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ABSTRACT 

In this thesis, sufficient conditions for the zero solution of nonlinear 

Volterra integrodifferential equations are established. The Lyapunov’s 

direct method is the main mathematical technique used in the study. Thus, 

a Lyapunov functional is constructed. This Lyapunov functional is then 

used to derive sufficient conditions for the zero solution of nonlinear 

Volterra integrodifferential equations to be stable, uniformly stable and 

uniformly aymptotically 

stable.  
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CHAPTER ONE

INTRODUCTION

The Volterra integrodifferential equation and the problem under in-

vestigation is introduced in this chapter. Additionally, the study’s goals,

importance, and organizational structure are all disclosed.

1.1 Background to the Study

Differential and integral equations have long been one of the most

important tools employed in solving numerous problems in scientific fields

(Jerri, 1999). However, application of the knowledge of stability prop-

erties of integrodifferential equations offer promising results and Volterra

integrodifferential equations offer even more powerful results. Since the

birth of these equations which investigate models about growth of popu-

lation, Volterra integrodifferential equations have been employed by math-

ematicians to solve several complex problems in scientific fields, particu-

larly, in biological and engineering fields (Hristova & Tunc, 2019, Aggarwal

& Gupta, 2019). Understanding the concepts governing the theories of

Volterra integrodifferential equations in its linear and nonlinear forms of-

fers a great opportunity for solving several problems that arise in scientific

fields (El Hajji, 2019). It is however not surprising how rapidly it has

developed since the 1970s (Wazwaz, 2011).

Solutions to an ordinary differential equation is either one which is

numerical or analytic. Most often than not, the complexities of some ordi-

nary differential equations make it impossible to find an analytic solution.

The research findings of Burton and Mahfoud (1983) and Wazwaz (2011),

assert that, sometimes, efforts to find analytic solutions to some ordinary

differential equations may not be successful.

Differential equations are used in several fields such as the amount of

money in a savings bank, the orbit of a space ship, the description of radio

1
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waves, the size of a biological population, the voltage in an electric cur-

rent, etc. To use differential equation(s) to understand a physical problem,

mathematicians normally collect information about the physical problem

of interest, create a model, usually differential equation(s) which describes

the exactness of the physical problem and then solve this differential equa-

tion(s).

Stability theory involves how small changes affect physical systems

involving time (Halanay & Rasvan, 2012). If these changes/disturbances

are actually small and it is observed that the system stays closer to its state

of equilibrium or even gets back to this state, then the system is said to be

stable, otherwise the system is not stable. The desire to find solutions

to problems that arise in real life leads mathematicians to formulate differ-

ential equations that depict physical problems. Surprisingly, what starts as

a simple mathematical equation grows into practical physical models such

as dynamics of fluids, heat flow, rate of growth of bacterial, growth rate of

an economy, etc.

Several of these mathematical equations exist but an equation which

comprises both an integral and the derivatives of a function which is not

known qualifies to be an integrodifferential equation. In simple terms, a

sole equation that includes the operation of differentiation and integration

is an integrodifferential equation.

For his contributions to integral equations and mathematical biol-

ogy, Italian mathematician and physicist Vito Volterra is well-known. His

research on elasticity served as the basis for Volterra’s integrodifferential

equation theory. He discovered that the analysis of the matter’s electro-

magnetic state at all prior instants, as well as the magnetic field for those

substances at that specific instant, determines whether the matter is electri-

cally or magnetically polarized. Using integrodifferential equations, these

2
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physical events are modelled (Paoloni & Simili, 2008).

Mathematical modelling demands that a real life problem is trans-

formed into a mathematical equation. Volterra integrodifferential equa-

tions, a type of a mathematical equation which is under ordinary differential

equations and named after its originator, Vito Volterra, has proven to be

useful in different fields of study. Notably are fields of Biology, Engineering

and Physics (Wazwaz, 2011).

Obtaining conditions that are actually sufficient to realize the at-

tributes that makes Volterra integrodifferential equations stable in both

their linear and nonlinear forms have captured the attention of several re-

searchers over the years due to the vast opportunities it offer.

1.2 Statement of Problem

Recently, some mathematicians have shown interest in the study of

the properties guaranteeing that the Volterra integrodifferential equation,

x′(t) = h(t)x(t) +

∫ t

t0

c(at− s)x(s)ds, (1.2.1)

where a > 1 is stable. Specifically, Islam and Raffoul (2005), studied the

stability of equation 1.2.1 and its nonlinear perturbation of the form,

x′(t) = h(t)x(t) +

∫ t

t0

c(at− s)x(s)ds+ g(t, x(t)). (1.2.2)

In the study, they obtained some conditions that ensured that the zero solu-

tion of equation 1.2.1 and equation 1.2.2 using a suitable Lyapunov’s func-

tional is stable, uniformly stable, uniformly asymptotically stable. How-

ever, the results obtained by Islam and Raffoul (2005), are for linear Volterra

3
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integrodifferential equation and does not hold for the nonlinear equation

x′(t) = h(t)f(x(t)) +

∫ t

t0

c(at− s)f(x(s))ds. (1.2.3)

It is therefore necessary that, additional research is conducted to ob-

tain conditions that ensure that a nonlinear Volterra integrodifferential

equation is uniformly asymptotically stable.

1.3 Purpose of the Study

The thesis’ focus is to deduce conditions that are sufficient to guar-

antee that the solution (zero) of a nonlinear Volterra integrodifferential

equation is stable, uniformly stable and uniformly asymptotically stable.

1.4 Research Objectives

The objectives of the study are to obtain sufficient conditions for the

nonlinear Volterra integrodifferential equation

x′(t) = h(t)f(x(t)) +

∫ t

0

c(at− s)f(x(s))ds,

to be:

1. stable;

2. uniformly stable; and

3. uniformly asymptotically stable.

1.5 Significance of the Study

This research is of great importance because, it will offer conditions

that are sufficient for nonlinear Volterra integrodifferential equations to be

uniformly asymptotically stable which has not yet been investigated by

researchers. Also, the results obtained in this research will not only add

4
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to existing literature but also contribute to the illumination of the vast

opportunities Volterra integrodifferential equations offer.

1.6 Delimitations

The solution of a nonlinear Volterra integrodifferential equation that

is zero was shown to be stable, uniformly stable and uniformly asymptoti-

cally stable.

1.7 Limitations

The study was restricted to using the direct Lyapunov approach while

there are other ways to determine the stability characteristics of differential

equation solutions. The study’s conclusion also used a nonlinear Volterra

integrodifferential equation rather than a linear one.

1.8 Organisation of the Research

The scope of the Volterra integrodifferential equation and its use in

simulating physical processes was provided in Chapter One of the thesis.

The problem statement, research objectives, as well as the study’s organi-

zational structure, are all included in this chapter.

A survey of pertinent and related literature on the stability charac-

teristics of Volterra integrodifferential equations is given in Chapter Two

of the research.

The method utilized to explore the stability properties of the Volterra

integrodifferential equation was covered in Chapter Three of the study.

In Chapter Four, we present the findings of the thesis. Based on the

study’s goals, the conclusions were reached.

The summary of the findings of the study and its conclusions were

covered in chapter Five.

5
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

For the initial section of this chapter, what integral equations entail,

in general sense, as well as some definition of terms used in this study

will be considered. The latter section of the chapter will be dedicated to

reviewing some literature on integrodifferential equations.

2.2 Integral Equations

An integral equation is any equation of the form

u(x) = f(x) + λ

∫ h(x)

g(x)

K(x, t)u(t)dt,

where g(x) and h(x) are the limits of the integral, and λ is a constant

parameter, K(x, t) is the kernel. Integral equations can be grouped under

two headings based on the nature of the integral limits as well as the kernel,

K(x, t). An integral equation which is classified as a Fredholm integral

equation has both upper and lower integral limits being constants whereas

an integral equation is called a Volterra integral equation if it possesses at

least a variable integral limit (Volterra, 1959).

2.3 Integrodifferential Equations

With respect to integrodifferential equations, both the integral and

differential operators are seen together and they are found in many scientific

fields of study, most importantly in the case where problems involving

initial values or boundary values are converted into equations containing

an integral. The Fredholm and Volterra integrodifferential equations are

the major classifications.

6
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The Fredholm integrodifferential equation is written as:

u(n)(x) = f(x) + λ

∫ b

a

K(x, t)u(t)dt

with u(n) considered as the nth derivative of u(x). An example of Fredholm

integrodifferential equation is

u′(x) = 1− 1

3
x+

∫ 1

0

xu(t) dt, u(0) = 0.

A Volterra integrodifferential equation can be written as:

u(n)(x) = f(x) + λ

∫ x

0

K(x, t)u(t)dt.

Consider any fixed t ≥ 0, and let

B(t) = {ϕ : [0, t] → R, ϕ is continuous and bounded in the supremum norm}.

Then for each ϕ ∈ B(t0), t0 ≥ 0, there is a unique solution x(t) = x(t, t0, ϕ)

of equation 1.2.3 defined on the interval [t0, γ) with x(s) = ϕ for 0 ≤ s ≤ t0.

For ϕ ∈ B(t0), the supremum norm of ϕ is given by ||ϕ|| = sup{|ϕ(t)|: 0 ≤

t ≤ t0}. If the solution remains bounded, then γ = ∞.

Definition 2.1[Stability]

The zero solution of equation 1.2.3 is said to be stable if for each

ε > 0 and each t0 ≥ 0, there exists δ = δ(ε, t0) > 0 such that [ϕ ∈ B(t0), ∥

ϕ ∥< δ, t ≥ t0] imply |x(t, t0, ϕ)| < ε.

Definition 2.2[Uniform stability]

The zero solution of equation 1.2.3 is said to be uniformly stable if it

is stable and δ is independent of t0.

7
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Definition 2.3[Uniform Asymptotic stability]

The zero solution of equation 1.2.3 is said to be uniformly asymptoti-

cally stable if it is uniformly stable and there is a γ1 > 0 and for each ϵ > 0

there exists a T > 0 such that [t0 ≥ 0, ϕ ∈ B(t0), ∥ ϕ ∥< γ1, t ≥ T + t0]

imply |x(t, t0, ϕ)| < ε.

2.4 Review of Related Literature

The later part of the year 1900 saw an increase in the research into

the qualitative analysis of differential equations and became rather popular

in the 1940s. The early research ever known in connection with qualita-

tive analysis of differential equations is that which is found in the work of

Poincare and Magini (1899). Researchers have undoubtedly gained interest

in its enormous opportunities it offer in understanding the behaviour of so-

lutions of differential equations and that is seen in the numerous researches

conducted in this field since it first came to light. Some of these reasearch

works can be put in piece in the monographs by(Agarwal, et al., 2005;

Burton, 2006; Coddington & Levinson, 1955; Hahn, et al., 1963; Halanay,

1966; Krasovskill, 1963).

In 1892, Lyapunov constructed functions which were later called Lya-

punov functionals in studying stability problems, existence and bounded-

ness of periodic solutions of differential equations (Lyapunov, 1892).

The Lyapunov’s direct method is the most used tool by researchers

in obtaining stability properties of differential equations. Several research

works have been done on the stability properties of the convolution and

nonconvolution forms of the Volterra integrodifferential equation.

Burton & Mahfould (1983) considered the stability criteria for the

8
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system of integrodifferential equations of the form

x′ = A(t)x+

∫ t

0

c(t, s)x(s)ds. (2.3.1)

In their study, the researchers investigated relations between stability prop-

erties of solutions of equation 2.3.1 and established necessary and sufficient

conditions for stability and boundedness of solutions of equation 2.3.1 in

their perturbed forms. The researchers as well constructed several Lya-

punov functionals from which they obtained necessary and sufficient con-

ditions for stability of the solution of equation 2.3.1.

However, Eloe & Islam (1995) studied the stability properties of the

zero solution of the linear Volterra integrodifferential system,

x′ = A(t)x(t) +

∫ t

0

B(t, s)x(s)ds. (2.3.2)

Although the authors did not employ the use of the Lyapunov method,

they were able to show that the zero solution of equation 2.3.2 is;

1. uniformly stable if the resolvent is integrable in some sense.

2. uniformly asymptotically stable if and only if the resolvent is inte-

grable and in addition some conditions in terms of the resolvent and

the kernel is satisfied.

Knyazhishche & Shcheglov (1998) studied the scalar equation,

ẋ = a(t)x(t) + b(t)x(t− r(t)), t > 0. (2.3.3)

In their research, the authors obtained a new definition of the positive

definiteness of the Lyapunov functional involved in investigating stability

and asymptotic stability. The authors used this new definition to prove

9
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Lyapunov type theorems from which the results were applied to equation

2.3.3 where r(t) and b(t) may be bounded.

Burton & Somolinos (1999) also studied the stability properties of

the scalar equation.

x′ = −h(t)x− b(t)x3 +

∫ t

0

c(at− s)x(s)ds. (2.3.4)

The authors in their work considered the case where a > 1 in equation

2.3.4 which is a Volterra integrodifferential equation. The researchers used

Lyapunov’s direct method to obtain conditions that guarantee the stability

properties of equation 2.3.4 for the case where a > 1.

Inspired by the equation,

x′(t) = Ax(t) +

∫ t

0

c(at− s)x(s)ds (2.3.5)

and its nonlinear perturbations, Zhang (2000) constructed a new Lyapunov

functional for linear Volterra integrodifferential equations. The author

proved some general stability theorems for the functional differential equa-

tions with infinite delay and weakened the usual requirement for positive

definiteness of Lyapunov functionals used in stability theory.

Islam & Raffoul (2005) studied the stability properties of the scalar

linear Volterra integrodifferential equation

x′(t) = h(t)x(t) +

∫ t

0

c(at− s)x(s)ds, (2.3.6)

and its perturbed form,

x′(t) = h(t)x(t) +

∫ t

0

c(at− s)x(s)ds+ g(t, x(t)), (2.3.7)

using the Lyapunov’s direct method.

10
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The authors studied only the case where a > 1 and pointed out that

for 0 < a < 1 no meaningful stability results were obtained. The authors

employed Lyapunov’s direct method in their study to obtain stability re-

sults of the zero solution of equation 2.3.6. The authors established that the

zero solution of equation 2.3.6 is uniformly asymptotically stable without

requiring λ(t) ∈ L1[0,∞) contrary to what exists in literature.

2.5 Chapter Summary

This chapter, reviewed relevant and related literature on stability

properties by Lyapunov direct method on Volterra integrodifferential equa-

tions. This was drawn from the research findings of other authors as pub-

lished in journals and scholarly articles.

11
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

In this chapter, the Lyapunov’s method which is the major tool that

is used in obtaining the uniform asymptotic stability properties of equation

1.2.3 is discussed.

3.2 Lyapunov’s Method

Stability analysis has been of keen interest to engineers as well as

mathematicians. There are several tools employed in the mathematical

field to either qualitatively or analytically obtain the stability properties

of a system of differential equations. Some of these tools are fixed point

theorems, Routh Hurwitz method and the Lyapunov’s method. The Lya-

punov’s method is widely known for its major advantage that, stability and

boundedness in the large can be achieved ignoring any prior knowledge of

solutions.

In 1892, Lyapunov obtained conditions for stability using two meth-

ods. One of the methods known as the First method requires knowledge

of the solution of the equation under consideration. The First method is

limited to some relevant cases to some extent.

Lyapunov’s second method(Direct method), however, does not re-

quire the knowledge of the solutions themselves to determine the stability

as well as boundedness behaviour of solutions of linear and nonlinear sys-

tems of ODEs.

3.3 Lyapunov Functional/Functions

The use of Lyapunov’s method entails the construction of the func-

tion usually denoted by V (t, x) which is a scalar function as well as its

derivatives and possesses some properties.

12
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Definition 3.1[Lyapunov Function]

Suppose the zero vector is included in the domain Q ⊂ Rn. Then a

function V (x) defined by V : Q → [0,∞) is called a Lyapunov function if

it satisfies the following conditions:

1. V (0) = 0;

2. V (x) is positive definite;

3. V (x) has continuous first-order partial derivatives.

Definition 3.2[Locally positive definite functions]

A continuous function V : D → R for D ⊂ Rn × R+ is a posi-

tive locally positive definite function if for some ϵ > 0 and some continu-

ous, strictly increasing function α : R+ → R, V (0, t) = 0 and V (x, t) ≥

α(||x||) for all x ∈ Bϵ, for all t ≥ 0.

Definition 3.3[Positive Definite Functions]

A continuous function V : D → R for D ⊂ Rn × R+ is a positive

definite function if it satisfies definition 3.2 and, additionally α(p) → ∞ as

p → ∞.

There is no general way of finding Lyapunov functions for nonlinear

system. Faced with a specific systems, one has to use experience, intuition

and physical insights to search for an appropriate Lyapunov function. The

Lyapunov’s direct method was used to obtain sufficient conditions for the

zero solution of the Volterra integrodifferential equation to be stable. This

requires that the following are done:

� construct a suitable Lyapunov functional. This must satisfy certain

properties;

13
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� compute the derivative of the Lyapunov functional along the solution

of the Volterra integrodifferential equation; and

� simplify the resulting expression to obtain the desired results.

Lemma 3.4 [Leibnitz Rule, Wazwaz (2011)]

Let the function f(x, ι) be continuous as well as its partial derivative

in a domain [a, b]× [t0, t1] and let

F (x) =

∫ h(x)

g(x)

f(x, t)dt, (3.2.1)

then there is the existence of the differential of the integral in equation3.2.1

and is stated as

F ′(x) =
dF

dx
= f(x, h(x))

dh(x)

dx
− f(x, g(x))

dg(x)

dx
+

∫ h(x)

g(x)

∂f(x, t)

∂x
dt.

If g(x) = a and h(x) = b given that a and b are actually constants, then

the Leibnitz rule shrinks to

F ′(x) =
dF

dx
=

∫ b

a

∂f(x, t)

∂x
dt.

This indicates that interchanging the differential sign and the integral sign

gives

d

dx

∫ b

a

extdt =

∫ b

a

textdt

Lemma 3.5[Cauchy–Schwarz Inequality]

Let f, g : [a, b] → R be two Lebesque measurable functions on [a, b]

such that f 2, g2 are Lebesque on [a, b]; then fg is integrable on [a, b], then

14
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the following inequality is obtained.

(∫ b

a

f(x)g(x)dx

)2

≤
∫ b

a

g2(x)dx

∫ b

a

f 2(x)dx

3.4 Chapter Summary

This chapter discussed Lyapunov’s direct method, which is the major

tool used in this research. The construction process was elaborated as well

the definition of some other tools that was employed in the study.

15
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, sufficient conditions for the zero solution of nonlinear

Volterra integrodifferential equations are obtained with the use of Lyapunov

functionals.

4.2 Preliminary Results

The scalar nonlinear Volterra integrodifferential equation considered

is

x′(t) = h(t)f(x(t)) +

∫ t

0

c(at− s)f(x(s))ds, (4.1.1)

where a > 1 is a constant. Additionally, h(t) is continuous for all t ≥ 0

and c : R −→ R is continuous, f : R −→ R is continuous and f(0) = 0.

In this thesis we assume that

f(x) = xf1(x).

In Lemma 4.1, the Lyapunov function that will be used to obtain

results for the stability, uniform stability and uniform asymptotic stability

of the zero solution of equation 4.1.1 is proposed.

Lemma 4.1.

Let a > 1 and p be a positive constant. If f(0) = 0 then the functional

defined by

V (t, x) =
1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

+ p

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds (4.1.2)

16
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is a Lyapunov functional.

Proof.

To verify that Eq. (4.1.2) is a Lyapunov function, consider

V (t, 0) =
1

2

(
0 +

1

a

∫ t

0

Gα(at− s)f(0)ds
)2

+ p

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(0)ds

= 0.

Now, it is clear from Eq. (4.1.2) that V (t, x) > 0 for all x, except

x = 0. Thus, V (t, x) is positive definite.

Finally,

∂V

∂x
= x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds,

which is continuous. Therefore, V (t) defined by Eq. (4.1.2) is a Lyapunov

functional. This completes the proof.

4.3 Main Results

In this section, sufficient conditions for the zero solution of Eq. (4.1.1)

to be uniformly asymptotically stable are obtained.

For α < 0, let

Gα(t) =

∫ ∞

t

C(u)eαudue−αt (4.2.1)

Assuming Gα(t) exists and Gα(t) ∈ L1[0,∞), define V (t) by Eq. (4.1.2),

where p is a positive constant to be determined.
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In the next Lemma, the derivative of V (t) with respect to t along solu-

tions of Eq. (4.1.2) is computed.

Let

a1(t) =
h(t)f1(x(t))

a
+

1

a2
Gα(at− t)f1(x(t)), (4.2.2)

and

a2(t) =
h(t)

a
+

1

a2
Gα(at− t). (4.2.3)

Lemma 4.2 If V (t) is given by equation Eq. (4.1.2), then for some positive

constant L,

V ′(t) ≤
(
aa1(t) +

(a1(t)− α)2

2L2
+ p

∫ ∞

at−t

|Gα(u)|duf 2
1 (x(t)

)
x2(t)

+
[(L2

2
+

|α|
a

)∫ ∞

at−t

|Gα(u)|du− ap
]

×
∫ t

0

|Gα(at− s)|f 2
1 (x(t))x

2(t)ds. (4.2.4)
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Proof.

Let x(t) = x(t, to, ϕ) be a solution of Eq. (4.1.1)and define V (t) by

Eq. (4.1.2). Then along the solutions of Eq. (4.1.2)

V ′(t) =
(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)

×
(
x′(t) +

1

a

d

dt

∫ t

0

Gα(at− s)f(x(s))ds
)

+
d

dt

(
p

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds
)

=
(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)

×
(
h(t)f(x(t)) +

∫ t

0

c(at− s)f(x(s))ds

+
1

a

d

dt

∫ t

0

Gα(at− s)f(x(s))ds
)

+
d

dt

(
p

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds
)

(4.2.5)
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Now, by Leibnitz rule,

1

a

d

dt

∫ t

0

Gα(at− s)f(x(s))ds =
1

a

[
Gα(at− t)f(x(t)) (1)

− Gα(at)f(x(0)) (0)

+

∫ t

0

∂

∂t
Gα(at− s)f(x(s))ds

]

=
1

a

[
Gα(at− t)f(x(t))

+

∫ t

0

∂

∂t
Gα(at− s)f(x(s))ds

]
(4.2.6)

From Eq. (4.2.1)

Gα(at− s) =

∫ ∞

at−s

c(u)eαudue−α(at−s)

20

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Hence,

∂

∂t
Gα(at− s) =

∂

∂t

∫ ∞

at−s

c(u)eαudue−α(at−s)

= 0 − c(at− s)eα(at−s)e−α(at−s) · a

+

∫ ∞

at−s

c(u)eαudu[−αae−α(at−s)]

= −c(at− s)eα(at−s)e−α(at−s) · a

− αa

∫ ∞

at−s

c(u)eαudue−α(at−s)

= − c(at− s)a

− αa

∫ ∞

at−s

c(u)eαudue−α(at−s)

= − c(at− s)a− αaGα(at− s) (4.2.7)
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Substituting Eq. (4.2.7) into Eq. (4.2.6) gives

1

a

d

dt

∫ t

0

Gα(at− s)f(x(s))ds =
1

a

[
Gα(at− t)f(x(t)) +

∫ t

0

[
− c(at− s)a

− αaGα(at− s)
]
f(x(s))ds

]

=
1

a
Gα(at− t)f(x(t))

− a

a

∫ t

0

c(at− s)f(x(s))ds

− αa

a

∫ t

0

Gα(at− s)f(x(s))ds

=
1

a
Gα(at− t)f(x(t))

−
∫ t

0

c(at− s)f(x(s))ds

− α

∫ t

0

Gα(at− s)f(x(s))ds (4.2.8)
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Also,

d

dt

(
p

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds
)

= p

∫ t

0

d

dt

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds

= p

∫ ∞

at−s

| Gα(u) | duf 2(x(t))ds

+ p

∫ t

0

lim
b−→∞

d

dt

∫ b

at−s

| Gα(u) | du

× f 2(x(s))ds

= p

∫ ∞

at−s

| Gα(u) | duf 2(x(t))ds

+ p

∫ t

0

[
− | Gα(at− s) | af 2(x(s))ds

]

= p

∫ ∞

at−s

| Gα(u) | duf 2(x(t))ds

− ap

∫ t

0

| Gα(at− s) | f 2(x(s))ds (4.2.9)
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Substituting Eq. (4.2.8) and Eq. (4.2.9) into Eq. (4.2.5), gives

V ′(t) =
(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)

×
(
h(t)f(x(t)) +

∫ t

0

c(at− s)f(x(s))ds

+
1

a
Gα(at− s)f(x(t))

−
∫ t

0

c(at− s)f(x(s))ds

− α

∫ t

0

Gα(at− s)f(x(s))ds
)

+ p

∫ ∞

at−t

| Gα(u) | duf 2(x(t))

− ap

∫ t

0

| Gα(at− s) | duf 2(x(s))ds

=
(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)

×
(
h(t)f(x(t)) +

1

a
Gα(at− s)f(x(t))

− α

∫ t

0

Gα(at− s)f(x(s))ds
)

+ p

∫ ∞

at−t

| Gα(u) | duf 2(x(t))

− ap

∫ t

0

| Gα(at− s) | duf 2(x(s))ds
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= x(t)
(
h(t)f(x(t)) +

1

a
Gα(at− t)f(x(t))

− α

∫ t

0

Gα(at− s)f(x(s))ds
)

+
1

a

∫ t

0

Gα(at− s)f(x(s))ds

×
(
h(t)f(x(t)) +

1

a
Gα(at− t)f(x(t))

− α

∫ t

0

Gα(at− s)f(x(s))ds
)

+ p

∫ ∞

at−t

| Gα(u) | duf 2(x(t))

− ap

∫ t

0

| Gα(at− s) | f 2(x(s))ds

= h(t)f(x(t))x(t) +
1

a
Gα(at− t)f(x(t))x(t)

− αx(t)

∫ t

0

Gα(at− s)f(x(s))ds

+ h(t)f(x(t))
1

a

∫ t

0

Gα(at− s)f(x(s))ds

+
1

a2

∫ t

0

Gα(at− s)f(x(s))dsGα(at− t)f(x(t))

− α

a

(∫ t

0

Gα(at− s)f(x(s))ds
)2

+ p

∫ ∞

at−t

| Gα(u) | duf 2(x(t))

− ap

∫ t

0

| Gα(at− s) | f 2(x(s))ds25
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= h(t)f(x(t))x(t) +
1

a
Gα(at− t)f(x(t))x(t)

+ h(t)f(x(t))
1

a

∫ t

0

Gα(at− s)f(x(s))ds

+
1

a2

∫ t

0

Gα(at− s)f(x(s))dsGα(at− t)f(x(t))

− αx(t)

∫ t

0

Gα(at− s)f(x(s))ds − α

a

(∫ t

0

Gα(at− s)f(x(s))ds
)2

+ p

∫ ∞

at−t

| Gα(u) | duf 2(x(t)) − ap

∫ t

0

| Gα(at− s) | f 2(x(s))ds

= h(t)f(x(t))x(t) +
1

a
Gα(at− t)f(x(t))x(t)

+
[1
a
h(t)f(x(t)) +

1

a2
Gα(at− t)f(x(t))− αx(t)

]

·
∫ t

0

Gα(at− s)f(x(s))ds

− α

a

(∫ t

0

Gα(at− s)f(x(s))ds
)2

+ p

∫ ∞

at−t

| Gα(u) | duf 2(x(t))

− ap

∫ t

0

| Gα(at− s) | f 2(x(s))ds (4.2.10)
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= h(t)f1(x(t))x
2(t) +

1

a
Gα(at− t)f1(x(t))x

2(t)

+
[1
a
h(t)f1(x(t))x(t) +

1

a2
Gα(at− t)f1(x(t))x(t)− αx(t)

]

×
∫ t

0

Gα(at− s)f(x(s))ds − α

a

(∫ t

0

Gα(at− s)f(x(s))ds
)2

+ p

∫ ∞

at−t

| Gα(u) | duf 2
1 (x(t))x

2(t)

− ap

∫ t

0

| Gα(at− s) | f 2(x(s))ds

= h(t)f1(x(t))x
2(t)

+
1

a
Gα(at− t)f1(x(t))x

2(t)

+
[1
a
h(t)f1(x(t))x(t) +

1

a2
Gα(at− t)f1(x(t))x(t)− αx(t)

]

·
∫ t

0

Gα(at− s)f(x(s))ds

− α

a

(∫ t

0

Gα(at− s)f(x(s))ds
)2

+ p

∫ ∞

at−t

| Gα(u) | duf 2
1 (x(t))x

2(t)

− ap

∫ t

0

| Gα(at− s) | f 2(x(s))ds
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= h(t)f1(x(t))x
2(t) +

1

a
Gα(at− t)f1(x(t))x

2(t)

+
[
a1(t)− α

]
x(t)

∫ t

0

Gα(at− s)f(x(s))ds

− α

a

(∫ t

0

Gα(at− s)f(x(s))ds
)2

+ p

∫ ∞

at−t

| Gα(u) | duf 2
1 (x(t))x

2(t)

− ap

∫ t

0

| Gα(at− s) | f 2(x(s))ds (4.2.11)

For any real number y and z and any nonzero constant k, one has 2yz ≤

(y2/k2) + k2z2. Using this inequality gives for the positive constant L

(a1(t)− α)x(t)

∫ t

0

Gα(at− s)f(x(s))ds ≤ (a1(t)− α)2x2(t)

2L2

+
L2

2

(∫ t

0

Gα(at− s)f(x(s))ds
)2

(4.2.12)

Also by the Cauchy-Schwarz inequality,

(∫ t

0

Gα(at− s)f(x(s))ds
)2

=
(∫ t

0

√
| Gα(at− s) |

·
√

| Gα(at− s) |f(x(s))ds
)2
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≤
(∫ t

0

(√
| Gα(at− s) |

)2

ds
)

×
(∫ t

0

(√
| Gα(at− s) |f(x(s))

)2

ds
)

=

∫ t

0

|Gα(at− s)|ds
∫ t

0

|Gα(at− s)|f 2(x(s))ds.

Therefore inequality (4.2.12) becomes

(a1(t)− α)x(t)

∫ t

0

Gα(at− s)f(x(s))ds

≤ (a1(t)− α)2x2(t)

2L2

+
L2

2

∫ t

0

|Gα(at− s)|ds

×
∫ t

0

|Gα(at− s)|f 2(x(s))ds (4.2.13)

Similarly, by the Cauchy Schwarz inequality for integrals,

− α

a

(∫ t

0

Gα(at− s)f(x(s))ds
)2

≤ |α|
a

∫ t

0

|Gα(at− s)|ds
∫ t

0

|Gα(at− s)|f 2(x(s))ds. (4.2.14)
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Substituting Eq. (4.2.13) and Eq. (4.2.14) into Eq. (4.2.11) yields,

V ′(t) ≤ h(t)f1(x(t))x
2(t)

+
1

a
Gα(at− t)f1(x(t))x

2(t)

+
(a1(t)− α)2x2(t)

2L2

+
L2

2

∫ t

0

|Gα(at− s)|ds
∫ t

0

|Gα(at− s)|f 2(x(s))ds

+
|α|
a

∫ t

0

|Gα(at− s)|ds
∫ t

0

|Gα(at− s)|f 2(x(s))ds

+ p

∫ ∞

at−t

| Gα(u) | duf 2
1 (x(t))x

2(t)

− ap

∫ t

0

| Gα(at− s) | f 2(x(s))ds

= h(t)f1(x(t))x
2(t) +

1

a
Gα(at− t)f1(x(t))x

2(t)

+
(a1(t)− α)2x2(t)

2L2
+ p

∫ ∞

at−t

| Gα(u) | duf 2
1 (x(t))x

2(t)

+
L2

2

∫ t

0

|Gα(at− s)|ds
∫ t

0

|Gα(at− s)|f 2(x(s))ds

+
|α|
a

∫ t

0

|Gα(at− s)|ds
∫ t

0

|Gα(at− s)|f 2(x(s))ds

− ap

∫ t

0

| Gα(at− s) | f 2(x(s))ds
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=
(
h(t)f1(x(t)) +

1

a
Gα(at− t)f1(x(t))

+
(a1(t)− α)2

2L2
+ p

∫ ∞

at−t

|Gα(u)|duf 2
1 (x(t))

)
x2(t)

+
(L2

2

∫ t

0

|Gα(at− s)|ds

+
|α|
a

∫ t

0

|Gα(at− s)|ds− ap
)

×
∫ t

0

|Gα(at− s)|f 2(x(s))ds (4.2.15)

Now using the substitution u = at − s in the integral
∫ t

0
| Gα(at − s) | ds

gives

∫ t

0

| Gα(at− s) | ds =−
∫ at−t

at

| Gα(u) | du

=

∫ at

at−t

| Gα(u) | du

≤
∫ ∞

at−t

| Gα(u) | du (4.2.16)
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Thus, using Eq. (4.2.16) in Eq. (4.2.15) gives

V ′(t) ≤
(
h(t)f1(x(t)) +

1

a
Gα(at− t)f1(x(t))

+
(a1(t)− α)2

2L2
+ p

∫ ∞

at−t

|Gα(u)|duf 2
1 (x(t))

)
x2(t)

+
(L2

2

∫ at

at−t

|Gα(u)|du +
|α|
a

∫ at

at−t

|Gα(u)|du− ap
)

×
∫ t

0

|Gα(at− s)|f 2(x(s))ds

=
(
a
[h(t)f1(x(t))

a
+

1

a2
Gα(at− t)f1(x(t))

]

+
(a1(t)− α)2

2L2
+ p

∫ ∞

at−t

|Gα(u)|duf 2
1 (x(t)

)
x2(t)

+
[(L2

2
+

|α|
a

)∫ ∞

at−t

|Gα(u)|du− ap
]

×
∫ t

0

|Gα(at− s)|f 2(x(s))ds

=
(
aa1(t) +

(a1(t)− α)2

2L2
+ p

∫ ∞

at−t

|Gα(u)|duf 2
1 (x(t)

)
x2(t)

+
[(L2

2
+

|α|
a

)∫ ∞

at−t

|Gα(u)|du− ap
]

×
∫ t

0

|Gα(at− s)|f 2(x(s))ds

This completes the proof.
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In Theorem 4.1, stability result for the zero solution of Eq. (4.1.1) is

stated.

Theorem 4.1 Let Gα(u) ∈ L1[0,∞) with (1/a)
∫∞
0

| Gα(u) | du < 1 and

1 ≤ f1(x). Suppose

aa2(t) +
(a2(t)− α)2

2
+ a3Q ≤ −β, (4.2.17)

for β ≥ 0, and | f1(x) |≤ λ | x |, for λ > 0, where

Q =

(
1√
a

∫ ∞

at−t

| Gα(u) | du

)2

and

a3 =

(
L2

2
+

| α |
a

)
. (4.2.18)

Then the zero solution of Eq. (4.1.1) is stable.

Proof. From Eq. (4.1.2),

V (t) =
1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds

)2

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds

=
1

2

[
x2(t) +

2x(t)

a

∫ t

0

Gα(at− s)f(x(s))d

+
(1
a

∫ t

0

Gα(at− s)f(x(s))ds
)2]

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds
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V (t) =
x2(t)

2
+

1

2a2

(∫ t

0

Gα(at− s)f(x(s))ds
)2

+
x(t)

a

∫ t

0

Gα(at− s)f(x(s))ds

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds (4.2.19)

By the Cauchy-Schwarz inequality,

1

2a2

(∫ t

0

Gα(at− s)f(x(s))ds
)2

≤ 1

2a2

∫ t

0

| Gα(at− s) | ds

×
∫ t

0

| Gα(at− s) | f 2(x(s))ds (4.2.20)

and

x(t)

a

∫ t

0

Gα(at− s)f(x(s))ds

= x(t)× 1

a

(∫ t

0

Gα(at− s)f(x(s))ds

)

≤ x2(t)

2
+

1

2a2

(∫ t

0

| Gα(at− s) | f(x(s))ds
)2
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=
x2(t)

2
+

1

2a2

∫ t

0

| Gα(at− s) | ds

×
∫ t

0

| Gα(at− s) | f 2(x(s))ds (4.2.21)

Using Eq. (4.2.20) and Eq. (4.2.21) in Eq. (4.2.19) gives

V (t) ≤ x2(t)

2
+

1

2a2

∫ t

0

| Gα(at− s) | ds
∫ t

0

| Gα(at− s) | f 2(x(s))ds

+
x2(t)

2
+

1

2a2

∫ t

0

| Gα(at− s) | ds
∫ t

0

| Gα(at− s) | f 2(x(s))ds

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds

=
x2(t)

2
+

x2(t)

2

+
1

2a2

∫ t

0

| Gα(at− s) | ds
∫ t

0

| Gα(at− s) | f 2(x(s))ds

+
1

2a2

∫ t

0

| Gα(at− s) | ds
∫ t

0

| Gα(at− s) | f 2(x(s))ds

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds

= x2(t) +
1

a2

∫ t

0

| Gα(at− s) | ds
∫ t

0

| Gα(at− s) | f 2(x(s))ds

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds
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≤ x2(t) +
1

a2

∫ ∞

0

| Gα(u) | du
∫ t

0

| Gα(at− s) | f 2(x(s))ds

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds. (4.2.22)

Using the fact that 1
a

∫∞
0

| Gα(u) | du < 1 in Eq. (4.2.22) gives

V (t) ≤ x2(t) +
1

a

∫ t

0

| Gα(at− s) | f 2(x(s))ds

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds.

= x2(t) +
1

a

∫ t

0

| Gα(at− s) | f 2
1 (x(s))x

2(s)ds

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2
1 (x(s))x

2(s)ds (4.2.23)

Now for L = 1 take p = a3
a

∫∞
at−t

| Gα(u) | du. Then, from inequality (4.2.4)

and from the fact that 1 ≤ f1(x(t))

V ′(t) ≤
[
aa1(t) +

(a1(t)− α)2

2
+

a3
a

∫ ∞

at−t

| Gα(u) | du
∫ ∞

at−t

|Gα(u)|duf 2
1 (x)

]
x2(t)

+
[(1

2
+

| α |
a

)∫ ∞

at−t

| Gα(u) | du− a
(a3
a

∫ ∞

at−t

| Gα(u) | du
)]

×
∫ t

0

| Gα(at− s) | f 2(x(s))
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=
[
aa1(t) +

(a1(t)− α)2

2
+

a3
a

(∫ ∞

at−t

| Gα(u) | du
)2
f 2
1 (x)

]
x2(t)

+
[(1

2
+

| α |
a

)∫ ∞

at−t

| Gα(u) | du− a3

∫ ∞

at−t

| Gα(u) | du
]

×
∫ t

0

| Gα(at− s) | f 2(x(s))

=
[
aa1(t) +

(a1(t)− α)2

2
+

a3
a

(∫ ∞

at−t

| Gα(u) | du
)2
f 2
1 (x)

]
x2(t)

+
[(1

2
+

| α |
a

)∫ ∞

at−t

| Gα(u) | du− a3

∫ ∞

at−t

| Gα(u) | du
]

×
∫ t

0

| Gα(at− s) | f 2(x(s))

=
[
aa1(t) +

(a1(t)− α)2

2
+ a3 ×

1

a

(∫ ∞

at−t

| Gα(u) | du
)2
f 2
1 (x)

]
x2(t)

+
[(1

2
+

| α |
a

)∫ ∞

at−t

| Gα(u) | du− a3

∫ ∞

at−t

| Gα(u) | du
]

×
∫ t

0

| Gα(at− s) | f 2(x(s))ds
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V ′(t) =
[
aa1(t) +

(a1(t)− α)2

2
+ a3Qf 2

1 (x(t))
]
x2(t)

+
[(1

2
+

| α |
a

)∫ ∞

at−t

| Gα(u) | du−
(1
2
+

| α |
a

)∫ ∞

at−t

| Gα(u) | du
]

×
∫ t

0

| Gα(at− s) | f 2(x(s))

=
[
aa1(t) +

(a1(t)− α)2

2
+ a3Qf 2

1 (x(t))
]
x2(t)

≤
[
aa2(t) +

(a2(t)− α)2

2
+ a3Q

]
f 2
1 (x(t))x

2(t)

≤ −βf 2
1 (x(t))x

2(t)

≤ − βx2(t). (4.2.24)

Let J = (1/a)
∫∞
0

| Gα(u) | du. Given an ε > 0 and a fixed t0 ≥ 0, choose

δ > 0 with 0 < δ < ε such that

√
2
(
1 + J + Japt0

)1/2
δ < ε(1− J) (4.2.25)

Let x(t) = x(t, t0, ϕ) be a solution of Eq. (4.1.1) with ∥ ϕ ∥< δ. Then for

t ≥ t0, using Eq. (4.2.23) and inequality (4.2.24) gives

1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

≤ V (t) ≤ V (t0) (4.2.26)
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This implies that

1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

≤ x2(t) +
1

a

∫ t

0

| Gα(at− s) | f 2
1 (x(s))x

2(s)ds

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2
1 (x(s))x

2(s)ds

≤ x2(t) +
1

a

∫ ∞

0

| Gα(at− s) || f 2
1 (x(s)) || x2(s) | ds

+ P

∫ t

0

∫ ∞

at−s

| Gα(u)du || f 2
1 (x(s)) || x2(s) | ds.

≤ x2(t) +
1

a

∫ ∞

0

| Gα(at− s) || λ2x4(s) | ds

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) || x4(s) | λ2ds

≤ x2(t) +
λ2

a

∫ ∞

0

| Gα(at− s) || x4(s) | ds

+ λ2P

∫ t

0

∫ ∞

at−s

| Gα(u)du || x4(s) | ds

≤ x2(t0) +
λ2

a

∫ ∞

0

| Gα(u) | x4(s)ds

+ λ2P

∫ t0

0

∫ ∞

0

| Gα(u) | dux4(s)ds.
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The fact that ∥ ϕ ∥< δ implies that

1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

≤ δ2 +
λ2

a

∫ ∞

0

| Gα(u) | δ4ds

+ λ2P

∫ t0

0

∫ ∞

0

| Gα(u) | duδ4ds

≤
(
1 +

λ2

a

∫ ∞

0

| Gα(u) | δ2ds

+ λ2P

∫ t0

0

∫ ∞

0

| Gα(u) | duδ2ds
)
δ2

≤ (1 + λ2δ2J + λ2apJt0δ
2)δ2

This implies that

x(t) +
1

a

∫ t

0

Gα(at− s)f(x(s))ds ≤
√

2
(
1 + λ2δ2J + λ2apJt0δ2

)
δ2

≤
√
2
(
1 + λ2δ2J + λ2apJt0δ

2
)1/2

δ

(4.2.27)

It is claimed that | x(t) |< ε for all t ≥ t0. Note also that | x(u) |< δ < ε

for all 0 ≤ u ≤ t0. If the claim is not true, let t = t∗ be the first t such that

| x(t∗) |= ε and | x(s) |< ε for all t0 ≤ s < t∗. Then inequality (4.2.27)

yields

ε(1− J) = ε

(
1− 1

a

∫ ∞

0

| Gα(u) | du

)
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≤ | x(t∗) +
1

a

∫ t∗

0

Gα(at∗ − s)x(s)ds |

≤
√
2
(
1 + J + Japt0

)1/2
δ,

which contradicts inequality (4.2.25) and completes the proof.

Theorem 4.2 Suppose the hypotheses of Theorem 4.1 hold and there is a

positive constant R such that

∫ at

(a−1)t

∫ ∞

v

| Gα(u) | dudv ≤ R (4.2.28)

for all t > 0 and a positive constant K such that |f1(x(t))| ≤ K. Then the

zero solution of Equation (1) is uniformly stable.

Proof. For any t0 ≥ 0 there is

∫ t0

0

∫ ∞

at0−s

| Gα(u) | f 2
1 (x(s))duds =

∫ at0

(a−1)t0

∫ ∞

v

| Gα(u) | f 2
1 (x(v))dudv

≤ KR

Given an ε > 0 choose δ > 0 with 0 < δ < ε such that

√
2
(
1 + J + pR

)1/2
δ < ε(1− J) (4.2.29)

Let x(t) = x(t, t0, ϕ) be a solution of equation 4.1.1 with ∥ ϕ ∥< δ. Then

for t ≥ t0, using Eq. (4.2.23) and inequality (4.2.24) gives

1

2

(
x(t) +

1

a

∫ ι

0

Gα(at− s)f(x(s))ds
)2

≤ V (t) ≤ V (t0) (4.2.30)
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Thus,

1

2

(
x(t) +

1

a

∫ ι

0

Gα(at− s)f(x(s))ds
)2

≤ x2(t) +
1

a

∫ t

0

| Gα(at− s) | f 2
1 (x(s))x

2(s)ds

+ P

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2
1 (x(s))x

2(s)ds (4.2.31)

For t ≥ t0

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2
1 (x(s))x

2(s)ds

=

∫ t0

0

∫ ∞

at0−s

| Gα(u) | duf 2
1 (x(s))x

2(s)ds

+

∫ t

t0

∫ ∞

at−s

| Gα(u) | duf 2
1 (x(s))x

2(s)ds
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It implies that

1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

≤
(
x(t)2 +

1

a

∫ ∞

0

| Gα(u) | f 2
1 (x(u))x

2(u)du

+ p

∫ t0

0

∫ ∞

at0−s

| Gα(u) | duf 2
1 (x(s))x

2(s)ds
)

≤
(
1 +

1

a

∫ ∞

0

| Gα(u) | f 2
1 (x(u))du

+ p

∫ t0

0

∫ ∞

at0−s

| Gα(u) | f 2
1 (x(s))duds

)
x(t)2

Using, | x(t) |< δ and the fact that

1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

≤
(
1 +

1

a

∫ ∞

0

| Gα(u) | f 2
1 (x(u))du

+ p

∫ t0

0

∫ ∞

at0−s

| Gα(u) | f 2
1 (x(s))duds

)
δ2

<
(
1 + J + pKR

)
δ2

43

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Hence;

1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

<
(
1 + J + pKR

)
δ2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

< 2
(
1 + J + pKR

)
δ2

x(t) +
1

a

∫ t

0

Gα(at− s)f(x(s))ds <

√
2
(
1 + J + pKR

)
δ2

<
√
2
(
1 + J + pKR

)1/2
δ

It is claimed that | x(t) |< ε for all t ≥ t0. Note also that | x(u) |< δ < ε

for all 0 ≤ u ≤ t0. If the claim is not true, let t = t∗ be the first t such

that | x(t∗) |= ε and | x(s) |< ε for all t0 ≤ s < t∗. Then from inequality

(4.2.27),

ε(1− J) = ε
(
1− 1

a

∫ ∞

0

| Gα(u) | f 2
1 (x(u))du

)

< | x(t∗) +
1

a

∫ t∗

0

Gα(at∗ − s)f 2
1 (x(s))x(s)ds |

<
√
2
(
1 + J + pKR

)1/2
δ

which contradicts inequality (4.2.27) and completes the proof.

Theorem 4.3 Suppose the hypothesis of Theorem 4.2 hold with β > 0,

where β satisfies condition 4.2.17. If
∫∞
0

| Gα(u) | du ∈ L1[0,∞) then the

zero solution of Eq. (4.1.1) is uniformly asymptotically stable.
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Proof.

By Theorem 4.2 the zero solution is uniformly stable. So, for ϵ = 1,

find δ of uniform stability. Let γ1(t) > 0 be given. Then T > 0 would be

found such that [t0 ≥ 0, ∥ ϕ ∥< δ, t ≥ t0 + T ] implies | x(t, t0, ϕ) |< γ1(t).

Since V ′ ≤ 0, if tf is found such that V (tf ) < γ2 for a given γ > 0, then

1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

≤ V (t) ≤ V (tf ) < γ2 (4.2.32)

for all t ≥ tf . Then the lower bound on V (t) is used to show that |

x(t, t0, ϕ) |< γ1(t) , (γ1 is a function of t). Now T is found so that for any

such solution there will be a tf ∈ [t0, t0+T ]. Since Gα(u) ∈ L1[0,∞), there

is a T∗ such that

∫ ∞

(a−1)T∗

| Gα(u) | f(x(u))du ≤ aγ2

4

This gives

1

a

∫ ∞

(a−1)T∗

| Gα(u) | f(x(u))du ≤ γ2

4
. (4.2.33)

Also, from the hypotheses, there is a T1 such that for all T > T1,

∫ ∞

(a−1)T

∫ ∞

v

| Gα(u) | dudv ≤ aγ2

4p
(4.2.34)
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Thus for t ≥ T , there is

∫ t

T

∫ ∞

at−s

| Gα(u) | duds =
∫ at−T

at−t

∫ ∞

v

| Gα(u) | dudv

≤
∫ ∞

(a−1)t

∫ ∞

v

| Gα(u) | dudv

≤ aγ2

4p
. (4.2.35)

Fix a T2 > T1. For all t > T2, there is

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds =

∫ T2

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds

+

∫ t

T2

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds.

(4.2.36)

Also, since Gα(u) ∈ L1, pick a T3 > T2, such that for t > T3,

T2

∫ ∞

at−T2

| Gα(v) | dv =

∫ ∞

t−T3

| Gα(v) | dv

<
aγ2

4p

Thus,

∫ ∞

at−T2

| Gα(v) | dv <
γ2

4pT2

. (4.2.37)
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Using Eq. (4.2.37), the first integral on the right hand side of Eq. (4.2.36)

satisfies

∫ T2

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds ≤ T2

∫ ∞

at−T2

| Gα(u) | du <
γ2

4p

Also, using Eq. (4.2.35), the second integral on the right side of Eq. (4.2.36)

becomes

∫ t

T2

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds ≤
∫ t

T2

∫ ∞

at−s

| Gα(u) | duds

≤ γ2

4p
.

Thus, Eq. (4.2.36), implies that

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds ≤ γ2

4p
.

Hence,

p

∫ t

0

∫ ∞

at−s

| Gα(u) | duf 2(x(s))ds ≤ γ2

4
(4.2.38)

for t > T3. Next it is claimed that x(t) ∈ L1. To see this , let t ≥ t0 ≥ 0.

Then integrating inequality (4.2.24) from t0 to t, yields;

∫ t

t0

dV (s)

ds
ds ≤

∫ t

t0

−βx2(s)ds

∫ t

t0

V (s) ≤ −
∫ t

t0

βx2(s)ds

V (t)− V (t0) ≤ −
∫ t

t0

βx2(s)ds.
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This implies that

∫ t

t0

βx2(s)ds ≤ V (t0)− V (t).

Therefore

∫ t

t0

βx2(s)ds ≤ V (t0)− V (t) ≤ V (t0) < (1 + J + pKR)

Let T4 = (1 + J + pKR)/β(γ/2)2. Now it is claimed that every interval of

length T4 contains a τ such that | x(τ) |< γ/2. If the claim is not true,

then | x(t) |< γ/2 for t ∈ [t1, t1 + T4] for some t1 ≥ t0. Inequality (4.2.24),

implies that

V (t)− V (t0) ≤−
∫ t

t0

βx2(s)ds

Thus,

V (t) ≤ V (t0)−
∫ t

t0

βx2(s)ds
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This implies that

V (t1 + T4) ≤ V (t1)−
∫ t1+T4

t1

βx2(s)ds

≤ V (t1)−
∫ t1+T4

t1

β

(
γ

2

)2

ds

≤ V (t1)− β

(
γ

2

)2

T4

= V (t0)− (1 + J + pKR)

< 0,

which contradicts V (t) ≥ 0 for all t ≥ 0.

For t > t0 + T∗ + T3, observe that both inequality (4.2.33) and inequal-

ity (4.2.38) hold. Moreover, there is a tf ∈ [t0 + T∗ + T3, t0 + T∗ + T3 + T4]

such that x2(tf ) < γ/4 since this interval has length T4. Consequently, by

Eq. (4.1.2), for t ≥ tf ,

1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

≤ V (t) ≤ V (tf )
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This implies that

1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

=
1

2

(
x(tf ) +

1

a

∫ tf

0

Gα(at− s)f(x(s))ds
)2

+ p

∫ tf

0

∫ ∞

atf−s

| Gα(u) | duf 2(x(s))ds

=
1

2

[
x2(tf ) +

2x(tf )

a

∫ tf

0

Gα(atf − s)f(x(s))ds

+
(1
a

∫ tf

0

Gα(atf − s)f(x(s))ds
)2]

+ P

∫ tf

0

∫ ∞

atf−s

| Gα(u) | duf 2(x(s))ds

=
1

2

[
x2(tf ) +

(1
a

∫ tf

0

Gα(atf − s)f(x(s))ds
)2

+
2x(tf )

a

∫ tf

0

Gα(atf − s)f(x(s))ds
]

+ P

∫ tf

0

∫ ∞

atf−s

| Gα(u) | duf 2(x(s))ds

=
1

2

[
x2(tf ) +

1

a2

(∫ tf

0

Gα(atf − s)f(x(s))ds
)2

+
2x(tf )

a

∫ tf

0

Gα(atf − s)f(x(s))ds
]

+ P

∫ tf

0

∫ ∞

atf−s

| Gα(u) | duf 2(x(s))ds
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=
x2(tf )

2
+

1

2a2

(∫ tf

0

Gα(atf − s)f(x(s))ds
)2

+
x(tf )

a

∫ tf

0

Gα(atf − s)f(x(s))ds

+ P

∫ tf

0

∫ ∞

atf−s

| Gα(u) | duf 2(x(s))ds

≤ x2(tf )

2
+

1

2a2

∫ tf

0

| Gα(atf − s) | ds
∫ tf

0

| Gα(atf − s) | f 2(x(s))ds

+
x2(tf )

2
+

1

2a2

∫ tf

0

| Gα(atf − s) | ds
∫ tf

0

| Gα(atf − s) | f 2(x(s))ds

+ P

∫ tf

0

∫ ∞

atf−s

| Gα(u) | duf 2(x(s))ds

=
x2(tf )

2
+

x2(tf )

2

+
1

2a2

∫ tf

0

| Gα(atf − s) | ds
∫ tf

0

| Gα(atf − s) | f 2(x(s))ds

+
1

2a2

∫ tf

0

| Gα(atf − s) | ds
∫ tf

0

| Gα(atf − s) | f 2(x(s))ds

+ P

∫ tf

0

∫ ∞

atf−s

| Gα(u) | duf 2(x(s))ds
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= x2(tf )

+
1

a2

∫ tf

0

| Gα(atf − s) | ds
∫ tf

0

| Gα(atf − s) | f 2(x(s))ds

+ P

∫ tf

0

∫ ∞

atf−s

| Gα(u) | duf 2(x(s))ds

≤ x2(tf )

+
1

a2

∫ ∞

0

| Gα(u) | ds
∫ tf

0

| Gα(atf − s) | f 2(x(s))ds

+ P

∫ tf

0

∫ ∞

atf−s

| Gα(u) | duf 2(x(s))ds

≤ x2(tf )

+
1

a

∫ tf

0

| Gα(atf − s) | f 2(x(s))ds

+ P

∫ tf

0

∫ ∞

atf−s

| Gα(u) | duf 2(x(s))ds

≤ x2(tf )

+
1

a

∫ ∞

(a−1)tf

| Gα(u) | f 2(x(u))du

+ P

∫ tf

0

∫ ∞

atf−s

| Gα(u) | duf 2(x(s))ds

<
γ2

4
+

γ2

4
+

γ2

2

= γ2
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Therefore, for t ≥ tf

1

2

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

= γ2

Thus,,

(
x(t) +

1

a

∫ t

0

Gα(at− s)f(x(s))ds
)2

= 2γ2

This implies that,

x(t) +
1

a

∫ t

0

Gα(at− s)f(x(s))ds =
√

2γ2

which gives,

x(t) +
1

a

∫ t

0

Gα(at− s)f(x(s))ds =
√
2γ

Hence,

| x(t) + 1

a

∫ t

0

Gα(at− s)f(x(s))ds | <
√
2γ.

It follows from the above inequality that

| x(t) | −
∣∣∣∣1a
∫ t

0

Gα(at− s)f(x(s))ds

∣∣∣∣ < √
2γ (4.2.39)

Since tf ≥ T∗, it follows from inequality (4.2.34) and inequality (4.2.39)

that

| x(t) | <

∣∣∣∣1a
∫ t

0

Gα(at− s)f(x(s))ds

∣∣∣∣+√
2γ

<
1

a

∫ t

0

| Gα(at− s) | f(x(s)) | ds+
√
2γ
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≤ γ2

4
+
√
2γ

= γ1(t).

for t ≥ tf . This completes the proof.

4.4 Chapter Summary

In this chapter, results concerning stability, uniform stability, and

uniform asymptotic stabilty of Eq. (4.2.1) were established. In the process,

the Lyapunov function constructed was used to deduce inequalities regard-

ing the solution of the nonlinear Volterra integrodifferential equation from

which the stability, uniform stability, and uniform asymptotic stability were

obtained. .
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Overview

This chapter provides the summary, conclusions and recommenda-

tions of the study. The summary explains briefly the research problem,

objectives of the study, the method used and the results obtained. The

conclusions entail the results of the study based on the set objectives. The

recommendations suggest possible areas for further research.

5.2 Summary

The primary aim of this research was to obtain conditions that are

sufficient for the zero solution of a scalar nonlinear Volterra integrodiffer-

ential equation to be stable, uniformly stable and uniformly asymptotically

stable. In order to obtain these conditions, the Lyapunov’s direct method

was used and a Lyapunov functional was carefully constructed. The Lya-

punov functional aided in the construction of some inequalities which were

used to derive sufficient conditions for the stability of the zero solution of

a scalar nonlinear Volterra integrodifferential equation to be stable, uni-

formly stable and uniformly asymptotically stable.

5.3 Conclusions

Sufficient conditions for the zero solution of nonlinear Volterra inte-

grodifferential equations to be stable have been obtained.

Again, conditions that are sufficient for the zero solution of nonlin-

ear Volterra integrodifferential equations to be uniformly stable have been

obtained.

Lastly, conditions that are sufficient for the zero solution of nonlinear

Volterra integrodifferential equations to be uniformly asymptotically stable

have been established.
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5.4 Recommendations

Future work can be done on Stability of nonlinear Volterra integrod-

ifferential equations with numerical simulations.
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