, t) = ex Ay (z, t) with ex 

being a real constant,' Eq.(3.1) represents the electric field of a linearly polarized light. 

An observer facing the source sees the oscillating vector tracing out a straight line in 

the XY plane. Thus, it is called linearly polarized. The wave vector k and the vec~or E 

are contained in a plane called the plane of polarization. If Ay (z, t) = 0, the E vector 

oscillates along the X direction and is referred to as linearly polarized on axis. Also, if 

Ax (z, t) = 0, the wave will oscillate along the Y directi<:m ,anq. is referred to as linearly 

polarized off axis. For the case where ex is a complex number, there is a phase shift 

between Ex and Ey and the wave is said to have elliptical polarization. In this case, 
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an observer facing the wave source sees the end of the vector E tracing an ellipse" as it 

propagates. Light is considered circularly polarized when a = ±i and an observer sees 

the vector E trace out a circle. It is worth noting that linearly and circularly polarized 

light are specific cases of elliptical polarization. Circularly polarized light possess a sense 

of direction known as left-handed or right-handed. If Ax (z, t) = i Ay (z, t), the wave 

is said to be left-handed circularly polarized (LCP) and an observer looking into the 

direction from which the light is advancing sees the end of the electric field vector trace 

out a circle in a counterclockwise direction. Furthermore, if Ax (z, t) = -i Ay (z, t), the 

wave is right-handed circularly polarized (Rep) and an observer will see the end of the 

field vector trace out a circle in.a clockwise direction. Right-handed elliptically polarized 

(REP) and left-handed elliptically (LEP) waves can be defined in a similar fashion. 

The evolution of the polarization along single mode optical fibers under the influence 

of perturbations is next considered. The perturbations may be inherent resulting from 

imperfections and geometrical asymmeteries of the fiber. External perturbations such as 

strains, twists and bends also lead to random variation in the polarization of the fields in 

the fiber. It is well known that under ideal conditions of per~ect cylindrical geometry and 

isotropy, the fundamental fiber mode (HEn) is doubly degenerate so that a mode excited 

with its polarization in one direction will not couple to the mode with the orthogonal 

polarization state. Thus, even a single mode fiber is not truly single mode since it 

can support two degenerate modes that are dominantly polarized in two orthogonal 

directions. In a real optical fiber, however, this degeneracy is split due to small departures 

from cylindrical geometry or small fluctuations in material anisotropy resulting in a 

mixing of the two polarizatiori states by breaking the mode degeneracy. The mode­

propagation constant k becomes slightly different for the two orthogonal components of 
. ' . : 1, " I 

the fundamental mode resulting in two distinct polarization eigenmodes with different 

propagation velocities. This property is referred to as birefringence and is defined by 

(3.3) 
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where 8np = (nx - ny) is the phase index of refraction difference, nx and ny are the phase 

indices along the two orthogonal polarization states, and A is the free space wavelength of 

the propagating light. The axis along which the effective mode index is smaller is called 

the fast axis since the group velocity is larger for light propagating in that direction and 

the axis with the larger phase index is called the slow axis because of the smaller group ve­

locity for waves in that direction. In conventional single mode optical fibers, the birefrin­

gence is not constant along the fiber but changes randomly because of fluctuations in the 

core shape and stress-.induced anisotropies. Thus, light launched into the fiber with lin­

ear polarization quickly reaches a state of arbitrary polarization. For some applications, 
, " . ~ . 

it is desirable that the fibers transmit light without changing its state of polarization. 

Such fibers are called polarization-maintaining fibers . In polarization-maintaining fibers, 

a stable state of linear polarization can be maintained over relatively long lengths. This 

polarization handling ability is derived from the high intrinsic birefringence introduced 

intentionally in the fibers through design modifications in core asymmetry or applying 

an asymmetric stress distribution on the core. The use of polarization-maintaining fibers 

requires an identification of the slow and fast axes before the linearly polarized light is 

launched into the fiber. If the polarization axis of the incident light coincides with the 

slow or the fast axis, the polarization remains unchanged dUring propagation. If the po­

larization axis makes an angle of 45° to these axes, the polarization changes continuously 

along the fiber in a periodic manner [6). The state of polarization of light will evolve 

from linear to elliptic, to circular, to elliptic, to linear but 7r /2 out of phase, to elliptic, to 

circular, to elliptic, and finally back to its original state as shown in Fig.{3.1). The period 

of this evolution of the polarization state is defined as the beatlength. It can be s.hown 

that for a given value of birefringence, the power between the two modes is exchanged 

periodically as they propagate inside the fiber with a period equal to its beatlength Lb 

defined by 
27r A 

L b =-=-
ki 8np 

The beatlength is rv lcm for a strongly birefringent fiber with 8np rv 10-4 . 
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~ 
FAST 
MODE 

Figure 3-1: Evolution of the state of polarization along a birefringent fiber when the 
input beam is linearly polar~zed at 45° with respect to the slow axis. 

A fiber with high linear birefringence will preserve the polarization state of a light 

beam whose electric-field vector is oriented along either principal axis of the fiber. In 

that case, the two principal axes are entirely equivalent. It is usually assumed that this 

equivalence also holds at high intensities and that an intense beam oriented along either 

axis will suffer no changes in its polarization, barring imperfections that cause scattering 

between the axes. It has been shown that an intensity-dependent refractive index leads 

to an instability in the polarization state of a light wave oriented along the fast axis of a 

birefringent medium. The slow axis remains a stable guiding center. Depending on the 

input intensity and polarization, the polarization ellipse can execute either oscillatory or 

rotatory motions about the slow axis in a manner analogous to the motion of a nonlinear 

pendulum [8]. These results have implications in fiber-optic devices and systems. The 

birefringence in a medium caused by an intensity-induced change in the refractive index 

of the medium, predicted prior to the advent of lasers, was one of the earliest nonlinear 

optical phenomena to be observed experimentally. This phenomena has since been and 

remains a topic of much interest and study given its practical importance in a variety of 
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applications including optical fiber communications. 

Several analytical and numerical methods have been developed to study the polariza­

tion and its effects as the light propagates along a fiber. The evolution of the polarization · 

state of a light beam during propagation can be represented by a variety of graphic meth­

ods. Two particularly useful representations in describing the polarization dynamics in a 

fiber are the Poincare sphere and the phase plane. An analytical approach used to treat 

important polarization-related phenomena is the Jones matrix formalism. The Jones 

approach, even though powerful in the analysis of polarization effects, does not give 

quantities that are directly measurable. The unified formalism for polarization optics is 

another method devel?ped to provide a means of understanding complicated polarization 

phenomena in optical media like fiber systems, devices and networks. The·formalism uti-
' , ' 

lizes Stokes-Mueller matrix equation with the Lorentz group in examining the dynamics 

of the polarization vector under the influence of birefringence and the effects of isotropic 

loss and diattenuation. The fiber is assumed to be isotropic with low internal linear 

birefringence. The Stokes-Mueller calculus is governed by an equation that has a sixteen 

element matrix M, which contains the information necessary to characterize the system 

and a four-parameter Stokes vector (So and Si) of the outgoing and incident light beams, 

respectively. 

3.1.1 Stokes Parameters 

The state of polarization of a wave is specified completely by a vector consisting of 

four physically real parameters. The four quantities comprise a column vector often 

written horizontally with curly brackets as {So, Sl, S2, S3}. The vector is referred to as 

Stokes vector and exists in a four-dimensional mathematical space. The four quantities 

that make up the elements of the Stokes vector are called Stokes parameters. The Stokes 

parameters are measurable quantities that describe the intensity and polarization of a 

beam of light. A beam may be polarized completely, partially or not at all and it may 
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be monochromatic or polychromatic. Stokes parameters have dimensions of intensity 

and each corresponds not to an instantaneous intensity but to a time-averaged intensity; 

the average being taken over a period long enough to permit practical measurement. 

The Stokes parameters are defined as follows: So is the total intensity, Sl is the excess 

intensity transmitted by the x-polarization eigenmode over the y-polarization eigenmode, 

S2 is the excess intensity transmitted at 450 with respect to the x-polarization eigenmode 

over the intensity transmitted at 1350 with respect to the x-polarization eigenmode, and 

S3 is the excess intensity of right circular polarization over left circular polarization. 

The Stokes parameters are related by 

(3.5) 

where the equality holds for completely polarized purely monochromatic light and the 

inequality holds for partially polarized quasi-monochromatic light. 

The degree of polarization of the light beam is given by 

(3.6) 

and a parameter that gives a measure of the relative amount of polarization in each can 

be expressed as 

(8.)2 
%Si = S: (3.7) 

Also, P = 1 for completely polarized light, P = 0 for unpolarized light and 0 < P < 1 

for partially polarized light. 

If the Stokes parameters are known,· the polarization azimuth 0 and the ellipticity 

angle." may be define,d as follows 

S2 
tan 20 =-

Sl 
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Polarization atong 
Xdirection 

Point representing the 
polarization st~te 

Rep Polarization along 
Ydirection 

Figure 3-2: Illustration of the polarization state of a light wave on the Poincare sphere. 

and 
. S3 

sm21] =­
So 

,(3.9) 

If the light intensity So, the degree of polarization is P = 1, the polarization azimuth 

8 and the ellipticity angle 1] are known, using equations (3.6), (3.8), and (3.9) one may 

obtain the Stokes parameters as follows 

S1 = So cos 2"1 cos 28 

S2 = So cos 21] sin 28 

S3 = So sin 21] 

(3.10) 

A particular polarization state may be represented as a point in a three dimensional 

Stokes coordinate space S= {S1. S2, S3}· The point lies on a sphere of radius So. This 

sphere in Stokes space is known as the Poincare sphere. An illustration of the polarization 

state of a light wave on the poincare sphere is shown in Fig.(3.2). 
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3.1.2 Poincare Sphere 

The polarization state of a light wave can be represented as a point in a three dimen­

sional Stokes coordinate space 81,82 , and 83. The point lies on a· sphere of radius 

r = J(8r + 8~ + 8;r). Another interesting feature of the Poincare sphere is th~t the 

magnitude of interaction of a polarized beam with an optical medium corresponds to a 

rotation of the sphere. This sphere was first introduced in 1892 by Henri Poincare who 

discovered that different polarization states may be represented on a sphere [13]. 

The radius of the Poincare sphere is equal to 80 for totally polarized light. The 'north' 

and 'south' poles of the sphere correspond to right and left circular polarizations (see Fig. 

3.2). Linearly polarized light is represented by points along the equator with 'longitude' 

being twice the polarization azimuth 8. The 'latitude' of the point will give twice the 

angle of ellipticity 'f} of the wave. Points at opposite ends of a diameter, the' antipodes' of 

the sphere are orthogonal polarizations [13]. If the light is partially polarized, the ratio 

of the Poincare sphere radius to the Stokes parameter 80 gives the degree 6f polarization. 

3.1.3 Mueller Matrix 

vVhen an optical beam interacts with matter its polarization. state is usually changed. 

The change in the polarization state may be due to a change in the amplitude, phase, 

or the direction of orthogonal field components of the optical beam. The Mueller matrix 

characterizes an optical device interposed in a polarized beam. The incident polarized 

beam interacts with the medium and a new set of Stokes parameters can be obtained 

for the emerging beam. The Mueller matrix is a 4 x 4 real matrix that describes the 

transformation of the state of polarization of the light beam as it interacts with an 
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optical system. The transformation is a simple matrix equation 

S' 0 moo mOl m02 m03 So 

S' mw mn m12 m13 Sl 1 (3.11) -
S; m20 m21 m22 m23 S2 

S' 3 m30 m31 m32 m33 S3 

where the primed Stokes parameters are for the output beam and the llllprimed Stokes 

paJ:ameters represent the input beam. The matrix equation can be written more concisely 

in an operator form as 
=> ~ => 
8'= M· 80 (3.12) 

=> => ~ 
where 8' and 80 are, respectively, the output and input Stokes four-vector and M is the 

Mueller matrix. 

The Mueller matrix characterizes the optical system so that its effect on the state of 

polarization of a beam can be determined using the transformation given in the aforemen­

tioned Eq.(3.11). The sixteen llllknown elements ofthe Mueller matrix can be determined 

by measuring the output polarization state, i.e. the output Stokes vector, of the light af­

ter it passes tlu·ough the optical system from incident light sequentially polarized in four 

difi"erent polarization states, described by four independent Stokes vectors. The Mueller 

matrix M can be determined using the four pairs of input and output Stokes vectors 

[15). If dichroism of the optical system is neglected, then moo = 1 and the other Mueller 

matrix elements of the first row and first column are equal to zero. In this c:ase, only three 

pairs of input and output Stokes vectors are necessary to determine M. In general, the 

16 Mueller matrix elements depend on birefringence, dichroism and propagation length. 

In Chapters 4 and 5 of this thesis, several Mueller matrices will be derived for various 

polarization effects in a single-mode fiber. The Mueller matrix calculus will be applied 

to a number of problems of interest in this study. 
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3.2 Stokes Parameters Equation of Motion 

To derive the evolution equations for Stokes Parameters and illustrate their applica­

tion to polarization effects in a medium starts with the use of Maxwell's wave equation. 

. 1 a2D 
curl curl E+ 2~ = 0 

c ut 
(3.13) 

where D = E+47f P is the electric displacement vector and E is the applied field. P 

represents the polarization induced in the material by the propagating field. The induced 

polarization acts as a source term in the wave equation. Thus, Eq.(3.13) becomes 

\7x\7xE= (3.14) 

where \7 x \7 x E =\7 (\7 . E) - \72E is an identity from vector calculus. In linear optics, 

(\7 . E) = 0 for isotropic source free media. In nonlinear optics, howeve~, this term in 

general does not vanish even for isotropic materials due to the general relation between 

D and E. 

The relationship between P and E could be nonlinear, that is, an increase in E will 

lead to a disproportionate change in P. The nonlinear optical response can be expressed 

as a Volterra series in the polarization vector. 

Pi (r , t) = pi (r,t) + P; (r,t) + P~ (r,t) + ... (3.15) 

The superscripts indicate the order of the term with respect to the electric field strength. 

The subscript i = 1,2 indicates the transeverse directions of the orthogonal field com­

ponents. The first term on the right-hand side of Eq.(3.15) describes the linear optical 

response and increases proport~onally with E. The higher order terms describe the non­

linear response. In an optical fiber, P; (t) = 0 because the fiber is a centrosymmetric 

material. Thus, the third order polarization is the minimum nonvanishing nonlinear term 
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for a fiber. Equation (3.14) can now be written for the transverse fields as 

(3.16) 

where Pf and Pf'L are respectively the linear and nonlinear induced polarizations. The 

wave equation (3.16) can be rewritten in frequency domain as follows: 

(3.17) 

for the case where PfL is initially assumed to be zero. Furthermore, the tinear response 

expressed in terms of the susceptibility and nonlocality te~ors is given by 

pf = p/ (w, r) = 4~ {[X~;) (w) Ej (w, r) + rUL (w) VmEj (w, r)]} (3.18) 

For an electromagnetic wave propagating with wave vector k, the spectral amplitude 

E (w , r) harmonically depends on the coordinate r, so that E (w , r) = A exp { ik . r}. 

Using Eq.(3.18), one can write Eq.(3.17) as 

(3.19) 

• . d r: . 

It is reasonable to assume that the Laplacian on the left of this equation contains 

second order derivative that is very much smaller than the fu'st order derivative. In this 

case, the amplitude A (z , t) of the electric field of the wave is presumed a ':slow" function 

of the propagation axis z. This approximation is known as the slowly-varying amplitude 

approximation and is valid whenever I~JI «k I~~I «k2A. Thus, it is also possible to 

write 

V2 E~'= (2ik dA j 
_ k2 A) eikz 

z t dz J (3.20) 

Using these assumptions, the evolution equations which describe the transverse field 

amplitudes as they propagate along the coordinate axis z can be written in a compact 
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form as 

dAi iw 
---u··A-dz - 2c '1 J 

(3.21) 

where Uij = ~ (Eij + ikmrtjm - n.2{jij) is a tensor of rank two in two dimensional space 

representing the coupling due to the perturbations. The permitivity of the medium is 

denoted by E;j = 1 + xi]) while n indicates its refractive index. It is noted that Eq.(3.21) 

is a set of two differential equations for the field amplitudes known as the coupled mode 

equations. 

In operator matrix form, Uij may be regarded as a 2 x 2 matrix while A~ and Aj 

are column vectors in a two-dimensional vector space defined over the field of complex 

numbers. A rotation .in this space transforms Ai and Aj into their linear combination. 

Therefore, the matrix Uij must be unitary if the transformation is to leave the norm 
. ", ! ~ ", 

invariant [59J. This makes Uij a member of the group U(2), the group of all unitary 

matrices of order two and thus have a unique inverse such that [Uijr
1 = Uji. In this' case, 

the determinant of the matrix Uij equals ±l. Finally, it can be concluded that the matrix 

Uij belongs to the group SU(2), a subgroup of U(2) which contains all unitary matrices 

of order two having determinant equal to + 1. This stems from the fact that any unitary 

matrix may be expressed as an exponential of linear combination of traceless hermitian 

matrices. The three generators of SU(2) can be chosen to be the Pauli spin matrices [59J 

(1) _ (1 0) (2) _ (0 1) (il)~ (0 -i) a- ,a- ,a-
o -1 1 0 i 0 

(3.22) 

which are a set of three independent traceless hermitian matrices of order 2 which obey the 

conunutation relation u x u = 2iu. It is convenient to choose the set [a(O); a(l) , a(2) , a(3)] 

as the generator of U(2) where a(O) is a unit matrix of order 2. Therefore Uij can be 

expanded in terms of the unit matrix and the Pauli matrices as follows 

(3.23) 
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The summation is presumed over Q = 0, ... , 3 and the expansion coefficients are 

(3.24) 

With the use of Eq.(3.23), the coupled mode equation (3.21) takes the form 

(3.25) 

Stokes parameters may be defined in the following manner[13) 

(3.26) 

With the use of Eq.(3.25) and its cmplex conjugate, the evolution equations for Stokes 

parameters can be written in the form 

d (S 21' {k} ) . iw {r.LA* (1") (a)A r.L*A* (a) (I")A} 
- I" exp m z = - Ha j(J"ji (J"ik k - Ha k(J"kj (J"ji i 
~ 4c . (3.27) 

and making use of the fact that the Pauli matrices have the following property 

(3.28) 

and that they are additionally hermitian matrices, Eq. (3.27) can be written for the case 

J.L = 0 and Q = 0, ... ,3 as 

d!O = _ ;c 1m [ ( 4n + n~) So + ( nL. s ) ] (3.29) 

In Eq.(3.28), Q, f3 and'Y = 1, 2, and 3, interchangeably. The term ea [3-y is the totally 

antisymmetric Levi-Civita tensor. For the specific case of J.L = 1, 2, 3 and Q = 0, ... ,3, 
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equation (3.27) can be expressed for the components of the Stokes vector as 

d:: =-~Im[(4n+n~)SI'+nLSO+i(nLX s)] (3.30) 

Equations (3.29) and (3.30) al·e the evolution equations for Stokes parameters. The vector 

nL with components .( nf, nr, nf) is defined in Stokes 3-vector space and depend only 

on the material parameters of the medium. These equations may be applied to media of 

arbitrary symmetry and low anisotropy along the direction of propagation. In fact, these 

equations work well when 6.n « n, where 6.n is the refractive index difference for the 

differently polarized eigenwaves of the medium [13J. 

If nonlinear induced polarization is now considered, Eq.(3.16) becomes 

(3.31) 

in frequency domain, where 

~NL (3) . . ) * ) Pi = 3Xijkl(w,w,w,-w)Ej(w,r)Edw,r El (w,r 

+2r~Jklm (w; w,w, -w) Ek (w, r) Et (w, r) "'VmEj (w, r) 
(3.32) 

is the induced polarization at the operating frequency w. 

Using the slowly varying amplitude approximation in (3.20) and Eq.(3.32), the evo­

lution equations for the field amplitudes can now be expressed as 

dA iw [A A A A* -2Im{k}z] - = - Uij j + lijkl j k l e 
dz 2c 

(3.33) 

Here, lijkl = ~ (3x~Jkl + ikzr~JklZ) accounts for the third order local and nonlocal sus­

ceptibilities and Uij as defined earlier. Expressed in tetms of the Pauli matrices one can 

rewrite Eq.(3.23) as 
1 (a) 

U·· = -v (J" .• 
'J 2 a '3 
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where VO! = D~ and 

(:3.35) 

Then the expansion coefficients are therefore 

(3.36) 

and 

(3.37) 

Resorting to (3.26), equation (3.33) can be written as 

(3.38) 

where 

is referred to as the nonlinear self-action four vector since itself is a function of the Stokes 

parameters and a = (0,1,2,3). Using the same routine as was used to derive equations 

(3.29) and (3.30), a set of nonlinear differential equations structually identical to (3.29) 

and (3.30) describing the evolution of Stokes parameter are obtained as follows 

(3.39) 

and 

(3.40) 

In the nonlinear case, therefore, DO! does not only depend on the material characteristics 

but also is a function of the Stokes parameters of the wave. The self action vectOr DO! 

coincides with the action vector DL if nonlinearity is neglected. Therefore, the major 
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difference between linear and nonlinear media is that the propagation conditions are 

changed by the wave itself in a nonlinear media. 

Such evolution equations may be utilized to obtain the polarization and describe 

its effects in an optical fiber. ::rb do this, symmetry conditions need to be considered. 

Furthermore, low anisotropy along the direction of propagation will be assumed. This is 

reasonable because for a lossless fiber Eq.(3.30) implies a precession of the Stokes vector 

about D,L. Also, this assumption is necessary to allow for third order nonlinear aniso~ropy 

or induced anisotropies which will account for the dependence of Stokes parameters on 

the intensity of the light. 

3.3 Polarization Ellipse 

It was shown in section (3.1) that light is in general elliptically polarized and degen­

erates into linear and circular forms. The polarization ellipse has the form [13] 

(3.41) 

where b = bx - by is the arbitrary phase while Eox and Eoy are the maximum amplitudes. 

Close observation of Eq.(3.41) reveals that the product term ExEy is not present in the 

standard form of an ellipse. This term indicates that the ellipse is actually rotated with 

respect to a principal axis, the X axis for example. The polarization state of an elliptically 

polarized wave may be specified completely by two parameters, the angle of rotation or 

polarization azimuth and an ellipticity angle [15]. This infers that there is a relationship 

between the parameters of the ellipse Eo~, Eoy , b and the angle of rotation and ellipticity. 
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The polarization azimuth e is the angle measured between the X direction of the 

right-handed Cartesian frame and the major axis of the polarization ellipse. e may take 

on values between 0 and 7r. The ellipticity "l, is defined as the angle between the main 

diagonal of a rectangular box enclosing the polarization ellipse and its major axis. The 

box have sides parallel to the major and minor axes of the ellipse. The angle is positive 

for (REP) and negative for (LEP). Therefore, the ellipticity angle varies from 0 to 

i for (REP) and from 0 to -i for (LEP) waves. Right and left circularly polarized 

waves correspond to "l = -i while "l = 0 relates to linearly polarized wave. There are, 

however, shortcomings in characterizing an elliptically polarized state of a wave in terms 

of its azimuth and ellipticity. Since light waves have very high frequency, an experiment to 

trace out the electric field vector is impossible. Another limitation is that the polarization 

ellipse concept is applicable only to totally polarized light. It is not suitable for partially 

polarized light [13] . 

In section (3.2), the relationship between the parameters e and'T/ to quantities that are 

directly measurable in an optical experiment was presented. The measurable parameters 

were the Stokes parameters. 

3.3.1 Polarization Ellipse Plane Rotation 

The plane of polru;ization rotates in some media as the light propagates through it . 

This effect named optical activity is a manifestation of the nonlocal optical response. It 

is a first-order spatial dispersion effect associated with the nonlocalitytensor r~~~. The 

rotation of the polarization plane takes place naturally and is sometimes called natural 

rotation [13] . 

From the same reference [13], it is also noted that for a loss less birefringent media, 

the rotation effect of the ellipse plane can be easily visualized in Stokes space. The effect 
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Figure 3-3: Poincare's sphere representation of optical activity in a lossless birefringent 
fiber. 

is a precession of the Stokes vector S around vector n,L. The vector n,L in Stokes space is 

directed along the S3 axis as shown in Fig.(3.1). The end of the Stokes vector of a prop­

agating wave will trace out a horizontal circle on the poincare sphere and the azimuth e 
will steadily change along the direction of propagation. This illustrates optical activity. 

It is however worth noting that for natural rotation in lossless media, the end of the 

Stokes vector always remain on the same altitude, therefore the initial ellipticity angle 

does not change. For the specific case of a linearly polarized light, therefore, the plane 

of polarization rotates but the light remains linearly polarized. An elliptically polarized 

light will tend towards the right or left circular polarizations. The polarization states 

of the left and right-handed circularly polarized waves remain unchanged and are called 

eigenpolarization states. For a medium with small losses, a rotation of the ellipse plane 

suggests a rotation of both the azimuth and ellipiticity. The azimuth rotation is proporti­

nal to the length of the medium where the proportionality constant indicates the specific 

polarization rotatory power. The azimuth rotates because of circular birefringence; the 

difference in refractive indices for left and right circularly polarized waves. The evolution 
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· . 

of ellipticity is due to circular dichroism, a difference in absorption coefficients for left 

and right-handed circularly polarized eigenwaves. 

3.4 Polarization Mode Dispersion 

Polm'ization mode dispersion (PMD) describes the change with frequency of the polar­

ization of the field at the output of a fiber while the input polarization is held constant 

[51]. Beyond conventional chromatic dispersion which can be kept under control by suit­

able design, PMD is a limiting factor on the fibers bandwidth. It is a basic parameter 

required for estimation of birefringence-induced distortions in optical fiber systems [62]. 

The primary fiber properties which determine the PMD behavior of an optical .cable 

are the linear and circular birefringence distributions along the fiber and mode-coupling 

parameter [82], 

The evolution of the state of polarization of a lightwave as it propagates along the 

optical fiber can be mathematically expressed as 

~ 

dS(zw) ~ ~ 
dw' =8/3 (z,w) x S (z,w) (3.42) 

where 8/3 is the differential group delay (DGD) vector and w is the angular frequency of 

the source, z is the distance along the fiber . For long fiber lengths, the DGD becomes 

proportional to the frequency derivative of the magnitude of the birefringence vector [83] 

~ d/3 -
8/3 (z,w) = dw /3 z (3.43) 

/3 is a lmit vector in the direction of the total birefringence. The magnitude of the total 

birefringence is 

(3.44) 

where (3 Land /3c are respectively the linear and twist-induced circular components of the 
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total birefringence. 'Y .is the twist rate of the fiber. 

Using Eq.(3.44), one can express Eq.(3.43) as 

t3.45) 

where f3~ = df3ddw and f3~ = df3c /dw. In this work, PMD is negligible since the fiber 

is assumed to be nondispersive. It is worth noting that PMD can be included if one 

considers, to first order, the dispersion of the fiber's stress-optic coefficient [83]. 
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Chapter 4 

POLARIZATION FORMALISM 
, 

AND MODEL: THE LINEAR 

CASE 

4.1 The Unified Formalism 

If there are perturbations on a fiber resulting from length-dependent disturbances, the 

total dielectric function has the form 

t = to (r, ¢) + 'ljJ (r, ¢, z) (4.1) 

where'ljJ is the dielectric function of the perturbed fiber and to (r, ¢) is t~e unperturbed 

dielectric function. rand ¢ are the polar parts of the cylindrical coordinates (r, ¢, z) and 

z coincides with the fiber's axis of symmetry. 
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The electric field in the fiber can be represented as 

2 

E (T, ¢, Z, t) = L a-y (Z) E-y (T, ¢) exp [i (k-yz - wt)] (4.2) 
"1=1 

where a-y (z) are the field amplitudes containing the effects of the perturb(~.tions resulting 

from change of environment and various kinds of inhomogeneity in the fiber. k-y is the 

propagation constant associated with each eigenmode. If there were no· perturbations on 

the fiber, the coefficient a-y (z) of Eq.(4.2) would be a constant and in general a complex 

quantity. Using Maxwell's equations, along with (4.1) and (4.2) and the orthogonality 

conditions on the fields, (see Appendix A), the coupled-mode equations can be derived 

and written in operator notation as 

da(z) /\ 
-- =ip ·a(z) 

dz 
(4.3) 

where a (z) is a 2-dimensional column vector that represents the perturbed field ampli-
/\ 

tudes of the transverse fields and P (z) is a 2 x 2 matrix operator that represents the 

coupling between the two polarization eigenmodes due to the perturbations. The cou­

pling results in an evolution of the state of polarization as the light propagates in the 
/\ 

fiber. In general, P (z) is complex and has the form 

/\ /\ /\ 
P (z) =B (z) + i D (z) (4.4) 

where B (z) is the birefringent operator that represents birefringent (phase) effects and 

D (z) is the dichroic operator that represents dichroic (polarization dependent loss) 

effects. Both operators represent real quantities and are thus Hermitian [1]. 

Since only measurable quantities are of interest, the coherency matrix is used and is 

defined by an outer product as 

T(z) = a(z)at (z) (4.5) 
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The dagger symbol t which indicates the hermitian conjugate makes at (z) a row vector. 

By taking the derivative of Eq.(4.5) with respect to the propagation length z, the 

following is obtained' 

dI = a (z) dat (z) + da (z) at (z) 
dz dz dz 

(4.6) 

Substituting Eq.(4.3) and its hermitian conjugate into Eq.(4.6) yields the coherency equa-

tion of motion which can be expressed as 

dI [/\ /\t ] dz = i P (z)I(z) -I(z) P (z) (4.7) 

/\ /\ 
Using Eq.(4.4) and the fact that B (z) and D (z) are hermitian, expression (4.7) can be 

rewritten as 

~~ = i [13 (z) ,I(Z)] - {D (z) ,I(z)} (4.8) 

where [B,71 = BI - IB is called a commutator while {D,I} = DI + ID is called an 

anticommutator. 

Since the operators in Eq.(4.5) are 2 x 2 and hermitian, they can be expanded in 

terms of the Pauli spin basis matrices and the unit matrix of order 2 . 

(J"Q = (1 0), 0"1 = (1 0), 0"2 = (0 1), 0"3 = (~ -i) (4.9) 
o 1 0 -1 1 O . z 0 

These operators obey an algebra such that the multiplicatlori property of the operators 

IS 
3 

O"zO"m = O"o8lm + i L clmnO"n 

n=l 

(4.10) 

where 81m is the Kronecker delta symbol and Clmn is component lmn of the totally anti­

symmetric tensor (with Cl23 . +1). 
/\ /\ 

Using the Pauli spin matrices, the operators I(z), B (z) and D (z) can be expanded 

. . ' 
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as 
3 

I(z) = ~ I: 8 l (Z) al 
l=O 

II 3 
B (z) = ~ E (3dz) al 

l=O 

. 
(4.11) 

II 3 
D (z) = ~ E dl (z) al 

l=O 

where 8 i (z) = {80 , 81 ,82 ,83 } is the 4-dimensional Stokes vector defined previously in 

section (3.2). (30 represents the arbitrary phase of the fiber and ~ _ ((31,(32,(33) is the 

birefringence in Stokes 3-vector representation. do represents the arbitrary loss of the 

fiber and d · (d1 , d2 , d3 ) is the dichroism also in Stokes 3-vector representation. 

Using Eq.(4.11) and the Pauli spin matrix algebra, the Stokes form of the coherency 

equation of motion (4.8) can be expressed as 

d80 . --
dz = -80 (z) do (z) - S (z) . d (z) (4.12) 

and 
d S (z) - - - -

dz =S (z) x (3 (z) - 80 (z) d (z) - do (z) S (z) (4.13) 

where S (z) = {81 , 82 , 83} is the 3-dimensional Stokes vector (see Appendix B). Note that 

equations (3.29) and (3.30) are identically equivalent to equations (4.12) and (4.13), re­

spectively. However, equations (4.12) and (4.13) are expressed in vector notation whereas 

equations (3.29) and (3.30) are expressed in terms of components of the vectors. 

The equations (4.12) and (4.13) can be rewritten in a more revealing Stokes 4-

dimensional vector equation of motion as follows: 

80 -do . -d1 -d2 -d3 80 

d 81 -d1 -do (33 -(32 81 
(4.14) 

dz 82 -d2 -(33 -do (31 82 

83 -d3 (32 -(31 -do 83 

The 4 x 4 matrix in equation (4.14) above exhibits Lorentz group symmetry which can 
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be exploited to expand the matrix by using a set of Lorentz group generators [1]. Con­

sequently, the Stokes 4-dimensional equation of motion can be written in a compact 

operator form as 

d S (z) { 1\ (~ 1\ ) (~ 1\ )} ~ dz . = -do'(z) I + d (z)· D + (3 (z)· B S (z) (4.15) 

~ 1\ . 

here S (z) is the 4-dimensional Stokes vector and I is the 4 x 4 unit matrix. The matrices 
1\ 1\ 

Band D are the appropriate set of Lorentz generators given as follows [70] 

0 -1 0 0 0 0 -1 0 

1\ -1 0 0 0 1\ 0 0 0 0 
Dl= D2= 

0 0 0 0 -1 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 -1 

1\ 0 0 0 0 
( 4.16) D3= 

0 0 0 0 

-1 0 0 0 

and 
0 0 0 0 0 0 0 0 

1\ 0 0 0 0 1\ 0 0 0 -1 
Bl= B2= 

0 0 0 1 0 0 0 0 

0 0 -1 0 0 1 0 0 

0 0 0 0 

1\ 0 0 1 0 
B3= (4.17) 

0 -1 0 0 

0 0 0 0 

The Lorentz generators in equations (4.16) and (4.17) obey an algebra given by the 
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following commutation relations [71] 

(4.18) 

and 

The formal solution to the Stokes 4-dimensional equation of motion (4.15) can be 

written as 

(4.19) 

=? 

where S (0) = {Soo, SlO, S20, S30} is the 4-dimensional input Stokes vector and the general 

Mueller matrix for arbitrary birefringence and dichroism expressed in terms of the Z­

ordered exponential operators [72] is given by [1] 

~ ( ~ ~ ) ~ {- J; dz' [do (z') r] + J; dz' [d (z') . IS] } 
M do,d,f3,z =Zexp [~II] 

+ J; dz' f3 (z') . B 
(4.20) 

The arrow pointing to the left above the Z in equation (4.20), indicates that the operators 

for the longer distances are ordered to the left. 

For the case of arbitrary but uniform birefringence and dichroism, the general Mueller 

matrix in Eq. (4.20) after expanding and summing, takes the form 

M (do, d, 0, z) = exp (-doz) exp [(d (z)· IS) z + (f3 (z)· B) z]· (4.21) 

66 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



For the special case of only dichroism, Eq.(4.21) takes the form 

(4.22) 

and for the case of pure birefringence Eq.(4.21) becomes 

(4.23) 

With the use of a complex Lorentz 4 x 4 generator given by 

/\ 1 (/\ /\) p= 2 B -i D (4.24) 

the general Mueller matrix for arbitrary and uniform birefringence and dichroism given 

in Eq.(4.21) can be rewritten as 

M (do, ci, ~, z) = exp ( - doz) exp [2Re (p . p) z] ( 4.25) 

where 
- -P=/3 +i d = Pm ep (4.26) 

is the Stokes 3-vector in complex form. With the use of Eq.(4.26) 

(4.27) 

or 
1 

Pm = [(/3;" - d;") + 2i (0 . ci) r = Ii" + Up (4.28) 
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where 

(4.29) 

and 

(4.30) 

with 

(4.31) 

Using equations (4.27) to (4.31) and some trigonometric identities, the Mueller matrix 

for arbitrary and uniform birefringence and dichroism (4.25) becomes 

(4.32) 

where 

and 

(4.36) 

. d· d· hr . 1 Th . 1\ { 1\ 1\ I\} The minus sign in the scalar terms m lcates IC OIC oss. e matnces V= V, V ,V 
'" ""'1 1"V2 ""3 
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are new matrices ass~ciated with the mixing of the birefringence and dichroism effects 

when the birefringence and dichroism vectors are nonparallel. They obey the following 

relation 

(:4.37) 

The matrix 'f) = diag ( -1, 1, 1, 1) in (4.37) is the metric matrix. The components of the 
1\ 

V matrices are thus defined as follows: 
~ 

0 -1 0 0 0 0 -1 0 

1\ 1 0 0 0 1\ 0 0 0 0 
V= V= 
~l 0 0 0 0 ~2 1 0 0 0 

0 0 0 0 0 0 0 0 

o 0 0 -1 

1\ 0 0 0 0 
V= 
~3 0 0 0 0 

(4.38) 

1 0 0 0 

Note that in the limiting cases for very small dichroism or birefrirlgence, the functional 

form of Eq. (4.32) for the Mueller matrix for arbitrary and uniform birefringence and 

dichroism reduces to the Mueller matrix for pure dichroism and pure birefringence given 

in equations (4.22) and (4.23). 

In the following sections of this work, methods of the unified formalism will be used 

to obtain Mueller matrices for an optically active birefrirlgent fiber with and without 

dichroism. Then, the elements of the Mueller matirces will be expressed in functional 

forms to provide a simple means for obtaining numerical solutions to the Stokes-Mueller 

equations that characterize the .Stokes input and output paramters. The results obtained 

will be presented and ·discussed. 
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4.2 Polarization Formalism for an Optically Active 

Birefringent Fiber without Dichroism 

In order to investigate the propagation of light in a birefringent fiber with optical 

activity and accOlmt for some of the interesting polarization effects which will emerge, 

it is important to initially consider the simple case of a fiber with negligible loss. Then, 

there is no dichroism and I m ( n~) = O. Consequently, the action vector n~ is real and 

thus represents the birefringence of the fiber. In this case, Eq.(4.12) takes the form 

dSo (z) = 0 
dz 

and the evolution equation for the Stokes 3-vector Eq.(4.13) becomes 

d S (z) W ["L ~ ( )] " . . -----'--....:... = -- H X S z 
dz 2c <> 

(4.39) 

( 4.40) 

Equation (4.40) represents a precession of the Stokes vector around n~. Thus, a point 

on the Poincare sphere representing the state of polarization moves along a circle whose 

center belongs to an axis which passes through the center of the sphere and is parallel 

to n~ ( see Figure (1)). Therefore, the sphere rotates as a rigid body, and n~ evidently 

represents the angular velocity of a rotating sphere in an inertial frame. 

Referring to the expansion given in Eq.(3.24), it is deduced that n~ accounts for small 

anisotropy in the dielectric tensor of the fiber. Thus, using Eq.(3.24), and assuming that 

there is no optical activity, the following components can be obtained for the special case 
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I, 

of a lossless birefringent fiber with small anisotropy along its length 

1 
fh = - (t.E cos 2¢» 

n 

1 
fh = - (t.Esin2¢» 

n 

0 3 =0 

( 4.41) 

where t.E = Ell - E33 and ¢> is the angle between the laboratory frame and the natural 

frame of the fiber. The second and third equations in (4.41) indicate that the linear 

birefringence relates to the anisotropy of the fiber. 

For the case of an isotropic optically active fiber, the coupling term can be expressed 

with the use of the optical nonlocality tensor as follows [13]: 

.W ra Uij = ~- eijz 
c 

(4.42) 

where r a is the magnitude of the optical nonlocality and eijz is the Levi Civita antisym­

metric tensor. Equation (4.42) can be used to obtain the following components of n~ for 

the case of an isotropic optically active fiber with negligible loss 

Ot = Of = O~ = 0; (4.43) 

To investigate the light propagation in an optically active birefringent fiber and obtain 

some of the interesting polarization effects which may emerge, the vector OL for such a 

fiber may be considered as an independent additive of the corresponding vectors for an 

optically active fiber and for a birefringent fiber. That is, 

( 4.44) 
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Furthermore, in order to avoid initially tedious calculation, it is assumed that the fiber 

axes coincide with the laborato~y frame so that ¢ = O. Using (4.41) and (~.43), equation 

(4.44) yields 

(4.45) 

Using the components for the 3-vector of D,L obtained in (4.45), equation (4.40) can be 

written as 
dS1 
- = -2GS2 dz 

dS2 · , 
dz = 2GS1 + 28 S3 

dS3 = -28' S2 
dz 

( 4.46) 

where G = (w 2/2c2 ) fa is the fiber's optical rotatory power related to the circular, bire­

fringence and 8' = (6.EW / 4cn) is a measure of the fiber's on-axis linear birefringence. The 

differential equations in (4.46) along with (4.39) represent the evolution of polarization as 

the light propagates along a lossless birefringent optically active fiber. It must be stressed 

here that a fiber generally does not exhibit optical activity. However, if small anisotropy 

along the fiber optical axis is assumed where no birefringence due to anisotropy of the 

dielectric tensor Eij is seen, optical activity is possible and therefore can be described 

using the equations derived in this section. Crystalline quartz Si02 is optically active 

along its optical axis [13]. 
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The equations, (4.39) and (4.46), can be rewritten in the following matrix form 

80 0 0 0 0 80 

d 81 0 0 -2G 0 81 

dz -
82 0 2G 0 28' 82 

( 4.47) 

83 0 0 -28 
, 

0 83 

The solution to Eq.(4.47) is written simply as 

Sa= exp 13· B Z· SaO ~ C A) ~ ( 4.48) 

- ~ ~ 

where 13= ReDL is the birefringence three-vector and Sa as well as SaO represent the 

output and input Stokes 4 vectors, respectively. The exponential in Eq. (4.48) is immedi­

ately recognized as the Mueller matrix of the fiber [lJ . Using the methods adopted from 

Brown's unified formalism, the exponential can be expanded in terms of the Lorentz 
A 

generators B as follows: 

M(O,O,~,Z) =exp(~.13)z 

= [1 + (e/3 . 13 r] -(e/3 . 13 r cosf3z + (e/3 . B) sinf3z 
(4.49) 

where 13 = 2)(8')2 + G2 is the magnitude of the birefringence and e /3= cos 28 e 1 + sin 28 

e3 is a unit vector in the direction of the total birefringence. Then, the Mueller matrix 

for an optically active birefringent fiber without dichroism is given by (see Append.ix C) 

1 0 0 0 

M (o,o),z) = 
0 cos2 28 + sin2 28 cos f3z - sin 28 sin f3z cos 28 sin 28 (cos 13 z - 1) 

0 sin 28 sin f3z cosf3z cos 28 sin f3z 

0 cos28sin28(cosf3z-1) - cos 28 sin f3z sin2 28 + cos2 28 cos f3z 
(4.50) 
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Thus, the Stokes-Mueller equation can be expressed as 

So 1 0 0 0 

Sl 0 cos2 28 + sin2 28 cos (3z - sin 28 sin (3z cos 28 sin 28 (cos (3 z - 1) 

S2 0 . sin 28 sin (3z cos(3z cos 28 sin .f3 z 

S3 0 cos 28 sin 28 (cos (3 z - 1) - cos 28 sin(3z sin2 28 + cos2 28 cos (3z 

(4.51) 

Now, in order to obtain a functional form of the output Stokes parameters,' it is 

assumed that the input light is·linearly polarized on axis so that Sao = 1, SlO = Sao = 1, 

and S20 = S30 = O. The following functionals are obtained for a fiber of length z = L 

So (L) = Sao 

,"':'l 

b'G 
S3 (L) = --2 (1- cos211,L) Sao 

J.-l 

where J.-l = J(b' )2 + G2. Note that (3 = 2J.-l. 

(4.52) 

Sao 

SlO 

S20 

S30 

Using the Stokes-Mueller equation (4.51), the results for various cases of input,light 

polarization as a function of fiber length are presented in graphical figures. In all of these 

results, it is assumed that there is no polarization-dependent losses so that dichroism 

can be neglected and the light pulse propagates along the , fiber without distortion or 

broadening barring other factors such as chromatic dispersion and nonlinear effects. In 

this case, the two principal states of polarization(PSP), that is, the polarization states 

for which the output polarization is independent of the optical frequency to first order 

are orthogonal and represent the slow and fast propagating pulses. Any other pulse can 

be decomposed in terms ofthese two PSP and will broaden during propagation [62]. 

It can be recalled that in obtaining Eq~ (4.51), the fiber axis is assumed to coincide with 
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Figure 4-1: Variation in output Stokes parameters as a function of fiber length for linearly 
horizontally polarized input light. Circular birefringence present but linear birefringence 
off-axis not allowed. . 

the laboratory frame so that off-axis linear birefringence is not allowed but both linear 

on-axis and circular birefringence are present. Thus, for a given optical fiber trunk, this 

assumption amounts to neglecting bend-induced perturbations but considers that twist 

effects may be present along the length of the fiber and that perturbations intrinsic to 

the fiber resulting from material anisotropy or geometrical asymmetry or those external 

to the fiber such as thermal/mechanical stress may be induced in the fiber. 

When the input light is linearly polarized on axis or off axis as shown, respectively, in 

Figs. (4-1) and (4-2), the output light for both cases is seen t~ be linearly polarized since 

S3 is a null. For right circularly polarized input light, the output light is circularly 

polarized since Sl and S2 are both null intensities as shown in Fig.(4-3). If the light is 

initially elliptically polarized such that the orientation angle is 450 with respect to the 

principal axis and the ellipticity is 22.5°, inspection of Fig. (4-4) shows that the output 

beam emerges elliptically polarized. 

It is interesting to observe the change in the output beam's behavior when the fiber is 

further assumed to have no circular birefringence. Then, in this case the fiber is straight 

with no bends and twists. Fig.(4-5) shows that the output light remains linearly polarized 

75 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



, " i ' ~ . 

I , , " ,/ ' , / 
\ " 'I \ .' \ t ~ \ 

, , 'I "/ \ 
SOul (L) \ ; r \ ,t, \ 'I' 
_ 0 \ ,}'" : I' \ .' /" \ 

\ " /' \ ',' I ' ,\ 
Sout{ L) I \ : I " \ " '" II I ", \ 
•• L \ ' 0 I ' " , o r- - - - • - -, - • :-- - T - "7 - -,' - ; - ~- -, • - r - ., - -... 
SOule L)2' \ • I \ I ' I \ 

"J \. / I; I \ 
Soul(L)3' \', ",' 1 " ': } 

1 \'/ 1,(, 1 \ I 
, : \ / ' '\ / :\ I 

-- II- '" ~ I '-"I - I '., '/ I .. ~ 

o 200 400 600 800 1000 

L 

Figure 4-2: Variation in output Stokes parameters as a function of fiber length for linear 
+450 polarized input light. Circular birefringence assumed present but linear birefrin­
gence off-axis not allowed. 
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Figure 4-3: Output Stokes parameters as a function of fiber length for right circularly 
polarized input light. Circular birefringence present but linear birefringence off-axis not 
allowed. 
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Figure 4-4: Variation in output Stokes parameters as a function of fiber length for ellip­
tically polarized input light (45° azimuth and 22.5° ellipticity). Circuhir birefringence is 
present but linear birefringence off-axis not allowed. 

on axis when the input polarization is off axis and for a light beam with polarization off 

axis, the output beam is off axis as shown in Fig. (4-6). It i~. shown in Figs.(4-7) and (4-

8) that the output light maintains the same form of circular and elliptical polarizations 

when the input light is respectively circular and elliptical. 

Comparing the results in Figs.(4-1) to (4-4) with Figs.(4-5) to (4-8), it is observed 

that the presence of circular birefringence induces a variation in the evolution of the 

polarization state for all cases of input polarization except for the case when the input 

light is right circularly polarized and the output beam remains unchanged. The change 

observed when circular birefringence is present can be attributed to the anisotropy in­

troduced by twisting the fiber. The pertubation resulting from twisting the fiber causes 
• " ' . I , 

the output polarization to change when the input light is either linear on-axis, off-axis, 

or elliptical. Right handed circular polarization is an eigenpolarization since the output 

states do not change for right circularly polarized input light. 

To obtain the Mueller matrix in Eq.(4.50), it was assumed that the natural axis ofthe 

fiber coincided with the laboratory frame so that ¢ = 0 and off-axis linear birefringence 

was not allowed. Suppose axes of fiber and lab frame do not coincide, then ¢ =J 0, and lin-
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Figure 4-5: Output Stokes parameters as a function of fiber length for linearly horizontally 
polarized input light. Both circular and linear off-axis birefringence are absent. 
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Figure 4-6: Output Stokes parameters as a function of fiber length for linear +450 po­
larized input light. Circular and linear birefringence off-axis are both absent . 
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Figure 4-7: Output Stokes parameters as a function of fiber length for right circularly 
polarized input light. Circular birefringence and linear birefringence off-axis are both 
absent. 
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Figure 4-8: Variation in output Stokes parameters as a function of fiber length for el­
liptically polarized input light. (450 azimuth and 22.50 ellipticity). Circular and linear 
birefringence off-axis are both absent. 
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ear birefringence off axis is allowed, a more general Mueller matrix for pure birefringence 

can be obtained. In this case, the evolution equations will have the general form 

d 

dz 

o 0 o o 
o 0 2G -2, 

o -2G 0 26' 

o 2, -26' 0 

and the Mueller matrix for the case of birefringence only becomes 

.. . M (0, O,~, z) = exp (~ . B) z 
. = [I+(e~'13r] -(e~'13)\oS/3z+(e~'13)sin/3Z 

(4.53) 

(4.54) 

where /3 = 2V (6,)2 + ,2 + G2 is the total birefringence and e ~= cos 2¢; cos 28 e 1 + sin 2¢; cos 28 

+ sin 28 e 3 is a unit vector in the direction of /3. Again, using the unified formalism, the 

matrix can be expanded in terms of the exponential of the: birefringence vector and the 

Lorentz generators to yield 

M(O,oj,z) = 

1 0 0 0 

o C~ S20S~ -S2",C20S~ 

+Ci",Cio (1 - C~) +CiOS2"'C2<p (1 - C~) +C2",C20S20 (1 - C~) 

o -S20S~ C~ C2",C20E!~ 

+C2",CioS2'" (1 - C~) +CioSi", (1 - C~) ; -+:S2"'C20 S20 (1 - C~) 

o 
S2",C20S~ -C2",C20S~ C~ 

+C2",C20S20 (1 - C~) +S2",C20S20 (1 - C~) +Sio (1 - C~) 
(4.55) 

where C2¢ = cos2¢;, C2() = cos 28, S20 = sin28, S~ = sin/3z and C~ = cos/3z. 

With Eq.(4.55), the following functional form of the output Stokes parameters can 
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also be obtained for this case if the input light is linearly polarized on axis: 

So (L) = Sao 

[
(8/)2 ((8/)2) 1 S1 (L) = 7 + 1- 7 cos2//L Sao 

(4.56) 

Where // = V ( 8/) 2 + , ... p + G2. Note that when, -+ 0, then // -+ f.l as in the previous case 

of Eq.(4.52). 

Hence, numerical results for several cases of input light polarization as a function of 

fiber length can be obtained for the special case in which linear birefringence off-axis is 

allowed but circular birefringenpe is assumed to be absent. The output polarization as a 

function of the fiber length for initially linearly horizontally polarized light, linear +450 

polarized light, right circularly polarized light and elliptically polarized light with 450 

orientation angle and 22S ellipticity are shown in Figs.(4-9) to (4-12). 

It is observed from these figures that the beam emerging from the fiber has the same 

form for all cases as the input polarization. That is, for linearly polarized input light 

on-axis the output light is also shown to be linearly polarized on-axis and similarly for 

off-axis, circular, and elliptical input polarization. 

When both linear off-axis and circular birefringence are considered to be present 

along the length of the fiber, it is seen from Figs.(4-13) to (4-16) that interesting effects 

may occur in the output polarization of the emerging lig~t : , : Again, it is observed that 

circular birefringence introduces a variation in the polarization as the light propagates 

along the fiber. When circular birefringence is assumed absent the Stokes parameters 

remain constant for each input. However, when circular birefringence is present, the 

Stokes parameters are observed to vary with length depending on the input polarization. 
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Figure 4-9: Output Stokes parameters as a function of fiber length for linearly hori­
zontally polarized input light. Circular birefringence assumed absent and linear off-axis 
birefringence allowed. 

v v v v 

Sout( L)O .. 
Sout(L)1 

..... 01---+-- )(-+-}(-+-15-+-- )t--t-J(-+-~ - +--)(-
Sout(L)2 

Sout( L)3 

)to 

I 

200 

I 

400 

L 

I 

600 

I 

800 

-
1000 

Figure 4-10: Output Stokes parameters as a function of fiber length for linear +450 

polarized input light. Circular birefringence assumed absent and linear birefringence 
off-axis allowed. 
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Figme 4-11: Output Stokes parameters as a function of fiber length for right circularly 
polarized input light. Circular birefringence is assumed absent and linear birefringence 
off-axis allowed. 
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Figme 4-12: Output Stokes parameters as a function of fiber length for elliptically po­
larized input light (450 azimuth and 22.50 ellipticity). Circular birefringence is assumed 
absent and linear birefringence off-axis allowed. 
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Figure 4-13: Variation in output Stokes parameters as a function of fiber length for 
linearly horizontally polarized input light. Circular birefringence assumed present and 
linear birefringence off-axis allowed. 

4.3 Polarization Formalism for an Optically Active 

Birefringent Fiber with Dichroism 

For the case of a lowloss isotropic fiber with optical activity, the evolution equations 

(4.12) and (4.13) take the form 

dSo w
2 

{a} - = -21m{k}So + 21m r S3 
dz c _ 

dS1 { } w
2 

{a} S - = -21m k S1 - 2Re r 2 
dz c 
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Figure 4-14: Variation in output Stokes parameters as a function of fiber length for linear 
+450 polarized input light. Circular birefringence present and linear birefringence off-axis 
allowed. 
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Figure 4-15: Variation in output Stokes parameters as a function of fiber length for right 
circularly polarized input light. Circular birefringence present and linear birefringence 
off-axis allowed. 
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FigUl"e 4-16: Variation in output Stokes parameters as a function of fiber length for 
elliptically polarized (45° azimuth and 22.5°ellipticity) input light. Circular birefringence 
assumed present and linear birefringence off-axis allowed. 

The above equations can also be rewritten in matrix form as 

So -21m {k} 0 0 ~: 1m ira} So 

d Sl 0 -21m {k} -~Re{ra} 0 Sl 
dz ~Re ira} -21m {k} 

( 4.58) 
S2 0 0 S2 

S3 ~: 1m ira} 0 0 -21m {k} S3 

Inspection of Eq.( 4.58) reveals that there is no linear birefringence and diclrroism. The 

presence of circular birefringence and diclrroism induces optical activity in the fiber. 

Circular birefringence gives the polarization azimuth rotation while circular diclrroism 

controls the evolution of the ellipticity. These are manifestations of optical polarization 

phenomena. The Mueller matrix for circular birefringence only is 

(4.59) 
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and the Mueller matrix for circular dichroism only is 

M (dO, d,O,Z) = expd3 (~3 . D) z 

= [I - (e3 . D) 2] + (e3 . D) 2 cosh d3z + (e3 . D) sinh d3z 

Again, resorting to the use of the unified formalism, the Stokes-Mueller matrix equation 

for an isotropic optically active fiber with circular birefringence and dichroism can be 

expressed as 

So Cit 0 0 Sit Soo 

Sl = e-21m{k}z 
0 C{3 -S{3 0 SlO 

(4.60) 
S2 0 S{3 C{3 0 S20 

S3 Sit 0 0 Cit S30 

where Cit = cosh(~1m{ra})z and Sit = sinh(~: 1m{ra}) z. Thus, equation (4.60) 

can be rewritten in the following explicit form 

S2 (z) = e-21m
{k}z [S20COS (:: Re{ra

}) Z+SlO sin (:: Re{ra
}) z] (4.61) 

S3 (z) = e-2Im
{k}z [S30 cosh (:: 1m {ra

}) z + Soo sinh (:: 1m {ra
}) z] 
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Figure 4-17: Output Stokes parameters for linearly horizontally polarized input light as 
a function of the fiber length. Circular birefringence and dichroism only are assumed 
present. 

For the specific case of linearly polarized input light, the functional form can therefore 

be written as follows 

(4.62) 

where /3
3 

= w2 /2c2 {Rera } and d3 = w2/2c2 {I mra}. t1 is the isotropic loss of the fiber. 

The graphical results illustrating the change in the output Stokes parameters as the 

light propagates along the fiber for different input field polarization when linear bire­

fringence and dichroism are absent are given in Figs.(4-17) to (4-20). The decreasing 

intensities observed in these diagrams are due to circular dichroism and isotropic loss in 

the fiber. 

Now, for the case of a birefringent fiber with anisotropic dielectric tensor, without dis-

regarding losses for the specific case when circular birefringence and dichroism are absent, 
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Figure 4-18: Output Stokes parameters for linearly +450 polarized input light as a func­
tion of the fiber length. Circular birefringence and dichroism only are ilSsumed. 
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Figure 4-19: Variation in output Stokes parameters for right circularly polarized input 
light as a function of the fiber length. Circular birefringence and dichroism only are 

assumed present. 
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Figure 4-20: Output Stokes parameters for elliptically polarized (450 azimuth and 22.50 

ellipticity) input light as a function of the fiber length. Circular birefringence and dichro­
ism only are assumed present. 

can also be analysed. Linear birefringence and dichroism account for small anisotropy 

and diattenuation effects in the fiber. Using Eq.(4.41), as well as equations (4.12) and 

(4.13) the following set of equations are obtained 

dSo /I /I 

- = -6.So - 28 COS2¢S1 - 28 sin2¢S2 
dz 

dS! /I , • 

- = - 6.S1 - 28 cos 2¢So - 28 sm 2¢S3 
dz 

· dS2 · /I • ' 

- = -6.S2 - 28 sm 2¢So + 28 cos 2¢S3 
dz 

dS3 ' , . 
- = -6.S3 - 28 COS2¢S2 + 28 sm2¢S1 
dz 

which can be rewritten in an equivalent form as 

So -6. -28/1 cos2¢ -28/1 sin2¢ 0 

d S1 -28/1 cos 2¢ -6. 0 -28' sin2¢ 
-

-28/1 sin2¢ 
, 

dz S2 0 -6. 28 cos2¢ 

S3 0 28' sin2¢ -28' cos2¢ -6. 
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where D. = ~Im{2n+~(El1+E33)}' 8' = Re{wD.E/4cn} and 8" ~Im{wD.E/4cn}. 
Note that D. is the isotropic loss of the fiber, 8' and 8" are its linear birefringence and 

dichroism, respectively. 

The Mueller matrix for birefringence only becomes 

M(O,O,~,Z) = exp (~. B) z 

= [I + (e" . B r] -(e" . B r costJz + (e" . B) sintJz 
(4.65) 

where the unit vector is e,,= cos2¢ el +sin2¢ e2. Equation (4.65) , when expanded 

will yield 

1 0 0 0 

M (0,0, tJ, z) = 
0 Ci¢ + 8i¢C" 82¢C2¢ (1 - C,,) -82¢8" 

(4.66) 
0 82¢C2¢ (1 - C,,) 8i¢ + Ci¢C" C2¢S" 

0 82¢8" -C2¢8" C" 

and the Mueller matrix for only dichroism is 

M (do, d, 0, z) = exp (-doz) exp ( d . :6) z 

= [I - (e d . :6)2] + (e d . :6)2 cosh dmz + (e d . :6) sinh dmz 
(4.67) 

Where the unit vector ed= cos2¢ el +sin2¢ e2. Equation (4.67) can also be expanded 

to obtain 

C'h -C2¢8h -82¢8h 0 

M (do, d, 0, z) = 
-C2¢8h 8i¢ + Ci¢Ch 82¢C2¢ (Ch - 1) O· 

(4.68) 
-82¢8h 82¢C2¢ (Ch - 1) Ci¢ + 8i¢Ch . 0 

0 0 0 1 

The birefringence and dichroism occur simultaneously over the same optical path 

• j ... . , •• j . 
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and are thus parallel effects. Therefore the Mueller matrix for this case is a composit 

of the individual matrices due to only birefringence and orily dichroism. The product 

of equations (4.66) and (4.68) with the appropriate order preserved yields the Mueller 

matrix for the system. Hence the Stokes-Mueller equation is 

So C" -C2",S" -S2"'S" 0 Sao 

Sl = e-L),z -C2",S" Ci",C" + S?",C/3 C2",S2'" (Ch - C/3) -S2",S/3 SlO 

S2 -S2",Sh C2",S2", (Ch - C/3) S?",Ch + C?",C/3 C2",S/3 S;o 

S3 0 S2",S/3 -C2",S/3 C/3 S30 
(4.69) 

where Ch = cosh (28") Z, Sh = sinh (28") Z, S2", = sin 2¢, C2; = cos 2¢, C/3 = cos (28') Z, 

and S/3 = sin (28') z. 

For the case of linearly polarized input light, the functional form can be obtained 

using Eq.(4.69) as follows 

So (L) = e-M [COSh 28" L - cos 2¢ sinh 28" L] Sao 

Sl (L) = e-L),L [-,. cos 2¢ siDh 28" L + (cos2 2¢ cosh 28" L + sin2 2¢ cos ~8' L)] Sao 

S2 (L) = e-L),L [- sin 2¢ sinh 28" L - cos 2¢ sin 2¢ (cosh 28" L - cos 28' L)] Sao (4.70) 

S3 (L) = e-L),L [sin 2¢sin 28'L] Sao 

For this case, it is noticed that the observed intensity depends on the orientation angle 

¢ of the incident light. 

Graphical results showing the variation in the Output Stokes parameters for different 

input polarization of a light beam propagating along a birefringent fiber having small 

losses are presented in Figs.(4-21) to (4-24). These results are for the specific case in 

which circular birefringence and dichroism are both assumed to be absent in the fiber. In 
. ("! 

general, the graphs show that the total intensity of the input laser light is dissipated by 

the fiber. This is due to attenuation by the fiber. In addition, it is also seen from these 
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Figure 4-21: Output Stokes parameters for linearly horizontally polarized input light as 
a function of the fiber length. Circular birefringence and dichroism are assumed absent. 

plots that the fiber depolarizes the propagating beam due to the polarization dependent 

losses accounted for by the presence of linear dichroism. 

To obtain Eq.(4.69), effects due to circular birefringence and dichr?ism were not 

allowed. However, in order to generalize these results, this!~triction must be removed. 

In Eq.(4.32), the general Mueller matrix for arbitrary birefringence arld dichroism, the 

scalar terms {<p +, III +, <P _, III _} may be rewritten in the following form 

A (~ ~) A B (<P±, 1lI±) = A 1+ B {3 -C d . B 

( 
~) A [(~ A) 2 (~ A ) 2 (~ ~) A] + Bd-C{3 ·D+D {3 · B + d·D + (3Xd ''!2 

where 

A= ~ (R;coshlpz+I;coSRpi ) ; 
p 

B = ~ (Rpsinlpz + Ipsinhlpz) 
. Np 

C = ~ (Rpsinhlpz - Ip sin Rpz) 
Np 
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Figure 4-22: Output Stokes parameters for linear +450 polarized input light as a function 
of the fiber length. Circular birefringence and dichroism are assumed absent. 
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Figure 4-23: Variation in output Stokes parameters for right circularly polarized input 
light as a function of the fiber length. Circular birefringence and dichroism are assumed 

absent. 
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Figure 4-24: Output Stokes parameters for elliptically polarized (450 azimuth and 22.50 

ellipticity) input light as a function of the fiber length. Circular birefringence and dichro­
ism a.re assumed absent. 

1 
D = N (coshlpz - cos Rpz) 

p 

Therefore using equation (4.71), the expansion for the matrix represented by the 

scalar terms ca.n be written more explicitly as 

, . d : ~ '" 

A+Dd2 - (Bd1 + CfJl) - (Bd2 + CfJ2) - (Bd3 + CfJ3) 

-DfJ2d3 -DfJ3d1 -DfJ1d2 

- (Bd l + CfJl) A+ (BfJ3 - Cd3) - (BfJ2 - Cd2) 

+DfJ2d3 D (fJi - fJ2 - dO +D (fJ2fJl + d2d1) + D (fJ3fJl + d3d1) 

- (Bd2 + CfJ2) - (BfJ3 - Cd3) A+ (BfJ1 - Cdd 

+DfJ3dl +D (fJlfJ2 + d1d2) D (fJ~ - fJ2 - d~) +D (fJ3fJ 2 + d3d2) 

- (Bd3 + CfJ3) (BfJ2 - Cd2) - (BfJl - Cd1) A+ 

+DfJ1d2 + D (fJ3fJl + d3d1 ) +D (fJ3fJ2 + d3d2) D (fJ~ - fJ2 - d~) 
(4.73) 
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The matrix in Eq. (4.73) represents the most general case of birefringence and dichroism 

present in a fiber with an action-vector n having real and imaginary parts that are not 

necessarily parallel. Discussions on the results for specific cases of light polarization 

rela.ting to this general case of both birefringence a.nd dichroism present in the fiber will 

be presented in Chapter 6. 
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Chapter 5 

POLARIZATION FORMALISM 

AND MODEL: THE NONLINEAR 

CASE 

5.1 Evolution Equations For Stokes Parameters in 

Nonlinear Fiber 

In this chaptw, the nonlinear polarization effects in a single mode optical fiber are dis­

cussed and presented. The theoretical framework for describing the evolution of the 

polarization state of an intense light in the fiber is also discussed and key effects result­

ing from the propagation of such an intense light in the fiber are analysed theoretically. 

Numerical and graphical illustrations depicting these nonlinear polarization effects in the 

fiber will also be presented and discussed. 

The self-action vector for a fiber with small nonlinearities may be expressed as follows 

(5.1) 
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where 

(5.2) 

is the linear action vector and 

(5.3) 

is the nonlinear self-action vector where wo:{3 = UjilijklU~1 is an expansion coefficient 

representing the material parameters responsible for the nonlinearities. These action 

vectors and tensors have already been defined in section (3.3). The tensors Uij 

~vo:uij and lijkl = ~wo:{3UijUfk· are restated here for clarity. Also, reca~ that lijkl -

;: (Xijkl + ikfijklz) . 

To specify the evolution equations for an isotropic nonlinear optical fiber, the self­

action vector Do: needs to be calculated. The linear part, D~ for an isotropic fiber has 

already been analysed in Chapter 4. The parameter wa{3 responsible for the intensity­

dependent effects of the fiber can be obtained provided proper consideration is made on 

the symmetry conditions of both the third order local and nonlocal susceptibilities. 

In an isotropic medium, the nonlinear local susceptibility has 21 nonzero elements of 

which only 3 are independent [21]. This is due to the symmetry properties of an isotropic 

material. The nonzero elements are related by the equation 

(3) (3) $: (3) $: $: (3) $: $: 

Xijkl = XU22 Dij Ukl + X1212 Uik Uji + X1221 UilUjk (5.4) 

where 1,2 = x, y in Cartesian coordinates. To obtain Eq.(5.4), the inv¥iance of X;nl 

under reflection and rotation are utilized. A rotation of 45 degrees about the 3-axis 

(or z-axis) was the choice in the derivation. Equation (5.4) shows that the third-.order 

local susceptibility has three independent elements for the general case in which the field 

frequencies are arbitrary. 

To specialize this result to the study of nonlinear polarization effects in a fiber, there 

is a need to further characterize the third-order suscetibility tensor at the appropriate 

. . b (3) ( - + ) B £ thi· d ·t choice of the operatmg frequency given Y Xijkl W - W W - w. e ore s IS one, 1 
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is important to note that since the fields in the fiber are in the transverse directions, the 

number of nonzero ehiments reduce to eight as follows: 

~) - (~ _ ~) W W 
Xllll - X2222 - X1l22 + X1212 + X1221 

(3) (3) 
X1l22 = X2211 

(3) (3) 
X1212 = X2121 

(3) (3) 
X1221 = X2112 

(5.5) 

At this choice of frequency for Xml (w;w,w, -w), the intrinsic permutation symmetry 
. h (3) (3) . 

reqUIres t at X1l22 = X1212 and the mdependent elements reduce to two. Furthermore, 

the electronic contribution to the susceptibility is dominant [21] so that Xg~2 = Xml = 

1 (3) Th C 
3Xllll' ere10re, the nonlinear local response can now be given in terms of an effective 

nonlinear susceptibility as follows: 

Pi (w) = 0 L Xijkl (w;w,w, -w) E j (w) Edw) Et (w) (5.6) 
j,k,l 

where the factor 0 in Eq.(5.6) accounts for degeneracy in the frequenCies. 0 = 3 when 

two of the frequencies are equal as in this case. 0 = 1 if all the frequencies were the 

same a.nd 0 = 6 if all frequencies were different. Thus, for a single-mode optical fiber, the 

nonlinear local response is characterized by the third order susceptibility tensor 

(3) ( ) 
Xijkl = Xikjl = 3Xijkl W, W, w, -w (5.7) 

An isotropic nonlinear medium can be either gyrotropic or nongyrotropic depending 

on the value of the nonlocal susceptibility tensor. For gyrotropic isotropic media, the 

linear a.nd nolinear nonlocal optical responses are 

(3) 
rijiiz 
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- rC3). = r(3). + r(3) r(3) 
UtJZ JUtz ijiiz + iijiz 

r(3~ . 
tJJJZ 

_ - r(3). = r(3) + r(3) r(3) 
JUtz tJttz iijiz + iiijz 

The nonlocality susceptibility which is symmetrical with respect to the permutation of 

the second and third indices is 

r(3) - r(3) _ r(3) ( . (3) (3) 
ijklz- ikjlz- ijklz w,w,w,-W)+rikjlz(W;W,w,-W)-rilkjz(W;W,w,-w) (5.9) 

However, in an isotropic nongyrotropic media, nonlocality is forbidden by symmetry 

and there are no nonlocal effects so that r(l) = rC3
k)l = a For isotropic materials, 'Z.Jm ~J 71t • 

there are five different cubic crystal symmetry point groups: 23, m3, 432, 4 3m and 

m3m. Cubic crystals are optically isotropic and are considered completely isotropic for 

its optical property [60]. All cubic crystals have isotropic local susceptibility tensors 

x~y = (E - 1) Oij' E is the dielectric permittivity of the medium. Therefore, without 

taking nonlocality into account, their linear optical properties are isotropic. Even within 

the first-order spatial dispersion approximation, the linear optical properties of crystals 

of m3 and m3m point groups are indistinguishable from those of isotropic nongyrotropic 

media and thus these crystals show no nonlocal effects. Other cubic crystals, namely 

the 23 and 432 classes, show natural and nonlinear optical activity similar to that of 

isotropic gyrotropic media. It is also worthy to note that the crystals of, m3 and m3m 

classes possess inversion symmetry and are thus centrosymIIl;etric. Crystals which belong 
,, ( 

to the m3 class have 21 nonzero third order local susceptibility tensors of which 7 are . 
independent and the m3m class have 21 nonzero third-order local susceptibility of which 

only 4 are independent. Quartz glass optical fibers belong to the m3m class of crystals 

and therefore do not exhibit nonlocal effects. In other words, optical fibers show no 

. . al t"t . r(l) r(3) a conventional natural nor nonlinear optIC ac IVI y smce ijz = ijklz = . 

Therefore, the material parameter appropriate for light propagation along the longi-
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tudinal axis of a single mode optical fiber can be expressed as 

(5.10) 

The parameters wo.{3 are responsible for the intensity-dependent part of the ~ction 

vector Do.. 

With the use of the relations in equation Eq.(5.1O), the sixteen components for wo.{3 

can be easily obtained as follows: 

127f { 0 ( 3 ) O} 247f {(3) (3)} 
Woo = --;;:- (Jji Xijkl (Jkl = -:;; Xllll + X1l22 

127f { 1 ( 3 ) I} 247f {(3) (3) } 
Wll = --;;:- (Jji Xijkl (Jkl = -:;; Xllll -:- X1l22 

127f { 2 ( 3 ) 2} 247f {(3) (3) } 
W22 = --;;:- (J ji Xijkl . (J kl = --;;:- X1l22 + X1221 

127f { 3 ( 3 ) 3} 247f {(3) (3) } 
W33 = --;;:- (J ji Xijkl (J kl= --;;:- X1l22 - X1221 (5.11) 

WOl = W02 = W03 = WlO = 0 

W23 = W30 = W31 = W32 = 0 

I-rence the self-action vector Dcr for light propagating along a fiber with small nonlin­

earities can now be obtained without much difficulty. For the case of a lossless fiber, all 

components of Do are real. Therefore, 

127f ( (3) (3) ) 
Do = --;;:- Xllll + X1l22 So 

127f ( (3) (3) ) 
D1 = -- Xllll - X1l22 Sl 

. 11. 
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D - 127r ( (3) (3) ) 
2 - ~ X1l22 + X1221 S2 (5.12) 

D - 127r (3) (3) ) 
3 - ~ X1l22 - X1221 S3 

Using the expressions in Eq.(5.12), the nonlinear evolution equations for 

the Stokes parameters can now be written in the following form 

dS 6 [ 1 ( (3) ) S2 1 ( (3) (3) (3)) 2] _0 = _ 7rW Im Jl Xllll 1 +;;: Xllll + 2X1l22 + X1221 S2 

dz . C 1 ( (3) (3) (3)) 2 + ;;: XUll + 2X1l22 - X1221 S3 . 

dS 127rw [ {3 } {(3)} ]. 
dz

1 
= --c- Im X~ll SOSI + Re X~21 S3S2 (5.13) 

[ 

I { I ( (3) (3) (3) )} ] dS2 = _ 67rw m;;: Xllll + 2X1l22 + X1221 SOS2 

dz c R {I (2 (3) (3) (3) )} S S + e;;: X1l22 - Xllll - X1221 1 3 

[ 

{ I ( (3) (3) (3) )} ] dS3 = _ 67rw Im;;: Xllll + 2X1l22 - X1221 SOS3 

dz C R {I (3) 2 (3) (3) )} S S + e ;;: Xllll - X1l22 - X1221 1 2 

If the fiber is initially assumed to be lossless, then the refractive index n and cubic 

optical nonlinearity Xml are real and the expressions in Eq.(5.13) can now be written in 

the following simple form 

dd~ = 12;W [Re { X~21 } SIS3] 

dS3 = 0 
dz 

dSo = 0 
dz 
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It is noted that in obtaining Eq.(5.14), the fiber is also assumed to be isotropic. 

It can be deduced readily from the last two expressions in Eq.(5.14), that So and 

S3 are constants and the wave ellipticity 'fI = ~ sin-1 (S3/ So) does not change during 

propagation. 

Consequently, the first two equations of (5.14) can now be written as 

dd~l = - [~ Re {Xeii } S2] (5.15) 

and 

(5.16) 

where Xeff = {1~11" (Xm1) So sin (2'f1) }. Equations (5.15) and (5.16) are two simple first 

order coupled differential equations which can now be solved in the usual way. 

Thus, the solutionS for Eq.(5.14) are 

where 

Sdz) = S20 cos (~ Re {xgff}) z + SlOsin (~ Re {xg ff
}) z 

S3 (z) = S3 (0) = S30 

So (z) = So (0) = Sao 

xgff = r~7r (Xgl21) Soosin(2'f10)} 

(5.17) 

(5.18) 

S - {S S S S } are the Stokes parameters for the input light and 'flo represents aD - 00, 10, 20, 30 . 

the initial angle of ellipticity. !he expressions in Eq.(5.17) can be rewritten in matrix 
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form as follows: 

So 1 0 0 0 Soo 
Sl 0 CIf! -Sif! 0 S10 
S2 0 S,p Cp 0 S20 

(5.19) 

S3 0 0 0 1 S30 

where C<f> = cos(~Re{xgff})z and Sif! = sin(~Re{xgff})z. The 4 x 4 matrix in 

Eq.(5.19) is easily recognized as a Mueller matrix which contains terms that depend on 

the nonlinear perturbations of the fiber. It is worth noting that in order to obtain the 

Mueller matrix in Eq.(5.19), the fiber was assumed to be lossless so that the differential 

equations in Eq.(5.14) could b~ decoupled into Eqs. (5.15) and (5.16). 

5. 2 Nonlinear Polarization Effects 

In Chapter 4, it was shown that anisotropy of the dielectric tensor led to birefringence 

in the fiber. If the fiber is assumed to be lossless and the initial polarization state of the 

light wave is linear and oriented along either principal axes of a highly birefringent fiber, 

the polarization state does not change as the light propagates through the fiber. However, 

if the initial state of the propagating wave is not linear or even if it is line~ but off axis of 

a highly birefringent fiber, the polarization state will go from one elliptical polarization to 

the opposite handed elliptical polarization via a linearly polarized state and so on. This 

can be described by a precession of the Stokes vector around the birefringence vector so 

that from any initial position on the Poincare sphere, the end of the Stokes vector of a 

propagating wave will trace out a vertical circle perpendicul~}o the birefringence vector. 

If losses are included and the birefringence is low or the fiber length is short, then for 
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linearly polarized incident wave there will be small changes in the polarization state of 

the light such that the change in azimuth 8 (L) - 8 (0) « 1 and the ellipticity T) (L) « l. 

A rotation of the polarization azimuth 8 (L) - 8 (0) proportional to 1m {(6t/n)} will 

occur due to the differential absorption of the two orthogonal linear eigenwaves. The 

propagation will yield ellipticity proportional to Re {(6t/n)} which is related to the 

differential refractive index of the eigenwaves. 

The polarization phenomena described above is exhibited when nonlocality is ne­

glected. That is, these polarization effects occur in the zero-order spatial dispersion 

approximation. Now when nonlocality is accounted for, optical activity is exemplified 

and the plane of polarization of the light rotates as the light propagates through the 

fiber. Such polarization effects appear in the first-order spatial dispersion approximation 

depicted by the linear nonlocality tensor rm. Thus, it can be deduced that, the only 

reason for a change in the polarization of light propagating along an isotropic linear fiber 

is due to optical activity. To study the nonlinear effects, however, there is a need to 

account for the local and nonlocal nonlinearities, Xml and r~JL. These quantities have 

already been identified in equations (5.7) and (5.9). Consideration of these terms ex­

plains the dependence of the fiber on the intensity of the light wave. The main difference 

between a linear and ~onlinear fiber, therefore, is that in a nonlinear fiber the suscepti­

bilities depend on the light wave intensity and initial ellipticity. In what follows, several 

nonlinear polarization effects occuring in a fiber when local and nonlocal susceptibPities 

are considered will be analysed. 

5~2.1 Nonlinear Anisotropic Effect 

It is interesting to analyse the general case of a fibel' without neglecting losses. Let 

the light be linearly polarized with polarization azimuth 8 0 , then Stokes parameters can 

105 

• 

II 
I 
I 
, I 
Ii 
! I 

I ! 
I , 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



be written as 

So: = {So, cos 280 , sin 280 , O} (5.20) 

It is reasonable to assume that onl II I' . . ' y sma po anzatIOn changes occur durmg propagatIOn 

so that 8 (L) - 8 0 « 7r and 'T) (L) «7r. Then, using Eq.(5.13) yields the following 

formulae for the polarization azimuth and ellipticity of a light wave propagating along 

the optic axis of a lowloss birefringent fiber 

( 
8 (L) - 8 0 ) 87r

3
L (1m) {6.x } = - I sin 48 

'T](L) Ac11+n12 -Re n 0 
(5.21) 

where L is the length of the fiber, I is the intensity of the light wave with wavelength A 

approaching the fiber of core refractive index n from vacuum and 

6. _ (3) (3) (3) 
X - Xllll - 2X1l22 - X1221 (5.22) 

Thus, it is seen from Eq.(5.21) that even when nonlocality is neglected, the orientation 

angle of the polarization ellipse of an initially linearly polarized light will rotate. The 

polarization azimuth of an intense light beam rotates even if the initial ellipticity of the 

light is zero. This is a nonlinear anisotropic polarization effect and its sign depends on 

the initial polarization azimuth 8 0 . If sin 480 = 0, i.e. the light is polarized along the 

[100] direction (fiber X-axis), the [010] direction (fiber Y-axis), the bisector [110] between 

X and Y, or perpendicular to this bisector, there will be no polarization change occuring. 

However, for any other initial polarization, the polarization state of the wave will change. 

If a fiber were lossless, the refractive index n and cubic optical nonlinearity Xml would 

be real. Then, the light will become elliptically polarized, but the main axis of the ellipse 

will retain its initial azimuth. This self-induced ellipticity will be proportional to the 

intensity and the length of the fiber. However, fibers have low losses and thus n or 

Xml is complex and the self-induced ellipticity will be accompanied by a rotation of the 

polarization azimuth. 
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The nonlinear anisotropic effects for small induced polarization azimuth rotation man­

ifests itself in a way similar to. nonlinear optical activity and early works [13] referred 

to it as (NLOA-II), ~ second type of nonlinear optical activity. Therefore, it can be 

concluded that the nonlinear anisotropic polarization effect reveals hidden anisotropy 

of third order local optical nonliearity. This anisotropic effect is represented by 6X = 

(3) ? (3) (3) This b' . .,. . 
Xll11 - ~X1l22 - X1221' com mabon of components of the CUbIC optICal nonlmeanty 

tensor is zero by symmetry if the fiber is considered totally isotropic. Self induced elliptic­

ity due to nonlinear anisotropic effect has been observed in a range of highly transparent 

allrnli-halid crystals of the m3m point group.[131 In these crystals, 1m {6X} = 0 in the 

visible range and no polarization azimuth rotation can take place. However, Re {6X} 

is not necessarily zero and according to Eq.(5.21), an initially linearly polarized light 

becomes elliptically polarized if Re {6X} i- O. It is also wo~~h noting here that the non­

linear anisotropic effect has very interesting spectroscopic applications for a fiber since it 

is sensitive to departures of the fibers crystal electronic structure from isotropy. Also, the 

anisotropic polarization effect is most pronounced along the cubic direction [001] which 

is the axis of propagation in the fiber. 

5.2.2 Nonlinear Polarization Self-Ellipse Rotation 

" , 

Another fundamental nonlinear polarization effect in a birefringent single mode optical 

fiber is that of polarization ellipse self-rotation. This effect was first observed by Maker, 

Terhune and Savage and presented in an experimental paper on nonlinear polarization 

effects [24J. Polarization ellipse can be easily deduced when the nonlocal susceptibilities 

(linear and nonlinear) are neglected but only if the light wave is initially elliptically 

polarized [13]. Then, the initial ellipticity 1)0 i- 0 and with the use of Eq.(.5.18) it can be 
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shown that 

(5.23) 

Eq.(5.23) indicates that the polar' t' . h lza Ion aZlmut rotates as the wave propagates along 

the length of the fiber. This effect is referred to as polarization ellipse self-rotation. The 

rotation requires an initial ellipticity Tio which does not change during propagation so 

that Ti (L) = rJo· On the Poincare sphere, this effect is represented by a point tracing 

out a horizontal arc above or b.elow the equator [see Fig.(3-3)]. The length of the arc is 

proportional the the length of the fiber and increases with intensity and initial ellipticity. 

Depending on the sign of the initial ellipticity, the azimuth will be positive or negative. 

Clearly, Eq. (5.23) refers to a lossless fiber. However, for the general case in which losses 

in the fiber are accounted for, the imaginary part of Xi~2l is considered and the azimuth . ~ 
is accompanied by an intensity-dependent change in the ellipticity of the light wave. 

5.2.3 Polarization Instability 

,: ', 1 ' 

It has been shown in earlier sections that in optical fibers, the light waves are generally 

elliptically polarized and in the special case of a polarization maintaining fiber they are 

orthogonally linearly polarized. In linear optics, the polarization of the prqpagating wave 

is independent of the intensity of the light. In nonlinear optics, however, the refraction, 

absorption, and anisotropy of the fiber are all functions of the wave intensity. ~t has 

been shown [13] that when the input intensity or polarization of light undergoes a slow 

change, the output polarization is found to be a mutivalued function containing both sta­

ble and unstable branches. The output polarization state depends on the prehistory of 
- , .' " 

the excitation (polarization hysteris). Given a particular combination of the parameters 

of the input field, the output polarization may oscillate in time or even change randomly 

with continuous frequency spectrum creating polarization choas. Furthermore, whereas 
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in linear optics the polarizatio~ of the wave either oscillates along the dir~ction of prop­

agation or steadily tends towards one of the eigenpolarizations which remain unchanged, 

in nonlinear propagation, the polarization parameters along the propagation coordinate 

may change abrutly and can depend strongly and unpredictably on the initial conditions. 

This illustrates the phenomena of polarization instability and chaos which often appear 

in nonlinear interactions between two waves. But, simple examples of polarization insta­

bility can be seen in self-action effects. This section discusses how polarization instability 

develops for intense light in a birefringent single mode fiber. 

Consider that light propagates along the symmetry axis of a nonlinear birefringent 

fiber having local optical response. Assuming that the X and Y Cartesian axes of the 

laboratory frame coincides with the major and minor axes of the fiber, the components 

of the self-action four vector can be exp~essed as 

487r (3) no = -X1l22S0 
n 

Ell - E33 247r (3) S n1 = + -X1l22 1 
n n 

.. 

(5.24) 

In obtaining Eq.(5.24), small anisotropy is assumed along the direction of propagation 

and is accounted for in the dielectric tensor while the cubic nonlinearity is presumed 

isotropic. If losses are initially neglected, the nonlinear evolution equations become 

dSo = 0 
dz 

dS W ( (3) S) S _2 = _ Ell - E33 + 247rX1l22 1 3 
dz 2cn 
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and 

d83 { W } dz = - 2cn (Ell - E33) 82 

The evolution equations can now be arran d' t . d 'b' h l' . ge m 0 equatlOns escn mg t e po anzatlOll 

azimuth 8 and ellipticity angle TJ of the wave as follows: 

where 

and 

d8 
dz 
dTJ 
dz 

- 0' tan 2TJ cos 28 + ON L sin 2TJ 

-0' sin 28 

are measures of anisotropy and nonlinearity, respectively. 

(5.26) 

(5.27) 

(5.28) 

To analyse the stability of the eigenpolarizations with increasing wave intensity, there 

is a need to observe the development of small fluctuations 68 and f:::,TJ in the polarization 

azimuth and ellipticity. If these small fluctuations lead to a drastic departure of the 

output polarization from the incident one, the polarization state is said to be unstable. 

To introduce an initial fluctuation of the light polarization azimuth 68 = 8 - 8 0 at 

z = 0, let the incident wave be linearly polarized close to the X direction but not strictly 

along it , then Eq.(5.26) takes the following simple form 

d8 
(5.29) 

dz 
dTJ _ -20'8 
dz 

Differentiating the first of these equations with respect to z, and substituting dr} / dz 

from the second equation gives the following second-order differential equation for the 

c· 

no 

r 

I 
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polarization azimuth 

C5.30) 

The solution to Eq.(5.30) obviously depends on the sign of 0' (0' + ONL). In loss less 

d· ~) . 1 
me la, X1l22 IS rea and as a rule positive. That is, ONL is real and positive. Therefore 
, (' NL) o 0 + 0 > 0 for all values of 0' and ONL except when _ONL < r:' Th £ u < O. us, or 
'(' NL) o 0 + 0 > 0, Eq.(5.30) has the following solution 

(5.31) 

In this case, the polarization azimuth oscillates within strict limits imposed by the ini­

tial fluctuation 68, and so linear polarization along the X direction is stable. When 

0' (0' + ONL) < 0, the' solution to Eq.(5.30) is 

(5.33) 

Here, a small initial fluctuation 68 of the polarization azimuth will exponentially in­

crease with propagation. Therefore, for 0' (0' + ONL) < 0, linear polarization along the 

X direction is unstable. The condition 0' (0' + ON L) < 0 for polarization instability can 

be expressed in terms of material parameters. This condition is achieved if 

(3) S > 1033 - lOll > 0 
X1l22 00 247f (5.34) 

Therefore, polarization instability requires lOll to be smaller than 1033, that is, tbe re­

fractive index for a wave polarized along the X direction, 'f1.x = t:i{2, should be smaller 

than the refractive index 'f1.y = t:~~2 for a wave polarized along the Y direction. OIlly 
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the eigenpolarization with the smaller refractive index can be unstable. Note that the 

left-hand-side of the inequality (5.34) also imposes a condition on the light intensity. 

Polarization instability occurs if 241rXm2S00 > E33 - Ell or in terms of the threshold light 

intensity la, 

1>1 = cn(ny-nx)(l+n)2 
a 2 (3) 

96n X1l22 
(5.35) 

This is polarization instability for the intensity of a wave approaching a crystal with 

core refractive coefficient n from a vacuwn. Reflection losses at the boundary is taken 

into account in this expression. If the intensity exceeds the threshold value in Eq.(5.35) a 

sma.ll fluctuation of the incident polarization state will lead to a very considerable change 

in the output polarization. Depending on the sign of the initial fluctuation, the wave will 

become right or left elliptically polarized. 

Polarization instability in a birefringent media was purely academic when Sala first 

drew attention to the trigger behavior of the polarization of light in a birefringent crystal 

[26]. The intensity threshold for polarization instability is easily achieved in optical 

fibers with small birefringence. Quartz glass optical fibers typically have nonlinearities 

of Xg~2 c::: 1O-15esU. For a fiber with biIefringence of ny - no; ~ 10-7 and n ~ 1.5 the 

polarization instability threshold intensity is about 10 = 1017 erg/cm2
, which is equivalent 

to 10 = 10GW /cm2 . With a fiber core of 5J.Lm diameter, the threshold power required for 

the observation of polarization instability is of the order of several kilowatts. A nwnber of 

works, both theoretical and experimental have been published [2,7,8,13] on this problem. 

A similar effect of polarization instability occurs with circularly polarized light in a 

birefringent media. When light intensity exceeds a threshol~ ~alue, circular polarization 

becomes unstable. Infact, polarization instability was first seen in a birefringent fiber 

with circularly polarized light in 1986 [10]. 

Polarization instability can also be seen along the direction of propagation in a fiber. 

This type of instability does not require the intensity to exceed a threshold value but 

rather develops as an exponential instability. If the initial polarization state is linear, at 
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an angle 8 0 to the X direction in the natural co d' t fr th or Ina e arne, en 

s =Soo (cos 280 , sin 280 , 0) 

and for a lossless fiber, the formula in Eq.(5.13) may be written as 

dSo -=0 
dz 

dSI _ 127rW (3) 
dz - -~Xll22S2S3 

dS2 _ 6w (3) . . ;: "" " 

dz - en (2Xll22 + 6X) SI S3 

dS3 67rw 
" dz = - en (6X) S1 S2 

(5.36) 

(5.37) 

where 6X = X~~)ll - 3X~~~2' Note that in this case, 6X =1= 0; it is zero by symme-

try in isotropic media and thus shows the difference between the nonlinearity tensor in 

isotropic media and a cubic media like an optical fiber. These evolution equationS may 

be rearranged directly into equations for the polarization azimuth 8 and ellipticity 'TJ as 

follows 
.!'; 

d8 ~ (20NL + O~L cos2 28) sin 27] (5.38) 
dz 
d7] 1 NL 

--Oa sin48cos27] 
dz 4 

where 
ONL 67rW (3) = --Xll22 

en 

and 
ONL = 67rW 6 X 

a en 

F\'om Eq.(5.38), it follows that polarizations which exactly satisfy the conditions sin~8 = 

o and 7] = 0 will not change since the right-hand sides of the evolution equations become 
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zero. To obtain the instability of th I·· 
. ese po anzatlOns a small fluctuation.68 is introduced 

in the polarization azimuth of the incident wave allowing .68 (0) = .68 + 8
0 

with 

sin480 = 0 and 7] (0) = O. In this E (538) . . case, q.. may be wrItten ill simplified form for 
8 - 8 0 « 7r and 7] « 7r as follows: 

d8 
- (20NL + ot;L cos2 280) 'T] (5.39) dz 

d'T] NL 

dz - -oa cos480 

Solving Eq.(5.39) yields 

8 = eo + .68 cos VfIZ (5.40) 

and 

(5.41 ) 

where 
. ., 

J.L = (20NL + ot;L cos2 280) O:L cos 480 (5.42) 

The character of these solutions depends on the sign of J.L. For positive J.L, the polarization 

azimuth and ellipticity will oscillate within strict limits imposed by the ini~ial fluctuation 

.68, and the incident linear polarization will be stable. For negative J.L, the solution will 

become exponential in nature: cos (J.L 1/2 z) = cosh (1J.L1
/
21 z) ~ ! exp (1J.Ll/21 z) . Therefore 

for /.1, < 0 and 1J.L1/ 21 z » 1, the output polarization will depart exponentially fro~ the 

input one. For small anisotropy, .6X < IX1l221, and therefore 10NLI « 10t;LI · Since the 

nonlinearity is often positive, that is X1l22 > 0 and ONL > 0, the term in the brackets 

in the first equation of (5.38) is positive. Therefore, the sign J.L and the stability of 

the polarization state will depend on the sign of ot;L cos2 280, that is, on the sign of 

.6xcos480 . For 

.6Xcos480 < 0 
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the initial linear polarization corresponding to sin 400 = 0 is unstable. If, however, 

6xcos400 > 0 

the linear polarization corresponding to sin 400 = 0 is stable. 

It is now appropriate to present the general solutions to the system of coupled non­

linear differential equations expressed in Eq.(5.25) which will describe the characteristics 

of an intense light wave propagating in an optical fiber with small losses and anisotropy. 

The anisotropy will be accounted for in the dielectric tensor and the nonlinear suscepti­

bility tensor components are pr.esurned to be strictly real and isotropic. The approach of 

[26] was used in this work to obtain a closed-form solution to these nonlinear differential 

equations. Firstly, it is noted that Eq.(5.25) can be rewritten as 

d83 - = -R082 dz 

(5.43) 

where Ro = w6f./2nc and RI = 127l"wXgl22/nc. With the ' use of the second and third 

equations in Eq.(5.25), 82 can be eliminated to obtain 

(5.44) 

which when integrated will yield 

(5.45) 

... fr E (5 45) that only one of the stokes parameters is inclepen-
It IS ImmedIately seen om q. . 
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dent. Furthermore, Sl can also be elirni t db' 
. . na e y squarmg the last equation of Eq.(5.43) 

and consldermg that the light is complet" I I ' e y po anzed so that 

Sf + S~ + S~ = 1 (5.46) 

then one obtains 

(5.47) 

where 

(5.48) 

B2 R6 + R1 ( ROSlO - ~ RlS~O) 

B3 - R6 - (ROSlO - ~R1S~O) 

Equation (5.47) can be re-expressed as 

(5.49) 

where 
-B2 ± JB~ + 4BIB3 

a - ---!~=------
1,2 - 2B1 (5.50) 

are the roots of Eq.(5.47). Hence, Eq.(5.49) can now be expressed as 

1n1oZ lb dS3 
VB1 dz = ± 

o y J(S~ + a2) (b2 - S~) 
(5.51) 

where a2 = -a2 and b2 = a1' Solutions to Eq.(5.51) are in the form of elliptic functions 

[61] and are given as (see Appendix D) 

(5.52) 
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where C is a constant and k = . / (CiI/ Ci1 - Ci2) is the modulus. E () b Y quation 5.52 can e 
written more compactly as 

2pkf 
S3 = -:;:-cn (Rof z + C ; k) (5.53) 

where r = RI/ Ro and f = [(1 + rSlO)2 - r2S2 ] i Als - ±1 - (S)' h h 20' 0, P - - sgn 30 WIt t e 

sign function defined as sgn (x) = 1 for x > 0 and sgn (x) - 1 £ 0 Th l' . - ,- - or x <. e so utlOns 

for S2 and S1 are obtained as f9llows (see Appendix D) 

2pkj2 
S2 = -r- [sn (Rofz + C ; k)) dn (Rofz + C ; k) (5.54) 

and 

(5.55) 

These solutions describe the characteristics of an arbitrarily intense beam propagating 

along a low-loss optical fiber. The solutions are both general since no restrictions are 

placed on the relative strength of the optical fields and are exact since the set of coupled 

nonlinear equations are solved in terms of known transcendental functions. These results 

contain those for self induced ellipse rotation and the linearly polarized optical Kerr effect 

[26). 

It is seen from Eq.(5.53), Eq.(5.54) and Eq.(5.55) that the output Stokes parameters 

are dependent on the Jacobian modulus k which in turn depends on the i?itial values of 

the Stokes parameters as well as the nonlinear susceptibili~:y . tensor and the anisotropic 

dielectric tensor. Therefore, in order to describe the propagation characteritics of the op-. 
tical beam for different initial polarization states, it is important to deduce a relationship 

between k and the ratio r which is a relative measure of the anisotropy and the cubic 

nonlinear susceptibility of the fiber. Thus, using the definition of k as well as Eq.(5.50) 
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. Figure 5-1: Jacobian parameter m as a function of the ratio r for initial polarization states 
810,820 , and 830 of (1) 1,0,0; (2) 0,0.3,1; (3) 0,0.71,0.71; (4) J, 0, 0.8; (5) -1 ,0,0.8 . 

. and Eq.(5.48), one obtains the following expression 

(5.56) 

where t.he Jacobian parameter m = k2 has been used. 

'. With the use of Eq.(5.56), therefore, one can obtain the variation of the parameter 
, ' , 

m with r for different. initial polarization states [see Fig.(5-1)]. It is noted that similar 

results were obtained in [26]. 

Fig.(5-1) shows, for five different initial polarization states, the valueEi of r for which 

m is defined. It is seen that m 2: 0 for all values of r 2: O. It can also be deduced'from 

the figure that there is a value of r for which m is not. defined. This special case occurs 

When 820 = 0, SlO < 0, and r = 1. In particular, examples 4 and 5 of this figure illustrate 
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L 

Figure 5-2: Variation of Stokes parameters as a f]lIlction of fiber length for the initial 
polarization ~tate SlO = 0, S20 = 0.71, and S30 = 0.71. The dependence of m (r) for this 
iilitial state is given by curve 3. In this figure r = 2.3 and m = 0.58. 

the two-cases where S20 = 0 but the radically different m (r) dependence for example 5 ../ ~~ ­

results from simply changing the sign of SlO whiclIphysicaUy indicates a 90° rotation of 

the initial polarization ellipse. 

Thus, one can now obtain numerical solutions fo!' the variation in the Stokes param~ 

ters using Eq.(5.53), Eq.(5.54) and Eq.(5.55) with Imowledge of the rri (r) values obt~ined 

from along a curve of Fig.(5-1). Typical results obtained for propagation chara~teristics 

of the light beam for various values of the ratio r are illuStrated in Figs.(5-2) to (5-5). 

For an input light with initial polarization state SlO = 0, 520 = 0.71, and 530 = 0.71 

corresponding to a right elliptically polarized beam with 45° azimuthal angle and 22 .5° 

ellipticity, Figs.(5-2) and (5-3) show, respectively for r = 2.3 and r = 4, the variations in 

the Stokes parameters as a function of fiber length.' Another set of interesting results for 

' an input light with initial polarization state 510 =0, 520 = 0.3, and 530 = 1 correspond-

I 

11 
II 

Ii 
I 

I r 
h 

I 
: 

I 
\ 

ing to ~ right elliptically polarized beam with 45° azimuthal angle and 37° ellipticity are 

shown in Figs.(5-4) and (5-5) for r = 2.3 and r = .1, respectively. 

......... .. - . 
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. Figure 5-3: Variation of Stokes parameters as a function of fiber length for the initial 
. polarization state 510 = 0, .520 = 0.71, and 530 = 0.71. The dependence of m (r) for this 

initial state is given by curve 3. In this figure r = 4 and m = 1. 
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Figure. 5-4: Variation of Stokes parameters as a function of fiber length for the initi~ 
polarization state 510 = 0, 5 20 = 0.3, and 530 = 1. The dependence of m (T) for this 
initial state is given by curve 2. In this figure T ,/ 2.3 auam = 1.2. 
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Figure 5-5: Variation of Stokes parameters as a function of fiber length for the initial 
polarization state 810 = 0, 8 20 = 0.3, and 830 = 1. The dependence of m (r) for this 
initial st~te is given by cUIve'2. In this figure r = 4 and m = 2.7. 

It is observed from these figures that the solutio~ are periodic for the output Stokes 

parameters having 0 :::; m < 1 and m > 1. However, the case of m = 1 is special. The 

polarization tends asymptotically to a final state instead of varying periodically as in the 

other cases when m i= 1. Fig.(5-3) shows this aperiodic behavior when m = 1 for the 

same initial polarization state as Fig.(5-2). The final state, in the example of -Eig.(5-3) 

corresponds to a linearly polarized optical beam. 

5.2.4 Nonlinear Optical Activity 

Nonlinear optical activity (NLOA) was first predicted in 1967 [25]. It is a nonlinear 

analog of the conventional optical activity (OA) ~entioned earlier in Chapter 4 .. This 

effect is easily identified if the incident light wave is linearly polarized [13}. Then in such 
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a case, the polarization azimuth becomes a function of the medium length expressed as 

e (L) = eo+ e OA (L) + e NLOA (L) (5.57) 

where 

(5.58) 

and 

(5.59) 

SOD is the intensity of the incident light with wavelength ). propagating in an optical 

medium with negligible loss of refractive index n. The angles here are measured in ra­

dians. e
OA (L) describes the polarization plane rotation due to natural optical activity 

and eN LOA (L) gives the polarization azimuth rotation due to intensity-dependent. non­

linear optical activity. From above, the nonlinear optical activity is simply an additive 

to the natural optical rotation proportional to Re {r~1l1} ' If losses in the medium are 

considered, then 1m {r~ll1} i- 0 due to fast electronic mechanisms and light initially 

linearly polarized will become elliptically polarized, with ellipticity increasing with in­

tensity. This phenomena is analogous to circular dichroism in linear fiber optics where 

linearly polarized light becomes elliptically polarized in an optically active fiber when 

1m {ra} i- 0 as discussed in Section (4.2). Nonlinear optical activity has its origin from 

two fundamental sources. Intensity-dependent optical activity can be due to thermal 

mechanism of nonlinearity as observed in an experiment using Si02 in which the N LOA· 

resulted from heating 'of the crystal by an intense laser pulse [13]. N LO ~ has also been 

intensively studied experimentally with effort concentrate4 . on the search for the fast 

electronic mechanism nonlinear optical activity. The N LOA can be represented on the 

Poincare sphere by an arc parallel to the equator indicating that the light does not change 

its ellipticity but the azimuth changes steadily. The length of the arc is proportional to 

the length of the fiber. The arc consists of two segments: one is due to natural activity 

and the other is due to nonlinear optical activity. The length due to N LOA increases 
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with intensity. 

It must be emphasized that even though nonlocality vanishes in optical fibers due to 

symmetry requirements, an intensity-dependent optical activity due to th~rmal effects of 

nonlinearity can be observed [13]. 
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Chapter 6 

DISCUSSION OF RESULTS 

Expressions describing the linear polarization effects in a birefringent single mode' opti­

cal fiber were obtained analytically within the framework of the unified formalism for 

polarization optics. Using the methods of this formalism, several Mueller matrices which 

characterize the interaction of a beam with an optical fiber were calculated so that the 

effects on the polarization of the light could be determined. The matrices obtained were 

as follows: (1) Mueller matrix for an optically active birefringent fiber without dichroism 

for the specific case in which circular birefringence was present but linear birefringence 

off-axis was assumed absent, (2) Mueller matrix for an optically active birefringent fiber 

without dichroism for the specific case in which circular birefringence is present but lin­

ear birefringence off-axis was assumed present, (3) Mueller matrix for an optically active 

birefringent fiber without dichroism for the specific case in which circular birefringence 

is assumed absent but linear birefringence off-axis was assumed presen~, (4) Mueller ma­

trix for an optically active birefringent fiber with losses for the specific case in y.rhich 

only circular birefringence and dichroism were assumed present in the optical fiber, (5) 

Mueller matrix for an optically active birefringent fiber with losses for the specific case in 

which only circular birefringence and dichroism were assumed absent in the optical fiber, 

and (6) general Mueller matrix for an optically active birefringent fiber with different 

SOUTces of birefringence and dichroism present for the case in which the birefringence and 
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dichroism vectors wer~ not necessarily parallel. 

The elements of each matrix were expressed in terms of their flUlctlonal forms to 

facilitate the simulation of models that would determine the polarization behavior of the 

light as a function of the fiber length with negligible nonlinear effects assumed. Several 

results for different input polarization states were obtained and illustrated in Figs. (4-1) 

through (4-24). These solutions can be divided into two classes according to whether 

the fiber was assumed to have losses or not. When there were no dichroism, the output 

Stokes parameters were seen to be either periodic or to have a constant value see Figs.( 4-

1) to (4-16). It was observed from comparing Figs.(4-1) to (4-4) with Figs.(4-5) to 

(4-8) that the presence of circular birefringence, which is related to introducing twists 

in a fiber, induces a change in the polarization state of the light as it evolves along the 

fiber for linear and elliptically polarized input light. This variation in the polarization 

can be attributed to the linear anisotropy as a result of twisting the fiber. Thus, the 

perturbation which reSults from twisting the fiber causes the polarization state to change 

when the input light is either linear on-axis, off-axis or elliptical. It is further seen from 

Figs.(4-3) and (4-7) that when the input light is circularly polarized, the output ?eam 

polarization states do not vary as in the other cases. It can therefore be deduced that 

in the presence of optical activity, circular polarization becomes an eigenpolarization. 

Furthermore, in the examples where the polarization states are fOlUld to be periodic, the 

Stokes parameters are observed to have the same periods. See Figs.(4-1), (4-2), and (4-4) 

as well as Figs.(4-6) and (4-8). 

However the results were dramatically different when dichroism was assumed to be , 
present in the optical fiber as shown in Figs.(4-17) to (4-24)' ,.These solutions show that 

I • , \ 

the intensity of the input light is dissipated by the fiber. This is due to the presence of 

losses in the fiber. They showed the changes that occur in the output Stokes parameters 

as the light propagat~s along an optical fiber assumed to have small losses for different 

input polarization states. All of these results show a characteristic exponential decrease 

in the total intensity of the propagating light wave. The various sources of losses in 
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the fiber causes the beam's i t 't t ·dl· . fi n ensl y 0 rapi y attenuate as It traverses along the ber 

so that the optical fields become attenuated with distance. A particularly interesting 

result occurs as shown in Fig.(4-23) for the output polarization of the propagating light 

when the input light is right circularly polarized and circular birefringence and dichroism 

are assumed absent. In this case, the polarization of the output beam changes from 

circular to elliptical and back to circular.· Note the damped oscillatory form of the Stokes 

parameter S2 whose magnitude and period of oscillation tend to decrease with length. 

It is also interesting to observe the behavior of the output Stokes parameters as a 

function of the orientation angle of the polarization ellipse. It was observed that for 

linearly polarized input light as a function of orientation angle, the output was se'en to 

be linear and the presence of optical activity introduces a variation in the polarization 

states. When the input light was elliptically polarized, the output light was found to also 
, ; i ·, 

be elliptical. However, for circularly polarized input light, the output light was circularly 

polarized but independent of orientation angle. Figs.(6-1) and (6-2) show the polarization 

change for an elliptically polarized input light as a function of orientation angle. Fig.(6-1) 

shows the variation when circular birefringence is not present while Fig. (6-2) depicts the 

change when circular birefringence is present. 

In all of the results discussed thus far, the incident light was regarded to be at low 

optical intensity and the fiber response was considered linear so that the ouput Stokes 

parameters would be independent of the incident light. However, when the incident 

radiation is high enough, the response of the fiber is expected to change qualitatively 

from its behavior at low intensity giving rise to nonlinear optical effects. Hence, in this 

case, the output Stokes parameters would depend on the intensity of the incident light. 

In other words, the output Stokes parameters will have a dependence on the input Stokes 

par ameters. 

Fig.(5-1) showed the Jacobian parameter m as a function of the ratio r for five different 

initial polarization states. The term r rv X~~)22/ t.E is the relative measure of the non­

lineraity (induced birefringence proportional to the intensity) and the linear anisotropy 
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Figure 6-1: Variation in output Stokes parameters as a function of orientation angle for 
elliptically polarized (45° azimuth and 22.5° ellipticity) input light. Circular birefringence 
is assumed absent. 
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(linear dielectric tensor) r is dim . nl . (3). 
. enslO ess SInce XU22 IS a contracted tensor of rank zero 

and the difference 6.E is an ordinary number It m b d 'th t 1 f al . ay e assume WI ou oss 0 gener -

ity that r 2 0 even though in some materials the denominator 6.E can be negative. Thus, 

the assumption that r may be taken as positive with no loss of generality holds in this 

case because the diffe.r;ence in refractive indices for the eigenpolarization is 8n
p 
~ 6.E/2n 

and for a birefringent fiber 8np > O. It follows from Eq.(5.53) through ·Eq.(5.55) that 

the propagation characteristics of the optical beam depend critically upon the Jacobian 

parameter m which in turn is dependent on the initial values of the Stokes parameters 

and the ratio r according to Eq.(5.56). Also note from Eq.(5.56), that m is undefined 

when 8 20 = 0, 810 < 0, and r = -l/SlO • Fig.(5-1) showed the variation of the parameter 

m with l ' for five different initial polarization states. In particular, examples 1 and 4 in 

that figure illustrate the two cases where S20 = 0 for S10 < 0 and SlO > 0 respectively. 

Curve 5 illustrates the m (r) dependency when the initial polarization ellipse is rotated 

by 7f / 2. Curves 2, 3, and 4 show that m is strictly monotonically increasing function of 

r . However, curve 5 shows that when the input light is linearly polarized on axis m = 0 

for r 2 O. When m = 0, the Jacobian elliptic functions degenerate to their trigonometric 

counterparts (cosine and sine ~unctions) indicating the limiting case when nolinearities 

are not considered. Thus, when m = 0, the output Stokes parameters will have behav­

ior as shown previously in Figs.(4-1) through (4-24) for the different input polarization 

states. 

Fig.(5-2) showed the variation of Stokes parameters as a function of fiber length 

for an input light with initial polarization state SlO = 0, S20 = 0.71, and S30 = 0.71 

corresponding to a right elliptically polarized beam with azir,nuth 45° and ellipticity 22.5° . 

The dependence of m for this initial state is given by curve 3. This figure illustrates the 

propagation characteristics in the case where r = 2.3 and m = 0.58. The output Stokes 

t seen to be doubly periodic and to have different periods. parame ers are 

Fig.(5-3) showed a qualitatively different behavior for the same input polarization as 

in Fig.(5-2) except that the propagation characteristics are for the case r = 4 and m = 1. 
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This would represent a high input £ . . 
power or a bIrefrmgent optical fiber . The polari:tation 

is seen to be aperiodic and that it tends asymptotically to a linearly polarized final state 

in this example. 

Figs.(5-4) and (5-5) indicate, respectively for r = 2.3 and r = 4 another set of , 
results for an input light with initial polarization state 810 = 0, 8

20 
= 0.3, and 8

30 
= 1 

corresponding to a right elliptically polarized beam with 45° azimuth and 37° ellipticity. 

The m (7') dependence for this initial state is given by cure 2. In these figures, the output 

Stokes parameters are observed to vary periodically. It is also noticed from these figures 

that as r increases from 2.3 to 4, the periods of the Stokes parameters also increase. This 

implies that the output polariz~tion state at z = L is dependent on the beam's intensity. 

Thus, it can be deduced from these examples that the state of a beam propagating along 

a birefringent single mode fiber depend on the initial polarization as well as the intensity 

of the input light in a complicated way. 

It was also of interest to investigate if there are any significant changes in the J aco bian 

parameter m when a parameter such as the ellipticity of the polarization ellipse undergoes 

a change. It was observed in this work that for the unique polarization state in which the 

orientation angle is 90° but the initial Stokes parameter is such that 810 = -0.5, 820 = 0, 

and 830 = 0.3, the value of r for which m is undefined is shifted to larger r values as 

shown in Fig.(6-3). In this example, r = 2. Recall that in Fig.(5-1) m (r) was undefined 

at r = 1 for 8lO = -1, 8 20 = 0, and 830 = 0.8. Thus. ~hen an intense elliptically 

polarized beam which propagates along a birefringent optical fiber undergoes a change 

in both the shape and orientation, the critical input intensity at which the light-induced 

birefringence cancels the existing fiber birefringence will increase. 

Furthermore one recalls from Fig.(5-1) that when the input light was linearly polar-, 
. d I th ., I axl'S of the fiber the output polarization was observed to remain Ize a ong . e pnncIpa , 

linear; m = 0 for r > O. However, Fig.(6-1) shows that when the input light is linearly 

1 . d ff. . th t' th m" put polarization is 45° to the principal axis of the birefrin-po arlZe 0 -axIS, a IS e 

fi 
£ 0 This indicates that the output polarization become intensity 

gent ber, m =f 0 lor T > " , 
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FigU!e 6-3: Jacobian parameter m as a function of the ratio'; fc:- initial polarization 
states 810 , S20, and S30 of (1) 0, 0,1; (2) 0,0.5,1; (3) 0.4, CIA, 1; (4) 0,1,0; (5) -0.5, 0,0.3. 
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dependent and thereby nonlinear. Thus, the behavior of the output polar~zation depend 

on input intensity as well as fiber's axis. 
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Chapter 7 

CONCLUSIONS 

The purpose of this work was to investigate the nonlinear polarization effects in a bire­

fringent single mode optical fiber. Stokes parameters were used to analyze these effects. 

Evolution equations for the polarization states in a birefringent optical fiber were derived 

and general solutions for Stokes parameters of the propagating light beam were obtained. 

The methods of the unified formalism for polarization optics was utilized to obtain sev­

eral IVlueller matrices which characterize the perturbations resulting from birefringence 

and dichroism over the optical path of the fiber . The basic assumption in this approach 

was that the interacti?n of the light with the fiber was considered linear. When the light 

beam was assumed to be intense so that nonlinear effects were considered as the light 

propagates, the use of Jacobi elliptic functions were employed to obtain the solutions in 

terms of Stokes parameters which described the nonlinear polarization dynamics at the · 

output. This thesis successfully model the evolution of the Stokes parameters as func­

tions of fiber length and orientation angle for different kinds of perturbations. Graphical 

illustrations showing the variation in output polarization d'le to both linear and nonlinear 

effects were also successfully obtained in this work. 

Several interesting results were obtained and presented in this thesis. The character 

of the results were different depending on whether the fiber response to the propagating 

S
'der"ed 11"near or nonlinear and depending on whether the fiber was assumed wave was con 1 
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to have losses or not. A significant aspect of the results presented in "this work is that 

when the fiber is considered linear, the output Stokes parameters are either periociic or 

a constant function of length or orientation angle. When the solutions are periodic, the 

three Stokes parameters are observed to have the same periods. However, when the input 

light is intense so that the fiber response to the propagating field is considered nonlinear, 

the output Stokes parameters are doubly periodic and the three Stokes parameters do 

not have the same periods. In addition, some cases of aperiodicity was observed. The 

results obtained may have potential applications in polarization-dependent devices. 

The unified formalism which was used to develop and analyze the model to describe an 

evolution of the state of polarization in a birefringent optical fiber is a phenomenological 

linear theory since the Mueller matrices that were deduced from the formalism are linear 

operators whose elements can be measured. Strictly speaking, however, the Mueller 

matrix calculi in that formalism cannot handle a truly nonlinear propagation in an optical 

fiber. To do this, in our view, would require a higher order tensor. Thus, further . work 

is needed to include the nonlinear polarization effects in the formalism. In any case, the 

Mueller matrix valid for nonlinear propagation can be obtained by measurement in a 

laboratory experiment. We believe, therefore, that a general higher order tensor for the 

nonlinear case when added to the linear-case Mueller matrix will yield the most general 

characterization for propagation of a light wave along a birefringent optical fiber. 
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Appendix A 

Derivation of the Coupled-Mode 

Equation 

Derivation of the coupled-mode equation begins with Maxwell's equations 

caE 
(A.l) \7xH=J+--

c at 

llaH (A.2) \7 x E= ---
c at 

\7 'IlH =0. (A.3) 

\7. cE =p (A.4) 

In an optical fiber, there are no excess charges, thus, p = D..and J = 0.. 

Tal ' . h 1 f E (A 2) and using Eq.(A.l) to eliminate the field vector Hone <lng t e cur 0 q. . 

obtains the following wave equation 

(A.5) 
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Equation (A.5) can be expressed as 

(A.6) 

where the vector identity \7 x \7 x E =\7 (\7 . E) - \72E has been used. 

Consider an initially ideal cylindrically symmetric single mode fiber .:vith an unper­

. turbed dielectric function EO (r, 0), where r and 0 are the polar parts 'of the cylindrical 

coordinates (r, 0, z). Then, the permittivity of the ideal fiber becomes 

10 = EO (r,O) (A.7) 

Assuming that the corresponding transverse monochromatic fields traveling along the 

length of the fiber can be expressed as 

2 

ET = L: anE; (r, 0) exp [i (knz - wt)] (A.8) 
n=l 

and using the fact that the transverse and longitudinal parts of the del operator \7 = 

'M + 2-e and that of the Laplacian \72 = \7~ + aa
2

2 , Eq.(A.6) can be rewritten as v T az z, . z . 

(A.9) 

F h . E (A 7) Maxwell's equation (A.4) can now be written as urt ermore, usmg q. . , . 

\7 . EE = EO \7 . E + E- \7 EO =0 (A.lO) 

omponents the above expressions in Eq.(A.10) yield 
and considering only transverse c , 

(A.11) 
.1 I '" 
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Therefore, the general wave equal" (A 9) . Ion . , can be rewrItten as 

(A.12) 

Substituting Eq.(A.8) into Eq (A 12) 1 d . " ea s to the followmg transverse ideal mode equa-

tion for an unperturbed fiber 

Note that in obtaining Eq.(A.13), the fiber is assumed to be isotropic so that kl = k2 = k 
. ' 

a constant. 

Now, assuming that there are small perturbations in the fiber resulting from length 

dependent disturbances of the dielectric function, the total dielectric function can be 

expressed as 

E(r,8 , z) =Eo(r,8)+w(r,8,z) (A. 14) 

where W characterizes the perturbations. It should be noted that in the presence of 

perturbations, the constant field amplitudes in Eq.(A.8) become functions of z thereby 

containing the effects due to the perturbations. Therefore, it is assumed that the general 

electric field in the perturbed fiber can be represented as 

2 
ET = Lan (z) E~ (r, 8) exp [i (knz - wt)] (A.15) 

n=l 

Using equations (A.4) and (A.i4), the following relation is obtained 

(A.16) 

so that 
(A.17) 

143 

I 

I 
I 

[' 1 
! '. 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



It is also assumed that the logitudinal fields can be written as 

2 

. E
Z 

= Lan (Z) E~ (r, e) exp [i (knz - wt)] 
n=l 

(A. IS) 

so that the total fields become 

(A.19) 

Using equations (A.17) and (A.19), the transverse part of the wave equation (A.6) can 

be written as 

2 T [ T 1 ] J.LE a2ET 0= \l E + \IT E ·\lTlnEo+-\l· (WE) - --- = SA + SB + Se 
EO c2 at2 

(A.20) 

where SA, SB, and Se are three vector sums when equations (A.15) and (A. IS) are 

utilized. The first sum 

SA = ~ an (z) {\l}E; + (J.L~EO ~: - k;) E; + \IT (E;.\lTlnEO)} exp [i (knz - wt)] 

(A.21) 

vanishes because it satisfies the ideal mode equation for a perturbed fiber. The second 

term 

SB = t {E;d
2

a; + an (z) \IT (E! dd
W

) + \IT (WE! dd
an

)} exp [i (knz - wt)] (A.22) 
n=l dz EO Z EO Z 

which are negligible because it consits of second order sma.ll terms. Hence, it follows that 

Se = ~ [2iknE;dd~ + an (z) J.LOW~: (WE;) + an (z) \lTUn] exp [i (knz - wt)] ~ 0 

(A.23) 

where 

(A.24) 
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Applying orthonormality conditions 

1271" 100 
dB rdr (ET x HT*) . e = 1° t5 o 0 n Tn z mnmn 

(A.25) 

on Eq.(A.23) , the following expression is obtained 

Equation (A.26) can be written in a more concise form as 

(A.27) 

where 
(A.28) 

(A.29) 

(A.30) 

Therefore taking sums, 

Thus, 
2 

a~ (z) = i 2: Pmnan (z ) (A.32) 
n=l 

where 

(A.33) 
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or equation (A.32) cal?- be rewritten in a more explicit form as 

da (z) . 1\ () 
-~=~p ·a z 

dz 
(A.34) 
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Appendix B 

Derivation of the Stokes Para~eters 

Equation of Motion 

To derive the Stokes parameters equation of motion, it is useful to begin with the co­

herency matrix defined by a matrix product in terms of the field amplitudes as 

I (z) = a (z) at (z) (B.1) 

where the symbol t indicates the Hermitian conjugate which makes at (z) a row vec­

tor. Taking the derivative of Eq.(B.1) and using the coupled mode equation derived in 

Appendix A, 
d --a(z) = iP (z) · a(z) 
dz 

and its Hermitian conjugate 

d -t _at (z) = -iat (z) . P (z) 
dz 

one obtains the following expression 

dI(z) = i [p (z)I(z) -I(z)Pt (z)] 
dz 

147 

(B.2) 

(B.3) 

(B.4) 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Recall that the coupling term c b . ..' fro an e expressed In complex form In terms of the blre lU-

gent and dichroic operators as follows: 

p (z) = :§ (z) + iD (z) (B.5) 

and its hermitian conjugate as 

pt (z) = :§t (z) + iDt (z) (B.6) 

then, substituting Eq.(B.5) and and its complex conjugate Eq.(B.6) into Eq.(B.4), will 

yield 

dI(z) [ ~ ] {~ } dz =i B(z),I(z) - D(z),I(z) (B.7) 

where [B, I] = [BI - IB] is called the commutator and {D,I} = [DI - ID] IS the anti 

commutator. Note that in order to obtain Eq.(B.7), the Hermiticity of:§ (z) and D (z) 

that is i3 (z) = i3t (z) and D (z) = Dt (z) were used. 

The Stokes parameters can also be defined in terms of the field amplitudes as 

(B.8) 

so that with the use of equations (B.1) and (B.8), the relation between the Stokes para­

meters and the coherency matr.ix may be deduced and written as a 2 x 2 matrix 

(B.9) 
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From Eq.(B.9), it is observed that the coherency matrix equals its complex conjugate 

transpose and is thus hermitian. Hence, I (z) can be represented in terms of the Pauli 

spin matrices and the 2 x 2 identity matrix as 

(B.IO) 

where 

0"0 = (1 0) 0"1 = (1 0) 0"2 = (0 1) 0"3 = (~ -i) (B.ll) 
o 1 0 -1 1 0 z 0 

In the 2 x 2 operator representation of the general Jones matrix, the field amplitudes can 

be written 'as 

a (z) = J (:8 (z) ,D (z)) . a (zo) (B.12) 

where J is the Jones matrix and Zo is some reference value of z. Since:8 (z) and 15 (z) 

are physically measurable quantities, the operators representing them must be hermitian 

and thus can also be expressed in terms of the 2-dimensional identity and pauli spin 

matrices of Eq.(B.ll) . Thus, 

_ 1 3 

B (z) = "2 2..:.fJI (z) al 
1=0 

(B.I3) 

and 
1 3 

15 (z) = - 2..:.dl (z) al (B.14) 
2 1=0 

Substituting equations (B.lO), (B.13), and (B.14) into Eq,(B.7), one obtains the co­

herency matrix in a parametric form 

(B.I5) 
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The Pauli matrices obey an algebra such that their multiplication property is defin~d by 

(B.16) 

With the use of Eq.(B.16), Eq.(B.15) can now be expressed as 

3 d 
L -d SI (z) 0-1 = (8 (z) x (3) . 0-. - doSo - do (8·0-) - So (d· 0-) - (d· 8) 
1=0 z 

(B.17) 

The left hand side of Eq. (B .17) can also be written as 

3 d d 3 d 
L d SI (z) 0-1 = -d So (z) 0-0 + L -d SI (z) 0-1 
1=0 z· Z 1=1 Z 

(B .18) 

Comparing equations (B.17) and (B.18), and taking the scalar and vector parts separately 

one obtains 

and 

d 
dz So (z) = -do (z) So (z) - d (z) . 8 (z) 

d ~ 

-8 (z) = 8 (z) x (3 (z) - do (z) 8 (z) - So (z) d (z) 
dz 

.,. 
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Appendix C 

Derivation of the Mueller Matrix for 

an Optically Active Birefringent 

Fiber Without Dichroism 

Derivation of the Mueller matrix for an optically active birefringent fiber begins with the 

differential equations describing the evolution of Stokes parameters 

(C. 1) 

. and 

(C.2) 

where n = (nI' n2, n3) is a vector in Stokes space known as the self action vector and 

/-l = 1,2,3. The self action vector is in general complex and can be expressed as 

n =f3 +i d (C.3) 

where f3 is the birefringence 3-vector and d represents the dichroism 3-vector. 

151 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



It is worth noting that Eq.(C.1) and Eq.(C.2) can be rewritten as 

d80 [ ~~] 
dz = - d080+ d . S (CA) 

and 
dS [~~ ~~] 
dz = - do S + d 80+ f3 x S (C.5) 

where do = ~c 1m (471, + no) represents the isotropic loss of a the fiber. Consequently, 

and 
~ w 
d= -Imn 

2c 

(e.6) 

(e.7) 

Now, if the fiber is initially assumed to be lossless, then there is no dichroism so that 

1mn = 0 and n is real. Hence, Eq.(C.1) becomes 

and Eq.(C.2) takes the form 

d80 = 0 
dz 

(e.8) 

(e.9a) 

which describes a precession of the Stokes vector around n which accounts for small 

anisotropy in the dielectric tensor of the fiber. The action vector can be expressed in 

terms of the Pauli matrices as 

(C.lO) 

Here, 

(C.l1) 

is a rank-two tensor that represents the coupling in the field amplitudes due to perturba­

tions. If it is further assumed that the fiber is istropic, then Eij = 71,28ij and the coupling 
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term becomes 
.W ra Uij = Z- eijz 
c 

(C.12) 

where ra is the magnitude of the optical nonlocality and eijz is the Levi Civita antisym­

metric tensor. Note that r a is a measure of the optical activity effects in a fiber. 

It has been shown in the text that the action vector D for an isotropic optically active 

bireu·ingent fiber has the following components 

D1 
1 (0.13) 
11. 

D2 - 0 

D3 -
_ 2w ra 

c 

where D..€ = €ll - €33· It may be advantageous to express Eq.(C.9a) in tensor form as 

(C.14) 

where a, (3, and.')' have values I, 2, and 3. With the use of Eq.(C.13) and Eq.(C.14), one 

can then obtain the following equations 

(C.15) 

d82 , 
dz = 2G81 + 28 83 (C.16) 

d83 = -28'82 dz (C.17) 

a.nd expressed in form of matirx equation will become 

80 0 0 0 0 80 

d 81 0 0 -2G 0 81 
- (C.18) dz 82 0 2G 0 28' 82 

83 0 0 -28' 0 83 
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G ::::: w2/2c2ra is the fiber's optical rotatory power related to the circular birefringenCe 

and 8' = (b.f.w/4cn) is a measure of the fiber's on-axis linear birefringence. Eq.(C.18) 

has solutions of the form 

~ (~/\ ) ~ (/\ ) ~ Sa= exp {3. B z· SaO= exp fJ err B z· S aO 
(C.19) 

where e{3 = cos 28 e 1 + sin 28 e 3 and fJ = 2)(8')
2 + G2. Therefore, 

/\ /\ /\ 

e{3' B= cos 28 Bl + sin 28 B3 (C.20) 

from the Lorentz generators referred to in this work 

0 0 0 0 0 0 0 0 

/\ 0 0 0 0 /\ 0 0 -1 0 
Bl= and B3= (C.21) 

0 0 0 1 0 1 0 0 

0 0 -1 0 0 0 0 0 

so that 

0 0 0 0 

/\ 0 0 - sin 28 0 
e{3' B . (C.22) 

0 sin 28 0 cos 28 

0 0 - cos 28 0 

or 

0 0 0 0 

(ep- 13 r = 
0 - sin2 28 0 - sin 28 cos 28 

0 0 -1 0 
(C.23) 

0 - sin 28 cos 28 0 - cos2 28 
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Now the Mueller matrix is given as 

Nt (o,O,/1,z) =exp (/1. B) z . 

= [I + (e {3 . 13)2] - (e {3 . 13)2 cos /1 z + (e {3 • B) sin /1 z 

(0.24) 

where I is the 4x4 identity matrix. Then, 

1 ° ° ° 
Nt (0,0, /1, z) = ° cos2 2() + sin2 2() cos /1z - sin 2() sin /1 z cos 2() sin 2() (cos (3z - i) 

° sin 2() sin /1z cos/1z cos 2() sin{3z 

° cos 2() sin 2() (cos /1z - 1) - cos 2() sin /1 z sin2 2() + cos2 2() cos {3z 
(C.25) 

is the Mueller matrix for an optically active birefringent fiber with no dichroism assumed 

and for the specific case when linear off-axis birefringence is assumed abs~nt . 
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Appendix D 

Derivation of Exact Solutions' for 

System of Coupled Nonlinear 

Equations 

The coupled nonlinear evolution equations (Eq.5.25) can be rewritten as 

dS2 
dz = R 1S1S3 + R OS3 

dS3 
dz = -ROS2 

(D.l) 

(D.2) 

(D.3) 

where Ro = w6. .j? d' R 12 (3) j '. 
E ~ne, an 1 = 7rWX1l22 ne. Multlplymg Eq (D 3) b S . . . Y 3 one obtams 

(DA) 
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d· . ding' Eq.(D.1) by Eq.(DA) yields and IVI 

dS1 dS~ 
2Ro-=R1 -

dz dz 

or 

so that 

where C is a constant. Integrating Eq.(D.6) gives 

(D.5) 

(D.6) 

(D.7) 

(D.8) 

Thus, one can deduce from either Eq.(D.6) or Eq.(D.7) that only one of the Stokes 

parameters is independent. To eliminate Sl and S2, take the squared of Eq.(D.31 and 

the fact that 

(D.9) 

to obtain 

(
dS )2 
dz

3 
= R5 [1 - (Sj + SO] (D.1O) 

and using Eq.(D.8), the above expressions in Eq.(D.I0) can be simplified as 

(D.ll) 

where 

B1 - ~R2 
4 1 

(D.12) 
B2 R5 + R1 (ROSlO - ~R1SjO) -

B3 - R5 - ( ROSlO - ~RlSjO) 
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NoW let S~ = ( then Eq.(D.ll) can be written as 

(D.13) 

. ' . f E (D 13) has roots 
and with use of the quadratic formula, the right hand sIde a q. . 

(p.14) 

so that Eq.(D.ll) can now be expressed as 

(D.15) 

Now, using the tables of Elliptic Functions[61] for integrands involving vi a2 
+ t

2 
and 

.jb2 - t2, 

b>y>O 

(D.16) 

where k2 = b2 / (a2 + b2 ) , and 9 = (a2 + b2 )-!. Also, ¢ = am UI = cos-'l (y/b) and en 

Uj = cos cp. Then, Eq.(D.15) can be rewritten in the form 

In r lb dS V Bl in dz = ± 3 
o y J(S'#, + a2) (b2 - S'#,) 

(D.17) 

where a2 = -a2 and b2 = r., Th L.q. us, 

jB:z + C = gen-1 (cos ¢, k) (D.18) 

or 

(
y'13;z ) en 9 + C ; k = cos ¢ 

(D.19) 
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and 
(

y1J;z + C . k) 
y = ±bcn ' 

9 

so that 

C l'S a constant. Now using Eq.(D.12), 
where 

(D.21) 

(D.22) 

and ;: = ~ [1- (SlO _ ~S;O)] (D.23) 

h R jR Thus using equations (D.22) and (D.23), the roots'in Eq.(D.14) can 
were r = 1 o· , . • 

be expressed as 

1 [ ] 2 [ )2 2S2 ] ~ 
al,2 = r2 r2 S;0 - 2 (1 + rSlO) ± r2 (1 + rSlO - r 20 (D.24) 

In Eq.(D.24), al is associated with the "+" sign and a2 is associated with the "-" 

sign. Note that in obtaining Eq.(D.24), the invariance of the Stokes parameters, l.e. 

S; + S~ + 5j = 1 was used. Therefore, 

(D.25) 

Thus, Eq.(D.21) can now be ~itten more compactly with the use of Eq.(D.25) as 

S3 = ±~cn(Rofz +C; k) 
(D.26) 

where f - [(1 5)2 2 2] ~ • - + r 10 - r 520 . Note also the fact that Bl = R2r2 j 4 h 
obtain Eq.(D.26). But, 0 as been used to 

k= fo1 
Jal - CX2 
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SO that . 2 
..fol = -kf 

r 

(D.28) 

Hence Eq.(D.29) can be expressed as 

S3 = 2pkf en (Rof z + C ; k) (D.29) 
r 

d ( ) - 1 cor x > 0 and 
where P = ±l = sgn (S30) and with the sign define as sgn x 1 

sgn (x) === -1' for x < O. 
The solution for S2 follows from the use of Eq.(D.3) and Eq.(D.29) yielding 

d [2Pkf ] -ROS2 = dz -r-en(Rofz +C; k) 
(D.30) 

Let u === Rofz +C ; k then :z (cnu) = -snu dnu~~ and Eq.(D.30) becomes 

2pkj2 . 
S2. r [sn(Rofz +C; k)]dn(Rofz +C; k) (D.31) 

Similarly, with the use of Eq.(D.8), the solution for Sl can be expressed as 

(D.32) 

; ,I. ' 
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