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ABSTRACT

In this thesis, an investigation is conducted on the nonlinear polarization effects in a
birefringent single mode optical fiber. The thesis begins with an introduction that gives
current interests as well as a general review of polarization behavior in a birefringent
single mode fiber. The theory on propagation of light in single mode optical fibers is also
introduced to serve as a basis for understanding the concepts of nonlinear polarization
effects. Then Stokes parameters and the Stokes formalism are introduced and related
to the traditional measures of light polarization such as ellipticity and azimuth. The
use of Stokes parameters to analyze polarization effects as the beam propagates in a
birefringent optical fiber forms the central theme of this thesis. The evolution equations
for Stokes parameters when the optical fiber is considered linear are derived using the
methods of Brown’s Unified Formalism for Polarization Optics. Several Mueller matrices
which characterize the polarization effects of birefringence and dichroism are obtained
énalytically. This provides a means to model the evolution of the Stokes parameters as
function of fiber length and orientation angle. Graphical illustra,tioﬁs showing the output
polarization change are presented in this thesis. Furthermore, general solutions to the
Stokes parameters evolution equations when the optical fiber is considered nonlinear
have been obtained analytically in terms of the Jacobian elliptic functions. Graphical

illustration showing the nonlinear behavior of the output polarization are also presented.

Xvi
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A fundamental and noteworthy aspect of the results presented in this thesis is that
when the fiber is considered linear the output Stokes parameters are either periodic or
constant with length or orientation angle depending on whether the fiber is assumed to
‘have losses or not. When the solutions are periodic, the three Stokes parameters are
observed to have the same periods. However, when the fiber response to propagation
is considered nonlinear, the output Stokes parameters are generally doubly periodic and
the three Stokes parameters do not have the same periods. Some cases of aperiodicity
are observed and presented.

Another interesting and novel result presented in this thesis is that when an intense
elliptically polarized beam propagating along a birefringent optical fiber undergoes a
change in both its shape and orientation, the critical input intensity at which the light-

induced birefringence cancels the existing fiber birefringence will increase.

Xvii
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Chapter 1

INTRODUCTION

In recent years, single mode optical fibers have become the transmission medium of
choice for long-distance telecommunications networks [1]. These networks take advantage
of the high-data-rate characteristics of a single mode fiber. In addition, these fibers are
not only utilized in applications such as local area networks, cable TV networks, sensors
and intergrated optical device components but also as tools to facilitate measurement
objectives in a variety of scientific and technological areas. In these applications, a
thorough understanding of polarization and its effects are fundamental to the design and
characterization of all these devices.

This research investigates the nonlinear polarization effects in a birefringent single
mode fiber. It also involves the simulation of a model that determines the nonlinear po-
larization behavior of the fiber as a function of the input field intensity and polarization.
Such a research is significant because the nonlinear effects resulting from polarization
behavior lead to various applications including pulse shaping, optical switching, intensity
discriminators and all-optical logic gates [2]. Some of the nonlinear polarization depen—
dent effects are also of keen interest in optical fiber telecommunications. This research,
therefore, addresses problems related to the nonlinear polarization dynamics in single

mode optical fibers.
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In an ideal optical fiber, it is generally supposed that the fiber has perfect circular
symmetry and that the polarization vectors are degenerate. However, in real optical
fibers, the degeneracy is split by birefringence that may be introduced either intentionally
or randomly. Birefringence may be defined as the difference between the two effective
mode indices of refraction and can be either due to intrinsic geometrical asymmetries
and imperfections in the fiber or due to extrinsic externally applied perturbations such
as bending, squeezing, or twisting of the fiber [3]. In general, the pair of orthogonal
modes are coupled by perturbations which vary along the length of the fiber. Therefore,
the propagating Opticél field in a birefringent fiber can be expressed as a superposition of
two orthogonal linearly polarized modes. The birefringence induces a phase shift between
the modes.

It was usually assumed that the birefringence is locally linear in a single mode fiber
[4]. However, in recent years, the availability of fibers with low dichroism has led not only
to a revolution in the field of optical fiber communications [5] but has also given birth
to the field of nonlinear fiber optics [6]. Dichroism relates to the polarization dependent
loss effects of a fiber. It represents the attenuation of the light power transmitted by the
fiber and arises from intrinsic material properties such as absorption or scattering and
from waveguide properties due to manufacturing inﬂuence|.“ It has been reported that
polarization dependent losses influence systems containing several elements connected by
optical fibers [78]. Several nonlinear phenomena including optically induced birefringence
[7], polarization instability [8 — 11], and solitons [4, 11] have led to important advances
from the fundamental as well as technological point of view. Self—inducea birefringence
is a nonlinear coupling between the two orthogonally polarized components of an optical
wave resulting in changes in the fiber refractive index by different amounts for the two
components. The nonlinearity in fibers is responsible for a nonlinear exchange in energy
between the orthogonal modes [12]. In addition, interest in nonlinear fiber optics is ex-
pected to develop further in view of the current emphasis L\]li)h'c)tonics~based technologies

for information management. Photonics summarizes and symbolizes the current effort to
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replace and/or supplement electronics with optics in signal processing, cpmputing, and
related technologies. In fact, a polarization diversity detection system for distributed
sensing of polarization mode coupling in high birefringence fibers has been implemented
using a pump-probe architecture based on the optical Kerr effect [79]. Optical Kerr effect
is a nonlinear process in which the birefringence in a medium is caused by an intensity-
induced change in the refractive index of the medium. Single mode fibers offer unique
opportunities for observing nonlinear phenomena in relatively simple experimental con-
ditions. These fibers exhibit nonlinear behavior depending on the power density which
travels through them. In spite of the weak nonlinear response of silica, fibers are capable
of confining the electromagnetic field over small cross-sections (typically ten squared mi-
crons) and for long distances with little loss (down to 0.2db/km) [11]. In contrast with
other fields of application such as plasma physics and fluid mechanics, in fiber optics,
one needs a minimum level of approximation in order to derive a set of coupled equations
from the basic princiﬁles for a small number of modal amplitudes. This'is true for the
linear [73,74] and nonlinear [75] regime of pulse propagation in fibers. Whereas in the
linear case, a weak transverse anisotropy of the linear susceptibility tensor and legitu-
dinal inhomogeneities of the fiber act as perturbing terms and lead to mode coupling,
in the nonlinear case the role of the perturbation is played by the presence of a weak
nonlinearity. In both linear and nonlinear cases, the seperation between transverse and
logitudinal variables that is at the basis of the coupled mode theory allows one to deal
with only two independent variables, namely the time and the distance traveled along the
logitudinal axis of the fiber. Coupled mode theory is a powerful method used to study
the change in the propagation characteristics of the light caused by perturbations in an
optical medium. A detailed discussion on this theory as it pertains to an optical fiber is
presented in subsequent chapters.

This research, therefore, involves the study of the propagation of an optical field
through a single mode fiber with small nonlinearity and anisotropy in the framework of

the coupled mode theory and in terms of a rather simple formalism. The emphasis will

RN Rt
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be on the analytical approach to solving the problem of nonlinear polarization effects in
single mode fibers. The use of Stokes parameters to calculate polarization changes as the
beam propagates along a birefringent optical fiber will form the central theme throughout
this thesis. This will permit an immediate global insight into the physical properties
of the solutions for both linear and nonlinear polarization effects in an optical fiber.
Where necessary, geometrical considerations will be provided to enhance the visualization
of the resulting effects. The approach used in this work is based on the qualitative
theory in this field advanced in a recently published textbook [12]. The investigation
in this thesis is limited to the study of induced nonlinear birefringence Tresulting from
coupling between the two orthogonally polarized compone.;“m:s of an optical wave in a
single mode fiber. The coupling between the polarization components of the optical
wave is then analyzed after including the effects of both intrinsic linear birefringence
and optically induced nonlinear birefringence. Thus, this research investigates the effects
and interplay of both linear and nonlinear birefringence in single mode optical fibers and
their implications for communications as well as their potential for device applications.
Nondegenerate three-wave mixing modes in regimes where dispersion plays a crucial role
will not be considered since the full wave dynamics in the fiber would be governed by
partial differential equations in 1+1 dimensions [11]. In other words, dispersion is not
considered a critical factor in this work. This assumption has several advantages. There
is no group velocity dispersion (GVD) which is responsible for pulse broadening. Other
effects such as solitons and pulse compression which depend on the presence of GVD will
not, be considered in this research. However, even though dispersion is neglected, it can be
included to first order for analysis on polarization mode dispersion in Birefringent fibers
[14,83]. Lastly, the analysis in this research is purely deterministic so that stochastic
effects resulting from randomly varying birefringence are not given consideration.

The above discussions signifiy the importance of pol.f}x‘i_zation phenomena in bulk
optics, fiber optics, and photonics. It is the aim of this thesis, therefore, to analyze the

polarization behavior of a single mode fiber with special emphasis on nonlinear cffects.
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The methods of the unified formalism for polarization optics [1] and the Jacobian elliptic
functions [61, 77] are used to obtain and interpret the physical behavior of the fiber based
on its local and nonlocal properties.

The plan for the rest of this thesis is as follows: chapter 2 provides the historical
background and propagation theory on single mode fibers to serve as the basis for un-
derstanding the concepts presented in later chapters. Stokes parameters and Mueller
matrix theory are introduced in chapter 3 to describe, respectively, the propagating field
polarization and characteritics of the fiber. The derivation of Stokes parameter equation
of motion is also presented to establish the connection between the field amplitudes and
the optical properties of the fiber. Stokes equation of motion form the unifying feature
common to both the linear and nonlinear cases under investigation. In chapter 4, an
overview of the unified formalism for polarization optics is presented to provide the ana-
lytical approach used for modeljng the ﬁber considered in this work. In addition, Mueller
matrices describing polarization effects for specific cases of optically active fibers with
and without dichroism when nonlinear effects are neglible are deduced and presented.
Chapter 5 focuses on polarization effects that occur when the inciden’-c power and‘ fiber
length are such that nonlinear effects occur. Evolution equations for Stokes parameters
in a nonlinear fiber are also derived and presented. Central in this section is the pre-
sentation of a Mueller matrix which contains terms that depend on the cubic optical
nonlinearity of the fiber. Chapter 6 is on the discussions of the analytical and numerical
results obtained for all possible effects observed within the scope of this research. Chapter
7 is on the conclusions of the thesis. Several suggestions and comments on the different
cases of physical interests emanating from the results of this thesis are also presented in

this section.
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Chapter 2

BACKGROUND AND THEORY
OF PROPAGATION IN SINGLE
MODE FIBERS

Single mode fibers have been used in polariza,tion—depenclenl_:i applications and have also
been the topic of several research over the past thirty yel‘ars. Quite recently, interest
has also grown in research on nonlinear polarization effects and its usefulness in single
mode fiber applications. This chapter is intended to present a review of some of the
past and current studies concerned with polarization in fibers. Also included in this
chapter are definitions of key terms and fundamental concepts on single mode fibers
as well as an analysis that describes the coupling between the modes of the fiber. It
is the aim of this chapter to provide the background required for understanding the
physical interpretation of what occurs when light propagates along a fiber without giving
initially detailed rigorous mathematical derivations. Such aﬁ‘éppfoach is intended to aid

in understanding the remaining chapters without difficulty.
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2.1 Historical Review of Polarization Phenomena in

Single Mode Fibers

There has been a rapid expansion in the use of single mode optical fibers not only
in optical telecommunication systems but also in the area of sensor applications. These
technological advancement owe their success in part to a firm theoretical, experimental,
and technical understanding of the ba,sic.underlying physics. The relevant fiber parame-
ters, such as numerical apertui"e, index profile, core diameter, dispersion, attenuation,
spot size, cut-off wavelength and polarization which control the physical behavior of the
fiber structures need to be properly understood. Perhaps, more importémtly, are the dic-
tates of these parameters when the fiber is under a functional performance as it intc-:,racts
with light. Many interesting features occur as the light propagates along the fiber and
this has led to various applications. Since the focus of thi_sl.vv()rk is on nonlinear polar-
ization effects in single mode fibers, the discussion here is limited to only polarization
features and their applications.

Several excellent books have been written to describe polarization phenomena in lin-
ear optics including some recently published [15,16]. A number of other famous texts
such as [17 — 19] have devoted significant attention to the subject of polarization dynam-
ics. Nonlinear optics also covers a comprehensive monographic range and from among
the well-known texts in this subject a few [20 — 23] are cited here. Even though nonlinear
optics enjoys a wide coverage, one of the few texts devoted exclusively to polarization
effects in nonlinear optics was published recently in 1998 {13]. Research in polarization
phenomena in linear and nonlinear optics is enormous and very diverse. There is in-
creasing interest in polarization effects in nonlinear optics and spectroscopy as evidenced
by the number of research publications and the numerous exciting results produced in
material science, chemistry, biology, and physics. However, since this work is concerned

with single mode fibers (fibers that support only one transverse mode), the discussion to

¥
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follow will present a short historical review of research crucial for the development and
understanding of the subject of this thesis.

Long before the advent of lasers, Wawilov and Lewshin in 1926 reported the observa-
tion of the first nonlinear optical effect of departure from the Beer-Lambert absorption
law with light of high intensity. In 1950, twenty four years later, Wawilov suggested
that nonlinear polarization effects should be seen in birefringence, dichroism and po-
larization rotatory power [13]. In 1964, Maker, Terhune and Savage demonstrated the
self-interaction of a plane wave in a nonlinear isotropic medium and observed that for
elliptically polarized light, the major axis of the ellipse rotates as a function of prop-
agation length and that a nonlinear cubic crystal can exhibit an induce& birefringence
proportional to the light intensity [24]. This work stimulated further study of other non-
linear polarization phenomena such as nonlinear optical activity which was first predicﬂ:ed
and described by Akhmanov and Zharikov in 1967 [25]. In this paper, they indicated
that in a dichoric, gyrotropic, isotropic, nonlinear medium, there takes place a rotation
of an initially linearly polarized incident wave that is proportional to the intensity of
the light. In this case, light initially linearly polarized will become elliptically polarized
with ellipticity increasing with intensity. Several papers [13] have provided theoretical
analyses of the wave picture and of the different mechanisms of this effect. Nonlinear
optical activity has also been intensively studied experimentally [80]. All of these authors
studied the polarization dynamics using a straightforward method of calculating how the
electric field varies as the wave propagates along the medium. In such an approach, an
understanding of how- ‘the polarization evolves as the beam propagates is not immedi-
ately obvious from the complex slowly varying electric field amplitude approximation.
However, several other authors use an alternative approach of the dynamical equation
for Stokes parameters to describe the polarization changes of a wave propagating in a
nonlinear medium. The use of Stokes parameters has an advantage of providing a rather
straightforward analytical definition of different polarization states of light. Sala [26] and
Gregori and Wabnitz [27] used Stokes parameters in studying the propagation of a plane
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wave through a nonlinear medium in the presence of de-field-induced birefringence. Trat-
nik and Sipe also considered the polarization dynamics of a pulse propagating through
an arbitrary nonlinear medium using the full SO (3) covariance of the Stokes parameters
28] |

Analysis on polarization effects of isotropic media was also extended to optical fibers.
Winful obtained exact solutions for the intensity dependent polarization state of a, light
wave in a birefringent optical fiber [29] and Daino et al analysed the evolution of the state
of polarization along a nonlinear single-mode birefringent fiber using Stokes parameters
and gave exact solutions by means of a Poincaré sphere representation. Other effects
such as polarization instabilities [8 — 11, 30] and intensity discrimination in straight [12]
and twisted [9,29] birefringent optical fibers have been reported. In 1986, the polar-
ization instability in a birefringent optical fiber was experimentally observed [10]. The
nonlinear propagation of light pulse in optical fiber has been investigated both classically
and quantum mechanically [31]. All of these studies have made immense contribution
to the understanding of the concepts on polarization dynamics in materials of cubic
nonlinearities. :

A short review of research on polarization phenomena 1n linear optics is presented
here for completeness. Two texts [15,17] from a number of specialized books [16,81]
devoted to the description of light polarization in linear optics were referred to dlzring
this investigation. However, since this work deals specifically with fibers, much of the
reference materials used to establish the concepts and develop the principles emanated
from review articles. The analytical approach used in this work is based mainly on the
unified formalism for polarization optics developed by Brown and Bak in 1995. The for-
malism utilized the Stokes-Mueller matrix equation with the Lorentz group to provide a
framework for understanding complicated polarization phenomena in optical fibers. The
formalism was applied successfully to modeling determinis.tic polarization phenomena
occuring in a twisted single-mode fiber sensor helically wound around a vibrating cylin-

drical shell [32]. The formalism has also been applied to a nonuniform-core single mode
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fiber [33]. The elegance of this formalism stems from the method used to deduce the
matrix form that makes the analytical approach more transparent in knowing the nature
of the effects on the polarization vector. The formalism also incorporates other popular
approaches (namely, the Jones calculus, the Mueller calculus, and the coherency matrix
approach) into a single unified formalism. Several other papers [34 — 55] were helpful in

the development of the analysis for this investigation.

2.2 Concepts and Definitions

This section presents the concepts and underlying assumptions and defines the ter-
minologies used in this thesis t6 avoid ambiguity and confusion.

The conventional single mode optical fibers may be considered as a cylindrical di-
electric waveguide that consists of an inner core of radius smaller than the surrounding
cladding. This geometry of the fiber allows a suitable use of the cylindrical coordinate
system (r, ¢, z) for a simplified analysis of the propagating fields along the z axis which
coincides with the fiber’s axis of symmetry. The dielectric cylinder which models the fiber
permits total internal reflection at the cylindrical boundary with the cladding resulting
in a standing wave across the core and a decaying field in the cladding [56].

A birefringent single mode fiber is one that propagates a fundamantal mode with two
distinct orthogonal polarizations at different speeds owing to the difference of refractive
index for waves polarized along orthogonal directions, say £— and y— Cartesian coor-
dinates axes, respectively. If the birefringence is very high the fibers are referred to as
polarization maintaining fibers- because they become capable of preserving the state of
linear polarization over relatively long lengths. This polarization holding ability is de-
rived from the high intrinsic birefringence introduced by core asymmetry or by applying
an asymmetric stress distribution on the core. In the limit of zero intrinsic birefringence,

the dominant mode of a conventional single mode fiber is composed of two degenerate
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eigenmodes with equal propagation velocities. However, the high intrinsic birefringence
of polarization preserx.fing fibers removes the degeneracy of the two orthogonal compo-
nents of the fundamental mode resulting in the two distinct eigenmodes with different
propagation velocities.

A waveguide mode is a coherent distribution of light that is localized in the vincinity
of the core by total internal reflection and that propagates along the fiber with a well-
defined phase velocity. For a given waveguide mode, the electric and magnetic fields are
given by

E(r,¢,2,t) = E(r,¢) exp[i (k.z — wt)] (2.1)

and

H(r,¢,2,t) = H(r,¢)exp [i (k.z ~wt)] (2.2)

where w is the radian frequency and k, is the axial phase constant.

The fundamental mode supported by the fiber is called HE;; or LFy modes [56].
More discussions on this dominant mode of the fiber will be presented in a later section.

The theory in this thesis, like in all electromagnetic field theory, begins with the use
of Maxwell’s equations to describe the fields propagating in the fiber. Generally, the
number of variables in Maxwell’s equations is greater than the number of equations, and
therefore these equations alone are not sufficient for describing light propagation in a
medium. There is a need for an additional relationship between the optical response of
the medium and the wave fields. This additional relationship accounts for the material
properties of the medium and could have the general form P = P (E, H). However, this

relation reduces to the following functional for an optical fiber:
o o | (2.3)

since the fiber is a nonmagnetié material. Such equations are referred to as constituitive
equations. P is the polarization response of the fiber. The polarization is induced in

the fiber and is responsible for coupling the light to the fiber. The polarization acts as a
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source term in Maxwell’s wave equations. Solutions of the wave equations are obtained
in terms of the propagating fields.

Also, the form of Maxwell’s equations further simplifies since the fiber is a dielectric.
There are no excess charges and external currents flowing in the fiber. Thus, terms rep-
resenting the electric current and charge densities in Maxwell’s equations are suppressed.

The specific form of the constituitive equations for linear and nonlinear optical re-
sponse of the fiber are usually expressed in terms of susceptibility tensors. The suscepti-
bility tensors relate components of the induced polarization vector to various components
of the optical field vectors and have symmetry properties of ‘thel medium. As a result,
they restrict the combinations of vector components of thé Lv-arious optical fields that
can be used effectively. In some situations, the tensor properties are important only in
determining which combinations of vector component can be used for the optical fields
and the induced polarizations, and beyond that the optical susceptibilities'can be treated
as scalars. However, in this thesis which concern situations involving nonlinear optical
processes that change the polarization vector of the optical wave, the tensor properties
play a central role in the nonlinear interaction. The magnitudes of the susceptibilities
are usually determined by measurement and in some cases calculated using various the-
ories. They can also be estimated with varying degree of accuracy from products of
the refractive indices at the various wavelengths involved [45]. Thus, the susceptibility
characterizes and describes all the properties of the fiber and its knowledge permits one
to know the linear and nonlinear response of the fiber.

The relation in Eq.(2.3) indicates implicitly that the induced polarization P depends
on space coordinates and on time. As such, Eq.(2.3) must obey the causality princi-
ple [13]. That is, at any given moment', the value of P is determined by current and
preceeding values of the propaé;ating fields but not by future excitations. It is this ret-
rospective relationship between P and E that leads to thelioptica.l response dependence
on the frequency of the wave. Similarly, the optical response is not nec.essarily local

and therefore could depend on excitations not only at the point of observation but also
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on the swrounding vicinity at earlier moments. Such nonlocality leads to the optical
response dependence on the wave vector of the propagating light. This is the well-known
phenomena of spatial dispersion. _

In addition, for intense fields, the relationship between P and E could be such that
an increase in the malgnitude of E results in a nonlinear change in P. In such cases, a
nonlinear constituitive equation becomes appropriate for the description of these optical
effects, which are ultimately a matter of primary concern in this thesis.

It is worth noting that in linear optics, P « E, whereas in nonlinear optics, P
E", where {n € Z :n > 2} where Z is an integer. The upper index m, which is not
necessarily an exponent since these are vector quantities, represent the order of the
induced polarization with respect to the electric field strength. The higher order terms are
assumed smaller than the preceeding lower order terms so that the polarization response

can be expressed mathematically as a series
P =¢ [VPE + VPEE + V9EEE + - - | (2.4)

where U™ is referred to as the response function related to the local and nonlocal sus-
ceptibility tensors of the medium. ¥, ¥ and UG are respectively first, second, and
third order response functions. €g is the permittivity of free space and serves as the
constant of proportionality. The first term on the right-hand side of Eq.(2.4) describes

the linear optical response.

2.2.1 Constituitive Equations: The Linear Case

In this thesis, the fiber is assumed to respond instantaneously to an applied field so
that dispersion is not a critical factor in the analysis. Furthermore, with this assumption,

the polarization response of the fiber can be written as a convolution of the response
13
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function

t
PO (x,t) = > /v dr1/ ,dtl‘I,z(;) (r —ry;t —t1) Bj (r1, 1) (2-5)
5 —oo

In addition, the integral in Eq.(2.5) accounts for the nonlocality and causality of the
fiber linear response to the input field. \Iffjl) (r — rq;¢ — ;) which is a tensor of rank two
describes the optical response at point r and time ¢ resulting from the electric field at a
point r; at an earlier time ¢;. The optical property of the fiber like any other m(;dium
depends crucially on how the function \Ilfjl) (r —ry;t—t;) depends on p = r — r; and
T =t —t;. For example, if the response of the fiber at a particular location only depends
on excitation at that location, the function lIfg}) (p,T) is nonzero only at p = 0, and the
medium is said to have a local optical response. The indices 7 and j represent components
of the fields in an arbitrary reference coordinate system.

It is further assumed that the light is strictly monochromatic. Then, with help of
Fourier Transform, the electromagnetic wave of frequency w can be written in terms of
its spectral amplitude as E (w,r) and the corresponding optical response as P (w,r) in
frequency domain as

E (r,t) = E (w,r) exp (—iwt) + c.c. , ' (2.6)

and

PO (r,t) = PO (w, r) exp (—iwt) + c.c. (2.7)

so that Eq.(2.5) can be written as
PP wr) =% [ dp [~ are (p,m) 67 E; (w,r - p) (2.8)
J

The notation c.c. indicates complex conjugate. The electric field can be expanded in

Taylor Series about r as follows

E(w,r—p)=E(w,r)+Q§$-(—P)+ZZ%’“ﬂ(PiPQ+--- (2.9)
ik Wk
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This expansion is necessary because lIl,(J1 ) (r — ry;t — £;) will normally have a maximum at
p = 0 that is when r = r;. The first term on the right-hand side of Eq.(2.9) is called the
local approximation, the second is the first-order spatial dispersion approximation and
the third are second-order spatial dispersion effects. In this work, second order effects
will be neglected since the field amplitude is assumed to be a slowly varying function
of r so that %ptpk < a—E((;:—’rl (p). This approximation is suitable for the nonlinear
consideration in this work since solitonic effects will not be considered. In expansion 2.9,
i and k are dummy indices.

After substituting expansion (2.9) into Eq. (2.8) yields the following linear constitu-

itive equation

B lwr) = Zx(l) (w) E; (w,r) (2.10)
1’1(1) (Ld I‘)
S R AORECE
where
¢ * grg® iwr
X @) = 4r [ dp [~ are (p,7)e (2.11)

is the material local susceptibility tensor and
T3 @) = =4m [ dp [p, [ are§ (o, ) e (2.12)

is the material nonlocality suscéeptibility tensor. It is worth noting that the local suscep-

tibility can also be expressed in terms of the dielectric tensor as
(1) - = 6 " %)
X’LJ ( ) = Gy (w) 17 (“13)

where 6;; is the Kronecker delta symbol and €;; (w) is the material dielectric tensor.
Henceforth, Einstein’s summation convention for tensors, that is addition is done over

repeated coordinate indices, will be used. Eq.(2.10) can then be written in a condensed
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form as follows
Pl ) {x (w,x) + T, (@) Vi (w, 1) } (2.14)
or, in time domain as
{X(” ) E; (r,t) + T, (w) VB (r,t) 6™ + cc. (2.15)

In equations (2.14) and (2.15), the symbol V = 8/0r,, is the gradient operator.

An electromagnetic wave propagating with wave vector k has a spectral amplitude
E (w, r) that depends harmonically on the coordinate r such that E (w,r) = A exp {ik - r}.
Then Eq.(2.14) takes the form

1 1 1 i(kr
P! (w,r) = —— {xj’ () + kD0, ()} Ay’ (2.16)
The above constituitive equation (2.16), will be used widely in this thesis.
2.2.2 Constituitive Equations: The Nonlinear Case
The constituitive equations to describe nonlinear optical effects in a fiber are in terms
of higher order expressions in the electric field strength of the propagating wave as indi-

cated in Eq.(2.4). When the principles of causality and nonlocality are accounted for in

a medium, the following equations are obtained:

/‘;dplj;dpzfo d7'1./0 d’rz‘l’g;)c (P1,T15 P2, T2) (2.17)

XEj (r — py,t — 71) B (v — py,t — 72)
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Similarly, the third-order optical response, cubic in the electric field strength is given by

Xg?!)cl (wP +wq + w?‘.; Wp, quwf) E; (wps r) Ey (Wm r) E, (wra r)

Par Fg}zzlm (wP .3 (l‘dq I+ Wr; wp: wq: w'r‘) . ik Ek (wq: I‘) El (wrv I‘) vaJ (wjh 1')

(2.23)

B} fu,r) = E

7

where the third order local and nonlocal susceptibility tensors are given by

Jv dpy [y dps [y dps f;o dry f(?o dra fooo drs

X‘I’gi)cz (P1, 715 P2, T2; P3, T3) €xP i (wpT1 + weT2 + wWrT3)
(2.24)

(3) : _
Xajit (Wp + Wq + Wej Wp, we,wr) =

and

=3 [y dp1p1, Jyy dpa fy dps o~ dTy [57 dTe [5° dT3

X‘yg_‘:’lz:l (p11 T1; P2, T2; P3, T3) eXpi (prl ot WeT2 5 (4)-,-’['3)
(2.25)

The forms of the constituitive equations dictate some restraints on the susceptibility

(3) ; i
Liikim (wp + wq + Wy Wy, Wy, wr) =

tensors. In addition, symmetry conditions of the medium also impose severe restrictions
on the susceptibility tensors. -These restrictions often result in relations between the
susceptibility tensor components that can simplify the analysis of the optical effects of
the medium under consideration. Knowledge of the symmetries aids in applying the
constituitive relations correctly. It is desirable therefore, to identify the symmetr‘ies of

the susceptibilities.

2.2.3 Symmetry Conditions for Susceptibility Tensors

General features of the optical response of a fiber can be analysed using the structure
of the constituitive equations and the symmetry of the susceptibility tensors. This allows
the symmetries of a medium such as an optical fiber to be related to the symmetries of

the equation of motion describing the fields.
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Symmetry occurs naturally because of regularity in nature. The conditions that a
medium imposes on the observability of optical effects may be formulated as requirement
on the optical susceptibility tensors. The lower the symmetry of a crystal, the wider
the range of optical and nonlinear effects that can be observed. In a media with high
symmetry, many optical effects are forbidden. Usually, the symmetry of a medium forces
some elements of the susceptibility tensors to be zero and sets up relationships between
others. The higher the symmetry of a medium, the smaller the number of nonzero
elements and the more relationships there are between elements.

Before proceeding further, it is important to indicate that Eq.(2.20) and Eq.(2.23)
are the most general forms of relations between an optical excitation and the response
functions which are written in terms of optical susceptibilities. Henceforth,.considerations

will be given to important cases that specify light propagation in a fiber.

Reality Condition

The electric fields that propagate along a fiber have intensities that are real and the
induced polarization fields are also physically measurable quantities. Thus, this imposes
the following symmetry restrictions known as the reality condition or Hermiticity on the -

susceptibility tensors:

[ )] =1 (-w) (2.26)

and |
1 *
[ @)]" =15, (—w) - (2.27)
for the first order local and nonlocal linear responses. The relation which exist for second

order local and nonlocal nonlinear responses are

2 * 2
[Xz('ji)c (wp + wg; wp, wq)] o ngl)c (—wp — Wg; —wp, —wy) (2.28)
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and

[Pg’)ﬂm wP + wg; Wp, wq)] » Pz(_':;zl)cm ( Wp — Wg; —Wp, _wq) (229)
and for the third order local and nonlocal nonlinear susceptibilities

3 3 ’
[ngl)cl (wp +wq + Wr; Wp, Wy, w'r)] = X'S_']l)cl (bt — Gy — W'y — Wy g — ) (2‘-303)

and

3 *
[Fq(gl)ctm Wp +wq + wr;wpthpwr)] = Diikim [, — 0, — ] —Wp, —Wg, —w;)  (2.31)

The asterick symbol (x) in the above expressions indicates complex conjugation. Thus,
the reality condition may be reasoned as follows: that simultaneous reversal of the signs
of frequency arguments is equivalent to complex conjugation of the susceptibility tensors.

It should also be observed that the reality condition permits negative frequencies.

Inversion Symmetry

An inversion is simply a reflection about the origin of a reference coordinate system.
Polar vectors change sign upon inversion, that is, E = —E, P = —P, and r = —r. Tensors
transform in the same manner as product of the coordinates. For example, Xﬁ)y upon
inversion becomes XEE)I)(_I)(_;,) = —xgi)y. A typical example for Xgi,)m upon inversion
is xES_)x)(_y Ne)(ez) = Xz Thus X, is invariant under inversion. If a material is
invariant under inversion symmetry it is called centrosymmetric. Furthermore, it can
be shown that even-order susceptibility tensors are zero in centrosymmetric materials.
Fused SiO, which is used to make optical fibers is a centrosymmetric crystal. Therefore,

second order susceptibilities are henceforth neglected in this work.
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Intrinsic Permutation Symmetry

This symmetry condition requires that simultaneous permutation of frequencies in the
argument of the local susceptibility should not alter the optical response. This can be
deduced from Eq.(2.23). The local response must be clearly independent of the order in
which the spectral components E; (wp,r), Ei (wq,r) and E; (w.,r) appear in the equa-
tion. Therefore, the local third-order susceptibility does not change under a simultaneous
permutation of the Cartesian indices 7, k, and [. In other words, the indices except the
first, can be interchanged if the corresponding frequencies are also interchanged. For

example,

3 3
ngl)ct (wp +wy + wri Wp,wg,wy) = X'Ekg't (wp + Wq + Wy} Wy, Wp, Wr) (2.32)

= X-i(f;i)k (Wp + wq + wWr; Wy, Wp, W)
X W+ g 0y )
If nonlocality is considered, the optical response depends not only on the spectral com-
ponents of the fields but also on their gradients. The spectral component that is acted
on by the gradient operator is distinguishable from other fields and is consequently not
permutable with the other spectral components of the field. Therefore, the nonlocal

contribution to the oiptical response is independent only of the order of the spectral

components of the electric field having indices k£ and [ in Eq.(2.23). Thus,
Pﬁjl)ctm (wp + Wq + Wri Wp, We, wr) = Pg?l)km (U-’p T Wq + Wr; Wp, Wr, wq) (2-33)
It is important to note that this symmetry condition is not appropriate for first order

susceptibility tensors because they depend on only one freciuency.
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Full Permutation Symmetry

The full permutation symmetry is an additional frequency permutation relation which
may be deduced from energy conservation laws. It is applicable to absorption—lesé me-
dia in which the overall loss of energy of the propagating waves is negligible at optical
frequencies far from resonance. In this case, one can interchange all the indices of the
susceptibility tensors if the corresponding frequencies are also interchanged.

In order to fully understand the full permutation relation for Xu) (w), it is important
at this stage to introduce some of its properties. Xu) (w) is a symmetric tensor of rank
two and thus have nine elements which can be represented by a 3 x 3 matrix. In general,
x,j) (w) is complex with its imaginary part related to the absorption. If there is no ab-
sorption, then XEJ-) (w) has real components implying that the matrix must be Hermitian.

Therefore, for the first order local susceptibility, the following permutation relations hold
1
X W) = [x§ )] | (2.34)

In the case of the first order nonlocal susceptibility me (w), it is an antisymmetric tensor

also of rank two with imaginary part related to absorption. Hence,

T @) = = [[5 )] (2.35)

The absence of absorption imposes the following restraints on the cubic susceptibilities

3 3
Xt(j.')cl (wP “F Wq T Wr; Wp, Wy, w") = X_g'zl)k ( Wp; —wp — Wy — Wy, W, wq) (236)

N ) b, 3t — _
= Xiijk ry ~Wp — Wq — Wy, Wp, Wy)
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and
r® ; el s =il = B == (2.37)
ijkim ("‘-’p + Wy + we; wp, wq, wr) + jklim (—wp; We, Wr, —wp — Wy wT) :
(3)

(3) ) i
+Fk:lz'jm (—twg; ey —wp — Wy — Wy, ) + L o/ (—Wr; —wp — Wy — Wy, Wy, Wy)

= 0

Kleinman’s Symmetry

This symmetry requirement holds for media that are dispersionless and lossless at all
frequencies. In this case, one can interchange all indices without regard to the frequencies.
That is, permutation of susceptibility indices are allowed without regard to the order
of the frequencies. This implies that the susceptibility is independent of frequencies.
This is possible under low frequency excitation, when the system is assumed to respond

instantaneously to the applied field. For example,

3 3
X"Ejl)cl (wp + wg + Wry Wy, we, wr) = X.Scl_g"i (wp + wg + wr; Wy, we, wr) (2.38)

3 .
= Xi(jz')k (wp + wq + Wy Wy, W, wy)

All of the above arguments have shown that the medium symmetry imposes a very

serious restraint on the symmetry of the optical response.
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2.2.4 Constituitive Equations for Optical Effects in a Single
Mode Fiber |

Suppose an electromagnetic wave of frequency w propagates along a single mode fiber.
Then, the optical response of the fiber can be expressed in terms of first and third order
susceptibilities given in equations (2.10) and (2.23). It has already been established that
a fiber posseses inversion symmetry and thus second order susceptibilities are negligible.
Accordingly, since negative frequencies are admitted in frequency domain, the electric
field associated with the light wave at the frequency w has two complex-conjugated
spectral components related by the reality condition E (w,r) = [E (—w,r)]*. This implies
that the summation in Eq.(2.23) is taken over w, = w, wy = +w and w, = tw. As
a result the sum in Eq.(2.23) will have eight terms and the polarization response has

spectral components at frequencies +£3w and +w. Thus

PP (w,r) = x5k (Bw;w,w,w) Ej (w,r) By (w,r) B (w,r) (2.39)
+T i (35 @, w,w) By (w, ) By (w, ) Vi B (w, )
+3x1(-13-,)cl (w;w,w, —w) Bj (w,r) By (w, r) E} (w,r)
+ord? (wyw,w, —w) By (w,t) B (w,t) Vi B (w,T)

ijklm

+ng:tm (w; —W, w:w) By (w,r) Ey (w: I‘) va; (wa I')

Clearly, the light wave at frequency w generates in the fiber an optical response oscillating
at the frequency of the third optical harmonic and at the frequency of the incident wave.
From Eq.(2.39), the equation for the spectral component of the optical response at the

operating frequency w can be written as
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PP (1) = +3xGh (wiw,w, ~w) B (w,r) Be (w,r) B (w,1) (2:40)
+20 3 (Wi w,w, —w) By (w, 1) B} (w, 1) Vi Ej (w, 1)

ijkim

AT (W3 —~w, w,w) By, (w, ) By (w, 1) Vi B} (w, 1)

To obtain equations (2.39) and (2.40), intrinsic permutation relations were applied. The
constituitive equation (2.40) describes the optical response of the fiber at the incident
frequency when the incident electric field has an arbitrary coordinate dependence. In
particular, this equation is suitable when there are several light waves of the same fre-
quency propagating in different directions. However, this thesis considers a single light
wave of frequency w propagating along the axis of the fiber. Therefore, in this case, the
spectral fields which depend harmonically on the coordinate z can be simply expressed
as E (w, z) = A exp (ik.z) so that Eq.(2.40) can be rewritten as

3x,(-g,)d (w;w,w, —w) + 2ikZI‘§?,)Ctz (W w,w, —w)

P® (w,r) = AjA AT (2.41)

3
_I‘Elk)jz (w; —w,w, w)

In Eq.(2.41), the opti.cal response depends on A; and Ag, which are symmetrical with
respect to permutation of the indices j and k. Therefore, only the part of the tensor
I‘g-',)c,z (w;w,w, —w) which is symmetrical with respect to the interchange of j and k will
contribute to the second term on the right hand side of Eq.(2.41). Thus, the valid
constituitive equation (2.41) may be rewritten in terms of the spectral component of the

optical response as follows

PP (w,r) = [3x{h (Wiw,w, —w) + 26k, T, (Wiw,w, —w)] AjAedie™  (2.42)
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2.3 Characteristics of Single Mode Fibers

Single-mode optical-fiber cables have very splendid characteristics such as wide band-
width that is possible for multiplexing in an electrical domain, the possibility of wave-
length division mutiplexing, and a very low loss profile. Other characteristics such as
flexibility, strength or durability, light weight, and radiation hardness are key components
in application requirement for fibers. Many network topologies have been developed for
optical transmission because of the suitability of these characteristics. This section gives

a brief review of some of the fibers characteristics relevant to this work.

2.3.1 Refractive Index Profile

A single mode optical fiber is formed through a process called modified chemical
vapor deposition (MCVD) as a glass thread usually made of silica doped with desired
combination of germanium and fluorine [63]. There exists other fabrication methods such
as outside vapor deposition (OVD) [64], and vapor-phase axial deposition (VAD) [65].
The inner layer of the fiber which is referred to as the core has an index of refraction
that is larger than that of the surrounding cladding. This configuration is necessary to
allow for the propagating wave to be kept within a confined region of the fiber. The
cladding is normally quite thick so that fields are attenuated rapidly as the distance from
the core-cladding interface increases (except at cutoff). .

A key quantity used in describing one of the properties of a single mode fiber is the

parameter V given in terms of the core radius a, core index n, and cladding index ns as

V — ka,\/’n,% = n% (2.43)
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where k = w/c = 2n/\ is the propagation constant of the input optical field in vacuum.
Thus, V is proportional to the operating frequency if the indices are not significantly
frequency dependent. V' is also proportional to the size of the core. The remaining factor
in Eq.(2.43), which measures the difference between the refractive indices of core and

cladding is called the numerical aperture and abbreviated N A.
NA =/n? —n3 (2.44)

The parameter V' determines which modes can propagate along the fiber and how tightly
bound they are to the core. A reasonable number of modes can propagate if V' is reason-
ably small. For example, the dominant mode operation of a single mode fiber requires
that V' < 2.4[56]. Thus, to maintain a reasonably small V', the numerical aperture must
be very small also and this requires that the core and cladding index of refraction be
quite close to each other. Therefore, the core and cladding glasses must be dissimilar,
yet have nearly the same refractive indices n; and me. In practice, this is achieved by
introducing different concentrations of dopants for the same original type of glass to
achieve the required difference in indices.

Since n, & my, it is convenient to define the relative difference

G (2.45)
L)

Then the quantity that determines the numerical aperture can be approximated by
n? —n3 = (ng +ns) (N1 — ng) = 2n3A (2.46)
so that provided A is small, Eq.(2.43) can be rewritten as
|4 = kangy/2 (2.47)

Since V depends on the relative magnitude of the core radius and on the operating
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wavelength of the field, its value could still remain relatively large because a typical fiber
has core diameter that are many wavelengths in diameters. For example, a fiber designed
for operation at A = 0.8um with core diameter of 2a = 50um will have the parameter
V = 200N A. Even when the core index is about %% greater than the cladding index,
that is A = 0.005, the parameter V = 30 (which is still fairly large) for a fiber with
refractive index 1.5. When V exceeds 2.4048, more than one mode can propagate and
share the available power. Therefore, to achieve single-mode operation, the core diameter
has to be of the order of a few micrometers so that the product ka in Eq.(2.47) becomes
reasonably small. Such fibers ‘have now been developed with core radips made small
enough to maintain V < 2.4 even for reasonable differences of refractive indices of the
core and cladding. For example, a single mode fiber designed for operation at A = 1.3um
may have a core diameter of 8um, while the cladding diameter, which should be at least
an order of magnitude thicker than the core, may be the standard 125um. It may have a
numerical aperture of about NA = 0.115, so that it remains single-mode down to about
A= (2a/V) NA = L.2um. o
Evidently, fibers in general can allow the propagation of many guided modes even
when the core and cladding have refractive indices that are quite close to each other.
These modes which have spatial distributions that are solutions of the two-dimensional
Helmbholtz equation
V2E,+v*E,=0 (2.48)

also satisfies appropriate boundary conditions at the core and cladding interface. In
addition, a fiber can support a continuum of unguided radiation modes. These radiation
modes do not play an important role in the discussion on nonlinear effects as long as
the fiber is assumed to have a perfect cylindrical geometry. However, radiation modes
are crucial in problems involving the transfer of power between bounded and radiation

modes. In Eq.(2.48), E, is the axial component of the electric field amplitude and

7 = k*n® - p? (2.49)
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where § is the axial phase constant in the fiber and n is the refractive index for a fiber

of core radius r = a given by

n r<a

n= | (2.50)

Nng T>a

Eq.(2.49) is usually referred to as a dispersion relation. It should be noted thatt the
same relation as in Eq.(2.48) holds for the magnetic component of the propagating wave.
Because of the cylindrical symmetry of the fiber it is convenient to express the wave
equation (2.48) in cylindrical coordinates to obtain second-order nonconstant-coefficient
ordinary differential equation whose solutions are the celebrated Bessel functions. The
Bessel function is oscillatory and vanishes at infinitely many discreets points £. These
nulls generally are not evenly spaced like the nulls of the sinusoids but are evenly spaced
by 7 for large arguments. )

It has already been shown above in.this section that a single mode fiber has core
index of refraction n; that should slightly exceed that for the cladding n,, to get bound
modes. The core being dense translates mathematically into the fact that 8 < kny and
that the cladding is less dense is expressed by § > kny [56]. Thus, the phase constant 8
should take some value kny < B < kny so that rapidly decaying fields may be expected
in the cladding but not in the core.

Therefore, it is reasonable to define the terms p and ¢: since § < kn; in the core, the
difference of squares of these parameters be p? while, for the cladding, since 3 > kns, the

difference is to be —¢? so that
Bn?=0+p* kni=0-¢ (2.51)
After eliminating 8 from Eq.(2.51), it can be shown that

V? = pla® + ¢*a? (2.52)
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2.3.2 Fiber Modes

The waves that propagate along the fiber can be entirely expressed in terms of the
axial fields £, and H, but the waves do not separate completely into transverse electric
and magnetic (TM and TE) modes as they do for conducting waveguides or dielectric
slab waveguides. This is due mainly to the nature of the fiber boundary condition and
to the curvature of the boundary. The curvature of the core-cladding interface, together
with the field continuity condition at the interface has the effect of mixing the transverse
modes into what are referred to as hybrid modes. These hybrid modes have electric and
magnetic fields both of which have axial components. Both axial fields are needed to
satisfy all the conditions at the core-caldding interface.

Because of the circular geometry, the standing wave in the core is not sinusoidal but
has the form of an oscillitory Bessel function J, (pa) and the decaying fields in the cladding
are not exponential but follow a modified Bessel function K, (ga). Applying boundary
condition that the tangential components of E and H must be continuous across the core-
cladding interface requires that axial and transverse components are the same when r = a
is approached from inside or outside the core. The equality of these field components
at r = a leads to a characteristic equation whose solutions determine tﬁe propagation
constant G for the fiber modes. The characteristic equation which is well known in the
literature [56] is expressed in terms of J; (pa), K¢ (pa) and their derivatives. It has in
general several solutions for each integer value of £. When graphed, the characteristic
equation has a curve with many branches because J; (pa) is oscillatory. Also, Eq.(2.52)
plots simply as a circle of radius V' which is proportional to the operating frequency since
the refractive indices are considered to be frequency independent. As such, each branch
of a plot of the characteristic equation corresponds to a possible mode of propagation

attainable if the frequency is high enough for an intersection with the circle of radius V
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to occur. To plot the characteristic equation conveniently, recursion relations are used
to eliminate the derivative of the Bessel functions from the characteristic equation. The
intersection of the branches with a typical circle of radius 7 = V gives the number of
modes propagating in the fiber.

It is customary to express the solution to the characteristic equation by G,,, where
both £ and m take up integer values. Each eigenvalue §,,, corresponds to one mode
which a fiber can support. It is well known [56] that there are two types of fiber modes,
designated as H Eg,, and EHg,,. When £ = 0, these modes are analogous to the transverse
electric (TE) and transverse magnetic (TM) fields of planar waveguides since the axial
component of the electric field or magnetic field vanishes. However, when £ > 0, the fiber
modes are hybrid and all six components of the electromagnetic field are nonzero.

Clearly, the number of modes supported by a fiber at a given wavelength depends
on the design parameters, namely the core radius and the core-cladding index difference.
Another important parameter for each mode is its cut-off frequency below which no
real value of the phase constant 4 can be found. The waveguide dispersion relati.on of
Eq.(2.49) can be rewritten as

w? = w? + f? (2.53)

indicating that the operating frequecy w must exceed the cut-off frequency w,. in order
for the mode to propagate with phase constant 8. The phase velocity at frequency w
above cut-off frequency is v = w/f = ¢/n. To obtain Eq.(2.53), the important relation
v = w./v was used. Below cut-off frequency, w < w, and $ is no longer real since 3*
becomes negative. This corresponds to oscillation (at frequency w) without propagation
but with attenuation in the direction away from the source. The wave gets weaker as
the distance from the'source increases and it is then said to be an evanescent mode, or
to be “cut off” when the frequency is below w,. The cut-off frequency is obtained by
the condition ¢ = 0. The value of p when ¢ = 0 for a given mode determines the cut-off
frequency. Thus, the cut-off points correspond to pa at ga = 0 and from these the c‘ut—off

frequency for each mode is pa = V at cut-off. This is obtained using Eq.(2.52) when
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ga — 0. As operating frequency increases, more and more intersections with branches
of the characteristic curve are possible. Those branches that lie above the level pa = V'
can have no intersection with the circle of radius V' and are thus cut off. For ¢ = 1,
however, there is one branch that reaches down to the origin of the ga-pa plane, and
there is intersection with the circle no matter how small its radius. This branch thus has
no cut-off frequency and is designated as the HE;; mode. All other modes have cut-off
frequency. Two branches emanate from each nonzero null of the J; (pa) Bessel function
on the pa-axis; the corresponding modes are denoted HFE),, »and EH,,,. For £ > 1, the
branches for the HEy, and EHg, modes emanate from separate cut-off points on the
pa-axis (the axis for ga = 0, at cut-off). For £ = 0, the exceptional transverse modes exist
for the mth branch de.signated as TEq,, and TMjy,,. Therefore for spiraling waves, £ # 0,
the modes are hybrid, with both axial field components E, and H, nonzero, designated
by HFEy, and EHpy,. The lowest value of pa that permits transverse modes to propagate
is pa = Jo; = 2.4048 and V must exceed this value for these modes to be above cut-off
" frequency. The procedure to determine the different values of V at which different modes
reach cut-off is rather complicated and have been treated in many texts [56].

Since this thesis is mainly interested in single-mode fibers, the discussion is limited
to the cut-off condition that allows the fiber to support only one mode. A single mode
fiber supports only the HFE;; mode that is also referred to as the fundamental mode.
All other modes are “cut off” if the parameter V' < V., where V, is the smallest solution.
~of Jo (V2) = 0 or V., = 2.405. The actual value of V; is a critical design parameter and
practical fibers are designed such that V is close to V..

The fundamental mode H En with corresponding field distribution E(r, 0, z,t) has
three nonzero components expressed in polar coordinates ag_Er, FEy, E, or in cartesian
coordinates as F,, E,, and E,. Among these, either E, or E, dominates. Therefore,
the fundamental fiber mode is linearly polarized in either x or y direction depc;rlding
on which of E, or E, dominates. In this respect, it can be concluded that a single

mode fiber is strictly not single mode because it can support two modes of orthogonal
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polarizations. The notation LP,,, is sometimes used to denote lineraly polarized modes.
In this notation, the dominant fiber mode HF); corresponds to LF,;.

Under ideal conditions, the two orthogonally polarized modes of a single-mode fiber
have the same propagation constant and are therefore degenerate. In areal fiber, however,
irregularities such as geometrical asymmetries in the core diameter along the length of the
fiber break the degeneracy thereby resulting in the random mixing of the two polarization
components causing the polarization of the incident light to scramble as it propagates

down the fiber.

2.3.3 Fiber Losses

Among the transmission characteristics of optical fiber, the most important is the
attenuation of the power transmitted by the fiber [57]. Fiber loss depends on the wave-
length of the light. Fig.(2.1) shows the loss spectrum of a single mode fiber. The fiber
exhibits a minimum loss of about 0.2dB/km near 1.55um. The loss is considerably higher
at shorter wavelengths reaching a level of 1 — 10dB/km in the visible regions.

The bound modes of a fiber propagate with attenuation due to losses. The attenuation
arises from intrinsic material properties and from waveguide properties. In high-silica
glasses, which are widely used to manufacture low-loss single mode fibers, the attenuation
sources are due to absorption and Rayleigh scattering. The absorption loss is composed
mainly of ultraviolet (UV) and infrared (/R) absorption tails of pure silica. The basic
absorption is due to the electronic absorption band edge of the silica hogt materials at
ultraviolet wavelength region and the molecular absorption.ef‘cllg.e of the silica host and its
dopant at the infrared region.

In addition, impurity ions can also contribute to the absorption bands. The ‘usua.l

impurities that lead to absorption effects in the wavelength range of interest are the
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Figure 2-1: Measured loss profile of a single-mode fiber. Dashed cure represents the intrin-
sic loss profile resulting from Rayleigh scattering and absorption in pure silica (Ref.63).

sition metal ions (Fe, Cu, Co, Mn) and watér in the form of the hydroxly ion OH. The
concentration of transition metals ions has been reduced to a negligible amount during
the past decade. However, water thus remains practically the most impcrtant impurity
affecting fiber losses. The ion has a fundamental vibrational absorption peak cencered
at 2.73um which presents overtones responsible for the dominant peak in Fig.(2.1) near
the 1.37um and a smaller peak near the 1.23um. During the fabrication process, special
precautions are taken through a very careful drying process to ensure an O H-impurity
level of less than one part in hundred million.

The loss effects of dopants such as GeO,, 05, F, and B,O3 which are incorporated
into the silica to decrease the manufacturing temperature and o modify the refractive
index profile have been studied. Early study has shown(57. 58) that GeQs has littie effect
on the IR absorption tail and more recently that care must be taken with fiber dirawing
temperature if a high GeO, content is used. The prosence of P,Os brings absorption peak
at 3.8urmn and 3.7um. It is uiso known that in obtaining ultra-low losses at A > 1.3um

requires that B0z not be present at radial distances smaller than five times the core
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radius, and P03 should be kept out of the core.

The Rayleigh scattering loss which is due to microscopic inhomogeneities of material
refractive index, varies as A\™* and is dominant at short wavelengths. Rayleigh scattering
is a fundamental loss mechanism arising from random density fluctuations frozen info the
fused silica during manufacturing. Local fluctuations in the refractive index scatter the
light in all directions. This loss is intrinsic to the fiber and sets the ultimate limit on the
fiber loss. The intrinsic loss level is shown by a dashed line in Fig.(2-1). At A = 1.55um,
the fiber loss is dominanted by Rayleigh scattering.

Other factors that may contribute to losses due to fiber structure arise from power
leakage, bending losses and boundary losses (scattering at the core—cladd{ng boundary).
The total loss of a fiber link in optical communication éysterﬁs also includes splice loss
that occurs at joints between fibers.

A measure of power loss during transmission of an optical signal inside the fiber can

be expressed as
Pt = Pgexp (—al) (2.54)

where « is the attenuation constant commonly referred to as fiber loss. Py is the initial
power into the fiber of length L and Pr is the transmitted power. The fiber loss is

customarily expressed in units of dB/km by using the relation [6]

10, (P |
cap = — log (T)%) — 4343 (2.55)

where the coefficient of o results from conversion of the logarithm of base 10 to the

natural logarithm.
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2.3.4 Dispersion in Single Mode Fibers

Fields propagating along an optical fiber are not only attenuated but also undergo
some degree of distortion. Different frequency components in the spectrum of the signal
are transmitted at different speeds and therefore arrive at the output at different times.
The property of the fiber that makes different frequencies travel at different speeds is its
dispersion

There are two major sources of dispersion in optical fibers. One is an inherent property
of the glass and the other relates to the variety of waves that can travel along the fiber,
each with its own speed of propagation. The former source of distortion can be mitigated
by choosing a special operating frequency at which the inherent dispersion of the glass
material is eliminated or minimized. The other cause for dispersive signal distortion can
be dealt with by suitable design parameter.

An ilﬁorrnation—beéring signal is comprised of an entire spectrum of frequencies. How
the spectrum is affected when the signal is conveyed is very important. If a fiber con-
stituitive parameters u, €, and n are frequency dependent then the fiber is said to be
dispersive. However, for narrow-band signals (i.e. slow modulation of a high-frequency
carrier), the spectrum is confined to a relatively narrow range of frequencies and the
information-bearing signals do not get distorted in a dispersive medium since they are
transmitted at a speed different from that of any frequency component.

A practical light source is not precisely monochromatic and thus does not provide
a pure single carrier frequency w as it propagtes along a media. When the light wave
interacts with the bound electrons of a dielectric such as an optical fiber, the response
of the fiber in general depends on the optical frequency. This property is referred to as
chromatic dispersion and is manifested through the frequency dependence of the refrac-
tive index n (w) and results in a spread of the propagating pulse. The origin of chromatic

dispersion is related to the characteristic resonance frequencies at which a medium ab-
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sorbs the electromagnetic radiation through oscillations of bound electrons. Even when
nonlinear effects are not important, dispersion-induced pulse broadening can be detri-
mental for optical communication systems. In the nonlinear regime, the combination of
dispersion and nonlinearity can result in the generation of special kinds of waves known
as solitons that can propagate undistorted over long lengths of fiber.

The effects of fiber dispersion can be accounted for by expressing the propagation
constant k in a Taylor series e}épansion about the center frequency wg as follows:

1 v
k(w) =n(w) % = ko + (w — wo) kl,—,, + & (w— w0)2 I

where &’ is related to the group velocity of the pulse envelope and &” is the chromatic
dispersion term responsible for pulse broadening. The primes indicate derivative with
respect to w. In silica glass, k” vanishes at a wavelength of about 1.3um and becomes
negative for longer wavelength. This wavelength at which ¥” = 0 is referred to as the
zero-dispersion wavelength. However, it should be noted that operation at the zero-
dispersion wavelength requires consideration of higher-order dispersive effects which can
distort optical pulses both in the linear and nonlinear regimes [6]. In actual fibers, the
zero-dispersion wavelength is shifted towards longer wavelengths because of the presence
of dopants and because of fiber design parameters such as core radius and core-cladding
index difference. This feature can be used to shift the zero-dispersion wavelength to the
vicinity of 1.5um where the fiber loss is a minimum. Such dispersion-shifted fibers [66]
have applications in optical communications systems and are also useful for the study
of many nonlinear effects whenever an experiment requires tailoring of the dispersion

parameter.
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2.4 Propagation in Single Mode Fibers - Coupled
Mode Theory

The evolution of the fields along a fiber is analyzed using coupled-mode theory [39].
In a real single mode fiber, imperfections like bending, twisting, and squeezing all of
which induce stress in the fiber and deformation in the core geometry would cause a
split in the degeneracy of the phase velocity of the two modes. The two guided modes
which contribute to this evolution are coupled due to the anisotropies resulting from
these perturbations and imperfections which may be introduced either intentionally or
randomly during the fabrication process. The effects of coupling are characterized by
coupling coefficients which can be deduced from the details of the imperfections on the
fiber. '

Coupled-mode theory is a powerful method used to study changes ig the propagation
of light caused by perturbations of geometry or material properties. In this formalism,
dielectric tensors represent the perturbations that change the polarization properties of
the single mode fiber. The theory starts with the derivation of the coupled wave equations
in terms of modes of an ideal waveguide. In this case, a “natural” frame has to be used
to represent the basic modes of the unperturbed fiber and the dielectric tensor of the
perturbation. Tang has shown [54] that there exists a “natural” frame in an unperturbed
(isotropic) wave guide for an arbitrarily curved line in space, for which the solutions of
the wave equation become orthogonal. This approach resu\lj;sl in a simple expression for
the coupling coefficients. The exact coupled mode theory f;)r a real fiber is then applied
to the problem of coupling between the simplified waveguide modes.

The coupled wave equations when integrated yield solutions describing the evolution
of the transverse mode amplitudes. This evolution can be represented By a variety of
graphic methods. Two useful representations are the Poincaré sphere [17,67] and the
phase plane [68,69]. In particular, the Poincaré sphere representation provides a direct

geometrical description of the evolution of polarization along a single mode fiber. The
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birefringence effects on the fiber can be shown clearly from illustrations on the sphere.
The phase plane representation also shows an evolution of the polarization state in a
birefringent fiber

In subsequent chapters, the coupled4mode theory is used to analyse the fields in a
single mode fiber that is sub je(;ted to linear and nonlinear perturbative effects resulting

from internal and external sources.
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Chapter 3

POLARIZATION PHENOMENA
IN SINGLE MODE OPTICAL
FIBERS

3.1 Definition and Evolution of Polarization

Christian Huygen was the first to suggest that light was not a scalar quantity [15] and
that the spatio-temporal fields of electromagnetic waves are vectors. The vectorial nature
of light is called its polarization. Light consists of plane electromagnetic wave with
their electric and magnetic field vectors perpendicular to the direction of propagation.
If the direction of propagation is chosen to be the z-axis of a right-handed Cartesian
coordinate frame, the optical field in free space is described by transverse components of
its amplitudes and arbitrary phases.

Such a field can be considered a wave forming a narrow spectral band around the
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central frequency w expressed as
E., (2,t) = Ay, (2,t) =% 4 cc. (3.1)

The subscripts z and y refer to the field components in the X and Y directions. E,; and E,
are referred to as polarized or polarization components of the optical field. Here A is the
wave amplitude and % is the wave number. Such a wave represents a plane wave because
its wavefront is seen as a plane to an observer facing the optical source; the vector
E oscillates in the XY plane I;erpendicula.r to the direction of propagation. Equation
(3.1) suggests that anisotropy along the direction of propagation is small so that the
wave remains generally transverse. The anisotropy results in different evolution rates for
A, (z,t) and A, (2,t) with propagation distance z. This difference in the evolutionlrates
of the field amplitudes results in a change in the light polarization state. It is assumed
that for a wave with narrow spectral band, the amplitude changes insignificantly over

the period of the wave [13]

A, (2,1)
ot

‘ € w|Asy (1) (3:2)

As the field propagates, the components E, (z,t) and E, (2,%) give rise to a resultant
vector as this vector describes a locus of points in space over the distance of propagation.

If E, and E, oscillate in phase, so that the amplitude A; (2,t) = a Ay (z,t) with a
being a real constant, Eq.(3.1) represents the electric field of a linearly polarized light.
An observer facing the source sees the oscillating vector tracing out a straight line in
the XY plane. Thus, it is called linearly polarized. The wave vector k .a.nd the vector E
are contained in a plane called the plane of polarization. If A, (z,t) = 0, the E vector
oscillates along the X direction and is referred to as linearly polarized on axis. Also, if
A, (z,t) = 0, the wave will oscillate along the Y direction and is referred to as linearly
polarized off axis. For the case where « is a complex number, there is a phase shift

between E, and E, and the wave is said to have elliptical polarization. In this case,
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an observer facing the wave source sees the end of the vector E tracing an ellipse’ as it
propagates. Light is considered circularly polarized when @ = £ and an observer sees
the vector E trace out a circle. It is worth noting that linearly and circularly polarized
light are specific cases of elliptical polarization. Circularly polarized light possess a sense
of direction known as left-handed or right-handed. If A, (z,t) = ¢ A, (2,t), the wave
is said to be left-handed circularly polarized (LCP) and an observer looking into the
direction from which the light is advancing sees the end of the electric field vector trace
out a circle in a counterclockwise direction. Furthermore, if A, (2,t) = —i A, (2,t), the
wave is right-handed circularly polarized (RCP) and an observer will see the end of the
field vector trace out a circle in a clockwise direction. Right-handed elliptically polarized
(REP) and left-handed elliptically (LEP) waves can be defined in a similar fashion.
The evolution of the polarization along single mode optical fibers under the influence
of perturbations is next considered. The perturbations may be inherent resulting from
imperfections and geometrical asymmeteries of the fiber. External perturbations such as
strains, twists and bends also lead to random variation in the polarization of the fields in
the fiber. It is well known that under ideal conditions of perfect cylindrical geometry and
isotropy, the fundamental fiber mode (H E4;) is doubly degenerate so that a mode excited
with its polarization in one direction will not couple to the mode with the orthogonal
polarization state. Thus, even a single mode fiber is not truly single mode since it
can support two degenerate modes that are dominantly polarized in two orthogonal
directions. In a real optical fiber, however, this degeneracy is split due to small departures
from cylindrical geometry or small fluctuations in material anisotropy resulting in a
mixing of the two polarization states by breaking the mode degeneracy. The mode-
propagation constant k becomes slightly different for thgv tyy{q Prthogonal -components of
the fundamental mode resulting in two distinct polarization eigenmodes with different

propagation velocities. This property is referred to as birefringence and is defined by

27

k; = —)\—5?1;9 ~ [33)
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where én, = (n; — n,) is the phase index of refraction difference, n,, and n, are the phase
indices along the two orthogonal polarization states, and ) is the free space wavelength of
the propagating light. The axis along which the effective mode index is smaller is called
the fast axis since the group velocity is larger for light propagating in that direction and
the axis with the larger phase index is called the slow axis because of the smaller group ve-
locity for waves in that direction. In conventional single mode optical fibers, the birefrin-
gence is not constant along the fiber but changes randomly because of fluctuations in the
core shape and stress-induced anisotropies. Thus, light launched into the fiber with lin-
ear polarization quickly reaches a state of arbitrary polarization. For some applications,
it is desirable that the fibers transmit light without chanéiﬁg its state of polarization.
Such fibers are called polarization-maintaining fibers. In polarization-maintaining fibers,
a stable state of linear polarization can be maintained over relatively long lengths. This
polarization handling ability is derived from the high intrinsic birefringence introduced
intentionally in the fibers through design modifications in core asymmetry or applying
an asymmetric stress distribution on the core. The use of polarization-maintaining fibers
requires an identification of the slow and fast axes before the linearly polarized light is
launched into the fiber. If the polarization axis of the incident light coincides with the
slow or the fast axis, the polarization remains unchanged during propagation. If the po-
larization axis makes an angle of 45° to these axes, the polarization changes continuously
along the fiber in a periodic manner [6]. The state of polarization of light will evolve
from linear to elliptic,'to circular, to elliptic, to linear but 7/2 out of phase, to elliptic, to
circular, to elliptic, and finally back to its original state as shown in Fig.(3.1). The period
of this evolution of the polarization state is defined as the beatlength. It can be shown
that for a given value of birefringence, the power between the two modes is exchanged

periodically as they propagate inside the fiber with a period equal to its beatlength L,

defined by

2
flpaa® e

A
T 57.;, (3.4)

The beatlength is ~ lcm for a strongly birefringent fiber with én, ~ 1074
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Figure 3-1: Evolution of the state of polarization along a birefringent fiber when the
input beam is linearly polarized at 45° with respect to the slow axis.

A fiber with high linear birefringence will preserve the polarization state of a light
beam whose electric-field vector is oriented along either principal axis of the fiber. In
that case, the two principal axes are entirely equivalent. It is usually assumed that this
equivalence also holds at high intensities and that an intense beam oriented along either
axis will suffer no changes in its polarization, barring imperfections that cause scattering
between the axes. It has been shown that an intensity-dependent refractive index leads
to an instability in the polarization state of a light wave oriented along the fast axis of a
birefringent medium. The slow axis remains a stable guiding center. Depending on the
input intensity and polarization, the polarization ellipse can execute either oscillatory or
rotatory motions about the slow axis in a manner analogous to the motion of a nonlinear
pendulum (8]. These results have implications in fiber-optic devices and systems. The
birefringence in a medium caused by an intensity-induced change in the refractive index
of the medium, predicted prior to the advent of lasers, was one of the earliest nonlinear
optical phenomena to be observed experimentally. This phenomena has since been and

remains a topic of much interest and study given its practical importance in a variety of
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applications including optical fiber communications.

Several analytical and numerical methods have been develbped to study the polariza-
tion and its effects as the light propagates along a fiber. The evolution of the polarization
state of a light beam during propagation can be represented by a variety of graphic meth-
ods. Two particularly useful representations in describing the polarization dynamics in a
fiber are the Poincaré sphere and the phase plane. An analytical approach used to treat
important polarization-related phenomena is the Jones matrix formalism. The Jones
approach, even though powerful in the analysis of polarization effects, does not give
quantities that are directly measurable. The unified formalism for polarization optics is
another method developed to provide a means of understanding complicated polarization
~ phenomena in optical media like fiber systems, devices and netwo;ks. The formalism uti-
lizes Stokes-Mueller matrix equation with the Lorentz groupv:i‘n examining the dynamics
of the polarization vector under the influence of birefringence and the effects of- isotropic
loss and diattenuation. The fiber is assumed to be isotropic with low internal linear
birefringence. The Stokes-Mueller calculus is governed by an equation that has a sixteen
element matrix 1\71, which contains the information necessary to characterize the system
and a four-parameter Stokes vector (Sp and S;) of the outgoing and incident light beams,

respectively.

3.1.1 Stokes Parameters

The state of polarization of a wave is specified completely by a vector consisting of
four physically real parameters. The four quantities comprise a colu.mh vector often
written horizontally with curly brackets as {Sp, S1,S2,S3}. The vector is referred to as
Stokes vector and exists in a four-dimensional mathematical space. The four quantities
that make up the elements of the Stokes vector are called Stokes parameters. The Stokes
parameters are measurable quantities that describe the intensity and polarization of a

beam of light. A beam may be polarized completely, partially or not at all and it may
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be monochromatic or polychromatic. Stokes parameters have dimensions of intensity
and each corresponds not to an instantaneous intensity but to a time-averaged intensity;
the average being taken over a period long enough to permit practical measureinent.
The Stokes parameters are defined as follows: Sy is the total intensity, S; is the excess
intensity transmitted by the x-polarization eigenmode over the y-polarization eigenmode,
Ss is the excess intensity transmitted at 45° with respect to the x-polarization eigenmode
over the intensity transmitted at 135° with respect to the x-polarization eigenmode, and
S3 is the excess intensity of right circular polarization over left circular polarization.

The Stokes parameters are related by
S2> 524 524 82 =52 - (3.5)

where the equality holds for cémpletely polarized purely monochromatic light and the
inequality holds for partially polarized quasi-monochromatic light.

The degree of polarization of the light beam is given by
(S2 + S2 + S2)*

i
s & (3.6)

P =

and a parameter that gives a measure of the relative amount of polarization in each can

be expressed as

B
%0S; = (_S_o) (3.7)
Also, P = 1 for completely polarized light, P = 0 for unpolarized light and 0 < P < 1

for partially polarized light.

If the Stokes parameters are known, the polarization azimuth © and the ellipticity

angle n may be defined as follows

tan20 = — : (3.8)
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Figure 3-2: Illustration of the polarization state of a light wave on the Poincaré sphere.

and

g .
sin2n = —S—s (3.9)
0

If the light intensity Sy, the degree of polarization is P = 1, the polarization azimuth

© and the ellipticity angle n are known, using equations (3.6), (3.8), and (3.9) one may

obtain the Stokes parameters as follows

S; = Sy cos 2n cos 20
Sy = Sy cos 27 sin 20 (3.10)
Sg = S() sin 27]

A particular polarization state may be represented as a point in a three dimensional
Stokes coordinate space §= {81, 52, 55}. The point lies on a sphere of radius Sp. This
sphere in Stokes space is known as the Poincaré sphere. An illustration of the polarization

state of a light wave on the poincaré sphere is shown in Fig.(3.2).
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3.1.2 Poincaré Sphere

The polarization state of a light wave can be represented as a point in a three dimen-

sional Stokes coordinate space S, S, and S3. The point lies on a sphere of radius

P = \/ (S + S2+ S%). Another interesting feature of the Poincaré sphere is that the
magnitude of interaction of a polarized beam with an optical medium corresponds to a
rotation of the sphere. This sphere was first introduced in 1892 by Henri Poincaré who
discovered that different polarization states may be represented on a sphere [13].

The radius of the Poincaré sphere is equal to Sy for totally polarized light. The ‘north’
and ‘south’ poles of the sphere correspond to right and left circular polarizations (see Fig.
3.2). Linearly polarized light is represented by points along j;he equator with ‘longitude’
being twice the polarization azimuth ©. The ‘latitude’ of the point will give twice the
angle of ellipticity n of the wave. Points at opposite ends of a diameter, the ‘antipodes’ of
the sphere are orthogonal polarizations [13]. If the light is partially polarized, the ratio

of the Poincaré sphere radius to the Stokes parameter Sy gives the degree of polarization.

3.1.3 Mueller Matrix

When an optical beam interacts with matter its polarization state is usually changed.
The change in the polarization state may be due to a change in the amplitude, phase,
or the direction of orthogonal field components of the optical beam. The Mueller matrix
characterizes an optical device interposed in a polarized beam. The incident polarized
beam interacts with the medium and a new set of Stokes parameters can be obtained
for the emerging beam. The Mueller matrix is a 4 x 4 real matrix that describes the

transformation of the state of polarization of the light beam as it interacts with an
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optical system. The transformation is a simple matrix equation

. 8 _ L
( So Mg ™g1 Tz T3 So
']
31 . Mg M11 M2 M3 Sy (3 11)
' — -
Sy Moy g1 Moz Mas Sa
!
| S3 | | M30 Mg gy Msz | | S3 |

where the primed Stokes parameters are for the output beam and the unprimed Stokes
parameters represent the input beam. The matrix equation can be written more concisely

in an operator form as

= = = '
S'=M- So (3.12)

where S=>J’ and §0 are, respectively, the output and input Stokes four-vector and M is the
Mueller matrix.

The Mueller matrix characterizes the optical system so that its effect on the state of
polarization of a beam can be determined using the transformation given in the aforemen-
tioned Eq.(3.11). The sixteen unknown elements of the Mueller matrix can be determined
by measuring the output polarization state, i.e. the output Stokes vector, of the light af-
ter it passes through the optical system from incident light sequentially polarized in four
different polarization states, described by four independent Stokes vectors. The Mueller
matrix M can be determined using the four pairs of input and output Stokes vectors
[15]. If dichroism of the optical system is neglected, then mgy = 1 and the other Mueller
matrix elements of the first row and first column are equal to zero. In this case, only three
pairs of input and output Stokes vectors are necessary to determine M. In general, the
16 Mueller matrix elements depend on birefringence, dichroism and prbpagation length.

In Chapters 4 and 5 of this thesis, several Mueller matrices will be derived for ve;rious
polarization effects in a single-mode fiber. The Mueller matrix calculus will be applied

to a number of problems of interest in this study.
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3.2 Stokes Parameters Equation of Motion

To derive the evolution equations for Stokes Parameters and illustrate their applica-
tion to polarization effects in a medium starts with the use of Maxweli’s wave equation.
curl curl E + L at 0 (3.13)

c otz '
where D = E+47P is the electric displacement vector and E is the applied field. P
represents the polarization induced in the material by the propagating field. The induced

polarization acts as a source term in the wave equation. Thus, Eq.(3.13) becomes

2
T Y R = o TR

(3.14)

where V x V x E =V (V - E) — V’E is an identity from vector calculus. In linear optics,
(V-E) = 0 for isotropic source free media. In nonlinear optics, however, this term in
general does not vanish even for isotropic materials due to the general relation between
D and E.

The relationship between P and E could be nonlinear, that is, an increase in E will
lead to a disproportionate change in P. The nonlinear optical response can be expressed

as a Volterra series in the polarization vector.
P; (r,t) = P; (r,t) + P? (r,8) + P} (x;t) + .. (3.15)

The superscripts indicate the order of the term with respect to the electric field strength.
The subscript ¢ = 1,2 indicates the transeverse directions of the orthogonal field com-
ponents. The first term on the right-hand side of Eq.(3.15) describes the linear optical
response and increases proportionally with K. The higher order terms describe the non-
linear response. In an optical fiber, P (t) = 0 because the fiber is a centrosymmetric

material. Thus, the third order polarization is the minimum nonvanishing nonlinear term
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for a fiber. Equation (3.14) can now be written for the transverse fields as

2R, 8% (PL4pNE
VEE,.=ia—E‘-+4—7r ( - ) (3.16)
c? ot? c? ot?

where P and PY” are respectively the linear and nonlinear induced polarizations. The

wave equation (3.16) can be rewritten in frequency domain as follows:

g = w? [~ e
Vz Ez’: —g (E.‘ +47 P,l) (317)

for the case where P}*" is initially assumed to be zero. Furthermore, the linear response

expressed in terms of the susceptibility and nonlocality tensors is given by
P} = P} (w,r) = { X @) B; (,r) + TG), () VB (w,1)] ) (3.18)

For an electromagnetic wave propagating with wave vector k, the spectral amplitude
E (w,r) harmonically depends on the coordinate r, so that E (w,r) = Aexp {ik-r}.
Using Eq.(3.18), one can write Eq.(3.17) as

= wz 1 1
ViE= - {(1 + x5+ ikml ) EJ] (3.19)
It is reasonable to assume that the Laplacian on the left of this equation contains
second order derivative that is very much smaller than the first order derivative. In this
case, the amplitude A:(z,t) of the electric field of the wave is presumed a “slow” function

of the propagation axis z. This approximation is known as the slowly-varying amplitude

approximation and is valid whenever | I <k |dA| < k?A. Thus, it is also poss1b1e to
write
~ dA; i
ViE= (2 k—= Ty szj) e' (3.20)

Using these assumptions, the evolution equations which describe the transverse field

amplitudes as they propagate along the coordinate axis z can be written in a compact
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form as :

dA; iw

= ugd (3.21)
where u; = 1 (Eij + ikn Ly, — nzﬁij) is a tensor of rank two in two dimensional space

representing the coupling due to the perturbations. The permitivity of the medium is
denoted by €; = 1+ xz(;) while n indicates its refractive index. It is noted that Eq.(3.21)
is a set of two differential equations for the field amplitudes known as the coupled mode
equations.

In operator matrix form, u;; may be regarded as a 2 x 2 matrix while A, and A,
are column vectors in a two-dimensional vector space defined over the field of complex
numbers. A rotation in this space transforms A; and A; into their linear combination.
Therefore, the matrix u;; must be unitary if the transforr_ggtion is to lleave the norm
invariant [69]. This makes u;; a member of the group U(I2), the group of all unitary
matrices of order two and thus have a unique inverse such that [u;] ™" = u};. In this case,
the determinant of the matrix izij equals +1. Finally, it can be concluded that the matrix
u;; belongs to the group SU(2), a subgroup of U(2) which contains all unitary matrices
of order two having determinant equal to +1. This stems from the fact that any unitary
matrix may be expressed as an exponential of linear combination of traceless hermitian

matrices. The three generators of SU(2) can be chosen to be the Pauli spin matrices [59]

b N , of® = 01 , o= S~ (3.22)

1 10 Y

which are a set of three independent traceless hermitian matrices of order 2 which obey the
commutation relation o x o = 2io. It is convenient to choose the set |0, ¢(1), 5(2) 0(3)]
as the generator of U(2) where ¢(® is a unit matrix of order 2. Therefore u;; can be

expanded in terms of the unit matrix and the Pauli matrices as follows

Lo (a
U5 = EQ;ECT&J-) (323)
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The summation is presumed over @ = 0,-..,3 and the expansion coefficients are
0L = o'Pu, . (3.24)
With the use of Eq.(3.23), the coupled mode equation (3.21) takes the form

dA;
— = W OLo LS (3.25)

Stokes parameters may be defined in the following manner[13]

Suexp2Im{k}z = A} g‘,i)Ak (3.26)

J

With the use of Eq.(3.25) and its cmplex conjugate, the evolution equations for Stokes

parameters can be written in the form

d
— (Suexp2lin {k} Fis 4 {QLA*J('” o A — QL At e W A (3.27)

a9~ 33
and making use of the fact that the Pauli matrices have the following property

a( )crfcf) = G’SJ)(Sag -2 zeag.,afj) (3.28)

and that they are additionally hermitian matrices, Eq.(3.27) can be written for the case

p=0and x=0,...,3 as

dSop w L B2
0 2 tm [(4n +9F) o+ (Q - s)] (3.29)

In Eq.(3.28), o, §# and v = 1, 2, and 3, interchangeably. The term e,g, is the totally

antisymmetric Levi-Civita tensor. For the specific case of p =1, 2, 3 and o = 0, ..., 3,
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equation (3.27) can be expressed for the components of the Stokes vector as

dS, _ w L 5 o Fondi. o
gz —Q—CIm[(4n+QO)S,L+Q So+1 (Q X S)] (3.30)

Equations (3.29) and (3.30) are the evolution equations for Stokes parameters. The vector
Q% with components (Qf, 05, Qg') is defined in Stokes 3-vector space and depend only
on the material parameters of the medium. These equations may be applied to media of
arbitrary symmetry and low anisotropy along the direction of propagation. In fact, these
equations work well when An <« n, where An is the refractive index difference for the
differently polarized eigenwaves of the medium [13].

If nonlinear induced polarization is now considered, Eq.(3.16) becomes
o ™ Gl ~NL
V2 E= — (E i B, +4n B, ) (3.31)

in frequency domain, where

~NL
By =3xS (wsw,w, ~w) B (w,1) B (w,7) Bf (1)

+20 5 (w5 0,0, —w) B (0, 7) Bf (w0, 1) Vi B (w, )

ijklm

(3.32)

is the induced polarization at the operating frequency w.
Using the slowly varying amplitude approximation in (3.20) and Eq (3 32), the evo-

lution equations for the field amplitudes can now be expressed as

dA'i w * _—2Im z
= = % [U,z'jAj + ’YijszjAkAze R ] (3.33)
Here, ;0 = (3ngu + 1k, Fz; HZ) accounts for the third order local and nonlocal sus-

ceptibilities and u;; as defined earlier. Expressed in tetms of the Pauli matrices one can
rewrite Eq.(3.23) as
(a)

2’”&6 J (3.34)
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where v, = QL and
1
Yijet = Zwaﬂfh('f)az(f) 63-35)

Then the expansion coefficients are therefore
vy = 0P | (3.36)
[’ (Y] *
and
Wap = Ug'?)’)’ijkza gf) (3.37)
. Resorting to (3.26), equation (3.33) can be written as

dA;
dz

= %ﬂaagmj (3.38)

J

where

ik
‘Qa = Uq + Ewaﬂsﬂ

is referred to as the nonlinear self-action four vector since itself is a function of the Stokes
parameters and a = (0, 1,2,3). Using the same routine as was used to derive equations
(3.29) and (3.30), a set of nonlinear differential equations structually identical to (3.29)

and (3.30) describing the evolution of Stokes parameter are obtained as follows

dSp w L 4
Sy —%Im [(411, + QO) So + (Qa- S)] (3.39)
and _
ds, w . =
L [(4n + Q) S, + Qao +i (an s)] . (3.40)

In the nonlinear case, therefore, §2, does not only depend on the material characteristics
but also is a function of the Stokes parameters of the wave. The self action vector €,

coincides with the action vector QF if nonlinearity is neglected. Therefore, the major
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difference between linear and nonlinear media is that the propagation conditions are
changed by the wave itself in a nonlinear media.

Such evolution equations may be utilized to obtain the polarization and describe
its effects in an optical fiber. To do thié, symmetry conditions need to be considered.
Furthermore, low anisotropy along the direction of propagation will be assumed. This is
reasonable because for a lossless fiber Eq.(3.30) implies a precession of the Stokes vector
about QF. Also, this assumption is necessary to allow for third order noﬁlinear aniso:cropy
or induced anisotropies which will account for the dependence of Stokes parameters on

the intensity of the light.

3.3 Polarization Ellipse

It was shown in section (3.1) that light is in general elliptically polariz;ed and degen-

erates into linear and circular forms. The polarization ellipse has the form [13]

E2 E! 2E.E,cosé

—
B T3 E..L,, =sin® 6 (3.41)

where § = §, — 6, is the arbitrary phase while E,; and E,, are the maximum amplitudes.
Close observation of Eq.(3.41) reveals that the product term £, FE, is not present in the
standard form of an ellipse. This term indicates that the ellipse is actually rotated with
respect to a principal axis, the X axis for example. The polarization state of an elliptically
polarized wave may be specified completely by two parameters, the angle of rotation or
polarization azimuth and an ellipticity angle [15]. This infers that there is a relationship

between the parameters of the ellipse E,z, E,y, 6 and the angle of rotation and ellipticity.
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The polarization azimuth © is the angle measured between the X direction of the
right-handed Cartesian frame and the major axis of the polarization ellipse. © may take
on values between 0 and n. The ellipticity 7, is defined as the angle between the main
diagonal of a rectangular box enclosing the polarization ellipse and its major axis. The
box have sides parallel to the major and minor axes of the ellipse. The angle is positive
for (REP) and negative for (LEP). Thérefore, the ellipticity angle varies from 0 to
7 for (REP) and from 0 to —% for (LEP) waves. Right and left circularly polarized
waves correspond to n = —% while n = 0 relates to linearly polarized wave. There are,
however, shortcomings in characterizing an elliptically polarized state of a wave in terms
of its azimuth and ellipticity. Since light waves have very high frequency, an experiment to
trace out the electric field vector is impossible. Another limitation is that t'he polarization
ellipse concept is applicable only to totally polarized light. It is not suitable for partially
polarized light [13]. )

In section (3.2), the relationship between the parameters © and 7 to quantities that are

directly measurable in an optical experiment was presented. The measurable parameters

were the Stokes parameters.

3.3.1 Polarization Ellipse Plane Rotation

The plane of polarization rotates in some media as the light propagates through it.
This effect named optical activity is a manifestation of the nonlocal optic.al response. It
is a first-order spatial dispersion effect associated with the nonlocality tensor FE;,),,_ The
rotation of the polarization plane takes place naturally and is sometimes called natural
rotation [13].

From the same reference [13], it is also noted that for a lossless birefringent media,

the rotation effect of the ellipse plane can be easily visualized in Stokes space. The effect
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Figure 3-3: Poincaré’s sphere representation of optical activity in a lossless birefringent
fiber.

is a precession of the Stokes vector § around vector QF. The vector QF in Stokes space is
directed along the Ss axis as shown in Fig.(3.1). The end of the Stokes vector of a prop-
agating wave will trace out a horizontal circle on the poincaré sphere and the azimuth ©
will steadily change along the direction of propagation. This illustrates optical activity.
It is however worth noting that for natural rotation in lossless media, the end of the
Stokes vector always remain on the same altitude, therefore the initial ellipticity angle
does not change. For the specific case of a linearly polarized light, therefore, the plane
of polafization rotates but the light remains linearly polarized. An elliptically polarized
light will tend towards the right or left circular polarizations. The polarization states
of the left and right-handed circularly polarized waves remain unchanged and are called
eigenpolarization states. For a medium with small losses, a rotation of the ellipse plane
suggests a rotation of both the azimuth and ellipiticity. The azimuth rotation is proporti-
nal to the length of the medium where the proportionality constant indicates the specific
polarization rotatory power. The azimuth rotates because of circular birefringence; the

difference in refractive indices for left and right circularly polarized waves. The evolution
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of ellipticity is due to circular dichroism, a difference in absorption coefficients for left

and right-handed circularly polarized eigenwaves.

3.4 Polarization Mode Dispersion

Polarization mode dispersion (PMD) describes the change with frequency of the polar-
ization of the field at the output of a fiber while the input polarization is held constant
[51]. Beyond conventional chromatic dispersion which can be kept under control by suit-
able design, PMD is é limiting factor on the fibers bandwidth. It is a basic parameter
required for estimation of birefringence-induced distortions in optical fiber systems [62].
The primary fiber properties which determine the PMD behavior of an optical .cable
are the linear and circular birefringence distributions along the fiber and mode-coupling
parameter [82].

The evolution of the state of polarization of a lightwave as it propagates along the

optical fiber can be mathematically expressed as

d § (z,w)

o :576 (z,w) x S (z,w) (3.42)

where 6_{-3 is the differential group delay (DGD) vector and w is the angular frequency of
the source. z is the distance along the fiber. For long fiber lengths, the DGD becomes

proportional to the frequency derivative of the magnitude of the birefringence vector [83]

8 (2) = 2 6 2 v A (3.43)

8 is a unit vector in the direction of the total birefringence. The magnitude of the total

birefringence is

B =B+ (27 -8, (3.44)

where 3, and f, are respectively the linear and twist-induced circular components of the
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total birefringence. +y is the twist rate of the fiber.
Using Eq.(3.44), one can express Eq.(3.43) as

5 el [ﬁbﬂ’ (27 - ﬁ)ﬁ']“ | 5,45
’ VB + (27 - B,)

where 8}, = df,/dw and B, = df,/dw. In this work, PMD is negligible since the fiber
is assumed to be nondispersive. It is worth noting that PMD can be included if one

considers, to first order, the dispersion of the fiber’s stress-optic coefficient [83].
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Chapter 4

POLARIZATION FORMALISM
AND MODEL: THE LINEAR.
CASE

4.1 The Unified Formalism

If there are perturbations on a fiber resulting from length-dependent disturbances, the

total dielectric function has the form

€=¢€o (T: ¢) + '()b (’I‘, ¢: Z) (41)

where 7 is the dielectric function of the perturbed fiber and ¢, (r, @) is the unperturbed
dielectric function. r and ¢ are the polar parts of the cylindrical coordinates (r, ¢, z) and

z coincides with the fiber’s axis of symmetry.
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The electric field in the fiber can be represented as

E(r,¢,2,t) = il ay (2) Ey (1, ¢) exp [i (kyz — wt)] (4.2)
oy
where a. (z) are the field amplifudes containing the effects of the perturbations resulting
from change of environment and various kinds of inhomogeneity in the fiber. k., is the
propagation constant associated with each eigenmode. If there were no perturbations on
the fiber, the coefficient a, (2) of Eq.(4.2) would be a constant and in general a corilplex
quantity. Using Maxwell’s equations, along with (4.1) and (4.2) and the orthogonality
conditions on the fields, (see Appendix A), the coupled-mode equations can be derived
and written in operator notation as

da(z) . A
T = P -a(z) (4.3)

where a (z) is a 2-dimensional column vector that represents the perturbed field ampli-
tudes of the transverse fields and 1/5 (2) is a 2 x 2 matrix operator that represents the
coupling between the two polarization eigenmodes due to the perturbations. The cou-
pling results in an evolution of the state of polarization as the light propagates in the

fiber. In general, P (2) is complex and has the form
. ;
P (2) =B (2) +7 D (2) (4.4)

where ]% (2) is the birefringent operator that represents birefringent (phase) effects and
f) (z) is the dichroic operator that represents dichroic (polarization dependent loss)
effects. Both operators represent real quantities and are thus Hermitian [1].

Since only measurable quantities are of interest, the coherency matrix is used and is

defined by an outer product as
Z(z) =a (z)al (2) (4.5)
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The dagger symbol t which indicates the hermitian conjugate makes a! () a row vector.
By taking the derivative of Eq.(4.5) with respect to the propagation length z, the

following is obtained -

al (z a(z '
%ﬁ—-=a(z)d dz( )+dd(z)af(z) | (4.6)

Substituting Eq.(4.3) and its hermitian conjugate into Eq.(4.6) yields the coherency equa-
tion of motion which can be expressed as

dZ A Al
F-iP@Ie-16# @) @)
Using Eq.(4.4) and the fact that B (z) and D (z) are hermitian, expression (4.7) can be

rewritten as

T =if@10] - {B .7} (48)

where [B,Z] = BZ — IB is called a commutator while {D,Z} = DZ + ZD is called an
anticommutator.
Since the operators in Eq.(4.5) are 2 x 2 and hermitian, they can be expanded in

terms of the Pauli spin basis matrices and the unit matrix of order 2

1 1 0 01 0 —3
0p = e T = y Og= , U3z = (49)
0 1 0 =1 i i 0

These operators obey an algebra such that the multiplicati‘dri' property of the operators
is
3
Gi0m = aﬂélm +1 Z €lmnOn (410)

n=1

where §;,, is the Kronecker delta symbol and €, is component lmn of the totally anti-
symmetric tensor (with €13 = +1).

A A
Using the Pauli spin matrices, the operators Z (2), B (2) and D (z) can be expanded
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s |
T(z)=} & 52
B () = ;éﬁm (4.1
D ()=} L di(2)on

where S; (z) = {80, 51,52, 93} is the 4-dimensional Stokes vector defined previously in
section (3.2). B, represents the arbitrary phase of the fiber and E = (B,,0,,05) is the
birefringence in Stokes 3-vector representation. dy represents the arbitrary loss of the
fiber and d = (d1,ds, ds) is the dichroism also in Stokes 3-vector representation.

Using Eq.(4.11) and the Pauli spin matrix algebra, the Stokes form of the coherency

equation of motion (4.8) can be expressed as

B @ d(@)-5 (9 | (112)

and e
ds (z
dz

) _§(2)% B (2) = So(2) d () — do () § (2) (4.13)

where § (z) = {51, Sz, 53} is the 3-dimensional Stokes vector (see Appendix B). Note that
equations (3.29) and (3.30) are identically equivalent to equations (4.12) and (4.13), re-
spectively. However, equations (4.12) and (4.13) are expressed in vector notation whereas
equations (3.29) and (3.30) are expressed in terms of components of the vectors.

The equations (4.12) and (4.13) can be rewritten in a more revealing Stokes 4-

dimensional vector equation of motion as follows:

So —dy —dy —dy —dj So

d]| S ; —d; —d - S

Z| S, —dy —fB3 —do [ S '
Ss —ds By —B1 —do )\ Ss

The 4 x 4 matrix in equation (4.14) above exhibits Lorentz group symmetry which can
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be exploited to expand the matrix by using a set of Lorentz group generators [1]. Con-
sequently, the Stokes 4-dimensional equation of motion can be written in a compact
operator form as

456 _{ syt (a‘ @)B)+(F@B)}S@  @w

- .
here S (z) is the 4-dimensional Stokes vector and /I\ is the 4 X 4 unit matrix. The matrices

A A
B and D are the appropriate set of Lorentz generators given as follows [70]

0 -1 00 0 0 -1 0
A -1 0 00 A 0 0 0 O
D1= 3 D2_
g 0 0 0 -1 0 0 O
0 0 00O 0 0 0 O
0 00 -1
A 0 00 O
Ds= (4.16)
0 00 O
-1 00 O
and
00 0 O 0 00 O
A 00 0 O A 0 00 -1
Bi= ) B2=
0 0 4 000 O
00 —-10 L )
a1 -8
A 0 0 10
Bs= (4.17)
0 -1 00
0 0 0O

The Lorentz generators in equations (4.16) and (4.17) obey an algebra given by the
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following commutation relations [71]
A A A
[Bi, Bj] = — eijx Bi
k

A A A
[Di;Dj:l = Zfijk Bk (4.18)
k
and

A A A
[Bz‘:Dj} = — > €k Dk
k

The formal solution to the Stokes 4-dimensional equation of motion (4.15) can be

written as

§(0dfe)=M(kdb:) 0 . @)

where =S> (0) = {Soo, S10, S20, S30} is the 4-dimensional input Stokes vector and the general
Mueller matrix for arbitrary birefringence and dichroism expressed in terms of the Z-

ordered exponential operators [72] is given by [1]

_ [ d [do () ﬂ + [Fd [& (). 1’:‘)]

M (d(],(_i.;_,é,z) :E exp — A
+[Edy [/3 (2" B]

(4.20)

The arrow pointing to the left above the Z in equation (4.20), indicates that the operators
for the longer distances are ordered to the left.
For the case of arbitrary but uniform birefringence and dichroism, the general Mueller

matrix in Eq.(4.20) after expanding and summing, takes the form

M (do,a,ﬁ,% = exp (—dpz) exp [(E (2)- ]S) z+ (B (2) - ]%) z]' (4.21)
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For the special case of only dichroism, Eq.(4.21) takes the form

A/ AN\2 -~  A\2
s, - I- (ed . D) + (ed . D) cosh dz
M (dOa d,0, Z) = exp (—d[)z) . (4.22)
+ (Ed . D) sinh dz

and for the case of pure birefringence Eq.(4.21) becomes
A =  A\? —~  A\2
sy - [I+(ea-B)]—(eﬂ-B) cos 3z
M (0,0,5,2) = ) (4.23)
- (Eﬁ . B) sin Bz

With the use of a complex Lorentz 4 x 4 generator given by

I
P= 5 (B —3 D) (4.24)
the general Mueller matrix for arbitrary and uniform birefringence and dichroism given

in Eq.(4.21) can be rewritten as

M (dg, a, E, z) = exp (—dpz) exp [2Re (5 : f’) z} (4.25)
where

P=0 +id =pn & (4.26)

is the Stokes 3-vector in complex form . With the use of Eq.(4.26)

=g 1 ( Ip
Pm = |P:P)" = Nyexp [7, tan™ (—)] 4.97
or 1
P = [(ﬂfn —d2) +2i (ﬁ : E)] ' = R, +il, (4.28)
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where h
_ Ng + (ﬁ?n, = d?n)} ’ (4.29)
2
and "
L=+ Ny - (ﬁj" _ d’z’*)] 2 (4.30)
with 3
N, = [(ﬁfn — )" +4(5-d) 2] “ (4.31)

Using equations (4.27) to (4.31) and some trigonometric identities, the Mueller matrix

for arbitrary and uniform birefringence and dichroism (4.25) becomes

—

M (dﬂa E: E: Z) =

o </I\>+ (E e )cosh(Ipz)—t- \/1\1_ (E e )sinh (I,2) (4.32)
s G e
where ¥ . - (5_\% Z’I‘+(Tv1;)2 | .
M St el (P R R N I
D> M T ‘
o_ (ea, p) =N\ (E~é)2+(a-ﬁ)2N+ (E ) a)g ‘s (4.34)
[ ArR|(E-B)+@E-D) )
Ty (ea€p) = <L +IEN%,)QIP [(5 | ﬁ) 3 (5 . ﬁﬂ | (4.35)
and
A= =y (%,,-)2110[)—5]%)‘]-(3]5)
1\ (ed,eﬂ)— _(_]\%)Rp (E]%)—(E IA)] (4.36)
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are new matrices associated with the mixing of the birefringence and dichroism effects

when the birefringence and dichroism vectors are nonparallel. They obey the following

relation

A 1 3 »
P_= -1 ]Si: 5 Z €irs {ﬁr; ]/:\)s} (‘437)

,5=1
The matrix n = diag (—1,1,1,1) in (4.37) is the metric matrix. The components of the

A )
D matrices are thus defined as follows:

e o W= =1
A 1000 A 00 0 O
U= , D =
T 0 0 00 ~2 10 0 O
0 0 00 00 0 O
0 00 —-1
A 000 O
D= (4.38)
s 000 O
100 O

Note that in the limiting cases for very small dichroism or birefringence, the functional
form of Eq.(4.32) for the Mueller matrix for arbitrary and uniform birefringence and
dichroism reduces to the Mueller matrix for pure dichroism and pure birefringence given
in equations (4.22) and (4.23).

In the following sections of this work, methods of the unified formalism will be used
to obtain Mueller matrices for an optically active birefringent fiber with and without
dichroism. Then, the elements of the Mueller matirces will be expressed in functional
forms to provide a simple means for obtaining numerical solutions to the Stokes-Mueller
equations that characterize the Stokes input and output paramters. The results obtained

will be presented and discussed.
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4.2 Polarization Formalism for an Optically Active

Birefringent Fiber without Dichroism

In order to investigate the propagation of light in a birefringent fiber with optical
activity and account for some of the interesting polarization effects which will emerge,
it is important to initially consider the simple case of a fiber with negligible loss. Then,
there is no dichroism and I'm (ﬂg) = 0. Consequently, the action vector 2L is real and

thus represents the birefringence of the fiber. In this case, Eq.(4.12) takes the form

dSO (Z)
dz

=0 . (4.39)

and the evolution equation for the Stokes 3-vector Eq.(4.13) becomes

dg(z) _g[ —
dz 2c

e smxsm]“- (4.40)
Equation (4.40) represents a precession of the Stokes vector around Q%. Thus, a point
on the Poincaré sphere representing the state of polarization moves along a circle whose
center belongs to an axis which passes through the center of the sphere and is parallel
to QF ( see Figure (1)). Therefore, the sphere rotates as a rigid body, and Qf evidently
represents the angular velocity of a rotating sphere in an inertial frame.
Referring to the expansion given in Eq.(3.24), it is deduced that Q% accounts for small
anisotropy in the dielectric tensor of the fiber. Thus, using Eq.(3.24), a.nd.assumjng that

there is no optical activity, the following components can be obtained for the special case
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of a lossless birefringent fiber with small anisotropy along its length

QQ = % (611 + €33 — 27’1.2)

Q= % (Aecos29¢) , (4.41)

1
Q= - (Aesin2¢)
Qs = 0

where Ae = €17 — €33 and ¢ is the angle between the laboratory frame and the natural
frame of the fiber. The second and third equations in (4.41) indicate that the linear
birefringence relates to the anisotropy of the fiber.

For the case of an isotropic optically active fiber, the coupling term can be expressed

with the use of the optical nonlocality tensor as follows [13]:
Uiy = i%I‘“eijz (442)

where I'® is the magnitude of the optical nonlocality and e;;, is the Levi Civita antisym-
metric tensor. Equation (4.42) can be used to obtain the following components of Q% for

the case of an isotropic optically active fiber with negligible loss

2w,
QF = OF = Of = 0; Qf = L (4.43)

To investigate the light propagation in an optically active birefringent fiber and obtain
some of the interesting polarization effects which may emerge, the vector QF for such a
fiber may be considered as an independent additive of the corresponding vectors for an

optically active fiber and for a birefringent fiber. That is,

QF =0k, + Qg (4.44)
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Furthermore, in order to avoid initially tedious calculation, it is assumed that the fiber
axes coincide with the laboratory frame so that ¢ = 0. Using (4.41) and (4.43), equation

(4.44) yields

Q= % (611 + €33 — 2712)

1
Ql = '—AE (445)
e’

=0

0y = —2pe
(&

Using the components for the 3-vector of Q¥ obtained in (4.45), equation (4.40) can be

written as
dsS;
‘—d; = —2G32
dS ) /
i S 2GS; + 26 S3 (4.46)
dz
dS3 7
g s —26 Sy

where G = (w?/2¢*) I'* is the fiber’s optical rotatory power related to the circular bire-
fringence and 6 = (Aew/4cn) is a measure of the fiber’s on-axis linear birefringence. The
differential equations in (4.46) along with (4.39) represent the evolution of polarization as
the light propagates along a lossless birefringent optically active fiber. It must be stressed
here that a fiber generally does not exhibit optical activity. However, if small anisotropy
along the fiber optical axis is assumed where no birefringence due to anisotropy of the
dielectric tensor €;; is seen, optical activity is possible and therefore can be described
using the equations derived in this section. Crystalline quartz SiO; is optically active

along its optical axis [13].
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The equations, (4.39) and (4.46), can be rewritten in the following matrix form

S[) 0 O 0 0 SO
d| S 0 0 -2G 0 S
Bl =) , ! (4.47)
dz | g, 026 0 26 S,
Sy 0 0 —-25 0 Ss
The solution to Eq.(4.47) is written simply as
Sa= exp (E - ﬁ) 2 S ‘ (4.48)

where E= Re§l is the birefringence three-vector and §a as well as =S;..:,,o represent the
output and input Stokes 4 vectors, respectively. The exponential in Eq.(4.48) is immedi-
ately recognized as the Mueller matrix of the fiber [1]. Using the methods adopted from
Brown’s unified formalism, the exponential can be expanded in terms of the Lorentz

A
generators B as follows:

M (0,0,B,z) = exp (E . ]li\'.) z
S T , . af . (4.49)
= |I + (eﬂ . B) - (eﬁ . B) cos Bz + (eﬁ . B) sin 3z
where 8 = 21/(8)” + G2 is the magnitude of the birefringence and € s= cos26 €, + sin 20
3 is a unit vector in the direction of the total birefringence. Then, the Mueller matrix

for an optically active birefringent fiber without dichroism is given by (see Appendijx C)

1 0 0 0
- s 0 cos?20+sin®20cosfBz —sin2fsinfz cos2sin 26 (cos Bz — 1)
Wi (o, 0,8, z) =

0 sin 20 sin Bz cos fz cos 20 sin Bz

0 cos20sin26 (cosfBz—1) —cos20sinfBz sin’® 26 + cos? 26 cos Bz
(4.50)
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Thus, the Stokes-Mueller equation can be expressed as

So 1 0 0 0 Soo

S _ 0 cos®20 +sin®26 cos Bz . —sin20sin Bz cos26sin20 (cos Bz — 1) S1o

So 0 ‘$in 26 sin Bz cos Bz cos 20 sin 5z Sao

Sy 0 cos20sin26 (cosfz — 1) —cos20sinfBz sin?20 + cos? 26 cos Bz S30
: (4.51)

Now, in order to obtain a functional form of the output Stokes parameters, it is
assumed that the input light is-linearly polarized on axis so that Sgy = 1, Sip = Sgo = 1,

and Sop = S39 = 0. The following functionals are obtained for a fiber of length z = L

So (L) = Seo

G2
S1(L) = [1 — — (1 —cos2uL)| Soo

W
Sa (L) = ;sm 2uL Sy (4.52)
Ss (L) = —‘;f (1 — cos2uL) Soo

where u = \/(8')* + G2. Note that § = 2u.

Using the Stokes-Mueller equation (4.51), the results for various céses of input light
polarization as a function of fiber length are presented in graphical figures. In all of these
results, it is assumed that there is no polarization-dependent losses so that dichroism
can be neglected and the light pulse propagates along the, fiber without distortion or
broadening barring other factors such as chromatic dispersion and nonlinear effects. In
this case, the two principal states of polarization(PSP), that is, the polarization states
for which the output polarization is independent of the optical frequency to first order
are orthogonal and represent the slow and fast propagating pulses. Any other pulse can
be decomposed in terms of these two PSP and will broaden during propagation [62)].

It can be recalled that in obtaining Eq.(4.51), the fiber axis is assumed to coincide with
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Figure 4-1: Variation in output Stokes parameters as a function of fiber length for linearly
horizontally polarized input light. Circular birefringence present but linear birefringence
off-axis not allowed.

the laboratory frame so that off-axis linear birefringence is not allowed but both linear
on-axis and circular birefringence are present. Thus, for a given optical fiber trunk, this
assumption amounts to neglecting bend-induced perturbations but considers that twist
effects may be present along the length of the fiber and that perturbations intrinsic to
the fiber resulting from material anisotropy or geometrical asymmetry or those external
to the fiber such as thermal/mechanical stress may be induced in the fiber.

When the input light is linearly polarized on axis or off axis as shown, respectively, in
Figs. (4-1) and (4-2), the output light for both cases is seen to be linearly polarized since
S3 is a null. For right circularly polarized input light, the output light is circularly
polarized since S; and S are both null intensities as shown in Fig.(4-3). If the light is
initially elliptically polarized such that the orientation angle is 45° with respect to the
principal axis and the ellipticity is 22.5°, inspection of Fig.(4-4) shows that the output
beam emerges elliptically polarized.

It is interesting to observe the change in the output beam’s behavior when the fiber is
further assumed to have no circular birefringence. Then, in this case the fiber is straight

with no bends and twists. Fig.(4-5) shows that the output light remains linearly polarized
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Figure 4-2: Variation in output Stokes parameters as a function of fiber length for linear
+45° polarized input light. Circular birefringence assumed present but linear birefrin-
gence off-axis not allowed.
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Figure 4-3: Output Stokes parameters as a function of fiber length for right circularly
polarized input light. Circular birefringence present but linear birefringence off-axis not

allowed.
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Figure 4-4: Variation in output Stokes parameters as a function of fiber length for ellip-
tically polarized input light (45° azimuth and 22.5° ellipticity). Circular birefringence is
present but linear birefringence off-axis not allowed. s

on axis when the input polarization is off axis and for a light beam with polarization off
axis, the output beam is off axis as shown in Fig.(4-6). It is.shown in Figs.(4-7) and (4-
8) that the output light maintains the same form of circular and elliptical polarizations
when the input light is respectively circular and elliptical.

Comparing the results in Figs.(4-1) to (4-4) with Figs.(4-5) to (4-8), it is observed
that the presence of circular birefringence induces a variation in the evolution of the
polarization state for all cases of input polarization except for the case when the input
light is right circularly polarized and the output beam remains unchanged. The change
observed when circular birefringence is present can be attributed to the anisotropy in-
troduced by twisting the fiber. The pertubation resulting f;‘or‘rll twisting the fiber causes
the output polarization to change when the input light ‘is either linear on-axis, off-axis,
or elliptical. Right handed circular polarization is an eigenpolarization since the output
states do not change for right circularly polarized input light.

To obtain the Mueller matrix in Eq.(4.50), it was assumed that the natural axis of the
fiber coincided with the laboratory frame so that ¢ = 0 and off-axis linear birefringence

was not allowed. Suppose axes of fiber and lab frame do not coincide, then ¢ # 0, and lin-
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Figure 4-5: Output Stokes parameters as a function of fiber length for linearly horizontally
polarized input light. Both circular and linear off-axis birefringence are absent.
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Figure 4-6: Output Stokes parameters as a function of fiber length for linear +45° po-
larized input light. Circular and linear birefringence off-axis are both absent.
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Figure 4-7: Output Stokes parameters as a function of fiber length for right circularly
polarized input light. Circular birefringence and linear birefringence off-axis are both
absent.
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Figure 4-8: Variation in output Stokes parameters as a function of fiber length for el-
liptically polarized input light. (45° azimuth and 22.5° ellipticity). Circular and linear
birefringence off-axis are both absent.
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ear birefringence off axis is allowed, a more general Mueller matrix for pure birefringence

can be obtained. In this case, the evolution equations will have the general form

So 0 0 0 0 So
dz | g, 0 26 0 28 || & '
Ss 0 2y =28 0O Ss
and the Mueller matrix for the case of birefringence only becomes
,-.,‘ = Y
M(0,0,ﬁ,z) = exp (ﬂ . B) 2
(4.54)

. F £ (Eg : ]%)2} - (Ea ' ﬁ)2008ﬂ2+ (Eﬁ : ﬁ) sin fz

where 8 = 2\/ (5’)2 + 72 + G2 is the total birefringence and e 5= cos 2¢ cos 20 e; + sin 2¢ cos 26
+sin 20 e5 is a unit vector in the direction of 3. Again, using the unified formalism, the
matrix can be expanded in terms of the exponential of the' birefringence vector and the

Lorentz generators to yield

M (0, O,E,z) =
1 0 0 0
; Cs 5265 —524C20S5
+C3,C5 (1~ Cp)  +C3S2C2 (1= Cp)  +C2Ca0S30 (1 — Cp)
. — 55455 ' Cs CayC20Sp
+C2yC3y52s (1= Cp)  +C5%83,(1—Cp)  +524CapS2 (1 — Cp)
. S24Co95p —C54C2%S53 Cps
+C2Ca0S20 (1 — Cp)  +52¢C26520 (1 — Cp) +5% (1 — Cp)

(4.55)
where Cyy = c0s 2¢, Czg = €08 20, S = sin20, Sg = sin Bz and Cg = cos Bz.

With Eq.(4.55), the following functional form of the output Stokes parameters can
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also be obtained for this case if the input light is linearly polarized on axis:

So (L) = Spo
7y 2 2
S1(L) = (%2)— + (1 — (1(5/—2)) cos 21/L] Soo
G . &'y
Sy (L) = l—; sin SL + oz (1 — cos ZVL)] Soo (4.56)

!

S3 (L) = B sin L + %zq (1 — cos QVL)] Soo

Where v = \/ (6')* + 4% + G2. Note that when v — 0, then ¥ — p as in the previous case
of Eq.(4.52).

Hence, numerical results for several cases of input light polarization as a function of
fiber length can be obtained for the special case in which linear birefringence off-axis is
allowed but circular birefringence is assumed to be absent. The output polarization as a
function of the fiber léngth for initially linearly horizontally polarized light, linear +45°
polarized light, right circularly polarized light and elliptically polarizgad light with 45°
orientation angle and 22.5° ellipticity are shown in Figs.(4-9) to (4-12).

It is observed from these figures that the beam emerging from the fiber has the same
form for all cases as the input polarization. That is, for linearly polarized input light
on-axis the output light is also shown to be linearly polarized on-axis and similarly for
off-axis, circular, and elliptical input polarization.

When both linear off-axis and circular birefringence are considered to be present
along the length of the fiber, it is seen from Figs.(4-13) to (4-16) that interesting effects
may occur in the output polarization of the emerging ligpt.':_Again, it is observed that
circular birefringence introduces a variation in the polarizétiou as the light propagates
along the fiber. When circular birefringence is assumed absent the Stokes parameters
remain constant for each input. However, when circular birefringence is present, the

Stokes parameters are observed to vary with length depending on the input polarization.
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Figure 4-9: Output Stokes parameters as a function of fiber length for linearly hori-
zontally polarized input light. Circular birefringence assumed absent and linear off-axis

birefringence allowed.
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Figure 4-10: Output Stokes parameters as a function of fiber length for linear +45°
polarized input light. Circular birefringence assumed absent and linear birefringence

off-axis allowed.
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Figure 4-11: Output Stokes parameters as a function of fiber length for right circularly
polarized input light. Circular birefringence is assumed absent and linear birefringence
off-axis allowed.
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Figure 4-12: Output Stokes parameters as a function of fiber length for elliptically po-
larized input light (45° azimuth and 22.5° ellipticity). Circular birefringence is assumed
absent and linear birefringence off-axis allowed.
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Figure 4-13: Variation in output Stokes parameters as a function of fiber length for
linearly horizontally polarized input light. Circular birefringence assumed present and

linear birefringence off-axis allowed.

4.3 Polarization Formalism for an Optically Active

Birefringent Fiber with

Dichroism

For the case of a lowloss isotropic fiber with optical activity, the evolution equations

(4.12) and (4.13) take the form

dSo

dz
s,
dz
5,
dz

34

2
—2Im {k} So + %Im [T°}

2
L= —2Im {k} 1 - 5 Re{I"} 5,

2
— —2Im {k} Sy — %Re {r*} S
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Figure 4-14: Variation in output Stokes parameters as a function of fiber length for linear
+45° polarized input light. Circular birefringence present and linear birefringence off-axis
allowed.
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Figure 4-15: Variation in output Stokes parameters as a function of fiber length for right
circularly polarized input light. Circular birefringence present and linear birefringence

off-axis allowed.
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Figure 4-16: Variation in output Stokes parameters as a function of fiber length for
elliptically polarized (45°azimuth and 22.5%llipticity) input light. Circular birefringence
assumed present and linear birefringence off-axis allowed.

dS; w? "
— =—2Im {k} S5+ =Im {I} So

- The above equations ¢an also be rewritten in matrix form as

So —2Im {k} 0 0 w? Im (T} So
d| 85 | _ 0 —2Im{k} —“Re{I"} 0 S (‘4'58)
dz | g, 0 @ Re{l"} —2Im{k} 0 S

Ss W Im {T°} 0 0 —2Im {k} S,

Inspection of Eq.(4.58) reveals that there is no linear birefringence and dichroism. The
presence of circular birefringence and dichroism induces optical activity in the fiber.
Circular birefringence gives the polarization azimuth rotation while circular dichroism
controls the evolution of the ellipticity. These are manifestations of optical polarization

phenomena. The Mueller matrix for circular birefringence only is

_ f/I(0,0,E,z) = exp 4 (Eg-ﬁ)z
A e A\ 2 - A\ 2 — AN L i
= [I-F(ea'B) ] — (33-3) cos 33z + (63-]3) sin 852

86

(4.59)

Digitized by Sam Jonah Library




© University of Cape Coast https://ir.ucc.edu.gh/xmlui

and the Mueller matrix for circular dichroism only is
M (dg,a,o,z) = expds (23 . ]S) z

A —  A\? -~ A\2 - A
= I-(es-D) +(es-D) coshd3z+(63-D)Sinhd3z

Again, resorting to the use of the unified formalism, the Stokes-Mueller matrix equation

for an isotropic optically active fiber with circular birefringence and dichroism can be

expressed as .
So Cn 0 0 & Soo
Sl - e—2im{k}z 0 Cﬁ _Sﬁ 0 S]'O (4-60)
S 0 S 8 Oﬁ 0 Sz() 3
S3 oy 0 e 5" S30

where C, = cosh (%Im {I‘“}) z and S, = sinh (“;—:Im {I‘“}) z. Thus, equation (4.60)

can be rewritten in the following explicit form

2 2
Sp (z) = e~2mik}z [Soo cosh (%Im {I‘“}) z + S3psinh (‘Z—zIm {1"“}) z]

2 2
8 (z) = groinikla lSw cos (L:—Q_Re {I‘“}) z — Sy sin (t—zRe {I"“}) z]

: - 2 2
85 (2) = g—2imik}z [Szo cos (%Re {I‘“}) z + Sypsin (L:—zRe {1"“}) é} (4.61)

2 gy
Sy (2) = o~ 20mik}z [330 cosh (%Im {I‘“}) z + Sgo sinh (‘j—z]m {I‘“}) z] .
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Figure 4-17: Output Stokes parameters for linearly horizontally polarized input light as

a function of the fiber length. Circular birefringence and dichroism only are assumed
present.

For the specific case of linearly polarized input light, the functional form can therefore

be written as follows

So (L) = e™2L (cosh 2d3 L) Sgo
Sy (L) = e~2E (cos 2685L) Soo
Sy (L) = e 2% (sin2B5L) Soo (4.62)
S3 (L) = e=2F (sinh 2d3 L) Soo

where ;3 = w?/2¢* { Rel'®*} and d3 = w?/2¢? {ImI*}. A is the isotropic loss of the fiber.

The graphical results illustrating the change in the output Stokes parameters as the
light propagates along the fiber for different input field polarization when linear bire-
fringence and dichroism are absent are given in Figs.(4-17) to (4-20). The decreasing
intensities observed in these diagrams are due to circular dichroism and isotropic loss in

the fiber.

Now, for the case of a birefringent fiber with anisotropic dielectric tensor, without dis-

regarding losses for the specific case when circular birefringence and dichroism are absent,
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Figure 4-18: Output Stokes parameters for linearly +45° polarized input iight as a func-
tion of the fiber length. Circular birefringence and dichroism only are assumed.
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Figure 4-19: Variation in output Stokes parameters for right circularly polarized input
light as a function of the fiber length. Circular birefringence and dichroism only are

assumed present.
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Figure 4-20: Output Stokes parameters for elliptically polarized (45° azimuth and 22.5°
ellipticity) input light as a function of the fiber length. Circular birefringence and dichro-
ism only are assumed present.

can also be analysed. Linear birefringence and dichroism account for small anisotropy
and diattenuation effects in the fiber. Using Eq.(4.41), as well as equations (4.12) and

(4.13) the following set of equations are obtained

‘Z—‘% = —ASy — 26" cos 245, — 26 sin2¢S,
2
“;—Sl = —AS; — 26" cos 2, — 26 sin 2S5
Z
. dSz . "o, '
o = —~ASy — 26 sin2¢Sp + 26 cos2¢Ss ‘ (4.63)
z
ng U !
5 = —AS3 — 26 cos2¢S, + 26 sin2¢S;
F4

which can be rewritten in an equivalent form as

S ~A  —2§"cos2¢ —26 sin2¢ 0 So
: —26" cos 2 —-A 0 —26 sin2 S
d Sy _ 26” cos 2¢ ’ ¢ 1 (4.64)
dz 5'2 —926 sin 2¢) 0 —-A 26 cos 2¢ SQ
By 0 26' sin 2¢ —26' cos 2¢ -A Ss
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where A = 5.Im {Zn-i- = (en +E33)}, § = Re{we/4cn} and § = Im{wlAe/4cn}.
Note that A is the isotropic loss of the fiber, &' and 6" are its linear birefringence and

dichroism, respectively.

The Mueller matrix for birefringence only becomes

M(0,0,E,z)=exp (E]/E\B)z
A — A\ 2 — AN 2 - A (465)
= l:I'l- (eﬁ . B) } - (e,;-B) cos Bz + (eﬂ . B) sin Bz

where the unit vector is €s= cos2¢ €, +sin2¢ e,. Equation (4.65), when expanded

will yield

I 0 0
_ - 0 C2,+5%3,Cs S24Cap(1—Cs) —8348
M (0, 0, ﬂ,z) = at Bpghis _ Sutgll =G ~ighs (4.66)
0 Sz¢,02¢, (1 — Cﬁ) 8224, + C§¢,Cﬁ C2¢Sﬂ
0 S2953 —C%Ss Cs
and the Mueller matrix for only dichroism is
M (do, E, 0, z) = exp (—dpz) exp (E . IS) z
(4.67)

A fa  AY? L. s A
= [I— (Ed'D) ]+ (ed'D) coshd,z + (Gd-D) sinhd,,z

Where the unit vector €z= cos 2¢ El +sin2¢ e3. Equation (4.67) can also be expanded

to obtain

24 —C2¢Sh —S24Sh

0

—CQ¢Sh S22¢ ~+ 022¢Oh SQ¢CQ¢, (Ch = 1) 0
.0

1

N (do,a',o,z) = (4.68)

-—52¢Sh Sz¢02¢ (Oh - 1) C§¢ + S§¢Ch
0 0 0

The birefringence and dichroism occur simultaneously over the same optical path

lvll",

91

Digitized by Sam Jonah Library




© University of Cape Coast https://ir.ucc.edu.gh/xmlui

and are thus parallel effects. Therefore the Mueller matrix for this case is a composit
of the individual matrices due to only birefringence and only dichroism. The product
of equations (4.66) and (4.68) with the appropriate order preserved yields the Mueller

matrix for the system. Hence the Stokes-Mueller equation is

5o & —CasSh 545 0 St

S _ A —C24Sh  C3,Ch+ 55,C5  CaySoy (Ch — Cs) —S24Ss S1o

Sy —S24Sh  CagSag (Ch— C)  82,Ch+CZCs  CapSp Sao

Ss 0 8545 o, Cs S30
(4.69)

where Cj, = cosh (25”) &y 5% = pinh (25”) z, Sap = sin2¢, Csy = cos2¢, Cg = cos (28') z,
and Sg = sin (2§) z.
For the case of linearly polarized input light, the functional form can be obtained

using Eq.(4.69) as follows
(L) =g 2% [cosh 26" L — cos 2¢ sinh 26”L] Soo

5 (L) =eBL [—. cos 2¢ sinh 26" L + (cos2 2¢ cosh 26" L + sin? 2¢ cos 26 L)} Soo
AT [— sin 2¢ sinh 26" L — cos 2¢sin 2 (cosh 26" L — cos 25’L)] S (4.70)
Sy (R) =27 [sin 2¢sin 25'L] Soo

For this case, it is noticed that the observed intensity depends on the orientation angle
¢ of the incident light.

Graphical results showing the variation in the Output Stokes parameters for different
input polarization of a light beam propagating along a birefringent fiber having small
losses are presented in Figs.(4-21) to (4-24). These results are for the specific case in
which circular birefringence and dichroism are both assumed .t’o be absent in the fiber. In

general, the graphs show that the total intensity of the input laser light is dissipated by
the fiber. This is due to attenuation by the fiber. In addition, it is also seen from these
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Figure 4-21: Output Stokes parameters for linearly horizontally polarized input light as
a function of the fiber length. Circular birefringence and dichroism are assumed absent.

plots that the fiber depolarizes the propagating beam due to the polarization dependent
losses accounted for by the presence of linear dichroism.

To obtain Eq.(4.69), effects due to circular birefringence and dichroism were not
allowed. However, in order to generalize these results, this I_es_,triction must be removed.
In Eq.(4.32), the general Mueller matrix for arbitrary birefringence and dichroism, the

scalar terms {®,,¥,,®_,¥_} may be rewritten in the following form

s(¢i,qfi)=A’1‘+(BE—05)-1%

— = A = A\Z2 /= A\2 /= =\ A (4.71)
+(Bd—Cﬁ)-D+DKﬁ~B) +(d-D) +(Fxd)-D
where .
A= ﬁp (R cosh I z+12costz) |
B = —L(Rpsmlz—kf sinh I,2)
Np
C = - (R, sinh Lz — L,sin Ryz) (4.72)

=

P
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Figure 4-22: Output Stokes parameters for linear +45° polarized input light as a function

of the fiber length. Circular birefringence and dichroism are assumed absent.
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Figure 4-23: Variation in output Stokes parameters for right circularly polarized input
light as a function of the fiber length. Circular birefringence and dichroism are assumed

absent.
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Figure 4-24: Output Stokes parameters for elliptically polarized (45° azimuth and 22.5°
ellipticity) input light as a function of the fiber length. Circular birefringence and dichro-
ism are assumed absent.

D= . (cosh I,z — cos R,z)
Np

Therefore using equation (4.71), the expansion for the matrix represented by the

scalar terms can be written more explicitly as

A+ Dd?

— (Bd, + CB,)
+DB,d3

— (Bdy + CBy)
+DB3d;

— (Bds + Cfs)
+D,d2

E(Dy,Uy) = Do

— (Bd, + CB,) — (Bdy + CPBy)

—DByds —D,dy
A+ (Bf; — Cds)
D(B2 B —di)  +D(Bsfy +dadh)
— (BBy — Cds) A+

+D (6,8, +cads) D (85— 5" —d3)

(BB, — Cdb) — (BB, — Cdy)
+D (Bsfy +dsdi)  +D (BaB + dsda)

95

Y

— (Bds + CBs)
—Dp,do
— (BB, — Cdy)
+D (B3B; + dzd)
(BB, — Cdy)
+D (B3B; + dads)
A+

D (3-8 —d3)
(4.73)
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The mafrix in Eq.(4.73) represents the most general case of birefringence and dichroism
present in a fiber with an action-vector having real and imaginary parts that are not
necessarily parallel. Discussions on the results for specific cases of light polarization
relating to this general case of both birefringence and dichroism present in the fiber will

be presented in Chapter 6.
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Chapter 5

POLARIZATION FORMALISM
AND MODEL: THE NONLINEAR
CASE

5.1 Evolution Eqﬁations For Stokes Parameters in

Nonlinear Fiber

In this chapter, the nonlinear polarization effects in a single mode optical fiber are dis-
cussed and presented. The theoretical framework for describing the evolution of the
polarization state of an intense light in the fiber is also discussed and key effects result-
ing from the propagation of such an intense light in the fiber are analysed theoretically.

Numerical and graphical illustrations depicting these nonlinear polarization effects in the

fiber will also be presented and discussed.

The self-action vector for a fiber with small nonlinearities may be expressed as follows

O = QL 4 QNE (5.1)
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where
Qﬁ’ = ﬁ-?)uij = Vg (5'2)
is the linear action vector and
QR %wagSﬁ (5.3)

is the nonlinear self-action vector where w,s = cr;?‘z-fyijk,afl is an expansion coefficient
representing the material parameters responsible for the nonlinearities. These action
vectors and tensors have already been defined in section (3.3). The tensors u;; =
t0a0% and v = %w&ﬁo’%(jﬁ:‘ are restated here for clarity. Also, recall that v, =
= (Xijkl + ikrijklz)- |
~ To specify the evolution equations for an isotropic nonlinear optical fiber, the self-
action vector {1, needs to be calculated. The linear part, QF for an isotropic fiber has
already been analysed in Chapter 4. The parameter w,p responsible for the intensity-
dependent effects of the fiber can be obtained provided proper consideration is made on
the symmetry conditions of both the third order local and nonlocal susceptibilities.
In an isotropic medium, the nonlinear local susceptibility has 21 nonzero elements of

which only 3 are independent [21]. This is due to the symmetry properties of an isotropic

material. The nonzero elements are related by the equation

, :
X'E_?A)H = Xg:i)225ij5kl + Xg)m‘sik‘sjl + X52)215z‘l5jk (5-4)
where 1,2 = z,y in Cartesian coordinates. To obtain Eq.(5.4), the invariance of XE?I):l
under reflection and rotation are utilized. A rotation of 45 degrees about the 3-axis
(or z-axis) was the choice in the derivation. Equation (5.4) shows that the third-order
local susceptibility has three independent elements for the general case in which the field
frequencies are arbitrary.
To specialize this result to the study of nonlinear polarization effects in a fiber, there

is a need to further characterize the third-order suscetibility tensor at the appropriate

. 3 . )
choice of the operating frequency given by xgj,)d (w = w + w — w). Before this is done, it
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is important to note that since the fields in the fiber are in the transverse directions., the

number of nonzero eléments reduce to eight as follows:

(3)
Xi111 = ng)zz = X(11)22 G & X%)IQ + ng)m

3
X§1)22 = X%)u
(3) (3)
X1212 = X2121

3
X§2)21 = Xzi)lz

(5.5)

At this choice of frequency for Xz_ykl (w;w,w, —w), the intrinsic permutation symmetry
requires that xﬁ)zz = X§32)12 and the independent elements reduce to two. Furthermore,
the electronic contribution to the susceptibility is dominant [21] so that x11)22 = x§2)21 =
3;L§m Therefore, the nonlinear local response can now be given in terms of an effective

nonlinear susceptibility as follows:

Pi(w) =Dy xiju (w;w,w, —w) Bj () By (w) B} (w) (5.6)

.kl :
where the factor D in Eq.(5.6) accounts for degeneracy in the frequencies. D = 3 when
two of the frequencies are equal as in this case. D = 1 if all the frequencies were the
same and D = 6 if all frequencies were different.Thus, for a single-mode optical fiber, the

nonlinear local response is characterized by the third order susceptibility tensor

Xijkl = Xikjl = 3X1_7kl (w,w,w, —w) (5.7)

An isotropic nonlinear medium can be either gyrotropic or nongyrotropic depending
on the value of the nonlocal susceptibility tensor. For gyrotropic isotropic media, the

linear and nolinear nonlocal optical responses are

ry) = -ri _ (5.8)
3 3 _ (3)
F'Eji)zz = F"Ez])zz o —FJ]‘LJZ =i _F]’L]]Z
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(3)

i = —Thk, =T8, +1&, +18),
(3) 3

Lz = _Pg"iz)z'z = Fg_?i)iz £ Fg})iz =+ F’Ez:?;(z

The nonlocality susceptibility which is symmetrical with respect to the permutation of
the second and third indices is

(3) _ 3 3
Fijklz - F'ik:jlz = nglz:lz (w;w:wa —(.U) + szglz (w; w,w, _w) - F-E?,Izjz (w; w,w, —W) (59)

However, in an isotropic nongyrotropic media, nonlocality is forbidden by symmetry
and there are no nonlocal effects so that I"E;v)n = l"g,)dm = 0. For isotropic materials,
there are five different cubic crystal symmetry point groups: 23, m3, 432, 4 3m and
m3m. Cubic crystals are optically isotropic and are considered completely isotropic for
its optical property [60]. All cubic crystals have isotropic local susceptibility tensors
Xg;) = (e —1)6;. ¢ is the dielectric permittivity of the medium. Therefore, without
taking nonlocality into account, their linear optical properties are isotropic. Even within
the first-order spatial dispersion approximation, the linear optical properties of crystals
of m3 and m3m point groups are indistinguishable from those of isotropic nongyrotropic
media and thus these crystals show no nonlocal effects. Other cubic crystals, namely
the 23 and 432 classes, show natural and nonlinear optical activity similar to that of
isotropic gyrotropic media. It is also worthy to note that the crystals of m3 and m3m
classes possess inversion symmetry and are thus centrosym;_ge‘gric. Crystals which belong
to the m3 class have 21 nonzero third order local susceptibility tenso'rslof which 7 are
independent and the m3m class have 21 nonzero third-order local susceptibility of which
only 4 are independent. Quartz glass optical fibers belong to the m3m class of crystals
and therefore do not exhibit nonlocal effects. In other words, optical fibers show no
conventional natural nor nonlinear optical activity since FS;), = PS_’}S'I)clz = 0.

Therefore, the material parameter appropriate for light propagation along the longi-
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tudinal axis of a single mode optical fiber can be expressed as

drr (3
| Wap = —~ [Uji3X£jl)czU€z] (5.10)

The parameters wag are responsible for the intensity-dependent part of the action

vector €.

With the use of the relations in equation Eq.(5.10), the sixteen components for Wap

can be easily obtained as follows:

Wop = 12% U_?i (X?jkl) 021} &5 2477? {X§31)11 A+ Xﬁ)zz}

247 3
1 X2 — Xgaz)m} (5.11)

Wy = o {U;i (X'?]ki) allcl} = 24% Xﬁ)u = Xﬁ)zz}
Wop = = 0;2'1' (X?jkl) 021} = 24% X + Xg)ﬂ
J

Wo1 = Wog = Woz = Wig = 0
Wi = Wiz = Wyo = wyy =0
Wz = Wap = w3y = w3z =0

Hence the self-action vector Q, for light propagating along a fiber with small nonlin-

earities can now be obtained without much difficulty. For the case of a lossless fiber, all

components of ), are real. Therefore,

127
{lo=—+ (Xﬁ)u + Xﬁ)zz) S0
127 ¢ (3) (3)

Q1 han (Xnn . X1122) S1
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127
Hg=r—s (X(lei)zz ¥ X1221) S

1271" 3
Q3 = n (Xg1)22 ng)m) 53

Using the expressions in Eq.(5.12), the nonlinear evolution equations for

the Stokes parameters can now be written in the following form

2 (.3) 3
dSy _ _ bmw m| = (qu) St + (Xgl)ll + 2xi 3 + X1221) S3
3
4 X3 + 2x e — ng)zl) 53

d 3 (3) ;
Sl — _ 127w I:Im {Xllll SOSI} (3 Re {X1221 } SSSZ]
n

n
dSy & _ 6w - Im {% (Xﬁ)u e 2Xﬁ)22 P’ X1221) } SoS2 -
4z . +Re{ ( Xﬁ)zz Xﬁ)n ng)21)}8183 ]
dS; _  bmw - Im{ (Xg)u + 2x s — X%)m)} So53 -
i ¢ | +Re { (Xﬁ)u — 2§ — X1221)} S152

If the fiber is initially assumed to be lossless, then the refractive index n

(5.12)

(5.13)

and cubic

optical nonlinearity ngg'l)cz are real and the expressions in Eq.(5.13) can now be written in

the following simple form

(3)
dS: v _127“0 He {X1221 } Sl
dz C n
dS, 127w ¥
i [Re{ - } sls}
dz c
dSs _
dz
s _
dz
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It is noted that in obtaining Eq.(5.14), the fiber is also assumed to be isotropic.
It can be deduced readily from the last two expressions in Eq.(5.14), that Sp and
S3 are constants and the wave ellipticity = %sin_l (S3/So) does not change during

propagation.

Consequently, the first two equations of (5.14) can now be written as

dS1 Jw off
e [ERe {x }sz] (5.15)
and
dS, off )
— == e{x"'"} 5 (5.16)

where xy*// = {12” (x1221) Sp sin 277)} Equations (5.15) and (5.16) are two simple first

order coupled differential equations which can now be solved in the usual way.

Thus, the solutions for Eq.(5.14) are

51 (z) = Siocos (%Re {XSH}) z — Sy sin (%Re {ngf}) z

Sz (Z) = 520 CcOoSs (%RE{ ff}) 2t SlO sin ( { ff}) (517)
Ss (Z) == 83 (0) = 530

So (Z) = So (O) = Sog

where @
X' = { nﬂ- (X1221) Soo sin (2770)} (5.18)

Sa0 = {S00, S0, S0, S30} are the Stokes parameters for the input light and 7, represents

the initial angle of ellipticity. The expressions in Eq.(5.17) can be rewritten in matrix
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form as follows:

So 1 0 0 0 S
S1 _ 0 Cs =S5 0 Sio (5.19)
S2 0 S(p Crp 0 820
S 0 0 0 1 Sag

where Cy = cos (fRe {ngf}) z and Sy = sin (“—C’Re {XS”}) z. The 4 x 4 matrix in
Eq.(5.19) is easily recognized as a Mueller matrix which contains terms that depend on
the nonlinear perturbations of the fiber. It is worth noting that in order to obtain the
Mueller matrix in Eq.(5.19), the fiber was assumed to be lossless so that the differential
equations in Eq.(5.14) could be decoupled into Egs. (5.15) and (5.16).

5.2 Nonlinear Polarization Effects

In Chapter 4, it was shown that anisotropy of the dielectric tensor led to birefringence
in the fiber. If the fiber is assumed to be lossless and the initial polarization state of the
light wave is linear and oriented along either principal axes of a highly birefringent fiber,
the polarization state does not change as the light propagates through the fiber. However,
if the initial state of tlie propagé.ting wave is not linear or even if it is linear but off axis of
a highly birefringent fiber, the polarization state will go from one elliptical polarization to
the opposite handed elliptical polarization via a linearly polarized state and so on. This
can be described by a precession of the Stokes vector around the birefringence vecgor s0
that from any initial position on the Poincaré sphere, the end of the Stokes vector of a
propagating wave will trace out a vertical circle perpendiqulagﬁo the birefringence vector.

If losses are included and the birefringence is low or the fiber length is short, then for
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linearly polarized incident wave there will be small changes in the polarization state of
the light such that the change in azimuth © (L)—© (0) < 1 and the ellipticity 7 (L) < 1.
A rotation of the polarization azimuth © (L) — © (0) proportional to Im{(Le/n)} will
occur due to the differential absorption of the two orthogonal linear eigenwaves. The
propagation will yield ellipticity proportional to Re{(Ae/n)} which is related to the
differential refractive index of the eigenwaves. '

The polarization phenomena described above is exhibited when nonlocality is ne-
glected. That is, these polarization effects occur in the zero-order spatial dispérsion
approximation. Now when nonlocality is accounted for, optical activity is exemplified
and the plane of polarization of the light rotates as the light propagates through the
fiber. Such polarization effects appear in the first-order spatiai dispersion approximation
depicted by the linear nonlocality tensor I‘Sz, Thus, it can be deduced that, the only
reason for a change in the polarization of light propagating along an isotropic linear fiber
is due to optical activity. To study the nonlinear effects, however, there is a need to
account for the local and nonlocal nonlinearities, xgg,)d and F‘E_?I)clz' These quantities have
already been identified in equations (5.7) and (5.9). Consideration of these terms ex-
plains the dependence of the fiber on the intensity of the light wave. The main difference
between a linear and nonlinear fiber, therefore, is that in a nonlinear fiber the suscepti-
bilities depend on the light wave intensity and initial ellipticity. In What follows, several

nonlinear polarization effects occuring in a fiber when local and nonlocal susceptibilities

are considered will be analysed.

5.2.1 Nonlinear Anisotropic Effect

It is interesting to analyse the general case of a fiber without neglecting losses. Let

the light be linearly polarized with polarization azimuth ©p, then Stokes parameters can
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be written as
Sa = {So, COoSs 2@0, sin 2@0, 0} (520)

It is reasonable to assume that only small polarization changes occur during propagation

so that © (L) — ©p <« 7 and n(L) < m. Then, using Eq.(5.13) yields the following

formulae for the polarization azimuth and ellipticity of a light wave propagating along

the optic axis of a lowloss birefringent fiber

© (L) — 6 8m3L Im {AX

S e —= > Isin4© 85.21
T](L) )\C|1+n|2 _Re - } 1 0 ( )

where L is the length of the fiber, I is the intensity of the light wave with wavelength X
approaching the fiber of core refractive index n from vacuum and |

Dx = Xita — 247k — Xi7n (5.22)
Thus, it is seen from Eqg.(5.21) that even when nonlocality ié neglected, the orientation
angle of the polarization ellipse of an initially linearly polarized light will rotate. The
polarization azimuth of an intense light beam rotates even if the initial ellipticity of the
light is zero. This is a nonlinear anisotropic polarization effect and its sign depends on
the initial polarization azimuth ©p. If sin4@ = 0, i.e. the light is polarized along the
[100] direction (fiber X-axis), the [010] direction (fiber Y-axis), the bisector [110] between
X and Y, or perpendicular to this bisector, there will be no polarization change occuring.
However, for any othef initial polarization, the polarization state of the wave will change.
If a fiber were lossless, the refractive index n and cubic optical nonlinearity XE?,L would
be real. Then, the light will become elliptically polarized, but the main axis of the ellipse
will retain its initial azimuth. This self-induced ellipticity will be proportional to the
intensity and the length of the fiber. However, fibers have low losses and thus n or
XS?:: is complex and the self-induced ellipticity will be accompanied by a rotation of the

polarization azimuth.
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The nonlinear anisotropic effects for small induced polarization azimuth rotation man-
ifests itself in a way similar to nonlinear optical activity and early works [13] referred
to it as (NLOA-II), a second type of nonlinear optical activity. Therefore, it can be
concluded that the nonlinear anisotropic polarization effect reveals hidden anisotropy
of third order local optical nonliearity. This anisotropic effect is represented by Ax =
Xﬁ)n - Zxﬁ)gg = X(132)21- This combination of components of the cubic optical nonlinearity
tensor is zero by symmetry if the fiber is considered totally isotropic. Self induced elliptic-
ity due to nonlinear anisotropic effect has been observed in a range of highly transparent
alkali-halid crystals of the m3m point group.!® In these crystals, Im {Ax} = 0 in the
visible range and no polarization azimuth rotation can take place. However, Re {Ax}
is not necessarily zero and according to Eq.(5.21), an initially linearly polarized light
becomes elliptically polarized if Re {Ax} # 0. It is also worth noting here that the non-
linear anisotropic effect has very interesting spectroscopic applications for a fiber since it
is sensitive to departures of the fibers crystal electronic structure from isotropy. Also, the

anisotropic polarization effect is most pronounced along the cubic direction [001] which

is the axis of propagation in the fiber.

5.2.2 Nonlinear Polarization Self-Ellipse Rotation

Another fundamental nonlinear polarization effect in a birefringent single mode optical
fiber is that of polarization ellipse self-rotation. This effect was first observed by Maker,
Terhune and Savage and presented in an experimental paper on nonlinear polarization
effects [24]. Polarization ellipse can be easily deduced when the nonlocal susceptibilities
(linear and nonlinear) are neglected but only if the light wave is initially elliptically

polarized [13]. Then, the initial ellipticity mo # 0 and with the use of Eq.(5.18) it can be
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shown that _
OFSR (1) _ g, — 32m3L
Aen |1+ 'n|2

Re {x{% } Soosin (2n,) (5.23)

Eq.(5.23) indicates that the polarization azimuth rotates as the wave propagates along
the length of the fiber. This effect is referred to as polarization ellipse self-rotation. The
rotation requires an initial ellipticity 7o which does not change during propagation so
that 7 (L) = ny. On the Poincaré sphere, this effect is represented by a point tracing
out a horizontal arc above or below the equator [see Fig.(3-3)]. The length of the arc is
proportional the the léngth of the fiber and increases with intensity and initial ellipticity.
Depending on the sign of the initial ellipticity, the azimuth will be positive or negative.
Clearly, Eq.(5.23) refers to a lossless fiber. However, for the general case in which losses
in the fiber are accounted for, the imaginary part of x§32)21 is considered and the azimuth

is accompanied by an intensity-dependent change in the ellipticity of the light wave.

5.2.3 Polarization Instability

It has been shown in earlier sections that in optical fibers, the light waves are generally
elliptically polarized and in the special case of a polarization maintaining fiber they are
orthogonally linearly polarized.- In linear optics, the polarization of the propagating wave
is independent of the intensity of the light. In nonlinear optics, however, the refraction,
absorption, and anisotropy of the fiber are all functions of the wave‘intensity. I_t has
been shown [13] that when the input intensity or polarization of light undergoes a slow
change, the output polarization is found to be a mutivalued function containing both sta-
ble and unstable branches. The output polarization state depends on the prehistory of
the excitation (polarization hysteris). Given a particular combination of the parameters
of the input field, the output polarization may oscillate in time or even change randomly

with continuous frequency spectrum creating polarization choas. Furthermore, whereas
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in linear optics the polarization of the wave either oscillates along the direction of prop-
agation or steadily tends towards one of the eigenpolarizations which reme‘tin unchanged,
in nonlinear propagation, the polarization parameters along the propagation coordinate
may change abrutly and can depend strongly and unpredictably on the initial conditions.
This illustrates the phenomena of polarization instability and chaos which often appear
in nonlinear interactions between two waves. But, simple examples of polarization insta-
bility can be seen in self-action effects. This section discusses how polarization instability
develops for intense light in a birefringent single mode fiber.

Consider that light propagates along the symmetry axis of a nonlinear birefringent
fiber having local optical response. Assuming that the X and Y Cartesian axes of the
laboratory frame coincides with the major and minor axes of the fiber, the components
of the self-action four vector can be expressed as

487T 3
o = TX(n)zzSo

€11 — € 247T 3 ]
0, = 28 - i : 051 (5.24)

247
2 = —n—xgal)msz

Q3 == 0
In obtaining Eq.(5.24), small anisotropy is assumed along the direction of propagation

and is accounted for in the dielectric tensor while the cubic nonlinearity is presumed

isotropic. If losses are initially neglected, the nonlinear evolution equations become

dSo
g
dz
12
gﬂ = — ( ﬂwxg'%z) 5253
z en
L Y (611 — €33+ 247"Xg)2281) Ss ' (5.25)
dz 2cn .
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and
I " {5& (En1 = 633)} S

The evolution equations can now be arranged into equations describing the polarization

azimuth © and ellipticity angle 7 of the wave as follows:

de . )

= = 6 tan2ncos20 + §¥sin2p (5.26)

d')? _ 6/ < 2 |

5, — —0sin S)
where

' w
= o (€11 — €33) (5.27)

and

§NL _ 37TWX§3P22500
en.

(5.28)
are measures of anisotropy and nonlinearity, respectively.

To analyse the stability of the eigenpolarizations with increasing wave intensity, there
is a need to observe the development of small fluctuations A© and A7 in the polarization
azimuth and ellipticity. If these small fluctuations lead to a drastic departure of the
output polarization from the incident one, the polarization state is said to be unstable.
To introduce an il’litié.ll fluctuation of the light polarization azimuth A® = © — Q) at

z = 0, let the incident wave be linearly polarized close to the X direction but not strictly

along it, then Eq.(5.26) takes the following simple form

d© ' NL

= = 2(6 +6")n (5.29)
dn /

— = =200

dz

Differentiating the first of these equations with respect to z, and substituting dn/dz

from the second equation gives the following second-order differential equation for the
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polarization azimuth : .
@ 45’ / NL
ozt (f+6")e=0 (5.30)
The solution to Eq.(5.30) obviously depends on the sign of § (6’ + &V [’). In lossless
: 3 s

media, Xi12; 18 real and as a rule positive. That is, 67~ is real and positive. Therefore
f ¢ NL ’ "
§ (5 +6 ) > 0 for all values of § and §VL except when —6V% < § < 0. Thus, for
5 (6' + &N L) > 0, Eq.(5.30) has the following solution

O = ABcos [2\/6' (6’ + 6NL)2] (5.31)

In this case, the polarization azimuth oscillates within strict limits imposed by the ini-
tial fluctuation A©, and so linear polarization along the X direction is stable. When

§ (6 +6"*) < 0, the solution to Ba.(5.30) is

© = AO cosh l2‘/5f (6 + 5“)2] | (5.32)

For 22> 1/ ’46’ (6' +6NL)|,
.

0= %Q exp [\/ —8 (5’ - 5”)4 (5.33)

Here, a small initial fluctuation A© of the polarization azimuth will exponentially in-
crease with propagation. Therefore, for § (6' + 6 L) < 0, linear polarization along the
X direction is unstable. The condition 5 (6’ 5 L) < 0 for polarization instability can
be expressed in terms of material parameters. This condition is achieved if

€33 — €11

X 12200 > e U ' (5.34)

Therefore, polarization instability requires €;; to be smaller than ez;, that is, the re-
" 1/2

fractive index for a wave polarized along the X direction, n, = el{ , should be smaller

than the refractive index ny = 6:1342 for a wave polarized along the Y direction. Only
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the eigenpolarization with the smaller refractive index can be unstable. Note that the

left-hand-side of the inequality (5.34) also imposes a condition on the light intensity.

a -1 - 113 - 3
Polaxization imstabllity ocenrs if 24WX§1)22300 > €33 — €13 or in terms of the threshold light
intensity o, <
5 Iy= 2y =ns) (1 +n)°
9672)(&:?22

(5.35)

This is polarization instability for the intensity of a wave approaching a crystal with
core refractive coefficient n from a vacuum. Reflection losses at the b.oundary is taken
into account in this expression. If the intensity exceeds the threshold value in Eq. (5.35) a
small fluctuation of the incident polarization state will lead to a very considerable change
in the output polarization. Depending on the sign of the initial fluctuation, the wave will
become right or left elliptically polarized.

Polarization instability in a birefringent media was purely academic when Sala first
drew attention to the trigger behavior of the polarization of light in a birefringent crystal
[26]. The intensity threshold for polarization instability is easily achieved in optical
fibers with small birefringence. Quartz glass optical fibers typically have nonlinearities
of {3, ~ 10~%esu. For a fiber with birefringence of n, — n; ~ 107 and n ~ 1.5 the
polarization instability threshold intensity is about I = 10'7erg/cm?, whigh is equivalent
to Iy = 10GW/cm?. With a fiber core of 5um diameter, the threshold power required for
the observation of polarization instability is of the order of several kilowatts. A number of
works, both theoretical and experimental have been published [2, 7,8, 13] on this problem.
A similar effect of polarization instability occurs with circularly polarized light in a
birefringent media. When light intensity exceeds a thresholc} value, circular polarization
becomes unstable. Infact, polarization instability was first seen in a birefringent fiber
with circularly polarized light in 1986 [10].

Polarization instability can also be seen along the direction of propagation in a fiber.
This type of instability does not require the intensity to exceed a threshold value but

rather develops as an exponential instability. If the initial polarization state is linear, at
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an angle ©g to the X direction in the natural coordinate frame, then

S —_-Soo (COS 2@0, sin 2@0, 0) (536)

and for a lossless fiber, the formula in Eq.(5.13) may be written as

dSy
F i
dsS; 127w
T2 om X125
dS, 6w 3) R
?Z- = c—n (2X5122 + AX) 5153 (537)
dSs 6mw
& = on BN 55

where Ay = Xﬁ)u T 3Xﬁ)22. Note that in this case, Ax # 0; it is zero by symme-

try in isotropic media and thus shows the difference between the nonlinearity tensor in
isotropic media and a cubic media like an optical fiber. These evolution equations may

be rearranged directly into equations for the polarization azimuth © and ellipticity n as

follows
(i_@ = % (25NL + 6E cos? 2@) sin 27 (5.38)
V4
zﬂ b, _211-5? sin 46 cos 27
C
where
6w
! = '——X(ﬁ)zz
cn
and

From Eq.(5.38), it follows that polarizations which exactly satisfy the conditions sin 40 =

0 and n = 0 will not change since the right-hand sides of the evolution equations become
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zero. To obtain the instability of these polarizations a small fluctuation AO is introduced
in the polarization azimuth of the incident wave allowing A© (0) = AO + ©, with
sin40p = 0 and 7 (0) = 0. In this case, Eq.(5.38)
© — 60 < 7 and 7 < 7 as follows: |

may be written in simplified form for

do

Z = (26" 46 cos?20) n (5.39)
d
d—z = —6:[' cos 40,
Solving Eq.(5.39) yields
© =y + ABcos /uz (5.40)
and
___heyE
= 26™F 4 6NL cos? 20, Ay (5-41)
where
p= (26" + 65" cos? 26, 6, " cos 40 (5.42)

The character of these solutions depends on the sign of . For positive y, the polarization
azimuth and ellipticity will oscillate within strict limits imposed by the initial fluctuation
AO, and the incident linear polarization will be stable. For negative p, the solution will
become exponential in nature: cos (,ulf 2;:) = cosh (‘ ut/ 2| z) ~ 1 exp (';ﬁ/ 2| z). Therefore
for p < 0 and | ul/ 2I z > 1, the output polarization will depart exponentially frofn the

Do | Since the

input one. For small anisotropy, Ax < |Xi122|, @and therefore |6N = I <
nonlinearity is often positive, that is x;;9, > 0 and VL > 0, the term in the brackets
in the first equation of (5.38) is positive. Therefore, the sign x and the stability of

the polarization state will depend on the sign of 6NL cos® 20y, that is, on the sign of

Ax cos 40,. For
Axcosd®y <0
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the initial linear polarization corresponding to sin 48, = 0 is unstable. If, however,

AxcosdBg > 0

the linear polarization corresponding to sin4©, = 0 is stable.

It is now appropriate to present the general solutions to the system of coupled non-
linear differential equations expressed in Eq.(5.25) which will describe the characteristics
of an intense light wave propagating in an optical fiber with small losses and anisotropy.
The anisotropy will be accounted for in the dielectric tensor and the nonlinear suscepti-
bility tensor components are presumed to be strictly real and isotropic. The approach of
[26] was used in this work to obtain a closed-form solution to these nonlinear differential

equations. Firstly, it is noted that Eq.(5.25) can be rewritten as

dSy
—_— = 0
dz

s,
dz

‘Z_S% — RySs + B151S (5.43)
VA

S,
dz

= —H; SgSg

= —RySy

where Ry = wA¢/2nc and Ry = 127wy by /ne. With the use of the second and third

equations in Eq.(5.25), S can be eliminated to obtain

: .
Sl .5, — R, 52) =4 : (5.44)
dz(ROI 13)

which when integrated will yield
2Rg (S1 — S10) = I (Sg = Sgo) (5.45)

It is immediately seen from Eq.(5.45) that only one of the stokes parameters is indepen-
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dent. Furthermore, Sy can also be eliminated by squaring the last equation of Eq.(5.43)
and considering that the light is completely polarized so that

2 ‘
Si+8+8=1 (5.46)
then one obtains
dSs\? . . ‘
4z ) = ~BiS3— BaS5 + By (5.47)
where
1 2
B = R (5.48)

B2 = R(z) + Rl (R()Sl() — %Rlsgo)
I
By = RI- (Rosm s 5Rlsgo)

Equation (5.47) can be re-expressed as -

() - on(s-a)(s-e) G

where

—By+ /B2 + 4B, B; -

2B,

=

are the roots of Eq.(5.47). Hence, Eq.(5.49) can now be expressed as

/B fzdz—-:l:fb = (5.51)
"o v \/(S%+a?) (2 - S3)
Where az = —Qp and b2 = Q1. SO]_utiOIlS to Eq(55l) are in the form Of elhptlc functions

[61] and are given as (see Appendix D)

5= j:\/aacn( Bilar—o2)z +C k) (5.52)
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Blen (R0 SRR Ml s m is the modulus. Equation (5.52) can be
written more compactly as

S, = 2Pkf

r

cen (Rofz +C ; k) (5.53)

_ 1
where r = Ry/Ro and f = |(1+rSi0)” - r2Sh)*. Also, p = £1 = sgn (Sy) with the

sign function defined as sgn (z) = 1 for z > 0 and sgn (z) = —1 for z < 0. The solutions

for Sy and Sy are obtained as follows (see Appendix D)

_ 2pkf?

T

S [sn(Rofz +C ; X)]dn(Rofz +C; k) (5.54)

and
51=f—2{1—2m [Sn2 (Rofz +C ;k)]}—l (5.55)
T

These solutions describe the characteristics of an arbitrarily intense beam propagating
along a low-loss optical fiber. The solutions are both general since no restrictions are
placed on the relative strength of the optical fields and are exact since the set of coupled
nonlinear equations are solved in terms of known transcendental functions. These results
contain those for self induced ellipse rotation and the linearly polarized optical Kerr effect
[26].

It is seen from Eq.(5.53), Eq.(5.54) and Eq.(5.55) that the output Stokes parameters
are dependent on the J acobian modulus k which in turn depends on the initial values of
the Stokes parameters as well as the nonlinear susceptibility tensor and the anisotropic
dielectric tensor. Therefore, in order to describe the propagation characteritics of the op-
tical beam for different initial polarization states, it is important to deduce a relatio}ls}ﬁp
between k and the ratio » which is a relative measure of the anisotropy and the cubic

nonlinear susceptibility of the fiber. Thus, using the definition of k as well as Eq.(5.50)
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m(r)

Figure 5-1: Jacobian parameter m as a function of the ratio r for initial polarization states
S0, Sao, and Sso of (1) 1,0,0; (2) 0,0.3,1; (3) 0,0.71,0.7%; (4) 1,0,9.8; (5) —1,0,0.8.

“and Eq.(5.48), one obtains the following expression

1 7252 — 2(1 4+ rSw0)
m=g* 2
4\/[71 +7510)” + 7"25%0]

where the Jacobian parameter m = k* has been used.

(5.56)

- With the use of Eq.(5.56), therefore, one can obtain the variation of the parameter

m with r for different, initial polarization states [see Fig.(5-1)]. It is noted that similar

results were obtained in [26].

Fig.(5-1) shows, for five different initial polarization states, T yeliey oLy S WAL
m is defined. It is seen that m > O for all values of 7 > 0. Tt can also be deduced’from
the figure that there is a value of r for which m is nof defined. This special case occurs

when Sy = 0, Syo < 0, and r = 1. In particular, examples 4 and 5 of this figure illustrate
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Figure 5-2: Variation of Stokes parameters as a fimction of fiber length for the initial
_polarization state S1o = 0, Sa = 0.71, and Sz = 0.71. The dependence of m (r) for this
initial state is given by curve 3. In this figure r = 2.3 and m = 0.58.

the two—cases where Syp = 0 but the radically different m (r) dependence for example 5 v/ .- -
results from simply changing the sign of Syp which’physically indicates a 90° rotation of
the initial polarization ellipse.
Thus, one can now obtain numerical solutions for the variation in the Stokes parame-
ters using Eq.(5.53), Eq.(5.54) and Eq.(5.55) with knowledge of the m (r) values obtained
from along a curve of Fig.(5-1). Typical results obtained for propagation characteristics

of the light beam for various values of the ratio r are illustrated in Figs.(5-2) to (5-5).
For an input light with initial polarization state Sig = 0, Sz = 0.71, and Sz = 0.71
corresponding to a right elliptically polarized beam with 45° azimuthal angle and 22.5°
ellipticity, Figs.(5-2) and (5-3) show, respectively for r = 2.3 and 7 = 4, the variations in
the Stokes parameters as a function of fiber length.: Another set of interesting results for
‘an input light with initial polarization state Sio =0, S20 = 0.3, and Sz = 1 correspond-
ing to a right elliptically polarized beam with 45° azimuthal angle and 37° elllipticity are

P,

shown in Figs.(5-4) and (5-5) forr =23 and 7 =4, respectively.
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- Figure 5-3: Variation of Stokes parameters as a fu.nctmn of fiber length for the initial

- polarization state Sig = 0,,52 = 0.71, and Ssg = 0.71. The dependence of m (r) for this
initial state is given by curve 3. In thls figure r = 4 and m = 1.

1 .
0.8}
0.6 Sy _
S @2 )
) 4 52 y
. /\ /\

0 .
L

Figure 5-4: Variation of Stokes parameters as a function of fiber length for the im‘ti'f\l
polarization state S;p = 0, Sa = 0.3, and S30 = 1. The dependence of m (r) for this
initial state is given by curve 2. In this figure r = = 2.3 and m = 1.2. '
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Figure 5-5: Variation- of Stokes parameters as a function of fiber length for the initial
polarization state Sip = 0, Sz = 0.3, and Sz = 1. The dependence of m (r) for this
initial state is given by curve'2. In this figure r = 4 and m = 2.7.

It is observed from these figures that the solutions are periodic for the output Stokes
parameters having 0 < m < 1 and m > 1. However, the case of m = 1 is special. The
polarization tends asymptotically to a final state inst@ad of varying periodically as in the
other cases when m # 1. Fig.(5-3) shows this aperiodic behavior when m = 1 for the

same initial polarization state as Fig.(5-2). The final state in the example of Fig.(5-3)

corresponds to a linearly polarized optical beam.

5.2.4 Nonlinear Optical Activity

Nonlinear optical activity (NLOA) was first predicted in 1967 [25]. It is a nonlinear
analog of the conventional optical activity (OA) mentioned earlier in Chapter 4. This

effect is casily identified if the incident light wave is linearly polarized [13]. Then in such
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a case, the polarization azimuth becomes a function of the medium length expressed as

O (L) = ©g + ©94 (L) + ONLOA (L) (5.57) f-

where
Bl '

0% (L) = =7~ Re (I} (5.58)

and ‘
NLOA _ 6411 3 1

O ) = e e T} o OB

Soo is the intensity of the incident light with wavelength A propagating in an optical
medium with negligib-le loss of refractive index n. The angles here are measured in ra-
dians. ©94 (L) describes the polarization plane rotation due to natural optical activity
and ©VL04 (L) gives the polarization azimuth rotation due to intensity-dependent. non- i
linear optical activity. From above, the nonlinear optical activity is simply an additive
to the natural optical rotation proportional to Re{I'3;;;}. If losses in the medium are
considered, then Im {I'3;;;} # 0 due to fast electronic mechanisms and light initially ,;
linearly polarized will become elliptically polarized, with ellipticity increasing with in-
tensity. This phenomena is analogous to circular dichroism in linear fiber optics where
linearly polarized light becomes elliptically polarized in an optically active fiber when
Im {I'*} # 0 as discussed in Section (4.2). Nonlinear optical activity has its origin from

two fundamental sources. Intensity-dependent optical activity can be due to thermal

mechanism of nonlinearity as observed in an experiment using SiOj in which the NLOA
resulted from heating-of the crystal by an intense laser pulse [13]. N LOA has also been

intensively studied experimentally with effort concentrateg__on the search for the fast

electronic mechanism nonlinear optical activity. The NLOA can be represented on the {
Poincaré sphere by an arc parallel to the equator indicating that the light does not cflange
its ellipticity but the azimuth changes steadily. The length of the arc is proportional to
the length of the fiber. The arc consists of two segments: one is due to natural activity

and the other is due to nonlinear optical activity. The length due to NLOA increases
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with intensity.

It must be emphasized that even though nonlocality vanishes in optical fibers due to

symmetry requirements, an inténsity—dependent optical activity due to thermal effects of

nonlinearity can be observed [13].
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Chapter 6

DISCUSSION OF RESULTS

Expressions describing the linear polarization effects in a birefringent single mode opti-
cal fiber were obtained analytically within the framework of the unified formalism for
polarization optics. Using the methods of this formalism, several Mueller matrices which
characterize the interaction of a beam with an optical fiber were calculated so that the
effects on the polarization of the light could be determined. The matrices obtained were
as follows: (1) Mueller matrix for an optically active birefringent fiber without dichroism
for the specific case in which circular birefringence was present but linear birefringence
off-axis was assumed absent, (2) Mueller matrix for an optically active birefringent fiber
without dichroism for the specific case in which circular birefringence is present but lin-
ear birefringence off-axis was assumed present, (3) Mueller matrix for an optically active
birefringent fiber without dichroism for the specific case in which circular birefringence
is assumed absent but linear birefringence off-axis was assumed present, (4) Mueller ma-
trix for an optically active birefringent fiber with losses for the specific case in which
only circular birefringence and dichroism were assumed present in the optical fiber, (5)
Mueller matrix for an optically active birefringent fiber with losses for the specific case in
which only circular birefringence and dichroism were assumed absent in the optical fiber,
and (6) general Mueller matrix for an optically active birefringent fiber with different

sources of birefringence and dichroism present for the case in which the birefringence and
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dichroism vectors were not; necessarily parallel.

The elements of each matrix were expressed in terms of their functional forms to
facilitate the simulation of models that would determine the polarization behavior of the
light as a function of the fiber length with negligible nonlinear effects assumed. Several
results for different input polarization states were obtained and illustrated in Figs.(4-1)
through (4-24). These solutions can be divided into two classes according to whether
the fiber was assumed to have losses or not. When there were no dichroism, the output
Stokes parameters were seen to be either periodic or to have a constant value see Figs.(4
1) to (4-16). It was observed from comparing Figs.(4-1) to (4-4) with Figs.(4-5) to
(4-8) that the presence of circular birefringence, which is related to introducing twists
in a fiber, induces a change in the polarization state of the light as it evolves along the
fiber for linear and elliptically polarized input light. This variation in the polarization
can be attributed to the linealj anisotropy as a result of twisting the fiber. Thus, the
perturbation which results from twisting the fiber causes the polarization state to change
when the input light is either linear on-axis, off-axis or elliptical. It is further seen from
Figs.(4-3) and (4-7) that when the input light is circularly polarized, the output beam
polarization states do not vary as in the other cases. It can therefore be deduced that
in the presence of optical activity, circular polarization becomes an eigenpolarization.
Furthermore, in the examples where the polarization states are found to be periodic, the
Stokes parameters are observed to have the same periods. See Figs.(4-1), (4-2), and (4-4)
as well as Figs.(4-6) and (4-8).

However, the results were dramatically different when dichroism was assumed to be
present in the optical fiber as shown in Figs.(4-17) to (4-24);.”These solutions show that
the intensity of the input light is dissipated by the fiber. Thjs is due to the presence of
losses in the fiber. They showed the changes that occur in the output Stokes parameters
pagates along an optical fiber assumed to have small losses for differeﬁt

as the light pro

input polarization states. All of these results show a characteristic exponential decrease

in the total intensity of the propagating light wave. The various sources of losses in

-
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the fiber causes the beam’s intensity to rapidly attenuate as it traverses along the fiber

so that the optical fields become attenuated with distance. A particularly interesting
result occurs as shown in Fig.(4-23) for the output polarization of the propagating light
when the input light is right circularly polarized and circular birefringence and dichroism
are assumed absent. In this case, the polarization of the output beam changes from
circular to elliptical and back to circular. Note the damped oscillatory form of the Stokes
parameter S; whose magnitude and period of oscillation tend to decrease with length.

It is also interesting to observe the behavior of the output Stokes pémmeters as a
function of the orientation angle of the polarization ellipse. It was Observed that for
linearly polarized input light as a function of orientation angle, the output was seen to
be linear and the presence of optical activity introduces a variation in the polarization
states. When the input light was elliptically polarized, the output light was found to also
be elliptical. However, for circularly polarized input light, tlile’ output light was circularly
polarized but independent of orientation angle. Figs.(6-1) and (6-2) show the polarization
change for an elliptically polarized input light as a function of orientation angle. Fig.(6-1)
shows the variation when circular birefringence is not present while Fig.(6-2) depicts the
change when circular birefringence is present.

In all of the results discussed thus far, the incident light was regarded to be at low
optical intensity and the fiber response was considered linear so that the ouput Stokes
parameters would be'independent of the incident light. However, when the incident
radiation is high enough, the response of the fiber is expected to change qualitatively
from its behavior at low intensity giving rise to nonlinear optical effects. Hence, in this
case, the output Stokes parameters would depend on the intensity of the incident light.
In other words, the output Stokes parameters will have a dependence on the input Stokes

parameters.
Fig.(5-1) showed the Jacobian parameter im as a function of the ratio r for five different

initial polarization states. The term  ~ x%h,/Ac is the relative measure of the non-

lineraity (induced birefringence proportional to the intensity) and the linear anisotropy
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Figure 6-1: Variation in output Stokes parameters as a function of orientation angle for

elliptically polarized (45° azimuth and 22.5° ellipticity) input light. Circular birefringence
is assumed absent. .
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Figure 6-2: Variation in output Stokes parameters as a function of orientation angle for
elliptically polarized (45° azimuth and 22.5° ellipticity) input light. Circular birefringence
is assumed present. . 5
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(linear dielectric tensor). r is dimensionless since Xﬁ)zz is a contracted tensor of rank zero
and the difference Ae is an ordinary number. It may be assumed without loss of general-
ity that 7 2> 0 even though in some materials the denominator Ae can be negative. Thus,
the assumption that may be taken as positive with no loss of generality holds in this
case because the difference in refractive indices for the eigenpolarization is én, ~ Ae/2n
and for a birefringent fiber 6n, > 0. Tt follows from Eq.(5.53) through Eq.(5.55) that
the propagation characteristics of the optical beam depend critically upon the Jacobian
parameter 7 which in turn is dependent on the initial values of the Stokes parameters
and the ratio r according to Eq.(5.56). Also note from Eq.(5.56), that m is undefined
when Sy =0, S1p <0, and r = —1/810. Fig.(5-1) showed the variation of the parameter
m with r for five different initial polarization states. In particular, examples 1 and 4 in
that figure illustrate the two cases where Sy, = 0 for Sjp < 0 and Sy > 0 respectively.
Curve 5 illustrates the m (r) dependency when the initial polarization ellipse is rotated
by /2. Curves 2, 3, and 4 show that m is strictly monotonically increasing function of
r. However, curve 5 shows that when the input light is linearly polarized on axis m = 0
for r > 0. When m = 0, the Jacobian elliptic functions degenerate to their trigonometric
counterparts (cosine and sine f‘unctions)' indicating the limiting case when nolinearities
are not considered. Thus, when m = 0, the output Stokes parameters will have behav-
ior as shown previously in Figs.(4-1) through (4-24) for the different input polarization
states. 2
Fig.(5-2) showed the variation of Stokes parameters as a function of fiber length
for an input light with initial polarization state Sio = 0,855 = 0.71, and S5 = 0.71
corresponding to a right elliptically polarized beam with azimuth 45° and ellipticity 22.5°.
The dependence of m for this initial state is given by curve 3. This figure illustrates the
propagation characteristics in the case where 7 = 2.3 and m = 0.58. The output Stokes
parameters are seen to be doubly periodic and to have different periods.
Fig.(5-3) showed a. qualitatively different behavior for the same input polarization as

in Fig.(5-2) except that the propagation characteristics are for the case r =4 and m = 1.
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This would represent a high input power for a birefringent optical fiber. The polarization

is seen to be aperiodic and that it tends asymptotically to a linearly polarized final state
in this example.

Figs.(5-4) and (5-5) indicate, respectively for r = 2.3 and r = 4, another set of
results for an input light with initial polarization state Syq = 0, So0 = 0.3, and S35 = 1
corresponding to a right elliptically polarized beam with 45° azimuth and 37° ellipticity.
The m (r) dependence for this initial state is given by cure 2. In these figures, the output
Stokes parameters are observed to vary periodically. Tt is also noticed from these figures
that as r increases from 2.3 to 4, the periods of the Stokes parameters also increase. This
implies that the output polarizqtion state at z = L is dependent on the beam’s intensity.
Thus, it can be deduced from these examples that the state of a beam propagating along
a birefringent single mode fiber depend on the initial polarization as well as the intensity
of the input light in a complicated way. | .

It was also of interest to investigate if there are any significant changes in the Jacobian
parameter m when a parameter such as the ellipticity of the polarization ellipse undergoes
a change. It was observed in this work that for the unique polarization state in which the
orientation angle is 90° but the initial Stokes parameter is such that Sy = —0.5, Sy = 0,
and S3p = 0.3, the value of r for which m is undefined is shifted to larger r values as
shown in Fig.(6-3). In this example, r = 2. Recall that in Fig.(5-1) m (r) was undefined
at r = 1 for Sio = —1, Sy = 0, and Sz = 0.8. Thus‘ vlv_hen an intense elliptically
polarized beam which propagates along a birefringent optical fiber undergoes a change
in both the shape and orientation, the critical input intensity at which the light-induced
birefringence cancels the existing fiber birefringence will increase.

Furthermore, one recalls from Fig.(5-1) that when the input light was linearly polar-

ized along the principal axis of the fiber, the output polarization was observed to remain

linear: m = 0 for r > 0. However, Fig.(6-1) shows that when the input light is linearly

polarized off-axis, that is the input polarization is 45° to the principal axis of the birefrin-

gent fiber, m # 0 for 7 > 0. This indicates that the output polarization become intensity
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(o)

Figure 6-3: Jacobian parameter m as a function of the ratio r fcr initial polarization
states Syg, Sop, and Sso of (1) 0,0,1; (2) 0,0.5,1; (3) 0.4,0.4,1; (4) 0,1,0; (5) —0.5,0,0.3.
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dependent and thereby nonlinear. Thus, the behavior of the output polarization depend
on input intensity as well as fiber’s axis.

e e e e e B
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Chapter 7

CONCLUSIONS

‘The purpose of this work was to investigate the nonlinear polarization effects in a bire-
fringent single mode optical fiber. Stokes parameters were used to analyze these effects.
Evolution equations for the polarization states in a birefringent optical fiber were derived
and general solutions for Stokes parameters of the propagating light beam were obtained.
The methods of the unified formalism for polarization optics was utilized to obtain sev-
eral Mueller matrices which characterize the perturbations resulting from birefringence
and dichroism over the optical path of the fiber. The basic assumption in this approach
was that the interaction of the light with the fiber was considered linear. When the light
beam was assumed to be intense so that nonlinear effects were considered as the light
propagates, the use of Jacobi elliptic functions were employed to obtain the solutions in
terms of Stokes parameters which described the nonlinear polarization dynamics at the
output. This thesis successfully model the evolution of the Stokes parameters as func-
tions of fiber length and orientation angle for different kinds of perturbations. Graphical
illustrations showing the variation in output polarization due to both linear and nonlinear
effects were also successfully obtained in this work.

Several interesting results were obtained and presented in this thesis. The character

of the results were different depending on whether the fiber response to the propagating

wave was considered linear or nonlinear and depending on whether the fiber was assumed

132

Digitized by Sam Jonah Library

I P SR SR PO RO

e ————E T e T ———C———



© University of Cape Coast https:l/ir.ucc.edu.gh/xn;lui

to have losses or not. A significant aspect of the results presented in this work is that
when the fiber is considered linear, the output Stokes parameters are either periodic or
a constant function of length or orientation angle. When the solutions are periodic, the
three Stokes parameters are observed to have the same periods. However, when the input
light is intense so that the fiber response to the propagating field is considered nonlinear,
the output Stokes parameters are doubly periodic and the three Stokes parameters do
not have the same periods. In addition, some cases of aperiodicity was observed. The
results obtained may have potential applications in polarization-dependent devices.

The unified formalism which was used to develop and analyze the model to describe an
evolution of the state of polarization in a birefringent optical fiber is a phenomenological
linear theory since the Mueller matrices that were deduced from the formalism are linear
operators whose elem.ents can be measured. Strictly speaking, however, the Mueller
matrix calculi in that formalism cannot handle a truly nonlinear propagation in an optical
fiber. To do this, in our view, would require a higher order tensor. Thus, further .work
is needed to include the nonlinear polarization effects in the formalism. In any case, the
Mueller matrix valid for nonlinear propagation can be obtained by measurement in a
laboratory experiment. We believe, therefore, that a general higher order tensor for the
nonlinear case when added to the linear-case Mueller matrix will yield the most general

characterization for propagation of a light wave along a birefringent optical fiber.
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Appendix A

Derivation of the Coupled-Mode

Equation

Derivation of the coupled-mode equation begins with Maxwell’s equations

cOE )
= i Al
VxH=J+-" (A1)
__poH A9
YV X Br= T (A.2)
V. pH =0 (A.3)
V-eE =p (A.4)

In an optical fiber, there are no excess charges, thus, p = 0.and J = 0.

Taking the curl of Eq.(A.2) and using Eq.(A.1) to eliminate the field vector H one

obtains the following wave equation

pe 0°E '
VxVxE=-525 | (A.5)

141

Digitized by Sam Jonah Library



) © University of Cape Coast https://ir.ucc.edu.gh/xmlui
Equation (A.5) can be expressed as

2 ue O°E |
V'E+V(v-E) =L 2 (A.6)

where the vector identity V x V x E =y (V-E) — V2E has been used

Consider an initially ideal cylindrically symmetric single mode fiber with an unper-
turbed dielectric function € (r,0), where r and 6 are the polar parts of the cylindrical
coordinates (7,8, z). Then, the permittivity of the ideal fiber becomes

€=¢o(r,0) (A7)

Assuming that the corresponding transverse monochromatic fields traveling along the

length of the fiber can be expressed as
2
ET =5 a,EL (r,0) exp [i (knz — wt)] (A.8)
n=1

and using the fact that the transverse and longitudinal parts of the del operator V =
Vo + Ea;ez, and that of the Laplacian V=V + -,1—22, Eq.(A.6) can be rewritten as

2 pe O?ET

Furthermore, using Eq.(A.7), Maxwell’s equation (A.4) can now be written as
V. €eE =V E+EVe =0 (A.10)

and considering only transverse components, the above expressions in Eq.(A.10) yield

Vr BT = —E7-Vrhne (A1)
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Therefore, the general wave equation (A.9), can be rewritten as

52
V2 4 T pe O°ET
(T 82)E-+V@3v&mo) e =0 (A.12)

Substituting Eq.(A.8) into Eq. (A.12) leads to the following transverse ideal mode equa-
tion for an unperturbed fiber

n=1

2 _ 2
3 anexp[i (kz — wt)] {V%EI + (#060% - kz) ET + Vr (ET-Vr lnfo)} =0 (A13)

Note that in obtaining Eq.(A.lS), the fiber is assumed to be isotropic so that, k; = ko = k
a constant. '

Now, assuming that there are small perturbations in the fiber resulting from length
dependent disturbances of the dielectric function, the total djelectrié function can be

expressed as

e(r,0,z) =€ (r,0) + ¥ (r,6,2) (A.14)

where ¥ characterizes the perturbations. It should be noted that in the presence of
perturbations, the constant field amplitudes in Eq.(A.8) become functions of z thereby
containing the effects due to the perturbations. Therefore, it is assumed that the general

electric field in the perturbed fiber can be represented as

Zan ET (r,0) exp [i (knz — wt)] (A.15)

n=1

Using equations (A.4) and (A.14), the following relation is obtained

1 .
so that "
= -E". —=V-(VE AT
v.E=—-E" -Vrlné 60\7 (YE) (A.17)
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Z an (2 (r,8) exp [i (knz — wt)] (A.18)

so that the total fields become .
E=E" +E? (A.19)

Using equations (A.17) and (A.19), the transverse part of the wave equation (A.6) can

be written as

e O°ET

C2 ETE] =54+ S+ S¢ (A.20)

0= V?ET 4+ Vr [E Vrln eo+lv (VE)| —

where Sa, Sp, and Sg are three vector sums when equations (A.15) and (A.18) are

utilized. The first sum

2
= Z @y ( {VTE + ( 06062—2 - ki) ET +Vp (EZ-VT In eo)} exp [i (knz — wt)]

(A.21)
vanishes because it satisfies the ideal mode equation for a perturbed fiber. The second
term 4

&V—E:{ETJ%”+an()VT(Eﬂd@)~FVT(@E5%%)}GMﬂﬁ“wZ—wﬂ](A2m

— " dz? € dz €0

which are negligible because it consits of second order small terms. Hence, it follows that

2 d w2 .
. —_— Z {sz i = " g, (2 )‘U’O\IJ_C—Z (\;[:EZ) + a, (2) VTUH] exp [i (knz — wt)] = 0
(A.23)

n=1

where
Uy = — [Vo- (WET) + ikn (VE})] (A.24)

€0
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21 oo - .
fo dB/O rdr (EX x HIY) - e, = I2

mn

6o (A.25)

on Eq.(A.23), the following expression is obtained

. 2; /ng de fo " rdr lzma; (z) ET + a (2) “0%3 (VEL) + 0n (2) V2Un ] exp [i (knz —)wt)]
(A.26

Equation (A.26) can be written in a more concise form as

2 {2'610710» 2) Inbmn + 0 (2) [#0—12 B If,m] } exp [i (knz — wt)] =0 (A.27)

where :
27 co
- / dé / rdr (EL x HI') - e, (A.28)
0 0
27 [o]
2 = f dé [ rdr (VEL) x HI' - e, (A.29)
0 0
2 00
o= f d / rdr (VoUy,) x HT* - e, (A.30)
0 0

Therefore taking sums,

; . 2
z Qikma;n (Z) exp [’L (kmz — UJt)] I;,_mémm'l’z Qn (Z) [IJ‘OG 2 Irzrm I Igzn] exp |2 [ (k z = Wt)] =0

n=1

(A.31)

Thus, )
Z) =1 Punta (@) ' (A.32)

n=1 N
where 5 P
2 I + mmn s

B, = {#06 - Il } exp [t (kn — km) 7] (A.33)
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da (z)
dz

(A.34)

—iP a(z)

146

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

Appendix B

Derivation of the Stokes Para_rheters

Equation of Motion

To derive the Stokes parameters equation of motion, it is useful to begin with the co-

herency matrix defined by a matrix product in terms of the field amplitudes as
I(z)=a(2)d (2) (B.1)

where the symbol 1 indicates the Hermitian conjugate which makes al () a row vec-

tor. Taking the derivative of Eq.(B.1) and using the coupled mode equation derived in

Appendix A,
%a (2) = iP (2) - a(2) . (B.2)

and its Hermitian conjugate

2ot (z) = —ial (2) - B! (2) (B.3)

) _;[B(2)T(:) - ()P (2)] (B.4)
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Recall that the ciS ; ; N
Reca coupling term can be expressed in complex form in terms of the birefrin-

gent and dichroic operators as follows:

—

P(2) =B (z) +D () (B.5)

and its hermitian conjugate as

P'(z) = B (z) +iD' (2) (B.6)

then, substituting Eq.(B.5) and and its complex conjugate Eq.(B.6) into Eq.(B.4), will

yield
dZ (z = -
di = B(2),Z(2)] - {D(2),Z(2)} (B.7)

where [B,I| = [BI — IB] is called the commutator and {D, I} = [DI — ID] is the anti
commutator. Note that in order to obtain Eq.(B.7), the Hermiticity of B (z) and D (2)
that is B (z) = B' (2) and D (z) = D' (2) were used.

The Stokes parameters can also be defined in terms of the field amplitudes as
So = ajay + asap

S) = aja; — a3ay (B.8)
Sy = ajag +a3a;
S3 =i (alag — a301)

so that with the use of equations (B.1) and (B.8), the relation between the Stokes para-

meters and the coherency matrix may be deduced and written as a 2 X 2 matrix

S5 — 25
Sk - e ”’} (B.9)

1
)=z
(2) 2] 6, +iS; So— S

148

Digitized by Sam Jonah Library



From Eq.(B.9), 1 Ml P e en e o e conjugate

transpose and is thus hermitian. Hence, 7 (2) can be represented in terms of the Pauli

spin matrices and the 2 x 2 identity matrix as

I(z)ﬁ

BN =

3
> Si(2)5 (B.10)
=0

where

(10 o 10 [ 01 _-0 —~4 :
0’0—(01) 1 (0 _1) 02—(10) a;;-(i : ) (B.11)

In the 2 X 2 operator representation of the general Jones matrix, the field amplitudes can
be written as

a(z)=1J (E (2) ,ﬁ(z)) - a (zp) (B.12)

where J is the Jones matrix and z is some reference value of z. Since B (z) and D (2)
are physically measurable quantities, the operators representing them must be hermitian
and thus can also be expressed in terms of the 2-dimensional identity and pauli spin

matrices of Eq.(B.11). Thus,

3 &
ﬁm=%Zm@a (B.13)
=0 ;
and :
i, o
D (30 g > di(2) 5 (B.14)
=0

Substituting equations (B.10), (B.13), and (B.14) into Eq.(B.7), one obtains the co-

herency matrix in a parametric form

d 3 e
EZSL(Z)CTFgZ

1=0 k=0 i=0 §=0

3
{iiﬁﬂk (64,56 — > d;Sk [3j,3k]+} (B.15)
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a'iaj = 6ij Lk T A (B16)
With the use of Eq.(B.16), Eq.(B.15) can now be expressed as
3.4

Zdzs’z (2)81=(S(2) xB) 65— doSp—dy (S-5) - So(d-5)—(d-S)  (B.17)

=0

The left hand side of Eq.(B.17) can also be written as

= d . 2. d i
> —8i(2)5; = d—So (2)Go+ > —3Si(2) & (B.18)
' o 1= 4z

Comparing equations (B.17) and (B.18), and taking the scalar and vector parts separately

one obtains .
2 50(z) = ~do () S0 (2) — 4 (2) S (2) (B.19)
and
L5(0)=5()% B (3 - (8 (2) - 5o(2) (3 (520
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Appendix C

Derivation of the Mueller Matrix for
an Optically Active Birefringent
Fiber Without Dichroism

Derivation of the Mueller matrix for an optically active birefringent fiber begins with the

differential equations describing the evolution of Stokes parameters

ng W =i f
y ——2—cIm [(411 + Qo) So + (Q S)] (C.1)
-and
g5 ¥ [(4n+90) S, +QSo +1 (Qx §)} (C.2)
dz 2c

where Q = (Qy,Q,3) is a vector in Stokes space known as the self action vector and

p=1,2 3. The self action vector is in general complex and can be expressed as
Q=B +id (C.3)

where E is the birefringence 3-vector and d represents the dichroism 3-vector.
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i)

o=~ |doSot d - §| (C4)

and s
ds o = P o
—dz=—[d05+d5'o+.6><8] (R5)

where do = 4= Im (4n + ) represents the isotropic loss of a the fiber. Consequently,

Z‘j= = Re2 (C.6)
2c
and
— w .
d=—ImQ (C.7)
e 5

Now, if the fiber is initially assumed to be lossless, then there is no dichroism so that

Im{) =0 and 2 is real. Hence, Eq.(C.1) becomes

dSy

— =0 (C.8)

and Eq.(C.2) takes the form

Wl

|

d w —
dz = 2 (QX S) (C.92)

which describes a precession of the Stokes vector around (2 which accounts for small
anisotropy in the dielectric tensor of the fiber. The action vector can be expressed in
terms of the Pauli matrices as

) = J§?)Uij . (C].O)

Here,

1 .
Uiy = E (Eij = zkml"}jm = n26,-j) (Cll)

1s a rank-two tensor that represents the coupling in the field amplitudes due to perturba-

tions. If it is further assumed that the fiber is istropic, then ¢;; = ngat-j and the coupling
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(C.12)

W
‘uij = zzl"“e,-j,

where I'* is the magnitude of the optical nonlocality and e;;, is the Levi Civita antisym-
metric tensor. Note that I'* is a measure of the optical activity effects in a fiber.
It has been shown in the text that the action vector € for an isotropic optically active

pirefringent fiber has the following components

(C.13)

S 3|~

Oy = BT
c

where Ae = €;; — €33. It may be advantageous to express Eq.(C.9a) in tensor form as

g, S W
et (£2555) (C.14)

where @, 3, and «y have values 1, 2, and 3. With the use of Eq.(C.13) and Eq.(C.14), one

can then obtain the following equations

ds;
=2~ 265, (C.15)

dS, ,

B 2GS1 +26'S;s (C.16)
dSs ,

and expressed in form of matirx equation will become

S\ (o0 o 0)\[S)

d | S 0 0 —2G 0 S
dz| s, | |02 o 2 ||s (C.18)
Ss 0 0 -2 0 )\ 8
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¢ = w?/2cT" is theubheaisiop s Caps doastpomtpalnb s £ dl L RIEG

. i g 18
and § = (Aew/ 4cn) is a measure of the fiber’s on-axis linear birefringence. Eq.(C-18)

has solutions of the form
= A =
§a= exp (ﬁ E ﬁ) z- :S>a0= expﬁ (6‘3- B) Z Sa0 (Clg)
where ep = cos 20 €, +sin 26 egand 8 = 2/(8')? + G2 Therefore,

eg: ]%= cos 20 ]%1 + sin 20 ﬁg ' (C.20)

from the Lorentz generators referred to in this work

(000 o0 (000 O]
]/_3,1— noe U and ﬁg— I =0 (C.21)
Qumflml)l 1 0 _lafiaed O
|00 -1 0_ _0 v 0
so that
LR & ¥
s ﬁ; L0 —sin20 0 (C.29)
0 sin20 0 cos 20
| 00 —cos260 0
or
[0 0 o Wi 1
(Gﬁ ﬁ)2= 0 —sin®26 0 —sin2fcos?26 (C.23)
00 -1 0 ’
| 0 —sin20cos20 0  —cos®20
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1?/[(0,0,5&:) = exp (EIAS)Z ' (.C-24)

= [f + (E,e - ]%)2] - (Eﬁ - ﬁ)zcosﬁz+ (Eg - 1/5\3) sin Bz

where II\ is the 4x4 identity matrix. Then,

1\7[(0,0,_5,2) =

1 0 0 0

0 cos®20+sin®20cosfBz —sin20sinPBz cos 26 sin 26 (cos Bz — 1)

0 sin 20 sin Bz cos Bz cos 20 sin Bz

0 cos26sin26 (cosfz —1) —cos20sinBz sin®26 + cos? 26 cos fz

(C.25)

is the Mueller matrix for an optically active birefringent fiber with no dichroism assumed

and for the specific case when linear off-axis birefringence is assumed absent.
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Appendix D

Derivation of Exact Solutions for
System of Coupled Nonlinear

Equations

The coupled nonlinear evolution equations (Eq.5.25) can be rewritten as

dS;

v e (D.1)
@ = R,5,S.
2 fusSs+ RySs3 , (D.2)
dS, :
T N (D.3)

wl =
lere Ry = wAe/2nc, and R, = 127rwxﬁ)22 /nc. Multiplying Eq.(D.3) by 8, ore oh tains

dS2
=, = ~2R05:53

dz (D_4)
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© University of Cape Coast https://ir.ucc.edu.gh/xmlui

ds, _ , 453 (D-5)
or
d D.6)
= (2R0S) — FaS3) =0 (
so that ’
9R.S1 — RiSE =C (D.7)
where C is a constant. Integrating Eq.(D.6) gives
2Ry (81 — Swo) = R (S5 — S3) - (D.8)

Thus, one can deduce from either Eq.(D.6) or Eq.(D.7) that only ane of the Stokes
parameters is independent. To eliminate S; and S, take the squared of Eq.(D.3) and

the fact that
Si+83+82=1 (D.9)

to obtain
dss\* -
(Z) =Bl-(+s) 10)

and using Eq.(D.8), the above expressions in Eq.(D.10) can be simplified as

dss\? ) 2
= —B,55 — B,S3 + By (D.ll)
where
B, = iR% "
- (D.12)

B, — PR2 1
2 RO + Rl (ROSM} — ERI Sgo)

Ba = PR2_ 1
s = B (RoSio - 3usy)
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let 5% = ¢ then Eq.(D.11) can be written
Now 3 © University of Cape Coast https llir.ucc.edu.gh/xmlui

(45Y - p (¢ 5 5)

(D-13)

dz

oots
- ] 1 . D13 hasr
with use of the qﬁadratic formula, the right hand side of Eq ( )
1

21,2 = 2B1

and

so that Eq. (D.11) can now be expressed as

(25— - (51— (5 o5

dz

i ' i 2 2 and
Now, using the tables of Elliptic Functions®ll for integrands involving va +t _

B2 — t2,

Ul

—g /[ du=gen(cosg,k) =gF ($k) , b>y=0

[b dt
y \@2 1 12) (b2 — 12) 0

(D.16)

2, Also, ¢ = am u; = cos™ (y/b) and cn

where k2 = b2/ (a® + b?), and g = (a® + V%)
u; = cos ¢. Then, Eq.(D.15) can be rewritten in the form

-

dSs
VB [ dz=x f /&t a) @ — 5 (D.17)

where a2 = —ay and b2 = oy. Thus,

\/§Iz +C = gen™ (cos ¢, k) (D.18)

or

(\/—Z s 1 7 k) = cos ¢ (D.19)
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T
g0 that P k) o )
S, = +,/azcn (\/B1 (o —a)z +C;
where C 18 o constant. Now using Eq. (D.12),
(D.22)
Bs _ L3t 4r50) —r*Sh)
2 1 T'2
; | . ' D.23
By L1 (50— 55%) (.29
Bl 7‘2 2

where 7 = Ry/Ro. Thus, using equations (D.22) and (D.23), the roots in Fq. (D'14.) i

be expressed as

(el

2
an2 = 5 [r2% ~ 2(1 + 7510)] & 5 [(1+ r50)” — *550] (D.24)

44

In Eq.(D.24), oy is associated with the “+” sign and ap is associated with the “—”
sign. Note that in obtaining Eq.(D.24), the invariance of the Stokes parameters, i.e.
St + 52 4+ 52 = 1 was used. Therefore,

a; — g = il [(1+r.5’ )2—r282]%
2 e 10 20 | (D.25)
Thus, Eq.(D.21) can now be written more compactly with the use of Eq.(D.25) as

= £y/onen (Rofz +C ; k)

(D.26)
h = i ‘
Where f = [(1 of 7«,5’10)2 — 7"2,5’%0} . Note also the fact that B, = R27'2/4 h
obtain Eq. (D.26). But, 0 e el e
ks __@
V& — Qg (D.27)
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/@i = 2k

s0 thﬂrt

Hence Eq.(D.29) can be expressed as
(D.QD)

3=2pkfcn(Rofz +C; k)
T
_ 1 for z = 0 and

pere p = £1 = sgn (S30) and with the sign defined as sgn ()
W =

sgn (z) = -1 for £ <. .
i
The solution for Sy follows from the use of Eq. (D.3) and Eq.(D.29) yielding
—RpS: = dii- 2pk] cn (Rofz +C; k)} (D.30)
2] 7

Let u = Rofz +C ; k then & (cnu) = —snu dn u%: and Eq. (D.30) becomes

5, SE ’ (sn(Bofz +C ; W]dn (Rofz +C ; K) (D.31)

Similarly, with the use of Eq.(D.8), the solution for S; can be expressed as

2 ‘
S1 =?{1—2m [sn2 (Rofz +C ;k)]}—l (D.32)
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