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ABSTRACT 

Multicollinearity and autocorrelation problems pose a major challenge to the 

Ordinary Least Squares (OLS) estimate. The purpose of the study is to make a 

comparative analysis of different regularized and robust regression methods to 

determine the regression method that best addresses multicollinearity and 

autocorrelation problems in a linear model. The regularized and robust 

regression methods used in the study include Ridge Regression (RR), Lasso 

Regression, Two-Stage Ridge Regression (TR), Two-Stage Lasso Regression 

(TLasso), Quantile Regression (QR), Ridge Quantile Regression (RQR), Lasso 

Quantile Regression (LQR), Two-Stage Ridge Quantile Regression (TRQR) 

and Two-Stage Lasso Quantile Regression (TLQR), as remedies to OLS 

estimate. The data used for the study consists of simulated and two real datasets 

with multicollinearity and autocorrelation issues. The Mean Squared Error as 

the main performance criterion as well as other statistical values (such as 

regression coefficients, R-squared, adjusted R-squared, Root Mean Squared 

Error) were used for comparing the performances of the regression methods. 

The results indicate that the TLQR method with 0.5 quantile level is suitable for 

handling multicollinearity and autocorrelation problems with many predictor 

variables. The TR method performs better with few predictor variables. Another 

important observation is the effect of sample sizes on the regression methods. 

To effectively build a good model, one should aim at choosing the appropriate 

samples and predictors with corresponding right regression method for data 

studies which include possible multicollinearity and autocorrelation issues. 
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CHAPTER ONE 

INTRODUCTION 

In this introductory chapter, the challenges multicollinearity and 

autocorrelation pose to linear models has been specified in the background to 

the study. It is on this background that this study attempts to present different 

regularized and robust regression methods in handling multicollinearity and 

autocorrelation problems in linear models. The study also puts into perspective 

other studies done in the area using other regression methods. 

Background to the Study 

The Ordinary Least Squares (OLS) estimator is the most widely used 

estimator for estimating the parameters of a regression model. The OLS 

estimate has some very interesting statistical properties that have made it one of 

the most powerful and commonly used estimators of regression models, under 

certain assumptions. When there is no violation of the classical linear regression 

model assumptions, OLS outperforms other estimators in parameter estimation. 

(Lukman, Osowole, & Ayinde, 2015). According to the Gauss-Markov 

theorem, the OLS estimate has the least mean squared error of all linear 

estimators with no bias (Greene, 2003; Hastie, Tibshirani & Friedman, 2009). 

The OLS estimator with ( )E 0=e  and ( ) 2var n=e I  is considered the Best 

Linear Unbiased Estimator (BLUE), according to the Gauss-Markov theorem. 

This indicates that, of all the linear estimators, OLS will have the smallest 

variance, guaranteeing that the regression estimates are unbiased.  

There is a biased estimator that has a lower mean squared error. A little bias 

for a larger reduction in variance would then be traded for by the biased 

estimator. Therefore, methods that shrinks or sets to zero some of the regression 
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coefficients of the least squares may produce a biased estimate. These penalized 

estimation methods were developed to reduce estimate variance and thus 

improve prediction by means of introducing a slight bias into model estimation 

(Hastie, Tibshirani, & Friedman, 2009). Recently, much emphasis has been 

placed on biased estimation of regression coefficients in a linear model. This 

development is due to the inability of the OLS to provide accurate 

estimates when the matrix of predictor variables is ill-conditioned. If the 

predictors are orthogonal, the OLS estimator is optimal among the class of linear 

unbiased estimators. However, if the regression model contains highly 

correlated predictors, multicollinearity occurs. 

Multicollinearity is one ill-conditioned problem in linear regression models. 

The term “multicollinearity” was first used in literature by Frisch (1934) on the 

topic; “statistical confluence analysis by means of complete regression 

systems”. Multicollinearity is “a statistical phenomenon that happens when two 

or more predictor variables in a regression model are highly correlated” (Corlett, 

1990; Jensen & Ramirez, 2013; Johnson, Reimer, & Rothrock, 1973). 

Multicollinearity may cause issues with the computation of OLS estimations. 

The multicollinearity issue in fact bedevils the whole subject of linear 

regression, and is surprisingly a common phenomenon. It is one reason why the 

multicollinearity problem is ‘an art as well as a science’ (Bingham & Fry, 2010). 

The greater a predictor variable's correlation with the other predictor variables 

in a model, the greater its variance. An estimator will therefore have lower 

variance when there is a greater variation in the model's predictor variables.  

The nature of multicollinearity can be classified into perfect (or exact) and 

imperfect (or approximate). Multicollinearity is used to mean the presence of a 
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"perfect" or exact linear relationship between some or all predictor variables in 

a regression model. It is, however used more broadly to include both the case of 

perfect multicollinearity and the case where the predictor variables are inter-

correlated but not perfectly correlated (Gujarati & Porter, 2009). As a result, its 

degree must be determined, varying from no collinearity to perfect collinearity. 

Perfect multicollinearity is an extreme and rare case that occurs when two or 

more predictor variables in a regression model are linearly dependent. The case 

of a perfect linear relationship among predictors is a serious failure of the 

model's assumptions, not of the data. When the predictor variables have an exact 

relationship, the OLS estimates of the regression coefficients are indeterminate, 

and the standard error of the estimates becomes infinite. In the case of perfect 

multicollinearity, the matrix T
Χ Χ  and matrix X  do not have full rank. 

Consequently, the inverse matrix 1( )T −
X X  cannot be computed, therefore 

( )
1

ˆ T T

OLS

−

=β X X X y  cannot be solved, and the OLS estimator has no unique 

solution (Flexeder, 2010; Hashem, 2014).  

The most common situation of multicollinearity is when the variables are 

highly, but not perfectly correlated. In this scenario, regression estimates are 

determinate but possess large standard error implying that the coefficients 

cannot be estimated with great precision. When high degree of multicollinearity 

exists, the matrix T
Χ Χ  is quasi-singular (ill-conditioned). Thus, X  is of full 

rank and matrix T
Χ Χ  is regular and has a unique solution. However, due to 

highly correlated predictors in the model, the determinant T
X X  reaches a value 

near zero and the computed OLS estimate possesses a very large variance, 

2 1ˆ( ) ( )T

OLSvar  −=β X X  (Flexeder, 2010; Giacalone, Panarello, & Mattera, 
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2018). If the determinant defined by 
1

nT

ii


=
=X X  gives one or more small 

eigenvalues when multicollinearity is high but imperfect, the distance from OLS 

vector ˆ( )OLSβ  to true parameter ( )β  will tend to be large, that is, OLS trueβ β  

(Hoerl & Kennard, 1970). 

The presence of multicollinearity would misleadingly inflate in an excessive 

amount the standard error, and the regression coefficients may not appear 

significant. Despite OLS having the very desirable property of being BLUE 

under the usual model conditions, OLS estimators can have extremely large 

mean squared errors in the presence of multicollinearity. Many approaches have 

been developed in detecting as well as solving problems associated with 

multicollinearity in regression analysis. When multicollinearity is detected, the 

simplest approach is to drop the variable(s) or the problematic variables from 

the model (Demaris, 2004; Giacalone, Panarello, & Mattera, 2018; Weisberg, 

2005), increase the number of observations or add new data (Demaris, 2004; 

Gujarati & Porter, 2009), combine time series and cross-sectional data (Gujarati 

& Porter, 2009), incorporate variables into a scale (Demaris, 2004), utilize 

variable transformation (Demaris, 2004; Gujarati & Porter, 2009), and apply 

centering for multicollinearity caused by cross-product terms (Demaris, 2004). 

However, there are times when none of these solutions are satisfactory 

(Demaris, 2004). 

Several methods in literature have been proposed to handle multicollinearity 

problem in regression analysis. For instance, Stein (1956) proposed stein 

estimator; Least Absolute Shrinkage and Selection Operator (LASSO) 

developed by Tibshirani (1996); Hoerl and Kennard (1970) developed Ridge 

regression; Zou and Hastie (2005) designed the Elastic net, by combining the 
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1L -penalty (Lasso) and the 2L -penalty (Ridge); Massy (1965) suggested 

Principal Component Regression estimator (PCR); and Wold (1966) introduced 

Partial Least Squares to handle multicollinearity problem.  

The autocorrelation problem is a violation of the error term assumption of 

independence in the classical linear regression model. When the Gauss-Markov 

assumption of uncorrelated error terms is violated, autocorrelation occurs. The 

correlation between elements of a time-ordered series of observations, as in time 

series data, is characterized as autocorrelation (Gujarati, 2003). In the context 

of regression, the classical linear regression model implies that autocorrelation 

does not occur in the errors. When this assumption fails, we have an 

autocorrelation problem. Violation of the no autocorrelation assumption on 

error terms, will lead to inefficiency of the OLS estimates. The variance of the 

regression coefficients estimated will be biased and inconsistent, and it will be 

larger than the variances calculated by other methods. As a result, among all 

linear unbiased estimators, the OLS estimators will no longer have the least 

variance. If the errors are interrelated, OLS may underestimate the standard 

error of the coefficients. Standard errors that are underestimated can make 

predictors appear significant when indeed they are not. This leads to wrong 

standard errors for the regression coefficient estimates, therefore, testing of 

hypotheses is no longer valid. The F-statistic and t-statistic will tend to be higher 

and therefore, may not be valid (Damoder, 2006). Furthermore, the OLS 

estimates are not asymptotic if the error terms are correlated. In other 

words, estimated  s are not asymptotically efficient (Greene, 2003; Gujarati, 

2003). 
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Several corrective procedures based on variable transformations have been 

proposed, to correct for autocorrelation. They are, the use of Generalized Least 

Squares (GLS) or Feasible Generalized Least Square (FGLS) techniques such 

as the Prais-Winsten estimator, Cochrane-Orcutt estimator, Hildreth and Lu 

estimator, Durbin estimator, Thornton estimator, Theil’s estimator, Maximum 

Likelihood estimator and Maximum Likelihood Grid estimator (Cochrane & 

Orcutt, 1949; Hildreth & Lu, 1960; Paris & Winstein, 1954; Thornton, 1982; 

Theil, 1971; Beach & Mackinnon, 1978). 

Inevitably, both problems (autocorrelation and multicollinearity) can 

coexist in a linear regression model (Hussein, 2009), hence proven in literature 

(Ayinde et al., 2015; Bayhan & Bayhan, 1998; Lukman et al., 2015; Ozkale & 

Tugba, 2015; Trenkler 1984; Tugba, 2020; Tugba & Ozkale, 2019). For 

instance, the generalized ridge estimator (Trenkler, 1984), the feasible 

generalized ridge estimators (Bello et al., 2017) and the combination of the 

generalized least squares and the ridge regression (Hussein & Zari, 2012) to 

mitigate both problems. The design of the feasible generalized ridge (FGR) 

estimator to correct for both problems (Eledum & Zahri, 2013). The 

combination of the Liu estimator and the feasible generalized least squares to 

develop the feasible generalized Liu (FGL) estimator (Dawoud & Kaçıranlar, 

2016).  

Quantile regression (QR) analysis is used to overcome unsatisfactory 

assumptions, such as autocorrelation, no multicollinearity, normality 

assumptions and variance homogeneity (Yanuar, Yozza, Firdawati, Rahmi, & 

Zetra, 2019). QR estimates the conditional median (or other quantiles) of 

response variable, whereas OLS estimate the response variable’s conditional 
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mean across predictor variables. When estimating the various quantiles of a 

conditional distribution, QR is used. QR models outperform linear regression 

(mean regression) models in terms of robustness to outliers (Reed, 2011). 

Regularization (for instance, Ridge and Lasso) in quantile regression has been 

proven to improve prediction accuracy (Bager, 2018; Li & Zhu, 2008; Li, Lin, 

& Xi, 2010; Suhail, Chand, & Kibria, 2020; Wu & Liu, 2009). As a result, it is 

vital to explore more regularized and robust regression methods in handling 

multicollinearity and autocorrelation problems, hence, the need for this study. 

Statement of the Problem 

The general linear regression model makes the fundamental assumption that 

there is no correlation (or multicollinearity) between the predictors and that 

there is no autocorrelation. When assumption of no correlation (or 

multicollinearity) between predictor variables is violated, OLS estimates 

become unstable, have large variances, and may have an incorrect sign (Greene, 

2012). Furthermore, when the multicollinearity degree gets higher, the OLS 

estimate becomes imprecise, the model may have insignificant tests, wider 

confidence intervals, parameters with less interpretability, and the OLS being 

the BLUE does not hold anymore. The existence of multicollinearity makes 

estimating the unique effects of distinct variables in the regression model 

unfeasible.  

Again, when the assumption of no autocorrelation is not met, the OLS 

estimator, although linear and unbiased no longer have minimum variance 

among all linear unbiased estimators (Gujarati, 2003). The OLS estimates are 

consistent and unbiased, even with correlated error terms. The problem is the 

efficiency of these estimates. Forecasts based on OLS in the presence of 
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autocorrelation will be unbiased, but inefficient due to inefficient estimates of 

the regression parameters. The estimated variance of the regression parameters 

will be biased, resulting in an erroneous test of hypotheses. Due to the fact that 

( ), 0t scov e e , the BLUE that minimizes variance will not be the same as OLS 

estimate. Therefore, OLS estimator is not BLUE and hence is inefficient. 

The traditional approaches of dealing with multicollinearity problems in 

regression analysis have some limitations. When dropping problematic 

variables from a model, it can be difficult to decide which variable(s) to be 

dropped from the model. However, the dropped variable(s) may reduce model’s 

predictive power, and sometimes the variable(s) may be too significant to leave 

out of the analysis. It may also lead to a problem of bad-specification, 

specifically, specification bias or specification error, where in some case there 

is no assurance of whether the model will exhibit less multicollinearity (Gujarati 

& Porter, 2009). The approach of increasing the number of observations may 

help in reducing the sampling variance of estimates, but economic constraints 

may also not allow increasing the number of observations by collecting 

additional data. Also, the addition of new data may not match with the earlier 

data collected and may be unusual. Increasing the sample size, according to 

Chatelain and Ralf (2014), may result in a false inference of strongly correlated 

classical suppressors. The technique of merging time series and cross-sectional 

data may create interpretation problems of regression models (Gujarati & 

Porter, 2009). 

Our interest is to squeeze out maximum information from the 

multicollinearity and autocorrelation data at our disposal and this has motivated 

the study of the performance of some regression methods. This study, therefore, 
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suggests a suitable alternative to the least squares estimator to mitigate both 

problems. One approach in addressing the problem is to apply regularization to 

robust regression methods. It is therefore relevant to explore from a different 

perspective by combining a robust regression method and regularized methods. 

We therefore make a comparative study to evaluate performances of different 

regularized and robust regression methods when multicollinearity and 

autocorrelation problems are present under conditions of different degrees of 

autocorrelation, different sample size, different number of predictors and 

different multicollinearity levels. 

Purpose of the Study 

The main purpose of the study is to make a comparative analysis of different 

regularized and robust regression methods when autocorrelation and 

multicollinearity problems are present in a dataset. The aim is to determine if 

regularized and robust regression methods reduce total model error and which 

of the methods under consideration is the most effective in handling 

autocorrelation and multicollinearity problems.  

Research Objectives 

Specifically, we seek to: 

1. Compare the performance of Ridge regression, Lasso regression, Two-

Stage Ridge regression and Two-Stage Lasso regression methods as 

remedies to OLS method in the presence of autocorrelation and 

multicollinearity problems. 

2. Develop the Two-Stage Ridge Quantile regression and Two-Stage Lasso 

Quantile regression methods. 
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3. Compare the performance of Two-Stage Ridge Quantile regression and 

Two-Stage Lasso Quantile regression with Ridge Quantile regression 

and Lasso Quantile regression on multicollinear and autocorrelated data. 

Objectives (1) and (3) are carried out under conditions of different 

number of predictor variables, different sample size, different 

multicollinearity levels and different degrees of autocorrelation. 

Significance 

The findings of the study are expected to make a significant contribution to 

the development of suitable regularized and robust regression methods for 

handling autocorrelation and multicollinearity problems in linear model. The 

findings of the study will help us to understand the degree of multicollinearity 

for which OLS should be preferred over regularized regression and robust 

regression methods.  

The study will suggest the best estimation method that gives the least mean 

squared error under multicollinearity and autocorrelation conditions for a given 

number of predictor variables, at different sample sizes, for different 

multicollinearity levels and different autocorrelation degrees. This will further 

help to know the effect of sample size and samples to be collected from a highly 

homogeneous population with multicollinearity problem when a particular 

regression method is to be used.  

The study will be helpful to future researchers by providing them views 

about the best regression estimator to handle multicollinearity and 

autocorrelation problems. 
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Delimitations 

This study focuses on solving autocorrelation and multicollinearity 

problems in linear regression analysis using regularized and robust regression 

methods for real and simulated data. The study focused on the use of regularized 

and robust methods on a simulated dataset to compare their performance at 

different multicollinearity levels, different degrees of autocorrelation, different 

number of predictor variables and different sample sizes.  

The difficulty in getting real data with different degrees of multicollinearity, 

different degrees of autocorrelation, different number of predictor variables and 

different sample sizes resulted in the used of data simulations to help us compare 

the performance of the regularized and robust regression methods.  

Firstly, comparison is made between the regularized regression methods as 

single estimators to evaluate their performance on multicollinearity and 

autocorrelation dataset using MSE criteria. Secondly, comparison is made 

between the combinations of different regularized regression methods and 

quantile regression method as combined estimators, to know which one 

performs better on multicollinearity and autocorrelation dataset. 

Limitations 

The study focused on multicollinearity and autocorrelation problems 

regardless of other issues, such as outliers and heteroscedasticity problems. 

Again, since this is a simulation study, data has been generated in an attempt to 

enable for generalization to practical circumstances. Also, with regards to 

Quantile Regression method used in combination to regularized methods, there 

are other possible members of the robust regression method that may be used to 

construct the title of combined regularized and robust regression methods. 
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Organisation of the Thesis 

The thesis is organized into five chapters. Chapter One, the introduction of 

the study highlights the background, statement of the problem, purpose of the 

study, research objectives, significance, delimitations and limitations of the 

study. Chapter Two presents the literature review. It covers both theoretical 

frameworks and empirical reviews related to the concepts under study. Chapter 

Three deals with the research methodology employed to accomplish the study. 

The chapter discussed the mathematical and statistical methods and procedures 

used in the data analysis. Chapter Four covers the results and discussions of the 

study. The final chapter, Chapter Five, covers the summary, conclusions and 

recommendations, as well as suggestions for further studies. 

Chapter Summary 

This chapter described multicollinearity and autocorrelation, and 

highlighted the implications of multicollinearity and autocorrelation on the 

regression coefficient of OLS estimators. When multicollinearity and 

autocorrelation are present, the performance of the OLS estimate was found to 

be unsatisfactory. The traditional approaches of handling autocorrelation and 

multicollinearity problems in regression model have some limitations, and there 

are times when none of these approaches are satisfactory. We give the main 

motivation that has been captured in the problem statement together with the 

research objectives. Therefore, this study introduces regularized and robust 

regression methods to address the problems of autocorrelation and 

multicollinearity. We concluded the chapter by presenting an outline for the 

thesis. 
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction 

This chapter discusses the challenges multicollinearity and autocorrelation 

pose to linear models. The chapter delves into some works done by other 

researchers and authors in addressing multicollinearity and autocorrelation 

problems. The chapter is structured as follows; overview of OLS, nature, source 

and effect of multicollinearity and autocorrelation, test for multicollinearity and 

autocorrelation, solutions to models with multicollinearity and autocorrelation, 

regularization and regularized regression methods, regularized estimators in 

robust regression methods, and literature on addressing multicollinearity and 

autocorrelation problems. 

Overview of Ordinary Least Squares 

The OLS estimate is considered as Best Linear Unbiased Estimator (BLUE). 

It is useful for investigating the linear relationships between variables of 

interest. OLS regression is based on assumptions, and when those assumptions 

hold true, the OLS regression produces the best estimates. When the 

assumptions are met, the OLS generates better estimates than any other linear 

model estimating methods, according to the Gauss-Markov theorem (Greene, 

2003; Hastie, Tibshirani, & Friedman, 2009). One of the most important goals 

of regression analysis is to explain the relationship between predictors and 

response variable. 

The effectiveness of regression analysis is highly dependent on the structure 

of correlations between predictive variables. If the predictors are orthogonal, 

OLS estimator is optimal among the class of linear unbiased estimators. 
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Multicollinearity develops when the regression model contains highly 

correlated predictors. Again, when the uncorrelated error terms assumption is 

violated, autocorrelation occurs.  

Autocorrelation leads to inefficiency of the OLS estimates. Consider the 

multiple linear regression model 

= +y Xβ e  

where β  is a ( 1) 1p +   vector of unknown parameters and ε is an 1n  vector 

of random errors with ( )E 0=e  and ( ) 2var n=e I . The response variable is 

arranged in the 1n  vector y  and the data for the predictor variables are in the 

( 1)n p +  matrix X . Multicollinearity violates the assumption that the design 

matrix X  is given the full rank, rendering OLS estimation unfeasible. When a 

model does not have full rank, inverse of matrix X  cannot be determined.  

Nature of Multicollinearity and Autocorrelation 

Multicollinearity develops when a linear relationship exists between two or 

more than two variables; in contrast to multicollinearity, collinearity can refer 

to either the general scenario of a linear dependence among predictors or a linear 

relationship between only two predictors. The nature of multicollinearity can be 

classified into perfect (or exact) and imperfect (or near) multicollinearity. If the 

predictor variables in a model exhibit perfect correlation, statistical software 

will fail to fit the model and produce an error notice. Statistical software, on the 

other hand, can fit OLS regression models with imperfect but strong 

relationships between predictors. However, correlations can cause issues if they 

are strong enough. 
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In the case of perfect multicollinearity, the matrix X  and matrix T
Χ Χ  lack 

full rank. Consequently, the inverse matrix 1( )T −
X X  cannot be computed, 

therefore ( )
1

ˆ T T

OLS

−

=β X X X y  cannot be solved and the OLS estimator has no 

unique solution (Flexeder, 2010; Hashem, 2014). In the case of imperfect 

multicollinearity, the matrix T
Χ Χ  and matrix X  have full rank, however, it is 

not far from being rank-deficient. The inverse of matrix 1( )T −
X X  can be 

computed, therefore ( )
1

ˆ T T

OLS

−

=β X X X y  can be solved and the OLS estimator 

has a unique solution. However, the computed OLS estimator possesses a very 

large variance. A high multicollinearity level can either result in an erroneous 

inversion or prohibit the statistical software from completing a matrix inversion 

while calculating the regression coefficients.  

The importance of multicollinearity stems from the fact that, estimates of 

OLS regression coefficients may vary unpredictably in response to slight 

changes in predictors. As a result, in linear regression analysis, the ability to 

detect multicollinearity is critical. Such detection entails two interconnected 

steps: first determining the existence of a multicollinearity problem, and then 

determining its severity or strength. 

The classical model assumes that the error term associated with any 

observation is unaffected by any other observation's error term. Autocorrelation 

occurs when an important assumption that all error terms for all observations 

are independent of each other, is violated during an OLS regression analysis. It 

can cause issues in conventional analyses that assume observation 

independence such as OLS regression. Because it refers to a lack of 

independence between values, autocorrelation is problematic for most statistical 
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tests. First-order autocorrelation, which can be positive or negative, is the most 

common type of autocorrelation. 

Sources and Effects of Multicollinearity and Autocorrelation 

There are two basic sources of multicollinearity, that is, Structural and Data-

based multicollinearity. When a researcher creates new predictor variables or a 

model term using other terms, structural multicollinearity occurs. In other 

words, it is a result of the model specified by the researcher rather than being 

present in the data itself. It results from the use of predictor variables that are 

powers or linear combinations of another set of variables. For instance, if term 

X  is squared to model curvature by researcher, there is clearly a relationship 

between term 2X  and X . Multicollinearity may increase with any combination 

of the original variables if the sampling subspace for the predictor variables is 

narrow. Data-based multicollinearity is inherent in the data rather than results 

of researcher’s model. Data-based multicollinearity is caused by poorly 

designed experiments, observational data issues, or non-manipulable data 

collection methods, and is more common in observational experiments. It also 

occurs in data collection methods when the data is assembled from a small 

subspace of the predictor variables. This is multicollinearity caused by poor 

sampling methodology.  

Researchers face issues when predictors are highly, but not perfectly, 

correlated. One issue with data multicollinearity might be that small variations 

in the dataset generate large swings in estimations of parameters. 

Multicollinearity also results in coefficients having very high standard errors. 

Due to multicollinearity, coefficients may result in implausible magnitudes or 

“wrong” sign. The confidence interval for coefficient estimators will be wider 
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due to multicollinearity (Mela & Kopalle, 2002). Increased standard error of the 

coefficients may result in some predictor variables being insignificant (Gujarati 

& Porter, 2009), whereas these same coefficients could have been found to be 

significant with lower standard errors and no multicollinearity (Greene, 2012). 

Although multicollinearity reduces the model's power to identify 

statistically significant predictor variables and also makes it difficult to interpret 

coefficient of regression estimates, it has no effect on predictions, precision of 

predictions, or goodness-of-fit statistics (Montgomery, Peck, & Vining, 2012). 

There are several sources of autocorrelation. Autocorrelation can occur 

whenever there is some ordering of sampling units. The effect of removing some 

variables is another source of autocorrelation. Mis-specifying the type of 

relationship can introduce autocorrelation into the data. If there are exponential 

or log terms in the model, the model's linearity is put into question, and this may 

cause autocorrelation in the data. Carryover of effect is a significant source of 

autocorrelation, at least in part. Autocorrelation can also be caused by 

systematic measurement errors.  

Ordinary regression suffers when the independent errors assumption is 

violated. The OLS estimates of the regression coefficients are still consistent 

and unbiased when the error terms are autocorrelated, but the minimum variance 

property is not satisfied. R-squared will be overestimated in the majority of 

cases and hypothesis testing is no longer valid. The traditional F and  t  

significance tests are no longer valid, and if used, are likely to produce 

significantly misleading results with respect to the statistical significance of the 

computed regression parameters. Another effect is the OLS estimates are not 

asymptotic when the error terms are autocorrelated. Because the OLS estimates 
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will be inefficient, they will no longer be BLUE (Damoder, 2006; Greene, 2003; 

Gujarati, 2003). 

Test for Multicollinearity 

A variety of methods can be used to detect multicollinearity. Some of the 

most common methods are discussed below. 

Correlation Matrix 

A correlation matrix is a table that illustrates the correlation coefficients 

among variables. Multicollinearity can be determined by inspecting a predictor 

variable correlation matrix for high correlation. 

Variance Inflation Factor (VIF) 

The VIF measures how much a given predictor's linear correlation with the 

other predictors raises the variance of its coefficient estimate in comparison to 

the baseline case of no correlation, and is defined as 

21

1

i

i
R

VIF
−

=  

where 2

iR  is the coefficient of determination of a regression of predictor i  on 

all the other predictors. A VIF of 5 or 10 and above implies a multicollinearity 

issue (O’Brien, 2007). The denominator 21 iR−  is known as tolerance. 

Eigenvalues, Condition Indexes and Condition Number 

For eigenvalues, multicollinearity is indicated by smaller eigenvalues of 

T
Χ Χ  or its related correlation matrix. One or more small eigenvalues that are 

smaller than other eigenvalues indicate that the variables have near-linear 

dependencies. 

The condition indexes (CI) of the T
Χ Χ  matrix is defined as, 
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( )

i

i

iCI


max
= , pi ,2,1=  

Where i  are eigenvalues. The number of near-linear dependences in T
Χ Χ  is 

determined by the number of "large" condition indexes. Condition indexes 

ranging from 5 to 10 shows weak dependencies, whereas condition indexes 

ranging from 30 to 100 shows moderate to strong dependencies (Belsley, 1991).  

The condition number (CN) of the T
Χ Χ  matrix is defined as, 

( )
( )i

ik




min

max
= , pi ,2,1=  

Where ( )max i  and ( )min i  are maximal and minimal eigenvalues 

respectively, and i  are the eigenvalues. The condition number is most 

commonly used to determine whether the inversion of T
Χ Χ  may result in 

numerical issues. From no serious, moderate to strong, and severe 

multicollinearity problems, respectively, are associated with condition numbers 

less than 100, between 100 and 900, and greater than 900 (Belsley, 1991). 

Farrar 
2  

Farrar 2χ  is a Chi-square test for detecting the degree of multicollinearity 

across the entire set of predictors and is defined as

( ) ( ) ( )2 21 1
1 2 5 log ~ 1

6 2

Tn p p p 
   

= − − − + − −   
   

X X .  

The multicollinearity exists among predictors if ( )







−− 1

2

122 pp  (Farrar 

& Glauber, 1967). 
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Klein’s rule 

According to Klein's rule, multicollinearity is a major issue if the degree of 

inter-correlation is greater than the overall multiple correlation degree. That is, 

22

yi RR  , where 2

iR  is from a regression of predictor variable i  on all of the 

others and 
2

yR  is from a regression of response variable y on all predictor 

variables (Klein, 1962). 

Corrected VIF (CVIF) 

The corrected VIF (CVIF) as a new multicollinearity index was defined by 

Curto and Pinto (2011): 

2

2

1

1

o

ii
R

R
VIFCVIF

−

−
=  

Where 
22

2

2

1

2

yxpyxyxo RRRR +++=  , and 
2

1yxR , 
2

2yxR , 
2

3yxR , , 
2

yxpR  are the 

coefficient of correlation between y  and ix  with pi ,2,1= . The corrected 

VIF measure is used to evaluate the influence of the predictor variables 

correlation on the variance of the OLS estimators. Collinearity exists if 

10iCVIF . 

Test for Autocorrelation 

There are several methods for detecting autocorrelation, the most common 

of which are the graphical method and the Durbin-Watson test. 

Graphical Method 

The estimated residuals are plotted against time in a graph. The residual 

plot's clustering effect is used to determine the presence of autocorrelation. The 

residuals should be randomly distributed around the zero line, if the data are 

independent. However, if a discernible pattern emerges (especially one that is 
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cyclical), dependency is most likely present, or if successive residuals tend to 

cluster on one side or the other of the zero line, it is a pictorial sign that 

autocorrelation exists. 

Durbin-Watson Test 

The Durbin-Watson test only takes into account first-order autocorrelation. 

Durbin-Watson can test the hypothesis: 

0: =oH (The errors are not correlated) 

0: AH (The errors are correlated) 

The Durbin-Watson test statistic is defined as follows; 

2

2

2

1

1( )

n

t

n

t

t t

t

D
e e

e

=

=

−

=
−


 

where ˆ
t t te y y= −  are the residuals from the OLS fit. The Durbin-Watson tests 

produces statistic ranging from 0 to 4, where values ranging from 0 to 2 indicate 

positive autocorrelation, 2 indicate zero autocorrelation, and values ranging 

from 2 to 4 indicate negative autocorrelation. 

Solutions to models with Multicollinearity and Autocorrelation 

Multicollinearity issues can be addressed by removing a redundant or 

problematic variables from the model, increasing the number of observations or 

adding new data, transforming or recoding multicollinear variables, 

incorporating variables into scale or centering if multicollinearity arises from 

cross-product terms, and using regularization methods (Demaris, 2004; 

Giacalone, Panarello, & Mattera, 2018; Gujarati & Porter, 2009). When 

multicollinearity problem exists in a regression model, it is critical to determine 
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which predictor variables are causing the problem, and the simplest approach is 

to remove the model variables that are problematic. Also, if a variable is 

redundant, dropping it is simply correcting a specification error. Also, to simply 

correct a specification error, remove redundant variables from the model. 

Stepwise regression procedures are formal methods that accomplish essentially 

the same thing. 

Increasing the sample size improves an estimator's precision and reduces the 

negative effects of multicollinearity. Even if the variance of the OLS estimates 

is inflated by high correlation among predictors, the variance tends to decrease; 

additionally, a larger sample size reduces over-fitting and tends to reduce R-

squared. Multicollinearity problems are reduced by re-specifying the model, 

such as by combining multicollinear variables. The approach is effective in 

controlling multicollinearity when it was caused by experiment design or model 

specification rather than a sampling problem. 

Regularization methods such as Ridge and Lasso, are frequently employed 

to "solve" the problem of multicollinearity. Regularization methods add 

restriction information on the value of   or some combination of regression 

coefficients. These restrictions can be applied to mitigate the effects of 

multicollinearity. Principal Component Analysis is used in Principal 

Component Regression (PCR) to convert the original variables into a new set of 

uncorrelated linear variables. Principal component analysis is also employed in 

Partial Least Squares (PLS) regression to generate a set of uncorrelated 

components to include in the model. 

Autocorrelation issues can first be addressed by investigating the absence of 

any other key predictor variable. The variables are then transformed when such 
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predictor variable cannot be identified to eliminate autocorrelation from the 

model. The dataset is transformed so that the resulting modified model's error 

term conforms to the OLS assumption of no autocorrelation. One popular 

technique is to simply proceed with a first difference model. Redesigning the 

variables with a Generalized Least Squares (GLS) or Feasible Generalized Least 

Square (FGLS) methods such as the Prais-Winsten estimator, Cochrane-Orcutt 

estimator to address autocorrelation problems (Cochrane & Orcutt, 1949; Paris 

& Winstein, 1954).  

Regularization and Regularized Regression Methods 

Generally, the OLS estimate performs poorly when there is 

multicollinearity. However, the linear model suffers from high variance while 

having a low bias. This is where a popular Goldilocks solution called 

“regularization” and sometimes called “shrinkage” come to rescue (Berk, 2020; 

Hastie, Tibshirani, & Friedman, 2009). They are approaches to addressing the 

bias-variance trade-off in the context of statistical learning. Shrinkage, on the 

other hand, is regarded as a subset of regularization in which the loss function 

of ordinary linear regression is modified to incorporate a complexity penalty 

(Berk, 2020; Hastie, Tibshirani, & Friedman, 2009).  

Regularization is essential in modern data analysis. This allows for a 

reduction in variance at the expense of some bias, ultimately lowering the total 

error of the model. The process regularizes regression coefficients and, as a 

result, the fitted values. Conventional regression methods cannot handle data 

with more predictors ( )p  than observations ( )n  (i.e. np  ). Some of the 

coefficients are reduced to zeros using these methods. When there are a large 

number of parameters, regularization is also required to avoid over-fitting. 
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Regularized regression methods for linear regression have evolved to 

outperform the shortcomings of OLS regression in terms of prediction precision. 

Regularizing the model is a way of reducing undesirable effects or structural 

parameters where weights are constrained. Regularization methods are also 

used as a variable selection method for determining the most important variables 

in a model. They are used to control the regression coefficients, which can 

reduce variance and sample error and thus solve the multicollinearity problem. 

In general, two main techniques are employed in improving the OLS 

estimation procedure. One method focuses on identifying biased estimators with 

lower MSE than OLS estimators. Lasso regression and Ridge regression are 

examples. The second technique, on the other hand, deals directly with the 

predictor variables' dependency nature, such as PLS regression and PCR. There 

have been studies comparing regularized models (Gnat, 2020; Melkumova & 

Shatskikh, 2017). 

According to a study conducted by Gnat (2020), regularization enhances 

outcomes and allows for reduced average absolute percentage errors. In the 

study, two regularization methods (Ridge regression and Lasso regression) were 

used in assessing their impact on errors. The study also confirms the 

effectiveness of regularization in removing the problem of model overfitting or 

multicollinearity. According to studies from literature, the less data you have, 

the more beneficial it is to use regularization (Gnat, 2020). 

Regularized estimators in Robust Regression Methods 

According to Giacalone et al. (2018), some robust estimators are preferred 

in the remedy to problems of multicollinearity, because it handles both 

multicollinearity and outliers simultaneously. Since OLS is highly sensitive to 
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outliers, robust regression methods are intended to address some of the 

shortcomings of OLS estimate when outliers are present. Addressing these 

issues, there have been several robust regression estimators developed, such as 

Huber’s M-estimators (Huber, 1964), S-estimators (Rousseeuw & Yohai, 

1984), Least Median of Squares estimators and Least Trimmed Squares 

estimators (Rousseeuw, 1984), MM-estimators (Yohai, 1987), Robust and 

Efficient Weighted Least Squares estimators (Gervini & Yohai, 2002), τ-

estimators (Yohai & Zamar, 1988), and Quantile regression methods (Koenker 

& Bassett, 1978). Other methods, such as the Bisquare Ridge LTS estimators 

(BRLTS) (Pati et al., 2016) and Ridge Least Absolute Value (RLAV) 

(Pfaffenberger & Dielman, 1985), have combined regularized methods and 

robust regression methods, which should be preferred, according to Giacalone 

et al. (2018).  

The majority of techniques in literature are centered on mean regression, 

and outliers are particularly sensitive to mean-centered regressions (Aguinis, 

Gottfredson, & Joo, 2013). Regularization (for example, Ridge and Lasso) in 

Quantile regression (QR) has been shown to improve prediction accuracy 

(Bager, 2018; Li & Zhu, 2008; Li, Lin, & Xi, 2010; Suhail, Chand, & Kibria, 

2020; Wu & Liu, 2009). Koenker (2004) is the first to use regularization in QR, 

where the Lasso penalty on random effects was applied in a mixed-effect QR 

model to shrink individual effects towards a common value. Bayesian technique 

by incorporating an 2L -penalty into the check function of standard QR to 

shrinking random effects to a common value was also proposed by Yuan and 

Yin (2010). Yu, Alkenani, and Alhamzawi (2012) proposed adaptive Lasso 

quantile regression and a flexible Bayesian Lasso approach. The proposed 
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methods were compared to Lasso quantile regression (LQR), Flexible Bayesian 

quantile regression (FBQR), and QR methods. They found that the proposed 

methods outperform the alternative methods. 

Zaikarina, Djuraidah, and Wigena (2016) researched on “Lasso and ridge 

quantile regression using cross validation to estimate extreme rainfall”. They 

used quantile regression with Lasso and ridge regularizations and modified 

percentile cross validation. Local monthly rainfall and precipitation data from 

the “Global circulation model (GCM)” were used in the study at Indramayu, 

Indonesia, from 1981 to 2013. They found that the modified percentile method 

criteria for selecting optimal Lasso and ridge coefficients provide good 

prediction on both Lasso and ridge quantile regressions. Their results showed 

that quantile regression with ridge regularization performed better than Lasso. 

Adlouni, Salaou, and St-Hilaire (2018) considered five penalties (Lasso, Ridge, 

SCAD0, SCAD1, SCAD2, Ridge and Lasso) combined with quantile regression 

in Bayesian framework. They found that the Lasso for quantile estimation had 

the best performance according to the Relative Mean-Error (RME) and Relative 

Mean Bias (RMB) criterion, particularly when dealing with heavily distributed 

errors. 

Related Works on addressing Multicollinearity Problems 

In a study conducted by Irfan, Javed, and Raza (2013), Ordinary Least 

Squares (OLS), Principal Component Regression (PCR), Partial Least Squares 

(PLS) and Ridge Regression (RR) methods were compared to address the 

multicollinearity problem on Pakistani GDP data from 1973 to 2011. On the 

basis of the Cross Validation Parameter (CVP), Root Mean Square Error Cross 

Validation (RMSECV), RMSE and R-Squared, the PLS regression approach 
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was discovered to produce superior data findings than the other regression 

methods. In a study performed by El-Fallah and El-Salam (2014), PLS 

regression, PCR and RR methods were compared in their study on 

multicollinearity. The effectiveness of these three regression methods was 

assessed using Monte Carlo simulation study. The MSE criterion was used to 

assess the efficiency of the three regression methods. The simulated data used 

consist of p = 2, 4, 6 and 25 predictor variables for n = 20, 30, 40, 50 and 60 

sample sizes. Their findings show that the RR performs best with small number 

of predictors (p = 2), while the PLS performs best with moderate number of 

predictors (p = 4, 6) and high (p = 25). They also found that, PLS and RR 

outperformed PCR in all cases. 

Firinguetti, Kibria, and Araya (2017) carried out a simulation study to 

compare Ridge regression and PLS to OLS. The findings of their study revealed 

that both the RR and PLS methods result in significant reductions in MSE over 

the OLS method. They also found that as multicollinearity increases, neither 

method appears to be preferred over the other. However, with large error 

variance, the RR performs better, and with model that contains more variables, 

the PLS method works best. Goktas and Akkus (2020) compared the 

performance of RR, PLS and PCR methods based on MSE values in simulated 

research. Simulations were run for six different levels of multicollinearity (0.0, 

0.3, 0.5, 0.7, 0.9 and 0.99), six different sample sizes (30, 50, 100, 200, 500 and 

1000) and three different number of variables (4, 7 and 9). The simulation was 

run 10,000 times with three different number of predictors (4, 7 and 9). Their 

results show that the number of predictors, sample size and level of 

multicollinearity all have an effect on each prediction method. Based on the 
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obtained findings, it was observed that when there is severe multicollinearity 

among predictors, the PCR method produces significantly superior estimates. 

Herawati, Nisa, Setiawan, Nusyirwan, and Tiryono (2018) used data 

simulation to assess the performances of OLS, RR, PCR and Lasso methods in 

addressing severe multicollinearity problems. The data simulated show severe 

multicollinearity between predictors (ρ = 0.99), five different number of 

predictor variables (p = 4, 6, 8, 10, 20) and five different sample sizes (n = 25, 

50, 75, 100, 200) with 100 iterations using the R package. The Akaike 

Information Criterion (AIC) and Average Mean Square Errors (AMSE) 

criterion were employed to assess the methods performances. They found that 

the RR and PCR methods can overcome severe multicollinearity problems. 

Overall, they concluded that PCR is the best method for estimating regression 

coefficients on data with severe multicollinearity. 

Adepoju and Ojo (2018) proposed a Bayesian estimation method for linear 

regression models with the use of informative priors (conjugate) in existence of 

multicollinearity. The Bayesian method was compared to that of the OLS 

method using a simulation study, with Confidence Intervals (CI), Standard Error 

(SE), and MSE as criterion for evaluation and comparison. The simulated data 

were generated with two different multicollinearity degrees (0.80 and 0.95) and 

sample sizes were varied between 30, 200 and 300 with three predictor 

variables. According to the simulation results, the Bayesian method with an 

informative prior outperformed the OLS method. As a result, they 

recommended the Bayesian estimation method for dealing with 

multicollinearity, especially when there is sufficient prior information and the 

degree of multicollinearity is high. Another study on Bayesian method with the 
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application of informative prior was carried out by Jaya, Tantular, and 

Andriyana (2019). They then used the MSE, Bias and power of the test criterion 

to reveal that the Bayesian method outperformed the RR method. They also 

showed that, in multicollinear regression analysis, the Bayesian method can be 

used to efficiently address hypothesis testing. 

Suhail, Chand, and Kibria (2020) developed a new type of ridge estimator 

based on quantile and compared its performance with other RR and OLS 

methods in a simulation study. Their results showed that the proposed method 

outperforms alternative approaches, particularly when error variance and 

multicollinearity are high. They also showed that increasing the sample size and 

a large number of predictor variables results in a corresponding reduction in 

estimator MSE values. Davino, Romano, and Vistocco (2022) researched on 

"handling multicollinearity in quantile regression through the use of principal 

component regression". They applied PCR principles to quantile regression by 

proposing Quantile Principal Component Regression (QPCR). The study used 

both simulated and empirical data to investigate collinearity's effect on QR. The 

simulation study employed three predictors and 100 observations with varying 

degrees of correlation. For each design grid, they ran 1000 simulations. Their 

results reveal that as collinearity rises, standard errors in OLS increase, while 

those in QR increase more. However, when PCR is used, the results' stability in 

the various scenarios is confirmed. The study's main findings are the importance 

of collinearity in QR and the application of PCR as a viable remedy. 

Jegede, Lukman, Ayinde, and Odeniyi (2022) combined the Jackknife 

Kibria-Lukman (JKL) estimator and the M-estimator to form the Robust 

Jackknife Kibria-Lukman (RJKL) estimator to address outliers and 
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multicollinearity. In the simulation, multicollinearity degrees were set to 0.70, 

0.80, 0.90, and 0.99, and sample sizes were varied between 50, 100, 200, and 

250 with three different values of   (1, 5, and 10). They included an outlier of 

10%, 20%, and 30% in each sample size considered in the simulation study. The 

simulation was repeated 2000 times, each time with a different predictor 

variable (p = 3 and p = 7). They also used the Hussein data from Eledum and 

Alkhaklifa (2012) study for data analysis. The performances of ridge, M-

estimator, ridge M-estimator, Kibria-Lukman (KL) estimator, robust KL 

estimator, JKL estimator, and RJKL estimator were investigated. The RJKL 

estimator performed well in both the simulation research and the real-life data 

analysis. Based on the MSE criterion of each regression estimator, they 

concluded that the RJKL estimator outperforms the other existing estimators. 

According to studies in the literature, researchers have devised a combined-

estimator technique to handling multicollinearity problem in regression analysis 

that outperforms the single-estimator approach. For instance, the r k−  class 

estimator which combines ridge regression (RR) and PCR (Baye & Parker, 

1984), the Liu estimator which combines the idea of RR and stein estimator 

(Liu, 1993), the r d−  class of estimator which combines the PCR and Liu 

estimator (Kaciranlar & Sakallioglu, 2001), a new two-parameter estimator 

which combines the OLS, RR, Liu, and contraction estimators in special cases 

(Ozkale & Kaciranlar, 2007), and another new two-parameter estimator by 

combining the OLS, RR, and the Liu estimators in a different manner (Yang & 

Chang, 2010).  

Principal component two-parameter (PCTP) estimator is proposed by Chang 

and Yang (2012), which combines PCR and another two-parameter estimator 
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developed by Yang and Chang (2010). Ozkale (2012) developed a general class 

of estimator called the ( ),r k d−  class estimator, and the developed estimator 

was a combination of a number of regression estimators (OLS, RR, contraction, 

PCR, Liu, r d−  and r k−  class estimators) into a single-estimator. The 

superiority of the ( ),r k d−  class estimator was obtained over the OLS, RR, 

PCR, r d−  class, r k−  class, ( ),k d


, Liu and contraction estimators under the 

scalar MSE criterion. The concept of transitioning to a combined-estimator 

technique from a single-estimator technique is a gradual process aimed at 

resolving multicollinearity issues in regression analysis models (Ayinde, Alabi, 

& Nwosu, 2021). 

Related Works on addressing Autocorrelation Problems 

Beach and MacKinnon (1978) indicated that estimating the regression 

parameters with first-order autocorrelation, the widely used Cochrane-Orcutt 

and Hildreth-Lu procedures typically ignore the first observation. As a result, 

they proposed the maximum likelihood estimator (MLE), takes into 

consideration the first observation. They explained that the maximum likelihood 

procedure functions like the Cochrane-Orcutt procedure but seems to be more 

computationally efficient. They presented Monte Carlo results and concluded 

that the maximum likelihood procedure is theoretically superior to the 

conventional ones. 

Kramer (1980) investigated the "finite sample efficiency of ordinary least 

squares in the linear regression model with autocorrelated errors". The OLS, 

Prais-Winsten, and Durbin estimators were investigated. In 100 or 500 Durbin 

and Prais-Winsten sample runs, efficiency is calculated analytically for OLS. 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



32 
 

The obtained results strongly demonstrated that the Durbin and Prais-Winsten 

methods outperform OLS. 

Tanizaki (2003) compares the Maximum Likelihood estimator (MLE) to the 

Bayes estimator (BE) for estimating models with first-order autocorrelated 

errors. The Metropolis-Hastings algorithm and Gibbs sampler algorithm are 

employed in the Bayes estimator. The study used Monte Carlo studies to 

compare BE to MLE, with the standard error (SE), arithmetic average (AVE), 

and RMSE as comparison criterion. The Bayes estimator was found to be more 

efficient and less biased than the maximum likelihood estimator in the AVE, 

SE, and RMSE criteria. The results showed the superiority of BE over MLE 

because BE values for both the variance of the error term and autocorrelation 

coefficient are closer to true values than MLE values. Overall, the results show 

that the Bayes estimator outperformed the maximum likelihood estimator. 

Desviona and Yanuar (2020) conducted a study on “simulation study of 

autocorrelated error using Bayesian quantile regression”. They compared the 

ability of the classical QR and Bayesian quantile regression methods to estimate 

linear models with autocorrelated error problems. The posterior distribution for 

the Bayesian quantile regression was estimated using Gibbs sampler algorithm 

by applying Markov Chain Monte Carlo method. The simulated data employed 

in the study consisted of two predictor variables each generated from N (0,1) 

with 150 observations. For parameter estimation, the method with the smallest 

confidence interval and least absolute value of bias is considered best. The 

Bayesian quantile method, according to the findings, produces lower confidence 

intervals and absolute bias values than the QR method. They concluded that the 

Bayesian quantile regression method outperforms the QR method. 
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Literature on addressing Autocorrelation and Multicollinearity Problems 

Eledum and Alkhalifa (2012) developed the generalized two stages ridge 

regression (GTR) by combining the generalized ridge regression (GRR) with 

the two-stage procedure (TS) for dealing with linear models that suffer from 

multicollinearity and autocorrelation. They derived some statistical properties 

of the GTR biased estimator. Real data example was employed to achieve the 

study purpose, with the data representing “the product in the manufacturing 

sector, capital commodities, imported intermediate and imported raw materials 

in Iraq from 1960 to 1990”. The GTR regression estimator was compared to the 

OLS, RR, GRR, two-stage regression, and two-stage ridge regression 

estimators. They found that the GTR estimator has the smallest MSE and thus 

outperforms the other regression estimators based on the MSE criterion of each 

regression estimate. 

Eledum and Zahri (2013) introduced a two-stage ridge regression (TR) for 

autocorrelated errors and multicollinear data. After adjusting it with the RR, 

they applied the two-stage regression (TS) using a mixed method. They also 

derived the statistical properties of the TR biased method and use an application 

example to compare the TR estimator's performance with OLS, TS, and RR 

estimators. They concluded that the TR estimator is unbiased, with lower MSE, 

variance, and bias than the RR estimator. Eledum and Awadallah (2021) also 

researched the two-stage ridge regression method for dealing with 

autocorrelation and multicollinearity problems in linear models. The TR 

method's performance is evaluated using Simulation study, with MSE used as a 

criterion for evaluation. Three different multicollinearity degrees (0.70, 0.80, 

and 0.99), three different autocorrelation degrees (0.5, 0.7, and 0.99), and four 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



34 
 

different sample sizes (10, 30, 70, and 100) were simulated. The simulation was 

run 10,000 times. The results showed that the TR method outperforms the RR, 

and the regularization parameter values for the TR are always less than those 

for the RR. 

Ayinde, Lukman, and Arowolo (2015) conducted a study that combined 

Principal Component estimator with two Feasible Generalized Least Square 

Estimators (Cochrane-Orcutt and Maximum Likelihood estimators) to handle 

problems of autocorrelation and multicollinearity in linear models. The 

following estimators were compared in performance: OLS, ridge, PC1, PC12, 

ML, MLPC1, MLPC12, MLPC123, CORC, CORCPC1, CORCPC12 and 

CORCPC123. The MSE of estimators at each multicollinearity level, 

autocorrelation, and parameter was ranked in Monte Carlo studies. The degrees 

of multicollinearity were 0.9, 0.95, and 0.99, while the degrees of 

autocorrelation were 0.7, 0.8, 0.9, 0.95, and 0.99. The simulation was run 1000 

times with four different sample sizes (10, 20, 30, and 50). The findings revealed 

that the MLPC1 estimator is generally the best, despite the fact that PC1 and 

CORCPC1 compete favorably with it. Furthermore, the MLPC12 and 

CORCPC12 are often the best with larger sample sizes. 

In research conducted by Dawoud and Kaçıranlar (2016), they proposed the 

Two-Stage Liu (TL) method to address autocorrelation and multicollinearity 

issues in linear models. The performance of the TL method over the others was 

investigated using real data example and Monte Carlo simulation studies. Three 

different multicollinearity degrees (0.70, 0.80, and 0.90), five different 

autocorrelation degrees (0.1, 0.3, 0.5, 0.7, and 0.99), and two different sample 

sizes (20 and 60) with six different values of σ (0.1, 0.5, 1, 4, 9, and 20) were 
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simulated. In their study, they also used the Portland cement data from Woods, 

Steinour, and Starke (1932). The MSE criterion was employed to evaluate the 

following methods performances: TL, OLS, RR, TS, TR, Liu, Stein, and Two-

Stage Stein (STS). The real data and simulation results revealed that TL method 

has a lower MSE than the other methods. However, when the   increases, the 

STS method produces similar or better results over TL method. 

A study conducted by Arowolo, Adewale and Kayode (2016) compared the 

Two-Stage Principal Component regression (T-PC) and Two-Stage Partial 

Least Square (T-PLS) when a linear model suffers from problems of 

autocorrelated error and multicollinearity. The study used a real-life dataset 

from the publication of World Bank (2015) on Gross Domestic Product (GDP), 

export, import, government capital formation and foreign direct investment for 

the year 1981 to 2013. The RMSE and RMSE cross validation was employed 

as criterion for comparison of methods. They found that T-PLS and T-PC 

perform similarly; however, T-PLS has a higher predictive power. 

Ozbay, Kaçıranlar and Dawoud (2017) proposed Feasible Generalized 

Restricted Ridge regression (FGRR) method to address autocorrelation and 

multicollinearity issues in linear models at the same time. They derived some 

statistical properties of FGRR estimator and used a Monte Carlo simulation to 

compare FGRR estimator to others using matrix MSE criterion. The simulated 

data were generated with three different multicollinearity degrees (0.7, 0.8, and 

0.9), and the errors were obtained by either an MA (1)  process or an AR (1)  

process, where   is considered as -0.8, -0.4, 0.0, 0.4, 0.8 with p = 4 and n = 20. 

They used   to control the true or false restriction, and it is chosen as 1, 1.05, 

or 1.10 and remains constant throughout the simulation. The simulation was 
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replicated 5000 times. The performance of the following estimators was 

compared: RR, Restricted Least Squares (RLS), Feasible Generalized 

Restricted Least Squares (FGRLS) and FGRR. In comparison to the other 

estimators, they found that FGRR estimator has lower MSE values and therefore 

outperforms the other estimators. 

Oyewole and Agunbiade (2020) carried out research on “regression 

techniques in the presence of multicollinearity and autocorrelation phenomena: 

a Monte Carlo approach”. They proposed the generalized least squares-ridge 

(GLS-R) regression method by combining GLS and ridge regression to deal 

with autocorrelation and multicollinearity problems. However, because   is 

unknown, parameter estimates for the biased GLS-R estimator are impossible 

to obtain in practice. To approximate those parameters, they combined Durbin's 

two-step method with RR. The study's data was simulated using Monte Carlo. 

The performances of four different estimation methods were investigated: OLS, 

Ridge regression, Lasso regression, and the GLS-R method. According to their 

findings, the GLS-R regression method has the lowest AIC and MSE value of 

the four methods. As a result, they found that the GLS-R regression method is 

more predictive and provides the preferred estimator in estimating all of the 

model's parameters based on the AIC and MSE criterion, and thus it is preferred 

over the OLS, ridge, and Lasso regression methods. 

Zubair and Adenomon (2021a) proposed the two-stage K L−  estimator to 

address autocorrelation and multicollinearity issues in linear regression models. 

The performance of the two-stage K L−  estimator is evaluated using Monte 

Carlo Simulation, with MSE used as a criterion for evaluation. Autocorrelation 

and multicollinearity degrees were both set to 0.6, 0.8, and 0.9, and sample sizes 
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ranged from 25, 50, 100, 250, and 500. The simulated data used included six 

predictor variables, and the process was repeated 1000 times. The Prais-

Winsten, OLS, Cochrane-Orcutt, Restricted Maximum Likelihood estimator 

(RMLE) and MLE estimators were compared to the two-stage K L−  estimator. 

They found that the two-stage K L−  estimator performs similarly to MLE and 

RMLE under severe collinearity and autocorrelation conditions. They further 

found that, under moderate collinearity and severe autocorrelation conditions, 

whatever the sample size, the two-stage K L−  estimator outperforms all other 

estimators and appears to perform better with larger sample sizes. The study 

suggested that, to avoid erroneous inferences, the multicollinearity level and 

autocorrelation degree between variables be considered when estimating 

regression model parameters. 

Another study was conducted by Zubair and Adenomon (2021b) on the 

“robustness test of the two-stage K L−  estimator in models with multicollinear 

regressors and autocorrelated error term”. The estimators were applied to two 

real data sets with autocorrelation and multicollinearity issues (Hussein data and 

French economy data). The two-stage K L−  estimator was compared to the 

OLS, Prais-Winsten, Cochrane-Orcutt, MLE and RMLE under the MSE and 

RMSE criterion. The study's findings revealed that two-stage K L−  estimator 

outperforms the other estimators in both applications to real data. The findings 

from the real data confirm the findings of the simulation study in work of Zubair 

and Adenomon (2021a), which also found that two-stage K L−  estimator is 

preferred in fitting a linear model with assumptions of multicollinearity and 

autocorrelation are violated. 
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Chapter Summary 

The literature has revealed the extent to which multicollinearity and 

autocorrelation problems pose a challenge to OLS regression. The chapter has 

described the nature and sources of multicollinearity and autocorrelation. The 

literature is clear on the effect of multicollinearity and autocorrelation on 

regression models. The chapter identified ways of detecting multicollinearity 

and autocorrelation in a linear model. The chapter has also reviewed some 

approaches in handling autocorrelation and multicollinearity problems. The 

literature established that the traditional approaches of handling autocorrelation 

and multicollinearity problems in regression model have some limitations, and 

there are times when none of these approaches are satisfactory. 

Regularization is essential in modern data analysis and therefore, 

regularization methods were introduced as possible methods in addressing 

multicollinearity issues. It was noted that regularization in quantile regression 

improve prediction accuracy. Regularized and robust regression methods have 

clear advantage over the regularized regression methods, because it handles 

both multicollinearity and outliers simultaneously. The chapter further reviewed 

literature on addressing multicollinearity and autocorrelation problems. 

Simulation studies have mainly been used in studying performances of 

regression methods in addressing multicollinearity and autocorrelation. The 

results suggest that the degrees of multicollinearity and autocorrelation have 

effect on performance of regression methods. Furthermore, sample size and 

number of predictors were found to have effect on MSE values of regression 

methods. 
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CHAPTER THREE 

RESEARCH METHODOLOGY 

Introduction 

In this chapter, we review the methods employed in the analysis of the data. 

The chapter describes the data and regression methods employed in addressing 

the problems of multicollinearity and autocorrelation. We review the 1L  and 2L  

regularization methods employed to correct for multicollinearity and the two-

stage method adopted to correct for autocorrelation. We further present the 

formulation of the regularized and robust regression methods. Applying these 

regression methods to linear models with multicollinearity and autocorrelation 

problems, the goal is to find the regression method that best addresses 

multicollinearity and autocorrelation problems in a dataset. 

Linear Regression Model 

A linear regression model describes the relationship between one or more 

predictor variables, pXXX ,,, 21  , and a response variable, y. The model 

relating the response, y, to p predictor variables, pxxx ,,, 21  , is given by 

 iippiii exxxy +++++=  22110 .    

 

Now for n independent observations of y and associated values of ix , the model 

becomes    
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In matrix form, the system of equations above is written as  

= +y Xβ e                                                                                               (1)             
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where, 
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When the model errors are normally and independently distributed, the 

maximum-likelihood estimators for the model parameters in multiple linear 

regression are also least squares estimators. The normal density function for the 

errors is 

2
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The likelihood function is the joint density of 1 2, , , ne e e  or ( )
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Therefore, the likelihood function is  
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Now since we can write ,= −y Xe  the likelihood function becomes 
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According to Stuart (2011), if the assumptions of the error terms are met, 

that is, the 2(0, )i ne N  I , then the least squares estimator is the maximum 

likelihood estimator for  , maximizing  

2
2

1 1
exp ( ) ( )

2(2 )

T

n
n

 
 
− − − 

  
y X y X                                                  (2)              

over  , which is equivalent to maximizing the logarithm of Equation (2)  over 

: 2

2

1
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2 2
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L n   = −  −  − − −


y X y X y X .  
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This corresponds to minimising 2

1

( ) ( )
n

T

i

i

 
=

− − =y X y X e  since   is a 

constant. Therefore, the minimization of the residual sum of squares 2

1

n

i

i=

e  is 

the least squares estimate ̂ . Therefore, the maximum-likelihood estimator of 

  under normal errors is equivalent to the least squares’ estimator 

1ˆ ( )T T −= X X X y . 

Review of Ordinary Least Squares (OLS) 

The OLS method is used to estimate the regression coefficients in that the 

residual sum of squares is to be minimised.  

It minimizes the least squares loss function      

2
−y Xβ                                                                                                           (3)  

The least squares estimate aims to minimize the sum of the square residuals as 

2

1

n

i

i=

e  T= e e  

( ) ( )T = − −y X y X                                                                     

T T T T T T   = − − +y y y X X y X X  

By minimizing the errors 
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0 2 2( )T T = − +X y X X  

Now, the least squares estimator ̂  is the solution to 

ˆT T =X X X y  

Therefore, when T
X X  is non-singular the least squares estimate can be 

evaluated directly from the data by 
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1ˆ ( )T T −= X X X y                                                                                        (4)                                     

 

Linear Model Regularization 

Regularization is performed by applying weight constraints on the model. 

These constraints are implemented in various ways by different algorithms. 

Ridge and Lasso regression are two forms of regularization used in this study. 

Model weights in regression models are determined by minimizing the model's 

residual sum of squares (RSS). The key stage for both methods of regularization 

is the selection of the regularization parameter, k . For ridge regression, a 

regularization term equal to 2

1

p

j

j

k
=

  is added to RSS loss function of Equation 

(3). The regularization parameter k  controls how much of the model should be 

regularized. If 0k = , then Ridge regression is simply an OLS. If k  is large, all 

weights are very close to zero, resulting in a flat line passing through the mean 

of the data. Setting k  is thus an important stage in the creation of a model in 

order to produce good quality outputs. 

The model weights are regularized in the case of Lasso regression by adding 

an expression 
1

p

j

j

k
=

  to loss function of Equation (3). An important feature of 

Lasso regularization, is the elimination of the least significant variables from 

models. Assume we have a large dataset (say, 1000 predictors) and some 

predictors are correlated. Then, both Ridge and Lasso penalty terms are used. 

In the Ridge regression method, all 1000 predictors are retained in the model, 

but their coefficients are shrunk toward zero (but not exactly zero) to retain the 

model's complexity. In contrast, Lasso regression will reduce some of the 

coefficients to exactly zero, therefore reducing the model's complexity while 
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improving its prediction accuracy. As a result, by maintaining only the 

important variables in the model, the Lasso penalty function naturally achieves 

the optimal model. 

Ridge Regression 

According to Hoerl and Kennard (1970), the potential instability in 

employing OLS estimates could be improved by adding a small constant k  to 

the T
X X  matrix diagonal entries before taking its inverse. When the predictors 

are highly correlated, the Ridge regression approach is utilized to improve the 

estimation of regression parameters. Because of the OLS trueβ β  problem in 

Equation (4) when the matrix T
X X  is ill-conditioned, Ridge regression's 

penalty term is designed in such a way that the length of the parameter vector 

  is restricted. 

The estimates for the Ridge regression parameters are obtained by 

minimizing the residual sum of squares subject to an 2L -penalty on the 

coefficients. 

2

1 1

ˆ min ( )
pn

Ridge i ij j

i j


 
= =

 
= − 

 
 y X , . .s t  2

1

p

j

j

t
=

 , 0t                            (5)  

Equivalently, the following minimization problem defines Ridge regression 

2 2

1 1 1

ˆ min ( )
p pn

Ridge i ij j j

i j j

k


  
= = =

 
= − + 

 
  y X , 0k                                    (6)  

where 1, 2, ,i n= ;   1, 2, ,j p=  and the amount of shrinkage is controlled 

by the regularization parameter, k . The parameter t  in Equation (5) is clearly 

related to the parameter k  in Equation (6). This means that for a given value ,k

there exists a value t  for which the estimation Equations (5) and (6) yield the 

same result. 
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Rewriting the Equation (6) in matrix form 

2 2

2 2

ˆ minRidge k


  = − +y X  

The function can be restated as 

 ˆ min ( ) ( )T T

Ridge k


    = − − +y X y X  

Simplifying gives 

 ˆ min 2T T T T T T

Ridge k


     = − + +y y X y X X  

Taking the derivative with respect to  , we obtain 

( )ˆ
Ridge




  2 2T T T k  = + − +X X X X X y  

2 2 2T T k = − +X X X y  

Setting the derivative to zero 

( )ˆ 0Ridge


=


   T Tk + =X X X y  

  ( )T T

pk + =X X I X y  

Therefore, the regularized solution is given as 

1ˆ ( )T T

RR pk −= +X X I X y                                                                                   (7)  

where I  is the p p  identity matrix. By adding 
pkI  to T

X X , this results in a 

regular and invertible matrix. For strictly positive k  Ridge solution in Equation 

(7) is well-defined despite multicollinearity or p n  (van Wieringen, 2021).  

The Ridge regression method, in contrast to the OLS estimates, is biased. 

As a result, this regularization method accepts some bias in order to lower the 

variance and MSE of the estimates and possibly improve the prediction 

accuracy. As a result, the goal of Ridge regression is to choose a k  that is large 

enough to overcome the problem of near singularity of the matrix of cross-

products but not so huge that it introduces a lot of bias. Ridge regression is very 

popular for non-orthogonal regression issues due to its ability to obtain descent 

estimates in the presence of multicollinearity (Duzan & Sharif, 2015).  
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The way one chooses k  is an important aspect of Ridge regression. There 

are many procedures for determining the biasing parameter ( k ) value. The 

procedures are classified as either subjective (such as ridge trace, VIF trace, df 

trace, plotting of variance, bias, and MSE) or objective (such as cross-

validation, generalized cross-validation, m-scale, Information criteria – 

Bayesian Information Criterion (BIC), AIC) methods. Many different 

techniques for estimating k  have been suggested or proposed by various 

researchers. To mention a few notable ones, there are: HKBK  (Hoerl & Kennard, 

1970), LWK  (Lawless & Wang, 1976), THK  (Thisted, 1976), DSK  (Dwividi & 

Shrivastava, 1978), AMK  (Kibria, 2003), KDK  (Dorugade & Kashid, 2010), 

4( )ADK  (Dorugade, 2014). The common ways of doing this is to use the ridge 

trace graphical method introduced by Hoerl and Kennard (1970), generalized 

cross-validation and cross-validation method. We used the generalized cross-

validation and cross-validation methods in determining the parameter ( )k . 

Lasso Regression 

The Lasso is another regularization method which imposes an 1L -penalty 

on the regression coefficients. The Lasso minimizes the residual sum of squares 

subject to the sum of the absolute value of the coefficients being less than a 

constant.  

The Lasso estimate ̂  is defined by 

2

1 1

ˆ min ( )
pn

Lasso i ij j

i j


 
= =

 
= − 

 
 y X , . .s t  

1

p

j

t
=

 , 0t                             (8)  

An equivalent form of the Lasso is 

2

1 1 1

ˆ min ( )
p pn

Lasso i ij j

i j j

k


  
= = =

 
= − + 

 
  y X , 0k                                     (9)  
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where 1, 2, ,i n= ;   1, 2, ,j p=  and k  is the regularization parameter. 

In matrix form 

2

2 1

ˆ minLasso k


  = − +y X                                                                  (10)  

Tibshirani (1996) defines 0t   (or k ) as a regularized parameter that can be 

chosen using generalized cross-validation or cross-validation. There is a choice 

of k  for every choice of t  that produces the same result.  

The Lasso estimation is a convex optimization issue that can be addressed 

using a quadratic programming algorithm for a given k . Therefore, solving 

Equation (9) does not provide a closed form expression. When the 

regularization parameter k  is set to a high value, the Lasso solution is usually 

sparse as a result of the 1L -penalty. Lasso regression has the same bias 

penalizing effects, variance rewarding effects, and shrinking capabilities as 

Ridge regression. However, as k  increases, more and more coefficients in Lasso 

regression will be identically zero (Hastie et al., 2009). Lasso regression can be 

suitable in handling models with high degree of multicollinearity. 

Two-Stage Regression Method 

When error terms have autocorrelation, the OLS estimate is still unbiased, 

but it is no longer a minimal variance estimate, making it inefficient. Variable 

transformation is one method for addressing estimates in linear autocorrelation 

models. This study looks at the first-order autoregressive structure )1( AR . To 

deal with autocorrelation, we employed a two-stage method. The two-stage 

method is used to correct for autocorrelation and the regularized method to 

correct for multicollinearity. 

We used the two-stage procedure outlined below. 
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1. Obtain an estimate of   using the OLS residuals. The estimate of   is 

obtained by  

2

2

1

1

n

i

n

i

i i

i

e e

e

 =

=

−

=



 

2. The   obtained from the OLS was used to transform the data. 

3. Two-stage estimator ˆ
TS  is obtained by applying OLS to the 

transformed data. The Durbin-Watson test is then used to test whether 

error terms for the transformed model are uncorrelated. 

4. The regularized and robust regression methods was finally applied to the 

autocorrelation-free transformed data. 

Various transformation approaches have been proposed by different 

authors. There are those who employ the 
P  matrix and those who employ the 

P  matrix of transformation. The P  transformation matrix is derived from the 

AR (1)  model for the error term, whereas the 
P  transformation matrix uses a 

lag definition and loses the first observation. The sole difference between 
P  

matrix and P  matrix of transformation is how the first observation is handled. 

The P  transformation matrix keeps the first observation. The P  transformation 

matrix is obtained by inserting a new first row with 21 −  in the first position 

and zero in the other positions in the transformation matrix. It has been shown 

that with large sample size, the difference between the use of the 
P  matrix and 

P  matrix is minimal, but with small sample size, the difference is significant 

(Olaomi, 2008). These approaches are categorized into those that utilize 
P  

matrix for transformation, for instance the Hildreth and Lu (HILU) and 
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Cochrane-Orcutt (CORC) methods, and those that use P  matrix for 

transformation, for instance the Prais-Winstein method (Olaomi, 2008). We 

therefore adopted the P  transformation matrix. 

The P  transformation matrix is given by 

21 0 0 0

1 0 0

0 1 0

0 0 0 1

n n







 −
 

− 
 = −
 
 
 
 

P  

We consider the linear regression model in Equation (1), that is, = +y Xβ e . 

Pre-multiplying both sides of Equation (1) by the P  transformation matrix, we 

get an equivalent linear model 

= +Py PXβ Pe                                                                                                (11)  

Let  =y Py ,  =X PX  and  =e Pe , then E( ) 0 =e  and 2cov( ) n =e I . 

The transformation model is given by 

  = +y X β e                                                                                                        (12)  

Model (12) satisfies the error assumption 2(0, )ne N   I . 

Therefore, the least squares estimate for the Model (12), which is called the 

Two-stage is 

1ˆ ( )T T

TS   −  = X X X y                                                                                             (13)  

where  

2
1

2

3

1 0 0 0

1 0 0

= 0 1 0

0 0 0 1 n

y

y

y

y








   −
   

−   
   = −
   
   
     

y Py  
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2
11 12 1

21 22 2

31 32 3

1 2

11 0 0 0

11 0 0

= 10 1 0

10 0 0 1

k

k

k

n n nk

X X X

X X X

X X X

X X X








   −
   

−   
   = −
   
   
     

X PX , 1k p= −  

The matrix P  can be specified such that T =P P I , and   must be positive 

definite such that 1T −=P P . Then the OLS estimate of the transformed 

variable PX  and Py  in Equation (11) have all of the optimal OLS properties, 

and the usual inferences could be true. 

Now, 1T T T T  −= = X X X P PX X X  and 1T T T T  −= = X y X P Py X y  

where 1−  is given by 

2

2

1

2

2

1 0 0 0

1 0 0

0 1 0 01

1

0 0 0 1

0 0 0 1



  

 



 



−

− 
 
− + −
 
 − +

 =  
−  

 + −
 

− 

 

After obtaining 1− , Two-stage is given by 
1 1 1ˆ ( )T T

TS − − −=  X X X y  

We can find 1ˆ −  after estimating  , then the Two-stage can be given by 

1 1 1ˆ ˆ ˆ( )T T

TS − − −=  X X X y                                                                                   (14)  

Now, to correct for multicollinearity, the regularized regression methods are 

needed. Because the rank of 
X  is equal to the rank of X , the multicollinearity 

in the datasets still affects the Two-stage method. The regularized methods will 

be required to handle the multicollinearity problem. 

Two-Stage Ridge Regression 

The two-stage process used to alter the data is now applied to Ridge 

regression to produce the Two-stage Ridge regression (TR) method. We 
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replaced y  and X  in Equation (6) by 
y  and 

X , respectively. The solution of 

the coefficients can be written as 

2 2

1 1 1

ˆ min ( )
p pn

TR i ij j j

i j j

k


   

= = =

 
= − + 

 
  y X , 0k                                    (15)  

where 1, 2, ,i n= ;   1, 2, ,j p=  and k  is the regularization parameter. 

In matrix form 

2 2

22

ˆ minTR k


   = − +y X  

Solving Equation (15) has closed form solution, and the rank of  
X  is equal to 

the rank of  X . Therefore, regularized solution is given by  

1ˆ ( )T T

TR pk   −  = +X X I X y                                                                                      (16)  

Following Equations (7) and (14), is the Two-stage Ridge regression proposed 

by Eledum and Zahri (2013) 

1 1 1ˆ ˆ ˆ( )T T

TR pk − − −=  + X X I X y                                                                           (17)  

Two-Stage Lasso Regression 

The two-stage procedure which was used to arrive at the transformed data 

is now applied to Lasso regression to get the Two-stage Lasso regression 

(TLasso) method. The complete Lasso cost function is convex and non-

differentiable. We replaced y  and X  in Equation (9) by 
y  and 

X , 

respectively. The solution of the coefficients can be written as 

2

1 1 1

ˆ min ( )
p pn

TLasso i ij j

i j j

k


   

= = =

 
= − + 

 
  y X , 0k                                (18)  

where 1, 2, ,i n= ;   1, 2, ,j p=  and k  is the regularization parameter. 

In matrix form 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



51 
 

2

12

ˆ minTLasso k


   = − +y X  

Instead of running the Lasso on y  vector of response variable and X  matrix of 

predictors, we therefore run it on 
y  vector of response variable and 

X  matrix 

of predictors. 

Quantile Regression Method 

 The Quantile regression (QR) method is widely used to describe the 

distribution of a response variable given a set of predictor variables. QR, as 

introduced by Koenker and Bassett (1978), is an extension of classical least 

squares estimate of conditional mean models to the estimation of an ensemble 

of models for different conditional quantile functions when the conditions of 

linear regression are not met. QR allows estimating the entire distribution of the 

response variable’s conditional quantiles. The QR estimates are more robust 

against outliers in response variables, which is one advantage of QR over OLS 

estimate. However, the QR extends beyond this advantage and is useful when 

dealing with conditional quantile functions. In contrast to traditional linear 

regression, QR does not make any assumptions about the error distribution or 

assume homogeneous residual variance. In this regard, it is a more adaptable 

technique than traditional linear regression. When all of the assumptions of the 

conventional linear regression model are met, QR should produce the same 

results as the traditional model (Tareghian & Rasmussen, 2013). 

A typical QR model is formulated as 

( ) TQ  =y X X β                                                                                       (19)  

where ( )Q     is the conditional quantile function for the th  conditional 

quantile with 0 1   ,   determines the quantile level, X  is a vector of 
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predictor variables and β is a vector of parameters related to the th  QR. QR 

provides separate models for each conditional quantile   of interest. 

Regression coefficients   can be estimated by 

1

ˆ min ( )
n

T

i i

i


 




=

 = − y X β                                                                        (20)  

where ( )   is the check function defined by 

 ( ) I( 0) I( 0)y y y y = (− )  +    

A weighted sum of absolute deviations is used as the check function, where a   

weight is used for the positive deviations and a (1 )−   weight is assigned to the 

negative deviations. As a result, QR estimates for Equation (20) can be 

formulated as 

ˆ min (1 )
T T

i i i i

T T

i i i i

y y



 


  

   

= −  − +  − 
X X

y X β y X β  

QR allows the vector ̂  to variate on different  , the median case ( 0.5 = ) 

being equivalent to minimize the sum of absolute values of the residuals. We 

employed 0.25, 0.5 and 0.75 quantile levels in the analysis of the QR models. 

Regularized and Quantile Regression Methods 

The Ridge type and Lasso type penalties have been proposed in the literature 

to improve the prediction accuracy and interpretability of statistical models in 

both regularization and variable selection (Hoerl & Kennard, 1970; Tibshirani, 

1996; Wang, Li, & Jiang, 2007). The presence of multicollinearity causes large 

variance, which leads to poor inference and prediction. As a solution to the 

multicollinearity problem, QR with the Ridge penalty has been proposed 

(Kibria, 2003). QR with Ridge and Lasso regularization is developed by a QR 

model using Ridge and Lasso coefficients. We therefore employed QR with 
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Ridge and Lasso regularization to develop QR models to study their 

performances on multicollinearity and autocorrelation datasets. 

Ridge Quantile Regression Method 

The Ridge Quantile Regression (RQR) use the ridge coefficients to build the 

QR model. The RQR is achieved by adding 2L -penalty to the quantile loss 

function.  

The RQR estimate   is given by 

2

1 1

ˆ min ( ) ( )
pn

T

RQR i i j

i j

k


   

= =



 
= − + 

 
 y X , 0k                                    (21)  

where 1, 2, ,i n= ;   1, 2, ,j p=  and k  is the ridge parameter. 

Lasso Quantile Regression Method 

Li and Zhu (2008) introduced Lasso Quantile Regression (LQR) for 

simultaneous estimation and variable selection in QR models. The 1L -penalty 

is added to the quantile loss function to formulate the LQR method. 

The LQR estimate   is given by 

1 1

ˆ min ( )
pn

T

LQR i i j

i j

k


   

= =



 
= − + 

 
 y X , 0k                                      (22)  

where 1, 2, ,i n= ;   1, 2, ,j p=  and 0k   is the regularization parameter 

controlling the amount of penalty. The second term in Equation (22) is the 1L -

penalty, which is required for the Lasso to succeed. As the regularized quantile 

loss function is convex and piecewise linear, the LQR method can be computed 

by linear programming. 
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Two-Stage Regularized and Robust Regression Methods 

The robust regression method employed in the study is the QR method. We 

then combined the two-stage method with regularized and quantile regression 

methods. The regression methods formulated are Two-stage Ridge Quantile 

regression and Two-stage Lasso Quantile regression. These regression methods 

were used to estimate the linear model with autocorrelation and 

multicollinearity problems. 

Two-Stage Ridge Quantile Regression Method 

The two-stage process used to alter the data is now used for Ridge Quantile 

regression to produce the Two-stage Ridge Quantile regression (TRQR) model. 

We replaced y  and X  in Equation (21) by 


y  and 
X , respectively. 

The TRQR estimate   is given by  

2

1 1

ˆ min ( ) ( )
pn

T

TRQR i i j

i j

k


    



= =



 
= − + 

 
 y X , 0k                              (23)  

1, 2, ,i n= ;   1, 2, ,j p=  and 0k   is the regularization parameter. 

We therefore run the Ridge Quantile regression on 


y  vector of response 

variable and 
X  matrix of predictors, instead of running it on y  vector of 

response variable and X  matrix of predictors. 

Two-Stage Lasso Quantile Regression Method 

The two-stage procedure which was used to arrive at the transformed data 

is now applied to Lasso quantile regression to produce the Two-stage Lasso 

Quantile regression (TLQR) method. We now replace y  and X  in Equation 

(22) by 


y  and 
X , respectively. 

The TLQR estimate   is given by  
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1 1

ˆ min ( )
pn

T

TLQR i i j

i j

k


    



= =



 
= − + 

 
 y X , 0k                               (24)  

1, 2, ,i n= ;   1, 2, ,j p=  and 0k   is the regularization parameter. 

We now run the Lasso Quantile regression on 


y  vector of response variable 

and 
X  matrix of predictors, instead of running the Lasso Quantile regression 

on y  vector of response variable and X  matrix of predictors. 

Performance Criterion 

We shall use the Mean Squared Error, MSE, as the main criteria to compare the 

performances of the regression methods. Also, other performance criteria such 

the estimating regression coefficients of methods, R-squared, adjusted R-

squared, root mean squared error were considered to evaluate the performances 

of the regression methods. The estimated MSE for each of the regression 

methods is given by 

500

1

1ˆ ˆ ˆ( ) ( ) ( )
500

T

r r

r

MSE     
=

= − −  

where 1,2, ,500r = , ˆ
r  denote parameter estimated for the thr  replication 

of the experiment and   is the true parameter value. The regression method 

with the smallest MSE value is considered best.  

Data Description 

We used both simulated and real datasets. We considered two real datasets 

in this study: The Portland cement dataset and the Historical dataset. We first 

checked for the presence of multicollinearity and autocorrelation in the datasets 

by using the VIF and Durbin-Watson tests. The Portland cement dataset was 

originally used by Woods, Steinour and Starke (1932). The dataset consists of 

13 observations. The response variable is the heat evolved after 180 days of 
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curing and measured in calories/gram of cement with 40 percent water at 35 

degrees Celsius. The four predictor variables considered are the clinker 

compounds (CALCD) defined as tricalcium aluminate, tricalcium silicate, 

tetracalcium aluminoferrite and dicalcium silicate. 

The Historical dataset was discussed by Bayhan and Bayhan (1998). The 

dataset consists of 15 observations. The data includes the weekly quantities of 

shampoos sold as response variable. The two predictor variables are weekly list 

prices (averages from selected supermarkets) of the firm’s shampoos and 

weekly list prices of a certain brand of soap, substituted from shampoos. Due to 

the difficulty in obtaining real data with multicollinearity and autocorrelation 

problems with sample sizes ranging between 25 to 500, we therefore used the 

two real datasets with sample sizes smaller than 25. 

Simulation Design 

We evaluated the performance of the regression methods through 

simulation. Following McDonald and Galarneau (1975) and Kibria (2003), we 

generated predictor variables as follows 

1
22

, 1(1 ) iij j i px z z += −  +     for  1, 2, ,i n=     and    1, 2, ,j p=  

where ijz  is an independent standard normal pseudo random number, and   is 

specified so that the theoretical correlation between any two predictor variables 

is given by 
2 . 

The response variable was generated by the equation 

0 1 1 2 2i i i p ip iy x x x   = + + + + + . 
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The model parameters are assumed to be unity and 0  is taken to be zero. The 

i  are generated from )1( AR  process as  

1i i ie − = + ,  1, 2, ,i n=  

where ie  are independent normal pseudo random numbers and   is 

autoregressive coefficient such that 1  . The error terms were generated by 

assuming (0,1)ie N  and using the distributional property of the autocorrelated 

error terms 
2

2
0,

1

e
i N



 
   

− 
. 

The design was performed by varying multicollinearity levels, the number 

of predictor variables, sample sizes and degrees of autocorrelation as shown: 

1) Multicollinearity levels (0.7, 0.9 and 0.99) 

2) Number of predictor variables (2, 4 and 8) 

3) Sample size (25, 50, 200 and 500) 

4) Degrees of autocorrelation (0.1 and 0.9) 

We want to see the effect of the sample sizes, number of predictor variables, 

multicollinearity levels and degrees of autocorrelation on the performance of 

the regression methods discussed in this study. The simulation was replicated 

500 times in order to obtain the approximate distribution. 

Chapter Summary 

Various regression methods that would be used in the study have been 

reviewed. These include OLS, RR, Lasso, TR, TLasso, QR, RQR, LQR, TRQR 

and TLQR. The concept of regularization of linear models has also been 

explained. In line with this, techniques of regularization processes have also 
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been reviewed. These are the 1L  and 2L  penalties of regularization. A 

discussion of Quantile regression as a robust regression method was done. The 

study employed three quantile levels (0.25, 0.5 and 0.75). Quantile regression 

with Ridge and Lasso regularization to develop quantile regression models were 

formulated. It is anticipated that quantile regression with regularization could 

improve models.  

Two-stage procedure was introduced and P  transformation matrix was 

adopted to be used to transform the datasets to correct for autocorrelation. To 

deal with multicollinearity and autocorrelation simultaneously, the chapter 

presents the combination of two-stage method with regularized and quantile 

regression methods. The data employed in the study consists of simulated and 

two real datasets. The simulation design was presented. Various performance 

criteria have been stated, which would be needed to determine the method that 

best addresses the problems of multicollinearity and autocorrelation 

simultaneously. These are MSE, root mean squared error, adjusted R-squared 

and R-squared. The MSE happened to be the main performance criteria for 

comparing the performances of the regression methods. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Introduction 

This chapter analyses and discusses the results from our simulated and real 

application datasets. The study examines different regularized and robust 

regression methods for handling multicollinearity and autocorrelation problems. 

It presents results of performances of different regression methods, namely, 

Ordinary Least Squares Regression (OLS), Ridge Regression (RR), Lasso 

Regression, Two-Stage Ridge Regression (TR), Two-Stage Lasso Regression 

(TLasso), Quantile Regression (QR), Ridge Quantile Regression (RQR), Lasso 

Quantile Regression (LQR), Two-Stage Ridge Quantile Regression (TRQR), 

and Two-Stage Lasso Quantile Regression (TLQR). The analyses were done in 

two parts. Firstly, appropriate data was simulated and then the regression 

models were fitted using different regression methods. The MSEs of the 

different regression methods were computed and compared to know the best 

regression method for the simulated dataset. Secondly, the regression models 

were fitted to the real datasets described earlier. The MSEs of the different 

regression methods as well as other statistical values (such as regression 

coefficients, R-squared, adjusted R-squared, RMSE) were computed and 

compared to know the best regression method by applying real dataset. 

Statistical Packages 

The R software program was used for the analysis of the data at various 

stages of the study. Algorithms for data simulations were written in R language. 

The R software program was used to simulate data, and for analysing the 

simulated and real datasets. R is a software environment and programming 
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language for statistical computing. R has been widely used in research data 

analysis. The data analysis in R is done by writing scripts and functions. The 

following packages (or libraries) in R were employed in the analysis of the 

simulated dataset and the real dataset; MASS, lmridge, islasso, quantreg, hqreg, 

glmnet, lrmest, and the lmtest package. 

The ordinary least squares regression was performed by the ‘MASS’ R 

package. For ridge regression (and two-stage ridge regression) we employed the 

R package ‘lmridge’, for Lasso regression (and two-stage Lasso regression) we 

employed the R package ‘islasso’, for quantile regression we employed the R 

package ‘quantreg’, for ridge quantile regression (and two-stage ridge quantile 

regression) and Lasso quantile regression (and two-stage Lasso quantile 

regression) we employed the R package ‘hqreg’. The ‘lrmest’ R package was 

used to check the multicollinearity degree present in the dataset and the ‘lmtest’ 

R package was used to perform the Durbin-Watson test for autocorrelation of 

errors. 

Simulation Study 

Autocorrelation and multicollinearity are two of the most common 

regression analysis problems. We usually think of these two problems 

separately; however, they can occur concurrently in applied situations. A Monte 

Carlo simulation was designed to assess the regularized and robust regression 

methods performances. We designed dataset with 0.7, 0.9 and 0.99 

multicollinearity levels with 0.1 degree of autocorrelation and another dataset 

with 0.7, 0.9 and 0.99 multicollinearity levels with 0.9 degree of autocorrelation. 

For both settings we use two, four and eight predictor variables with different 
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sample sizes; n = 25, 50, 200 and 500. The number of replications used for the 

simulation is 500 Monte Carlo simulations. 

Autocorrelation degrees of 0.1 and 0.9 were utilized, resulting in 

autocorrelation for some models and no autocorrelation for others. The 

sensitivity of the methods was assessed by varying the multicollinearity degrees 

from 0.7 to 0.9 and 0.99. Sample sizes of 25, 50, 200, and 500 were utilized to 

ensure that the sample size ranged from small to moderate to large. The 

simulation runs of 500 does not take too much time to run and it is considered 

sufficient to produce stable estimates of the results. The same setting is used for 

all the methods and their mean square error (MSE) computed. All methods may 

thus be compared on the same level, and their MSEs can be directly compared. 

Simulation Results for Two Predictor Variables 

The MSE values as well as the regression coefficients of the regression 

methods are computed. Due to the voluminous nature of the regression 

coefficients generated for all the methods, only few are presented in the work 

and the rest in Appendix B. The Table 1 to Table 4 are some of the simulation 

results of regression coefficients for two predictor variables. 

Table 1: Regression Coefficients when γ² = 0.99, ρ = 0.1 and n = 200 

Coefficient OLS RR Lasso TR TLasso 

0β  0.009 0.009 0.009 0.009 0.009 

1β  0.980 0.980 0.975 0.976 0.972 

2β  1.001 0.996 0.991 0.999 0.994 

 

Table 2: Regression Coefficients when γ² = 0.7, ρ = 0.1 and n = 500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.005 -0.005 -0.006 -0.005 -0.006 

1β  0.999 0.997 0.992 0.998 0.992 

2β  1.008 1.006 1.001 1.006 1.001 
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Table 3: Estimated Coefficients when γ² = 0.70, ρ = 0.9 and n = 500 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -1.489 -1.497 -1.498 -1.497 -1.497 

0.25 1β  0.957 0.938 0.944 0.937 0.944 

 2β  1.093 1.056 1.077 1.055 1.076 

 0β  0.022 0.026 0.024 0.024 0.023 

0.5 1β  1.028 1.004 1.015 1.005 1.015 

 2β  1.011 0.986 0.996 0.986 0.997 

 0β  1.332 1.345 1.351 1.351 1.356 

0.75 1β  1.127 1.088 1.110 1.089 1.110 

 2β  0.914 0.904 0.908 0.908 0.910 

Based on 500 Monte Carlo Simulations 

 

Table 4: Estimated Coefficients when γ² = 0.70, ρ = 0.1 and n = 500 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.704 -0.708 -0.709 -0.707 -0.709 

0.25 1β  1.017 1.007 1.009 1.007 1.009 

 2β  1.000 1.001 1.003 1.001 1.004 

 0β  -0.027 -0.023 -0.022 -0.022 -0.022 

0.5 1β  0.979 0.971 0.975 0.973 0.975 

 2β  0.973 0.969 0.972 0.969 0.972 

 0β  0.659 0.673 0.673 0.674 0.674 

0.75 1β  1.098 1.070 1.072 1.067 1.070 

 2β  0.899 0.914 0.913 0.916 0.915 

Based on 500 Monte Carlo Simulations 
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Table 5: Estimated MSE for Two Predictor Variables when ρ = 0.1 

2  n OLS RR Lasso TR TLasso 

 25 0.92991 0.88680 0.93337 0.88272 0.92903 

0.7 50 0.99950 0.97748 1.00059 0.97631 0.99942 

 200 1.00534 1.00020 1.00551 1.00011 1.00544 

 500 1.05310 1.05097 1.05325 1.05096 1.05323 

 25 0.93267 0.88549 0.93365 0.88186 0.92902 

0.9 50 0.98313 0.95980 0.98322 0.95848 0.98172 

 200 1.00534 1.00007 1.00553 0.99999 1.00545 

 500 1.05286 1.05071 1.05303 1.05069 1.05301 

 25 0.93526 0.87858 0.92268 0.87584 0.91808 

0.99 50 0.98373 0.95488 0.97629 0.95384 0.97523 

 200 1.06706 1.06030 1.06627 1.06020 1.06614 

 500 1.05254 1.05014 1.05262 1.05012 1.05261 

Based on 500 Monte Carlo Simulations 

Table 5 shows the simulation results of the estimated MSEs for two 

predictor variables when ρ = 0.1. Based on the MSE of each regression method, 

the TR has the least MSE as compared to the other methods for all categories. 

Consequently, RR and TR methods are better than OLS when the 

multicollinearity problem exists in a data with TR being the best in this case for 

the two predictor variables. It clearly indicates that the estimated mean squared 

errors for TR is always less than that of RR method. The simulation results show 

that the TR method performs better than OLS, RR, Lasso and TLasso for all 

samples sizes (n = 25, 50, 200 and 500) and across the different levels of 
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multicollinearity (0.7, 0.9 and 0.99). In addition, we observe that the 

performance of Lasso and TLasso methods to the OLS method is not 

satisfactory with large sample size. The results show that the estimated MSE for 

the OLS method competes with Lasso and TLasso methods with large sample 

sizes (200 ≤ n ≤ 500) for two predictor variables. The findings from comparisons 

of the OLS, RR, Lasso, TR and TLasso methods show that the TR method is 

better than other methods (OLS, RR, Lasso and TLasso), and much better than 

OLS method. 

 

Table 6: Estimated MSE for Two Predictor Variables when ρ = 0.9 

2  n OLS RR Lasso TR TLasso 

  25 3.09038 2.94315 3.11001 2.92748 3.09169 

0.7 50 6.21790 6.07838 6.21422 6.06744 6.20470 

 

200 4.78922 4.76461 4.78946 4.76418 4.78901 

  500 4.99732 4.98721 4.99748 4.98713 4.99740 

 

25 3.08228 2.92430 3.07193 2.91079 3.05419 

0.9 50 6.21827 6.06692 6.19399 6.05674 6.18414 

 

200 6.29188 6.25867 6.29115 6.25811 6.29064 

 

500 4.99369 4.98348 4.99387 4.98339 4.99378 

  25 2.61518 2.44835 2.56965 2.44126 2.55847 

0.99 50 6.21861 6.03361 6.15648 6.02524 6.14837 

 

200 6.29241 6.25361 6.28074 6.25315 6.28065 

  500 4.99047 4.97904 4.98852 4.97896 4.98839 

Based on 500 Monte Carlo Simulations 
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Table 6 presents the simulation results of the estimated MSEs for two 

predictor variables when ρ = 0.9. Based on the MSE of each regression method, 

the TR has the least MSE among the other regression methods for all sample 

sizes (n = 25, 50, 200 and 500) and across the different levels of 

multicollinearity (0.7, 0.9 and 0.99). Consequently, RR and TR methods are 

better than OLS, Lasso and TLasso, with TR being the best in this case for the 

two predictor variables. It clearly indicates that the estimated mean squared 

errors for TR is always less than that of RR when the multicollinearity and 

autocorrelation problems exist in a dataset. We observe that the performance of 

Lasso and TLasso as compared to the OLS is not satisfactory for large sample 

size (n = 500). The results show that the MSE for OLS method is relatively 

smaller than the Lasso and TLasso methods with large sample size. The 

estimated MSEs of Lasso and TLasso decreases as the multicollinearity level 

increases for a decreased sample size. The results of comparison indicated that, 

the TLasso method outperforms the OLS for combinations of multicollinearity 

and autocorrelation problems when the degree of multicollinearity is high with 

small sample sizes. The estimated MSEs of TLasso method gets closer to the 

estimated MSEs of TR method for increased sample size. However, the TR 

method seems to be an appropriate alternative to other methods in handling 

autocorrelation and multicollinearity problems. 
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Table 7: Estimated MSE for Two Predictor Variables when τ = 0.25 

  2  n QR RQR LQR TRQR TLQR 

 
  25 1.67303 1.66693 1.64995 1.59754 1.57718 

 
0.7 50 1.47071 1.46677 1.41505 1.42172 1.41410 

  
200 1.53069 1.51364 1.51310 1.51181 1.51205 

 
  500 1.54791 1.54309 1.54397 1.54216 1.54393 

  
25 1.68017 1.62394 1.63584 1.59982 1.57222 

0.1 0.9 50 1.51393 1.44162 1.44203 1.45574 1.44470 

  
200 1.53160 1.51069 1.51253 1.51174 1.51104 

  
500 1.54864 1.54399 1.54732 1.54345 1.54717 

 
  25 1.68117 1.58152 1.88607 1.56626 1.55670 

 
0.99 50 1.51386 1.43914 1.43767 1.43337 1.43766 

  
200 1.55362 1.51480 1.52803 1.51528 1.52650 

    500 1.54971 1.54264 1.54931 1.54128 1.54862 

 
  25 5.35151 5.36602 5.59986 5.25951 5.38336 

 
0.7 50 9.24295 8.85666 8.81489 8.81102 8.80087 

  
200 7.90937 7.78684 7.78254 7.75910 7.76405 

 
  500 7.22085 7.19784 7.19921 7.19683 7.19935 

  
25 5.32352 5.39459 5.38209 12.44507 5.14952 

0.9 0.9 50 9.22574 8.83476 8.82583 8.80307 8.76999 

  
200 9.29791 9.15282 9.14251 9.15644 9.14642 

 
  500 7.21351 7.19055 7.19745 7.19321 7.19729 

  
25 4.65485 3.88326 3.96025 3.86494 3.91002 

 
0.99 50 9.21678 8.89440 8.82273 8.83673 8.79430 

  
200 9.29719 9.16282 9.15287 9.16444 9.15178 

    500 7.21022 7.17773 7.19117 7.18025 7.19138 

Based on 500 Monte Carlo Simulations 

In Table 7, we provide the results of estimated MSEs of the methods for two 

predictor variables when  = 0.25. When ρ = 0.1, RQR, TRQR and TLQR 

methods outperforms the other methods. Comparing TRQR and TLQR 

methods, TRQR performs better than TLQR with large sample sizes (n = 500). 
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Whiles, TLQR produce better results than TRQR with small sample sizes (n = 

25). When ρ = 0.9, TRQR and TLQR methods outperforms the other methods 

except on two cases where RQR and LQR methods produced better MSE 

results.  

Table 8: Estimated MSE for Two Predictor Variables when τ = 0.5 

  2  n QR RQR LQR TRQR TLQR 

 
  25 1.01189 0.94039 0.94678 0.95230 0.94541 

 
0.7 50 1.02653 0.97606 0.97516 0.97681 0.97517 

  
200 1.01361 1.00206 1.00024 1.00210 1.00004 

 
  500 1.05860 1.05331 1.05241 1.05308 1.05240 

  
25 1.01519 0.94382 0.92823 0.94040 0.93435 

0.1 0.9 50 1.02199 0.96585 0.96871 0.96552 0.96610 

  
200 1.01304 1.00233 0.99963 1.00234 0.99961 

  
500 1.05832 1.05324 1.05151 1.05333 1.05161 

 
  25 1.01514 0.91707 0.92139 0.94047 1.03871 

 
0.99 50 1.02256 0.96641 0.96540 0.96632 0.96331 

  
200 1.07900 1.06225 1.06148 1.06223 1.06137 

    500 1.05790 1.05363 1.05068 1.05322 1.05082 

 
  25 3.32752 2.94866 2.96282 2.93685 2.94384 

 
0.7 50 6.51798 6.24601 6.22953 6.19736 6.20087 

  
200 4.85857 4.83668 4.82008 4.82880 4.81209 

 
  500 5.00895 4.98316 4.98045 4.98325 4.98022 

  
25 3.32630 2.93558 2.93385 3.11302 2.91792 

0.9 0.9 50 6.53255 6.21143 6.20211 6.17466 6.18157 

  
200 6.35187 6.30817 6.29031 6.30568 6.28719 

 
  500 5.00513 4.98207 4.97660 4.98178 4.97647 

  
25 2.83886 2.54820 2.55223 2.57032 2.53253 

 
0.99 50 6.53412 6.20382 6.18190 6.16772 6.17820 

  
200 6.35244 6.30329 6.29353 6.29950 6.28559 

    500 5.00170 4.97696 4.97353 4.97688 4.97319 

Based on 500 Monte Carlo Simulations 
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Table 8 is the estimated MSEs of the methods for two predictor variables 

when  = 0.5. The two scenarios considered in the simulation studies are when 

ρ = 0.1 and ρ = 0.9. Based on the mean square errors for each model, we noted 

that all regression methods with  = 0.5 are better than regression methods when 

 = 0.25 and  = 0.75 (comparing Table 7, Table 8 and Table 9) for ρ = 0.1 and 

ρ = 0.9.  

The simulation results from the first scenario when ρ = 0.1 indicated that, 

the MSE values of TLQR methods at  = 0.5 are relatively smaller than that of 

the TRQR methods at  = 0.5 in all the cases, except two cases where the MSE 

values of TRQR methods at  = 0.5 are relatively smaller than TLQR methods 

at  = 0.5. Also, RQR produce better results than LQR with less predictor 

variables and small sample size. 

The simulation results from the second scenario when ρ = 0.9 indicated that, 

TRQR and TLQR methods at  = 0.5 outperforms the other methods in all the 

cases. Comparing TRQR and TLQR methods at  = 0.5, the TRQR produce 

better results than TLQR with less predictor variables and small sample sizes 

whiles TLQR performs better with larger sample size. 
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Table 9: Estimated MSE for Two Predictor Variables when τ = 0.75 

  2  n QR RQR LQR TRQR TLQR 

 
  25 1.53290 1.31314 1.35788 1.35180 1.33929 

 
0.7 50 1.49271 1.39874 1.40523 1.39821 1.40153 

  
200 1.50195 1.47498 1.47467 1.47461 1.47430 

 
  500 1.50661 1.51549 1.51571 1.51663 1.51661 

  
25 1.53669 1.37181 1.41571 1.32701 1.35836 

0.1 0.9 50 1.51217 1.46355 1.46952 1.46446 1.46493 

  
200 1.50161 1.47543 1.47520 1.47578 1.47539 

  
500 1.50884 1.51301 1.51544 1.51391 1.51564 

 
  25 1.53687 1.29625 1.32649 1.33246 1.31398 

 
0.99 50 1.51213 1.45056 1.44827 1.44072 1.43896 

  
200 1.55332 1.55523 1.55469 1.55757 1.55741 

    500 1.50866 1.50827 1.51472 1.50918 1.51508 

 
  25 5.25091 5.07891 5.03045 5.06845 4.94730 

 
0.7 50 9.72631 9.51762 9.55344 9.48918 9.53751 

  
200 7.30032 7.21249 7.24436 7.22166 7.25403 

 
  500 6.82334 6.82719 6.83741 6.84147 6.85131 

  
25 5.24440 5.07615 5.24310 4.99809 4.90922 

0.9 0.9 50 9.69809 9.49986 9.49538 9.49295 9.43714 

  
200 9.95328 9.68758 9.68559 9.64254 9.65360 

 
  500 6.83170 6.83566 6.85179 6.84689 6.86236 

  
25 4.85473 4.74489 4.68336 4.56022 4.46491 

 
0.99 50 9.70719 9.43089 9.37521 9.40251 9.35997 

  
200 9.97164 9.69224 9.69806 9.65311 9.66381 

    500 6.83560 6.85268 6.85304 6.86284 6.86532 

Based on 500 Monte Carlo Simulations 

In Table 9, we provide the simulation results of estimated MSEs of the 

methods for two predictor variables when  = 0.75. The results show that QR 

method competes with the other methods with large sample sizes (n = 500). 
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Table 10: Comparison of Methods MSEs for Two Predictor Variables 

  2  n TR TLasso 
RQR LQR TRQR TLQR 

τ = 0.5 τ = 0.5 τ = 0.5 τ = 0.5 

 
  25 0.88272 0.92903 0.94039 0.94678 0.95230 0.94541 

 
0.7 50 0.97631 0.99942 0.97606 0.97516 0.97681 0.97517 

  
200 1.00011 1.00544 1.00206 1.00024 1.00210 1.00004 

 
  500 1.05096 1.05323 1.05331 1.05241 1.05308 1.05240 

  
25 0.88186 0.92902 0.94382 0.92823 0.94040 0.93435 

0.1 0.9 50 0.95848 0.98172 0.96585 0.96871 0.96552 0.96610 

  
200 0.99999 1.00545 1.00233 0.99963 1.00234 0.99961 

  
500 1.05069 1.05301 1.05324 1.05151 1.05333 1.05161 

 
  25 0.87584 0.91808 0.91707 0.92139 0.94047 1.03871 

 
0.99 50 0.95384 0.97523 0.96641 0.96540 0.96632 0.96331 

  
200 1.06020 1.06614 1.06225 1.06148 1.06223 1.06137 

    500 1.05012 1.05261 1.05363 1.05068 1.05322 1.05082 

 
  25 2.92748 3.09169 2.94866 2.96282 2.93685 2.94384 

 
0.7 50 6.06744 6.20470 6.24601 6.22953 6.19736 6.20087 

  
200 4.76418 4.78901 4.83668 4.82008 4.82880 4.81209 

 
  500 4.98713 4.99740 4.98316 4.98045 4.98325 4.98022 

  
25 2.91079 3.05419 2.93558 2.93385 3.11302 2.91792 

0.9 0.9 50 6.05674 6.18414 6.21143 6.20211 6.17466 6.18157 

  
200 6.25811 6.29064 6.30817 6.29031 6.30568 6.28719 

 
  500 4.98339 4.99378 4.98207 4.97660 4.98178 4.97647 

  
25 2.44126 2.55847 2.54820 2.55223 2.57032 2.53253 

 
0.99 50 6.02524 6.14837 6.20382 6.18190 6.16772 6.17820 

  
200 6.25315 6.28065 6.30329 6.29353 6.29950 6.28559 

    500 4.97896 4.98839 4.97696 4.97353 4.97688 4.97319 

Based on 500 Monte Carlo Simulations 

The comparison of the performances of the methods in term of their MSE 

values over two predictor variables at various levels of multicollinearity and 

sample size is given for both ρ = 0.1 and ρ = 0.9 in Table 10. The simulation 

findings when ρ = 0.1 revealed that, TR method outperforms the other methods 
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in many of the cases, especially with severe multicollinearity. Increasing 

multicollinearity provides an overall improvement in TR over the other 

regression methods for two predictor variables. Moreover, the LQR and TLQR 

methods at quantile level 0.5 often competes favourably with the TR method. 

The simulation results when ρ = 0.9 revealed that, the TR method has the 

smallest MSE values and therefore outperforms the other methods with high 

autocorrelation and across the different degrees of multicollinearity, except 

three of the cases where TLQR method at quantile level 0.5 performs best. For 

25 ≤ n ≤ 200, TR is best when multicollinearity is high with high autocorrelation 

for two predictor variables. Moreover, with large sample size (n = 500), the 

TLQR method at quantile level 0.5 is best. Overall, the use of the TR method 

for two predictor variables in a model is generally effective in handling 

multicollinearity and autocorrelation problems.  

Simulation Results for Four Predictor Variables 

The MSE values together with the regression coefficients are computed for 

all the regression methods. However, few of the regression coefficients of the 

methods are presented due to its voluminous nature and the rest in Appendix B. 

The Table 11 to Table 13 are some of the simulation results of regression 

coefficients for four predictor variables. 

Table 11: Coefficients for Four Predictors when γ² = 0.90, ρ = 0.9 and  

n = 500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.080 -0.080 -0.080 -0.080 -0.080 

1β  0.968 0.968 0.960 0.968 0.961 

2β  1.000 0.999 0.995 0.997 0.994 

3β  0.762 0.765 0.757 0.766 0.757 

4β  1.100 1.097 1.094 1.097 1.094 
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Table 12: Coefficients for Four Predictors when γ² = 0.70, ρ = 0.1 and  

n = 200 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.016 -0.016 -0.016 -0.016 -0.016 

1β  1.107 1.104 1.097 1.105 1.097 

2β  1.054 1.051 1.050 1.051 1.051 

3β  0.881 0.882 0.874 0.882 0.874 

4β  0.995 0.993 0.989 0.993 0.989 

Based on 500 Monte Carlo Simulations 

 

Table 13: Coefficients for Four Predictors when γ² = 0.70, ρ = 0.1 and  

n = 25 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.393 -0.426 -0.421 -0.403 -0.403 

 1β  0.935 0.890 0.905 0.896 0.909 

0.25 2β  0.980 0.895 0.938 0.910 0.941 

 3β  1.044 0.946 1.013 0.960 1.036 

 4β  0.881 0.899 0.876 0.897 0.868 

 0β  0.078 0.066 0.082 0.078 0.094 

 1β  1.045 1.000 1.038 0.992 1.037 

0.5 2β  0.990 0.940 0.970 0.945 0.977 

 3β  1.083 1.007 1.058 1.024 1.074 

 4β  0.780 0.809 0.731 0.791 0.706 

 0β  0.690 0.665 0.700 0.678 0.707 

 1β  0.974 0.927 0.949 0.927 0.946 

0.75 2β  1.120 1.017 1.068 1.018 1.070 

 3β  1.375 1.172 1.280 1.188 1.297 

 4β  0.587 0.692 0.585 0.674 0.581 

Based on 500 Monte Carlo Simulations 
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Table 14: Estimated MSE for Four Predictor Variables when ρ = 0.1 

2  n OLS RR Lasso TR TLasso 

  25 0.79317 0.74632 0.79619 0.74004 0.78820 

0.7 50 0.97184 0.94744 0.97356 0.94468 0.97061 

 

200 1.10471 1.09884 1.10532 1.09865 1.10512 

  500 0.93315 0.93124 0.93370 0.93121 0.93367 

 

25 0.79143 0.73637 0.78102 0.73153 0.77422 

0.9 50 0.97208 0.94300 0.97025 0.94060 0.96744 

 

200 1.10437 1.09805 1.10505 1.09786 1.10485 

 

500 0.93271 0.93073 0.93338 0.93071 0.93335 

  25 1.51952 1.36426 1.41603 1.35975 1.40886 

0.99 50 0.97223 0.93640 0.94745 0.93509 0.94617 

 

200 1.10411 1.09532 1.09966 1.09520 1.09948 

  500 0.97964 0.97680 0.97946 0.97678 0.97943 

Based on 500 Monte Carlo Simulations 

Table 14 presents the simulation results of estimated MSEs for four 

predictor variables when ρ = 0.1. The results clearly indicate that the estimated 

mean squared errors for TR is always less than that of RR method. The 

simulation results therefore showed that the TR method outperforms OLS, RR, 

Lasso and TLasso methods for all the different samples sizes (n = 25, 50, 200 

and 500) and across the different degrees of multicollinearity (0.7, 0.9 and 0.99). 

Again, we can see that the performance of Lasso and TLasso methods to the 

OLS method is not satisfactory for large sample size. The results show that the 

MSE for the OLS method competes with Lasso and TLasso methods with large 
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sample sizes (200 ≤ n ≤ 500) for four predictor variables. However, the Lasso 

and TLasso methods perform better than the OLS method for a very high 

multicollinearity 
2( 0.99) =  across all samples size (n = 25, 50, 200 and 500). 

The findings from comparisons of the OLS, RR, Lasso, TR and TLasso methods 

show that, the TR method outperforms the other methods (OLS, RR, Lasso and 

TLasso), and much better than OLS method. 

Table 15: Estimated MSE for Four Predictor Variables when ρ = 0.9 

2  n OLS RR Lasso TR TLasso 

  25 2.68242 2.51313 2.66882 2.49036 2.63958 

0.7 50 3.12628 3.04559 3.12484 3.03859 3.11820 

 

200 4.49030 4.46635 4.49088 4.46557 4.49009 

  500 5.91710 5.90495 5.91762 5.90477 5.91744 

 

25 2.69813 2.48892 2.61093 2.47101 2.58661 

0.9 50 3.12546 3.02730 3.09662 3.02129 3.09004 

 

200 4.49126 4.46541 4.48924 4.46465 4.48850 

 

500 5.92112 5.90852 5.92130 5.90834 5.92111 

  25 1.59896 1.43701 1.50212 1.42933 1.49333 

0.99 50 2.72744 2.61173 2.65555 2.60878 2.65264 

 

200 4.49217 4.45411 4.46496 4.45359 4.46428 

  500 5.92468 5.90764 5.91089 5.90748 5.91082 

Based on 500 Monte Carlo Simulations 

Table 15 presents the simulation results of the estimated MSEs for four 

predictor variables when ρ = 0.9. According to the MSE criterion of each 

regression method, the TR method has the least MSE among the other 
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regression methods (OLS, RR, Lasso and TLasso) for all sample sizes (n = 25, 

50, 200 and 500) and across the levels of multicollinearity (0.7, 0.9 and 0.99). 

Moreover, the RR method on the other hand outperforms OLS, Lasso and 

TLasso methods in the above-mentioned categories. However, the estimated 

mean squared errors for TR method are always less than that of RR when the 

multicollinearity and autocorrelation problems exist in a dataset. The estimated 

MSEs of Lasso and TLasso methods decreases as the multicollinearity level 

increases for a decreased sample size.  

The results of comparison indicated that, the Lasso and TLasso methods are 

better than the OLS method in existence of autocorrelation and multicollinearity 

problems. But with a very large sample size, OLS method is a close competitor 

to the Lasso and TLasso methods with respect to their MSEs. The superiority of 

the Lasso and TLasso methods over OLS is primarily determined by the degree 

of autocorrelation and the number of predictors in the data. The estimated MSEs 

of TLasso method gets closer to the estimated MSEs of TR method for large 

sample size. Therefore, the TR method seems to be an appropriate alternative 

to other methods in existence of autocorrelation and multicollinearity issues. 
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Table 16: Estimated MSE for Four Predictor Variables when τ = 0.25 

  2  n QR RQR LQR TRQR TLQR 

 
  25 1.31396 1.17378 1.11539 1.15835 1.09540 

 
0.7 50 1.56791 1.42125 1.43337 1.41349 1.41301 

  
200 1.61177 1.62406 1.62824 1.62250 1.62459 

 
  500 1.33774 1.33962 1.34153 1.33925 1.34297 

  
25 1.31779 1.17094 1.11706 1.15495 1.10509 

0.1 0.9 50 1.56656 1.42478 1.43347 1.41194 1.41469 

  
200 1.61104 1.61154 1.63047 1.61500 1.62749 

  
500 1.33763 1.33503 1.34465 1.33507 1.34579 

 
  25 2.39220 1.79282 1.79185 1.79054 1.80130 

 
0.99 50 1.56778 1.42501 1.42308 1.41533 1.40905 

  
200 1.61073 1.59007 1.62195 1.59750 1.62136 

    500 1.39403 1.38851 1.40645 1.38786 1.40530 

 
  25 4.47262 3.44662 3.52391 3.45838 3.51838 

 
0.7 50 4.87853 4.50648 4.55911 4.48776 4.53077 

  
200 7.27739 7.11387 7.09863 7.10118 7.09385 

 
  500 9.01138 8.88897 8.92142 8.88746 8.91700 

  
25 4.49228 3.49247 3.50201 3.49218 3.50178 

0.9 0.9 50 4.87517 4.44418 4.49152 4.43232 4.46777 

  
200 7.28705 7.11294 7.11335 7.09828 7.10563 

 
  500 9.00495 8.86667 8.92679 8.86500 8.92235 

  
25 2.80273 2.28988 2.26570 2.23702 2.22067 

 
0.99 50 4.49098 4.14752 4.18015 4.13351 4.17253 

  
200 7.29835 7.07723 7.08919 7.07073 7.08628 

    500 9.00659 8.87032 8.90629 8.86687 8.90063 

Based on 500 Monte Carlo Simulations 

In Table 16, we provide the results of estimated MSEs of the methods for 

four predictor variables when  = 0.25. When ρ = 0.1, QR, RQR, TRQR and 

TLQR methods performed in various cases except LQR method which did not 

perform in any case. The QR method improved in performance with large 
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sample sizes. When ρ = 0.9, TRQR method performs better than the other 

methods except on three cases where RQR and TLQR methods produced better 

MSE results. 

Table 17: Estimated MSE for Four Predictor Variables when τ = 0.5 

  2  n QR RQR LQR TRQR TLQR 

 
  25 0.90448 0.75924 0.73979 0.75710 0.74255 

 
0.7 50 1.03008 0.95122 0.94233 0.94849 0.93236 

  
200 1.12410 1.08938 1.09068 1.08997 1.09077 

 
  500 0.94090 0.92905 0.92903 0.92905 0.92904 

  
25 0.90216 0.76244 0.73886 0.75566 0.74049 

0.1 0.9 50 1.03153 0.94813 0.93876 0.94527 0.93450 

  
200 1.12321 1.08829 1.08962 1.08830 1.08937 

  
500 0.94044 0.92854 0.92838 0.92849 0.92843 

 
  25 1.66395 1.35950 1.34908 1.34965 1.33492 

 
0.99 50 1.03161 0.94637 0.93587 0.94208 0.93063 

  
200 1.12210 1.09122 1.08783 1.09116 1.08744 

    500 0.98521 0.97408 0.97274 0.97401 0.97268 

 
  25 3.06747 2.54789 2.54344 2.52256 2.51145 

 
0.7 50 3.29792 3.03599 3.01265 3.03142 3.00107 

  
200 4.55444 4.50012 4.47009 4.49726 4.46180 

 
  500 5.97541 5.92110 5.91003 5.92121 5.90906 

  
25 3.09165 2.52656 2.52883 2.50138 2.50761 

0.9 0.9 50 3.29681 3.02601 3.02121 3.01934 3.00150 

  
200 4.55552 4.48477 4.46615 4.48548 4.46158 

 
  500 5.98034 5.92179 5.91414 5.92071 5.91224 

  
25 1.87440 1.52013 1.51713 1.49731 1.48415 

 
0.99 50 2.89477 2.61410 2.59416 2.61717 2.59072 

  
200 4.55689 4.46004 4.45659 4.46356 4.44875 

    500 5.98351 5.91571 5.91309 5.91589 5.91232 

Based on 500 Monte Carlo Simulations 
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Table 17 provides the simulation results of estimated MSEs of the methods 

for four predictor variables when  = 0.5. The two scenarios considered in the 

simulation studies are the cases when the degrees of the autocorrelation are at 

0.1 and 0.9. Based on the MSE criterion for each regression method, we noted 

that all regression methods with  = 0.5 outperforms regression methods with  

= 0.25 and  = 0.75 (see Table 16, Table 17 and Table 18).  

The simulation results for the first scenario when ρ = 0.1, show that the 

MSEs of the TLQR methods at  = 0.5 are relatively smaller than the TRQR 

methods at  = 0.5, except two cases where MSE values of TRQR methods at  

= 0.5 are relatively smaller than TLQR methods at  = 0.5. In fact, RQR is a 

close competitor with LQR in a model with less predictor variables. But the 

results from comparisons of the methods show that, TLQR methods at  = 0.5 

are most preferred methods with very high multicollinearity level 
2( 0.99) =  

at the different samples size (n = 25, 50, 200 and 500). 

The simulation findings for the second scenario when ρ = 0.9 revealed that, 

the TRQR and TLQR methods at  = 0.5 outperforms the other methods in all 

the cases. It can be noticed that in all the considered situations for ρ = 0.9, TLQR 

at  = 0.5 has the least MSE and outperforms RQR, LQR and TRQR at all 

quantile levels. There is only one case, where TRQR at  = 0.5 outperforms 

TLQR, however, the difference in MSE values between the two methods 

appears to be small. Therefore, the TLQR method is better than the other 

methods (QR, RQR, LQR and TRQR) in handling multicollinearity and 

autocorrelation problems in a dataset for four predictor variables. 
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Table 18: Estimated MSE for Four Predictor Variables when τ = 0.75 

  2  n QR RQR LQR TRQR TLQR 

 
  25 1.31787 1.01934 1.05242 1.02290 1.04090 

 
0.7 50 1.47537 1.34610 1.35145 1.34541 1.34749 

  
200 1.59124 1.57675 1.58451 1.57867 1.58432 

 
  500 1.32228 1.33490 1.33903 1.33449 1.33844 

  
25 1.31068 0.98695 1.03265 0.98622 1.02691 

0.1 0.9 50 1.47661 1.34286 1.35368 1.33966 1.34684 

  
200 1.59050 1.56396 1.58104 1.56745 1.58289 

  
500 1.32130 1.32584 1.33918 1.32709 1.33942 

 
  25 2.56391 2.07129 2.09027 2.04046 2.06171 

 
0.99 50 1.47829 1.34381 1.33885 1.33611 1.33734 

  
200 1.59160 1.55894 1.57269 1.56176 1.57355 

    500 1.42636 1.42203 1.43544 1.42152 1.43448 

 
  25 4.24198 3.66923 3.64140 3.65348 3.64204 

 
0.7 50 4.77836 4.36507 4.38528 4.36631 4.36965 

  
200 7.16280 6.96338 6.99399 6.95118 6.99071 

 
  500 8.91545 8.81505 8.84163 8.81812 8.83924 

  
25 4.28831 3.52488 3.56522 3.54655 3.54896 

0.9 0.9 50 4.78741 4.35174 4.38378 4.37615 4.38269 

  
200 7.16071 6.93692 6.99307 6.93755 6.99062 

 
  500 8.92797 8.81098 8.86837 8.81422 8.86685 

  
25 2.80838 2.08379 2.08880 2.08897 2.09609 

 
0.99 50 4.56873 4.23370 4.15337 4.17686 4.12389 

  
200 7.16285 6.94089 6.97935 6.94591 6.97719 

    500 8.93844 8.81946 8.86458 8.82152 8.86687 

Based on 500 Monte Carlo Simulations 

Table 18 provides the simulation results of estimated MSEs of the methods 

for four predictor variables when  = 0.75. When ρ = 0.1, RQR and TRQR are 

the best performing methods as well as QR method competing at large sample 

sizes (n = 500). When ρ = 0.9, RQR method performs better than the other 
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methods except on three cases where LQR, TRQR and TLQR methods 

produced better MSE results. 

Table 19: Comparison of Methods MSEs for Four Predictor Variables 

  2  n  TR TLasso 
RQR LQR TRQR TLQR 

τ = 0.5 τ = 0.5 τ = 0.5 τ = 0.5 

 
  25 0.74004 0.78820 0.75924 0.73979 0.75710 0.74255 

 
0.7 50 0.94468 0.97061 0.95122 0.94233 0.94849 0.93236 

  
200 1.09865 1.10512 1.08938 1.09068 1.08997 1.09077 

 
  500 0.93121 0.93367 0.92905 0.92903 0.92905 0.92904 

  
25 0.73153 0.77422 0.76244 0.73886 0.75566 0.74049 

0.1 0.9 50 0.94060 0.96744 0.94813 0.93876 0.94527 0.93450 

  
200 1.09786 1.10485 1.08829 1.08962 1.08830 1.08937 

  
500 0.93071 0.93335 0.92854 0.92838 0.92849 0.92843 

 
  25 1.35975 1.40886 1.35950 1.34908 1.34965 1.33492 

 
0.99 50 0.93509 0.94617 0.94637 0.93587 0.94208 0.93063 

  
200 1.09520 1.09948 1.09122 1.08783 1.09116 1.08744 

    500 0.97678 0.97943 0.97408 0.97274 0.97401 0.97268 

 
  25 2.49036 2.63958 2.54789 2.54344 2.52256 2.51145 

 
0.7 50 3.03859 3.11820 3.03599 3.01265 3.03142 3.00107 

  
200 4.46557 4.49009 4.50012 4.47009 4.49726 4.46180 

 
  500 5.90477 5.91744 5.92110 5.91003 5.92121 5.90906 

  
25 2.47101 2.58661 2.52656 2.52883 2.50138 2.50761 

0.9 0.9 50 3.02129 3.09004 3.02601 3.02121 3.01934 3.00150 

  
200 4.46465 4.48850 4.48477 4.46615 4.48548 4.46158 

 
  500 5.90834 5.92111 5.92179 5.91414 5.92071 5.91224 

  
25 1.42933 1.49333 1.52013 1.51713 1.49731 1.48415 

 
0.99 50 2.60878 2.65264 2.61410 2.59416 2.61717 2.59072 

  
200 4.45359 4.46428 4.46004 4.45659 4.46356 4.44875 

    500 5.90748 5.91082 5.91571 5.91309 5.91589 5.91232 

Based on 500 Monte Carlo Simulations 

The summary of the performances of the methods in term of their MSE 

values over four predictor variables at various levels of multicollinearity and 
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sample size is given for both ρ = 0.1 and ρ = 0.9 in Table 19. When ρ = 0.1, 

RQR, LQR and TLQR methods at quantile level 0.5 outperforms the other 

methods except on one case where TR method is best when n = 25 at 0.9 

multicollinearity level. The TLQR method produce better results than the other 

methods with severe multicollinearity 
2( 0.99) =  for the different samples 

size. When 
2 0.7 = , the pattern of the findings is similar to when 2 0.9 =  and 

0.99 for high autocorrelation ( 0.9) = . When 25n =  and 500n = , the TR 

method is best except when 50 200n  . Moreover, when 50 200n  , the 

TLQR method at quantile level 0.5 is generally best. Therefore, both TR method 

and TLQR method at quantile level 0.5 are the best methods in handling 

multicollinearity and autocorrelation problems in a dataset with four predictors. 

Simulation Results for Eight Predictor Variables 

The MSE values and regression coefficients were computed for all the 

regression methods. All estimated MSE values for all the regression methods 

are presented. The coefficients of the methods are in Appendix B. However, few 

of the simulation results of regression coefficients of the regression methods for 

eight predictor variables are presented as in Table 20 and Table 21. 

Table 20: Coefficients for Eight Predictors when γ² = 0.70, ρ = 0.1 and  

n = 500 

Coefficient OLS RR Lasso TR TLasso 

0β  0.000 0.000 0.001 0.000 0.001 

1β  0.915 0.915 0.906 0.915 0.906 

2β  1.016 1.016 1.009 1.016 1.008 

3β  1.022 1.021 1.016 1.021 1.015 

4β  1.010 1.010 1.003 1.010 1.004 

5β  0.935 0.935 0.927 0.935 0.927 

6β  0.982 0.982 0.976 0.982 0.976 

7β  1.085 1.084 1.081 1.084 1.082 

8β  1.013 1.013 1.008 1.013 1.008 
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Table 21: Coefficients for Eight Predictors when γ² = 0.90, ρ = 0.1 and  

n = 500 

Coefficient OLS RR Lasso TR TLasso 

0β  0.000 0.000 0.001 0.000 0.001 

1β  0.856 0.858 0.844 0.858 0.844 

2β  1.031 1.030 1.022 1.030 1.022 

3β  1.040 1.039 1.032 1.039 1.032 

4β  1.021 1.020 1.014 1.020 1.014 

5β  0.890 0.892 0.881 0.892 0.881 

6β  0.971 0.972 0.966 0.972 0.966 

7β  1.150 1.146 1.149 1.146 1.150 

8β  1.026 1.025 1.021 1.024 1.021 

 

Table 22: Estimated MSE for Eight Predictor Variables when ρ = 0.1 

2  n OLS RR Lasso TR TLasso 

  25 1.07969 0.96810 1.07937 0.95063 1.05433 

0.7 50 0.94211 0.90946 0.94665 0.90441 0.94123 

 

200 1.04069 1.03468 1.04300 1.03424 1.04256 

  500 0.96284 0.96080 0.96501 0.96073 0.96494 

 

25 1.12060 0.96152 1.04285 0.95220 1.02310 

0.9 50 0.94199 0.89614 0.93221 0.89190 0.92691 

 

200 1.02489 1.01785 1.02740 1.01744 1.02697 

 

500 0.96294 0.96072 0.96556 0.96065 0.96549 

  25 0.94474 0.79017 0.78963 0.78676 0.77136 

0.99 50 0.95736 0.90131 0.89508 0.89986 0.89293 

 

200 1.02433 1.01135 1.01286 1.01109 1.01254 

  500 0.96301 0.95912 0.96280 0.95906 0.96273 

Based on 500 Monte Carlo Simulations 
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Table 22 presents the simulation results of estimated MSEs for eight 

predictor variables when ρ = 0.1. The results indicate that the OLS is the least 

effective method among the others. According to the results, we observed that, 

increasing the degree of multicollinearity between the predictor variables has an 

adverse effect on the OLS method's MSE values. In all the considered cases, the 

TR method is superior to the other methods. Except in two cases where TLasso 

excels and TR is a close competitor. We observed that with large number of 

predictors, TLasso has a significantly lower MSE value, corresponding to a 

smaller sample size.  

Again, we observed that the performance of OLS method performs better 

than Lasso and TLasso methods as the sample size increases with 

multicollinearity level not being too high. The results show that the estimated 

MSE for the OLS method competes with Lasso and TLasso methods with large 

samples sizes (200 ≤ n ≤ 500) for eight predictor variables. However, Lasso and 

TLasso methods perform better than the OLS method for a very high 

multicollinearity 
2( 0.99) =  across all sample size (n = 25, 50, 200 and 500). 

It can be seen that Lasso and TLasso methods performs better with increase 

predictor variables. The findings from comparisons of the OLS, RR, Lasso, TR 

and TLasso methods reveals that the TR method is superior to the other 

methods, and much better than OLS method. 
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Table 23: Estimated MSE for Eight Predictor Variables when ρ = 0.9 

2  n OLS RR Lasso TR TLasso 

  25 2.93603 2.62886 2.81315 2.58344 2.74688 

0.7 50 5.40690 5.22122 5.35103 5.19215 5.31645 

 

200 5.02611 4.99686 5.02748 4.99484 5.02540 

  500 5.83116 5.81876 5.83329 5.81836 5.83289 

 

25 3.07982 2.64225 2.77629 2.60661 2.71323 

0.9 50 5.43221 5.17614 5.24180 5.15134 5.21259 

 

200 4.76206 4.72934 4.74726 4.72749 4.74553 

 

500 5.83009 5.81664 5.82963 5.81625 5.82923 

  25 5.42238 4.74158 4.88592 4.71487 4.87319 

0.99 50 3.73895 3.49185 3.49855 3.48668 3.49337 

 

200 4.44894 4.38877 4.37352 4.38777 4.37266 

  500 4.70596 4.68657 4.67773 4.68630 4.67749 

Based on 500 Monte Carlo Simulations 

Table 23 presents the simulation results of the estimated MSEs for eight 

predictor variables when ρ = 0.9. The results reveal how the TR method is 

superior to the other regression methods, except in two cases, where TR is a 

close contender to TLasso in terms of performance. It is clear from the results 

that with large number of predictors, TLasso has a significantly lower MSE 

value. We observed from the results that, OLS is the worst performing method 

as compared to the regularized and robust methods. Moreover, the RR method 

on the other hand outperforms OLS, Lasso and TLasso methods in the above-

mentioned categories, except in two cases where TLasso is superior. Also, the 
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estimated MSEs for TR method is always less than that of RR method when the 

multicollinearity and autocorrelation problems exist in a dataset.  

The results of comparison indicated that, Lasso and TLasso methods 

outperforms the OLS method. However, with a very large sample size and high 

multicollinearity level 
2( 0.7) = , OLS method turns to compete with the Lasso 

and TLasso methods. The better performance of the Lasso and TLasso methods 

over OLS largely depends on the number of predictors, autocorrelation degree 

and multicollinearity level in the data. The MSEs of TLasso method is relatively 

smaller than the estimated MSEs of TR method for large sample sizes (200 ≤ n 

≤ 500) with very high multicollinearity level 
2( 0.99) = . Therefore, the TR 

method seems to be an appropriate alternative to other methods in handling 

multicollinearity and autocorrelation issues in a dataset. 
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Table 24: Estimated MSE for Eight Predictor Variables when τ = 0.25 

  2  n QR RQR LQR TRQR TLQR 

 
  25 2.20302 1.45091 1.48027 1.41853 1.46643 

 
0.7 50 1.57389 1.35297 1.33512 1.34850 1.33637 

  
200 1.55749 1.53875 1.58086 1.54456 1.57797 

 
  500 1.36306 1.34529 1.35340 1.34759 1.35340 

  
25 2.18230 1.55069 1.50571 1.50090 1.48489 

0.1 0.9 50 1.57837 1.32190 1.35851 1.30959 1.35245 

  
200 1.55049 1.47417 1.54275 1.47656 1.54529 

  
500 1.36380 1.33813 1.35105 1.33827 1.35000 

 
  25 1.26039 0.82645 0.95528 1.01694 0.96769 

 
0.99 50 1.58784 1.31083 1.34495 1.30515 1.34694 

  
200 1.55025 1.47375 1.53949 1.47681 1.53437 

    500 1.36354 1.33772 1.35027 1.33767 1.35045 

 
  25 5.56677 3.32772 3.55307 3.36275 3.57860 

 
0.7 50 9.26491 7.97663 7.87183 7.94825 7.78959 

  
200 7.48243 7.22258 7.25300 7.20474 7.24774 

 
  500 8.48460 8.47305 8.54428 8.48557 8.53745 

  
25 6.47817 4.10651 4.36974 4.06454 4.25326 

0.9 0.9 50 9.33168 7.84606 7.84190 7.76542 7.77199 

  
200 7.12480 6.98358 6.86553 6.97817 6.86761 

 
  500 8.49393 8.43674 8.55521 8.45071 8.54787 

  
25 11.09960 7.61655 7.35555 7.51975 7.40308 

 
0.99 50 6.68056 5.59788 5.53610 5.51677 5.47184 

  
200 6.62721 6.43732 6.43750 6.42543 6.44767 

    500 6.99696 6.84654 6.87209 6.84653 6.87391 

Based on 500 Monte Carlo Simulations 

Table 24 is the results of estimated MSEs of the methods for eight predictor 

variables when  = 0.25. When ρ = 0.1, RQR and TRQR methods outperforms 

the other methods except on two cases where LQR and TLQR methods showed 

relatively smaller MSEs. When ρ = 0.9, RQR, LQR, TRQR and TLQR methods 
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performed in various cases except QR method which did not perform in any 

case. 

 

Table 25: Estimated MSE for Eight Predictor Variables when τ = 0.5 

  2  n QR RQR LQR TRQR TLQR 

 
  25 1.47640 1.05182 0.98518 1.01957 0.97003 

 
0.7 50 1.05451 0.87327 0.84135 0.86760 0.83432 

  
200 1.06446 1.01480 1.00719 1.01393 1.00742 

 
  500 0.97033 0.95085 0.94931 0.95077 0.94953 

  
25 1.41001 0.97448 0.93355 0.95254 0.91193 

0.1 0.9 50 1.05610 0.87052 0.83976 0.86653 0.83390 

  
200 1.05254 1.01827 0.99357 1.01732 0.99406 

  
500 0.97042 0.95271 0.94935 0.95275 0.94963 

 
  25 1.15501 0.84273 0.71771 0.94022 0.71810 

 
0.99 50 1.06170 0.89531 0.88140 0.89759 0.87884 

  
200 1.05191 1.01698 0.99416 1.01626 0.99426 

    500 0.97044 0.95372 0.95003 0.95388 0.95027 

 
  25 3.66145 2.56612 2.46750 2.53159 2.39661 

 
0.7 50 6.06406 5.07925 5.05350 5.04006 5.00930 

  
200 5.19743 4.92285 4.91899 4.92518 4.91559 

 
  500 5.89706 5.78885 5.77542 5.78781 5.77408 

  
25 3.88572 2.57627 2.50354 2.54634 2.48789 

0.9 0.9 50 6.09679 5.06768 5.04446 5.05318 5.01724 

  
200 4.87837 4.66307 4.63826 4.66074 4.63784 

 
  500 5.89621 5.78518 5.77145 5.78472 5.77001 

  
25 7.03337 4.93071 4.96186 4.89955 4.78975 

 
0.99 50 4.24534 3.62390 3.54285 3.60834 3.51656 

  
200 4.56346 4.35520 4.33865 4.35414 4.33363 

    500 4.74864 4.66406 4.64564 4.66396 4.64552 

Based on 500 Monte Carlo Simulations 
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Table 25 shows the simulation results of estimated MSEs of the methods for 

eight predictor variables. The two scenarios considered in the simulation studies 

are when ρ = 0.1 and ρ = 0.9. Based on the MSE criterion for each regression 

method, it can be seen that all regression methods with  = 0.5 outperforms 

regression methods with  = 0.25 and  = 0.75 (Comparing Table 24, Table 25 

and Table 26). The simulation results when ρ = 0.1 in Table 20 show that, the 

TLQR method at quantile level 0.5 has the least MSE values and therefore 

outperforms the other regression methods with small sample sizes (25 ≤ n ≤ 50). 

However, LQR method at quantile level 0.5 performs better than the other 

regression methods with large samples size (200 ≤ n ≤ 500) for eight predictor 

variables. 

The simulation results when ρ = 0.9 is also presented in Table 25. According 

to the MSE criterion of each regression method, the TLQR method at quantile 

level 0.5 has the least MSE values in comparison to the other regression 

methods (QR, RQR, LQR and TRQR) for all sample size (n = 25, 50, 200 and 

500) and across the various degrees of multicollinearity (0.7, 0.9 and 0.99). 

Therefore, the TLQR method appears to be an appropriate alternative to other 

regression methods in handling multicollinearity and autocorrelation problems 

in a dataset. 
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Table 26: Estimated MSE for Eight Predictor Variables when τ = 0.75 

  2  n QR RQR LQR TRQR TLQR 

 
  25 2.21612 1.39741 1.52434 1.36849 1.47923 

 
0.7 50 1.57866 1.35908 1.40185 1.35867 1.39690 

  
200 1.50637 1.48276 1.52982 1.48306 1.52826 

 
  500 1.41912 1.42367 1.43833 1.41959 1.43222 

  
25 2.13994 1.23096 1.40921 1.24087 1.38443 

0.1 0.9 50 1.57884 1.34615 1.42212 1.34140 1.41583 

  
200 1.48939 1.42825 1.48452 1.42969 1.48374 

  
500 1.41939 1.40898 1.41902 1.40840 1.41784 

 
  25 1.43778 1.10097 1.01623 1.09936 1.00166 

 
0.99 50 1.56937 1.25941 1.30909 1.27159 1.30644 

  
200 1.48961 1.41329 1.46770 1.41844 1.46799 

    500 1.41982 1.40094 1.42576 1.40036 1.41749 

 
  25 5.79823 3.92680 3.98805 3.91850 3.83065 

 
0.7 50 9.19423 7.65614 7.76360 7.64675 7.75062 

  
200 7.64372 7.41537 7.40098 7.41816 7.40454 

 
  500 8.71165 8.53943 8.66106 8.54503 8.65626 

  
25 5.79283 4.04398 3.81103 4.03771 3.78167 

0.9 0.9 50 9.24314 7.65766 7.72531 7.59990 7.65400 

  
200 7.57919 7.26411 7.24616 7.25269 7.23658 

 
  500 8.71108 8.50661 8.67923 8.51408 8.66611 

  
25 11.27726 7.63530 7.42371 7.52533 7.34976 

 
0.99 50 6.64791 5.41886 5.38921 5.41305 5.38448 

  
200 6.22530 5.94303 5.98940 5.93776 5.98178 

    500 6.87508 6.72889 6.85626 6.73336 6.86475 

Based on 500 Monte Carlo Simulations 

Table 26 shows the simulation results of estimated MSEs of the methods for 

eight predictor variables when  = 0.75. When ρ = 0.1, QR, RQR, TRQR and 

TLQR methods performed in various cases except LQR method which did not 

perform in any case. When ρ = 0.9, RQR performs better with large sample sizes 
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(n = 500). Whiles, TLQR produce better results with small sample sizes (n = 

25). 

Table 27: Comparison of Methods MSEs for Eight Predictor Variables 

  2  n TR TLasso 
RQR LQR TRQR TLQR 

τ = 0.5 τ = 0.5 τ = 0.5 τ = 0.5 

 
  25 0.95063 1.05433 1.05182 0.98518 1.01957 0.97003 

 
0.7 50 0.90441 0.94123 0.87327 0.84135 0.86760 0.83432 

  
200 1.03424 1.04256 1.01480 1.00719 1.01393 1.00742 

 
  500 0.96073 0.96494 0.95085 0.94931 0.95077 0.94953 

  
25 0.95220 1.02310 0.97448 0.93355 0.95254 0.91193 

0.1 0.9 50 0.89190 0.92691 0.87052 0.83976 0.86653 0.83390 

  
200 1.01744 1.02697 1.01827 0.99357 1.01732 0.99406 

  
500 0.96065 0.96549 0.95271 0.94935 0.95275 0.94963 

 
  25 0.78676 0.77136 0.84273 0.71771 0.94022 0.71810 

 
0.99 50 0.89986 0.89293 0.89531 0.88140 0.89759 0.87884 

  
200 1.01109 1.01254 1.01698 0.99416 1.01626 0.99426 

    500 0.95906 0.96273 0.95372 0.95003 0.95388 0.95027 

 
  25 2.58344 2.74688 2.56612 2.46750 2.53159 2.39661 

 
0.7 50 5.19215 5.31645 5.07925 5.05350 5.04006 5.00930 

  
200 4.99484 5.02540 4.92285 4.91899 4.92518 4.91559 

 
  500 5.81836 5.83289 5.78885 5.77542 5.78781 5.77408 

  
25 2.60661 2.71323 2.57627 2.50354 2.54634 2.48789 

0.9 0.9 50 5.15134 5.21259 5.06768 5.04446 5.05318 5.01724 

  
200 4.72749 4.74553 4.66307 4.63826 4.66074 4.63784 

 
  500 5.81625 5.82923 5.78518 5.77145 5.78472 5.77001 

  
25 4.71487 4.87319 4.93071 4.96186 4.89955 4.78975 

 
0.99 50 3.48668 3.49337 3.62390 3.54285 3.60834 3.51656 

  
200 4.38777 4.37266 4.35520 4.33865 4.35414 4.33363 

    500 4.68630 4.67749 4.66406 4.64564 4.66396 4.64552 

Based on 500 Monte Carlo Simulations 

The comparison of the performances of the methods in term of their MSE 

values over eight predictor variables at various levels of multicollinearity and 
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sample sizes is given for both ρ = 0.1 and ρ = 0.9 in Table 27. The simulation 

findings when ρ = 0.1 indicated that, LQR and TLQR methods at quantile level 

0.5 outperforms the other methods in all the cases, except one case where TR 

method is the best when 25n =  at 0.7 degree of multicollinearity. Comparing 

LQR and TLQR methods at quantile level 0.5, LQR performs better than TLQR 

with large sample sizes (200 ≤ n ≤ 500). Whiles, TLQR produce better results 

than LQR with small sample sizes (25 ≤ n ≤ 50). 

The simulation results when ρ = 0.9 indicated that, TLQR method at quantile 

level 0.5 outperforms the other methods when the autocorrelation is high and 

across the different degrees of multicollinearity, except in two cases where TR 

is superior. However, for 25 50n   with high autocorrelation and severe 

multicollinearity, TR is best. With large sample sizes, the TLQR at quantile 

level 0.5 is best. The study showed that the use of the TLQR method in the cases 

when the predictor variables are affected by multicollinearity and 

autocorrelation is one of the successful ways to solve this issue.  

Real Data Application 

We investigate the performances of the regression methods on two real 

applications: The Portland cement dataset and the Historical dataset. 

Analysis of Portland Cement Data 

This dataset was originally used by Woods, Steinour and Starke (1932). The 

data includes the heat evolved in calories per gram of cement ( )y  as dependent 

variable and four ingredients as predictor variables: tricalcium aluminate 1( )X , 

tricalcium silicate 2( )X , tetracalcium aluminoferrite 3( )X  and dicalcium silicate 

4( )X . 
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Table 28: Descriptive Statistics of Variables 

Variable N Min Max Mean 
Std. 

Deviation 
Skewness Kurtosis 

 y  13 72.50 115.90 95.42 15.044 -0.195 1.658 

1X  13 1.00 21.00 7.46 5.882 0.688 3.075 

2X  13 26.00 71.00 48.15 15.561 -0.047 1.677 

3X  13 4.00 23.00 11.77 6.405 0.611 1.921 

4X  13 6.00 60.00 30.00 16.738 0.330 1.986 

Source: Researcher’s Computation (2022) 

Table 28 presents the descriptive statistics for the Portland cement data. For 

y  and 1X , the highest and lowest means are recorded respectively. The 

standard deviations for each variable indicate that the deviations are bigger. We 

observed that the predictors appear to be right-skewed, except 2X  variable 

which appears to be left-skewed. The coefficient of skewness is low, this show 

that the data are fairly symmetrical. The variables exhibit low kurtosis and tend 

to have light tails. This means that there are less values in the tails compared to 

a normal distribution, which further signified lack of outliers. Generally, the low 

values of kurtosis and skewness suggest that the variables’ distribution are quite 

close to normality. 

Table 29: Correlation Matrix of Predictor Variables of 

the Original Data 

 Variables 1X  2X  3X  4X  

 

1X  

 

1.000 
   

2X  0.229 1.000   

3X  -0.824 -0.139 1.000  

4X  -0.245 -0.973 0.030 1.000 

Source: Researcher’s Computation (2022) 
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Table 29 is the correlation matrix which presents the correlation among the 

variables in the data. The smallest correlation of 0.030 was obtained between 

3X  and 4X , suggesting that there may be no statistically significant association 

between the two variables. The strongest correlation, -0.973, was found between 

2X  and 4X , suggesting that the two variables can be considered very highly 

correlated and have much in common. The correlation coefficient of -0.824 

shows fairly strong negative relationship between 1X  and 3X , and that the two 

variables can be considered highly correlated. The high correlation between the 

variables may suggest a possible presence of multicollinearity in the data. 

Table 30: VIF and Durbin-Watson Test of the Original Data 

1VIF  2VIF  3VIF  4VIF  dl  du  DW  
p-

value 
α   

38.50 254.42 46.87 282.51 0.574 2.094 2.053 0.421 0.05 -0.09 

Source: Researcher’s Computation (2022) 

Table 30 presents the VIF and Durbin-Watson test of the original data. The 

DW  statistic and the p-value are 2.053 and 0.421, respectively. The results show 

that dl DW du  , this means, the test is inconclusive. However, the p-value 

(p = 0.421 > 0.05) from the Durbin-Watson test concludes that there is no 

autocorrelation in the error term at the 5% significance level with dl  = 0.574 

and du  = 2.094. Moreover, all the variance inflation factors exceed 10. It is 

evident from the VIFs that the data suffers from the problem of 

multicollinearity. Therefore, we obtained an estimate of rho ( )  and use the 

estimate of rho (  = -0.09) to transform the original data. 
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Table 31: Correlation Matrix of Predictor Variables of 

the Transformed Data 

 Variables 1TX  2TX  3TX  4TX  

 

1TX  1.000 

   
2TX  0.246 1.000 

  
3TX  -0.786 -0.066 1.000 

 
4TX  -0.270 -0.980 -0.015 1.000 

Source: Researcher’s Computation (2022) 

Table 31 presents the correlation matrix of the transformed variables. It was 

observed that the transformed variables 1TX  and 3TX  are highly negatively 

correlated with each other with correlation coefficient of -0.786, and therefore 

suggests that a linear relationship exists among them. The highest correlation of 

-0.980 was obtained between 2TX  and 4TX , suggesting that the two variables 

are very highly correlated. Therefore, the high correlation between the 

transformed variables suggests a possible existence of multicollinearity in the 

data. 

 

Table 32: VIF and Durbin-Watson Test of the Transformed Data 

1VIF  2VIF  3VIF  4VIF  dl  du  DW  p-value α 

10.06 91.18 11.05 103.30 0.574 2.094 2.218 0.619 0.05 

Source: Researcher’s Computation (2022) 

Table 32 presents the VIF and Durbin-Watson tests of the transformed data. 

The transformed data was diagnosed using the VIF and the Durbin-Watson 

(DW) tests. The DW  statistic and the p-value are 2.218 and 0.619, respectively. 

The results show that DW du , therefore the data does not suffer from first 
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order autoregressive scheme. However, since the values for VIF  of all the 

predictor variables are greater than 10 ( 10)VIFs  , the model still suffer from 

multicollinearity.  

Table 33: Regression Analysis Results for Ordinary Least Square 

(OLS) 

Variable Estimate Std. Error t value p-value 

Intercept 62.4054 70.0710 0.891 0.3991 

X₁ 1.5511 0.7448 2.083 0.0708 

X₂ 0.5102 0.7238 0.705 0.5009 

X₃ 0.1019 0.7547 0.135 0.8959 

X₄ -0.1441 0.7091 -0.203 0.8441 

R-squared 0.9824 
   

Adj. R-squared 0.9736 
   

MSE 5.9830 
   

RMSE 2.4460 
   

F-statistic: F (4, 8) 111.5   p-value 0.0000 

Source: Researcher’s Computation (2022) 

Table 33 presents the estimated MSE, R-squared value and regression 

coefficients of OLS method. According to regression analysis results conducted 

by using OLS method, regression coefficients of all the predictors were found 

to be statistically insignificant at 5% significance level. However, the F-statistic 

for the overall model is significant [F (4, 8) = 111.5, p-value = 0.0000]. The 

OLS regression coefficients appears to have high standard errors. This may be 

as a result of the presence of multicollinearity which has excessively inflates the 

standard error, and has cause the regression coefficients to appear insignificant. 

The R-squared value of 0.9824 means the predictor variables can explain 

98.24% of the variation in the response variable. The MSE of the OLS method 

is obtained as 5.9830.  
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Table 34: Regression Analysis Results for Ridge Regression (RR) 

Variable Estimate Std. Error z value p-value 

Intercept 74.8025 51.5924 1.450 0.1471 

X₁ 1.4159 0.5528 2.561 0.0104 

X₂ 0.3841 0.5361 0.716 0.4737 

X₃ -0.0335 0.5580 -0.060 0.9522 

X₄ -0.2682 0.5242 -0.512 0.6090 

R-squared 0.9823 
   

Adj. R-squared 0.9735 
   

MSE 5.8161 
   

RMSE 2.4117 
   

K 0.97701       

Source: Researcher’s Computation (2022) 

Table 34 presents the estimated MSE, R-squared value and regression 

coefficients of RR method. According to regression analysis results conducted 

by using RR method, the variable 1X  has a significant effect on the dependent 

variable according to p-value (0.0104) at 5% significance level. The results of 

the analysis show a decrease in the standard error of the RR method in 

comparison to the OLS method. The R-square (0.9823) reveals that the 

predictors explain 98.23% of the variation in the response variable. The MSE 

and RMSE values are 5.8161 and 2.4117 respectively, when the value of K  = 

0.97701.  
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Table 35: Regression Analysis Results for Lasso Regression 

Variable Estimate Std. Error z value p-value 

Intercept 65.3456 69.4081 0.941 0.3465 

X₁ 1.5192 0.7381 2.058 0.0396 

X₂ 0.4803 0.7170 0.670 0.5030 

X₃ 0.0696 0.7478 0.093 0.9259 

X₄ -0.1735 0.7024 -0.247 0.8050 

R-squared 0.9824 
   

Adj. R-squared 0.9736 
   

MSE 5.9775 
   

RMSE 2.4449 
   

K 0.18307       

Source: Researcher’s Computation (2022) 

Table 35 presents the estimated MSE, R-squared value and regression 

coefficients of Lasso method. The regression analysis results conducted by 

using Lasso method revealed that the variable 1X  has a significant effect on the 

response variable according to p-value (0.0396) at 5% level of significance. The 

standard errors of the Lasso method show relatively small decrease to that of 

the OLS method. The R-square (0.9824) shows that 98.24% variation in the 

response variable can be explained by the predictors. The MSE and RMSE 

values obtained by the Lasso method are 5.9775 and 2.4449 respectively, when 

the value K  is 0.18307.  
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Table 36: Regression Analysis Results for Two-Stage Ridge Regression 

(TR) 

Variable Estimate Std. Error z value p-value 

Intercept 30.2745 37.5707 0.806 0.4204 

1TX  1.8909 0.4281 4.417 0.0000 

2TX  0.8406 0.3899 2.156 0.0311 

3TX  0.4363 0.4224 1.033 0.3017 

4TX  0.1814 0.3828 0.474 0.6356 

R-squared 0.9843 
   

Adj. R-squared 0.9765 
   

MSE 5.7399 
   

RMSE 2.3958 
   

K 0.001       

Source: Researcher’s Computation (2022) 

Table 36 presents the regression analysis results for TR method. According 

to regression analysis results conducted by using TR method, regression 

coefficients of the 1TX  and 2TX  variables were found to be statistically 

significant at 5% level of significance. The TR standard errors are decreased 

compared to OLS. The smaller the TR method standard error, the better the 

regression models fit to the data. The R-square (0.9843) shows that 98.43% 

variation in the response variable can be explained by the predictors. The MSE 

and RMSE values computed are 5.7399 and 2.3958 respectively, when the value 

of K  = 0.001.  
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Table 37: Regression Analysis Results for TLasso Regression 

Variable Estimate Std. Error z value p-value 

Intercept 53.1040 67.8494 0.783 0.4338 

1TX  1.6562 0.7226 2.292 0.0219 

2TX  0.6055 0.7006 0.864 0.3875 

3TX  0.1972 0.7275 0.271 0.7863 

4TX  -0.0500 0.6888 -0.073 0.9421 

R-squared 0.9845 
   

Adj. R-squared 0.9768 
   

MSE 5.9630 
   

RMSE 2.4419 
   

K 0.001       

Source: Researcher’s Computation (2022) 

Table 37 presents the regression analysis results for TLasso method. The 

regression analysis results conducted by using TLasso method revealed that the 

variable 1TX  has a significant effect on the response variable according to p-

value (0.0219) at 5% significance level. The TLasso method standard errors are 

relatively smaller in comparison to OLS method. The R-square (0.9845) shows 

that the predictor variables can explain 98.45% of the variation in the response 

variable. The MSE and RMSE values obtained by the TLasso method are 

5.9630 and 2.4419 respectively, when the value K  is 0.001.  
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Table 38: Comparison of Regression Coefficients and MSEs of the 

Methods 

Coefficient OLS RR Lasso TR TLasso 

0β  62.4054 74.8025 65.3456 30.2745 53.1040 

1β  1.5511 1.4159 1.5192 1.8909 1.6562 

2β  0.5102 0.3841 0.4803 0.8406 0.6055 

3β  0.1019 -0.0335 0.0696 0.4363 0.1972 

4β  -0.1441 -0.2682 -0.1735 0.1814 -0.0500 

R-squared 0.9824 0.9823 0.9824 0.9843 0.9845 

Adj. R-squared 0.9736 0.9735 0.9736 0.9765 0.9768 

MSE 5.9830 5.8161 5.9775 5.7399 5.9630 

RMSE 2.4460 2.4117 2.4449 2.3958 2.4419 

Source: Researcher’s Computation (2022) 

Table 38 presents the regression coefficients and MSEs of the methods. 

According to the regression coefficients, the regression methods results are 

similar to each other. The findings reveal that the TR method has the lowest 

MSE value (5.7399) than the other methods, however, the TLasso method has 

the highest R-squared value (0.9845). The TR method has the least MSE and 

RMSE, and is considered best. Because of the existence of multicollinearity, the 

OLS method produces the worst results. Therefore, the TR method is most 

preferred method in fitting a linear model when the multicollinearity assumption 

is violated.  
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Table 39: Comparison of QR Methods for τ = 0.25, 0.5 and 0.75 

Coefficient 
QR 

τ = 0.25 τ = 0.5 τ = 0.75 

0β  48.0545 -13.3367 47.6909 

1β  1.4976 2.3544 1.7084 

2β  0.7000 1.2798 0.6623 

3β  -0.0025 1.0074 0.3564 

4β  0.0296 0.6006 -0.0085 

R-squared 0.9647 0.9775 0.9770 

Adj. R-squared 0.9471 0.9663 0.9655 

MSE 11.9769 7.6260 7.8119 

RMSE 3.4608 2.7615 2.7950 

Source: Researcher’s Computation (2022) 

Table 39 presents the regression coefficient estimation and the MSE at the 

0.25, 0.5 and 0.75 quantile levels for QR. The intercept term at quantile level 

0.25 and 0.75 has a positive sign while that of the quantile level at 0.5 has a 

negative sign. This might be due to the multicollinearity effect in the data. QR 

method at quantile level 0.5 has the lowest MSE and the highest R-squared 

value. The method is considered the best in this class of methods. However, the 

coefficients may not be estimated with great precision due to the existence of 

the multicollinearity in the data. 
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Table 40: Coefficients and MSEs of RQR and LQR Methods 

Coefficient 
RQR LQR 

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75 

0β  86.7400 86.6812 82.6218 62.4726 93.3169 81.6878 

1β  0.9629 0.8527 1.3554 1.2730 1.3669 1.3585 

2β  0.2972 0.3054 0.3025 0.5219 0.1161 0.3142 

3β  -0.3512 -0.2682 -0.0076 0.0000 0.0000 0.0000 

4β  -0.3433 -0.3358 -0.3546 -0.1075 -0.4567 -0.3458 

R-squared 0.9614 0.9570 0.9742 0.9625 0.9721 0.9741 

Adj. R-squared 0.9420 0.9355 0.9614 0.9438 0.9582 0.9611 

MSE 8.0716 8.9851 5.3820 7.8268 5.8221 5.4172 

RMSE 2.8411 2.9975 2.3199 2.7976 2.4129 2.3275 

Source: Researcher’s Computation (2022) 

The results presented in Table 40 shows the regression coefficient 

estimation and the MSE at the 0.25, 0.5 and 0.75 quantile levels for RQR and 

LQR. These methods allow the estimation of the quantile regression models 

using the 1L  and 2L -norms. We compare the performance of the quantile levels 

in RQR and LQR. The results through comparisons, we found that the RQR at 

quantile level 0.75 is the best as it has a high R-squared value (0.9742) and the 

least MSE value (5.3820) according to the interpretation of the data regarding 

the issues under study. 
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Table 41: Coefficients and MSEs of TRQR and TLQR Methods 

Coefficient 
TRQR TLQR 

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75 

0β  93.6903 57.4066 68.2472 61.1333 15.9491 -3.0915 

1β  0.8749 1.7234 1.5563 1.2003 2.0725 2.2392 

2β  0.3161 0.5969 0.5069 0.6156 0.9978 1.1830 

3β  -0.3415 0.3035 0.1936 0.0000 0.6296 0.8723 

4β  -0.3187 -0.0903 -0.1470 -0.0170 0.3267 0.5219 

R-squared 0.9376 0.9800 0.9655 0.9496 0.9831 0.9737 

Adj. R-squared 0.9064 0.9700 0.9482 0.9244 0.9747 0.9605 

MSE 14.8235 4.7516 8.1931 11.9629 4.0073 6.2558 

RMSE 3.8501 2.1798 2.8624 3.4587 2.0018 2.5012 

Source: Researcher’s Computation (2022) 

Table 41 presents the regression coefficient estimation and the MSE at the 

0.25, 0.5 and 0.75 quantile levels for TRQR and TLQR. We therefore compared 

the performances of the quantile levels in TRQR methods and TLQR methods. 

We found that the TLQR at quantile level 0.5 is the best as it has a high R-

squared value (0.9831) and the smallest MSE value (4.0073). The results show 

that the TLQR at quantile level 0.5 produced the most efficient estimates in 

terms of high R-square, lower RMSE and smallest MSE. 
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Table 42: Comparison of TR, TLasso, TRQR and TLQR Methods 

Coefficient TR TLasso 
TRQR TLQR 

τ = 0.5 τ = 0.5 

0β  30.2745 53.1040 57.4066 15.9491 

1β  1.8909 1.6562 1.7234 2.0725 

2β  0.8406 0.6055 0.5969 0.9978 

3β  0.4363 0.1972 0.3035 0.6296 

4β  0.1814 -0.0500 -0.0903 0.3267 

R-squared 0.9843 0.9845 0.9800 0.9831 

Adj. R-squared 0.9765 0.9768 0.9700 0.9747 

MSE 5.7399 5.9630 4.7516 4.0073 

RMSE 2.3958 2.4419 2.1798 2.0018 

Source: Researcher’s Computation (2022) 

Table 42 presents the overall comparison of the performances of TR, 

TLasso, TRQR and TLQR methods. Based on the R-squared values of the 

methods, TLasso appears best with respect to variation the predictor variables 

can explain in the response variable. According to the MSE criterion of each 

regression method, the TLQR method at quantile level 0.5 has the least MSE in 

comparison to the other methods. The results from comparisons of the TR, 

TLasso, TRQR at quantile level 0.5 and TLQR at quantile level 0.5 methods 

show that the TLQR method at quantile level 0.5 is superior to the other 

methods. Therefore, the TLQR method in the cases when the predictor variables 

are affected by multicollinearity is one of the successful ways to solve this issue. 
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Analysis of Historical Data 

This dataset was discussed by Bayhan and Bayhan (1998). The data includes 

the weekly quantities of shampoos sold ( )y  as dependent variable and two 

predictor variables: weekly list prices (averages from selected supermarkets) of 

the firm’s shampoos 1( )X  and weekly list prices of a certain brand of soap, 

substituted from shampoos 2( )X . 

Table 43: Summary Statistics of Variables 

Variable N Min Max Mean 
Std. 

Deviation 
Skewness Kurtosis 

 y  15 34.16 35.17 34.59 0.320 0.427 1.940 

1X  15 101.30 111.30 106.30 3.282 -0.051 1.729 

2X  15 25.30 27.80 26.59 0.804 -0.041 1.799 

Source: Researcher’s Computation (2022) 

Table 43 presents the summary statistics of variables. For 1X  and 2X , the 

highest and lowest means are recorded respectively. The standard deviations for 

each variable indicate that there are lesser deviations. The results revealed that 

the predictor variables are negatively skewed. The coefficient of skewness is 

low, which means the data are fairly symmetrical. The variables exhibit low 

kurtosis and tend to have light tails. This means that there are less values in the 

tails than to a normal distribution, which further signified lack of outliers. 

Generally, the low values of kurtosis and skewness suggest that the variables’ 

distribution are close to normality.  
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Table 44: Correlation Matrix of Original Data 

Variables 1X  2X  

 

1X  1.000 

 
2X  0.994 1.000 

Source: Researcher’s Computation (2022) 

The correlation coefficient of -0.824 shows a very strong positive 

relationship between 1X  and 2X , and that the predictor variables can be 

considered very highly correlated. The very highly correlation between the 

variables indicates that multicollinearity might exist in the data. These are as 

presented in Table 44. 

 

Table 45: VIF and Durbin-Watson Test of Original Data 

1VIF  2VIF  dl  du  DW  p-value α   

79.26 79.26 0.946 1.543 0.382 0.000 0.05 0.77 

Source: Researcher’s Computation (2022) 

Table 45 presents the VIF and Durbin-Watson tests of original data. The 

Durbin-Watson test was employed to check for autocorrelation and the VIF to 

check for multicollinearity. The DW  value and the p-value are 0.382 and 0.000, 

respectively. Since DW dl , the data suffer from positive first order 

autoregressive scheme and since the 10VIF  , the data also suffer from 

multicollinearity. Hence, the data suffers from both problems. We correct the 

autocorrelation problem by data transformation. We then obtained an estimate 

of   (0.77) and used the estimate of   to transform the original data. 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



107 
 

 Table 46: Correlation Matrix of Transformed Data 

Variables 1TX  2TX  

 

1TX  1.000 

 
2TX  0.999 1.000 

Source: Researcher’s Computation (2022) 

Table 46 shows the correlation matrix after the transformation of the data. 

It can be seen that the transformed variables 1TX  and 2TX  are very highly 

positively correlated with each other with correlation coefficient of 0.999, and 

this suggesting that a linear relationship exists among them. Hence, a possible 

multicollinearity problem might still exist in the data. 

 

Table 47: VIF and Durbin-Watson Test of Transformed Data 

1VIF  2VIF  dl  du  DW  p-value α 

512.646 512.646 0.946 1.543 1.549 0.2385 0.05 

Source: Researcher’s Computation (2022) 

The transformed data was diagnosed using the VIF and the Durbin-Watson 

(DW) tests. The DW  statistic and the p-value are 1.549 and 0.2385, 

respectively. The results show that DW du , therefore the data does not suffer 

from first order autoregressive scheme. This shows that the autocorrelation 

problem in the data is solved. But, since the value for VIF  is greater than 10 

( 10)VIF  , the model still suffers from multicollinearity. This is confirmed by 

the VIF and Durbin-Watson Test of transformed data in Table 47. 
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Table 48: Statistical Outputs of Ordinary Least Square (OLS) 

Variable Estimate Std. Error t value p-value 

Intercept 25.4341 1.3617 18.678 0.000 

X₁ 0.1343 0.1106 1.214 0.248 

X₂ -0.1925 0.4517 -0.426 0.678 

R-squared 0.8055 

   
Adj. R-squared 0.7730 

   
MSE 0.0233 

   
RMSE 0.1526 

   
F-statistic: F (2, 12) 24.84   p-value 0.00005 

Source: Researcher’s Computation (2022) 

Table 48 presents the regression analysis of OLS method. The results 

indicate that the regression coefficients of the predictor variables were 

statistically insignificant at 5% level of significance. However, the F-statistic 

for the overall model is significant [F (2, 12) = 24.84, p-value = 0.00005]. This 

regression coefficients appearing to be insignificant and the overall model being 

significant may be due to multicollinearity among the predictors. The R-squared 

value of 0.8055 means the predictors can explain 80.55% of the variation in the 

response variable. The MSE of the OLS method is obtained as 0.0233. 
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Table 49: Statistical Outputs of Ridge Regression (RR) 

Variable Estimate Std. Error z value p-value 

Intercept 25.3717 1.3119 19.340 0.0000 

X₁ 0.1111 0.0610 1.823 0.0683 

X₂ -0.0976 0.2458 -0.397 0.6913 

R-squared 0.8047 

   
Adj. R-squared 0.7722 

   
MSE 0.0225 

   
RMSE 0.1501 

   
K 0.08697       

Source: Researcher’s Computation (2022) 

Table 49 presents the regression analysis of ridge regression (RR) method. 

The findings reveal that the regression coefficients of the predictors were found 

to be statistically insignificant at 5% level of significance. The findings of the 

analysis showed a decrease in standard error of the RR method in comparison 

to the OLS method. The R-square (0.8047) reveals that the predictor variables 

can explain 80.47% of the variation in the response variable. The MSE and 

RMSE values are 0.0225 and 0.1501 respectively, when the value of K  = 

0.08697.  
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Table 50: Statistical Outputs of Lasso Regression 

Variable Estimate Std. Error z value p-value 

Intercept 25.3138 1.2790 19.792 0.0000 

X₁ 0.0873 0.0120 7.247 0.0000 

X₂ 0.0000 0.0018 0.000 1.0000 

R-squared 0.8025 

   
Adj. R-squared 0.7696 

   
MSE 0.0218 

   
RMSE 0.1478 

   
K 0.02848       

Source: Researcher’s Computation (2022) 

Table 50 presents the regression coefficients, R-squared value and estimated 

MSE of Lasso regression method. The regression analysis results conducted by 

using Lasso method revealed that the variable 1X  has a significant effect on the 

response variable according to p-value (0.0000) at 5% significance level. 

Moreover, the regression coefficient of 2X  is shrink to zero. The Lasso standard 

errors show a decrease compared to OLS method. The R-square (0.8025) shows 

that 80.25% variation in the response variable can be explained by the 

predictors. The MSE and RMSE values obtained by the Lasso method are 

0.0218 and 0.1478 respectively, when the value of K  is 0.02848.  
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Table 51: Statistical Outputs of Two-Stage Ridge Regression (TR) 

Variable Estimate Std. Error z value p-value 

Intercept 22.7508 2.1623 10.522 0.0000 

1TX  0.0514 0.0440 1.168 0.2430 

2TX  0.2502 0.1920 1.303 0.1920 

R-squared 0.9996 

   
Adj. R-squared 0.9995 

   
MSE 0.0268 

   
RMSE 0.1637 

   
K 0.001       

Source: Researcher’s Computation (2022) 

Table 51 is the regression analysis results of two-stage ridge regression 

(TR). According to regression analysis results, regression coefficients of the 

1TX  and 2TX  variables were found to be statistically insignificant at 5% 

significance level. This shows the predictor variables after the transformation 

of the data do not have much effect on the dependent variable. The R-square 

(0.9996) shows that 99.96% variation in the response variable can be explained 

by the predictors. The MSE and RMSE values computed are 0.0268 and 0.1637, 

respectively. 
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Table 52: Statistical Outputs of Two-Stage Lasso Regression 

(TLasso) 

Variable Estimate Std. Error z value p-value 

Intercept 29.0907 2.0736 14.029 0.0000 

1TX  0.0473 0.0327 1.448 0.1480 

2TX  0.0240 0.1501 0.160 0.8730 

R-squared 0.9998 

   
Adj. R-squared 0.9998 

   
MSE 0.0148 

   
RMSE 0.1216 

   
K 0.001       

Source: Researcher’s Computation (2022) 

Table 52 is the regression analysis results of two-stage Lasso regression 

(TLasso). The results revealed that the predictor variables were found to be 

statistically insignificant at 5% significance level. The TLasso standard error is 

lower than that of the OLS method. The R-squared value (0.9998) shows that 

the predictor variables can explain 99.98% of the variation in the response 

variable. The MSE and RMSE values obtained by the TLasso method are 

0.0148 and 0.1216, respectively. 
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Table 53: Comparison of Regression Coefficients and MSE of Methods 

Coefficient OLS RR Lasso TR TLasso 

0β  25.4341 25.3717 25.3138 22.7508 29.0907 

1β  0.1343 0.1111 0.0873 0.0514 0.0473 

2β  -0.1925 -0.0976 0.0000 0.2502 0.0240 

R-squared 0.8055 0.8047 0.8025 0.9996 0.9998 

Adj. R-squared 0.7730 0.7722 0.7696 0.9995 0.9998 

MSE 0.0233 0.0225 0.0218 0.0268 0.0148 

RMSE 0.1526 0.1501 0.1478 0.1637 0.1216 

Source: Researcher’s Computation (2022) 

Table 53 presents the coefficients of regression and MSE of methods. The 

regression coefficient of Lasso and TLasso seems to be much different from the 

other methods. Through comparison we found that the TLasso is the best as it 

has a high R-squared value (0.9998) and the smallest MSE value (0.0148) 

according to the interpretation of the data. Therefore, the TLasso method is most 

prefer method in fitting a linear model when assumptions of autocorrelation and 

multicollinearity are violated. 
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Table 54: Regression Coefficients and MSE of QR Method 

Coefficient 
QR 

τ = 0.25 τ = 0.5 τ = 0.75 

0β  21.5975 21.9003 25.7921 

1β  -0.0115 0.0369 0.2748 

2β  0.5305 0.3274 -0.7630 

R-squared 0.5572 0.6640 0.6229 

Adj. R-squared 0.4833 0.6080 0.5600 

MSE 0.0530 0.0402 0.0452 

RMSE 0.2303 0.2006 0.2125 

Source: Researcher’s Computation (2022) 

Table 54 presents the estimated regression coefficients and the mean 

squared error at the 0.25, 0.5 and 0.75 quantile levels for QR. The QR methods 

at various quantile levels have different coefficients sign. The coefficients 

having wrong signs might be due to the multicollinearity effect in the data. The 

QR method at quantile level 0.5 has the lowest MSE and the highest R-squared 

value. The R-square value of 0.6640 means the predictor variables can explain 

66.40% of the variation in the response variable. The QR method at quantile 

level 0.5 is considered the best in this class of methods. However, this quantile 

level is weak in interpreting the data with the multicollinearity and 

autocorrelation problems. 
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Table 55: Comparison of RQR and LQR Methods 

Coefficient 
RQR LQR 

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75 

0β  21.2426 22.1655 25.9392 21.9963 21.9148 26.7055 

1β  0.0016 0.0498 0.2598 0.0048 0.0374 0.0751 

2β  0.4917 0.2662 -0.7090 0.4505 0.3250 0.0000 

R-squared 0.5432 0.6890 0.6542 0.6021 0.6651 0.6729 

Adj. R-squared 0.4670 0.6372 0.5966 0.5358 0.6093 0.6184 

MSE 0.0438 0.0298 0.0331 0.0381 0.0321 0.0313 

RMSE 0.2092 0.1726 0.1820 0.1952 0.1791 0.1770 

Source: Researcher’s Computation (2022) 

Table 55 presents the comparison of performances of RQR and LQR at the 

quantile levels 0.25, 0.5 and 0.75. The LQR and RQR methods uses the 1L  and 

2L -penalties respectively, in estimating the QR models. It can be seen that the 

RQR at quantile level 0.5 is the best as it has a high R-squared value of 0.6890 

and the smallest MSE value of 0.0298. However, this quantile level is weak in 

interpreting the data with the multicollinearity and autocorrelation problems. 
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Table 56: Comparison of TRQR and TLQR Methods 

Coefficient 
TRQR TLQR 

τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.25 τ = 0.5 τ = 0.75 

0β  15.0360 14.3818 13.8101 15.9662 22.1828 17.4388 

1β  0.0836 0.0865 0.0948 0.0632 0.0891 0.1133 

2β  0.4506 0.4649 0.4499 0.4947 0.1369 0.2290 

R-squared 0.9998 0.9999 0.9998 0.9999 0.9999 0.9998 

Adj. R-squared 0.9998 0.9998 0.9998 0.9998 0.9998 0.9997 

MSE 0.0089 0.0079 0.0108 0.0078 0.0078 0.0131 

RMSE 0.0946 0.0891 0.1041 0.0881 0.0881 0.1145 

Source: Researcher’s Computation (2022) 

Table 56 presents the comparison of the performances of two-stage ridge 

quantile regression (TRQR) and two-stage Lasso quantile regression (TLQR) at 

the quantile levels 0.25, 0.5 and 0.75. The MSE values (0.0078) and the R-

square values (0.9999) of the TLQR at quantile level 0.25 and TLQR at quantile 

level 0.5 methods are obtained to be the same up to 4 decimal places, indicating 

the same performance. Therefore, both TLQR at quantile level 0.25 and TLQR 

at quantile level 0.5 are the most preferred method in fitting to the data, a linear 

regression model. 
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Table 57: Comparison of TR, TLasso, TRQR and TLQR 

Coefficient TR TLasso 
TRQR TLQR 

τ = 0.5 τ = 0.25 τ = 0.5 

0β  22.7508 29.0907 14.3818 15.9662 22.1828 

1β  0.0514 0.0473 0.0865 0.0632 0.0891 

2β  0.2502 0.0240 0.4649 0.4947 0.1369 

R-squared 0.9996 0.9998 0.9999 0.9999 0.9999 

Adj. R-squared 0.9995 0.9998 0.9998 0.9998 0.9998 

MSE 0.0268 0.0148 0.0079 0.0078 0.0078 

RMSE 0.1637 0.1216 0.0891 0.0881 0.0881 

Source: Researcher’s Computation (2022) 

Table 57 presents the overall comparison of the performances of TR, 

TLasso, TRQR and TLQR methods. According to the R-squared values of the 

methods, TRQR and TLQR methods appear superior with respect to the 

variation the predictor variables can explain in the dependent variable. 

According to the MSE criterion of each regression method, the TLQR method 

at quantile level 0.25 and 0.5 have the smallest MSE value compared to the 

other methods. The results from comparisons of the methods revealed that both 

TLQR at quantile level 0.25 and TLQR at quantile level 0.5 are superior to the 

other methods. Therefore, the TLQR method is the best method in handling 

multicollinearity and autocorrelation problems in the dataset under study. 

Discussion 

The findings for two predictors revealed that with low autocorrelation and 

high degree of multicollinearity, TR method is superior to the other methods, 

especially with severe multicollinearity. However, the LQR and TLQR methods 

at quantile level 0.5 often competes favourably with the TR method. Increasing 
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the degree of multicollinearity provides an overall improvement in TR over the 

other regression methods for small predictor variables ( 2)p = . We found that 

LQR method is either best or competes favourably with TLQR method when 

the degree of autocorrelation is very low with large sample size. Again, the 

comparisons of QR, RQR, LQR, TRQR and TLQR methods revealed that, both 

TRQR and TLQR methods at quantile level 0.5 perform better than the other 

methods. However, TRQR method produce better results than TLQR method in 

a model with small sample sizes. For sufficient high degrees of autocorrelation 

( 0.9) =  with high multicollinearity, the TR method has the smallest MSE 

values and therefore outperforms the other methods for small predictors (p = 2). 

However, with large sample size (n = 500), the TLQR method at quantile level 

0.5 is best. 

The results for four predictor variables revealed that, TLQR method at 0.5 

quantile level produce better results than the other methods in a model with 

severe multicollinearity 
2( 0.99) =  for the different samples size with very low 

degree of autocorrelation ( 0.1) = . However, some distinct patterns were 

identified. When n = 25 and n = 500 with sufficient high degree of 

autocorrelation ( 0.9) = , the TR method is best, and when 50 200n  , the 

TLQR method at quantile level 0. 5 is generally best. Generally, comparison of 

the regularized and robust regression methods shows a general trend. Hence, 

both TR method and TLQR method at quantile level 0.5 are the best methods in 

handling multicollinearity and autocorrelation problems based on specific cases 

for four predictor variables. 

The results for eight predictor variables in the presence of multicollinearity 

and autocorrelation revealed that, TR method outperforms the other methods. 
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But for severe multicollinearity level and many predictor variables, the TLasso 

method is superior and TR method is a close competitor. It has been revealed in 

this study that Lasso and TLasso methods performs better with many predictor 

variables (p = 8). For no or low degree of autocorrelation, the TLQR method at 

quantile level 0.5 has the least MSE values and therefore outperforms the other 

regression methods with small sample sizes (25 ≤ n ≤ 50). However, LQR 

method at quantile level 0.5 performs with large samples size (200 ≤ n ≤ 500) 

for eight predictor variables. The results indicated that the TLQR method at 

quantile level 0.5 outperforms the other methods when the autocorrelation is 

sufficiently high and across the different degrees of multicollinearity. However, 

for 25 50n   with high autocorrelation and severe multicollinearity, TR is 

best. Overall, we found that the TLQR method with an appropriate choice of 

quantile level is found suitable for addressing multicollinearity and 

autocorrelation problems with many predictor variables. 

The study now looks at the use of the real data example to assess the 

performance of the methods. The study shown that the TLQR method still 

appears to be the best method in handling multicollinearity and autocorrelation 

problems in our real datasets. This research notes that the 1L -penalty added to 

the quantile regression loss function may have influence the performance of the 

TLQR method. Similarly, previous studies found that regularization (for 

instance, ridge and Lasso) in quantile regression has been proven to be effective 

in improving prediction accuracy (Bager, 2018; Li & Zhu, 2008; Li, Lin, & Xi, 

2010; Suhail, Chand, & Kibria, 2020; Wu & Liu, 2009). 

The results indicated that, when there is high degree of autocorrelation and 

multicollinearity level is also high, the OLS method has largest MSE with 
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inaccurate estimates of regression coefficients. These results confirm the works 

of Oyewole and Agunbiade (2020). They found that in the existence of 

multicollinearity and sufficiently strong autocorrelation, the OLS estimations of 

regression coefficients can be substantially erroneous (Oyewole & Agunbiade, 

2020). If we take the MSE values as a criterion of comparison, we found that 

MSE values of TR is always less than the MSE values of RR. These findings 

are in line with the works of Hussein and Hytham (2021). They found that the 

TR method outperforms the RR, and that the regularization parameter values 

under the TR are always less than those under the RR.  

Additionally, at no or low degree of autocorrelation and sufficiently low 

multicollinearity level with large sample size, the OLS estimate competes 

consistently with Lasso and TLasso methods. We found that the estimated MSE 

values of Lasso and TLasso methods decreases as the degree of multicollinearity 

increases with a smaller sample size. Therefore, the findings indicate that the 

sample size and number of predictor variables in the model are important in 

assessing the performances of the methods. According to Kristofer, Ghazi and 

Kibria (2010) MSE improves when the number of predictors is increased. They 

also found that when sample size increases, MSE lowers, even when the 

correlation between predictors is high. Additionally, the degree of 

autocorrelation and multicollinearity affects performances of regression 

methods. Zubair and Adenomon (2021) stated that, to avoid erroneous 

inferences when estimating regression model parameters, autocorrelation and 

multicollinearity between variables should be taken into account. 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



121 
 

Chapter Summary 

In this chapter, simulations of the regularized and robust regression methods 

were performed using two, four and eight predictor variables, 0.7, 0.9 and 0.99 

multicollinearity levels, 0.1 and 0.9 degrees of autocorrelation, and samples of 

size 25, 50, 200 and 500 with 500 replications. Also, we compared the 

performances of the methods on two real data sets; the Portland cement data and 

the Historical data to determine which of the methods is the most effective in 

handling multicollinearity and autocorrelation problems in the datasets. The 

simulations and the real data analyses were performed using R software 

program. 

The simulation results for two predictor variables show that the use of the 

TR method is generally effective in handling multicollinearity and 

autocorrelation problems for 25 200n  . However, with large sample size (n 

= 500), the TLQR method at quantile level 0.5 was best. It was shown that, both 

TR method and TLQR method at quantile level 0.5 are the best methods in 

handling multicollinearity and autocorrelation problems in a dataset for four 

predictor variables. The simulation results for eight predictor variables revealed 

that the TLQR method at quantile level 0.5 outperforms the other methods when 

the autocorrelation is high and across the different degrees of multicollinearity 

with large sample size. However, for 25 50n   with high autocorrelation and 

severe multicollinearity, TR was best. 

The real data was first explored to see the nature and spread of the data, and 

were further diagnosed using the variance inflation factor (VIF) and the Durbin-

Watson (DW) tests to determine whether there is the presence of autocorrelation 

and/or multicollinearity in the datasets. The Portland cement data revealed the 
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existence of multicollinearity and the Historical data revealed the presence of 

both multicollinearity and autocorrelation. The study reveals that the TLQR 

method at quantile level 0.5 appears to be a suitable alternative in addressing 

the multicollinearity problem in the Portland cement dataset and also best in 

handling multicollinearity and autocorrelation problems in the Historical 

dataset. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Overview 

This chapter gives an overview of the various chapters and the conclusions 

that are drawn from the findings of the study. Based on the conclusions, relevant 

recommendations are provided. 

Summary 

The Ordinary Least Squares (OLS) possesses a very desirable property of 

being the Best Linear Unbiased Estimator (BLUE) when assumptions hold true. 

However, the OLS estimates can have extremely large mean squared error when 

there is multicollinearity. When the multicollinearity level gets higher, OLS 

estimates become imprecise, the model may have insignificant test, wider 

confidence interval, less interpretable are the parameters and the property of 

OLS being the BLUE does not hold anymore. Also, if the errors are correlated, 

then OLS can underestimate the standard error of the coefficients. When this 

happens, OLS estimate predictions will be inefficient. The literature reveals that 

the OLS estimates performance is unsatisfactory when autocorrelation and 

multicollinearity are present. 

The topic under study seeks to examine different regularized and robust 

regression methods for handling multicollinearity and autocorrelation problems. 

Firstly, the performance of RR, Lasso, TR and TLasso methods were compared. 

Secondly, the performance of QR, RQR, LQR, TRQR and TLQR were also 

compared. Both real and simulated data are used in the study. Two real data sets 

were obtained for the purpose. Data was also simulated with three 

multicollinearity levels (0.7, 0.9 and 0.99), two degrees of autocorrelation (0.1 
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and 0.9), four different sample sizes (25, 50, 200 and 500) and three different 

number of predictor variables (2, 4 and 8). The simulation was replicated 500 

times to obtain the approximate distribution. The R software program was used 

for the data analysis at various stages of the study. The regression methods 

applied for the analyses are OLS, RR, Lasso, TR, TLasso, QR, RQR, LQR, 

TRQR and TLQR. The study used three quantile levels (0.25, 0.5 and 0.75). The 

performances of these methods are compared to determine which method best 

addresses the problems of multicollinearity and autocorrelation.  

The literature reveals a number of methods for addressing multicollinearity 

and autocorrelation problems, namely: generalized two stage ridge regression, 

feasible generalized restricted ridge regression, two-stage ridge regression, two-

stage principal component regression, two-stage Liu regression, two-stage 

partial least square and two-stage K L−  method. The regularized and robust 

regression methods were reviewed thoroughly and their performance compared 

to arrive at the results of the study. These results are however different from 

what is in literature since it did not consider two-stage ridge quantile regression 

(TRQR) and two-stage Lasso quantile regression (TLQR) methods in handling 

multicollinearity and autocorrelation problems. 

The study first presented the results from the simulated data for two 

predictor variables. The results from comparisons of OLS, RR, Lasso, TR and 

TLasso methods reveal that the TR method is superior to the other methods for 

both ρ = 0.1 and ρ = 0.9. Again, the comparisons of QR, RQR, LQR, TRQR and 

TLQR methods revealed that, both TRQR and TLQR methods at quantile level 

0.5 showed superiority over the other methods. However, TRQR produce better 

outcomes than TLQR with small sample sizes. We compared the performances 
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of all the methods, and the results showed that, TR is best when multicollinearity 

is high with high autocorrelation for 25 00.n    Moreover, with large sample 

size (n = 500), the TLQR method at quantile level 0.5 is best. The study further 

revealed that the estimated MSEs for TR is always less than that of RR when 

the multicollinearity and autocorrelation problems exist in a dataset. Overall, 

the use of the TR method for two predictor variables in a model is generally 

effective in handling multicollinearity and autocorrelation problems. 

The simulation results for four predictor variables revealed that the TR 

method outperforms the OLS, RR, Lasso and TLasso methods for the samples 

size (25, 50, 200 and 500) and across the different degrees of multicollinearity 

(0.7, 0.9 and 0.99) for both ρ = 0.1 and ρ = 0.9. The results from comparisons 

of the methods show that, TLQR method at quantile level 0.5 is most preferred 

methods with very high multicollinearity level 
2( 0.99) =  at the different 

samples size (25, 50, 200 and 500) when ρ = 0.1. Moreover, TLQR method at 

quantile level 0.5 also performs better than the other methods (QR, RQR, LQR 

and TRQR) when ρ = 0.9. From the study findings, the TLQR method at 0.5 

quantile level produce better results in a model with severe multicollinearity 

2( 0.99) =  for the different samples size when ρ = 0.1 than the other methods. 

When n = 25 and 500 with high autocorrelation ( 0.9), =  the TR method is 

best. However, when 50 ≤ n ≤ 200, the TLQR method at quantile level 0.5 is 

generally best. Hence, both TR method and TLQR method at quantile level 0.5 

are the best methods in handling multicollinearity and autocorrelation problems 

based on specific cases for four predictor variables. 

The results of the study from the simulated data for eight predictor variables 

revealed the following findings. The results from comparisons of OLS, RR, 
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Lasso, TR and TLasso methods revealed that the TR method outperforms the 

other methods with high degree of multicollinearity. However, it is observed 

that with many predictor variables and very high degree of multicollinearity 

2( 0.99) = , TLasso has appreciable smaller MSE values and performs best. 

The simulation results when ρ = 0.1 show that the TLQR method at quantile 

level 0.5 outperforms the other regression methods with decreasing small 

sample sizes (25 ≤ n ≤ 50). However, LQR method at quantile level 0.5 performs 

better than the other regression methods with large samples size (200 ≤ n ≤ 500). 

The simulation results when ρ = 0.9 show that TLQR method at quantile level 

0.5 outperforms the other methods (QR, RQR, LQR and TRQR) for the various 

samples size (25, 50, 200 and 500) and across the various degrees of 

multicollinearity (0.7, 0.9 and 0.99). Comparing the performance of all the 

methods, we observed that TLQR method at quantile level 0.5 outperforms the 

other methods with high autocorrelation ( 0.9). =  However, TR performs best 

with high autocorrelation and severe multicollinearity for 25 50.n   Also, 

when 0.1 = , LQR produce better results with large sample sizes (200 ≤ n ≤ 

500). Whiles, TLQR produce better results with small sample sizes 

(25 50).n   

Finally, the real data were diagnosed using the VIF and the Durbin-Watson 

(DW) tests to determine if there is the presence of autocorrelation and/or 

multicollinearity in the datasets. The tests revealed the presence of 

multicollinearity in the Portland cement dataset, and the presence of 

multicollinearity and autocorrelation in the Historical dataset. The study 

revealed that the TLQR method at quantile level 0.5 appears to be a suitable 

alternative in addressing the multicollinearity problem in the Portland cement 
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dataset. Also, the TLQR method still appears to be the best method in handling 

multicollinearity and autocorrelation problems in the Historical dataset.  

Conclusions 

The study found that in the existence of multicollinearity and strong 

autocorrelation, OLS estimations of regression coefficients can be substantially 

incorrect. Also, the OLS estimates could not perform well with regard to their 

MSE in the existence of autocorrelation and multicollinearity. With low levels 

of multicollinearity and large sample size, the OLS estimate competes with the 

Lasso and TLasso methods while the TLasso method also competes with TR 

when multicollinearity degree is very high with many predictor variables. It is 

also found from the simulation results that the MSEs for TR method is always 

less than that of RR method when the multicollinearity and autocorrelation 

problems exist in a dataset. We also observed that the TRQR and TLQR 

methods showed a significant improvement over the method of only quantile 

regression. 

Whatever autocorrelation and multicollinearity degrees, the TR method has 

lowest MSE compared with the other methods for few predictor variables. 

Furthermore, sample size has a significant impact on method performance at all 

levels of autocorrelation and multicollinearity. However, TLQR method 

appears to improve in performance with large sample size. The study found that 

both the TR method and the TLQR method with an appropriate quantile level 

choice are the best methods in handling multicollinearity and autocorrelation 

problems in a dataset with few predictor variables depending on the sample size. 

In existence of multicollinearity and sufficiently high degrees of 

autocorrelation for many predictor variables, regardless of the sample size, the 
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TLQR method is seen to be the best. However, in the presence of 

multicollinearity with less or no autocorrelation, the LQR method has minimum 

MSE compared to TLQR method for a large sample size. Also, under high 

degrees of autocorrelation and severe multicollinearity level, TR method is 

either best or competes also with TLQR method when there is a small sample 

size. Overall, the TLQR method with 0.5 quantile level is found to be suitable 

for addressing multicollinearity and autocorrelation problems with many 

predictor variables. 

Recommendations 

In developing linear models, multicollinearity and autocorrelation degrees 

between predictors should be considered to avoid erroneous inferences when 

estimating regression parameters. From the study, it has been observed that, the 

size of the sample has a considerable impact on effectiveness of regression 

methods. To effectively build a good model, it would be prudent to choose the 

appropriate samples with corresponding right regression method for data studies 

which include possible multicollinearity and autocorrelation issues. 

The study has suggested the best estimation method that gives the least mean 

squared error under simultaneous multicollinearity and autocorrelation 

conditions. The performance of TR method is consistent with small sample 

sizes; while TLQR method is consistent with large sample sizes. Therefore, the 

TR method can be a good method in addressing multicollinearity and 

autocorrelation problems in a dataset with few predictor variables. However, for 

many predictor variables, TLQR method with 0.5 quantile level is what is found 

to be suitable in handling multicollinearity and autocorrelation problems 

simultaneously in regression analysis. 
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Finally, we would recommend for further studies that the same regularized 

methods and other robust options can be looked at in the existence of 

multicollinearity, autocorrelation and outliers. Further studies could also be 

conducted on assessing the performance of the regularized and robust regression 

methods on linear models which suffers from multicollinearity and higher order 

autoregressive schemes, such as second-order autoregressive process (2) AR . 
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APPENDICES 

APPENDIX A 

SAMPLE SIMULATION CODES IN R 

library(MASS)      # Call the package MASS 

library(lmridge)   # Call package lmridge 

library(islasso)   # Call package islasso 

library(quantreg)  # Call package quantreg 

library(hqreg)     # Call package hqreg 

library(glmnet)    # Call package glmnet 

library(Matrix)    # Call package Matrix 

rep <- 500        # Number of replications 

N <- 500          # Population size 

n <- 200          # Sample size 

p <- 2             # Number of predictors 

set.seed(22) 

# True values for regression coefficients 

b0 <- 0     # True value for the intercept 

b1 <- 1     # True value for Beta1 

b2 <- 1     # True value for Beta2 

# Empty vectors for OLS 

beta0<- c()   # Empty vector for storing the simulated intercept 

beta1<- c()   # Empty vector for storing the simulated Beta1 

beta2<- c()   # Empty vector for storing the simulated Beta2 

mseols<- c()   # Empty vector for storing the MSE of OLS 

# Empty vectors for RIDGE 

betar0<- c()   # Empty vector for storing the simulated intercept 

betar1<- c()   # Empty vector for storing the simulated Beta1 

betar2<- c()   # Empty vector for storing the simulated Beta2 

mser<- c()     # Empty vector for storing the MSE of Ridge 

hk<- c()       # Empty vector for Horl and Konard's method 

lw<- c()       # Empty vector for Lawless and Wang's method 

# Empty vectors for LASSO 

betal0<- c()   # Empty vector for storing the simulated intercept 

betal1<- c()   # Empty vector for storing the simulated Beta1 

betal2<- c()   # Empty vector for storing the simulated Beta2 

mselr<- c()     # Empty vector for storing the MSE of Lasso 

# Empty vectors for TWO STAGE RIDGE 

betatr0<- c()   # Empty vector for storing the simulated intercept 

betatr1<- c()   # Empty vector for storing the simulated Beta1 

betatr2<- c()   # Empty vector for storing the simulated Beta2 

msetr<- c()     # Empty vector for storing the MSE of TR 

hk<- c()       # Empty vector for Horl and Konard's method 

lw<- c()       # Empty vector for Lawless and Wang's method 

# Empty vectors for TWO STAGE LASSO 

betatlasso0<- c()  # Empty vector for storing the simulated intercept 
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betatlasso1<- c()  # Empty vector for storing the simulated Beta1 

betatlasso2<- c()  # Empty vector for storing the simulated Beta2 

msetlasso<- c()    # Empty vector for storing the MSE of TLasso 

# Empty vectors for QR (0.25) 

betaQl0<- c()   # Empty vector for storing the simulated intercept 

betaQl1<- c()   # Empty vector for storing the simulated Beta1 

betaQl2<- c()   # Empty vector for storing the simulated Beta2 

mseQl<- c()   # Empty vector for storing the MSE of QR(0.25) 

# Empty vectors for QR (0.50) 

betaQm0<- c()  # Empty vector for storing the simulated intercept 

betaQm1<- c()  # Empty vector for storing the simulated Beta1 

betaQm2<- c()  # Empty vector for storing the simulated Beta2 

mseQm<- c()    # Empty vector for storing the MSE of QR(0.50) 

# Empty vectors for QR (0.75) 

betaQu0<- c()   # Empty vector for storing the simulated intercept 

betaQu1<- c()   # Empty vector for storing the simulated Beta1 

betaQu2<- c()   # Empty vector for storing the simulated Beta2 

mseQu<- c()     # Empty vector for storing the MSE of QR(0.75) 

# Empty vectors for RQR (0.25) 

betaRQl0<- c()  # Empty vector for storing the simulated intercept 

betaRQl1<- c()  # Empty vector for storing the simulated Beta1 

betaRQl2<- c()  # Empty vector for storing the simulated Beta2 

mseRQl<- c()   # Empty vector for storing the MSE of RQR(0.25) 

# Empty vectors for RQR (0.50) 

betaRQm0<- c()  # Empty vector for storing the simulated intercept 

betaRQm1<- c()  # Empty vector for storing the simulated Beta1 

betaRQm2<- c()  # Empty vector for storing the simulated Beta2 

mseRQm<- c()    # Empty vector for storing the MSE of RQR(0.50) 

# Empty vectors for RQR (0.75) 

betaRQu0<- c()  # Empty vector for storing the simulated intercept 

betaRQu1<- c()  # Empty vector for storing the simulated Beta1 

betaRQu2<- c()  # Empty vector for storing the simulated Beta2 

mseRQu<- c()    # Empty vector for storing the MSE of RQR(0.75) 

# Empty vectors for LQR (0.25) 

betaLQl0<- c()  # Empty vector for storing the simulated intercept 

betaLQl1<- c()  # Empty vector for storing the simulated Beta1 

betaLQl2<- c()  # Empty vector for storing the simulated Beta2 

mseLQl<- c()   # Empty vector for storing the MSE of LQR(0.25) 

# Empty vectors for LQR (0.50) 

betaLQm0<- c()  # Empty vector for storing the simulated intercept 

betaLQm1<- c()  # Empty vector for storing the simulated Beta1 

betaLQm2<- c()  # Empty vector for storing the simulated Beta2 

mseLQm<- c()    # Empty vector for storing the MSE of LQR(0.50) 

# Empty vectors for LQR (0.75) 

betaLQu0<- c()  # Empty vector for storing the simulated intercept 

betaLQu1<- c()  # Empty vector for storing the simulated Beta1 
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betaLQu2<- c()  # Empty vector for storing the simulated Beta2 

mseLQu<- c()    # Empty vector for storing the MSE of LQR(0.75) 

# Empty vectors for TWO STAGE RQR (0.25) 

betaTRQl0<- c()  # Empty vector for storing the simulated intercept 

betaTRQl1<- c()  # Empty vector for storing the simulated Beta1 

betaTRQl2<- c()  # Empty vector for storing the simulated Beta2 

mseTRQl<- c()  # Empty vector for storing the MSE of TRQR(0.25) 

# Empty vectors for TWO STAGE RQR (0.50) 

betaTRQm0<- c()  # Empty vector for storing the simulated intercept 

betaTRQm1<- c()  # Empty vector for storing the simulated Beta1 

betaTRQm2<- c()  # Empty vector for storing the simulated Beta2 

mseTRQm<- c()    # Empty vector for storing the MSE of TRQR(0.50) 

# Empty vectors for TWO STAGE RQR (0.75) 

betaTRQu0<- c()  # Empty vector for storing the simulated intercept 

betaTRQu1<- c()  # Empty vector for storing the simulated Beta1 

betaTRQu2<- c()  # Empty vector for storing the simulated Beta2 

mseTRQu<- c()    # Empty vector for storing the MSE of TRQR(0.75) 

# Empty vectors for TWO STAGE LQR (0.25) 

betaTLQl0<- c()  # Empty vector for storing the simulated intercept 

betaTLQl1<- c()  # Empty vector for storing the simulated Beta1 

betaTLQl2<- c()  # Empty vector for storing the simulated Beta2 

mseTLQl<- c()  # Empty vector for storing the MSE of TLQR(0.25) 

# Empty vectors for TWO STAGE LQR (0.50) 

betaTLQm0<- c()  # Empty vector for storing the simulated intercept 

betaTLQm1<- c()  # Empty vector for storing the simulated Beta1 

betaTLQm2<- c()  # Empty vector for storing the simulated Beta2 

mseTLQm<- c()    # Empty vector for storing the MSE of TLQR(0.50) 

# Empty vectors for TWO STAGE LQR (0.75) 

betaTLQu0<- c()  # Empty vector for storing the simulated intercept 

betaTLQu1<- c()  # Empty vector for storing the simulated Beta1 

betaTLQu2<- c()  # Empty vector for storing the simulated Beta2 

mseTLQu<- c()    # Empty vector for storing the MSE of TLQR(0.75) 

 

# Multicollinear predictors 

gamma<- sqrt(0.90)  # r=0.90 

u1<- rnorm(N) 

u2<- rnorm(N) 

u3<- rnorm(N) 

x1<- sqrt(1-gamma^2)*u1+gamma*u3 

x2<- sqrt(1-gamma^2)*u2+gamma*u3 

xmatrix<- cbind.data.frame(x1,x2) # Dataframe of X variables 

# Autocorrelated errors 

rho<- 0.9        # Set value of rho 

var_vt<- 1       # Variance vt 

ett<- c() 

pett<- c() 
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vt<- rnorm(N,0,var_vt)   # Generating vt 

# Generating the first et 

sdv<- sqrt(var_vt) 

sigmaeps<- sdv/sqrt(1-rho^2) 

et1<- rnorm(1,0,sigmaeps) 

# Computing the first pe_(t-1)=et1-vt1 

pet1<- et1-vt[1] 

ets<- et1 

pets<- pet1 

# If t>1 pe_(t-1)=pet and et=pe_(t-1)+vt 

i<- 2 

while(i<=N){ 

  pets<- rho*ets 

  ets<- pets+vt[i] 

  pett<- append(pett[],pets) 

  ett<- append(ett[],ets) 

  i<- i+1 

} 

eps<- c(et1,ett) 

y <- b0+b1*x1+b2*x2+eps 

mydata<- cbind.data.frame(y, xmatrix)  # create population data frame 

x<- data.matrix(xmatrix[,c('x1','x2')]) 

 

# ORDINARY LEAST SQUARES METHOD 

for (i in 1:rep){#start the loop 

  df<- data.frame(mydata[sample(N,n),])  # select a random sample 

  ols<- lm(y~x1+x2,data=df)     # Estimate OLS model 

  summary(ols) 

  ols$coef 

  olsanova<- anova(ols) 

  # Store Regression Coefficients 

  beta0<- append(beta0,ols$coefficients[1]) 

  beta1<- append(beta1,ols$coefficients[2]) 

  beta2<- append(beta2,ols$coefficients[3]) 

  # Store MSE 

  mseols<- append(mseols,anova(ols)$'Mean Sq'[3]) 

   

# RIDGE REGRESSION METHOD 

  model.ridge<- lm.ridge(y~ x1+x2, data=df, lambda=seq(0.0,1,0.001)) 

  whichIsBest <- which.min(model.ridge$GCV)  # Determine min GCV and 

k 

  coefr<- coef(model.ridge)[whichIsBest,]  # Coefficient corresponding to 

best k 

  # Store regression coefficients 

  betar0<- append(betar0,coefr[1]) 

  betar1<- append(betar1,coefr[2]) 
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  betar2<- append(betar2,coefr[3]) 

  # Store methods of k 

  hk<- append(hk,model.ridge$kHKB) 

  lw<- append(lw,model.ridge$kLW) 

  # MSE for Ridge 

  yhat_r<- coefr[1] + as.matrix(df[,2:3])%*%coefr[2:3] 

  resid.ridge <- df[,1] - yhat_r 

  x_r<- as.matrix(df[,2:3]) 

  lambda.ridge <- seq(0,1,0.001)[which.min(model.ridge$GCV)]  # Best k 

  d <- svd(as.matrix(x_r[,1:2]))$d 

  dfree_r <- n - sum(d^2/(lambda.ridge+d^2)) 

  MSE.r <- sum(resid.ridge^2)/dfree_r 

  mser<- append(mser,MSE.r) 

   

# LASSO REGRESSION METHOD 

  model.lasso <- islasso(y ~ x1+x2, data=df, family = gaussian, alpha=1) 

  coefl<- coef(model.lasso) 

  # Store regression coefficients 

  betal0<- append(betal0,coefl[1]) 

  betal1<- append(betal1,coefl[2]) 

  betal2<- append(betal2,coefl[3]) 

  # MSE for Lasso 

  yhat_l<- coefl[1] + as.matrix(df[,2:3])%*%coefl[2:3] 

  resid.lasso <- df[,1] - yhat_l 

  dfree_l <- model.lasso$df.residual 

  MSE.lr <- sum(resid.lasso^2)/dfree_l 

  mselr<- append(mselr,MSE.lr) 

   

# TWO STAGE RIDGE REGRESSION METHOD 

  model.ts<- lm(y~x1+x2,data=df) 

  m<- length(residuals(model.ts)) 

  cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  Phi<- cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  X<- model.matrix(model.ts) 

  Sigma<- diag(m) 

  Sigma<- (Phi)^abs(row(Sigma)-col(Sigma)) 

  S<- chol(Sigma) 

  S_inv<- solve(t(S)) 

  SX_matr<- S_inv%*%X 

  SX<- as.matrix(SX_matr[,2:3]) 

  SY<- S_inv%*%(df$y) 

  df2<- cbind.data.frame(SY, SX) 

  model.tr<- lm.ridge(SY~SX, data=df2 ,lambda=seq(0.0,1,0.001)) 

  whichIsBest <- which.min(model.tr$GCV) # Determine min GCV and k 

  coeftr<- coef(model.tr)[whichIsBest,]  # Coefficient corresponding to 

best k 
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  # Store regression coefficients 

  betatr0<- append(betatr0,coeftr[1]) 

  betatr1<- append(betatr1,coeftr[2]) 

  betatr2<- append(betatr2,coeftr[3]) 

  # Store methods of k 

  hk<- append(hk,model.tr$kHKB) 

  lw<- append(lw,model.tr$kLW) 

  # MSE for Two Stage Ridge 

  yhat_tr<- coeftr[1] + as.matrix(df2[,2:3])%*%coeftr[2:3] 

  resid.tr <- df2[,1] - yhat_tr 

  lambda.tr <- seq(0,1,0.001)[which.min(model.tr$GCV)]   # Best k 

  d <- svd(as.matrix(SX[,1:2]))$d 

  dfree_tr <- n - sum(d^2/(lambda.tr+d^2)) 

  MSE.tr <- sum(resid.tr^2)/dfree_tr 

  msetr<- append(msetr,MSE.tr) 

   

# TWO STAGE LASSO REGRESSION METHOD 

  model.ts<- lm(y~x1+x2,data=df) 

  m<- length(residuals(model.ts)) 

  cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  Phi<- cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  X<- model.matrix(model.ts) 

  Sigma<- diag(m) 

  Sigma<- (Phi)^abs(row(Sigma)-col(Sigma)) 

  S<- chol(Sigma) 

  S_inv<- solve(t(S)) 

  SX<- S_inv%*%X 

  SX_mat<- as.matrix(SX[,2:3]) 

  SY<- S_inv%*%(df$y) 

  df3<- cbind.data.frame(SY, SX_mat) 

  model.tlasso <- islasso(SY ~ SX_mat, data=df3, family = gaussian, alpha=1) 

  coeftlasso<- coef(model.tlasso) 

  # Store regression coefficients 

  betatlasso0<- append(betatlasso0,coeftlasso[1]) 

  betatlasso1<- append(betatlasso1,coeftlasso[2]) 

  betatlasso2<- append(betatlasso2,coeftlasso[3]) 

  # MSE for Two Stage Lasso 

  yhat_tlasso<- coeftlasso[1] + as.matrix(df3[,2:3])%*%coeftlasso[2:3] 

  resid.tlasso <- df3[,1] - yhat_tlasso 

  dfree_tlasso <- model.tlasso$df.residual 

  MSE.tlasso <- sum(resid.tlasso^2)/dfree_tlasso 

  msetlasso<- append(msetlasso,MSE.tlasso) 

   

# QUANTILE REGRESSION METHOD (0.25) 

  model.Ql<- rq(y~x1+x2, tau=0.25, data=df)   # Estimate QR (0.25) 

model 
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  coefQl<- coef(model.Ql) 

  # Store Regression Coefficients 

  betaQl0<- append(betaQl0,coefQl[1]) 

  betaQl1<- append(betaQl1,coefQl[2]) 

  betaQl2<- append(betaQl2,coefQl[3]) 

  # MSE for QR(0.25) 

  yhat_Ql<- coefQl[1] + as.matrix(df[,2:3])%*%coefQl[2:3] 

  resid.Ql <- df[,1] - yhat_Ql 

  df_Ql <- summary(model.Ql)$rdf 

  MSE.Ql <- sum(resid.Ql^2)/df_Ql 

  mseQl<- append(mseQl,MSE.Ql) 

   

# QUANTILE REGRESSION METHOD (0.50) 

  model.Qm<- rq(y~x1+x2, tau=0.5, data=df)   # Estimate QR (0.50) 

model 

  coefQm<- coef(model.Qm) 

  # Store Regression Coefficients 

  betaQm0<- append(betaQm0,coefQm[1]) 

  betaQm1<- append(betaQm1,coefQm[2]) 

  betaQm2<- append(betaQm2,coefQm[3]) 

  # MSE for QR(0.50) 

  yhat_Qm<- coefQm[1] + as.matrix(df[,2:3])%*%coefQm[2:3] 

  resid.Qm <- df[,1] - yhat_Qm 

  df_Qm <- summary(model.Qm)$rdf 

  MSE.Qm <- sum(resid.Qm^2)/df_Qm 

  mseQm<- append(mseQm,MSE.Qm) 

   

# QUANTILE REGRESSION METHOD (0.75) 

  model.Qu<- rq(y~x1+x2, tau=0.75, data=df)   # Estimate QR (0.75) 

model 

  coefQu<- coef(model.Qu) 

  # Store Regression Coefficients 

  betaQu0<- append(betaQu0,coefQu[1]) 

  betaQu1<- append(betaQu1,coefQu[2]) 

  betaQu2<- append(betaQu2,coefQu[3]) 

  # MSE for QR(0.75) 

  yhat_Qu<- coefQu[1] + as.matrix(df[,2:3])%*%coefQu[2:3] 

  resid.Qu <- df[,1] - yhat_Qu 

  df_Qu <- summary(model.Qu)$rdf 

  MSE.Qu <- sum(resid.Qu^2)/df_Qu 

  mseQu<- append(mseQu,MSE.Qu) 

   

# RIDGE QUANTILE REGRESSION METHOD (0.25) 

  X<- as.matrix(df[,2:3]) 

  y_r<- df$y 

  grid.r<- 10^seq(-3, 5, length = 100) 
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  model.RQl<- cv.hqreg(X, y_r, tau=0.25, method="quantile", alpha=0, 

lambda=grid.r)      # Estimate RQR (0.25) model 

  coefRQl<- coef(model.RQl,lambda="lambda.min") 

  # Store Regression Coefficients 

  betaRQl0<- append(betaRQl0,coefRQl[1]) 

  betaRQl1<- append(betaRQl1,coefRQl[2]) 

  betaRQl2<- append(betaRQl2,coefRQl[3]) 

  # MSE for RQR(0.25) 

  yhat_RQl<- coefRQl[1] + as.matrix(df[,2:3])%*%coefRQl[2:3] 

  resid.RQl <- df[,1] - yhat_RQl 

  MSE.RQl <- mean(resid.RQl^2) 

  mseRQl<- append(mseRQl,MSE.RQl) 

   

# RIDGE QUANTILE REGRESSION METHOD (0.50) 

  X<- as.matrix(df[,2:3]) 

  y_r<- df$y 

  grid.r<- 10^seq(-3, 5, length = 100) 

  model.RQm<- cv.hqreg(X, y_r, tau=0.5, method="quantile", alpha=0, 

lambda=grid.r)     # Estimate RQR (0.50) model 

  coefRQm<- coef(model.RQm, lambda="lambda.min") 

  # Store Regression Coefficients 

  betaRQm0<- append(betaRQm0,coefRQm[1]) 

  betaRQm1<- append(betaRQm1,coefRQm[2]) 

  betaRQm2<- append(betaRQm2,coefRQm[3]) 

  # MSE for RQR(0.50) 

  yhat_RQm<- coefRQm[1] + as.matrix(df[,2:3])%*%coefRQm[2:3] 

  resid.RQm <- df[,1] - yhat_RQm 

  MSE.RQm <- mean(resid.RQm^2) 

  mseRQm<- append(mseRQm,MSE.RQm) 

   

# RIDGE QUANTILE REGRESSION METHOD (0.75) 

  X<- as.matrix(df[,2:3]) 

  y_r<- df$y 

  grid.r<- 10^seq(-3, 5, length = 100) 

  model.RQu<- cv.hqreg(X, y_r, tau=0.75, method="quantile", alpha=0, 

lambda=grid.r)     # Estimate RQR (0.75) model 

  coefRQu<- coef(model.RQu, lambda="lambda.min") 

  # Store Regression Coefficients 

  betaRQu0<- append(betaRQu0,coefRQu[1]) 

  betaRQu1<- append(betaRQu1,coefRQu[2]) 

  betaRQu2<- append(betaRQu2,coefRQu[3]) 

  # MSE for RQR(0.75) 

  yhat_RQu<- coefRQu[1] + as.matrix(df[,2:3])%*%coefRQu[2:3] 

  resid.RQu <- df[,1] - yhat_RQu 

  MSE.RQu <- mean(resid.RQu^2) 

  mseRQu<- append(mseRQu,MSE.RQu) 
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# LASSO QUANTILE REGRESSION METHOD (0.25) 

  x_l<- as.matrix(df[,2:3]) 

  y_l<- df$y 

  grid.l<- 10^seq(-3, 5, length = 100) 

  model.LQl<- cv.hqreg(x_l, y_l, tau=0.25, method="quantile", alpha=1, 

lambda=grid.l)    # Estimate LQR (0.25) model 

  coefLQl<- coef(model.LQl, lambda="lambda.min") 

  # Store Regression Coefficients 

  betaLQl0<- append(betaLQl0,coefLQl[1]) 

  betaLQl1<- append(betaLQl1,coefLQl[2]) 

  betaLQl2<- append(betaLQl2,coefLQl[3]) 

  # MSE for LQR(0.25) 

  yhat_LQl<- coefLQl[1] + as.matrix(df[,2:3])%*%coefLQl[2:3] 

  resid.LQl <- df[,1] - yhat_LQl 

  MSE.LQl <- mean(resid.LQl^2) 

  mseLQl<- append(mseLQl,MSE.LQl) 

   

# LASSO QUANTILE REGRESSION METHOD (0.50) 

  x_l<- as.matrix(df[,2:3]) 

  y_l<- df$y 

  grid.l<- 10^seq(-3, 5, length = 100) 

  model.LQm<- cv.hqreg(x_l, y_l, tau=0.5, method="quantile", alpha=1, 

lambda=grid.l)     # Estimate LQR (0.50) model 

  coefLQm<- coef(model.LQm, lambda="lambda.min") 

  # Store Regression Coefficients 

  betaLQm0<- append(betaLQm0,coefLQm[1]) 

  betaLQm1<- append(betaLQm1,coefLQm[2]) 

  betaLQm2<- append(betaLQm2,coefLQm[3]) 

  # MSE for LQR(0.50) 

  yhat_LQm<- coefLQm[1] + as.matrix(df[,2:3])%*%coefLQm[2:3] 

  resid.LQm <- df[,1] - yhat_LQm 

  MSE.LQm <- mean(resid.LQm^2) 

  mseLQm<- append(mseLQm,MSE.LQm) 

   

# LASSO QUANTILE REGRESSION METHOD (0.75) 

  x_l<- as.matrix(df[,2:3]) 

  y_l<- df$y 

  grid.l<- 10^seq(-3, 5, length = 100) 

  model.LQu<- cv.hqreg(x_l, y_l, tau=0.75, method="quantile", alpha=1, 

lambda=grid.l)     # Estimate LQR (0.75) model 

  coefLQu<- coef(model.LQu, lambda="lambda.min") 

  # Store Regression Coefficients 

  betaLQu0<- append(betaLQu0,coefLQu[1]) 

  betaLQu1<- append(betaLQu1,coefLQu[2]) 

  betaLQu2<- append(betaLQu2,coefLQu[3]) 
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  # MSE for LQR(0.75) 

  yhat_LQu<- coefLQu[1] + as.matrix(df[,2:3])%*%coefLQu[2:3] 

  resid.LQu <- df[,1] - yhat_LQu 

  MSE.LQu <- mean(resid.LQu^2) 

  mseLQu<- append(mseLQu,MSE.LQu) 

   

# TWO STAGE RIDGE QUANTILE REGRESSION METHOD (0.25) 

  model.ts<- lm(y~x1+x2, data=df) 

  m<- length(residuals(model.ts)) 

  cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  Phi<- cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  X<- model.matrix(model.ts) 

  Sigma<- diag(m) 

  Sigma<- (Phi)^abs(row(Sigma)-col(Sigma)) 

  S<- chol(Sigma) 

  S_inv<- solve(t(S)) 

  SX_mat<- S_inv%*%X 

  SX<- as.matrix(SX_mat[,2:3]) 

  SY<- S_inv%*%(df$y) 

  df2<- cbind.data.frame(SY, SX) 

  grid.r<- 10^seq(-3, 5, length = 100) 

  model.TRQl<- cv.hqreg(SX, SY, tau=0.25, method="quantile", alpha=0, 

lambda=grid.r)     # Estimate TRQR (0.25) model 

  coefTRQl<- coef(model.TRQl, lambda="lambda.min") 

  # Store Regression Coefficients 

  betaTRQl0<- append(betaTRQl0,coefTRQl[1]) 

  betaTRQl1<- append(betaTRQl1,coefTRQl[2]) 

  betaTRQl2<- append(betaTRQl2,coefTRQl[3]) 

  # MSE for TRQR(0.25) 

  yhat_TRQl<- coefTRQl[1] + as.matrix(df2[,2:3])%*%coefTRQl[2:3] 

  resid.TRQl <- df2[,1] - yhat_TRQl 

  MSE.TRQl <- mean(resid.TRQl^2) 

  mseTRQl<- append(mseTRQl,MSE.TRQl) 

   

# TWO STAGE RIDGE QUANTILE REGRESSION METHOD (0.50) 

  model.ts<-lm(y~x1+x2, data=df) 

  m<- length(residuals(model.ts)) 

  cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  Phi<- cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  X<- model.matrix(model.ts) 

  Sigma<- diag(m) 

  Sigma<- (Phi)^abs(row(Sigma)-col(Sigma)) 

  S<- chol(Sigma) 

  S_inv<- solve(t(S)) 

  SX_mat<- S_inv%*%X 

  SX<- as.matrix(SX_mat[,2:3]) 
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  SY<- S_inv%*%(df$y) 

  df2<- cbind.data.frame(SY, SX) 

  grid.r<- 10^seq(-3, 5, length = 100) 

  model.TRQm<- cv.hqreg(SX, SY, tau=0.5, method="quantile", alpha=0, 

lambda=grid.r)     # Estimate TRQR (0.50) model 

  coefTRQm<- coef(model.TRQm, lambda="lambda.min") 

  # Store Regression Coefficients 

  betaTRQm0<- append(betaTRQm0,coefTRQm[1]) 

  betaTRQm1<- append(betaTRQm1,coefTRQm[2]) 

  betaTRQm2<- append(betaTRQm2,coefTRQm[3]) 

  # MSE for TRQR(0.50) 

  yhat_TRQm<- coefTRQm[1] + as.matrix(df2[,2:3])%*%coefTRQm[2:3] 

  resid.TRQm <- df2[,1] - yhat_TRQm 

  MSE.TRQm <- mean(resid.TRQm^2) 

  mseTRQm<- append(mseTRQm,MSE.TRQm) 

   

# TWO STAGE RIDGE QUANTILE REGRESSION METHOD (0.75) 

  model.ts<-lm(y~x1+x2, data=df) 

  m<- length(residuals(model.ts)) 

  cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  Phi<- cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  X<- model.matrix(model.ts) 

  Sigma<- diag(m) 

  Sigma<- (Phi)^abs(row(Sigma)-col(Sigma)) 

  S<- chol(Sigma) 

  S_inv<- solve(t(S)) 

  SX_mat<- S_inv%*%X 

  SX<- as.matrix(SX_mat[,2:3]) 

  SY<- S_inv%*%(df$y) 

  df2<- cbind.data.frame(SY, SX) 

  grid.r<- 10^seq(-3, 5, length = 100) 

  model.TRQu<- cv.hqreg(SX, SY, tau=0.75, method="quantile", alpha=0, 

lambda=grid.r)     # Estimate TRQR (0.75) model 

  coefTRQu<- coef(model.TRQu, lambda="lambda.min") 

  # Store Regression Coefficients 

  betaTRQu0<- append(betaTRQu0,coefTRQu[1]) 

  betaTRQu1<- append(betaTRQu1,coefTRQu[2]) 

  betaTRQu2<- append(betaTRQu2,coefTRQu[3]) 

  # MSE for TRQR(0.75) 

  yhat_TRQu<- coefTRQu[1] + as.matrix(df2[,2:3])%*%coefTRQu[2:3] 

  resid.TRQu <- df2[,1] - yhat_TRQu 

  MSE.TRQu <- mean(resid.TRQu^2) 

  mseTRQu<- append(mseTRQu,MSE.TRQu) 

   

# TWO STAGE LASSO QUANTILE REGRESSION METHOD (0.25) 

  model.ts<- lm(y~x1+x2, data=df) 
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  m<- length(residuals(model.ts)) 

  cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  Phi<- cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  X<- model.matrix(model.ts) 

  Sigma<- diag(m) 

  Sigma<- (Phi)^abs(row(Sigma)-col(Sigma)) 

  S<- chol(Sigma) 

  S_inv<- solve(t(S)) 

  SX_mat<- S_inv%*%X 

  SX<- as.matrix(SX_mat[,2:3]) 

  SY<- S_inv%*%(df$y) 

  df2<- cbind.data.frame(SY, SX) 

  grid.l<- 10^seq(-3, 5, length = 100) 

  model.TLQl<- cv.hqreg(SX, SY, tau=0.25, method="quantile", alpha=1, 

lambda=grid.l)     # Estimate TLQR (0.25) model 

  coefTLQl<- coef(model.TLQl, lambda="lambda.min") 

  # Store Regression Coefficients 

  betaTLQl0<- append(betaTLQl0,coefTLQl[1]) 

  betaTLQl1<- append(betaTLQl1,coefTLQl[2]) 

  betaTLQl2<- append(betaTLQl2,coefTLQl[3]) 

  # MSE for TLQR(0.25) 

  yhat_TLQl<- coefTLQl[1] + as.matrix(df2[,2:3])%*%coefTLQl[2:3] 

  resid.TLQl <- df2[,1] - yhat_TLQl 

  MSE.TLQl <- mean(resid.TLQl^2) 

  mseTLQl<- append(mseTLQl,MSE.TLQl) 

   

# TWO STAGE LASSO QUANTILE REGRESSION METHOD (0.50) 

  model.ts<- lm(y~x1+x2, data=df) 

  m<- length(residuals(model.ts)) 

  cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  Phi<- cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  X<- model.matrix(model.ts) 

  Sigma<- diag(m) 

  Sigma<- (Phi)^abs(row(Sigma)-col(Sigma)) 

  S<- chol(Sigma) 

  S_inv<- solve(t(S)) 

  SX_mat<- S_inv%*%X 

  SX<- as.matrix(SX_mat[,2:3]) 

  SY<- S_inv%*%(df$y) 

  df2<- cbind.data.frame(SY, SX) 

  grid.l<- 10^seq(-3, 5, length = 100) 

  model.TLQm<- cv.hqreg(SX, SY, tau=0.5, method="quantile", alpha=1, 

lambda=grid.l)     # Estimate TLQR (0.50) model 

  coefTLQm<- coef(model.TLQm, lambda="lambda.min") 

  # Store Regression Coefficients 

  betaTLQm0<- append(betaTLQm0,coefTLQm[1]) 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



155 
 

  betaTLQm1<- append(betaTLQm1,coefTLQm[2]) 

  betaTLQm2<- append(betaTLQm2,coefTLQm[3]) 

  # MSE for TLQR(0.50) 

  yhat_TLQm<-coefTLQm[1] + as.matrix(df2[,2:3])%*%coefTLQm[2:3] 

  resid.TLQm <- df2[,1] - yhat_TLQm 

  MSE.TLQm <- mean(resid.TLQm^2) 

  mseTLQm<- append(mseTLQm,MSE.TLQm) 

   

# TWO STAGE LASSO QUANTILE REGRESSION METHOD (0.75) 

  model.ts<- lm(y~x1+x2, data=df) 

  m<- length(residuals(model.ts)) 

  cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  Phi<- cor(residuals(model.ts)[-1], residuals(model.ts)[-m]) 

  X<- model.matrix(model.ts) 

  Sigma<- diag(m) 

  Sigma<- (Phi)^abs(row(Sigma)-col(Sigma)) 

  S<- chol(Sigma) 

  S_inv<- solve(t(S)) 

  SX_mat<- S_inv%*%X 

  SX<- as.matrix(SX_mat[,2:3]) 

  SY<- S_inv%*%(df$y) 

  df2<- cbind.data.frame(SY, SX) 

  grid.l<- 10^seq(-3, 5, length = 100) 

  model.TLQu<- cv.hqreg(SX, SY, tau=0.75, method="quantile", alpha=1, 

lambda=grid.l)     # Estimate TLQR (0.75) model 

  coefTLQu<- coef(model.TLQu, lambda="lambda.min") 

  # Store Regression Coefficients 

  betaTLQu0<- append(betaTLQu0,coefTLQu[1]) 

  betaTLQu1<- append(betaTLQu1,coefTLQu[2]) 

  betaTLQu2<- append(betaTLQu2,coefTLQu[3]) 

  # MSE for TLQR(0.75) 

  yhat_TLQu<- coefTLQu[1] + as.matrix(df2[,2:3])%*%coefTLQu[2:3] 

  resid.TLQu <- df2[,1] - yhat_TLQu 

  MSE.TLQu <- mean(resid.TLQu^2) 

  mseTLQu<- append(mseTLQu,MSE.TLQu) 

} 

 

# Ordinary least squares output 

B0<- mean(beta0) 

B1<- mean(beta1) 

B2<- mean(beta2) 

mse<- mean(mseols) 

# Ridge regression output 

Br0<- mean(betar0) 

Br1<- mean(betar1) 

Br2<- mean(betar2) 
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khk<- mean(hk) 

klw<- mean(lw) 

mse_r<- mean(mser) 

# Lasso regression output 

Bl0<- mean(betal0) 

Bl1<- mean(betal1) 

Bl2<- mean(betal2) 

mse_lr<- mean(mselr) 

# Two Stage Ridge regression output 

Btr0<- mean(betatr0) 

Btr1<- mean(betatr1) 

Btr2<- mean(betatr2) 

khk<- mean(hk) 

klw<- mean(lw) 

mse_tr<- mean(msetr) 

# Two Stage Lasso regression output 

Btlasso0<- mean(betatlasso0) 

Btlasso1<- mean(betatlasso1) 

Btlasso2<- mean(betatlasso2) 

mse_tlasso<- mean(msetlasso) 

# QR (0.25) output 

BQl0<- mean(betaQl0) 

BQl1<- mean(betaQl1) 

BQl2<- mean(betaQl2) 

mse_Ql<- mean(mseQl) 

# QR (0.50) output 

BQm0<- mean(betaQm0) 

BQm1<- mean(betaQm1) 

BQm2<- mean(betaQm2) 

mse_Qm<- mean(mseQm) 

# QR (0.75) output 

BQu0<- mean(betaQu0) 

BQu1<- mean(betaQu1) 

BQu2<- mean(betaQu2) 

mse_Qu<- mean(mseQu) 

# RQR (0.25) output 

BRQl0<- mean(betaRQl0) 

BRQl1<- mean(betaRQl1) 

BRQl2<- mean(betaRQl2) 

mse_RQl<- mean(mseRQl) 

# RQR (0.50) output 

BRQm0<- mean(betaRQm0) 

BRQm1<- mean(betaRQm1) 

BRQm2<- mean(betaRQm2) 

mse_RQm<- mean(mseRQm) 

# RQR (0.75) output 
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BRQu0<- mean(betaRQu0) 

BRQu1<- mean(betaRQu1) 

BRQu2<- mean(betaRQu2) 

mse_RQu<- mean(mseRQu) 

# LQR (0.25) output 

BLQl0<- mean(betaLQl0) 

BLQl1<- mean(betaLQl1) 

BLQl2<- mean(betaLQl2) 

mse_LQl<- mean(mseLQl) 

# LQR (0.50) output 

BLQm0<- mean(betaLQm0) 

BLQm1<- mean(betaLQm1) 

BLQm2<- mean(betaLQm2) 

mse_LQm<- mean(mseLQm) 

# LQR (0.75) output 

BLQu0<- mean(betaLQu0) 

BLQu1<- mean(betaLQu1) 

BLQu2<- mean(betaLQu2) 

mse_LQu<- mean(mseLQu) 

# Two Stage RQR (0.25) output 

BTRQl0<- mean(betaTRQl0) 

BTRQl1<- mean(betaTRQl1) 

BTRQl2<- mean(betaTRQl2) 

mse_TRQl<- mean(mseTRQl) 

# Two Stage RQR (0.50) output 

BTRQm0<- mean(betaTRQm0) 

BTRQm1<- mean(betaTRQm1) 

BTRQm2<- mean(betaTRQm2) 

mse_TRQm<- mean(mseTRQm) 

# Two Stage RQR (0.75) output 

BTRQu0<- mean(betaTRQu0) 

BTRQu1<- mean(betaTRQu1) 

BTRQu2<- mean(betaTRQu2) 

mse_TRQu<- mean(mseTRQu) 

# Two Stage LQR (0.25) output 

BTLQl0<- mean(betaTLQl0) 

BTLQl1<- mean(betaTLQl1) 

BTLQl2<- mean(betaTLQl2) 

mse_TLQl<- mean(mseTLQl) 

# Two Stage LQR (0.50) output 

BTLQm0<- mean(betaTLQm0) 

BTLQm1<- mean(betaTLQm1) 

BTLQm2<- mean(betaTLQm2) 

mse_TLQm<- mean(mseTLQm) 

# Two Stage LQR (0.75) output 

BTLQu0<- mean(betaTLQu0) 
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BTLQu1<- mean(betaTLQu1) 

BTLQu2<- mean(betaTLQu2) 

mse_TLQu<- mean(mseTLQu) 

 

cat(":::::::::::: OLS  

Outputs::::::::::::::::: 

","\n","intercept=","\t",B0,"\n","B1=","\t",B1,"\n","B2=","\t",B2,"\n","MSE=",

"\t",mse,"\n"," 

::::::::::::::::: Ridge Regression 

Outputs::::::::::::::::: 

","\n","intercept=","\t",Br0,"\n","B1=","\t",Br1,"\n","B2=","\t",Br2,"\n","MSE

_R=","\t",mse_r,"\n","KHK=","\t",khk,"\n","KLW=","\t",klw,"\n"," 

::::::::::::::::: Lasso Regression 

Outputs::::::::::::::::: 

","\n","intercept=","\t",Bl0,"\n","B1=","\t",Bl1,"\n","B2=","\t",Bl2,"\n","MSE

_L=","\t",mse_lr,"\n"," 

::::::::::::::::: Two Stage Ridge Regression 

Outputs::::::::::::::::: 

","\n","intercept=","\t",Btr0,"\n","B1=","\t",Btr1,"\n","B2=","\t",Btr2,"\n","MS

E_TR=","\t",mse_tr,"\n","KHK=","\t",khk,"\n","KLW=","\t",klw,"\n"," 

::::::::::::::::: Two Stage Lasso Regression 

Outputs::::::::::::::::: 

","\n","intercept=","\t",Btlasso0,"\n","B1=","\t",Btlasso1,"\n","B2=","\t",Btlass

o2,"\n","MSE_TLASSO=","\t",mse_tlasso,"\n"," 

::::::::::::::::: QR (0.25) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BQl0,"\n","B1=","\t",BQl1,"\n","B2=","\t",BQl2,"\n","

MSE_QL=","\t",mse_Ql,"\n"," 

::::::::::::::::: QR (0.50) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BQm0,"\n","B1=","\t",BQm1,"\n","B2=","\t",BQm2,"\

n","MSE_QM=","\t",mse_Qm,"\n"," 

::::::::::::::::: QR (0.75) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BQu0,"\n","B1=","\t",BQu1,"\n","B2=","\t",BQu2,"\n",

"MSE_QU=","\t",mse_Qu,"\n"," 

::::::::::::::::: RQR (0.25) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BRQl0,"\n","B1=","\t",BRQl1,"\n","B2=","\t",BRQl2,"

\n","MSE_RQL=","\t",mse_RQl,"\n"," 

::::::::::::::::: RQR (0.50) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BRQm0,"\n","B1=","\t",BRQm1,"\n","B2=","\t",BRQ

m2,"\n","MSE_RQM=","\t",mse_RQm,"\n"," 

::::::::::::::::: RQR (0.75) 
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Outputs::::::::::::::::: 

","\n","intercept=","\t",BRQu0,"\n","B1=","\t",BRQu1,"\n","B2=","\t",BRQu2

,"\n","MSE_RQU=","\t",mse_RQu,"\n"," 

::::::::::::::::: LQR (0.25) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BLQl0,"\n","B1=","\t",BLQl1,"\n","B2=","\t",BLQl2,"\

n","MSE_LQL=","\t",mse_LQl,"\n"," 

::::::::::::::::: LQR (0.50) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BLQm0,"\n","B1=","\t",BLQm1,"\n","B2=","\t",BLQm

2,"\n","MSE_LQM=","\t",mse_LQm,"\n"," 

::::::::::::::::: LQR (0.75) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BLQu0,"\n","B1=","\t",BLQu1,"\n","B2=","\t",BLQu2,

"\n","MSE_LQU=","\t",mse_LQu,"\n"," 

::::::::::::::::: Two Stage RQR (0.25) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BTRQl0,"\n","B1=","\t",BTRQl1,"\n","B2=","\t",BTR

Ql2,"\n","MSE_TRQL=","\t",mse_TRQl,"\n"," 

::::::::::::::::: Two Stage RQR (0.50) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BTRQm0,"\n","B1=","\t",BTRQm1,"\n","B2=","\t",BT

RQm2,"\n","MSE_TRQM=","\t",mse_TRQm,"\n"," 

::::::::::::::::: Two Stage RQR (0.75) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BTRQu0,"\n","B1=","\t",BTRQu1,"\n","B2=","\t",BTR

Qu2,"\n","MSE_TRQU=","\t",mse_TRQu,"\n"," 

::::::::::::::::: Two Stage LQR (0.25) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BTLQl0,"\n","B1=","\t",BTLQl1,"\n","B2=","\t",BTL

Ql2,"\n","MSE_TLQL=","\t",mse_TLQl,"\n"," 

::::::::::::::::: Two Stage LQR (0.50) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BTLQm0,"\n","B1=","\t",BTLQm1,"\n","B2=","\t",BT

LQm2,"\n","MSE_TLQM=","\t",mse_TLQm,"\n"," 

::::::::::::::::: Two Stage LQR (0.75) 

Outputs::::::::::::::::: 

","\n","intercept=","\t",BTLQu0,"\n","B1=","\t",BTLQu1,"\n","B2=","\t",BTL

Qu2,"\n","MSE_TLQU=","\t",mse_TLQu) 

 

# All Estimators MSE 

mse<-

cbind(mse,mse_r,mse_lr,mse_tr,mse_tlasso,mse_Ql,mse_Qm,mse_Qu,mse_R

Ql,mse_RQm,mse_RQu,mse_LQl,mse_LQm,mse_LQu,mse_TRQl,mse_TRQ

m,mse_TRQu,mse_TLQl,mse_TLQm,mse_TLQu) 

print(mse) 
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APPENDIX B 

SIMULATION REGRESSION COEFFICIENTS 

Table B1: Simulation results of regression coefficients when γ²=0.7, ρ=0.1 

and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.018 -0.024 -0.022 -0.025 -0.024 

1β  0.898 0.880 0.872 0.879 0.869 

2β  1.017 0.987 0.999 0.990 1.001 

 

Table B2: Estimated regression coefficients when γ²=0.7, ρ=0.1 and n=25 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.744 -0.823 -0.802 -0.789 -0.771 

0.25 1β  0.592 0.538 0.524 0.568 0.549 

  2β  1.044 0.882 0.942 0.888 0.963 

 0β  -0.031 -0.082 -0.069 -0.088 -0.068 

0.5 1β  0.720 0.674 0.630 0.682 0.650 

  2β  1.127 0.990 1.059 0.976 1.052 

 0β  0.637 0.573 0.601 0.573 0.590 

0.75 1β  1.039 0.886 0.915 0.886 0.911 

  2β  0.974 0.877 0.911 0.879 0.922 

 

Table B3: Simulation results of regression coefficients when γ²=0.7, ρ=0.1 

and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.059 -0.060 -0.061 -0.062 -0.063 

1β  0.916 0.910 0.905 0.909 0.903 

2β  1.105 1.087 1.089 1.087 1.090 

 

Table B4: Estimated regression coefficients when γ²=0.7, ρ=0.1 and n=50 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.692 -0.723 -0.710 -0.713 -0.710 

0.25 1β  0.868 0.862 0.849 0.854 0.848 

  2β  1.095 0.992 1.027 1.002 1.028 

 0β  -0.032 -0.041 -0.044 -0.048 -0.047 

0.5 1β  0.903 0.878 0.870 0.874 0.865 

  2β  1.138 1.064 1.090 1.067 1.100 

 0β  0.588 0.581 0.587 0.580 0.585 

0.75 1β  0.904 0.875 0.872 0.881 0.878 

  2β  1.219 1.144 1.173 1.134 1.160 
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Table B5: Simulation results of regression coefficients when γ²=0.7, ρ=0.1 

and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  0.002 0.002 0.002 0.002 0.002 

1β  1.141 1.136 1.135 1.136 1.135 

2β  0.868 0.867 0.859 0.867 0.859 

 

Table B6: Estimated regression coefficients when γ²=0.7, ρ=0.1 and n=200 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.711 -0.715 -0.716 -0.714 -0.715 

0.25 1β  1.126 1.096 1.109 1.096 1.110 

  2β  0.897 0.896 0.894 0.896 0.893 

 0β  -0.012 -0.011 -0.010 -0.011 -0.010 

0.5 1β  1.127 1.092 1.109 1.092 1.110 

  2β  0.858 0.849 0.843 0.851 0.843 

 0β  0.696 0.693 0.694 0.693 0.693 

0.75 1β  1.190 1.160 1.171 1.160 1.170 

  2β  0.810 0.814 0.808 0.815 0.808 

 

Table B7: Simulation results of regression coefficients when γ²=0.9, ρ=0.1 

and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.016 -0.022 -0.019 -0.023 -0.021 

1β  0.862 0.864 0.840 0.861 0.840 

2β  1.064 1.024 1.048 1.028 1.050 

 

Table B8: Estimated regression coefficients when γ²=0.9, ρ=0.1 and n=25 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.743 -0.794 -0.789 -0.779 -0.767 

0.25 1β  0.454 0.497 0.391 0.545 0.450 

  2β  1.222 1.003 1.141 0.995 1.122 

 0β  -0.024 -0.071 -0.063 -0.077 -0.065 

0.5 1β  0.579 0.643 0.550 0.651 0.570 

  2β  1.297 1.088 1.206 1.070 1.182 

 0β  0.641 0.584 0.622 0.581 0.606 

0.75 1β  1.062 0.912 0.967 0.892 0.958 

  2β  0.951 0.885 0.871 0.887 0.892 
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Table B9: Simulation results of regression coefficients when γ²=0.9, ρ=0.1 

and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  0.116 0.116 0.116 0.119 0.119 

1β  0.965 0.956 0.956 0.957 0.958 

2β  0.954 0.944 0.943 0.944 0.943 

 

Table B10: Estimated regression coefficients when γ²=0.9, ρ=0.1 and 

n=50 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.567 -0.573 -0.574 -0.567 -0.571 

0.25 1β  1.065 0.994 1.026 0.999 1.026 

  2β  0.873 0.863 0.847 0.848 0.850 

 0β  0.089 0.087 0.097 0.096 0.100 

0.5 1β  1.065 0.987 1.029 0.979 1.018 

  2β  0.917 0.888 0.871 0.890 0.877 

 0β  0.787 0.807 0.809 0.809 0.808 

0.75 1β  0.993 0.929 0.960 0.928 0.953 

  2β  0.921 0.865 0.861 0.870 0.868 

 

Table B11: Simulation results of regression coefficients when γ²=0.9, ρ=0.1 

and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  0.003 0.002 0.003 0.002 0.003 

1β  1.236 1.223 1.231 1.223 1.231 

2β  0.757 0.766 0.747 0.766 0.747 

 

Table B12: Estimated regression coefficients when γ²=0.9, ρ=0.1 and 

n=200 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.711 -0.711 -0.715 -0.712 -0.714 

0.25 1β  1.191 1.133 1.175 1.131 1.176 

  2β  0.813 0.833 0.810 0.833 0.808 

 0β  -0.011 -0.014 -0.011 -0.015 -0.011 

0.5 1β  1.222 1.153 1.204 1.151 1.205 

  2β  0.754 0.779 0.741 0.783 0.742 

 0β  0.695 0.693 0.694 0.693 0.694 

0.75 1β  1.329 1.272 1.305 1.267 1.303 

  2β  0.672 0.703 0.674 0.707 0.675 
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Table B13: Simulation results of regression coefficients when γ²=0.9, ρ=0.1 

and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.005 -0.005 -0.006 -0.005 -0.006 

1β  1.000 0.999 0.994 1.000 0.994 

2β  1.016 1.015 1.010 1.015 1.010 

 

Table B14: Estimated regression coefficients when γ²=0.9, ρ=0.1 and 

n=500 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.705 -0.709 -0.711 -0.708 -0.711 

0.25 1β  1.022 1.007 1.010 1.007 1.010 

  2β  0.994 0.997 1.003 0.998 1.004 

 0β  -0.027 -0.023 -0.022 -0.022 -0.021 

0.5 1β  0.988 0.980 0.989 0.981 0.989 

  2β  0.979 0.973 0.977 0.972 0.976 

 0β  0.661 0.673 0.674 0.673 0.675 

0.75 1β  1.176 1.129 1.139 1.124 1.136 

  2β  0.834 0.869 0.863 0.874 0.866 

 

Table B15: Simulation results of regression coefficients when γ²=0.99, 

ρ=0.1 and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.014 -0.020 -0.018 -0.021 -0.019 

1β  0.655 0.763 0.725 0.756 0.723 

2β  1.279 1.142 1.177 1.153 1.185 

 

Table B16: Estimated regression coefficients when γ²=0.99, ρ=0.1 and 

n=25 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.736 -0.772 -0.806 -0.768 -0.767 

0.25 1β  -0.367 0.183 0.165 0.326 0.044 

  2β  2.067 1.395 1.401 1.270 1.563 

 0β  -0.021 -0.055 -0.051 -0.056 -0.053 

0.5 1β  -0.165 0.422 0.204 0.420 0.383 

  2β  2.057 1.377 1.596 1.358 1.421 

 0β  0.641 0.584 0.602 0.586 0.601 

0.75 1β  1.159 0.866 0.930 0.859 1.006 

  2β  0.846 0.957 0.926 0.961 0.855 
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Table B17: Simulation results of regression coefficients when γ²=0.99, 

ρ=0.1 and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  0.116 0.117 0.117 0.120 0.120 

1β  0.975 0.958 0.978 0.960 0.970 

2β  0.944 0.944 0.921 0.944 0.930 

 

Table B18: Estimated regression coefficients when γ²=0.99, ρ=0.1 and 

n=50 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.566 -0.572 -0.571 -0.565 -0.567 

0.25 1β  1.277 1.072 1.178 1.066 1.153 

  2β  0.651 0.785 0.687 0.793 0.710 

 0β  0.088 0.084 0.090 0.093 0.096 

0.5 1β  1.213 1.041 1.077 1.012 1.074 

  2β  0.766 0.856 0.822 0.875 0.827 

 0β  0.790 0.805 0.806 0.802 0.801 

0.75 1β  1.058 0.949 1.042 0.975 1.031 

  2β  0.858 0.873 0.787 0.859 0.800 

 

Table B19: Estimated regression coefficients when γ²=0.99, ρ=0.1 and 

n=200 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.668 -0.664 -0.671 -0.664 -0.670 

0.25 1β  1.451 1.161 1.349 1.169 1.346 

  2β  0.581 0.828 0.653 0.822 0.659 

 0β  0.080 0.083 0.077 0.081 0.076 

0.5 1β  0.971 0.967 0.931 0.965 0.919 

  2β  1.025 0.992 1.048 0.994 1.059 

 
0β  0.691 0.709 0.709 0.711 0.710 

0.75 1β  0.546 0.703 0.556 0.700 0.557 

  2β  1.354 1.167 1.326 1.171 1.323 

 

Table B20: Simulation results of regression coefficients when γ²=0.99, 

ρ=0.1 and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.005 -0.005 -0.005 -0.005 -0.005 

1β  0.985 0.989 0.980 0.989 0.981 

2β  1.039 1.033 1.030 1.033 1.030 
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Table B21: Estimated regression coefficients when γ²=0.99, ρ=0.1 and 

n=500 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -0.706 -0.708 -0.713 -0.707 -0.712 

0.25 1β  1.052 1.018 1.019 1.016 1.018 

  2β  0.963 0.982 0.996 0.984 0.997 

 0β  -0.027 -0.023 -0.021 -0.022 -0.021 

0.5 1β  1.006 0.992 1.020 0.996 1.021 

  2β  0.973 0.965 0.958 0.963 0.956 

 0β  0.662 0.672 0.675 0.672 0.675 

0.75 1β  1.546 1.291 1.434 1.278 1.425 

  2β  0.474 0.719 0.580 0.731 0.589 

 

 

Table B22: Simulation results of regression coefficients when γ²=0.7, ρ=0.9 

and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  0.200 0.193 0.180 0.201 0.190 

1β  0.719 0.714 0.643 0.709 0.644 

2β  1.207 1.163 1.127 1.163 1.131 

 

Table B23: Estimated regression coefficients when γ²=0.7, ρ=0.9 and n=25 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -1.071 -1.270 -1.311 -1.235 -1.252 

0.25 1β  0.585 0.480 0.409 0.501 0.441 

  2β  1.345 0.867 0.902 0.895 0.956 

 0β  0.351 0.327 0.341 0.316 0.314 

0.5 1β  0.865 0.835 0.800 0.804 0.756 

  2β  1.208 1.019 1.103 1.030 1.110 

 0β  1.469 1.533 1.508 1.529 1.498 

0.75 1β  0.800 0.690 0.666 0.669 0.650 

  2β  0.985 0.780 0.839 0.798 0.870 

 

Table B24: Simulation results of regression coefficients when γ²=0.7, ρ=0.9 

and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.683 -0.684 -0.687 -0.709 -0.711 

1β  0.991 0.977 0.959 0.975 0.954 

2β  0.927 0.919 0.894 0.916 0.896 
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Table B25: Estimated regression coefficients when γ²=0.7, ρ=0.9 and 

n=50 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -2.274 -2.319 -2.298 -2.332 -2.319 

0.25 1β  1.245 0.977 1.063 0.958 1.042 

  2β  0.710 0.635 0.600 0.654 0.616 

 0β  -0.405 -0.391 -0.402 -0.450 -0.450 

0.5 1β  1.113 0.895 0.942 0.870 0.941 

  2β  0.863 0.776 0.787 0.806 0.799 

 0β  1.043 1.067 1.082 1.045 1.052 

0.75 1β  0.747 0.628 0.636 0.647 0.678 

  2β  1.017 0.777 0.817 0.790 0.809 

 

Table B26: Simulation results of regression coefficients when γ²=0.7, ρ=0.9 

and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.046 -0.046 -0.046 -0.047 -0.046 

1β  1.217 1.210 1.210 1.210 1.210 

2β  0.622 0.624 0.612 0.624 0.612 

 

Table B27: Estimated regression coefficients when γ²=0.7, ρ=0.9 and 

n=200 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -1.785 -1.781 -1.781 -1.775 -1.776 

0.25 1β  1.272 1.130 1.215 1.133 1.209 

  2β  0.651 0.654 0.608 0.656 0.605 

 0β  0.021 0.042 0.037 0.035 0.029 

0.5 1β  1.108 0.975 1.040 0.980 1.047 

  2β  0.743 0.695 0.671 0.698 0.674 

 
0β  1.516 1.518 1.531 1.520 1.533 

0.75 1β  1.238 1.143 1.214 1.136 1.210 

  2β  0.498 0.524 0.470 0.528 0.471 

 

Table B28: Simulation results of regression coefficients when γ²=0.7, ρ=0.9 

and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.007 -0.007 -0.008 -0.007 -0.008 

1β  1.057 1.056 1.050 1.055 1.050 

2β  1.009 1.008 1.002 1.008 1.002 
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Table B29: Simulation results of regression coefficients when γ²=0.9, ρ=0.9 

and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  0.197 0.189 0.178 0.197 0.186 

1β  0.518 0.583 0.516 0.575 0.521 

2β  1.381 1.279 1.246 1.284 1.248 

 

Table B30: Estimated regression coefficients when γ²=0.9, ρ=0.9 and n=25 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -1.070 -1.275 -1.250 -1.231 -1.199 

0.25 1β  0.279 0.439 0.367 0.641 0.374 

  2β  1.599 0.965 1.080 0.896 1.148 

 0β  0.348 0.332 0.342 0.331 0.317 

0.5 1β  0.706 0.796 0.726 0.727 0.690 

  2β  1.339 1.067 1.175 1.114 1.168 

 0β  1.471 1.558 1.547 1.537 1.508 

0.75 1β  0.751 0.719 0.734 0.701 0.678 

  2β  1.074 0.846 0.903 0.870 0.918 

 

Table B31: Simulation results of regression coefficients when γ²=0.9, ρ=0.9 

and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.681 -0.681 -0.684 -0.707 -0.708 

1β  1.019 0.996 0.987 0.994 0.976 

2β  0.916 0.919 0.883 0.916 0.894 

 

Table B32: Estimated regression coefficients when γ²=0.9, ρ=0.9 and 

n=50 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -2.267 -2.311 -2.306 -2.329 -2.318 

0.25 1β  1.430 1.091 1.171 1.066 1.158 

  2β  0.519 0.582 0.517 0.586 0.530 

 0β  -0.407 -0.394 -0.396 -0.452 -0.449 

0.5 1β  1.226 0.961 1.046 0.944 1.021 

  2β  0.798 0.804 0.778 0.812 0.786 

 0β  1.042 1.075 1.076 1.056 1.047 

0.75 1β  0.653 0.639 0.604 0.662 0.630 

  2β  1.181 0.858 0.934 0.871 0.947 
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Table B33: Simulation results of regression coefficients when γ²=0.9, ρ=0.9 

and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.056 -0.056 -0.057 -0.057 -0.058 

1β  1.237 1.223 1.219 1.223 1.218 

2β  0.713 0.721 0.714 0.720 0.713 

 

Table B34: Estimated regression coefficients when γ²=0.9, ρ=0.9 and 

n=200 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -1.762 -1.762 -1.760 -1.763 -1.761 

0.25 1β  1.204 1.058 1.176 1.055 1.173 

  2β  0.727 0.764 0.700 0.759 0.703 

 0β  -0.144 -0.142 -0.135 -0.137 -0.135 

0.5 1β  1.066 0.932 1.010 0.942 1.019 

  2β  0.793 0.775 0.745 0.769 0.740 

 0β  1.828 1.791 1.795 1.779 1.785 

0.75 1β  1.207 1.058 1.172 1.061 1.170 

  2β  0.765 0.795 0.734 0.796 0.733 

 

Table B35: Simulation results of regression coefficients when γ²=0.9, ρ=0.9 

and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.006 -0.006 -0.007 -0.006 -0.007 

1β  1.085 1.083 1.078 1.082 1.077 

2β  1.003 1.002 0.996 1.003 0.996 

 

Table B36: Estimated regression coefficients when γ²=0.9, ρ=0.9 and 

n=500 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -1.486 -1.495 -1.497 -1.496 -1.497 

0.25 1β  0.914 0.916 0.905 0.913 0.904 

  2β  1.151 1.087 1.135 1.090 1.135 

 0β  0.021 0.027 0.023 0.025 0.022 

0.5 1β  1.044 1.013 1.033 1.014 1.033 

  2β  1.014 0.987 1.003 0.987 1.004 

 0β  1.337 1.349 1.358 1.354 1.362 

0.75 1β  1.209 1.134 1.192 1.135 1.190 

  2β  0.851 0.871 0.848 0.874 0.850 
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Table B37: Simulation results of regression coefficients when γ²=0.99, 

ρ=0.9 and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.758 -0.757 -0.756 -0.798 -0.797 

1β  0.694 0.934 0.869 0.902 0.863 

2β  1.516 1.237 1.307 1.266 1.306 

 

Table B38: Estimated regression coefficients when γ²=0.99, ρ=0.9 and 

n=25 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -2.003 -1.899 -1.931 -1.942 -1.960 

0.25 1β  -0.311 0.645 0.302 0.592 0.336 

  2β  2.696 1.539 1.900 1.583 1.852 

 0β  -0.779 -0.733 -0.746 -0.741 -0.772 

0.5 1β  1.611 1.240 1.347 1.180 1.286 

  2β  0.624 0.740 0.649 0.783 0.745 

 0β  0.552 0.716 0.694 0.609 0.578 

0.75 1β  1.757 1.042 1.253 1.033 1.226 

  2β  0.279 0.743 0.568 0.780 0.634 

 

Table B39: Simulation results of regression coefficients when γ²=0.99, 

ρ=0.9 and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.680 -0.679 -0.679 -0.704 -0.704 

1β  1.122 1.022 1.090 1.017 1.013 

2β  0.826 0.909 0.817 0.911 0.895 

 

Table B40: Estimated regression coefficients when γ²=0.99, ρ=0.9 and 

n=50 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -2.262 -2.325 -2.309 -2.341 -2.330 

0.25 1β  2.455 1.311 1.558 1.259 1.501 

  2β  -0.517 0.389 0.181 0.444 0.247 

 0β  -0.410 -0.394 -0.395 -0.445 -0.452 

0.5 1β  1.747 1.030 1.182 1.002 1.265 

  2β  0.316 0.805 0.693 0.836 0.621 

 0β  1.045 1.068 1.064 1.049 1.046 

0.75 1β  0.079 0.570 0.386 0.591 0.463 

  2β  1.801 1.019 1.245 1.034 1.195 
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Table B41: Simulation results of regression coefficients when γ²=0.99, 

ρ=0.9 and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.056 -0.057 -0.058 -0.058 -0.059 

1β  1.813 1.565 1.515 1.567 1.522 

2β  0.143 0.384 0.423 0.381 0.414 

 

Table B42: Estimated regression coefficients when γ²=0.99, ρ=0.9 and 

n=200 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -1.762 -1.766 -1.764 -1.766 -1.764 

0.25 1β  1.751 1.157 1.393 1.157 1.375 

  2β  0.186 0.692 0.484 0.686 0.496 

 0β  -0.145 -0.146 -0.142 -0.143 -0.141 

0.5 1β  1.369 0.989 1.132 1.008 1.151 

  2β  0.492 0.755 0.627 0.744 0.625 

 0β  1.833 1.794 1.798 1.783 1.788 

0.75 1β  1.681 1.182 1.381 1.178 1.379 

  2β  0.304 0.723 0.537 0.724 0.538 

 

Table B43: Simulation results of regression coefficients when γ²=0.99, 

ρ=0.9 and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.006 -0.006 -0.007 -0.006 -0.007 

1β  1.177 1.156 1.154 1.154 1.154 

2β  0.925 0.944 0.934 0.945 0.935 

 

Table B44: Estimated regression coefficients when γ²=0.99, ρ=0.9 and 

n=500 

τ Coefficient QR RQR LQR TRQR TLQR 

 0β  -1.487 -1.492 -1.496 -1.493 -1.496 

0.25 1β  0.663 0.856 0.701 0.853 0.700 

  2β  1.410 1.172 1.350 1.174 1.351 

 0β  0.019 0.027 0.023 0.025 0.022 

0.5 1β  1.081 1.044 1.079 1.039 1.079 

  2β  0.993 0.985 0.972 0.990 0.974 

 0β  1.340 1.359 1.360 1.364 1.365 

0.75 1β  1.590 1.263 1.522 1.271 1.518 

  2β  0.484 0.771 0.527 0.769 0.533 
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Table B45: Regression coefficients for four predictors when γ²=0.7, ρ=0.1 

and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  0.174 0.173 0.177 0.182 0.187 

1β  0.943 0.926 0.927 0.929 0.933 

2β  1.079 1.047 1.063 1.047 1.064 

3β  1.249 1.195 1.227 1.199 1.230 

4β  0.652 0.708 0.643 0.703 0.638 

 

Table B46: Regression coefficients for four predictors when γ²=0.7, ρ=0.1 

and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  0.112 0.116 0.120 0.119 0.124 

1β  0.890 0.889 0.875 0.892 0.878 

2β  1.063 1.054 1.056 1.051 1.052 

3β  1.133 1.117 1.125 1.120 1.129 

4β  0.950 0.950 0.937 0.948 0.936 

 

Table B47: Regression coefficients for four predictors when γ²=0.7, ρ=0.1 

and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.012 -0.012 -0.011 -0.012 -0.012 

1β  1.027 1.026 1.020 1.027 1.020 

2β  0.983 0.982 0.977 0.982 0.977 

3β  0.972 0.971 0.965 0.971 0.965 

4β  1.041 1.041 1.035 1.041 1.035 

 

Table B48: Regression coefficients for four predictors when γ²=0.9, ρ=0.1 

and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  0.168 0.160 0.165 0.169 0.175 

1β  0.919 0.905 0.892 0.909 0.895 

2β  1.152 1.072 1.122 1.073 1.120 

3β  1.439 1.287 1.381 1.296 1.386 

4β  0.409 0.617 0.471 0.607 0.470 
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Table B49: Regression coefficients for four predictors when γ²=0.9, ρ=0.1 

and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  0.112 0.114 0.120 0.117 0.124 

1β  0.798 0.824 0.785 0.827 0.789 

2β  1.102 1.077 1.095 1.073 1.088 

3β  1.221 1.183 1.213 1.187 1.219 

4β  0.906 0.923 0.897 0.921 0.894 

 

Table B50: Regression coefficients for four predictors when γ²=0.9, ρ=0.1 

and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.016 -0.016 -0.016 -0.016 -0.015 

1β  1.181 1.173 1.168 1.173 1.169 

2β  1.085 1.079 1.085 1.080 1.086 

3β  0.789 0.798 0.782 0.798 0.782 

4β  0.985 0.984 0.979 0.984 0.979 

 

Table B51: Regression coefficients for four predictors when γ²=0.9, ρ=0.1 

and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.012 -0.012 -0.012 -0.012 -0.012 

1β  1.045 1.044 1.037 1.045 1.037 

2β  0.967 0.967 0.962 0.966 0.962 

3β  0.949 0.950 0.942 0.950 0.942 

4β  1.069 1.067 1.063 1.067 1.063 

 

Table B52: Regression coefficients for four predictors when γ²=0.99, ρ=0.1 

and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.197 -0.191 -0.195 -0.200 -0.203 

1β  0.805 0.951 0.888 0.947 0.863 

2β  1.170 1.013 1.091 1.020 1.078 

3β  0.791 0.905 0.777 0.884 0.800 

4β  1.091 0.956 1.065 0.973 1.083 
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Table B53: Regression coefficients for four predictors when γ²=0.99, ρ=0.1 

and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  0.113 0.106 0.115 0.109 0.119 

1β  0.339 0.698 0.508 0.687 0.511 

2β  1.311 1.105 1.158 1.112 1.136 

3β  1.683 1.340 1.539 1.358 1.554 

4β  0.688 0.866 0.785 0.852 0.790 

 

Table B54: Regression coefficients for four predictors when γ²=0.99, 

ρ=0.1 and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.015 -0.015 -0.015 -0.015 -0.015 

1β  1.554 1.381 1.450 1.382 1.452 

2β  1.246 1.163 1.199 1.164 1.201 

3β  0.312 0.544 0.454 0.543 0.453 

4β  0.931 0.949 0.915 0.948 0.913 

 

Table B55: Regression coefficients for four predictors when γ²=0.99, 

ρ=0.1 and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.052 -0.052 -0.051 -0.052 -0.052 

1β  0.819 0.845 0.821 0.843 0.819 

2β  1.051 1.043 1.032 1.046 1.034 

3β  1.284 1.237 1.269 1.235 1.267 

4β  0.810 0.837 0.817 0.839 0.819 

 

Table B56: Regression coefficients for four predictors when γ²=0.7, ρ=0.9 

and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  0.817 0.822 0.822 0.884 0.884 

1β  1.165 1.116 1.118 1.122 1.133 

2β  0.786 0.791 0.758 0.784 0.753 

3β  0.847 0.841 0.805 0.846 0.813 

4β  0.885 0.890 0.859 0.887 0.861 
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Table B57: Regression coefficients for four predictors when γ²=0.7, ρ=0.9 

and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  1.167 1.166 1.164 1.198 1.197 

1β  0.956 0.952 0.933 0.951 0.933 

2β  0.740 0.744 0.738 0.745 0.738 

3β  1.087 1.074 1.064 1.070 1.059 

4β  1.139 1.125 1.118 1.127 1.120 

 

Table B58: Regression coefficients for four predictors when γ²=0.7, ρ=0.9 

and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.159 -0.159 -0.158 -0.160 -0.160 

1β  1.001 1.000 0.991 0.999 0.990 

2β  1.097 1.093 1.093 1.093 1.094 

3β  0.816 0.818 0.809 0.819 0.811 

4β  1.000 0.998 0.994 0.998 0.994 

 

Table B59: Regression coefficients for four predictors when γ²=0.7, ρ=0.9 

and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.078 -0.078 -0.077 -0.078 -0.078 

1β  0.956 0.956 0.949 0.956 0.949 

2β  0.975 0.975 0.970 0.974 0.969 

3β  0.838 0.838 0.832 0.839 0.832 

4β  1.031 1.030 1.024 1.030 1.025 

 

Table B60: Regression coefficients for four predictors when γ²=0.9, ρ=0.9 

and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  0.797 0.805 0.796 0.866 0.857 

1β  1.352 1.197 1.255 1.209 1.269 

2β  0.709 0.772 0.717 0.760 0.701 

3β  0.794 0.830 0.768 0.836 0.765 

4β  0.878 0.897 0.874 0.892 0.893 
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Table B61: Regression coefficients for four predictors when γ²=0.9, ρ=0.9 

and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  1.167 1.167 1.166 1.199 1.198 

1β  0.941 0.942 0.905 0.940 0.910 

2β  0.564 0.614 0.620 0.616 0.615 

3β  1.169 1.132 1.117 1.125 1.112 

4β  1.258 1.219 1.213 1.223 1.221 

 

Table B62: Regression coefficients for four predictors when γ²=0.9, ρ=0.9 

and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.160 -0.161 -0.160 -0.162 -0.162 

1β  1.022 1.021 1.008 1.019 1.006 

2β  1.185 1.172 1.179 1.173 1.180 

3β  0.700 0.713 0.702 0.715 0.704 

4β  1.018 1.014 1.010 1.015 1.011 

 

Table B63: Regression coefficients for four predictors when γ²=0.99, 

ρ=0.9 and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.025 -0.032 -0.026 -0.033 -0.028 

1β  0.908 0.934 0.962 0.933 0.935 

2β  1.820 1.247 1.395 1.273 1.398 

3β  0.493 0.773 0.679 0.751 0.702 

4β  0.654 0.891 0.774 0.898 0.786 

 

Table B64: Regression coefficients for four predictors when γ²=0.99, ρ=0.9 

and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  0.057 0.051 0.054 0.055 0.057 

1β  1.796 1.338 1.387 1.347 1.391 

2β  1.610 1.301 1.366 1.313 1.366 

3β  0.695 0.864 0.810 0.861 0.828 

4β  0.016 0.606 0.518 0.589 0.496 
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Table B65: Regression coefficients for four predictors when γ²=0.99, 

ρ=0.9 and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.161 -0.162 -0.162 -0.163 -0.163 

1β  1.116 1.083 1.033 1.078 1.022 

2β  1.623 1.398 1.432 1.399 1.433 

3β  0.093 0.398 0.419 0.402 0.427 

4β  1.099 1.048 1.025 1.049 1.028 

 

Table B66: Regression coefficients for four predictors when γ²=0.99, ρ=0.9 

and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.082 -0.081 -0.081 -0.082 -0.081 

1β  0.997 0.994 0.973 0.995 0.973 

2β  1.093 1.072 1.055 1.068 1.050 

3β  0.339 0.436 0.470 0.438 0.478 

4β  1.419 1.344 1.327 1.345 1.325 

 

Table B67: Coefficients for eight predictors when γ²=0.7, ρ=0.1 and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.065 -0.061 -0.095 -0.062 -0.096 

1β  0.931 0.949 0.865 0.953 0.872 

2β  1.222 1.177 1.247 1.179 1.246 

3β  0.899 0.888 0.933 0.886 0.930 

4β  1.000 1.018 0.949 1.013 0.948 

5β  0.993 0.992 0.928 0.992 0.928 

6β  1.279 1.243 1.300 1.248 1.305 

7β  0.830 0.855 0.818 0.855 0.819 

8β  1.087 1.083 1.050 1.082 1.051 

 

Table B68: Coefficients for eight predictors when γ²=0.7, ρ=0.1 and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  0.120 0.122 0.124 0.127 0.128 

1β  1.018 1.011 1.019 1.012 1.020 

2β  1.004 1.003 0.994 1.001 0.992 

3β  0.984 0.983 0.962 0.981 0.961 

4β  0.745 0.755 0.742 0.757 0.744 

5β  1.204 1.192 1.185 1.193 1.185 

6β  1.042 1.032 1.049 1.034 1.050 

7β  0.986 0.985 0.967 0.982 0.963 

8β  1.062 1.056 1.040 1.057 1.042 
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Table B69: Coefficients for eight predictors when γ²=0.7, ρ=0.1 and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  0.017 0.017 0.015 0.017 0.016 

1β  1.013 1.012 1.010 1.012 1.009 

2β  0.965 0.965 0.953 0.964 0.953 

3β  1.038 1.036 1.033 1.037 1.034 

4β  0.878 0.880 0.870 0.880 0.871 

5β  1.013 1.013 1.005 1.013 1.005 

6β  1.045 1.043 1.036 1.042 1.035 

7β  1.256 1.251 1.247 1.251 1.248 

8β  0.813 0.815 0.810 0.815 0.810 

 

Table B70: Coefficients for eight predictors when γ²=0.9, ρ=0.1 and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.063 -0.066 -0.069 -0.071 -0.075 

1β  0.522 0.777 0.676 0.776 0.672 

2β  0.862 0.858 0.871 0.861 0.872 

3β  1.611 1.325 1.470 1.331 1.479 

4β  0.731 0.841 0.774 0.841 0.777 

5β  1.091 0.995 1.015 0.990 1.005 

6β  1.090 1.069 1.125 1.062 1.114 

7β  1.107 1.085 1.062 1.083 1.066 

8β  1.104 1.115 0.991 1.122 1.005 

 

 

Table B71: Coefficients for eight predictors when γ²=0.9, ρ=0.1 and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  0.120 0.123 0.125 0.128 0.129 

1β  1.029 1.012 1.034 1.016 1.038 

2β  1.000 1.012 0.991 1.009 0.988 

3β  0.961 0.968 0.938 0.965 0.937 

4β  0.554 0.617 0.584 0.621 0.586 

5β  1.344 1.291 1.310 1.292 1.309 

6β  1.071 1.047 1.085 1.049 1.087 

7β  0.969 0.970 0.943 0.965 0.937 

8β  1.101 1.090 1.066 1.091 1.069 
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Table B72: Coefficients for eight predictors when γ²=0.9, ρ=0.1 and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  0.053 0.053 0.052 0.053 0.052 

1β  1.217 1.207 1.203 1.207 1.202 

2β  1.036 1.033 1.022 1.035 1.024 

3β  0.869 0.875 0.857 0.876 0.859 

4β  0.918 0.922 0.912 0.922 0.912 

5β  1.142 1.133 1.134 1.132 1.133 

6β  1.133 1.125 1.137 1.126 1.138 

7β  0.722 0.733 0.725 0.733 0.724 

8β  0.882 0.886 0.872 0.884 0.870 

 

Table B73: Coefficients for eight predictors when γ²=0.99, ρ=0.1 and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.045 0.009 -0.018 0.007 -0.023 

1β  -1.480 0.921 0.039 0.985 0.051 

2β  0.236 0.990 0.886 0.912 0.372 

3β  5.997 1.354 2.965 1.421 3.420 

4β  -2.251 0.664 0.000 0.673 0.001 

5β  2.152 0.896 0.772 0.897 0.824 

6β  0.792 1.163 1.196 1.143 1.270 

7β  1.127 1.155 1.296 1.124 1.181 

8β  1.991 1.236 1.199 1.284 1.287 

 

Table B74: Coefficients for eight predictors when γ²=0.99, ρ=0.1 and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  0.010 0.003 0.007 0.003 0.008 

1β  0.620 0.829 0.710 0.829 0.709 

2β  1.379 1.163 1.230 1.179 1.240 

3β  0.721 0.865 0.692 0.865 0.700 

4β  1.811 1.349 1.548 1.362 1.550 

5β  1.097 1.041 1.060 1.037 1.060 

6β  0.319 0.726 0.554 0.706 0.543 

7β  1.879 1.377 1.643 1.384 1.635 

8β  0.223 0.684 0.561 0.671 0.561 
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Table B75: Coefficients for eight predictors when γ²=0.99, ρ=0.1 and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  0.053 0.051 0.050 0.051 0.050 

1β  1.709 1.483 1.579 1.483 1.578 

2β  1.132 1.070 1.049 1.074 1.054 

3β  0.600 0.742 0.644 0.744 0.647 

4β  0.766 0.848 0.796 0.848 0.796 

5β  1.471 1.298 1.368 1.295 1.364 

6β  1.443 1.301 1.388 1.303 1.391 

7β  0.149 0.419 0.357 0.418 0.357 

8β  0.649 0.751 0.681 0.747 0.677 

 

 

Table B76: Coefficients for eight predictors when γ²=0.99, ρ=0.1 and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  0.000 0.000 0.001 0.000 0.001 

1β  0.549 0.625 0.572 0.625 0.572 

2β  1.103 1.085 1.080 1.084 1.079 

3β  1.130 1.112 1.105 1.111 1.104 

4β  1.070 1.056 1.052 1.057 1.053 

5β  0.657 0.717 0.673 0.718 0.675 

6β  0.914 0.930 0.916 0.930 0.915 

7β  1.477 1.392 1.463 1.394 1.465 

8β  1.086 1.067 1.073 1.066 1.071 

 

 

Table B77: Coefficients for eight predictors when γ²=0.7, ρ=0.9 and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  0.523 0.547 0.520 0.587 0.563 

1β  0.533 0.610 0.602 0.612 0.599 

2β  1.073 1.111 1.017 1.121 1.030 

3β  0.764 0.781 0.699 0.784 0.707 

4β  0.833 0.828 0.814 0.826 0.810 

5β  0.856 0.860 0.861 0.854 0.856 

6β  1.347 1.243 1.291 1.240 1.293 

7β  1.305 1.244 1.292 1.236 1.284 

8β  0.783 0.789 0.741 0.789 0.744 
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Table B78: Coefficients for eight predictors when γ²=0.7, ρ=0.9 and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.169 -0.173 -0.177 -0.181 -0.186 

1β  1.236 1.216 1.205 1.221 1.215 

2β  0.906 0.917 0.899 0.915 0.897 

3β  1.008 1.018 0.986 1.018 0.987 

4β  0.803 0.814 0.791 0.811 0.783 

5β  1.006 1.006 0.980 1.009 0.984 

6β  1.382 1.358 1.322 1.361 1.329 

7β  1.516 1.474 1.474 1.473 1.470 

8β  0.713 0.735 0.740 0.732 0.740 

 

Table B79: Coefficients for eight predictors when γ²=0.7, ρ=0.9 and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  0.374 0.374 0.371 0.376 0.373 

1β  0.937 0.937 0.932 0.938 0.933 

2β  1.177 1.173 1.169 1.173 1.169 

3β  1.213 1.208 1.206 1.208 1.206 

4β  0.955 0.956 0.944 0.955 0.944 

5β  0.731 0.735 0.722 0.736 0.724 

6β  1.139 1.136 1.135 1.135 1.134 

7β  1.051 1.050 1.046 1.052 1.047 

8β  0.915 0.916 0.903 0.915 0.903 

 

 

Table B80: Coefficients for eight predictors when γ²=0.7, ρ=0.9 and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  0.139 0.138 0.138 0.140 0.139 

1β  0.955 0.954 0.948 0.956 0.950 

2β  1.142 1.141 1.134 1.140 1.133 

3β  0.876 0.876 0.868 0.876 0.867 

4β  1.086 1.085 1.079 1.085 1.079 

5β  0.940 0.940 0.932 0.940 0.932 

6β  1.046 1.046 1.038 1.046 1.039 

7β  1.115 1.114 1.112 1.114 1.112 

8β  0.767 0.768 0.760 0.769 0.761 
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Table B81: Coefficients for eight predictors when γ²=0.9, ρ=0.9 and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  0.911 0.917 0.901 0.971 0.953 

1β  1.724 1.363 1.475 1.366 1.467 

2β  1.099 1.014 0.983 1.023 1.004 

3β  0.217 0.683 0.512 0.686 0.525 

4β  0.222 0.488 0.354 0.479 0.360 

5β  0.220 0.604 0.451 0.617 0.467 

6β  2.662 2.131 2.410 2.119 2.402 

7β  1.597 1.315 1.324 1.316 1.323 

8β  0.595 0.756 0.638 0.746 0.633 

 

 

Table B82: Coefficients for eight predictors when γ²=0.9, ρ=0.9 and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.171 -0.182 -0.186 -0.191 -0.194 

1β  1.343 1.268 1.253 1.275 1.266 

2β  0.778 0.839 0.826 0.835 0.827 

3β  0.947 1.005 0.960 1.006 0.962 

4β  0.605 0.670 0.659 0.663 0.642 

5β  0.954 0.972 0.935 0.977 0.943 

6β  1.595 1.500 1.448 1.503 1.455 

7β  1.829 1.654 1.680 1.653 1.673 

8β  0.424 0.543 0.581 0.540 0.581 

 

Table B83: Coefficients for eight predictors when γ²=0.9, ρ=0.9 and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  0.060 0.060 0.058 0.061 0.059 

1β  0.597 0.615 0.617 0.617 0.619 

2β  0.827 0.836 0.813 0.835 0.812 

3β  1.101 1.094 1.087 1.096 1.089 

4β  0.626 0.645 0.639 0.647 0.640 

5β  1.300 1.282 1.270 1.280 1.268 

6β  1.547 1.519 1.511 1.520 1.512 

7β  1.472 1.448 1.441 1.447 1.439 

8β  0.439 0.464 0.476 0.463 0.475 
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Table B84: Coefficients for eight predictors when γ²=0.9, ρ=0.9 and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  0.139 0.139 0.138 0.140 0.139 

1β  0.928 0.929 0.922 0.931 0.925 

2β  1.253 1.248 1.239 1.247 1.238 

3β  0.791 0.795 0.787 0.793 0.786 

4β  1.157 1.154 1.147 1.154 1.147 

5β  0.901 0.903 0.892 0.903 0.893 

6β  1.086 1.084 1.074 1.085 1.075 

7β  1.207 1.201 1.203 1.201 1.203 

8β  0.603 0.610 0.608 0.610 0.608 

 

 

Table B85: Coefficients for eight predictors when γ²=0.99, ρ=0.9 and n=25 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.492 -0.443 -0.447 -0.470 -0.466 

1β  0.837 1.001 0.939 0.988 0.883 

2β  0.262 0.682 0.621 0.659 0.646 

3β  0.924 0.981 0.984 1.002 1.082 

4β  0.838 0.938 0.883 0.919 0.897 

5β  1.480 1.130 1.175 1.199 1.248 

6β  2.588 1.422 1.427 1.415 1.379 

7β  2.423 1.586 1.571 1.626 1.524 

8β  -1.353 0.235 0.290 0.171 0.253 

 

Table B86: Coefficients for eight predictors when γ²=0.99, ρ=0.9 and n=50 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.066 -0.053 -0.056 -0.053 -0.055 

1β  1.286 1.060 1.037 1.075 1.052 

2β  0.364 0.729 0.666 0.708 0.649 

3β  0.359 0.679 0.621 0.674 0.610 

4β  2.716 1.658 1.918 1.684 1.926 

5β  2.379 1.552 1.723 1.574 1.714 

6β  -0.224 0.655 0.545 0.631 0.543 

7β  0.608 0.846 0.747 0.851 0.772 

8β  0.459 0.752 0.634 0.733 0.627 
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Table B87: Coefficients for eight predictors when γ²=0.99, ρ=0.9 and n=200 

Coefficient OLS RR Lasso TR TLasso 

0β  0.802 0.802 0.802 0.811 0.810 

1β  2.230 1.811 1.847 1.812 1.846 

2β  1.687 1.449 1.453 1.444 1.446 

3β  0.737 0.812 0.794 0.817 0.796 

4β  1.345 1.201 1.178 1.200 1.176 

5β  0.276 0.522 0.526 0.522 0.526 

6β  0.337 0.593 0.577 0.594 0.583 

7β  1.191 1.128 1.103 1.132 1.105 

8β  0.235 0.518 0.515 0.514 0.515 

 

 

Table B88: Coefficients for eight predictors when γ²=0.99, ρ=0.9 and n=500 

Coefficient OLS RR Lasso TR TLasso 

0β  -0.046 -0.046 -0.046 -0.046 -0.047 

1β  1.257 1.227 1.184 1.227 1.184 

2β  0.392 0.494 0.521 0.491 0.518 

3β  0.124 0.280 0.377 0.280 0.378 

4β  1.580 1.472 1.451 1.470 1.448 

5β  0.667 0.723 0.697 0.724 0.699 

6β  1.988 1.808 1.796 1.809 1.796 

7β  1.243 1.212 1.169 1.215 1.172 

8β  0.848 0.883 0.855 0.883 0.855 
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