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ABSTRACT 

In this work, the underlying mechanisms in coastal wetlands were 

examined in relation to the long-term mangroves’ response to 

anthropogenic activities and sea level rise. Geographic information 

systems and dynamic modeling methodologies were used. The 

complexity of mangroves makes it difficult to assess mangrove forests 

in tropical coastal locations using simply passive remote sensing 

techniques. In order to overcome these difficulties, a unique GIS method 

called GEE that combines optical satellite imagery and synthetic 

aperture radar was introduced. The effect of tidal currents on the 

mangrove ecosystem was investigated using a process-based model. 

Three model scenarios of 100 tidal cycle each were run, with three 

variables consisting of no sea level rise (constant), low sea level rise (0.3 

m), and extremely high sea level rise (2.5 m). The findings indicate that 

between 2009 and 2019, the area of the mangroves decreased by roughly 

16.9%. Overall accuracy of 99.1%, 84.6%, and 98.9% were recorded for three 

scenarios of 2019 classification. Mangrove height and AGB show that in 

year 2000, height and AGB range from 2.0 to 12.7 m and 0 - 368 mg ha
-1

, 

respectively, while in 2020, height and AGB ranged from 2.0 - 6.3 m and 0 

– 88 mg ha
-1

 respectively. The dynamic modeling results show that the 

relative hydro-period for the scenarios "no sea level rise (constant)”, "low 

sea level rise (0.3 m)" and "extremely high sea level rise (2.5 m)" was 

64%, 65% and 71%, respectively.  
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CHAPTER ONE 

INTRODUCTION 

With very few exceptions, mangroves thrive in coastal areas with mean 

monthly air temperatures above 20 °C, where they act as a buffer between 

terrestrial and marine ecosystems (Blasco et al., 2019). Mangrove forests are 

estimated to be the most carbon-rich ecosystems in the tropics and subtropics, 

although covering only around 1% of the planet's surface.  

These ecosystems offer numerous vital functions, but they have undergone 

severe degradation and are in danger of disappearing (Alongi, 2012; 

Breithaupt et al., 2012). A further estimate places the loss of mangrove forests 

at roughly two-thirds during the past century, with an annual loss of 1-8% and 

a drop in global land area of at least 20–50% (more than 3.6 million ha) as a 

result (FAO, 2007; Miththapala, 2008; World Mangrove Network, 2012). 

Mangrove loss has been mostly linked to climate change and deforestation. It 

is crucial to have a better understanding of our coastal wetlands, but these 

habitats are challenging to evaluate and/or model because of how greatly their 

characteristics vary around the world (Meselhe et al., 2017). 

Climate change is already having an impact, and it is anticipated that these 

consequences will grow in breadth and amplitude over time. According to 

reports, human activity is thought to be responsible for at least 50% of the 

observed global temperature increases since 1951, primarily through the 

emission of greenhouse gases from the production of oil and gas (Clarke et al., 

2007). Coastal managers have sought to better inform the public about the 
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negative effects that climate change will have on human and natural 

communities, as well as what may be done to lessen or prepare for such 

effects. Traditional research fields are constrained by their single-domain, 

single-boundary focus, which results in a restricted understanding of coastal 

ecosystems. Therefore, integrated modeling strategies are required to link the 

engineering, geomorphology, and ecology fields. Such multidisciplinary 

modeling methods would enhance comprehension of long-term landscape 

changes brought on by either human activity or extreme weather events 

(Meselhe et al., 2017). 

The underlying mechanisms in coastal wetlands are examined in this work 

using a geographic information system and a dynamic modelling 

methodology. Through the use of the Google Earth Engine (GEE) platform, 

this study introduced a unique method that combines optical and radar images 

for more accurate mapping of mangroves and calculating their above-ground 

biomass density in order to precisely evaluate the effects of anthropogenic 

pressure on the temporal changes of mangrove. The response of mangroves to 

tidal current caused by sea-level rise as a climate change driver was simulated 

using the dynamic modeling methodology. 

Study Background 

Understanding coastal and marine processes is essential to quantify changes to 

the mangrove ecosystem. To track changes in mangrove forests, space-based 

technologies like remote sensing has the capability to collect data from 

previously unreachable areas (Son et al., 2015). Several writers suggest 

combining synthetic aperture radar and optical satellite data to quantify 
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mangrove extent with greater accuracy (Attarchi and Gloaguen, 2014; Ayman 

et al., 2017; Hu et al., 2020).  

Several studies, including those by Kovacs et al. (2010), Salami et al. (2010), 

Omo-Irabor et al. (2011), De Santiago et al. (2013), Fatoyinbo and Simard 

(2013), Kuenzer et al. (2014), Hoppe-Speer et al. (2015), and Brown et al., 

have been done on the extent of mangroves throughout Africa (2016). Despite 

the fact that many of the studies have a global focus, they lack the 

geographical explicit resolution required to implement the Sustainable 

Development Goals (SDGs) at the local level that have been agreed upon by 

the African Union and the UN. 

For natural capital and carbon accounting, structural factors like tree height 

and aboveground biomass (AGB) of forests are important considerations. 

They also provide soft defense for flood protection and play important roles in 

mitigating climate change by regulating the carbon balance on a global scale 

(Houghton, 2005). Deforestation has been identified as a significant source of 

greenhouse gas emissions worldwide and as a danger to the ecological 

services that mangrove forests supply (IPCC, 2007). Evaluation of plans 

intending to lessen the effects of climate change using natural solutions 

requires accurate quantification and monitoring of temporal and spatial 

changes in mangrove cover and biomass (Omar et al., 2014). 

It has been underlined how crucial remote sensing is in this context as one of 

the main sources of spatial information (Fatoyinbo and Simard 2013, 

Lagomasino et al 2016). Given the complexity of the tropical mangrove forest 
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ecosystem, remote sensing methods are not without their limits when 

assessing mangrove height and above-ground biomass. When it comes to 

obtaining structural information with accurate estimates at different scales, 

both active and passive remote sensing systems have their advantages and 

disadvantages (Son et al., 2015). In the tropics, cloud cover, the intricacy of 

the mangrove forest ecosystem, and saturation at specific biomass levels make 

it difficult to use only optical satellite technology for mangrove monitoring 

and assessment (Steininger, 2000; Omar et al., 2014). 

Conventional mapping methods have been employed successfully by many 

researchers to offer data on forest structure, but these methods are constrained 

by the availability of images, the requisite computational power, and the 

required technical know-how (Gorelick et al., 2017; Yancho et al., 2020). In 

particular for mangrove mapping and monitoring, new techniques and 

technology are ushering in a new era (Wulder et al., 2018; Wang et al., 2019; 

Yancho et al., 2020). Cloud computing such as Google Earth Engine (GEE) 

platforms provide unprecedented access to a large collection of ready-to-use 

geospatial data and computing tools for quick and seamless processing 

(Gorelick et al., 2017; Yancho et al., 2020).  

In more recent years, scientists have studied the dynamics of sea level rise 

(such as the nonlinear response of hydrodynamics to sea level rise), but there 

hasn't been much work done in Ghana or elsewhere in Africa to address the 

combined feedback processes and the evolution of many interrelated systems, 

such as the nonlinear response and the influence of hydrodynamics, 

morphology, and ecology under sea level rise. Changes in hydrological 
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systems have a significant impact on coastal wetlands as a result of global 

climate change (Qiusheng, 2018). To better manage and maintain Ghana's 

wetland resources, it is therefore necessary to examine these dynamic changes. 

At the study site, there has been little research on mangrove productivity in 

terms of biomass density (Aheto et al., 2011; Nortey et al., 2016). However, 

none of the researchers took into account the long-term development paths of 

future mangrove behavior in terms of their productivity and some significant 

long-term feedback processes (such as the relationships between hydroperiod 

and mangrove mortality in response to climate change).  

Statement of the Problem 

Coastal zones are subject to increasing economic activities driven primarily by 

mining activities and oil exploration and exploitation, including but not 

limited to port operations. These activities have given rise to other activities 

that have reportedly resulted in accelerated coastal erosion, coastal flooding 

and increased acidity, depletion of coastal resources (e.g., mangrove 

wetlands), and general pollution of coastal waters.  

Although wetland protection has been prioritized by 159 nations through the 

Ramsar Convention since inception, wetlands continue to be threatened by 

various forms of anthropogenic activity (Ramsar Convention Secretariat, 

2013). Due to population growth in coastal zones around the world, pressure 

on coastal wetland resources for agricultural intensification continues to 

increase. In addition, the effects of global climate variability on coastal 

wetlands through variations in hydrological systems are also pronounced 

(Qiusheng, 2018). We need to study these dynamic changes in the coastal 
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zone, particularly in relation to mangrove ecosystem and to better manage and 

conserve our wetland resources.  

Mangroves have been used as a traditional source for many products such as 

timber, fuel and food. Determining the biomass of mangrove forests is a useful 

way to estimate the amounts of these components. Accordingly, Aheto et al., 

(2011) state that the analysis of the existing biomass is one of the accepted 

approaches of assessing the health of forest ecosystem. According to Friends 

of the Nation (2014), Anlo Beach wetland complex consists of relatively 

disturbed mangroves, which this work aims to quantify. The assessment of 

mangrove ecosystem in tropical coastal zone using only optical satellite data is 

hampered by cloud cover effects. In literature, most mangrove assessment in 

Ghana (Nortey et al., 2016; Aheto et al., 2011) have mostly been done using 

optical satellite imagery. In this study, an approach that combine optical and 

radar data to reduce the effect of cloud cover and enhance the accuracy of 

mangrove assessment was proposed.  

It has been stated in literature that the impact of climate change on coastal 

wetlands through changes in hydrological systems are significant and can have 

far-reaching effects on these important ecosystems (Qiusheng, 2018). 

However, information on these impacts vis-à-vis the response of mangrove is 

limited in Ghana. In this study, a process-based model was used to simulate 

the impact of climate change such as sea level rise (SLR) on mangrove 

ecosystem.  
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Objective 

The overall objective is to study the underlying processes causing changes in 

coastal wetlands through GIS and dynamic modeling, particularly in relation 

to the response of mangroves to anthropogenic activities and projected sea 

level rise scenarios. 

 

 

 

Specific Objectives 

The specific objectives are to: 

1. map the spatial and temporal changes of mangrove and surrounding 

ecosystem between 2009 and 2019 

2. investigate the effect of using passive or active remote sensing data on the 

accuracy of the modeling outputs.  

3. assess the impacts of land modifications and Sea level rise on Mangrove 

productivity in terms of biomass density.  

4. assess the dynamics of the wetland Morphology under varying sea level 

conditions. 

Research hypotheses 

Four hypotheses were tested in order to fulfill the above-mentioned specific 

objectives: 

(1) There is no significant spatial modifications in the Land Cover of the study 

location over two time periods (2009 and 2019) in the study area.  

(2) The type of satellite remote sensing (e.g., active or passive) has no effect 

on the accuracy of the model outputs 
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(3) There is no relationship between tidal hydrodynamics and Mangrove 

productivity and future forecasting is not possible. 

(4) There is no possibility of understanding some feedback processes in the 

Mangrove wetland (e.g., the relationship between elevation and accretion) at 

longer-time scale in response to climate change. 

Statistical Hypothesis 

Ho1 There is no significant Modifications in the Land Cover of the study 

location  

HA1 There is significant Modifications in the Land Cover of the study location  

Ho2 Satellite remote sensing type has no effect on mangrove mapping accuracy  

HA2 Mangrove mapping accuracy depends on satellite remote sensing type  

Ho3 There is no relationship between tidal hydrodynamics and Mangrove 

productivity 

HA3 There is relationship between tidal hydrodynamics and Mangrove 

productivity  

Ho4 There is no possibility of understanding some feedback processes in the 

Mangrove wetland 

HA4 It is possible to understand some feedback processes in Mangrove wetland 

Justification 

The world's coastal wetlands habitats and resources have come under 

tremendous pressure in recent decades. Human development and resource 

exploitation, coastal population growing at three times the global average, 

rising sea levels, changing climate and fluctuations in sediment transport due 
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to river damming, coastal erosion control, etc.; all create unprecedented 

challenges. To address these challenges, the dynamics of coastal wetland 

zones must be better understood. However, information about this zone and its 

dynamics is difficult to obtain regularly and over large areas due to 

inaccessibility by land and sea.  

Coastal environment managers need information and data on the possible 

effects of sea level rise in order to be alert and prepared for uncertainties under 

future sea levels and to make accurate decisions for the management of human 

and natural communities.  
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CHAPTER TWO 

REVIEW OF LITERATURE 

The Importance of Coastal Wetlands Vegetation 

Mangroves, seagrasses and salt marsh are some of the highly important 

vegetation along the coast which are responsible for the provision of a range 

of ecosystem services. Several scholars have demonstrated that these 

vegetations are highly efficient carbon sinks (Laffoley & Grimsditch, 2009; 

Duarte et al., 2010; Kennedy et al., 2010; Mcleod et al., 2011). Even with their 

comparatively small global coverage, coastal vegetation like mangroves, 

seagrasses and salt marsh sequester more carbon dioxide than their terrestrial 

counterparts, in addition to organic carbon, due to their productivity and 

efficiency in trapping sediments (Mcleod et al., 2011).  

Coastal wetland vegetation provides vital breading space for various species of 

fish, shellfish as well as other animals and delivers sufficient food/nutrient 

availability to support vital natural community changes. Small wet-dry tropical 

estuaries provide the necessary foraging, spawning and nursery environments 

for benthic and pelagic organisms that are of recreational and/or commercial 

value (Sheaves et al., 2010). Coastal wetland vegetation represents a transition 

between marine and terrestrial environments and thus hosts a diverse set of 

fauna and flora (Ellison, 2009). Many organisms from the marine environment 

also migrate to coastal wetland vegetation to breed, particularly because the 
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vegetation provides a haven from predators and strong wave action (Asbridge, 

2018). Coastal wetland vegetation such as mangroves support some 

endangered species such as proboscis monkeys, scarlet ibis and straight-billed 

ranger (Valiela et al., 2001). 

Wetland vegetation also provides protection from coastal flooding by 

stabilizing sediments, which in turn dampen turbulence and currents, recycle 

nutrients, filter and enhance water quality (Hughes et al., 2009). Mangroves in 

particular provide coastal protection by mitigating flooding and storm events, 

including those associated with strong winds and waves in coastal areas, in 

part due to their high density, buttress root systems and often taller vegetation 

creating a complex vegetation structure (Asbridge, 2018). Several studies have 

reported that mangroves dampen violent storm surges, reducing their wave 

height by up to 20% above 100m. (Mazda et al., 1997; Chang et al., 2006; 

Alongi, 2008). They do this with the large networks of buttresses and 

pneumatophores that bind the sediment and cause reduced erosion as they 

impede water flow and slow wave speeds (Wolanski, 2007, Barbier et al., 

2011).  

Coastal wetland vegetation is often cited as hyperaccumulating systems due to 

their natural ability to purify contaminated water (Chiu et al., 2004). Coastal 

vegetation sediments can efficiently bind heavy metals, which are 

immobilized as sulfides in the absence of oxygen, with high organic matter 

composition and low pH (Peters et al., 1997).  
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Coastal wetland vegetation provides various economic and commercial values, 

for example by providing coastal protection, mangroves limit damage to 

businesses, property, agriculture and fisheries, and by sequestering carbon, 

mangroves can potentially bring blue carbon income to local residents and 

governments (Asbridge, 2018).  

Mangrove Ecosystem 

Mangrove is a universally important ecosystem found in the intertidal tropical 

and subtropical zones as shown in the Figure 1. They are really exceptional 

because they can tolerate huge amounts of brackish water. Its ability to survive 

in oxygen-poor soils is because of the root adaptation. These ecosystems are 

of course beneficial to the survival of millions of people across the world. 

High on the list of these natural benefits, alongside carbon sequestration are 

the defense of seashore and man-made structure from severe storm, the raising 

of fish, and the making of charcoal. Mangroves cover less than 1% of the 

global land. 
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Figure 24: Global Mangrove Distribution (Cited in Blasco et al., 2019) 

Mangrove forests survive mainly in coastal areas where the average 

temperature dominant in six geographic zones of the world (Figure 1) 

(Chapman, 1976; Snedaker, 1982; Rao, 1987; Saenger & Bellan, 1995; Duke 

et al., 1998; Blasco et al., 2019). The predominant species of mangroves in 

these geographic zones are shown in Table 2. Dense mangrove forests with 

very tall mangroves (up to 60 m tall) are predominant in bioclimatic settings 

(Blasco et al., 2019; Simard et al., 2019). Mangroves can grow in arid regions 

in the form of short mono-specific stocks (Dodd et al., 1999). The Ganges 

Delta in Bengal hosts a substantial area of mangroves (> 600,000 ha) (Blasco 

et al., 2019). A study by Spalding et al., (1997) states that the entire global 

mangrove coverage is about 18,000,000 ha and most of it is found in South 

Asia and South-east Asia (Table 1). Very few countries such as Indonesia, 

Australia, Brazil and Nigeria dominate the area statistics and account for 
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approximately 43% of the global mangrove out of the 70 or so countries where 

these ecosystems are found, with Indonesia alone having 23% and 12 

countries 2/3 (Spalding et al., 1997). Government decisions and management 

plans regarding mangrove ecosystems in these countries will determine world 

mangrove status in the near future (Hamilton & Snedaker, 1984). Blasco et al., 

(2019) argue that as many as 30% of these ecosystems are degraded. 

Table 2: Global and Country Specific Estimates of mangrove areas 

Regions Global Extent (ha) 

South and Southeast Asia  7517300 (41.5%) 

Australasia  1878900 (10.4%) 

 America  4909600 (27.1%) 

West Africa  2799500 (15.5%) 

East Africa and Middle East  1002400 (5.5%) 

Total area  18107700 

  

Main countries Spatial Coverage (ha) 

Indonesia  4250000 

Australia  1150000 

Brazil  1380000 

Nigeria  1050000 

Malaysia  640000 

India  670000 

Bangladesh  630000 

Cuba  550000 

Mexico  530000 

Papua New Guinea  410000 

Colombia  360000 

Guinea  290000 

Total  11910000 

Source: Spalding et al. 1997, cited in Balsco et al., 2019 
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Mangroves cover around 0.7% of tropical and subtropical forest areas 

worldwide in over 118 nations (Bunting et al., 2018; Siikamaki et al., 2012; 

Donato et al., 2011; Page et al., 2011). Murdiyarso et al. (2015) argues that 

mangrove can sequester and store 3 to 4 times more carbon for each 

equivalent area of tropical forest. In particular, mangroves found in dominant 

peatlands are expected to store 25-50% higher organic carbon in the soil 

(Rovai et al., 2018) and host about 1.6% of entire biomass in tropical forest 

(Hutchison et al., 2014).  

Basically, studies evaluating and monitoring mangroves in Africa are 

unequally distributed (Pinki et al., 2019). There are several studies on the 

extent or dynamics of mangroves across Africa (Lagomasino et al., 2019; 

Brown et al., 2016; Hoppe-Speer et al., 2015; Kuenzer et al., 2014; De 

Santiago et al., 2013; Fatoyinbo & Simard, 2013; Omo-Irabor et al., 2011; 

Kovacs et al., 2010; Salami et al., 2010), but many of them are largely 

concentrated in a few countries.  

There are different types of mangroves, mainly red, black and white (Figure 

2). Red mangroves are the most salt tolerant, white the least. Mangroves are 

generally short trees, but some can reach 60 m in height and can reach high 

levels of above-ground biomass. In addition to structural differences, some 

may have large curved roots while others do not. 
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Figure 25: Different types of mangroves based on their Salt Tolerance 

 Source: wetlandsandwildlife.wordpress.com 

Mangrove Dynamics, Structure and Function  

Extensive research has been carried out to improve our understanding of the 

structure and complexity of mangroves (Lugo et al., 1980; Twilley, 1982; 

Sassekumar & Loi, 1983; Adaime 1985; Duke, 1988; Lahmann, 1988; 

Woodroffe et al., 1988; Saenger & Snedaker, 1993; Fromard et al., 1998). 

Mangrove height ranges from 12 m to 20 m and rarely exceeds 25 m, litter 

falls from 12 - 16 t/ha/yr (dry matter) in the equatorial and sub-equatorial 

regions. Near the tropics, their mean height is about 8 to 12 m and the average 

annual litterfall is estimated at 8 t/ha. Within the temperate coastal zone, a 

place where mangroves are exceptional, mangrove height rarely exceeds 4 m 

and litter-falls decline to 4 t/ha/yr. (Blasco et al., 2019). Simard et al. (2019) 

emphasized that precipitation intensity, temperature variation and frequency of 

extreme events (e.g., cyclone) explain 74% of global dynamics in maximum 

mangrove height, biomass density and litter drop, however they found the 

tallest mangrove canopy in Equatorial Africa where stocks are up to 62.8 m 

tall. The high primary productivity and brief residence time of manure in most 
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mangrove ecosystems underlines their importance not only for fisheries but 

also for other species (Snedaker & Lugo, 1973).  

Although they provide many valuable ecosystem goods, mangrove has 

experienced significant anthropogenic related degradation (Alongi, 2012; 

Breithaupt et al., 2012). It has been estimated that the mangrove degradation 

over the last twenty years has overwhelmed that of rainforest (Mayaux, et al., 

2005). Most of the ecosystems (2/3) have disappeared in the last century, 

resulting in a loss of 1-8% mangroves per year and no less than 20-50% 

reduction in global land area. 

 Therefore, most observed changes in the mangrove ecosystem can be 

attributed to climate variability which leads to temperature, precipitation and 

air pressure fluctuations. (Asbridge et al., 2015). Some of the challenges in 

mapping mangrove ecosystems are the need for high-resolution imagery, as 

these ecosystems tend to cover a narrow band along the coast. Therefore, 

given the nature of mangrove areas that are more prone to cloud cover, it can 

sometimes be difficult to find cloud-free optical imagery over these areas. 

Additionally, the state of these ecosystems is dynamic due to ebb and flow 

differences, which can affect satellite signal. 

Coastal Wetlands Vegetation Conservation 

One of the first global efforts towards prudent use of wetlands by indigenous 

peoples, national and international action, is the 1971 Ramsar Convention with 

a commitment to help achieve sustainable development around the world. 

Mangroves have been designated according to the Ramsar Convention as a 
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forested tidal wetland with 262 locations worldwide and an area of 27,000,000 

ha (Ramsar, 2012; Lucas et al., 2014). National wetland inventories have been 

among the top priorities of Ramsar Convention signatories with the sole aim 

of ensuring judicious use of wetlands in different regions (Lucas et al., 2014). 

However, the challenges of the convention were the procedures used and data 

management, leading to the 2005 Ramsar resolution (MEA, 2005; Ramsar, 

2005; Rosenqvist et al., 2007b; Lucas et al., 2014).  

Recognizing the need for more accurate information on global mangroves, a 

number of initiatives have been implemented by several international 

organizations over the past four decades to improve our knowledge of 

mangrove forest conversion or loss for reference years. Major international 

initiatives include: (1) the conservation of migratory species of wild animals 

(CMS, 1979); (2) Convention on biological diversity (CBD, 1993); (3) the 

United Nations Framework Convention on Climate Change (UNFCCC, 1992); 

(4) the Intergovernmental Science Policy Platform on Biodiversity and 

Ecosystem Services (IPBES, 2012). These efforts aim to provide better and 

improved data on habitat conversion and future trajectories (Lucas et al., 

2014).  

Accurately quantifying the extent of mangroves, through mapping is one of 

the key tools needed to support the Ramsar Protocols and any 

intergovernmental initiative aimed at enabling signatories to achieve the goal 

of the initiative. Maps like the JAXA Carbon Initiative Global Wetland 

Inventory, can also give information on the extent of disturbance due to 

flooding within the defined wetland areas. In addition, information on the 
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impact of policy measures is required to assess their effectiveness in terms of 

prudent use of wetlands. This information is necessary to encourage 

sustainable development and policy adaptation and to ensure adequate 

representation of wetland types in the Ramsar List (MacKay et al., 2009). 

One of the first global mangrove maps was created by combining previous 

maps, ground surveys and remote sensing data (Spalding et al., 1997). A 

global atlas of mangroves was updated by UNEP-WCMC and published in the 

year 2010 (Spalding et al., 2010). Giri et al. (2011) produced another revised 

baseline for world mangrove distribution based on Landsat data. The 

distribution baseline map serves as an important tool for mangrove 

conservation and management, as well as for systematically assessing the 

performance of the ecosystem goods they offer. On the other hand, a number 

of recent interventions have attempted to use more specific data on mangrove 

services. These include, but are not limited to: (1) Mangrove Conservation 

Alliance (BirdLife International, 2011); (2) Mangrove Capital Program 

(Wetlands International); (3) International network for the conservation and 

sustainable use of Mangrove genetic resources.  

The need for a coordinated effort to address issues related to the effect of 

climate variability on coastal ecosystems necessitated the creation of the blue 

carbon initiative by the United Nations Environment Program (UNEP). The 

program objectives are to promote research and develop strategies and 

programs for the conservation as well as the restoration of coastal ecosystems. 

These policies and programs include globally applicable measurement 

standards to support financial platforms (e.g., National Measurement, 
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Reporting and Verification (MRV) Systems). Despite these interventions, 

timely and more accurate information on mangrove dynamic trends at the 

local, regional, and global scales has not been routinely and consistently 

provided. Closer look at the social and economic value of mangroves is also 

needed to guarantee that the ecosystems are not underestimated in decisions 

making regarding their use. Consistency in the use of spatial and temporal 

methods is crucial to guarantee adequate and more consistent estimations of 

extent within and between regions. 

Conservation Efforts in Africa 

There is ample evidence of the successful establishment of Mangrove 

plantations in West Africa and Central Africa involving governments, NGOs 

and local communities. For example, since 1993 there have been fragmented 

mangrove planting efforts in some parts of Africa, notably Senegal, Guinea 

and Ghana (Gordon et al., 2015). By 2014, more than 450 ha of Mangrove 

plantation had been established in Central Africa and more than 60 ha of 

mangrove plantations had been created in West Africa (Armah et al., 2009). 

The plantations were established in these countries with the efforts of projects 

led by the state ministries responsible for mangroves, local communities and 

NGOs. Universities and parliamentarians have stepped up efforts of NGOs in 

Cameroon. In general, plantation establishment in West Africa (61.8%) was 

more strongly encouraged by government efforts, while in Central Africa, 

NGO efforts (51.9%) were more pronounced. Donor organizations include: 

European Union, PNUD, FIDA, GEF, FFEM, NC IUCN, SSNC, GTZ, AFD 

and PAFT.  
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Mangrove restoration activities in Ghana were integrated into some coastal 

projects between 1995 and 2000 (Armah et al., 2009). Examples of such 

initiatives are the Large marine ecosystem project in the Gulf of Guinea; The 

Lower-Volta mangrove project supported by the United Kingdom and a 

community campaign in Ghana involving two communities with additional 

help from an NGO (Resource & environment development organization 

(REDO)) and the Department of forestry in Winneba where over 6,000 

reproductive plants have been planted; Obane mangrove restoration project in 

Ada with over 2000 seedlings of Rhizophora sp. and Avicennia germinans 

planted by people through community work (AMN, 2009). 

Advances in Satellite Data Applications for Wetland Studies 

Advances in systematic monitoring to understand changes in wetlands are 

needed to regulate how mangrove ecosystems are continuously changing due 

to human-made impacts or natural drivers, or both (Pimple et al., 2018). 

Accurate quantification of temporal changes in mangrove ecosystem is 

essential for better understanding of many marine processes. Mapping of 

mangrove forests requires enormous amount of money for fieldwork because 

of the difficulties related to access within the mangrove ecosystem (Zhang et 

al., 2014). Space based technologies like remote sensing have tremendous 

capability to map changes in mangrove forests by capturing data from an 

otherwise inaccessible landscape (Son et al., 2015). Two main types of remote 

sensing data exist namely; passive remote sensing and active remote sensing. 

Active remote sensing provides data in the form of images (e.g., SAR) and in 
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the form of altimeter, while passive remote sensing provides optical imagery 

(e.g., Landsat).  

SAR and LiDAR Data Applications 

SAR data is useful for assessing and mapping mangrove extent, even in the 

tropics where cloud effects are predominant (Vermeulen et al., 2005; Horritt, 

2006; Mason et al., 2007; Schumann et al., 2007; Di Baldassarre et al., 2009; 

Long et al., 2014), due to the properties of the sensor backscatter mechanism 

and signal penetration for different targets (Musa et al., 2015). Because of its 

high penetrating power, SAR is suitable for land cover research as well as land 

use monitoring (Owe, et al., 2001). Table 3 and 4 show the interaction 

between Mangroves and Radar Signal at Different bands as well as the 

corresponding backscatter range. The higher the backscatter, the rougher the 

surface. For example, the reflectivity of SAR for an undisturbed body of water 

gives very little backscatter and very dark images. However, when the water 

body is disturbed by wind, turbulence or surrounding vegetation, backscatter 

increases and produces a bright or gray image (Erika et al., 2020).  

Several GIS and geospatial techniques have been applied for mangrove 

assessment (Long et al., 2014; Musa et al., 2015; Pinki et al., 2019). Most 

studies often use data from passive satellite such as Landsat due to their larger 

spatio-temporal coverage as well as easy data accessibility (Brown et al., 

2016; Wang et al., 2019; Pinki et al., 2019). The recent availability of active 

satellite data with increasing spatio-temporal coverage has led many scientists 

to increasingly use data from SAR for a more accurate mapping of the 
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mangrove changes (De Santiago et al., 2013; Thomas et al., 2018; Pinki et al., 

2019). 

Cloud cover conditions does not affect Radar imagery (SAR) and it has 

therefore been used to map mangrove changes over time (Thomas et al., 

2017). The global availability of cloud free radar imagery since 1996 to the 

present has enabled few researchers to monitor mangrove extent worldwide 

(Thomas et al., 2018). For the assessment of mangrove changes, scientists use 

different classification systems and algorithm (Fatoyinbo et al., 2013; Giri et 

al., 2015; Kamal et al., 2015; Pinki et al., 2019). The novel cloud computing 

platform like Google Earth Engine (GEE) with unrestricted access to global 

mosaics of geospatial data are now increasingly accessible and provide 

straightforward analysis for large satellite imagery (Chen et al., 2017; Pinki et 

al., 2019). Google Earth Engine provides over 15 classification techniques 

using artificial intelligence, such as CART and RF for robust land cover 

classifications (Giri et al., 2015; Diniz et al., 2019; Shrestha et al., 2019). 

Cloud computing procedure based on robust algorithms is very helpful for 

systematic monitoring and continuous assessment (Pinki et al., 2019).  

European space agency (ESA) satellite-1 and - 2, which was launched from 

1991 to 2011, are among the high-capacity space-borne SAR to monitor 

mangroves on a global scale, with C-band historical archives (Lucas et al., 

2014). In addition, German space agency (DLR) successfully completed 

TandemX mission in 2010, comprising Terra-SAR-X and COSMO-SkyMed, 

forming a cluster of 4 sensors to provide X-band SAR imagery. However, the 

disadvantage of X- and C-band images captured by previous sensors is that 
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systematic global coverage has not occurred over time and there are also 

issues of cost and complexity (Lucas et al., 2014). The TanDEM-X mission is 

very useful for mangrove monitoring, as the sensor-derived global digital 

elevation provides useful information on mangrove canopy elevation and 

above-ground biomass throughout its range (Lucas et al., 2014). 

Changes in mangrove structure as a function of elevation changes can be 

estimated by comparing tree height estimates from the TanDEM-X with 

estimates from SRTM (Lucas et al., 2014). The major L-band sensors on a 

global scale are the. These two sensors represented efficient acquisition 

approaches that have yielded consistent pantropical and global L-band 

mosaics annually (Rosenqvist et al., 2000, 2007a; Lucas et al., 2014).  

PALSAR-2 was launched in 2014 as a continuation of the mission to monitor 

the nearshore tropics and subtropics, specifically mangrove monitoring with 

reliable, efficient and cloud-free data around the world with better sensitivity 

to 3D wood structure of mangroves, allowing the retrieval of above-ground 

biomass (AGB) density (Lucas et al., 2007; Lucas et al., 2014). Part of JAXA's 

Carbon initiative was used to develop the Global Mangrove Watch (Lucas et 

al., 2007; Rosenqvist et al., 2010; GMW (JAXA), 2013; Lucas et al., 2014). 

Historical JERS-1 and PALSAR images alongside the Global Mangrove 

Watch were used by Giri et al. (2011) to improve Landsat-based mangrove 

base-maps for several years (e.g., 1996, 2007, 2008, 2009 and 2010) and 

changes detected by ALOS-2 PALSAR-2 were quantified. Baseline 

measurements of structure and aboveground biomass generated from SRTM, 

ICESAT and GLAS have been widely used for mangrove monitoring by a 
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number of authors (Simard et al., 2006, 2008; Fatoyinbo & Simard, 2013; 

Lucas et al., 2014). The PALSAR image (L-band) can be used to differentiate 

huge (> 10 m) mangroves with buttress from those without as they have 

relatively low HH backscatter for the L-band (Lucas et al., 2007). Therefore, 

the combination of active and passive satellite data allows for the 

quantification of changes in both volume and structure, including tree species 

losses and gains (Lucas et al., 2014). 

Radar remote sensing works in interferometrically when the data is acquired 

from multiple single acquisition of the same target from different sensor 

positions. Interferogram refers to the change in signature of topography, 

noise/speckle, displacement, cloud effects, and baseline error between two 

SAR images. The importance of phase differences in interferometric data such 

as InSAR allows detection of land cover change (Lucas et al., 2014). 

Dellepiane et al. (2004) used this feature to identify flooded areas over 

wetlands. Their method was based on the concept of fuzzy connectivity, which 

can spontaneously select shorelines from two different InSAR images due to 

consistency in the images.  

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



26 

 

 

Table 2: Radar Signal Interaction with Mangroves at Different bands 

Type of 

Band  

Depth of Penetration  Backscatter Type  

K Few tens of centimeters Straight bounce  

X Up to 1/3 of canopy height 

(Lorey’s height) 

Straight bounce, volume scatter for 

small canopy size and double 

bounce that increases at low 

biomass 

C higher penetration and 

coherence 

 

Straight bounce, volume scatter for 

small canopy size and double 

bounce that increases at low 

biomass 

L Very high penetration Dominant direct bounce in tall 

forest. Volume scattering dominate 

in shorter forest. Double bounce 

increases at low biomass and in 

open forests.  

P Similar to L-band with high 

Microwave penetration into 

Canopy  

Dominant direct bounce in tall 

forest. Volume scattering dominate 

in shorter forest. Double bounce 

increases at low biomass and in 

open forests slightly higher than L-

band 

Source: SERVIR SAR Handbook Chapter 6 by Marc Simard 

LiDAR is another method with the ability to precisely capture the 3D aspect of 

mangroves and can therefore be applied to assess the biomass of forests with 

better reliability (Tianyu et al., 2020). LiDAR is one of the active satellites 

that effectively penetrates dense tree canopies and can be used to collect data 

about their structure (Lim et al., 2003; Tianyu et al., 2020). This technique is a 

key breakthrough in forest monitoring, as it is able to calculate canopy height, 

forest above-ground biomass including other structural parameters, and is non-

saturating even under high-biomass bioclimatic conditions (Nsset et al., 2011; 
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Babcock et al., 2015). Airborne and space-based LiDAR are capable of 

obtaining large-scale data, but limitations in global coverage limit their 

application on a continental to global scale (Hu et al., 2016). The ICESAT 

mission was the only LiDAR instrument to generate global coverage data, 

which provided a vital source of data for estimating tree height and biomass 

(Tianyu et al., 2020). However, the mission ended up in orbit within 7 years. 

Table 3: Backscatter Range for Mangroves 

Radar Band Shrub Mangrove Tall Mangrove 

P-band (HH 

polarization) 

~ -17dB ~ -8dB (increases with 

AGB) 

P-band (HV 

polarization) 

~ -22dB ~ -14dB (increases with 

AGB) 

P-band (VV 

polarization) 

~ -10dB ~ -7dB (increases with 

AGB) 

L-band (HH 

polarization) 

~ -25dB to -15dB Decreases from -5dB to 

-18dB with increase in 

AGB 

L-band (HV 

polarization) 

~ -25dB to -20dB Decreases from -15dB 

to -22dB with increase 

in AGB 

L-band (VV 

polarization) 

~ -20Db to -12dB Decreases from -8dB to 

-16dB with increase in 

AGB 

C-band (HH 

polarization) 

~ -12Db ~ -7dB  

C-band (HV 

polarization) 

-20 to -15Db ~ -14dB 

C-band (VV 

polarization) 

~ -12dB ~ -6dB 

Apart from mangrove mapping, remote sensing products such as imagery, 

DEM, altimeter, etc. can be used as numerical model setup and validation 

(Pereira-Cardenal, et al., 2011). For example, estimates from satellites for 

river current, channel width, surface roughness, and water levels are used for 
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calibration and validation. Surface roughness is a very sensitive parameter that 

directly affects water level and flood extent (Schumann et al., 2007) and can 

be used to reduce outliers from the calculated water level (Woldemicheal et 

al., 2010). Satellite-generated flood maps were used to calibrate hydrological 

models for single and numerous flooding (Di Baldassarre et al., 2009). 

Satellite images of a particular event, taken almost simultaneously by two 

satellite sensors, were used by Di Baldassarre et al. (2009) to calibrate a 

hydrological model based on the 'possible' extent of flooding from the two 

images, and the result shows that satellite data can be reliable for flood 

mapping. 

Optical satellite data 

For several decades, remote sensing data collected via optical satellites for 

monitoring changes in mangrove extent around the world has been available 

with various limitations (Lucas et al., 2014). Recent high-resolution passive 

remote sensing (e.g., Worldview) deliver detailed information for mangrove 

extent mapping at local level, however global coverage is a serious limitation 

and the collection of this data is often not repeated (Wang et al., 2004; Proisy 

et al., 2007; Neukermans et al., 2008; Wang et al., 2008; Lucas et al., 2014). 

Mangrove assessments at regional level can be done with optical imagery of 

moderate resolution such as Landsat, SPOT, or ASTER but continuous 

detection of changes has proven difficult in most regions where cloud cover 

impedes steady observations from passive satellites (Spalding et al., 1997; Giri 

et al., 2011; Lucas et al., 2014).  
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Basically, previous worldwide maps of mangrove changes were generated 

from passive remote sensing data from various sources (Spalding et al., 2010). 

The mapping was essentially performed using multi-year data as cloud cover 

affects the information in a single time. Despite the disadvantages associated 

with optical data, mangrove baseline extent maps generated from them are 

valuable because such maps are difficult to generate from SAR data alone, 

irrespective of the fact that cloud cover effects are overcome. In particular, 

using only L-Band or C-Band SAR data to map the extent of mangroves is 

insufficient when mangroves are adjacent to other terrestrial forests and 

plantations, as there are similarities in the nature of their backscatter 

properties. It is generally easier to distinguish and map mangroves when 

bounded by sparsely vegetated surfaces, as they exhibit higher backscatter in 

both the L-Band and C-Band for HV and HH polarizations, although there 

may be confusion when there is high ground mangrove biomass with broad 

buttress systems due to the low backscatter associated with such mangrove 

(Lucas et al., 2007). 

Increasingly, advances in satellite are being used to overcome this limitation, 

such as the use of Landsat sensors to intensify cloud-free observations by pixel 

mining and the application of synthetic aperture radar systems alone or in 

combination with optical imagery to enable observations independent of 

weather or lighting effects (Zhu & Woodcock, 2012; Nascimento et al., 2013). 

Another way out is to limit mangrove mapping to an area where there is a high 

presence of mangrove. 
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Satellite-derived DEM Data Applications (AGB and structure) 

Estimates of mangrove stand height, carbon storage, and surface and 

underground biomass can be produced for a mapped area when the baseline of 

mangrove extent is already known. This can be derived either from allometric 

equations or from satellite estimates. (Comley & McGuinness, 2005). Most 

satellite estimations of above-ground biomass were generated using digital 

elevation model (SRTM) acquired in 2000 (Giri et al., 2011; Fatoyinbo & 

Simard, 2013), but using TanDEM-X mission, which was published in 2014 is 

another useful sensor for monitoring mangrove above-ground biomass, as the 

sensor-derived global DEM provides data to estimate mangrove height around 

the world (Lucas et al., 2014). By means of the canopy height estimates from 

TanDEM-X mission together with those from SRTM (Shuttle radar 

topographic mission) can show changes in the mangrove ecosystems (Lucas et 

al., 2014).  

The satellite estimates of above-ground biomass can be further improved by 

integrating synthetic aperture radar imagery such as ALOS PALSAR data into 

the digital elevation model (Omar et al., 2014). Some studies performed in 

Australian mangroves show that where many buttress roots occurred, the raise 

in L-band backscatter with above-ground biomass was discontinued at an 

altitude of 8-12 m and backscatter decreased proportionally to the increase in 

above-ground biomass (Held et al., 2003). Exploiting backscatter mechanism 

in mangroves, a new mapping approach using the canopy elevation model 

(CHM) and SAR backscatter was developed to distinguish between 

mangroves with buttress roots and those without (Lucas et al., 2007). This 
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type of information can be applied to estimate the stages of mangrove 

regrowth and also infer species structure. More information on the 

researchable issues that remote sensing techniques can be applied are shown in 

Table 4. The strength and weakness of satellite sensors for mangrove studies 

are summarized in Table 5.   

Table 4: Researchable issues with remote sensing techniques 

Needed information Target Audience  Primary Objective 

Extent Policy, Land holders To delineate areas of 

conservation and 

exploitation 

Social-economic and 

cultural values 

Policy To maintain and 

increase general well-

being 

Food security (actual 

and predicted quantity 

e.g., fish, game, fruit, 

grain) 

Local population, 

commercial, 

government at all levels 

Ensuring the continuous 

supply of food to the 

population 

Fiber and fuel amounts Local population, 

Commercial 

To determine potential 

resources and ensure the 

sustainability of the 

mangrove habitat 

Biochemical and genetic 

material 

Commercial, Policy Maintain habitat 

condition and 

biodiversity 

Extent and rate of 

Mangrove removal 

Conservation, policy, 

science community 

Estimate area, trend of 

area loss, causes and 

consequences 

Habitat structure and Conservation, Science Assessment of breeding 
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floristic composition community site status for species 

Regeneration and 

restoration rates 

Conservation, 

commercial, science 

community 

Identify extensions, 

potential uses and 

sustainably used areas 

Suitable Areas for 

Mangroves 

Conservation, policy To identify potential 

restoration areas 

Extent and Mangrove 

zonation 

Conservation Assessing the role and 

potential of coastal 

protection 

Sea Level Rise Impact Policy, Science 

Community 

Comprehend the effects 

of global climate 

variability 

Soil loss and deposition 

  

Land use workers Indicates where 

mangrove loss and 

colonization are 

occurring 

Hydrodynamics and 

quality of soil  

Land use workers, 

Local authorities 

View degraded areas for 

remediation  

Biomass, Volume, 

Carbon stocks and 

cycling 

Policy, research 

community, commercial 

To measure current 

resources and quantify 

current and future 

carbon sequestration 

capacity 
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Table 5: Strength and weakness of remote sensing sensors for mangrove 

studies 

 L-Band SAR C-

Band 

SAR 

X-

Band 

SAR 

Optical RS 

JERS-

1 

PALSAR PALSAR-

2 

  Landsat SPOT/

ASTE

R 

Cloudless 

images 

            

Sensitive 

to 

vegetation  

           

Sensitive 

to 

structural 

component 

          

Sensitive 

to biomass 

          

Worldwide 

acquisition 

              

Time 

series data 

            

Source: Lucas et al., 2014 

 Gaps and limitations of Satellite Application 

Although active and passive remote sensing applications have been useful in 

mangrove monitoring and assessment, the measurements are not without 

limitations. Most limitations arise from sensor errors, data processing 

techniques, seasonal variations and measurement times, target distance, etc. 

Passive remote sensing is limited to daytime data collection and it is not very 

useful in cloud-prone areas because the target object can’t be reached (Smith, 

1997). There are a number of limitations with optical data; For example, the 

spatial resolution of optical satellite data is often coarse and may not deliver 

highly detailed resolution suitable to distinguish between vegetation types, the 
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sensor doesn’t capture cloudless images and can’t enter dense tree canopy. 

However, these limitations also depend on time, season and hydraulics during 

data collection (Sun et al., 2010).  

The effectiveness of radar data for mangrove research is subject to weather 

conditions (e.g., wind and rain), angle of incidence, low vegetation and the 

instrument polarization mode used during data collection (Musa et al., `2015). 

For example, the HH polarization performs better for mapping mangrove 

extent compared to VH and VV polarizations. However, the latter are 

particularly useful for flood monitoring (Schumann et al., 2007). A source of 

confusion in SAR data is that certain features such as open water and low 

vegetation, urban areas and flooded areas, topography and flooded vegetation 

appear similar and present difficulties in data interpretation. Mapping 

mangrove extent using only radar data is challenging, especially when 

mangroves border forests.  

The limitation of the satellite-supported digital elevation model lies in the data 

quality. The accuracy of the digital elevation model (DEM) data required for 

mangrove structural studies and other studies involving topographical 

considerations is dependent on the collection methods, handling, and surface 

features. Digital elevation models acquired from passive satellites tend to have 

high deviation, high RMSE and lower vertical accuracy than those derived 

from active satellites such as airborne LiDAR or SAR (Fraser & Ravanbakhsh, 

2011). However, DEMs derived from optical satellites have wider coverage 

and are therefore valuable topographic data sources (Gorokhovich & 

Voustianiouk, 2006). 
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Novel Approach for Mangrove Mapping and Monitoring 

Scientists are currently developing pioneering approaches to make satellite 

data more usable and to overcome current data limitations. For instance, 

cloud-masking can remove a greater percentage of clouds from optical images, 

increasing data availability. An example of these novel techniques is the. 

Sea Level Rise Effects on Coastal Areas 

Currently, coastal areas face the threat of flooding, erosion, saltwater intrusion 

and other natural disasters as sea levels rise (Williams & Ismail, 2015). Along 

the Gulf of Guinea, sea level rise data shows more than 3 mm year
-1

 from 

1993 to 2010 (ESA, 2012). It is projected that the SLR in Africa will increase 

by 10% (on average) compared to the global increase and that a 4°C 

temperature increase will increase the SLR to about 850-1250 mm by the 

period 2080-2100 (IPCC, 2013). A large population along the coast is at risk 

from coastal flooding and adaptation costs could rise to over 9% coastal Africa 

GDP (Niang-Diop et al., 2005).  

There are approximately 33 countries and 7 islands that form the belt of the 

African coast, which are very productive environments affected by various 

hazards caused by storm surges, floods, hurricanes and cyclones worsened by 

sea level rise. Most of these hazards have caused severe flooding and erosion, 

which has claimed many lives and valuable assets (El-Shahat et al., 2019). 

Socioeconomic impacts within African communities have also exacerbated 

their vulnerability, making the future impact of SLR even more devastating.  
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Analysis of in situ sea level measurements for Ghana from the Takoradi 

station from 1925 to 1970 (Figure 3) shows that sea level is rising by 2.1 

mm/yr, which agrees with estimates elsewhere (IPCC, 2007; Woodworth et 

al., 2009). The measurements from 1970 to 1996 appear biased due to 

instrument aging and mechanical problems with the tide level (Figure 3). The 

gauge ultimately failed in 1996, and was later replaced in 2008, resulting in 

missing data from 1996 to 2008, making remote sensing data very important 

in identifying current sea level rise. The African center of meteorological 

application for development (ACMAD) predicted in 2016 that warming in 

Africa could reach 1.5°C at the end of 2050 and increase to 3°C after 50 years. 

This could worsen the impact and exacerbate the effects of continental climate 

change. This will aggravate the severity and speed of tide and possibly cause 

coastal flooding. 
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Figure 26: In-situ measurements and sea level analysis of Takoradi gauging 

station, Ghana. Source: Permanent service for mean sea level 2013; Cited in 

Isaac et al., 2017 

 

Sea level rise can reduce the availability of freshwater for domestic use and 

affect the freshwater habitat of aquatic organisms (IPCC, 2007b; Van, et al., 

2012). These impacts may not be uniform globally but may be subject to the 

dynamics of the social, physical and economic situations of coastal zone. 

Accordingly, different areas may experience different intensities of sea level.  

Relative sea level rise is the change in sea level with respect to land elevation 

at a given location. Its value is therefore greater where land subsidence occurs 

than in stable coasts. Coastal processes such as river channel flow, tidal 

currents and waves determine the unique characteristics of a particular coastal 

landform (Nicholls et al., 2007).  
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Fluvial estuaries rely on upstream sediment supply from rivers, whereas 

coastal estuaries are formed by coastal tidal and wave processes (Musa, 2018). 

Estuaries are typically very abundant in biodiversity and are recognized to 

change with increasing anthropogenic activity upstream, which increases the 

amount of sediment transported downstream (Mcmanus, 2002). Subsidence 

occurs along coasts when sediment supply is reduced during flooding or 

hydrocarbon abstraction from the aquifer (Ericson et al., 2006; Wesselink et 

al., 2015). Subsidence increases retention time, which increases waterlogging 

and eventually leads to prolonged flooding (Nicolls et al., 1999). As a result of 

differential land subsidence, estuaries show different values for the mean sea 

level rise.  

Sea level rise is predicted to disrupt many biophysical activities that contribute 

to the development of mangrove terrain elevation. Sea level rise is expected to 

lengthen the hydroperiod, which may result in allochthonous sedimentation 

and possibly vertical accretion. Sediment accumulation results in increased 

nutrients that can affect the growth and decomposition of mangrove root 

(McKee et al., 2007; Lovelock et al., 2011b). Sea level rise increases water 

depth and allows tidal currents into the mangrove ecosystem and subsequently 

increases the rate of erosion (McKee et al., 2007). Sea level rise will aggravate 

waterlogging of the mangrove ecosystem, potentially affecting root growth in 

some mangrove species and leading to severe hypoxia (McKee, 1996). Sea 

level rise is likely to raise groundwater levels and increase saltwater intrusion, 

affecting plant growth. While few studies have examined the response of 
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mangroves to local sea level, it is evident that sea level changes may affect the 

mangrove ecosystem in a variety of ways. 

Selected Indicators for Coastal Vulnerability 

Vulnerability could be described as the inherent properties of an element that 

determine its susceptibility or level of proneness of an element (person, 

property or environment) to the adverse effects of hazards. The exposure 

indicators for this study were chosen because of the possible contributions to 

coastal flooding, seawater intrusion and erosion. All indicators are mainly real 

characteristics of the coast apart from nearness to the sea and population 

density, which are human variables. 

Topographic Considerations 

Topography is related to the height of an area above mean sea level and is an 

important indicator of how the area will be influenced by sea level rise 

because low-lying areas are easily flooded and there is a correspondingly 

greater risk of property damage from flooding and other storm processes (Van 

et al., 2012). Recent study by El-Shahat et al. (2019) points out that major 

coastal estuaries in Africa are flat, making them vulnerable to coastal flooding. 

This has resulted in eroded beaches (particularly sandy beaches) and increased 

soil and water salinity 

Coastal Slope 

Slope is a measure of steepness in relation to the adjacent land and is an 

important indicator of the vulnerability of the coast. The slope controls the 

overflow of water and subsequent flood. For this reason, places with gentle 
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slope are more susceptible to tide as compared to places with steep slope 

(Aich et al., 2014). El-Shahat et al. (2019) reports that 9% of the African 

country has a slope <0.1% (extremely vulnerable), 21% a slope between 0.1-

0.5% (very vulnerable), 18% a slope between 0.5-1% (moderate vulnerable) 

and 28% have a slope <= 3% (low vulnerability), 24% have slopes > 3% (very 

low vulnerability). This indicates that large coastal estuaries in Africa have 

gentle slopes where slight increase in water level can inundate a huge area. 

Geomorphology and Soil Type 

Geomorphology is a term used to describe the formation of landscape patterns 

and the processes that shape them. The nature of coastal landform governs its 

vulnerability to erosion and its resilience to tidal forces. Rocky terrain and 

cliffs are less vulnerable, lagoons and estuaries are more vulnerable while 

beaches, deltas and offshore islands are highly vulnerable (Pendelton et al., 

2010). During coastal flooding, flood water seeps into the soil depending on 

the size of the pores. This process relates to infiltration, which depends on soil 

type, structure and moisture content. The process of infiltration is a crucial 

factor in dealing with floods. Sandy soil has a higher infiltration rate than 

other soil types. The tidal erosion process relies on the gradient of slope, 

structure of the soil and rate of flow. Soil classification and its hydrological 

groups are shown in Table 6. 
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Table 6: Hydrological Soil Groups and Infiltration Rate 

Soil Group Rate of 

Infiltration (in/h) 

Soil Description Potential of 

Run-off 

A >= 30 Sand, loamy sandy Low 

B 0.15 to 30 Sandy loam, loam Moderate 

C 0.05 to 0.15 Sandy clay loam, silt 

loam 

High 

D 0 to 0.05 Clay loam, silt clay 

loam, sandy clay & 

clay 

Very high 

Source: National engineering handbook, 2009; Cited in Aja et al., 2019  

Relative Sea Level Rise (RSLR) 

RSLR refers to the height of the sea above a known datum, recorded with tide 

gauges and averaged over a year (Yin et al., 2012). The larger the RSLR, the 

more susceptible a place is. In recent decades, many scholars have focused on 

the impacts of relative sea level rise around the world (Gornitz et al., 2001; 

Walsh et al., 2004; Miller et al., 2013; Ezer et al., 2014; Wadey et al., 2017; 

Rehman et al., 2020), emphasizing the relevant exposure to coastal hazards for 

low-lying areas and small island states. The relative change in sea level is the 

result of the combined effects of polar ice cap advance or retreat (eustasy) and 

vertical tectonic movement, which show significant spatial and temporal 

variability (Fabrizio et al., 2020). Relative SLR can lead to a long-lasting 

retreat of many coasts worldwide by shifting the coast inland or by introducing 

sediments into inlet systems (Toimil et al., 2020). Varying the relative SLR 
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could have significant effects on near-shore hydrodynamics and lead to more 

cases of extreme thresholds (Wahl et al., 2017; Vousdoukas et al., 2018). This 

can potentially exacerbate tidal flow as a result of nonlinear interactions (Arns 

et al., 2017; Idier et al., 2017). 

Yearly Rate of Shoreline Erosion  

The extent of spatial soil erosion along the coast influences sea level rise 

response. Given coastal vulnerability, places affected by erosion are expected 

to be more vulnerable, while areas accumulating sediment are less vulnerable 

(Kumar & Kunte, 2012). Coastal erosion control in climate change context can 

be achieved by making accurate projections of long-term coastal changes 

(Toimil et al., 2020). Information about the annual rate of coastal erosion can 

be used to define setback limits, plan for the relocation of affected people or 

assets, anticipate potential losses to flood defences and recreation, and decide 

whether or not to implement protective measures such as beach replenishment 

(Jongejan et al., 2016; Stripling et al., 2017; Mehvar et al., 2018). 

Average Range of Tide  

The mean range of tide is the variance between averaged high tides and 

averaged low tides and it is directly related to coastal hazards resulting from 

sea level rise (Yin et al., 2012). Considering coastal susceptibility, places with 

wide range are more vulnerable compared to places with small range. Average 

range of tide is calculated using time-series tide data, but in situations where 

this data is unavailable, a hydro-dynamic model can be used to forecast tidal 

level (Kumar & Kunte, 2012). Tidal current affects sediment transport, 
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morpho-dynamics and alternately exposes or inundates much of the adjacent 

beach and inner surf zone (Davis, 1985). 

Average Height of Wave  

Wave moves sediment from a point to a different point along the coast. The 

theory of linear wave states that the energy from wave is comparative to wave 

height squared. Hence, wave height can be used as a substitution for wave 

energy (Yin et al., 2012). Places with higher waves are more susceptible than 

areas with low wave heights. Climate change is altering wave propagation 

(Wong et al., 2014; Morim et al., 2019). Fluctuations in wave propagation can 

increase or lead to a decrease in coastal drift (Idier et al., 2013) and can cause 

alterations in the rate of oscillation on seashores (Ranasinghe, 2016). 

Variations in wave conditions may increase erosion along the coast. 

Population Density 

Densely populated areas are more vulnerable to coastal disasters (Mclaughlin 

et al., 2002). Human settlement in coastal areas increases the cost of risk, 

coastline modification and the likelihood of erosion. El-Shahat et al. (2019) 

reports that Ghana is one of the fourteen countries in Africa with sizeable 

urban populations along the coast. 

Nearness to the Coast 

The nearness of assets to sea governs its vulnerability to storm surges, 

flooding, erosion and waves. As communities in high-flood-risk zones 

increase worldwide, the number of people exposed to flooding and other 

coastal hazards will most likely increase. Any increase in disasters, regardless 

of magnitude, will affect development efforts. Proximity of land to coast is a 
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very important parameter reflecting land exposure to SLR effects. 

Accordingly, areas located within 2.5 km to 5 km from the coast are at high 

risk (El-Shahat et al., 2019). 

Coastal Resilience  

Resilience originated from ecological discipline as a valuable theory for 

researchers in the area of environmental related hazards. According to Holling 

(1973), resilience is the measure of a system's capability to resist changes in 

state-variables, drive-variables and parameters. This theory emphases on an 

ecosystem's ability to quickly recover from a major disruption and continue to 

support its core functions. In coastal risk management, resilience has been 

described as the capacity of a system to bounce back from coastal hazards 

(Bruijn, 2004). For social-ecological system, Adger et al. (2002) describes 

resilience as the capacity of a system/structure to manage the impacts of 

external pressure while preserving the basis of life. Here, a system/structure 

refers to different organizational levels, which can be households, 

communities, economic sectors, or population groups (Brooks, 2003). For 

Buckle (2006), resilience means the capacity to survive loss, while Norris et 

al. (2008) defines resilience as a procedure that combines a number of 

adaptation abilities with positive operation after a disruption.  

Resilience as an idea was seen in a web of socio-ecological systems (Folke et 

al., 1998; Adger, 2000; Folke, 2006). System resilience has to do with the 

ability of renewal, reformation as well as development in a socio-ecological 

system and the ability to preserve its uniqueness (Walker et al., 2004; 

Cumming et al., 2005; Maguire & Hagan, 2007). Three major attributes of 
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resilience occur in literature, regardless of different definitions from different 

disciplines (Carpenter et al., 2001). The first attribute has to do with the speed 

of recovery from disasters (Bruijn, 2004). Second deals with the extent of a 

disaster (Colding et al., 2003). The last attribute relates to the ability to acquire 

knowledge from disruptions and help build new things (Folke et al., 2002, 

Berkes & Seixas, 2005). 

Consequently, the traditional method of measuring resilience in terms of the 

rate at which a system recovers may not explain its full meaning as multiple 

factors such as those relating to demography, economic, political, social, 

cultural, and geographic environment must be considered (Gaillard, 2007). 

Nonetheless, such factors are always changing at various stages of 

investigation (Adger, 1999; Buckle, 2006; Brouwer et al., 2007). 

Understanding the change/uncertainty, adaption and co-creation for self-

reorganization have been shown to be important factors in building household 

resilience in Cambodia (Marschke & Berkes, 2006). Other researchers such as 

Marshall and Marshall (2007) identified the ability to learn, plan and self-

reorganization among the factors that help measure an individual's resilience 

level at a study conducted in Australia.  

Norris et al. (2008) identified socio-economic development, access to 

information/capital and community literacy as important skills that can build 

community resilience. Socioeconomic development in this context refers to 

growth in the economy, stability of livelihood and equitable circulation of 

resources for the people (Adger, 1999) and societal support systems between 

and within the community (Mathbor, 2007). Access to information refers to 
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early warning systems for providing information to the public. Community 

competency denotes the ability of members of the community to learn how to 

solve problem and collaborate. Resilience is multi-dimensional in nature and 

therefore it is hard to apply in reality (Cumming et al., 2005).  

Marschke and Berkes (2006) used a subjective well-being method to 

implement resilience based on livelihood perspective in Cambodian. However, 

they used a qualitative method to study household and community well-being 

without quantifying indicators of resilience. Some researchers are of the 

opinion that well-being has to do with feeling and thinking (Copestake & 

Camfield, 2009). This type of subjective well-being approach has been 

generally accepted in livelihood research particularly in developing countries 

(Narayan et al., 2000). Adaptation can be more active in mitigating hazardous 

effect if the existing resilience of the system is properly assessed (Brooks, 

2003). This will show how to change the characteristics of the system that 

directly affect its resilience, such as: the nature of the terrain, over population 

or lack of clean water, etc. System resilience indicates its capability to adapt 

and also to take advantage of disasters as a future opportunity (Alwang et al., 

2001). Resilience is composed of physical components (e.g dikes) and 

nonphysical components (e.g past experiences).  

Plans for resilience can be properly initiated for a system or carried out 

through casual series of events. Official resilience plans are properly planned 

prior to execution. Conversely, the informal resilience approach has been part 

of the traditional knowledge of the people for years. Unofficial approaches 

are: (1) Emergency response methods developed in time of hazard, (2) 
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attempts by the people to protect their property; these are mostly reactive in 

nature, depending on the readiness of individual resources (Bierbaum et al., 

2013). Formal plans are usually intentional efforts by governments to improve 

people's livelihoods (Bachmair et al., 2012). 

Coastal Adaptation and Mitigation Strategies along the West Africa 

Coast 

The coastal zone of the Gulf of Guinea is currently facing an imminent 

transformation in terms of infrastructure, tourism, fisheries, agricultural 

expansion and general urban growth. Demographic pressure along the coast is 

leading to excessive natural resource degradation and unprecedented coastal 

pollution (World Bank, 2016). Especially, the coastal areas covering Ghana, 

Togo, Benin and Nigeria, are witnessing a high rate of erosion and sand 

mining, leading to the depletion of land and other assets. As sea levels keep on 

rising due to climate variability, coastal hazards along these areas have also 

increased (ESA, 2012). Sea level rise and its attendant effects require a 

reassessment of coastal protection plans and strategies (Musa, 2018). Coastal 

protection plans go beyond physical protection and include a combined impact 

of preparedness, mitigation and prevention (World Bank, 2016). Coastal 

research in the past showed that coastline was fairly stable but slightly 

influenced by sea level, nevertheless, the situation is different since 20th 

century as a result of anthropogenic intervention (Tilmans et al., 1991).  

Coastal interventions that caused severe erosion within the Gulf of Guinea are 

the Port of Lagos (1908-1912), the Port of Cotonou (1960), the Akosombo 

Dam (1963), and the Port of Lome (1964). The construction of coastal harbors 
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caused erosion in the downward drift areas. For example, following the 

construction of the Port of Lome, erosion took its toll on densely populated 

areas downward the coast, threatening valuable coastal infrastructure and 

necessitating the construction of permanent groins to protect the affected 

areas. The Republic of Benin is also threatened by erosion due to the port of 

Cotonou in connection with sand mining at Seme (Addo et al., 2011).  

The coast of Ghana is not spared as around 50% of the 550 km of coastline are 

highly endangered, particularly in the Volta Basin (NBCC, 2011). Ghana, with 

a large fishing community (about 2.9 million) along the coast, is severely 

affected by erosion due to natural and anthropogenic interference (Tilmans, 

Jakobsen & LeClerc, 1991). Rate of soil loss in Keta area has been reported to 

be between 8 and 10 m
-year

 because of the blocking of sediments from Volta 

River by the Akosombo Dam (Addo et al., 2011). Structural coastal defenses 

were built to protect the coastline around Keta from erosion (Nairn et al., 

1998). Notable projects include the Keta Sea defense Project (KSDP), which 

was completed in 2004 and involved dredging, construction of groins, and 

evacuation of vulnerable people (Danquah et al., 2014). Keta Sea defense 

Project significantly decreased erosion at Keta area but amplified the severity 

of down-drift erosion in the areas east of the KSDP and around the Volta 

Estuary (Addo et al., 2011; Appiah, 2016). 

The coastline of Nigeria (approx. 850 km) is home to the most densely 

populated cities in Africa. Notable among them is Lagos, which has a 

population of over 20 million and is constantly growing (NPC, 2010; World 

Population Review, 2017). Due to population pressures, the Lagos coast has 
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faced various man-made encroachments ranging from harbor construction, 

sand mining from the beach and dredging, as well as the new construction of 

non-natural islands, making the coast very dynamic. Human-induced 

interventions have affected the coasts of West Africa, creating changes of 

erosion and accretion patterns (Musa et al., 2015). Quite a lot of shoreline 

maintenance techniques have been employed to protect the shoreline, 

including sand nourishment, creation of groins and revetments (Orupabo, 

2008). 

Modeling the morphology and Hydrodynamics of Wetlands in a Data 

Scarce Areas 

Numerical modeling of coastal dynamics in estuaries and wetlands is anchored 

on the principles of continuity, mass and momentum conservation. 

Considering a controlled volume of water in a channel for an unsteady flow, 

the principles of conservation of mass and momentum dictate that the mass 

inflow minus the mass outflow equals the rate of change of volume. The 

momentum equation explains the forces acting on a controlled volume of 

water. Dependent on the characteristics of a channel, averaging is performed 

so that the flow of water can be modeled using either one dimension, two 

dimensions, or three dimensions. In order to model wetland dynamics, in-situ 

data of water levels, soil friction and topographical information are important. 

However, the unavailability of data has set back many researchers, particularly 

in developing countries. 
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Two-Dimensional Modeling of Tides 

Lamb (1932) made the first attempt to understand tidal processes through 

systematic studies of the linearization equations of motion. With the advent of 

computers, numerical models using finite difference elements for more 

accurate representation of tidal hydrodynamics gained importance 

(Leendertse, 1967). In the late 1960s, several researches were carried out at 

the University of Waterloo, Canada to study the flow properties of vegetated 

canals (Kowen et al., 1969). These studies included several laboratory 

experiments in which roughness elements were attached to a flume, then water 

flow was generated over the roughness elements, monitored and controlled by 

means of a pilot tube method to record velocity distributions. The study 

proposes using a logarithmic law to fit the standards of the roughness 

parameter and the intersection point to plot a vertical profile of the average 

velocity. This assumes that there is equilibrium over the roughness elements 

and that turbulence generation is balanced locally.  

Numerical modeling was used by Li and Shen (1973) to forecast the 

transportation of sediment in a vegetation area using a turbulence 

superposition technique. The assumption was that local drag coefficients had a 

value of 1.2 and gave average drag coefficients of 1.1 for turbulent activities 

with no plant density, and they related the effects on sediment yield for 

different forms of tall vegetation. A quantitative approach to estimate 

manning’s roughness as a measure of drag was developed by Petryk and 

Bosmajian (1975). This technique examines the depth of flow, which is either 

less than or equal to the highest vegetation, and is important in estimating the 
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variations in manning’s roughness with respect to the change in depth. 

Alternatively, the use of biomechanical concepts and field methods to estimate 

the roughness of natural vegetation has been proposed by Kowen and Li 

(1980).  

A mathematical model for estimating conservation of momentum in multi-

connected flows was developed by Raupach and Shaw (1982). Following this 

mathematical approach, Raupach et al. (1986) performed several experiments 

that highlighted the nature of atmospheric flows over a vegetation using wind 

tunnel in a laboratory to generate currents and atmospheric flows over an 

artificial canopy of vegetation. The velocity measurement was obtained on the 

simulated canopy and several terms constituting the balance of kinetic energy 

within the canopy were estimated. Their results underscored the importance of 

turbulent kinetic energy over the canopy in channel flow modelling. Temporal 

domain separation was difficult in linear models because of local changes, 

leading to the development of time steps. This approach was able to solve the 

shallow water equation for tidal dynamics with higher accuracy and allowed 

the model to look more closely at tidal component relationships (Westerink, 

1989). It was also considered that water circulation affects the overall 

performance of the model and a finite element technique was used to 

overcome instability because of nonlinear flow occurring at the water and land 

interface (Sidn & Lynch, 1988). In addition, the general wave equation was 

developed to solve the tidal motion equations using a finite element mesh that 

draws a clear boundary line for the model.  
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Based on the relationship between turbulence generation and energy transfer 

between aquatic plants, Nepf (1999) setup a model representing vegetation 

resistance and intensity of turbulence. D'Alpaos et al. (2006) advanced a 

numerical model to improve the cross-sectional view of channel flow, 

capturing sediment dynamics in the channel, vegetation changes and water 

flow resistance, and biomass gain as a result of vegetation. The effect of 

hydroperiod on vegetation survival on the indicated channel section is also 

captured by the model.  

Despite the importance of the General Wave Continuity Equation (GWCE) in 

the linear flow model, field studies have shown that there is still room for 

improvement. Accordingly, Lüttich et al. (1992) developed the ADCIRC 

model, which uses finite element 2D and integrates depth while accounting for 

geometric boundaries, bathymetric differences, and elevation changes. The 

advanced circulation model was validated and used in different estuaries and 

flood plains for hydrodynamic tidal marsh productivity modeling as well as 

flood assessment (Bcaopoulos et al., 2008; Hagen et al., 2012; Alizad et al., 

2014). Militello et al. (2004) documented the coastal modeling system (CMS), 

which calculates hydrodynamics, morphology and sediment changes under 

general tidal, wave and wind forcing. CMS can be coupled with the ADCIRC 

model (Luettich et al., 1992). 

Tidal Wetland Analysis 

Water inflow into any coastal wetland is primarily caused by tides. Tidal 

current account for most of the energy in the ocean and can therefore be 

predicted. Semi-diurnal tides account for about 80% of the kinetic energy 
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exchange processes on the inner and middle shelves (Blanton et al., 2004). 

The earliest models used for tidal simulation revealed significant differences 

between the theories and practical measurements. This has led to further 

advances in newer models that can better simulate tidal flow and circulation. 

There are basically two types of tidal circulation with a number of individual 

components, namely: semi diurnal and diurnal. Diurnal tides refer to daily 

tides with a single low tide and high tide on each tide day, while semi-diurnal 

tides refer to daily tides with two low tide and two high tides on each tide day. 

A tidal constituent refers to the push or pull exerted on the ocean by a massive 

body like the moon.  

There are various tidal constituent and their changing relationship with the 

global ocean, resulting in daily fluctuations in tides in different locations. The 

National Oceanic and Atmosphere Administration (NOAA) considers 37 

constituents to represent full tide. Of the 37 tidal components defined by 

NOAA, there are 8 major components of interest: N2, K2, M2, S2, K1, O1, 

Q1, and P1. The major lunar semi-diurnal tide with the greatest effect on 

ocean tides is designated M2 and occurs every 12.4 hours. The main solar 

semi-diurnal tide is denoted S2 and occurs every 12 hours. The elliptical lunar 

semi-diurnal tide which occurs every 12.7 hours, is N2. The luni-solar semi-

diurnal tide, which occurs every 11.97 hours, is K2, while K1 is the daily lunar 

tide, which occurs every 23.9 hours. The second daily lunar tide that occurs 

every 25.8 hours is O1 and P1 is the solar daily tide occurring every 24 hours. 

Finally, Q1 is the Moon's major elliptical diurnal tide and occurs every 26.9 

hours. Each of the constituents has a different frequency and amplitude, 
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creating a varying total collective tide when they come together. This 

phenomenon recurs after 15 days. Tidal components are key variables for most 

numerical models used to simulate tidal energy. Tidal responses occur at 

different frequencies, which are determined by combining astronomical 

frequencies and frequencies of nonlinear exchanges in Basic Principles 

(Parker, 1991). 

In lagoons and estuaries, in addition to tides, other factors affecting water 

circulation within the area are wind, bottom roughness, water inflow, rainfall 

and evaporation, making the physical science behind estuarine circulation very 

complex. The estuary system is highly dependent on tidal, bathymetric, and 

bottom roughness conditions, as well as turbulence energy. Regardless of the 

complexity of estuaries and wetlands, the key feature is the interchange of 

flows within the system in averaging circulation (MacCready & Geyer, 2010). 

From first-generation models to current models with many improvements in 

tidal energy parameterization, the evolution of equilibrium flow continues to 

use similar assumptions and solutions.  

The dynamics of a wetland is represented by the rate of accretion with respect 

to hydroperiod. The accretion itself results from the inorganic and organic 

entrapment of sediment and the production of organic matter within the 

wetland. There is a relationship between wetland accretion and biomass 

production with respect to the tidal hydroperiod (Morris, 2002). Therefore, if 

biomass productivity and its change because of sea level rise is modeled in 

coastal wetlands, the effects of sea level rise could be effectively quantified. 

Tidal dynamics can be modeled using a 2D hydrodynamic model to provide 
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sea surface elevation when a number of parameters are known as well as the 

site bathymetry (Alizad et al., 2015). 

Models for Wetland Studies 

In general, modeling the wetland environment is very difficult and has only 

gotten easier with the rapid growth of computer programming over the past 

several decades. Basically, the solution lies on the Navier-Stokes equations for 

shallow water using various numerical techniques. With a two-dimensional 

(2D) depth averaged model, the analyses become faster. Several studies have 

been performed on 2D models that do not account for wetland depth, most of 

this work had several limitations in predicting reality (Trepel et al., 2000; 

Ganju et al., 2016; Iglesias et al., 2019). Therefore, it is recommended to 

utilize a depth integrated 2D model that considers the depth of the wetland 

platform. The most commonly used 2D models for wetland studies are: 

WASP/DYNHYDR5, Surface water modeling system (ADCIRC and CMS) 

and Mike21 (Danish Hydraulic Institute) Delft3D, TELEMAC-MASCARET, 

SWASH, ROMS, MOHID, SELFE, Tuflow-FV, FVCOM etc.  

The main difference between 3D and 2D models is that 3D bathymetry 

consists of several small cells that can create any desired volume. In 3D and 

2D models, the volume of water is defined using bathymetry and the 

characteristics of the water and the area. Factors such as evaporation, 

barometric pressure and wind can be added for these types of models. They 

are essentially powered by gravity, air pressure and wind. The model is able to 

simulate various biological processes, physical processes and chemical 
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processes. The pro of 2D model over 3D model is that it is less time 

consuming both in terms of mesh generation and simulation time. 

Strength of CMS Model for Nearshore Modeling 

The coastal modeling system (CMS) is a 2D finite volume circulation and 

morphology model that solves the shallow water equation to calculate water 

surface elevations, current velocity and transportation of sediment on a 

quadtree grid (Militello et al., 2004). CMS has been integrated into the surface 

water modeling System (SMS). CMS has three sediment transport modules 

(Buttolph et al., 2006), which are linked to the CMS-flow to calculate 

morphological changes and sediment exchanges on grid cells (Buttolph et al., 

2006). One more vital attribute of the model is the depiction of nonerodable 

cells which can be a coastal defense structure (Hanson & Militello, 2005). 

CMS encompasses menus and control modules within SMS that permit the 

specification of input and output and the level of interaction among the various 

processes. SMS also comprises utilities for data visualization, result 

calculation, monitoring of simulation progress, and execution of the project. 

CMS-Flow is very effective for computation, simple to setup and has all the 

features essential for coastal engineers. The model has been used in many 

inlets and the sensitivity have been highly tested. 

Researchable Issues using CMS Model 

The Coastal Modeling System (CMS) was developed and verified in multiple 

researches dealing with bathymetric analysis. CMS was primarily used to 

study hydro-dynamic behaviors on the Texas coast (Brown et al., 1995). CMS 

has been used to assess water velocity fluctuations in the Gulf Intracoastal 
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Waterway (Militello & Kraus, 1998). CMS was used to analyze wind-forced 

circulation in the non-tidal bay of Baffin (Militello, 1998; Militello & Kraus, 

2001). Militello, (2002) and Militello et al. (2003) used CMS to calculate flow 

velocity of one month time interval and changes in bed elevation. A successful 

coupling of CMS with ADCIRC was demonstrated by Militello and Zundel, 

(2002). CMS was used by the USA army corps of engineers (USACE) coastal 

inlet research program (CIRP) to calculate tidal and wave forced currents at an 

ideal inlet and ebb shoal for storm waves (Militello & Kraus, 2003). Another 

study by Militello and Zundel (2003) demonstrated how to couple CMS and 

STWAVE (a surface wave model) and its ability to compute morphologic 

changes and sediment transport. Current uses include the computation of 

hydro-dynamics and morphologic changes for both tidal and wave driven 

(Bounaiuto & Militello, 2004; Lin et al., 2004). Batten and Kraus (2006) used 

CMS flow to assess bank erosion at Mattituck Inlet, New York. Buttolph et al. 

(2006) described improvements in the two-dimensional circulation model 

(CMS) and its ability to compute sedimentation at inlets, shipping channels 

and adjacent beaches. Li et al. (2009) presented efforts to numerically model 

littoral sediment transport to simulate physical processes on high-energy 

coasts at the Bight of San Francisco, California. Snchez et al. (2011) utilized 

the coastal modeling system (CMS) to model the long-term morpho-dynamics 

of coastal barrier inlet systems. 

Summary of Literature Review 

Coastal vegetation like mangroves, seagrasses and salt marsh provide 

ecosystem services and sequester more carbon dioxide than terrestrial 

counterparts due to their productivity. They are beneficial to the survival of 
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millions of people. Mangroves have experienced significant anthropogenic 

degradation. Mapping mangrove extent is critical to understanding progress 

towards achieving SDGs, as it serves as indicators for monitoring local, 

regional and global progress. To address issues related to the effects of 

anthropogenic degradation and climate variability on coastal ecosystems, 

timely and accurate information on mangrove dynamic trends is needed. 

Though there have been several efforts to assess mangrove ecosystem in 

Africa, most of these studies have always used optical satellite imagery which 

is affected by cloud cover. In the present study, a new method that combines 

optical and radar imagery to reduce the effect of cloud cover was proposed. 

Also, the impact of climate change on mangrove ecosystem have been 

reported in literature. However, information on these impacts vis-à-vis the 

response of mangroves is limited in Ghana. Therefore, a 2D model was used 

to study the impacts of sea level rise on mangrove ecosystem.  
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CHAPTER THREE 

METHODOLOGY 

Location of Study 

According to Figure 4, the Anlo Beach Wetland Complex, which is located in 

Ghana's Shama District in the Western Region along the coastal strip, was the 

site of this study. About 50.42 km2 in size, the study domain is bounded 

roughly by latitudes 5o1'30" and 5o3'5"N and longitudes 1°34'30" and 

1°37'30"W. In the lowlands of the Pra River, which empties into the Atlantic 

Ocean, the region is covered in relatively disturbed mangrove forest (Friends 

of the Nation, 2014).  

 

Figure 27: Map of study location 

Anlo Beach is located in the Pra River Basin's lower region, where the average 

and maximum surface temperatures range from 21.74°C to 31.6°C (Bessah et 

al., 2018). Acrisols and lixisols, which have a very high potential for runoff, 

are the predominant soil types in the upper half of the basin (Ross et al., 2018). 
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A Friends of the Nation (2014) on-site survey found that the elevation is 

generally low and ranges from 0 - 42m. The wetland has varying hydrological 

and chemical conditions and it is predominantly shallow (0.25–1.5 m). The 

neighboring marshes is dominated by Paspalum vaginatum (Poaceae), 

whereas the mangrove species that predominate here include Avicennia, 

Rhizophora, and Laguncularia (Okyere, 2018).  

An estimated 2,231 people live in the Anlo Beach community, the majority of 

them are fishermen (1,028 men and 1,203 women), according to the Coastal 

Resources Center/Friends of the Nation, (2010). Additionally, this population 

depends on the mangrove ecosystem for a variety of purposes, which 

intensifies the dynamics of land use change. 

 Research Design and Methodological Approach 

To address the stated objectives, this study was organized into four sub-

headings, namely mangrove extent mapping, mangrove structural assessment, 

hydrodynamic modelling, and mangrove growth or mortality under different 

SLR. A cloud-based computing through Google Earth Engine (GEE) was 

implemented as a novel approach to mangrove assessment and monitoring. A 

field campaign was conducted for ground truthing and to capture domain 

characteristics which were fed into a remote-sensing based wetland Response 

Model with biological feedback, to forecast mangrove ecosystem responses to 

sea level rise as a climate driver. Radar and optical satellite data were used in 

GEE to study the impact of using different remotely sensed data on the 

precision of mangrove mapping and assessment. 
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Mangrove Extent Mapping 

The quality of the optical images was improved by creating a function that 

removes cloud shadows (Hansen et al., 2013). Then the image was also added 

to the layers. This procedure was done with Landsat 8 (for 2019) imagery and 

Landsat 7 (for 2009) imagery. 

Construction of Random Forest Model 

Backscatter representative samples are gathered for one of the interest land 

covers in the current study's methodology, which is similar to that of Erika et 

al. (2020) and Barenblitt and Fatoyinbo (2020b). To train the classifier (Figure 

5). (Pelletier et al., 2016; Shelestov et al., 2017). Field campaigns that took 

place between December 2020 and April 2021 served as the basis for the 

training and validation data used in this work. In order to create training 

samples. 
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Figure 5:  

SAR Classification 

Mangroves, other vegetation/wetlands, open water, and bare ground were the 

four different land cover classes chosen. To create the "new 

FeatureCollection" that is used here, the defined classes were combined into 

one. 

For Sentinel-1, the values of backscatter for each recognized land cover were 

retrieved using the newly built FeatureCollection. The training data was 

produced using the defined Sentinel-1 (SAR) picture and the training points 

(new FeatureCollection). In order to "train" the classifier, this generates. The 

results of the categorization were "run" and displayed in the "layers" bar. 
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Landsat Image Classification 

The values of reflectance for each land cover class discovered for the also 

defined Landsat 8 imagery were again retrieved using the newly built 

FeatureCollection.  

Both Landsat and SAR Classification 

The values of backscatter were now retrieved for each land cover class chosen 

for both Landsat 8 and Sentinel-1 imagery using the newly constructed 

FeatureCollection. The training data was generated by superimposing the 

training points over the defined optical and SAR images, as seen in Figure 8. 

This served as the classifier's training data (random forest).  

Comparison of Time Series  

Using PALSAR-2 (2009 images) and Landsat 7 (2009 imagery), the 

aforementioned procedures were replicated. Using a function called "reduce 

region," the mangrove changes and the data were translated to hectares 

(Barenblitt and Fatoyinbo, 2020b). 

Independent Assessment of Classification Accuracy  

The stratified random sampling technique produced a total of 1553 training 

sample points (Figure 7-9). A classifier-generated error matrix was used to 

assess the classification accuracy. 1232 points (or 80%) of the training 

samples. This prevents systematic errors brought on by utilizing the same 

sample points for validation and training (Pimple et al., 2018). Using the 

approach outlined by Barenblitt and Fatoyinbo, and utilized to conduct 

accuracy testing independently (2020b). This method requires verifying each 

point using high-resolution satellite imagery that is available in QGIS. 
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Figure 6  
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Figure 7:  

Figure 28:  
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Figure 29:  

Mangrove Structural Assessment 

Mangrove above ground biomass (AGB) as at year 2000 was estimated using 

basal area weighted height estimates from the SRTM DEM (Simard et al., 

2019). The AGB estimates from satellite was compared with field 

measurements to examine the temporal and spatial variation over time. 

Estimation of Mangrove Stand Height  

Mangrove canopy height is a key element in calculating aboveground biomass 

and carbon sequestration rates since it has a strong correlation with carbon 

turnover through litterfall production (Saenger & Snedaker, 1993; Rovai et al., 

2016). In this study, Mangrove canopy height estimate was done using SRTM 

digital elevation measurement (Farr et al., 2007) generated in February 2000. 

Mangrove height estimation was done following an approach that had had 

been effectively applied at regional scales (Simard et al., 2008; Simard et al., 

2006; Fatoyinbo & Simard, 2013). The SRTM DEM values represent a height 

that lies between the elevation of the ground and the canopy's highest point 
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(aka Lorey’s height) (Simard et al., 2008; Simard et al., 2006; Lagomasino et 

al., 2016). The maximum height is estimated to be 1.697 X (times) this value 

based on empirical data from field measurements (Simard et al., 2019). We 

used the global mangrove distribution vector to isolate mangrove areas and 

mask non-mangrove regions in the SRTM elevation data set (Giri et al., 2011). 

To estimate mangrove height, the SAR image (ALOS PALSAR-1) and the 

SRTM elevation model were clipped to the global mangrove distribution 

vector file (Figure 2). This extracts the backscatter values for the areas where 

the baseline mangrove vector indicates that there are mangroves. These values 

and the SRTM elevation were used to estimate the maximum canopy height 

using a regression model that relates SRTM elevation measurements to 

maximum canopy height as described by Simard et al. (2019). 

                     …………………………………….2 

where HSRTM is the original DEM, and SRTM Hmax is the new canopy height 

data set. 

Estimation of Mangrove Above Ground Biomass 

Once mangrove canopy height is established, estimates of above-ground 

biomass (AGB) can be generated from tree size and tree height components 

using allometric equations (Comley & McGuinness, 2005). The AGB of the 

mangrove forest in this study was estimated based on the relationship between 

mangrove biomass and canopy height (Simard et al., 2019; Lucas et al., 2014). 

The general equation that relates SRTM to canopy height and aboveground 

biomass is as follows: 

                    ( )            
    ……………………….3 
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Where, weighted height of basal area (Hba) ~ 1.08*SRTM  

Field Data Collection  

Mangrove inventory involves either direct measurements of the biomass 

through destructive harvesting of specific trees, or indirect calculation from 

measurements of tree sizes and inferences using allometric equations (Chave 

et al., 2005; Keller et al., 2001). While the destructive method involves cutting 

down the trees, the non-destructive method relies on an allometric equation 

(Gibbs et al., 2007). Allometric formulars are gotten from various physical 

tree parameters such as DBH, height, crown diameter, etc. (Vashum &  

 

 

 

 

 

 

 

Figure 30: Laying of Transect during Field Work 
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Figure 31: Mangrove Height Measurement during Field Work 

Jayakumar, 2012). This method is used to evaluate biomass and carbon stock 

of trees without felling them. However, allometric equations are often site and 

species dependent. A universal allometric relationship described by 

Komiyama et al. (2005) is generally recommended for calculating above 

ground mangrove biomass on-site. This allometric equation is used in the 

current study to calculate above ground biomass for a number of individual 

trees in sample quadrants. The total biomass of the plot was gotten from the 

addition of all biomass values of each quadrant along the transect. The 

biomass was then expressed in milligram per hectare (mg/ha). 

For this study, ground-based mangrove inventory data was collected using 

indirect estimation and systematic random sampling designs. Field surveys 

were conducted from December 2020 to April 2021 (Figure 12-14). In order to 

survey the mangroves, a 100-meter transect was created perpendicular to the 
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shoreline using measuring tape. For sampling, four distinct 5 m × 5 m 

quadrants were set up 25 m apart.  Four different 5m x 5m quadrants were set 

up for sampling, spaced 25m apart. Sampling points coordinates were 

recorded with a Garmin 64s GPS to capture specific areas in the field. The 

height and diameter measurements (DBH) were carried out for all mangrove 

species above 2m in all quadrants during the course of the field surveys. A 

calibrated long pole was used to measure the heights of each tree species. 

DBH was captured with Electronic Digital Calipers. 

Site specific allometric equations are rare for mangrove, and thus universal 

equations are most frequently used. For this study, AGB was estimated using 

two different universal allometric equations (Chave et al., 2005; Komiyama et 

al., 2005) and a regional allometric equation (Njana et al., 2015) which were 

developed specifically for mangrove since there is no published allometry for 

the study site. These allometries were chosen because they are primarily 

dependent on wood density and height. The universal pantropic equation by 

Komiyama et al. (2005) is given below: 

AGB = 0.251 𝜌 𝐷2.46
 ………………………………………………. (4)  

Where,  

AGB = above ground biomass (kg/tree), 𝜌 = wood density (g cm
−3

) and D = 

DBH (cm). This equation has a standard error of 8.5% (Komiyama et al., 

2005; Fatoyinbo et al., 2018).  

The universal model by Chave et al. (2005) for mangrove forests is given by 

equation (5): 
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AGB = 0.0509 𝜌 𝐷2  ………………………………………………… (5) 

Where,  

AGB = above ground biomass (kg/tree), 𝜌 = wood density (g cm
−3

) and D = 

DBH (cm) and H = height (m). This model integrates tree height information 

to reduce the standard error.  

Another allometric equation which integrates height, DBH and wood density 

is given by Njana et al (2015) equation: 

AGB = 0.353 𝜌1.13 𝐷2.08  0.29
……………………………………………… (6) 

Where,  

AGB = above ground biomass (kg/tree), 𝜌 = wood density (g cm
−3

) and D = 

DBH (cm) and H = height (m). 

These models were developed to estimate biomass of Avicennia and 

Rhizophora species which are also indigenous mangrove species in the study 

area. Wood density used in this study is from the World Agroforestry Wood 

Density Database as reported by Muhd-Ekhzarizal et al. (2017) and Fatoyinbo 

et al. (2018). Since the wood densities are not specific to Ghana, average value 

of 0.87 was used (Table 10).  
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Figure 32: DBH Measurement During Field Work 

 

 

 

 

 

 

Table 8: Wood density for mangrove species 

Mangrove Type Density (g cm
-3

) 

 Low Mid High 

Avicennia marina 0.79 0.81 0.85 

Bruguiera gymnorrhiza 0.63 0.84 1.05 
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Ceriops tagal 0.87 0.97 1.09 

Heriteria littoralis 0.83 0.98 1.23 

Lumnitzera racemosa 0.75 0.88 0.97 

Rhizophora mucronata 0.94 1.02 1.12 

Sonneratia alba 0.62 0.78 1.00 

Xylocarpus granatum 0.59 0.70 0.83 

Source: World agroforestry wood density database cited in Fatoyinbo et al. 

(2018) 

Hydrodynamic and Morpho-dynamic Modeling 

The general flowchart for conducting numerical modeling is shown in Figure 

15. The planning phase includes meetings with supervisors to review the 

modeling objectives and key features that govern circulation and 

sedimentation in the study area.  
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Figure 33: Overview of the General Modeling Steps 

The data acquisition and processing were carried out. The main data for this 

study includes: bathymetry, shoreline profile, digital elevation model and 

sediment properties in the study area. A Google Earth image covering the 

entire study site was extracted and corrected, yielding structure and shoreline 

locations. All data collected provided enough information for the description 

of the physical processes going on in the study area and provided a strong 

basis for the configuration and calibration/validation of the CMS as outlined in 

the sections below. 
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Model Background 

Hydrodynamic calculations in this study were performed using coastal 

modeling system (CMS). CMS is one of the models in surface water modeling 

system (SMS). The SMS was originally built by the Environmental Modeling 

Research Laboratory (EMRL). The CMS is an integrated numerical modeling 

system used to simulate water levels, near-shore waves and currents, sediment 

transport and morphology changes for coastal seas and small estuary systems 

(Lin et al., 2008; Reed et al., 2011). CMS was designed for channel 

performance and sediment exchange between inlets and adjacent beaches.  

CMS-Flow computes currents and water levels and other physical processes in 

the coastal zone (Buttolph et al., 2006; Wu et al., 2011). The model includes 

an integrated representation of sedimentation and morphology changes 

through transport rate formulations. The morphology change is calculated 

using two-time steps, for rate of transport and for morphology change. CMS-

Flow rely on the SMS for grid generation, model setup and results display. 

Classic applications of CMS-Flow involve analysis of both past, present and 

future performance of navigation channels; wave and current interactions in 

canals and near shipbuilding structures; and transport problems of sediment 

management within coastal inlets and surrounding beaches.  

Underlying Equations and Numerical Principles 

CMS Flow model uses 2D finite volume to solve the shallow water equation 

of conservation of mass and momentum. The relevant equations are resolved 

on a quadtree grid by means of a completely implicit finite volume technique. 

Finite volume method is based on the truth that many natural laws are similar 
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to the principles of conservation of momentum and mass. From this notion, the 

method develops a formulation comprising conservation of flow equations 

defined in an averaged sense over the grid cells. The strength of the finite 

volume technique is that it performs only flow evaluations for the element 

boundaries. This advantage also applies to non-linear problems, making the 

method robust for non-linear conservation laws usually encountered in 

sediment transport or water quality. 

The general equations of mass and momentum conservation may be written 

as: 
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where  

t = time (s), h = water depth (m),    = current velocity (m/s),    = Coriolis 

parameter (rad/s).    = 1, for i = 1, j = 2,    = -1, for i = 2, j = 1, and    = 0, 

otherwise, ρ = sea water density (~1025 kg/m
3
); g = gravitational constant 

(~9.81 m/s
2
),    = horizontal turbulent eddy viscosity (m

2
/s),     = wave-

averaged bed shear stress (Pa),    = bed slope coefficient,     = wave 

radiation stress (Pa m), and     = surface roller stress (Pa m). NB the full 

mathematical derivations of these equations are beyond the scope of this 

study.  
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Sediment Transport Formula 

In CMS, sediment transport is modeled using the total load sedimentation 

equation (Sánchez & Wu, 2011): 
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where    = concentration of total load (kg/m
3
),     = concentration of total 

load equilibrium (kg/m
3
),    = coefficient of total load adaptation,    = 

coefficient of sediment mixing (m
2
/s),    = velocity of sediment fall (m/s),    

= suspended sediments fraction, and    = factor of total load correction.  

The coefficient of total load adaptation is calculated as:  

   
  

(    )
⁄ …………………………………………………………10 

 Where 

    = the length of total load adaptation (m) 

The bed change formular is as follows: 

𝜌 (    )
   

  
     (      )  
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)………………...…11 

Where 

 𝜌  = sediment density (kg/m
3
),    = bed porosity,    = bed elevation(m), 𝐷  

= coefficient of empirical bed slope (constant),    = rate of transport of bed 

load mass (kg/m/s) (Sánchez et al., 2014).  

Model Assumptions  

George E. P. Box is known with saying that all models are wrong: some 

models are useful. This statement denotes that a model is only an abstraction 

of reality. Two dimensional models have been defined by scientists and 
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engineers with certain assumptions to enable mathematical solutions. These 

assumptions and its understanding allow the modeler to determine the 

suitability of a model to a specific scenario or set of conditions. If the physical 

phenomenon represented by the model do not match with the model 

formulation assumptions, the model is incorrect and less suitable. Here is a 

general numerical assumption: the calculation of hydrodynamics and 

sedimentation relies on the assumption of a constant bed topography and only 

the rate of sedimentation or erosion for this topography is calculated at each 

location. 

Data Collection for Setting-Up and Parameterization of the Model  

Data for the preliminary model construction, calibration, and prediction for 

this study was collected from December 2020 to May 2021. The field 

campaign followed the method described by Jose et al. (2017) and consisted of 

general identification of landforms of the study area, identification of 

dominant plant species, determination of in situ biomass density, 

measurements of critical hydraulic controls, retrieval of tidal gauge data 

(surface water level) and bathymetry. Figure 16 shows the overview of the 

approach as used in this study. The data requirements for this study are as 

presented in Table 9.  
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Figure 34: Overview of bio-morpho-feedback interactions incorporated into 

the model 

Required Data and Sources 

Table 9: Required Data and Sources for Hydro-dynamic Simulation 

S/N Data Type Source 

1 Topographic data USGS SRTM DEM 

https://earthexplorer.usgs.gov/ 

2 Bathymetric data GEBCO 

https://www.gebco.net/data 

3 Land cover data and Shoreline profile  USGS Website/Google Earth 

https://earthexplorer.usgs.gov/ 

4 Water level measurements Gaging Station/ Copernicus 

Marine and ESA/CCI Product 

CMEMS 

5 Biomass Density and Mangrove stand 

height  

 

Field work 

6 GPS Coordinates  Field work 
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Model Setup and Calibration 

Working with Bathymetry 

Model set-up involves the process of mesh generation, the choice of model 

parameters, and the specification of model forcing. The bathymetric data used 

in this study comes from the general ocean bathymetric chart (GEBCO) 

https://www.gebco.net/data. The elevation data used is from the shuttle radar 

topography mission at https://earthexplorer.usgs.gov/. All bathymetric datasets 

were converted to a common reference system (WGS 1984, UTM zone 30N) 

so that the same horizontal plane and vertical datum reference and unit (m) are 

maintained. The scatter datasets were imported into the SMS environment and 

the datasets were merged to obtain a single bathymetry as shown in Figure 17 

below. 
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Figure 35: Merged Scatter Dataset (Bathymetric data) 

 

Figure 36: Quadtree Generator 
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Computational Grids (Quadtree Generation) 

The bathymetry and an arc that defines the shoreline of the study area were 

used to create the computational grid (Figure 18). The bathymetry is imported 

as a scatter point dataset while the shoreline is represented as an arc in the 

CMS flow coverage. In addition, an elevation data set was included and the 

projection for the project was defined. A quadtree generator coverage was 

created and selected to become the active coverage. By means of the create 2D 

grid frame tool, the extent of the domain of computation was defined and 

converted to quadtree grids. This defines the cells, assigns depth values to 

each cell, and creates strings of cells around the boundaries. 

Boundary Conditions for CMS-Flow  

Boundary conditions and the defining tidal signals were assigned to the arc 

around the grid boundary. 
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Figure 37: Boundary Condition 

 

Figure 38: Feature Polygon for Grid Generation 
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For more efficient simulation, active and inactive regions were created and 

used to designate areas that never get wet as inactive. To do this, a polygon 

(Figure 18) was created in the activity coverage to enclose the land while 

changing the ocean region from inactive to active. 

The activity classification coverage was then mapped to quadtree grid (Figure 

19). The resolution of the grids was adjusted to capture the rate of flow in the 

river and channels. The minimum grid size was set to 5 m while the largest 

grid size was set to 160 m as shown in Figure 20. 

The model was forced at the offshore boundary with tidal constituents and sea 

surface elevation generated using Copernicus Marine and the ESA/CCI 

product CMEMS (Figure 21). Manning roughness values were defined in the 

model based on the distribution of 3 classes of land cover exposed to tides 

(Table 10): forested wetlands; emerging herbaceous wetlands; and open water 

(Liège & Westerink, 2006). Model calibration and simulations were 

performed using these values as they relate to bed properties according to 

empirical data and numerical experiments (Mattocks et al., 2006). 
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Figure 39: Quadtree Grid, Save Point and Grid Resolution Adjustment 

 

Table 10: Manning Roughness Values for Different Surfaces 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Sánchez et al., 2011 
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Table 11: Model parameters, initialization and boundary conditions 

Tab Item Setting 

General Start Date/Time 01/01/2000 12:00:00 am 

 Simulation duration 744hrs 

 Ramp duration 24hrs 

 Solution Scheme Implicit 

 Number of threads 4 

Flow Hydro-dynamic time step 600 seconds 

 Wetting and Drying 

depth 

0.05 

 Bottom Roughness 

Dataset 

Manning’s N= 0.025, 

0.086, 0.1825 

Sediment Transport Sediment density 2650 kg/m
3
 

 Sediment porosity 0.4 

 Bed load scaling factor 1.0 

 Suspended load scaling 

factor 

1.0 

 Morphologic acceleration 

factor 

100 

 Bed slope diffusion 

coefficient 

0.1 

 Total load adaption 

length 

10m 

 Sediment size class 

diameter 

0.26mm 

 Minimum bed layer 

thickness 

0.05m 

 Maximum bed layer 

thickness 

0.5m 

Output List1 [ ][   ][   ] 

 List2 [ ][ ][   ] 

 List3 [ ][ ][   ] 

 Water surface elevation List1 

 Current velocity List1 

 Morphology [       ]List2 

 Transport [       ]List3 
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CMS Calibration and Simulation 

A first step before the simulation of the hydrodynamics and morphodynamics 

was the calibration of the CMS model. The model calibration was performed 

using an established method, in which the most sensitive parameter 

(Manning’s roughness) was manually adjusted. Manning roughness values 

were defined in the model based on the distribution of 3 classes of land cover 

exposed to tides (Table 10): woody wetlands; emerging herbaceous wetlands; 

and open water. Model calibration and simulations were performed using 

these values as they relate to bed properties based on empirical data and 

numerical experiments. Three different simulations of one month (one tidal 

cycle) were run with different values of Manning's roughness. The simulations 

aim to predict the influence of surface roughness on the ability of the model to 

calculate the water surface elevation. Simulated time series of water surface 

elevations were compared with measured water surface elevations. The 

goodness-of-fit statistics was used to assess model performance. The model 

was calibrated by comparing the simulated water surface-elevation results to 

gauge measurements, and the best fit was used for longer-term simulations. 

We calculated the goodness-of-fit statistics using the standard error of the 

estimate (Sy.x): 

      √
∑(          )

   
………………………………………………...12 

Where, n = number of values, k = number of parameters fit by regression. 

The model parameters were specified as indicated in Table 11. The 

hydrodynamic model solves the shallow water equation and calculates the 

current velocities, the water surface-elevation and the morphology changes. 
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The model also calculates the relative hydroperiod, which was used in a 

vegetation model to study the potential impact of SLR on the mangrove 

ecosystem. 

Sea Level Rise Scenarios 

Imaginary open boundaries of CMS-Flow enable water exchange together 

with model-forcing, such as Water level variations. Fresh water inflows or 

water surface elevation can be specified along this boundary. Water level 

changes can be obtained from measurements of coastal tide gauges or 

composed of tidal constituents. In the CMS, the general formula for the water 

surface elevation (WSE) boundary is given by: 

           …………………………………………………. 13 

Where 

    = boundary water surface elevation,    = initial boundary water surface 

elevation,    = specified external boundary water surface elevation, and    = 

water surface elevation off-set. The variables are measured in meter.  

Longer term Simulation and Incorporation of Sea Level Rise Scenarios 

For this study, sea level rise (SLC) curve scenarios were used to simulate the 

effects of sea level changes (Figure 21). Sea level rise forecasts based on 

various socioeconomic scenarios are the subject of periodic assessment reports 

from the Intergovernmental Panel on Climate Change (IPCC, 21). The 

National Oceanic and Atmospheric Administration (NOAA) created a web-

based tool to determine worldwide future SLR rates based on the most recent 

IPCC forecasts and accounting for local land subsidence (Li & Brown, 2019). 

The SLR curves were obtained for the global ocean and were specified in the 
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assign boundary conditions section of the SMS interface. Since there is 

currently no local SLR projection, it is appropriate to apply global SLR 

scenarios in the study region. 

The CMS model was run with different SLC scenarios to simulate the 

influence of SLR projections on the hydro- and morpho-dynamics of the area. 

Each simulation utilized one of three SLR scenarios for the 2100 projection, 

which included a low scenario (0.3 m), an extremely high scenario (2.5 m) and 

no sea level rise (constant) scenario. 

The total simulation time was set to 31 days (corresponding to a complete tidal 

cycle) and a morphological acceleration factor of 100 was specified in the 

model control, which makes it equivalent to 100 tidal cycles (~8.4 years) 

condition (Styles et al., 2018). Process-based morpho-dynamic models such as 

CMS require enormous computing time for simulations. The morphological 

acceleration factor is therefore a valuable tool available in CMS to minimize 

simulation time (Lesser et al., 2004). 
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Figure 40: Model Control and Parameterization 

 

Figure 41: Sea level Rise Scenarios from Year 2000 - 2100 
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Mangrove Growth and Mortality under varying SLR  

The growth and mortality of mangroves are governed by inundation periods 

and bed elevation (Krauss et al., 2008). Mangrove tree growth is described by 

Shugart (1984), Chen and Twilley (1998) and Berger and Hildenbrandt 

(2000), as follows: 

  

  
 

  (  (  ) (        ))

(             
 )

……………………………………………14 

where  

D = stem diameter (cm), H = tree height (cm), and t = time (years). 𝐷    and 

     = maximum stem diameter and tree height. The mangrove dimensions 

are based on field observations and mangrove inventory. G,    and    are 

growth parameters (van Maanen et al., 2015).  

Equation 14 describes mangrove growth over time under ideal growth 

conditions. In effect, however, mangrove growth is restricted by external 

pressures. Inundation (I) and competition (C) pressure are considered to be the 

major factors governing mangrove growth and the effects are accounted for by 

adding correction factors to Equation 14 (Chen & Twilley, 1998; Berger & 

Hildenbrandt, 2000; van Maanen et al., 2015; Xie et al., 2020):  

  

  
 

  (  (  ) (        ))

(             
 )

    ……………………………………15 

The factors I and C have a range from 0 (no growth) to 1 (unlimited growth). 

The inundation (I) depends on the hydroperiod and it is assumed that there is 

an optimal inundation regime where the rate of growth is highest (I = 1), with 

reduced growth rates (I < 1) when the mangroves are submerged for either 

longer or shorter periods (van Maanen et al., 2015). The growth and 
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development of the mangrove trees are therefore dependent on the regime of 

inundation and the bed elevation. This type of mangrove growth rate response 

to inundation has been previously demonstrated by Krauss et al. (2008). 

Competition between trees affects growth based on nutrient availability. The 

correction factor for competition (C) is thus a function of the mangrove trees 

biomass (van Maanen et al., 2015). Mangrove begins to die after prolonged 

periods of growth suppression due to external factors (Berger & Hildenbrandt, 

2000). So, if I = 1 and C = 1, then tree growth is finest; while lower values 

mean tree growth is limited by flood stress and competition. If the product I*C 

in Equation (15) is below 0.5 for the period under consideration, mangrove 

density practically decreases (van Maanen et al., 2015; Xie et al., 2020). 

            ………………………………………16 

 

where   represents the relative hydroperiod (T(inundated)/T(tide)) and a, b, 

and c are constants which were set to -16, 16, and -3 (Appendix 1). 

Equation (15) suggests that there is a maximum growth rate for a given 

hydroperiod. The assumption is that there is an ideal inondation regime when 

the growth rate is maximal (I = 1), with reduced rates of growth (I < 1) when 

the mangroves are inondated for either shorter or longer periods (van Maanen 

et al., 2015). The values of a, b and c were chosen such that I = 1 when the 

mangroves are flooded half the time (  = 0.5) (Xie et al., 2020). 

  
 

     [ (      )]
………………………………………………...17 

where  
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d is a constant = -0.00005 and      is the value of B for which C = 0.5 and it is 

~ 1.04·105 kg/ha 

In this study, CMS was used to simulate the relative hydroperiod for different 

sea-level rise scenarios which was fed into the dynamic vegetation model to 

calculate inundation regime as well as competition stress, to give insight into 

mangrove response to hydro- and morphodynamics triggered by SLR. The 

relative hydroperiods were used in Equation 16 to calculate the inundation 

stress (I) and then Equation 17 was used to calculate the competition factor 

(C) based on the mangrove biomass density from the field work.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Mangrove Extent 

The three possibilities for 2019 were represented by several iterations  

 

Figure 42: LULC Change Detection for 2009 and 2019 using Different 

Classification Scenario 

Landsat 8 had an overall classification accuracy of 98.9 percent and a Kappa 

Coefficient of 0.979. Sentinel-1 (2019) data indicated that mangroves covered 

933 ha, 1115 ha of water bodies, 144 ha of bare land, and 1741 ha of other 

vegetation, but ALOS PALSAR-2 (2009) data indicated that mangroves 

covered 979 ha, 1104 ha of water bodies, 208 ha of bare land, and 1731 ha of 

other vegetation (Figure 22). Sentinel-1 had an overall classification accuracy 

of 84.6 percent and a Kappa coefficient of 0.718, but ALOS PALSAR-2 had 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



95 

 

an overall classification accuracy of 96.6 percent and a Kappa coefficient of 

0.938. 

According to the third classification scenario, Sentinel-1 and Landsat 8 

combined (2019)  

The mangrove categorization error/confussion matrix for each scenario is 

displayed in Table 12-17. The results revealed that using optical images in 

conjunction with synthetic aperture radar boosted user/producer accuracy to 

99 percent and decreased error of omission or commission of mangroves. 

 

 

 

 

 

 

 

Figure 43: Mangrove extent Map for the year 2009 for Optical Image only 

(Landsat 7) 
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Figure 44: Mangrove extent Map for the year 2009 for PALSAR Image only 

 

Figure 45: Mangrove extent Map for the year 2009 for both Optical and 

PALSAR Data 
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Figure 46: Mangrove change Maps for the year 2019 for Optical Image only 

(Landsat 8) 
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Figure 47: Mangrove extent Map for the year 2019 for Sentinel-1 Image only 

Figure 48: Mangrove extent Map for the year 2019, for both Optical and 

Sentinel-1 Data 
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Table 12: Confusion Matrix of mangrove change mapping using Landsat 

8 Image 

Classes Open 

Water 

Mangroves Bare 

Land 

Vegetation/ 

Wetland 

Row 

Total 

User’s 

Accuracy 

(%) 

Open Water 81 0 0 0 81 100 

Mangroves 0 635 0 12 647 98.1 

Bare Land 4 0 28 0 32 87.5 

Vegetation/Wetland 0 3 0 942 945 99.7 

Column Total 85 638 28 954 1705  

Producer’s 

Accuracy 

(%) 

95.3 99.5 100 98.7   

Overall Accuracy = 98.9%; Kappa Coefficient = 0.979 

Table 13: Confusion Matrix of mangrove change mapping using Sentinel-

1 (SAR) Data 

Classes Open 

Water 

Mangroves Bare 

Land 

Vegetation/ 

Wetland 

Row 

Total 

User’s 

Accuracy 

(%) 

Open Water 79 0 2 0 81 97.5 

Mangroves 0 521 0 126 647 80.5 

Bare Land 2 0 23 7 32 71.9 

Vegetation/ 

Wetland 

0 119 6 820 945 86.8 

Column Total 81 640 31 953 1705  

Producer’s 

Accuracy 

(%) 

97.5 81.4 74.2 86   

Overall Accuracy = 84.6%; Kappa Coefficient = 0.718 

Table 14: Confusion Matrix of mangrove change mapping using a 

combination of Optical Satellite Image and SAR (2019) 

Classes Open 

Water 

Mangroves Bare 

Land 

Vegetation/ 

Wetland 

Row 

Total 

User’s 

Accuracy 

(%) 

Open Water 81 0 0 0 81 100 

Mangroves 0 642 1 4 647 99.2 

Bare Land 0 0 32 0 32 100 

Vegetation/Wetland 0 9 0 936 945 99 

Column Total 85 651 33 940 1705  

Producer’s 

Accuracy  

(%) 

100 98.6 96.9 99.6   

Overall Accuracy = 99.1%; Kappa Coefficient = 0.984. 
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Mwita et al. (2012) and Wijedasa et al. (2012) pointed out a number of issues 

with using only optical satellite images to map and monitor coastal ecosystems 

over a long period of time.  

Table 15: Confusion/Error Matrix of Land Cover Classification using 

Landsat-7 Image. 

Classes Open 

Water 

Mangroves Bare 

Land 

Vegetation/ 

Wetland 

Row 

Total 

User’s 

Accuracy 

(%) 

Open Water 76 0 2 3 81 93.8 

Mangroves 4 615 1 27 647 95.1 

Bare Land 1 4 26 1 32 81.3 

Vegetation/Wetland 0 12 0 933 945 98.7 

Column Total 81 631 29 964 1705  

Producer’s 

Accuracy 

(%) 

93.8 97.5 89.7 96.8   

Overall Accuracy = 96.8%; Kappa Coefficient = 0.936. 

Table 16: Confusion/Error Matrix of Land Cover Classification using 

ALOS PALSAR-2 Image. 

Classes Open 

Water 

Mangroves Bare 

Land 

Vegetation/ 

Wetland 

Row 

Total 

User’s 

Accuracy 

(%) 

Open Water 76 0 0 5 81 93.8 

Mangroves 0 615 0 32 647 95.1 

Bare Land 1 4 23 4 32 71.9 

Vegetation/Wetland 0 12 0 933 945 98.7 

Column Total 77 631 23 974 1705  

Producer’s 

Accuracy 

(%) 

98.7 97.5 100 95.8   

Overall Accuracy = 96.6%; Kappa Coefficient = 0.938. 

Mangrove (17% loss), bare land (45% gain), other vegetation (21% loss), and 

water body (7% gain), all underwent considerable alteration. This suggests 

that portions of built-up areas or barren ground (which could be agricultural 

land) have replaced mangroves and other vegetation. A portion of the regions 

that were previously covered by mangroves or other vegetation have also been 

occupied by water bodies. 
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Table 17: Confusion/Error Matrix of Land Cover Classification using a 

combination of Landsat-7 Image and ALOS PALSAR-2. 

Classes Open 

Water 

Mangroves Bare 

Land 

Vegetation/ 

Wetland 

Row 

Total 

User’s 

Accuracy 

(%) 

Open Water 81 0 0 0 81 93.8 

Mangroves 0 647 0 0 647 95.1 

Bare Land 0 1 26 5 32 81.3 

Vegetation/Wetland 0 1 0 944 945 98.7 

Column Total 81 649 26 964 1705  

Producer’s 

Accuracy 

(%) 

93.8 97.5 96.9 99.5   

Overall Accuracy = 99.6%; Kappa Coefficient = 0.992. 

To offer thorough statistical data for each classification situation, error matrix 

and independent accuracy assessment was used. The error matrix of Sentinel-1 

data classification only revealed that 521 of the 647 pixels correctly classed as 

mangroves were found in the picture, while 635 of the 647 pixels correctly 

labeled as mangroves were found in the matching optical image alone (Table 

12-17). However, according to the independent accuracy assessment, there 

was rather considerable misunderstanding for mangrove versus other 

vegetation for ALOS PALSAR-2 and Sentinel-1 classification (Figure 7 - 9). 

Additionally, it was discovered that the mangrove vegetation canopy is 

typically underestimated by the ALOS PALSAR-2 and Sentinel-1 data when 

compared individually; but ALOS PALSAR-2 performed better than Sentinel-

1 as shown in Figure 22. However, using Landsat 7 and Landsat 8 by 

themselves has a tendency to exaggerate the vegetation cover. Sentinel-1's 

image had an overall classification accuracy of 84.6 percent, while Landsat 8's 

alone had a classification accuracy of 98.9 percent with a kappa of 0.984. The 

accuracy when both images were merged was 99.1%. (Table 15-17). It was 
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found that L-band performed better than C-band when Landsat-7 and ALOS 

PALSAR-2 were combined to generate improved precision. 

Since the classes were fairly evenly distributed and the 3rd classification 

scenario, which includes radar data and optical data, captured both the 

clustered mangroves as well as mangrove patches, it produced the best 

classification results (Figure 23-28). The 3rd classification scenario obtained a 

better outcome, as evidenced by the visual interpretation, demonstrating the 

significant potential of this mangrove evaluation and monitoring approach. 

The robustness of this approach is highlighted by the independent accuracy 

assessment, as illustrated in Figures 7 to 9. The classifier was trained using the 

same "training sample," but the accuracy varies based on the scenario. When 

optical and radar data were combined, the results were more consistent and 

less confusing than when either radar or optical data were used. 

This work supports the idea put forth by various authors that the best method 

for assessing and mapping mangroves is to combine radar data and optical 

satellite data (Attarchi & Gloaguen, 2014; Ayman et al., 2017; Hu et al., 

2020). The diverse land cover classes in the research area may be 

distinguished with clarity thanks to the random forest algorithm's performance. 

The final categorization is consistent with prior research that classified land 

cover using random forest methods (Ming et al., 2016; Thanh et al., 2020). 

Estimation of Canopy Height and Above Ground Biomass 

The mangrove canopy height map was generated for the year 2000 using the 

global mangrove distribution vector file, SRTM DEM, and SAR data. This 

was then utilized to create estimates of AGB for the same time period.  
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Figure 29: Mangrove Height Estimates for Year 2000 

 

Figure 30: Mangrove AGB Estimates for Year 2000 

The analysis of mangrove canopy height distribution shows that in year 2000, 

mangrove canopy height ranges from about 6.3 – 12.7 m (Figure 29). This 

estimate of mangrove height significantly corresponds to previously reported 

values in different estuaries in Ghana (Aheto et al., 2011 and Nortey et al., 
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2015). The spatial distribution of aboveground biomass patterns is determined 

by the relative influence of local environmental gradients, as well as the 

spatial distribution of mangroves species in a given coastal region (Thom, 

1982; Rovai et al., 2018). The result of AGB estimate for year 2000 showed 

that above ground biomass ranged from 0–368 mg/ha (Figure 30). 

Field inventory of above ground biomass 

The tree diameter at breast height (DBH) ranged from 0.67 to 6.48 cm for all 

species. Mangrove height ranged from 2.3 to 6.34 m. This indicates that the 

mangrove forest shows little structural development and agrees with the 

results of Aheto et al., 2011 and Nortey et al., 2015 at different estuaries in 

Ghana. There is a strong correlation between height and diameter at breast 

height of the trees sampled. The results of AGB estimates varied depending on 

which allometric model was used, as shown in Table 18 below. The 

aboveground biomass observed in the first quadrant is as follows: 65.33, 39.80 

and 87.52 (kg ha
-1

) for the equation developed by Komiyama et al., 2005; 

Chave et al., 2005 and Njana et al., 2015 (Table 17). Aboveground biomass 

ranged from 0 to 87.52 kg ha
-1

. Generally, AGB estimates decreased with 

distance from the shoreline.  

Table 18: Analysis of plot level field AGB (Kg ha−1) generated using 

three allometric models 

Quadrant H (m) DBH (cm) AGB (kg) 

A 

AGB (kg) 

B 

AGB (kg) 

C 

1 3.2- 6.3 1.4 – 6.48 65.33 39.80 87.52 

2 2.3 -6.0 0.67 – 4.91 32.77 19.16 43.40 

3 0 0 0 0 0 

4 2.5-6.10 4.48 8.75 5.43 11.54 
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The best estimate of aboveground biomass was obtained with the regression 

model coupling tree height, wood density, and diameter at breast height, which 

agrees with the results of other researchers (Nortey et al., 2015; Fatoyimbo et 

al., 2018). It was found that GEE has the potential to estimate the spatial 

distribution of AGB densities in mangroves. The SRTM canopy elevation was 

also very strongly correlated with the field elevation measurements. The main 

aim of using GEE in this study was to explore its ability to estimate AGB 

using SRTM data. Previously, AGB estimation involved highly complex 

calculations that required Python or Java code in MATLAB software 

(Lagomasino et al. 2016; Nsset et al., 2016; Qi & Dubayah, 2016).  

Preliminary Hydrodynamic Simulations 

Model Calibration Result 

The model was calibrated by comparing simulated water surface elevation 

results against gauge measurements. The comparisons between simulated and 

measured water surface elevation for the Takoradi Gauge Station are shown in 

Figure 31 - 33. The simulated and measured water surface elevations matched 

better when the Manning's roughness value was set to 0.1825 and this setting 

was used for the simulation of 100 tidal cycles. For the standard error of 

estimate (Sy.x), the smaller the values, the better the estimates. The 

corresponding goodness-of-fit statistics are presented in Table 19.  
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Figure 31: Computed vs Observed Water Surface Elevation (Manning’s 

N=0.025) 

 

Figure 32: Computed vs Observed Water Surface Elevation (Manning’s 

N=0.086) 

 

Figure 33: Computed vs Observed Water Surface Elevation (Manning’s 

N=0.1825) 

For the one-month simulation using Manning’s N=0.1825 and without SLR, 

the maximum current velocity was 0.06 m/s (Figure 34), the maximum 

sediment concentration recorded in a small section of the domain was 0.001 
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kg/m
3
 (Figure 35) and there was no noticeable morphology change (accretion 

or erosion) throughout the area (Figure 36).  

Table 19: Descriptive and Goodness of Fit Statistics for Preliminary 

Simulations 

SN Description Observed 

data 

Simulated data 

N=0.025 N=0.086 N=0.1825 

1 Number of 

values 

773 773 773 773 

2 Minimum 0.1310 -0.6362 -0.3039 -0.2267 

3 Maximum 1.798 1.801 1.779 1.685 

4 Range 1.667 2.437 2.083 1.912 

5 Mean 1.005 0.2702 0.4633 0.5688 

6 Std. Deviation 0.3744 0.6714 0.4992 0.4102 

7 Std. Error of 

Mean 

0.01347 0.02393 0.01779 0.01475 

8 Lower 95% CI 

of mean 

0.9790 0.2232 0.4283 0.5398 

9 Upper 95% CI 

of mean 

1.032 0.3172 0.4982 0.5977 

10 Coefficient of 

variation 

37.24% 248.5% 107.8% 72.12% 

11 Skewness -0.03162 0.5930 0.8492 0.8582 

12 Kurtosis -0.8560 -0.9393 -0.3122 0.03129 

13 Goodness of Fit  

(Sy.x) 

0.3764 0 

.6732 

0.5001 0.4098 
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Figure 34: Current Magnitude and Velocity for 1 Month Simulation 

 

 

Figure 35: Sediment Concentration and Transport for 1 Month Simulation 
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Figure 36: Morphology Change for 1 Month Simulation 

 

Figure 37: Current magnitude and velocity for no-sea level rise scenario over 

100 Tidal Cycles 
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Figure 38: Sediment concentration and total sediment transport for no-sea 

level rise scenario for 100 Tidal Cycles 

 

Long Term Simulation Result  

The results of current magnitude and velocity, total sediment concentration 

and transport, and morphological changes after a 100 tidal cycle (~8.4 years) 

simulation under varying sea level curve are presented in Figure 37 - 45 and 

Table 19. The impacts of different SLR scenarios (constant, low and extreme 

high) on current magnitude and velocity are as shown in Figures 37, 40 and 

43, respectively. Figures 38, 41 and 44, respectively show the impacts of 

constant, low and extreme high SLR on sediment concentration as well as total 

sediment transport. Figures 39, 42 and 45 show the impacts on accretion and 

erosion. These values appear to be similar in Figure 37 – 45, however, Table 

19 clearly shows the variations. Morphology change was calculated by 

subtracting the accretion from the erosion and this is interpreted as net 

morphology change (Table 19).  
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The net morphology changes (i.e., difference between erosion and accretion) 

for no sea level rise scenarios (constant), low sea level rise scenarios (0.3 m) 

and extremely high sea level rise scenarios (2.5 m) are -1.84 m, -1.74 m and -

2.29 m, respectively. It was observed that the area will be inundated 71% of 

the time under extreme high sea level scenario. 

Effects of Different SLR Scenarios on hydrodynamics 

To investigate the influence on the hydrodynamics, the flow fields for constant 

SLR, low SLR and extremely high SLR were extracted over the investigation 

period. The result shows that the magnitude and direction of the current are 

influenced by the SLR scenario. This result is shown in Table 20. 

 

Figure 39: Change in morphology for no-sea level rise scenario for 100 Tidal 

Cycles 
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Figure 40: Current magnitude and velocity for low sea level rise scenario for 

100 Tidal Cycle 

 

Morphological Changes Triggered by Different SLR Scenarios 

The varying sea level rise curve are used in this study to investigate how the 

ecosystem responds to different rates of sea level rise and whether this 

response is constant or accelerates through time. The outputs of these model 

runs are analyzed for bed morphology changes as shown in Figure 50. It was 

observed that extreme SLR favoured high sediment deposition (accretion) 

around the mangrove area with reduced erosion downwards (Figure 50).   

The hypsometric curves of the constant, low, and extremely high SLR effects 

on morphological changes after 100 tidal cycles as shown in black, blue, and 

red-coloured lines in Figure 50 show that, although the differences are small, 

significant morphological changes occurred toward the end of the simulation 

period. This finding is similar to the observations of van Maanen et al., 2013 
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in a sandy tidal embayment.  The relative impact of SLR on accretion and 

erosion can be seen from these curves. The change in hypsometry for different 

SLR scenarios became more pronounced after about 5 years, showing that 

accretion mainly occurred before this period. The Preliminary model 

simulation of one month (one tidal cycle) without SLR confirms this 

observation. It could be inferred from the result that sediments were mainly 

redistributed in the first 4 years to reach equilibrium. This is similar to the 

observation of Li et al., 2013 at a naval station in USA. Interestingly, it was 

observed that erosion was more pronounced with low and constant SLR 

whereas erosion decreased with extreme high SLR scenario at the end of the 

simulation period.  Again, van Maanen et al. (2015) and Khojasteh et al. 

(2021) recorded that during sea level rise, mangrove can enhance accretion 

while hindering erosion downwards. In general, sea level rise resulted in 

downward erosion of the shoreline, a process which was influenced by the 

presence of mangroves in the upper part around the inlet. 
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Figure 41: Sediment concentration and total sediment transport for low sea 

level rise scenario over 100 Tidal Cycles 

 

Figure 42: Change in morphology (m) for low sea level rise scenario over 100 

Tidal Cycles  
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Table 20:  Hydro and morpho-dynamic results for different combinations 

of SLR over 100 Tidal Cycles 

SN Parameters Values for different scenarios 

No SLR Low SLR Extreme SLR 

1 Max current velocity 

(m/s) 

0.564 0.613 0.548 

2 Max sediment 

concentration 

(kg/m
3
) 

0.075 0.078 0.077 

3 Total Sediment 

Transport (kg/m/s) 

0.069 0.124 0.071 

4 Net morphology 

change (m) 

-1.836 -1.74 -2.288 

5 Hydroperiod (%) 0.64 0.65 0.71 

 

 

Figure 43: Current magnitude and velocity for extreme high sea level rise 

scenario over 100 Tidal Cycles 
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Figure 44: Sediment concentration and total sediment transport for extreme 

high sea level rise scenario over 100 Tidal Cycles  

 

Figure 45: Change in morphology for extreme high sea level rise scenario 

over 100 Tidal Cycles 

Additional details about the flow characteristics in tidal environments can be 

found in velocity curves, total sediment transport, and water surface elevation 

(Hunt et al., 2015). As a result, each SLR scenario's generated current 

magnitude, total sediment concentration, total sediment transport, and water 
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surface elevation curves were compared (Figure 47 - 50). The outcome 

demonstrates that the scenario with the highest SLR had the greatest effect on 

the depth-averaged and cell-centered water surface elevation, current 

magnitude, total sediment transport, and velocity. Figure 46 shows the non-

linear impacts of SLR on morphology changes, indicating that the extreme 

SLR will favour more sediment deposition and increase the hydroperiod while 

lower SLR will increase erosion. Building up elevation will be a critical 

adaptation strategy for mangrove ecosystems under lower SLR (Krauss et al., 

2010). 

Changes in bed elevation in the mangrove ecosystem depend on a combination 

of biophysical feedbacks (Kirwan & Megonigal, 2013). Such feedbacks 

include the damping of water velocities by mangroves, the increase in mineral 

sedimentation, and the deposition of organic matter by mangroves. If there is 

enough sediment input to move at the same speed with rising sea levels, land 

subsidence will not occur and mangroves may not be uprooted by tides 

(Perona et al., 2014; van Maanen et al., 2015).  
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Figure 46: Hypsometric Curve for Morphological Changes induced by SLR 

 

Figure 47:  Impact of different SLR Scenarios on Current Magnitude and 

Velocity 
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Figure 48: Impact of different SLR Scenarios on Sediment Concentration 

 

Figure 49: Impact of different SLR Scenarios on Sediment Transport 

 

 

Figure 50: Impact of different SLR Scenarios on Water Surface Elevation 
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Sedimentation and relative sea level change relationship is very important for 

mangrove survival (Krauss et al., 2013). Sea level rise is projected to raise 

water levels in estuaries and may lead to potential flooding and erosion of 

neighboring beaches (Sweet & Park, 2014). Under high environmental stress 

caused by rapid sea level rise and reduced sediment supply, mangrove 

behavior is mainly governed by the abiotic factors (Xie et al., 2020).  

The relative hydroperiod of mangrove ecosystem changes with sea level rise, 

and the environment may see a decrease in mangrove cover as a result 

(Ellison, 1991). It is anticipated that most mangrove ecosystems may not be 

able to keep up with predicted sea level rise because sedimentation is 

declining (Lovelock et al., 2015). However, some process-based models 

predict that mangrove ecosystems are less vulnerable to sea level rise (Ellison, 

1991; Krauss, et al., 2013; Lovelock, et al., 2015). 

Influence of Varying Sea Level Rise on Mangrove Vegetation 

To examine the possible impacts of SLR on mangrove ecosystem, this study 

focused on how different scenarios of SLR will impact the inundation regime.  

Table 21: Relative Hydroperiod, Inundation and Competition Stress for 

different Sea Level Rise Scenarios 

SN Sea Level Rise 

Scenarios 

Relative 

Hydroperiod 

Inundation 

Stress(I) 

I*C 

(C=0.99) 

1 Constant Sea 

Level  

(No change) 

0.64 (64%) 0.68 0.67 

2 Low Sea Level 

Rise 

0.65 (65%) 0.64 0.63 

3 Extreme High Sea 

Level 

0.71 (71%) 0.3 0.29 
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The inundation regime is an important factor that controls mangrove survival. 

The results are presented in Table 21. It was observed that the mangrove will 

be inundated for too long (71% of the time) under extreme SLR. According to 

van Maanen et al., (2015), Mangrove mortality occurs when the product of the 

correction factors for mangrove growth caused by inundation (I) and 

competitive stress (C) is less than 0.5. According to our findings, under the 

extreme high SLR scenario, the product of inundation (I) and competitive 

stress (C) is 0.29 which is less than 0.5 (Table 21), indicating that during 

periods of extreme sea level rise, the mangroves may stay submerged for a 

longer time, which may have an impact on their growth and general 

productivity. This finding is consistent with the observations of other 

researchers from different places (Geselbracht et al., 2015; van Maanen et al., 

2015; Xie et al., 2020). According to Crase et al. (2013), mangrove roots 

cannot withstand being submerged for more than half of the tidal cycle. 
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CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

Conclusion 

One of the most pressing ecological calamities of our time is the worldwide 

devastation of tropical and subtropical mangrove ecosystems. Without 

tackling deforestation and promoting increased restoration of mangroves and 

other forests, it's possible that the world won't be able to meet the Sustainable 

Development Goals. 

In order to produce more precise mangrove extent maps, we developed a 

method in this research for combining optical and radar dataset in a spatial 

framework using GEE platform and a RF algorithm. In this study, it was 

shown that Google Earth Engine has the ability to accurately quantify 

mangrove cover and a variety of land use types, especially where there are 

clouds. This could make it possible to estimate mangrove cover at various 

scales with greater accuracy and follow the advancement of the sustainable 

development goals (SDGs). 

The combination of optical satellite data, synthetic aperture radar, and random 

forest algorithm may be effective for detecting changes in mangrove 

ecosystems and their surroundings, helping to fill knowledge gaps required for 

mangrove management and conservation. Overall, there has been a significant 

(16.9%) decadal decline in the number of mangroves at the study site, which 

may be related to land conversion. This underlines the necessity for 

conservation as well as efficient monitoring and management. 
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The hydrodynamics of the ecosystem are significantly impacted by the tidal 

flow caused by various sea level rise scenarios. This in turn impacted the 

morpho-dynamics, which in turn influenced the growth and development of 

Mangroves. The rate of morphological change is affected by the rate of sea 

level rise, with higher sea level rise leading to greater accretion and 

inundation. The bed profile hypsometric curve shows the impacts of the sea 

level rise scenario on morphology. For the three sea level scenarios tested, 

hypsometry appears to be relatively linear over the first half of the simulation. 

However, after 5 years there was a sharp change in morphology that lasted 

until the end of the simulation period. The influence of sea level rise on 

mangrove dynamics could be significant, particularly in situations with 

extremely high sea levels. Additionally, the relative hydroperiod for the three 

scenarios tested are 64%, 65%, and 71%, suggesting that for the scenario with 

a substantial rise in sea level, the ecosystem is submerged 71% of the time, 

adding to the stress on mangroves. 

Understanding where mangroves are currently found and how they have 

changed through time might help coastal managers. The maps created in this 

study can be used to guide coastal management decisions in the area, and the 

methodology can be used to develop similar maps for Ghana's whole coastal 

zone and other areas. In order to manage mangrove ecosystems effectively, it 

will be crucial to comprehend the intricate interactions between tidal flow, 

coastal hydrodynamics, morpho-dynamics, sea level rise, and their effects on 

mangrove vegetation. Policymakers in charge of preparing coastal mangrove 

ecosystems for the effects of climate change will find this information useful. 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



124 

 

The key drawback of this study is the absence of current data for the study 

region, such as 2020 data and high-resolution pictures (e.g., 10m) as of the 

time of this studies, despite the fact that our model forecasts mangrove extent 

rather well. Another drawback is that only uniform vegetation was taken into 

account. To investigate how these species interact with one another and 

whether zoning happens as indicated in the literature, more vegetation types 

could be added (Alongi, 2002; Liu et al., 2018).  

It is important to mention that the hydrodynamic model for this study was 

calibrated with water surface elevation from a single station outside the study 

domain. In the future, the model will be calibrated with not only water surface 

elevation from the location but also with current velocity. This will help 

inform further research that will also take longer-term simulation into account. 

Recommendations 

Considering the results of this study, it is advised that the government should 

develop a conscious management plan that goes beyond meeting immediate 

community needs and covers present and alternative livelihood choices, long-

term public knowledge of mangrove services and their importance in the face 

of climate change, and sustainable resource management systems. Mangrove 

propagule replanting should be encouraged in regions where deterioration has 

already occurred. 

To promote resilience and adaptation, rules that protect at-risk coastal 

communities must be upheld. These rules control illicit mining, indiscriminate 

sand mining, selective logging and deforestation, as well as the spread of 

settlement into low-lying and flood-prone areas. The reduction of non-climate 
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stressors such as pollution, deforestation and land conversion are therefore 

recommended as adaptation options to enhance the resilience of the existing 

ecosystem. Reducing non-climate stressors can help to build the resilience of 

ecosystems by lowering the burden of existing stressors and enabling them to 

better withstand the additional pressures that climate change has imposed. For 

example, reducing deforestation and land conversion can help to maintain the 

integrity of ecosystems and reduce the risk of biodiversity loss and ecosystem 

fragmentation. 

It is advised that the government of Ghana implements a deliberate 

management plan to reduce GHG emissions and work with the university to 

create a database that includes information on rivers, land, estuaries, wetlands, 

and nearshore in order to facilitate more coastal research. In other words, more 

measurement and surveying stations ought to be set up at various points along 

Ghana's coast. 
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Appendix 1: Dynamic vegetation model parameters 
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Growth 

constant G  
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-yr

 

Berger and 

Hildenbrandt, 2000; 

Chen and Twilley, 
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constant 
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Berger and 

Hildenbrandt, 2000; 

Chen and Twilley, 

1998 
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Berger and 

Hildenbrandt, 2000; 

Chen and Twilley, 

1998 
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function 
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Xie et al., 2020 
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function 
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Xie et al., 2020 
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Xie et al., 2020 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



166 

 

Appendix 2:  

1.// Load Sentinel-1 C-band SAR Ground Range collection (log scale, VV, 

descending) 

 var collectionVV = ee.ImageCollection('COPERNICUS/S1_GRD') 

 .filter(ee.Filter.eq('instrumentMode', 'IW')) 

 .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VV')) 

 .filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 

 .filterMetadata('resolution_meters', 'equals' , 10) 

 .filterBounds(roi) 

 .select('VV'); 

// Load Sentinel-1 C-band SAR Ground Range collection (log scale, VH, 

descending) 

 var collectionVH = ee.ImageCollection('COPERNICUS/S1_GRD') 

 .filter(ee.Filter.eq('instrumentMode', 'IW')) 

 .filter(ee.Filter.listContains('transmitterReceiverPolarisation', 'VH')) 

 .filter(ee.Filter.eq('orbitProperties_pass', 'DESCENDING')) 

 .filterMetadata('resolution_meters', 'equals' , 10) 

 .filterBounds(roi) 

 .select('VH'); 

print(collectionVV, 'Collection VH'); 

2.//Filter by date 

var SARVV = collectionVV.filterDate('2019-08-01', '2019-08-10').mosaic(); 

var SARVH = collectionVH.filterDate('2019-08-01', '2019-08-10').mosaic(); 

3.// Add the SAR images to "layers" in order to display them 

Map.centerObject(roi, 7); 

Map.addLayer(SARVV, {min:-15,max:0}, 'SAR VV', 0); 

Map.addLayer(SARVH, {min:-25,max:0}, 'SAR VH', 0); 

4.// Function to cloud mask from the pixel QA band of Landsat 8 SR data. 

function maskClouds(image) { 
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  // Bits 3 and 5 are cloud shadow and cloud, respectively. 

    var cloudShadowBitMask = ee.Number(2).pow(3).int(); 

    var cloudsBitMask = ee.Number(2).pow(5).int();   

     

    // Get the pixel QA band. 

    var qa = image.select('pixel_qa'); 

     

     // Both flags should be set to zero, indicating clear conditions. 

    var mask = 

qa.bitwiseAnd(cloudShadowBitMask).eq(0).and(qa.bitwiseAnd(cloudsBitMas

k).eq(0));  

   

  // Return the masked image, scaled to [0, 1]. 

  return image.updateMask(mask).divide(10000).copyProperties(image, 

["system:time_start"]); 

} 

5.//Add Spectral Indices for Mangrove Mapping using Landsat 8 Imagery 

var addIndicesL8 = function(img) { 

  // NDVI 

  var ndvi = img.normalizedDifference(['B5','B4']).rename('NDVI'); 

  // NDMI (Normalized Difference Mangrove Index - Shi et al 2016 - New 

spectral metrics for mangrove forest identification) 

  var ndmi = img.normalizedDifference(['B7','B3']).rename('NDMI'); 

  // MNDWI (Modified Normalized Difference Water Index - Hanqiu Xu, 

2006) 

  var mndwi = img.normalizedDifference(['B3','B6']).rename('MNDWI'); 

  // SR (Simple Ratio) 

  var sr = img.select('B5').divide(img.select('B4')).rename('SR'); 

  // Band Ratio 54 

  var ratio54 = img.select('B6').divide(img.select('B5')).rename('R54'); 

  // Band Ratio 35 
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  var ratio35 = img.select('B4').divide(img.select('B6')).rename('R35'); 

  // GCVI 

  var gcvi = img.expression('(NIR/GREEN)-1',{ 

    'NIR':img.select('B5'), 

    'GREEN':img.select('B3') 

  }).rename('GCVI'); 

  return img 

    .addBands(ndvi) 

    .addBands(ndmi) 

    .addBands(mndwi) 

    .addBands(sr) 

    .addBands(ratio54) 

    .addBands(ratio35) 

    .addBands(gcvi); 

}; 

6. // Filter Landsat data by Date and Region 

var year = 2019;  

var startDate = (year-1)+'-01-01';  

var endDate = (year+1)+'-12-31'; 

 

// Apply filters and masks to Landsat 8 imagery 

var l8 = L8.filterDate(startDate,endDate) 

 

// Mask for clouds and cloud shadows 

    .map(maskClouds) 

     

//Add the indices 

    .map(addIndicesL8) 

7. // Composite the Landsat image collection per pixel, per-band basis using 

.median() 
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var composite = l8 

              // Uses the median reducer 

              .median()  

              // Clips the composite to our area of interest 

              .clip(roi); 

8. // Mask to areas of low elevation and high NDVI and MNDWI 

// Clip SRTM data to region 

var srtmClip = SRTM.clip(roi); 

 

//Mask to elevations less than 65 meters 

var elevationMask = srtmClip.lt(45); 

 

//Used the NDVI and MNDWI bands to create masks 

var NDVIMask = composite.select('NDVI').gt(0.25); 

var MNDWIMask = composite.select('MNDWI').gt(-0.50); 

 

//Apply the masks 

var compositeNew = composite 

                        .updateMask(NDVIMask) 

                        .updateMask(MNDWIMask) 

                        .updateMask(elevationMask) 

9. // Display results 

//Select bands and parameters for visualization 

var visPar = {bands:['B5','B6','B4'], min: 0, max: 0.35};  

 

//Add layer to map 

Map.addLayer(compositeNew.clip(roi), visPar, 'Landsat Composite 2019') 

10. //Apply filter to reduce speckle 

var SMOOTHING_RADIUS = 50; 
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var SARVV_filtered = SARVV.focal_mean(SMOOTHING_RADIUS, 'circle', 

'meters'); 

var SARVH_filtered = SARVH.focal_mean(SMOOTHING_RADIUS, 'circle', 

'meters'); 

 

//Display the SAR filtered images 

Map.addLayer(SARVV_filtered, {min:-15,max:0}, 'SAR VV Filtered',0); 

Map.addLayer(SARVH_filtered, {min:-25,max:0}, 'SAR VH Filtered',0); 

 

//Create Training Samples and Merge Feature Collections 

var newfc = 

Open_water.merge(Vegetation_Wetland).merge(Mangroves).merge(Bare_lan

d); 

11. //Define the bands you want to include in the model 

var bands = ['B5','B6','B4','NDVI','MNDWI','SR','GCVI'] 

//Create a variable called image to select the bands of interest and clip to 

geometry 

var image = compositeNew.select(bands).clip(roi) 

 

//Assemble samples for the model 

var samples = image.sampleRegions({ 

    collection: newfc, // Set of geometries selected for training 

    properties: ['landcover'], // Label from each geometry 

    scale: 30 // Make each sample the same size as Landsat pixel 

    }).randomColumn('random'); // creates a column with random numbers 

     

//Here we randomly split our samples to set some aside for testing our model's 

accuracy 

// using the "random" column we created 

var split = 0.8; // Roughly 80% for training, 20% for testing. 
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var training = samples.filter(ee.Filter.lt('random', split)); //Subset training data 

var testing = samples.filter(ee.Filter.gte('random', split)); //Subset testing data 

 

//Print these variables to see how much training and testing data you are using 

    print('Samples n =', samples.aggregate_count('.all')); 

    print('Training n =', training.aggregate_count('.all')); 

    print('Testing n =', testing.aggregate_count('.all')); 

12. //Define the SAR bands to train your data 

var final = ee.Image.cat(SARVV_filtered,SARVH_filtered); 

var bands = ['VH','VV']; 

var training = final.select(bands).sampleRegions({ 

  collection: newfc, 

  properties: ['landcover'], 

  scale: 30 }); 

//Train the classifier 

var classifier = ee.Classifier.randomForest().train({ 

  features: training, 

  classProperty: 'landcover', 

  inputProperties: bands 

}); 

 

//Run the Classification 

var classified = final.select(bands).classify(classifier); 

 

//Display the Classification 

Map.addLayer(classified,  

{min: 1, max: 7, palette: ['1667fa', 'ee9a1c', '04bd23', '37fe05']}, 

'SAR Classification'); 

// Create a confusion matrix representing resubstitution accuracy. 
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print('RF- SAR error matrix: ', classifier.confusionMatrix()); 

print('RF- SAR accuracy: ', classifier.confusionMatrix().accuracy()); 

 

//7.1) Creating Stratified Random Samples 

var stratSamples = classified.stratifiedSample({ 

                      numPoints:150,        //Number of points per class 

                      classBand: 'classification', 

                      region:roi, 

                      scale: 30, 

                      geometries:true 

        }); 

 

//Add a 15m Radius buffer around each point 

var stratBuff = function(feature) { 

        var num = feature.get('classification'); 

             

        return feature.buffer(15).set('classification', num); 

        }; 

         

//Map the buffer across all points (see export code below 

var stratPoints = stratSamples.map(stratBuff) 

13. //Repeat for Landsat 

//Define the Landsat bands to train your data 

var bandsl8 = ['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7','NDVI' ]; 

var trainingl8 = composite.select(bandsl8).sampleRegions({ 

  collection: newfc, 

  properties: ['landcover'], 

  scale: 30 

}); 
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//Train the classifier 

var classifierl8 = ee.Classifier.randomForest().train({ 

  features: trainingl8, 

  classProperty: 'landcover', 

  inputProperties: bandsl8 

}); 

 

//Run the Classification 

var classifiedl8 = composite.select(bandsl8).classify(classifierl8); 

 

//Display the Classification 

Map.addLayer(classifiedl8,  

{min: 1, max: 7, palette: ['1667fa', 'ee9a1c', '04bd23', '37fe05']}, 

'Optical Classification'); 

 

// Create a confusion matrix representing resubstitution accuracy. 

print('RF-L8 error matrix: ', classifierl8.confusionMatrix()); 

print('RF-L8 accuracy: ', classifierl8.confusionMatrix().accuracy()); 

 

//7.1) Creating Stratified Random Samples 

Apendix 3: Code for Estimation of Mangrove Stand Height  

1. //Clip the radar images and elevation to the mangrove vector files 

var mangroves_2007_HH = dB_2007_HH.clip(mangroves); 

var mangroves_2007_HV = dB_2007_HV.clip(mangroves); 

var mangroves_2017_HH = dB_2017_HH.clip(mangroves); 

var mangroves_2017_HV = dB_2017_HV.clip(mangroves); 

var mangroves_1996_HH = dB_1996_HH.clip(mangroves); 

var elevation = srtm.clip(mangroves) 
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2. //Add the images to the layers bar 

Map.addLayer(mangroves_2007_HH ,{min:-15,max:-3}, 'Mangrove 2007 

HH', 0); 

Map.addLayer(mangroves_2007_HV ,{min:-27,max:-5}, 'Mangrove_2007 

HV', 0); 

Map.addLayer(mangroves_2017_HH ,{min:-15,max:-3}, 'Mangrove_2017 

HH', 0); 

Map.addLayer(mangroves_2017_HV ,{min:-27,max:-5}, 'Mangrove_2017 

HV', 0); 

Map.addLayer(mangroves_1996_HH ,{min:-25,max:0}, 'Mangrove_1997 

HH', 0); 

Map.addLayer(elevation ,{min:-5,max:30}, 'Elevation', 0); 

3. //Calculate maximum canopy height from SRTM dem 1.697*SRTM 

var canopy_height= elevation.multiply(1.697); 

4. //add the maximum canopy height to the layers bar 

Map.addLayer(canopy_height ,{min:0,max:1000}, 'Mangrove Height-SRTM', 

0); 

Appendix 4: Code for Estimation of Mangrove Above Ground Biomass  

1. //Calculate above ground biomass from SRTM canopy height 

3.25*(1.08*SRTM)^1.53 

var biomass_height= elevation.multiply(1.08).pow(1.53).multiply(3.25); 

2. //add the biomass image to the layers bar 

Map.addLayer(biomass_height ,{min:0,max:1000}, 'Mangrove Biomass-

SRTM', 0); 
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