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ABSTRACT

This thesis is concerned with the stability of solutions of a system of or-

dinary differential equations with finite delay. Fixed point theory is used

in this thesis as the main mathematical tool to investigate the stability of

solutions of a system of ordinary differential equations with finite delay.

In particular, the Banach fixed point theorem is used. In the process the

system of equations are inverted to obtain an equivalent integral equation.

The result of the inversion is used to define a suitable mapping which is

then used to derive the stability properties of the zero solution of the sys-

tem of ordinary differential equations with finite delay. Sufficient conditions

that guarantee that the zero solutions of a system of ordinary differential

equations with finite delay is asymptotically stable are obtained.
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CHAPTER ONE

INTRODUCTION

This chapter is made up of the background of the study, the statement

of the problem, the objectives of this study as well as the organization of

the chapters in the thesis.

Background to the Study

Mathematical modeling has transformed to become a significant tool

for understanding the mechanisms of real-life phenomena, most notably

in biological and medical sciences. These mathematical models normally

produce equations that have derivatives of unknown functions. These type

of equations are known as differential equations.

Differential equations have been used in the past few centuries in the

study of population dynamics, ecology, epidemiology, malaria prevention

and so forth. It has been a major branch of pure and applied mathematics

since its inception in the 17th century. Whiles the history of differential

equations has been well studied, it remains a vital field of on-going in-

vestigation, with the emergence of new connections with other parts of

mathematics.

According to Sasser (2005), differential equations began with Leibniz,

Newton, the Bernoulli brothers and others from the 1675, not long after

Newton’s fluxional equations in 1670. Applications were made mainly to

geometry and mechanic. Most 18th century development consolidated the

Leibnization tradition, extending its multi-variate form, thus leading to

partial differential equations. Generalization of isoperimetrical problems

led to the calculus of variations. New figures appeared, especially Euler,

Daniel Bernoulli, Lagrange and Laplace. Development of the general theory

of solutions include singular ones, functional solutions and those by infinite

series. Many applications were made to mechanics, especially to astronomy

and continuous media.
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In the 19th century, the general theory of differential equations was

enriched by the development of the understanding of general and particular

solutions and of existence theorems.

Several types of equations and their solutions appeared, for instance, Fourier

analysis and special functions. Among new figures, Cauchy stands out. Ap-

plications were now made not only to classical mechanics but also to heat

theory, optics, electricity and magnetism, especially with the impact of

Maxwell.

Later Poincar’e introduced the recurrence theorems, initially in con-

nection with the three-body problems. In the 20th century, the general

theory of defferential equations was influenced by the arrival of set the-

ory in mathematical analysis; with consequences for theorisation, includ-

ing further topological aspects. New applications were made to quantum

mathematics, dynamical systems and relativity theory.

Statement of the Problem

The study of the stability properties of ordinary differential equations

have drawn the attention of several mathematicians lately. For instance,

Burton (2003) proved that the zero solution of the equation

x′ = −a(t)x(t− τ)

is asymptotically stable, by means of fixed point theory.

Also, according to Chicone (1999) the system

x′ = Ax(t),

where A is an n × n matrix, the sign of the real part of the eigenvalues

of matrix A can be used to determine the stability properties of its zero

solution. However, the stability results obtained by Burton (2003) does not

2
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hold for the system of ordinary differential equation

d

dt
x(t) = A(t)x(t− τ), (1.1)

where A is an n× n matrix.

Moreover, the eigenvalue technique for systems of ordinary differential

equations with constant coefficients cannot be applied to obtain stability

results of Equation (1.1).

Research Objectives

The objectives of the thesis are to obtain sufficient conditions for the

zero solution of the system of first order ordinary differential equations

d

dt
x(t) = A(t)x(t− τ),

with finite delay, τ , to be,

1. stable; and

2. asymptotically stable.

Significance of the Study

The results obtained in the study generalises some results in the lit-

erature.

Delimitation

The study determined stability of solutions of a system of first or-

der ODE with finite delay. Results concerning the asymptotic stability of

the zero solution of the ODE was obtained. The results cannot be easily

generalised for all first order ordinary differential equations.

Limitaion

Liapunov’s direct method has been very effective in establishing sta-

bility properties for a wide variety of DEs. However, fixed point theorems

3
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is employed in this study, this is because there is a large set of problems

for which the Liapunov’s direct method has been ineffective. Several re-

searchers have examined particular problems which have offered great dif-

ficulties for that theory and have presented solutions by means of various

fixed point theorems over the years.

Definition of Terms

Some definitions and concepts that will be used in this study are

provided in this section.

Definition 1 (Ordinary Differential Equation)

An ordinary differential equation (ODE) is an equation involving deriva-

tives of an unknown function with one variable.

The general first order ordinary differential equation in Rn, n ≥ 1 is

given by

x′(t) = f(t, x(t)), x(t0) = x0 (1.2)

on a domain D ⊂ R×Rn, where (t0, x0) ∈ D and f(t, x) is a function from

D ⊂ R×Rn into Rn.

Definition 2 (Delay Ordinary Differential Equation)

A delay ordinary differential equation is an ordinary differential equation

where the unknown function appears with delayed argument.

For example,

dx

dt
= f(t, x(t), x(t− τ)), (1.3)

where x(t) ∈ Rn and the delay τ > 0 is a constant.

Definition 3 (Stability)

The zero solution is said to be stable if for any ε ≥ 0 there exists δ(ε, t0) ≥ 0

such that |x0| ≤ δ implies that |x(t)| ≤ ε for t ≥ t0.

4

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Definition 4 (Asymptotic Stability)

The zero solution is said to be asymptotically stable if it is stable and

in addition there exists r(t0) ≥ 0 such that |x0| ≤ r(t0) implies that the

lim |x(t)| = 0, t −→∞.

Organisation of the Study

Chapter One of the thesis presented a history of the study of ordinary

differential equations and its role in modelling physical phenomena. The

Chapter also included, problem statement, research objectives, significance

of the study, limitation and delimitation as well as the organisation of the

study. Chapter Two of the study reviewed relevant related literature of

stability properties of ODEs.

The Chapter Three of the sudy dealt with the tool used in the dis-

cussion of the stability properties of the ordinary differential equation con-

sidered in the study.

Chapter Four provides the main results established in the study. The

results were obtained based on the objectives of the study.

Chapter Five of the study dealt with the summary of the results

obtained in the study as well as the conclusions.

5
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CHAPTER TWO

LITERATURE REVIEW

Introduction

In this chapter, existing literature which is related and also relevant

and significant to the study are reviewed.

Stability by Banach Theory

The study of the behaviour of solutions of differential equations

began in the nineteenth century and became a subject of intense research

since 1940. The first direct reference is the work of Poincare (1899). Since

then, there has been an intensified interest among researchers to explore

its richness.

Lyapunov (1892) proposed a basic method for studying the problem of

stability, boundedness and periodic solutions of ordinary differential equa-

tions by constructing a function known as the Lyapunov functions. This

function is often presented as V (t, x) defined in some regions or the whole

state phase that contains the unperturbed solution x = 0 for all t > 0 and

which together with its derivative V ′(t, x) satisfy some sign definiteness.

The Lyapunov method is by far the most general method for dealing

with stability, boundedness and the periodic solution of functional differen-

tial equations. However, several difficulties with the theory and application

to problems persist and therefore new methods are needed to address those

challenges. There is the problem of constructing an appropriate Lyapunov

functional and also the problem with the types of conditions which are

typically imposed on the functions in the differential equations.

Burton & Furumochi (2001) discovered that most of the difficulties

with the use of the Lyapunov’s direct method disappeared using fixed point

theorems. The authers pointed out that, not only do the fixed point con-

ditions emerge as averages, but in one step the existence, uniqueness, and

boundedness of solutions of problems which have challenged researchers for
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decades are proved.

They continued this work in Burton & Furumochi(2001), where delay

equations which may be unstable when the delay is zero were considered.

In particular, asymptotic stability results were proved by Schauder’s and

Banach’s fixed point theorems and Schaefer’s fixed point theorem was also

used to prove that there is a periodic solution when a periodic forcing

function is added to that equation.

The study of the stability properties of ordinary differential equations

have attracted the attention of many mathematicians lately. For instance,

according to Chicone (1999) the system

x′ = Ax(t),

where A is an n × n matrix, the sign of the real part of the eigenvalues

of matrix A can be used to determine the stability properties of its zero

solution. Burton (2006) proved that the zero solution of the equation

x′ = −a(t)x(t− τ)

is asymptotically stable, by means of fixed point theory.

Again, Burton (2006) proved that the equation

x′ = −a(t)x(t) + b(t)x(t− r(t))

is asymptotically stable by means of fixed point theory.

Delay Differential Equations

When modeling a system using a differential equation where the fun-

damental assumption is that the time rate at time t, given as x′(t), depends

only on the current status at time t, given as f(t, x(t)) results in the dif-

7
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ferential equation

x′(t) = f(t, x(t)), x(t0) = x0, t ≥ t0, x(t) ∈ Rn. (2.1)

Moreover, the initial condition is given in the form x(t0) = x0. In appli-

cations, this assumption and initial condition should be improved so as to

model the situations more accurately and therefore derive better results.

One improvement of equation (2.1) is to assume that the time rate

depends not only on the current status, but also on the status in the past;

that is , the past history will contribute to the future development, or, there

is a time delay effect. For example, for a university, its current population

will affect its population growth, however, its population in the past may

also affect its population growth. In fact, in his study of predator-prey

models, Volterra (1928) had investigated the equation

x′(t) = x(t)[a− by(t)−
∫ 0

−r
F1(s)y(t+ s)ds],

x′(t)y′(t) = y(t)[a− bx(t)−
∫ 0

−r
F1(s)x(t+ s)ds], (2.2)

where x and y are the number of preys and prediators, respectively, and

all constants and functions are nonegative and r is a positive constant. In∫ 0

−r F1(s)y(t+s)ds, the variable s varies in the interval [−r, 0], thus y(t+s)

is a function defined on the interval [t − r, t]. This says that for equation

(2.2), the time rate at t, | x′(t), y′(t) |T , depends not only on the status

of x(t) and y(t) at t, but also on the past status of x(t + s) and y(t + s)

defined on the interval [t−r, t]. That is, the history on the interval [t−r, t]

will affect the growth rates of the preys and predators at time t.

Other physical procedures that possess such time-delay properties

include blood moving through arteries, relaxation of materials with memory

from bending and signals traveling through mediums.

8

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Differential equations incorporating delay effect, or using information

from the past, are called delay differential equations. They include finite

delay differential equations and infinite delay differential equations.

Consider the delay differential equation below with x ∈ Rn

x′(t) = f(t, x(t), x(t− τ)), τ > 0, (2.3)

with

x(t) = Φ0(t), t0 − τ ≤ t ≤ t0. (2.4)

Here Φ0 : R −→ Rn is a known function, usually taken to be contin-

uous. Φ0(t) is called the initial function for equation (2.3), t0 the initial

instant and [t0 − τ, t0] the initial set.

Definition 5

A function x : [t0 − τ, t0 + T ] −→ Rn, where T > 0 is a constant, is said

to be a solution of equation (2.3) and equation (2.4) on [t0 − τ, t0 + T ] if

x(t0) = Φ0, x(t) is differentiable on [t0, t0 + T ], and satisfies equation(2.3)

for t ∈ [t0, t0 + T ].

Definition 6

A function f(t, x) on a domain D ⊂ R×Rnis said to satisfy a local Lipschitz

condition with respect to x on D if for any (t1, x1) ∈ D, there exists a

domain D1 such that (t1, x1) ∈ D1 ⊂ D and that f(t, x) satisfies a Lipschitz

condition with respect to x on D1. That is, there exists a positive constant

k1 such that

| f(t, x)− f(t, y) |≤ k1 | x− y | for (t, x), (t, y) ∈ D1.

Theorem 2.1.1. [Driver (1977)] If f(t, x, y) is continuous with respect to

t and y and locally Lipschitz with respect to x in some neighbourhood of

(t0,Φ0(t0)) and Φ0 is continuous with respect to t in some neighbourhood

9
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of t0, then there exists a unique solution to equations (2.3)−(2.4) in a

neighbourhood of (t0,Φ0(t0)).

Systems with Bounded Delays-General Framework

In section 2.2 the existence and uniqueness of solutions for some de-

lay differential equations of specific forms were considered. To consider

arbitrary delay differential equations, there is the need for a more gen-

eral mathematical framework in which to work. This is the subject of the

current section.

For τ > 0, let C = C([−τ, 0], Rn) be the space of continuous functions

mapping [−τ, 0] into Rn Let Φ ∈ C. Assume the norm of this space to be

‖ Φ ‖τ= sup−τ≤θ≤0 ‖ Φ(θ) ‖ , where ‖ . ‖ is the usual Euclidean norm

on Rn. With this norm,C is a Banach space. Further, for D ⊆ Rn let

CD = C([−τ, 0], D) be the set of continuous functions mapping [−τ, 0] into

D.

Definition 7

If x is a function defined at least on [t − τ, t] −→ Rn then define a new

function xt : [−τ, 0] −→ Rn by

xt(θ) = x(t+ θ), −τ ≤ θ ≤ 0. (2.5)

Clearly, if x is continuous on [t− τ, t], then xt is continuous on [−τ, 0]. In

the following, unless otherwise stated, take J ⊆ R and D ⊆ Rn to be open

set

Definition 8

If F : J × CD −→ Rn is a given functional, then call the relation

x′(t) = F (t, xt) (2.6)

a delay differential equation on J × CD.

10
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It must be noted that equation (2.6) includes the following.

(a). Ordinary differential equations (if τ = 0): x′(t) = F (t, x(t)).

(b). Differential equations with constant delays:

x′(t) = f(t, x(t− τ1), ..., x(t− τm))

= f(t, xt(t− τ1), ..., x(t− τm))

= F (t, xt)

Here τj ≥ 0 is constant and τ = max1≤j≤mτj.

(c). Differential equations with bounded, variable delays:

x′(t) = f(t, x(t− τ1(t)), ..., x(t− τm(t)))

= f(t, x(t− τ1(t)), ..., x(t− τm(t)))

= F (t, xt)

Here 0 ≤ τj ≤ τ, j = 1, ...,m, t ∈ J..

(d). Differential equations with a distribution of delays:

x′(t) =

∫ 0

−τ
f(t, θ, x(t+ θ))dθ

=

∫ 0

−τ
f(t, θ, xt(θ))dθ

= F (t, xt)

11
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A more precise definition of a solution of a delay differential equation

is given below.

Definition 9

Let F : J×CD −→ Rn. A function x(t) is said to be a solution of equation

(2.6) on [t0 − τ, β) if there are t0 ∈ Rand β > t0 such that

(i) x ∈ C([t0 − τ, β), D)

(ii) [t0, β) ⊂ J

(iii) x(t) satisfies equation (2.6) for t ∈ [t0, β).

For a given t0 ∈ R and Φ0 ∈ CD, the initial value problem associated

with the delay differential equation (2.6) is


x′(t) = F (t, xt), t ≥ t0

xt0 = Φ0,

(2.7)

or 
x′(t) = F (t, xt), t ≥ t0

xt0 = Φ0(t− t0), t0 − τ ≤ t ≤ t0.

(2.8)

The following lemmas will be useful when discussing the properties

of solutions.

Lemma 2.1.1. If x is continuous on [t0− τ, t0 + γ] then xt is a continuous

function of t for t ∈ [t0, t0 + γ].

Proof. Since x is continuous on [t0 − τ, t0 + γ] it is uniformly continuous.

Thus for any ε > 0 there is a δ > 0 such that ‖ x(t) − x(s) ‖< ε if

s, t ∈ [t0− τ, t0 + γ] and | t− s |< δ. Consequently, for s, t ∈ [t0− τ, t0 + γ]

with | t− s |< δ,there is ‖ x(t+ θ)− x(s+ θ) ‖< ε for all θ ∈ [−τ, 0].

Lemma 2.1.2. [Driver (1977)] Let F : J × CD −→ Rn be continuous and

let t0 ∈ J and Φ0 ∈ CD be given. Then x is a solution of the initial value

12
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problem (2.8) on [t0 − τ, β) if and only if [t0, β) ⊂ J, x ∈ C([t0 − τ, β), D)

and x satisfies 
xt0 = Φ0

x(t) = Φ0(0) +
∫ t
t0
F (s, xs)ds, t0 ≤ t ≤ β.

(2.9)

Definition 10

Let F : J × CD −→ Rn and let U ⊂ J × CD. Then F is Lipschitz on U if

there exists K ≥ 0 such that

‖ (tϕ)− F (t,Ψ) ‖≤ K ‖ ϕ−Ψ ‖,

whenever (t, ϕ) and (t,Ψ) ∈ U .

Lemma 2.1.3. (Generalized Gronwall’s inequality) Let c and k be given

nonnegative continuous functions on an interval J = [t0, β) and let c be

differentiable on J . Then if v : J → [0,∞) is continuous and

v(t) ≤ c(t) +

∫ t

t0

k(s)v(s)ds

Then

v(t) ≤ c(t0)e
∫ t
t0
k(s)

ds+

∫ t

t0

c′(s)e
∫ t
s k(u)duds.

Proof. Let R(t) =
∫ t
t0
k(s)v(s)ds. Then

R′(t) = k(t)v(t) ≤ k(t)c(t) + k(t)

∫ t

t0

k(s)v(s)ds

Thus R′(t) − k(t)R(t) ≤ k(t)c(t). Multiplying through by the integrating

factor e
∫ t
t0
k(s)ds

yields

[e
−

∫ t
t0
k(s)ds

]t ≤ k(t)c(t)e
−

∫ t
t0
k(s)ds

.

13
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Integrating from t0 to t gives

e
−

∫ t
t0
k(s)ds

R(t)−R(t0) ≤
∫ t

t0

k(s)c(s)e
−

∫ t
t0
k(s)ds

.

Noting that R(t0) = 0 and integrating by parts on the right hand side gives

e
−

∫ t
t0
k(s)ds

R(t) ≤ c(t0)− c(t)e−
∫ t
t0
k(u)du

R(t) +

∫ t

t0

c′(s)e
−

∫ t
t0
k(u)du

ds.

Thus

R(t) ≤ −c(t) + c(t0)e
−

∫ t
t0
k(s)ds

+

∫ t

t0

c′(s)e−
∫ t
s k(u)duds.

Using v(t) ≤ c(t) +R(t), we obtain the result.

Lemma 2.1.4.[Reid’s Lemma, Driver (1977)] Let C be a given constant

and k a given nonnegative continuous function on an interval J . Let t0 ∈ J .

Then if v : J −→ [0,∞) is continuous and

v(t) ≤ C +
∣∣∣ ∫ t

t0

k(s)v(s)ds
∣∣∣ (2.10)

for all t ∈ J , it follows that

v(t) ≤ Ce

∣∣∣ ∫ t
t0
k(s)v(s)ds

∣∣∣
for all t ∈ J .

Proof. Suppose t ≥ t0 and t ∈ J. Then (2.10) becomes

v(t) ≤ C +

∫ t

t0

k(s)v(s)ds

or

k(t)v(t)− k(t)[C +

∫ t

t0

k(s)v(s)ds] ≤ 0.

14
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Let Q(t) = C +
∫ t
t0
k(s)v(s)ds, then Q′(t) − k(t)Q(t) ≤ 0. Multiplying

through by the integrating factor e
−

∫ t
t0
k(s)ds

we obtain

d

dt

[
Q(t)e

−
∫ t
t0
k(s)ds

]
≤ 0.

Integrating from t0 to t and noting that Q(t0) = C, yields

Q(t)e
−

∫ t
t0
k(s)ds − C ≤ 0.

or

Q(t) ≤ Ce
−

∫ t
t0
k(s)ds

.

Substituting this into inequality (2.10) yields

v(t) ≤ Q(t) ≤ Ce
−

∫ t
t0
k(s)ds

.

The proof for t < t0 is similar.

Theorem 2.1.2. (Uniqueness) Let F : [t0, α)× CD −→ Rn be continuous

and locally Lipschitz on its domain. Then, given any ϕ0 ∈ CD and β ∈

(t0, α], there is at most one solution of the initial value problem (2.8) on

[t0 − τ, β).

Proof. Suppose (for contradiction ) that for some β ∈ (t0, α] there are

two solutions x(t) and y(t) mapping [t0 − τ, β) into D with x 6= y. Let

t1 = inf{t ∈ (t0, β) : x(t) 6= y(t)}. Then t0 < t1 < β and x(t) = y(t)

for t0 − τ ≤ t ≤ t1. Since (t1, x1) ∈ [t0, β) × CD and F is locally Lip-

schitz, there exist numbers a > 0 and b > 0 such that the set U =

[t1, t1 + a] × Ψ ∈ C :‖ Ψ− xt1 ‖ r ≤ b is contained in [t0, α) × CD and F

is Lipschitz on U (with Lipschitz constant K).
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By Lemma (2.1.1) there exists δ ∈ (0, a] such that (t, xt) ∈ U and (t, yt) ∈ U

or t1 ≤ t < t1 + δ. Thus for t1 ≤ t < t1 + δ,

‖ x− y ‖ =
∥∥∥ ∫ t

t0

[F (s, xs)− F (s, ys)]d
∥∥∥

≤
∫ t

t1

K
∥∥∥xs − ys∥∥∥

τ
ds

Now since the right hand side is an increasing function of t and since

‖ x(t)− y(t) ‖= 0f or t1 − τ ≤ t ≤ t1,

‖ x− y ‖τ≤
∫ t

t1

K
∥∥∥xs − ys∥∥∥

τ
ds

for t1 ≤ t < t1 + δ. From this and the Generalized Gronwall’s Lemma it

follows that x(t) = y(t) on [t1, t1 + δ) contradicting the definition of t1.

Theorem 2.1.3. (Local Existence) Let F : [t0, α) × CD −→ Rn be con-

tinuous and locally Liptschitz. Then, for each Φ0 ∈ CD, the initial value

problem (2.8) has a unique solution on [t0 − τ, t0+ M) for some M> 0.

Proof. Choose any a > 0 and b > 0 sufficiently small so that

U = [t0, t0 + a]× {Ψ ∈ C :‖ Ψ− Φ0 ‖τ≤ b}

is a subset of [t0, α)×CD and F is Lipschitz on U , with Lipschitz constant

K. Define a continuous function χ∗ on [t0 − τ, t0 + a] −→ Rn by

χ∗ =


Φ0(t− t0), t0 − τ ≤ t ≤ t0

Φ0(0), t0 < t ≤ t0 + a.

Then F (t, χ∗t ) depends continuously on t, and hence ‖ F (t, χ∗t ) ‖≤ B1

on [t0, t0+a] for some constant B1. Define B = Kb+B1. Choose a1 ∈ (0, a]

such that ‖ χ∗t − Φ0 ‖τ= {χ∗t − χ∗t0 ‖τ≤ b for t0 ≤ t ≤ t0 + a1.
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Choose M> 0 such that M≤ min{a1, b/B}. Let S be the set of all

continuous functions χ : [t0 − τ, t0+ M] −→ Rn such that χ(t) = Φ0(t− t0)

for t0 − τ ≤ t ≤ t0 and ‖ χ(t)− Φ0(0) ‖≤ b for t0 ≤ t ≤ t0+ M. Note that

if χ ∈ S and t ∈ [t0, t0+ M] then ‖ χt − χ∗t ‖τ≤ b so that

‖ F (t, χt) ‖ ≤ ‖ F (t, χt)− F (t, χ∗t ) ‖ + ‖ F (t, χ∗t ) ‖

≤ K ‖ χt − χ∗t ‖τ +B1

≤ B.

For each χ ∈ S define a function Tχ on [t0 − τ, t0+ M] by

(Tχ)(t) =


Φ0(t− t0), t0 − τ ≤ t ≤ t0

Φ0(0) +
∫ t
t0
F (s, χs)ds, t0 ≤ t ≤ t0+ M.

Then Tχ is continuous and, since ‖ F (s, χs) ‖< B, |(Tχ)(t)−Φ0(0)| ≤

B M≤ b for t0 ≤ t ≤ t0+ M. Thus Tχ ∈ S, that is, T : S −→ S. Choose

x(0) ∈ S and construct the successive approximations x(1) = Tx(0), x(2) =

Tx(1),.... Note that for each l, x(l)(t) = Φ0(t − t0) on [t0 − τ, t0]. Now

prove that the sequence xl(t) converges. For each l = 0, 1, 2,... when

t0 ≤ t ≤ t0+ M

‖ x(l+2)(t)− x(l+1)(t) ‖ =
∥∥∥∫ t

t0

[F (s, x(l+1)s)− F (s, x(l)s)]ds
∥∥∥

≤
∫ t

t0

K
∥∥∥x(l+1)s − x(l)s

∥∥∥
τ
ds

Note that ‖ x(1)(t) − x(0)(t) ‖≤ 2b on [t0 − τ, t0+ M]. Thus ‖ x(1)t − x(0)t ‖
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τ ≤ 2b on [t0, t0+ M] and

‖ x2(t)− x1(t) ‖ ≤
∫ t

t0

K
∥∥∥x(1)s − x(0)s∥∥∥ds

≤ 2bK(t− t0)

on [t0, t0+ M], which further implies that ‖ x(2)t − x(1)t ‖τ≤ 2bK(t− t0) on

[t0, t0+ M]. This leads to

‖ x3(t)− x2(t) ‖ ≤
∫ t

t0

K
∥∥∥x(2)s − x(1)s∥∥∥ds

≤ 2b
K2(t− t0)2

2

Using induction it can be shown that

‖ x(l+1)(t)− x(t) ‖ ≤ 2b
K l(t− t0)l

l!

on [t0, t0+ M]. This together with x(l+1)(t) = x(l)(t) on [t0 − τ, t0] gives

‖ x(l+1)(t)− x(t) ‖ ≤ 2b
K l Ml

l!

on [t0 − τ, t0+ M]. Now the series

x(0)(t) +
∞∑
p=0

[x(p+1)(t)− x(p)(t)]

converges uniformly on [t0 − τ, t0+ M] by the Weierstrass M−Test, but

x(l)(t) = x(0)(t) +
l−1∑
p=0

[x(p+1)(t)− x(p)(t)],

and so the sequence x(l)(t) converges uniformly on [t0 − τ, t0+ M].
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Let x(t) = liml−→∞ x(l)(t) for t0 − τ ≤ t ≤ t0∆. Clearly, x(t) is continuous

on [t0 − τ, t0+ M] and xt0 = Φ0. Further

‖ x(t)− x(l)(t) ‖≤ 2b
∞∑
p=l

(K M)p

p!

for t0 − τ ≤ t ≤ t0 M and ‖ xt − x(l)t ‖τ≤ 2b
∑∞

p=l
(KM)P

p!
for t0 ≤ t ≤ t0 M.

Thus, for t0 ≤ t ≤ t0 M,

‖ x(t)− x(l)(t) ‖ ≤ ‖ x(t)− x(l)(t) ‖ + ‖ x(l)(t)− Φ0(0) ‖

≤ 2b
∞∑
p=l

(K M)p

p!
+ b

≤ b,

and xt ∈ CD. Finally for t ∈ [t0, t0+ M]

‖ x(t)− Φ0(0)−
∫ t

t0

F (s, xs)ds ‖ ≤ ‖ x(t)− x(l)(t) ‖

+

∫ t

t0

‖ F (s, x(l−1)s)− F (s, xs) ‖ ds

≤ 2b
∞∑
p=l

(K M)p

p!
+K M 2b

∞∑
p=l−1

(K M)p

p!

Taking the limit as l −→∞ of this inequality then gives

‖ x(t)− Φ0(0)−
∫ t

t0

F (s, xs)ds ‖= 0
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that is, x(t) satisfies (2.9). Uniqueness follows from Theorem .

Theorem 2.1.4. (Continuous Dependence on Initial Conditions) Let F :

[t0, α]× CD −→ Rn be continuous and globally Lipschitz constant K. Let

Φ0 ∈ CD and Φ∗0 ∈ CD be given and let x and x∗ be unique solutions of

(2.6) with xt0 = Φ0 and x∗t0 , respectively. If x and x∗ are both valid on

[t0 − τ, β), the

‖ x(t)− x∗(t) ‖≤‖ Φ0 − Φ∗0 ‖τ eK(t−t0)

for t0 ≤ t < β.

Proof. Since x and x∗ are solutions of the given initial value problems, x

satisfies (2.9) and x∗ satisfies


x∗(t0) = Φ∗0

x∗(t) = Φ0(0) +
∫ t
t0
F (s, x∗s)ds, t0 ≤ t < β.

Thus for t0 ≤ t < β

‖ x(t)− x∗(t) ‖ =
∥∥∥Φ0(0)− Φ∗0(0) +

∫ t

t0

[F (s, xs)− F (s, x∗s)]ds
∥∥∥

≤
∥∥∥Φ0(0)− Φ∗0(0)

∥∥∥+

∫ t

t0

∥∥∥[F (s, xs)− F (s, x∗s)]
∥∥∥ds

≤
∥∥∥Φ0(0)− Φ∗0(0)

∥∥∥
τ

+

∫ t

t0

K
∥∥∥[xs − x∗s]

∥∥∥
τ
ds

for t0 ≤ t ≤ β. Since ‖ x(t)− x∗(t) ‖≤‖ Φ0−Φ∗0 ‖τ on [t0− τ, t0], it follows

that

‖ xt − x∗t ‖ ≤
∥∥∥Φ0(0)− Φ∗0(0)

∥∥∥
τ

+

∫ t

t0

K
∥∥∥[xs − x∗s]

∥∥∥
τ
ds

for t0 ≤ t ≤ β.
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Applying the generalized Gronwall’s Lemma with C =‖ Φ0 − Φ∗0 ‖τ

and k(s) = K yields

‖ x(t)− x∗(t) ‖ ≤ ‖ xt − x∗t ‖τ

≤ ‖ Φ0 − Φ∗0 ‖τ eK(t−t0),

for t0 ≤ t ≤ β.

Theorem 2.1.5. (Continuous Dependence on F ) Let F, F ∗ : [t0, α) ×

CD −→ Rn be continuous, and let F be globally Lipschitz with Lipschitz

constant K. Given Φ0,Φ
∗0 ∈ CD, let x(t) and x∗(t) be the unique solutions

of (2.8) and


(x∗)′(t) = F (t, x∗t ), t ≤ t0

x∗(t) = Φ∗0(t− t0), t0 − τ ≤ t ≤ t0.

(2.11)

respectively. If x and x∗ are both valid on [t0 − τ, β) and ‖ F (t,Ψ) −

F ∗(t,Ψ) ‖≤ µ for all t ∈ [t0, α),Ψ ∈ CD then

‖ x(t)− x∗(t) ‖≤‖ Φ0 − Φ∗0 ‖τ eK(t−t0) +
µ

K
[eK(t−t0) − 1],

for t0 ≤ t < β.

Proof. x(t) and x∗(t) must satisfy the integral equations (2.9) and


x∗(t0) = Φ∗0

x∗(t) = Φ∗0(0) +
∫ t
t0
F ∗(s, x∗s)ds, t0 ≤ t < β.
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Thus on [t0 − τ, t0]

‖ x(t)− x∗(t) ‖ ≤ ‖ Φ0(t− t0)− Φ∗0(t− t0) ‖

≤ ‖ Φ0 − Φ∗0 ‖τ

on [t0, β)

‖ x(t)− x∗(t) ‖ ≤
∥∥∥Φ0(0)− Φ∗0(0)

∥∥∥+

∫ t

t0

∥∥∥[F (s, xs)− F ∗(s, x∗s)]
∥∥∥ds

≤
∥∥∥Φ0 − Φ∗0

∥∥∥
τ

+

∫ t

t0

∥∥∥[F (s, xs)− F ∗(s, x∗s)]
∥∥∥ds

+

∫ t

t0

∥∥∥[F (s, x∗s)− F ∗(s, x∗s)]
∥∥∥ds

≤
∥∥∥Φ0 − Φ∗0

∥∥∥
τ

+

∫ t

t0

K
∥∥∥[xs − x∗s]

∥∥∥
τ
ds+

∫ t

t0

µds.

Since the right hand side of this last inequality is an increasing function of

t, it follows that

‖ x(t)− x∗(t) ‖τ ≤
∥∥∥Φ0 − Φ∗0

∥∥∥
τ

+ µ(t− t0) +

∫ t

t0

K
∥∥∥[xs − x∗s]

∥∥∥
τ
ds,

for t0 ≤ t < β.

Applying the generalized Gronwall’s Lemma with c(t) =‖ Φ0−Φ∗0 ‖τ

+µ(t− t0) and k(t) = K yields the result.
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For y ∈ Cn−1([−τ, 0], R) define the function y′t on [−τ, 0] as follows

y′t(θ) = y′(t− θ)

= lim
h−→0+

y(t+ θ + h)− y(t+ θ)

h

= lim
h−→0+

y(θ + h)− y(t+ θ)

h
− τ ≤ θ ≤ 0.

Now define the functions y′′t , y
′′′
t , ..., y

(n−1)
t on [−τ, 0] in a similar manner.

Then for J ⊂ R and G : J × [C([−τ, 0], R]n consider the scalar nth order

delay differential equation

y(n)(t) = G(t, yt, y
′
t, y
′′
t , ..., y

(n−1)
t ) (2.12)

with initial conditions 

y(t0) = Φ0

y′(t0) = Φ1

y
(n−1)
(t0)

= Φn−1

(2.13)

where t0 ∈ Jand Φj ∈ C([−τ, 0], R). Solutions of (2.12) will be (n − 1)

times differentiable functions. The initial value problem (2.12)-(2.13) can

be reduced to a delay differential equation on J ×C in the usual way, that

is, by defining x ∈ Rn

x = [y, y′, y′′, y′′′, ..., y(n−1)]T .
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Fundamental Matrix

In this section Some definitions connected to the fundamen-

tal matrix solution are provided. These definitions are found in Chicone

(1999).

Definition 11

An n×n matrix function t→ Φ(t), defined on an open interval J, is called

a matrix solution of the homogeneous linear system (4.1) if each of its

columns is a (vector) solution.

Definition 12

A set of n solutions of the homogeneous linear differential equation (4.1), all

defined on the same open interval J , is called a fundamental set of solutions

on J if the solutions are linearly independent functions on J .

Definition 13

A matrix solution is called a fundamental matrix solution if its columns

form a fundamental set of solutions. In addition, a fundamental matrix

solution t → Φ(t) is called the principal fundamental matrix solution at

t0 ∈ J if Φ(t0) = I, where I denotes the n× n identity matrix.

Definition 14

The state transition matrix for the homogeneous linear system (4.1) on the

open interval J is the family of fundamental matrix solutions t → Φ(t, r)

parametrized by r ∈ J such that Φ(r, r) = I.

Proposition 1.

If t → Φ(t) is a fundamental matrix solution for the system (4.1) on J ,

then Φ(t, r) := Φ(t)Φ−1(r) is the state transition matrix. Also, the state

transition matrix satisfies the Chapman-Kolmogorov identities

Φ(r, r) = I,Φ(t, s)Φ(s, r) = Φ(t, r),
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and the identities

Φ(t, s)−1 = Φ(s, t),
δΦ(t, s)

δs
= −Φ(t, s)A(s).

Chapter Summary

In this chapter, relevant and related literature was reviewed on stabil-

ity behaviour of solutions of differential equations by fixed point theorems.

This was drawn from the work of other researchers which are published in

journals and scholarly works.
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CHAPTER THREE

METHODOLOGY

Introduction

This chapter deals with the main tool used in achieving the objectives

in the thesis.

Fixed-Point Theory

Many different kinds of problems can be solved by means of fixed

point theory. Generally, to solve a problem with fixed point theory is to

find:

1. a set S consisting of points which would be acceptable solutions.

2. a mapping P : S → S with the property that a fixed point solves the

problem.

3. a fixed point theorem stating that this mapping on this set will have

a fixed point.

Formulation of Fixed Point Problems in Differential Equations

This section is an elementary introduction to the formulations of fixed

point problems in differential equations.

Consider an ordinary differential equation

x′(t) = g(t, x(t)), (3.1)

where g : [0,∞) × Rn −→ Rn is contiuous. Perhaps the most basic prob-

lem concerning equation (3.1) is to find a solution through a given point

(t0, x0) ∈ [0,∞) × Rn defined on some interval [t0, t0 + γ] and satisfying

equation (3.1) on that interval.

For this problem, a guess would be that the set S should consist of

differentiable functions φ : [t0, t0 + γ] −→ Rn with φ(t0) = x0.
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Next, the simplest way to find a mapping is to formally integrate equation

(3.1) and obtain

x(t) = x0 +

∫ t

t0

g(s, x(s))ds,

so that the mapping P on S is defined by

(Pφ)x(t) = x0 +

∫ t

t0

g(s, φ(s))ds.

A fixed point will certainly satisfy the equation. Since the mapping is given

by an integral, the second approximation to S is the set of continuous

functions; differentiability will be automatic. There is now a vast array

of fixed point theorems which will yield a fixed point of that mapping and

satisfy our initial value problem. The contraction mapping principle is used

for this problem. In the given example, it is easiest to complete the solution

by asking that g satisfy a global Lipschitz condition of the form

|g(t, x)− g(t, y)| ≤ K|x− y|,

for t ≥ t0, K > 0, and for all x, y ∈ Rn, where | · | is any norm on Rn.

This will allow us to give a contraction mapping argument. For any fixed

interval [t0, t0+γ], the set S with the supremum metric is a complete metric

space and P : S −→ S. Checking the contraction requirement, gives

| (Pφ1)(t)− (Pφ2)(t) |

≤
∫ t

t0

K|φ1(s)− φ2(s)|ds

≤ Kγ‖φ1 − φ2‖.
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Definition 15 (Metric Space)

A pair (S, ρ) is a metric space if S is a set and ρ : S× S → [0,∞) such

that when y, z, and u are in S then

1. ρ(y, z) ≥ 0, ρ(y, y) = 0 and ρ(y, z) = 0 implies y = z,

2. ρ(y, z) = ρ(z, y), and

3. ρ(y, z) ≤ ρ(y, u) + ρ(u, z).

Definition 16 (Fixed Point)

A fixed point of a function T : X → X is a point x ∈ X such that Tx = x.

Definition 17 (Vector Space)

A vector space (V,+, .) is a normed vector space if for each x, y ∈ V there

is a nonnegative real number ‖x‖ called the norm of x, such that

1. ‖x‖ = 0 if and only if x = 0,

2. ‖αx‖ = |α|‖x‖ for each α ∈ R

3. ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

Definition 18 (Banach Space)

A Banach space is a complete normed space.

Next the contraction mapping principle which generally goes under

the name Banach-Caccioppoli Theorem, or Banach’s (1932) Contraction

Mapping Principle is defined. A proof can be found in many literature

such as Smart (1974) or Burton (1985). It gains more respect every day.

The real power of the result lies in its application with cleverly chosen

metrics.

Definition 19 (Contraction Mapping Principle)

Let (X, d) be a nonempty complete metric space and T : X → X is a

contraction mapping, if there exist a constant ρ with 0 ≤ ρ < 1 such that

d(T (x), T (y)) ≤ ρd(x, y) for all x, y ∈ X, then T has a unique fixed point

x such that T (x) = x.
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Chapter Summary

This chapter presented the method that was used in conducting the

research. It focused on the fixed point theorem specifically the Banach

fixed point theorem.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

This chapter covers the results of the study. In particular, the re-

sults of stability of solutions of a system of first order ordinary differential

equations with finite delay are presented and discussed. The results are

presented based on the objectives of the study.

Preliminary Results

Let Φ(t) denote the fundamental matrix solution of the system

x′ = G(t)x(t), (4.1)

where G(t) is a nonsingular n×n matrix with continuous real-valued func-

tions as its elements.

In this chapter the system of ordinary differential equations

d

dt
x(t) = A(t)x(t− τ) (4.2)

where A(t) is an n× n non-singular matrix and τ is a positive constant is

considered.

Let ψ : [−τ,∞) 7−→ Rn denote the initial function for equation (4.2).

For x ∈ Rn define

‖ x ‖= sup
t∈[−τ,∞)

| x(t) |

In Lemma 4.1.1, an equivalent form of Equation (4.2) is provided

which will be used extensively in the rest of the work.

Lemma 4.1.1. Let G(t) be an n×n nonsingular continuous matrix. Then
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equation (4.2) is equivalent to the equation

d

dt
x(t) = G(t)x(t)− d

dt

∫ t

t−τ
G(s)x(s)ds

+
[
A(t)−G(t− τ)

]
x(t− τ) (4.3)

Proof. Consider the integral form in equation (4.3) gives

d

dt

∫ t

t−τ
G(s)x(s)ds = G(t)x(t)−G(t− τ)x(t− τ).

Thus equation (4.3) becomes,

d

dt
x(t) = G(t)x(t)−

[
G(t)x(t)−G(t− τ)x(t− τ)

]

+ A(t)x(t− τ)− G(t− τ)x(t− τ)

= G(t)x(t)− G(t)x(t) + G(t− τ)x(t− τ)

+ A(t)x(t− τ)− G(t− τ)x(t− τ)

= A(t)x(t− τ) + G(t)x(t)

− G(t)x(t) + G(t− τ)x(t− τ)− G(t− τ)x(t− τ)

= A(t)x(t− τ)

This completes the proof.
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In Lemma 4.1.2 an equivalent integral equation to equation (4.3) is

obtained. This result will be used to define a mapping.

Lemma 4.1.2. Suppose the hypothesis of Lemma 4.1.1 hold. Then x(t)

is a solution of equation (4.3) if and only if

x(t) = Φ(t, t0)
[
x(t0) +

∫ t0

t0−τ
G(u)x(u)du

]
−
∫ t

t−τ
G(u)x(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

)
du

Proof. Let x be the solution of Equation (4.3) and Φ(t) be a fundamental

matrix solution of Equation (4.1). Rewrite Equation (4.3) as

d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]
= G(t)x(t)

+
[
A(t)−G(t− τ)

]
x(t− τ). (4.4)

Define a new function z by z(t) = Φ−1(t)
[
x(t) +

∫ t
t−τ G(s)x(s)ds

]
. This

implies that,

d

dt
z(t) =

d

dt
Φ−1(t)

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

+ Φ−1(t)
d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]
.

Since, Φ(t)Φ−1(t) = I,

d

dt

(
Φ(t)Φ−1(t)

)
= 0
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This implies that,

d

dt

(
Φ(t)

)
Φ−1(t) + Φ(t)

d

dt

(
Φ−1(t)

)
= 0

Which gives

(
G(t)Φ(t)

)
Φ−1(t) + Φ(t)

d

dt

(
Φ−1(t)

)
= 0

Thus

G(t) + Φ(t)
d

dt

(
Φ−1(t)

)
= 0 (4.5)

Multiplying through equation (4.5) by Φ−1 gives,

d

dt
Φ−1(t) = −Φ−1(t)G(t). (4.6)

Hence,

d

dt
z(t) = −Φ−1(t)G(t)

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

+ Φ−1(t)
d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

Which implies that

d

dt
z(t) + Φ−1(t)G(t)

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

= Φ−1(t)
d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]
. (4.7)
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Multiplying through equation (4.7) by Φ(t) yields,

Φ(t)
d

dt
z(t) +G(t)

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

=
d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]
.

Therefore,

d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

= G(t)
[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

+ Φ(t)
d

dt
z(t). (4.8)

From equtions (4.7) and (4.8),

G(t)x(t) +
[
A(t)−G(t− τ)

]
x(t− τ)

= G(t)
[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

+ Φ(t)
d

dt
z(t)

This implies that

Φ(t)
d

dt
z(t) =

[
A(t)−G(t− τ)

]
x(t− τ)

− G(t)

∫ t

t−τ
G(s)x(s)ds
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This gives,

d

dt
z(t) = Φ−1(t)

([
A(t)−G(t− τ)

]
x(t− τ)

− G(t)

∫ t

t−τ
G(s)x(s)

)
ds (4.9)

An integration of Equation (4.9) from t0 to t yields

∫ t

t0

d

ds
z(s)ds =

∫ t

t0

Φ−1(u)
([
A(u)−G(u− τ)

]
x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

)
du

This implies that

z(t)− z(t0) =

∫ t

t0

Φ−1(u)
([
A(u)−G(u− τ)

]
x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

)
du

Thus,

Φ−1(t)
[
x(t) +

∫ t

t−τ
G(u)x(u)du

]

= Φ−1(t0)
[
x(t0) +

∫ t0

t0−τ
G(u)x(u)du

]

+

∫ t

t0

Φ−1(u)
([
A(u)−G(u− τ)

]
x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

)
du (4.10)
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Multiplying equation (4.10) by Φ(t) gives

x(t) = Φ(t)Φ−1(t0)
[
x(t0) +

∫ t0

t0−τ
G(u)x(u)du

]
−
∫ t

t−τ
G(u)x(u)du

+

∫ t

t0

Φ(t)Φ−1(u)
([
A(u)−G(u− τ)

]
x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

)
du

Therefore,

x(t) = Φ(t, t0)
[
x(t0) +

∫ t0

t0−τ
G(u)x(u)du

]

−
∫ t

t−τ
G(u)x(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

)
du

Conversely, suppose that

x(t) = Φ(t, t0)
[
x(t0) +

∫ t0

t0−τ
G(u)x(u)du

]

−
∫ t

t−τ
G(u)x(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

)
du
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Replacing Φ(t, t0) with Φ(t)Φ−1(t0) and Φ(t, u) with Φ(t)Φ−1(u) gives

x(t) +

∫ t

t−τ
G(u)x(u)du

= Φ(t)Φ−1(t0)
[
x(t0) +

∫ t0

t0−τ
G(u)x(u)du

]

+

∫ t

t0

Φ(t)Φ−1(u)
([
A(u)−G(u− τ)

]
x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

)
du. (4.11)

Multiplying through equation (4.11) by Φ−1(t) yields

Φ−1(t)
[
x(t) +

∫ t

t−τ
G(u)x(u)du

]

= Φ−1(t0)
[
x(t0) +

∫ t0

t0−τ
G(u)x(u)du

]

+

∫ t

t0

Φ−1(u)
([
A(u)−G(u− τ)

]
x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

)
du. (4.12)
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Differentiating equation (4.12) with respect to t, gives

d

dt
Φ−1(t)

[
x(t) +

∫ t

t−τ
G(u)x(u)du

]

=
d

dt
Φ−1(t0)

[
x(t0) +

∫ t0

t0−τ
G(u)x(u)du

]

+
d

dt

[ ∫ t

t0

Φ−1(u)
([
A(u)−G(u− τ)

]
x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

)
du
]

Thus,

d

dt
Φ−1(t)

[
x(t) +

∫ t

t−τ
G(u)x(u)du

]

=
d

dt

[ ∫ t

t0

Φ−1(u)
([
A(u)−G(u− τ)

]
x(u− τ)

− G(u)

∫ u

u−τ
G(s)x(s)ds

)
du
]
.
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Hence,

d

dt
Φ−1(t)

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

+ Φ−1(t)
d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

= Φ−1(t)
([
A(t)−G(t− τ)

]
x(t− τ)

− G(t)

∫ t

t−τ
G(s)x(s)

)
ds

Applying equation (4.6) gives

−Φ−1(t)G(t)
[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

+ Φ−1(t)
d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

= Φ−1(t)
([
A(t)−G(t− τ)

]
x(t− τ)

− G(t)

∫ t

t−τ
G(s)x(s)

)
ds (4.13)
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Multiplying through equation (4.13) by Φ−1(t) gives

−G(t)
[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]
+
d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

=
[
A(t)−G(t− τ)

]
x(t− τ)−G(t)

∫ t

t−τ
G(s)x(s)ds

−G(t)x(t)−G(t)

∫ t

t−τ
G(s)x(s)ds+

d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

=
[
A(t)−G(t− τ)

]
x(t− τ)−G(t)

∫ t

t−τ
G(s)x(s)ds

Thus,

−G(t)x(t) +
d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

=
[
A(t)−G(t− τ)

]
x(t− τ)

d

dt

[
x(t) +

∫ t

t−τ
G(s)x(s)ds

]

= G(t)x(t) +
[
A(t)−G(t− τ)

]
x(t− τ)
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Hence,

d

dt
x(t) +

d

dt

∫ t

t−τ
G(s)x(s)ds

= G(t)x(t) +
[
A(t)−G(t− τ)

]
x(t− τ)

d

dt
x(t) = G(t)x(t)− d

dt

∫ t

t−τ
G(s)x(s)ds

+
[
A(t)−G(t− τ)

]
x(t− τ)

This completes the proof.

Main Results

In Theorem 4.2.1 the stability results for the zero solution of equation

(4.2) is given.

Theorem 4.2.1. Suppose the hypotheses of Lemma 4.1.1 and Lemma

4.1.2 hold. If α ∈ [0, 1) such that

τ | G | +
∫ t

t0

|Φ|
[
|A|+ | G | +τ | G |2

]
du ≤ α, t ≥ t0 (4.14)

then the zero solution of Equation (4.2) is stable.

Proof. Let ε > 0 be given. Choose δ > 0 such that

|Φ|δ(1 + τ | G |) + αε ≤ ε. (4.15)

Define S = {ϕ : R → Rn, ϕ(t) = ψ(t) if t ∈ [−τ, t0] and for t ≥ t0,

‖ϕ‖ ≤ ε}. Then (S, ‖ · ‖) is a complete metric space, where ‖ · ‖ is supre-

mum norm.
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Define the mapping H : S → S by (Hϕ)(t) = ψ(t) for t ∈ [−τ, t0] and

for t ≥ t0.

(Hϕ)(t) = Φ(t, t0)
[
ψ(t0) +

∫ t0

t0−τ
G(u)ψ(u)du

]

−
∫ t

t−τ
G(u)ϕ(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)

− G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du. (4.16)
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First, it is shown that H maps from S into S. From Equation (4.16)

‖ (Hϕ) ‖ =
∣∣∣Φ(t, t0)

[
ψ(t0) +

∫ t0

t0−τ
G(u)ψ(u)du

]

−
∫ t

t−τ
G(u)ϕ(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)

− G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du
∣∣∣

≤ |Φ(t, t0)|
[
|ψ(t0)|+

∣∣∣ ∫ t0

t0−τ
G(u)ψ(u)du

∣∣∣]

+
∣∣∣ ∫ t

t−τ
G(u)ϕ(u)du

∣∣∣
+
∣∣∣ ∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)

− G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du
∣∣∣

≤ |Φ|
[
‖ψ‖+

∣∣∣ ∫ t0

t0−τ
|G(u)|‖ψ‖du

∣∣∣]

+

∫ t

t−τ
|G(u)|‖ϕ(u)‖du

+

∫ t

t0

|Φ|
([
|A|+ |G|

]
‖ϕ‖

+ |G|
∫ u

u−τ
|G(s)|‖ϕ‖ds

)
du
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≤
∣∣∣Φ∣∣∣[δ + τ |G|δ

]
+ τ |G|‖ϕ‖

+

∫ t

t0

|Φ|
[
|A|+ |G|+ τ |G|2

]
‖ϕ‖du

≤
∣∣∣Φ∣∣∣δ(1 + τ | G |)

+
(
τ | G | +

∫ t

t0

|Φ|
[
|A|+ | G | +τ | G |2

]
du
)
‖ϕ‖

≤
∣∣∣Φ∣∣∣δ(1 + τ | G |) + α‖ϕ‖

≤
∣∣∣Φ∣∣∣δ(1 + τ | G |) + αε

≤ ε.

This shows that H maps from S into itself.

Next the mapping defined by H is shown to be continuous. Let

ϕ, η ∈ S. Given ε1 > 0, choose δ = ε1
L

, where

L = τ | G | +
∫ t

t0

|Φ|
[
|A|+ | G | +τ | G |

]
du;

such that

∥∥∥ϕ− η∥∥∥ < δ.
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Then

‖(Hϕ)− (Hη)‖ =
∣∣∣(Φ(t, t0)

[
ψ(t0) +

∫ t0

t0−τ
G(u)ψ(u)du

]
−
∫ t

t−τ
G(u)ϕ(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)

− G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du
)

−
(

Φ(t, t0)
[
ψ(t0) +

∫ t0

t0−τ
G(u)ψ(u)du

]
−
∫ t

t−τ
G(u)η(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
η(u− τ)

− G(u)

∫ u

u−τ
G(s)η(s)ds

)
du
)∣∣∣

=
∣∣∣Φ(t, t0)

[
ψ(t0) +

∫ t0

t0−τ
G(u)ψ(u)du

]
−
∫ t

t−τ
G(u)ϕ(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)

− G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du

− Φ(t, t0)
[
ψ(t0) +

∫ t0

t0−τ
G(u)ψ(u)du

]
+

∫ t

t−τ
G(u)η(u)du

−
∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
η(u− τ)

+ G(u)

∫ u

u−τ
G(s)η(s)ds

)
du
∣∣∣
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=
∣∣∣− ∫ t

t−τ
G(u)ϕ(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)

− G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du

+

∫ t

t−τ
G(u)η(u)du

−
∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
η(u− τ)

+ G(u)

∫ u

u−τ
G(s)η(s)ds

)
du
∣∣∣

≤
∣∣∣ ∫ t

t−τ
G(u)ϕ(u)du−

∫ t

t−τ
G(u)η(u)du

∣∣∣

+
∣∣∣ ∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)

− G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du

−
∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
η(u− τ)

+ G(u)

∫ u

u−τ
G(s)η(s)ds

)
du
∣∣∣
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≤
∣∣∣ ∫ t

t−τ
G(u)(ϕ(u)− η(u))du

∣∣∣

+
∣∣∣ ∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
(ϕ(u− τ)− η(u− τ))

− G(u)

∫ u

u−τ
G(s)(ϕ(s)− η(s))ds

)
du
∣∣∣

≤
∫ t

t−τ
| G(u) | ‖ϕ(u)− η(u)‖du

+

∫ t

t0

| Φ |
([
| A | + | G |

]
‖ϕ(u− τ)− η(u− τ)‖

+ | G |
∫ u

u−τ
| G|‖ϕ(s)− η(s)‖ds

)
du

≤ τ | G | ‖ϕ− η‖+

∫ t

t0

∣∣∣Φ∣∣∣[ | A | + | G | +τ | G |2 ]du‖ϕ− η‖

≤
{
τ | G | +

∫ t

t0

∣∣∣Φ∣∣∣[ | A | + | G | +τ | G |2 ]du}ε1
L

≤ ε1.
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This shows that H is continuous. Next it is shown that H is a contraction

under the supremum norm. Let ϕ, φ ∈ S. Then

‖(Hϕ)− (Hφ)‖ =
∣∣∣(Φ(t, t0)

[
ψ(t0) +

∫ t0

t0−τ
G(u)ψ(u)du

]
−
∫ t

t−τ
G(u)ϕ(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)

− G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du
)

−
(

Φ(t, t0)
[
ψ(t0) +

∫ t0

t0−τ
G(u)ψ(u)du

]
−
∫ t

t−τ
G(u)φ(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
φ(u− τ)

− G(u)

∫ u

u−τ
G(s)φ(s)ds

)
du
)∣∣∣

=
∣∣∣Φ(t, t0)

[
ψ(t0) +

∫ t0

t0−τ
G(u)ψ(u)du

]
−
∫ t

t−τ
G(u)ϕ(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)

− G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du

− Φ(t, t0)
[
ψ(t0) +

∫ t0

t0−τ
G(u)ψ(u)du

]
+

∫ t

t−τ
G(u)φ(u)du

−
∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
φ(u− τ)

+ G(u)

∫ u

u−τ
G(s)φ(s)ds

)
du
∣∣∣
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=
∣∣∣− ∫ t

t−τ
G(u)ϕ(u)du

+

∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)

− G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du

+

∫ t

t−τ
G(u)φ(u)du

−
∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
φ(u− τ)

+ G(u)

∫ u

u−τ
G(s)φ(s)ds

)
du
∣∣∣

≤
∣∣∣ ∫ t

t−τ
G(u)ϕ(u)du−

∫ t

t−τ
G(u)φ(u)du

∣∣∣

+
∣∣∣ ∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)

− G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du

−
∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
φ(u− τ)

+ G(u)

∫ u

u−τ
G(s)φ(s)ds

)
du
∣∣∣
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≤
∣∣∣ ∫ t

t−τ
G(u)(ϕ(u)− φ(u))du

∣∣∣

+
∣∣∣ ∫ t

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
(ϕ(u− τ)− φ(u− τ))

− G(u)

∫ u

u−τ
G(s)(ϕ(s)− φ(s))ds

)
du
∣∣∣

≤
∫ t

t−τ
| G(u) | ‖ϕ(u)− φ(u)‖du

+

∫ t

t0

| Φ |
([
| A | + | G |

]
‖ϕ(u− τ)− φ(u− τ)‖

+ | G |
∫ u

u−τ
| G | ‖ϕ(s)− φ(s)‖ds

)
du

≤ τ | G | ‖ϕ− φ‖+

∫ t

t0

∣∣∣Φ∣∣∣[ | A | + | G | +τ | G |2 ]du‖ϕ− φ‖

≤
{
τ | G | +

∫ t

t0

∣∣∣Φ∣∣∣[ | A | + | G | +τ | G |2 ]du}‖ϕ− φ‖

≤ α‖ϕ− η‖.
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Therefore,

‖(Hϕ)− (Hφ)‖ ≤ α‖ϕ− η‖.

Since α ∈ [0, 1), H is a contraction. By the contraction mapping

principle, H has a unique fixed point in S which solves Equation (4.2) and

for any ϕ ∈ S, ‖ Hϕ ‖≤ ε. This proves that the zero solution of Equation

(4.2) is stable.

In the next theorem, the results for the zero solution of equation (4.1)

to be asymptotically stable is stated.

Theorem 4.2.2. Assume the hypothesis of Theorem 4.2.1 hold. Assume

further that

Φ(t, t0)→ 0 as t→∞ (4.17)

Then the zero solution of Equation (4.2) is asymptotically stable.

Proof. According to definition 4, the zero solution of a differential equation

is asymptotically stable if it is stable and in addition for each t0 ≥ 0 there

is an η(t0) > 0 such that ‖ψ‖ < η(t0) implies that x(t) −→ 0 as t −→ ∞.

The stability of the zero solution of eqution (4.2) has already been proved

(theorem 4.2.1). Define S∗ = {ϕ : R −→ Rn|ϕ(t) = ψ(t) if t ∈ [−τ, t0] and

for t ≥ t0, ‖ϕ‖ ≤ ε, and ϕ(t) −→ 0 as t −→ ∞}. Define H : S∗ −→ S∗ by

Equation (4.16). The first term on the right hand side of Equation (4.16)

tends to zero in view of condition (4.17). Now the second term on the right

hand side of equation (4.16) is shown to approach zero as t −→∞. To this

end, let ϕ ∈ S∗. Then ϕ(t) −→ 0 as t −→ ∞. Thus by the continuity of

norms, ‖ϕ‖ −→ 0 as t −→∞. Hence

∣∣∣− ∫ t

−τ
G(u)ϕ(u)du

∣∣∣ ≤
∫ t

t−τ
|G|‖ϕ‖du.
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Finally, to show that the third term on the right hand side of equation

(4.16) goes to zero as t −→∞, let ϕ ∈ S∗. Then given ε1 > 0, there exists

t1 > t0 such that for t > t1, |ϕ(t)| < ε1. Also, by condition (4.17), there

exists t2 > t1 such that for t > t2 implies that

|Φ(t, t2)| <
ε1
αε
.

Thus for t > t2,

∣∣∣ ∫ t2

t0

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)−G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du
∣∣∣

+
∣∣∣ ∫ t

t2

Φ(t, u)
([
A(u)−G(u− τ)

]
ϕ(u− τ)−G(u)

∫ u

u−τ
G(s)ϕ(s)ds

)
du
∣∣∣

≤
∫ t2

t0

| Φ(t, u) |
([
| A | + | G |

]
‖ϕ‖+ | G |

∫ u

u−τ
| G | ‖ϕ‖ds

)
du

+

∫ t

t2

| Φ(t, u) |
([
| A | + | G |

]
‖ϕ‖+ | G |

∫ u

u−τ
| G | ‖ϕ‖ds

)
du

=

∫ t2

t0

| Φ(t, t2) || Φ(t2, u) |
([
| A | + | G |

]
‖ϕ‖+ | G |2 τ‖ϕ‖

)
du

+

∫ t

t2

| Φ(t, u) |
([
| A | + | G |

]
‖ϕ‖+ | G |2 τ‖ϕ‖

)
du

≤ ε
∣∣∣Φ(t, t2)

∣∣∣α + αε

< ε1 + αε.

Hence, (Hϕ)(t) −→ 0 as t −→ ∞. Therefore, the contraction mapping

principle implies that, H has a unique fixed point in S∗ which solves Equa-

tion (4.2), and goes to zero as t −→∞.
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Chapter Summary

In this chapter, results concerning the asymptotic stability of first

order ordinary differential equations with finite delay was established. In

the process, a fundamental matrix solution was used to invert the system

of ODEs into an integral system for which a fixed point mapping is derived.

A suitable complete space was prudently defined. The sufficient conditions

for the asymptotic stability of the zero solution of systems of ODEs, with

finite delay was obtained.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

This chapter provides the summary, conclusions as well as recom-

mendation of the study. The summary briefly presents an overview of the

research problem, objectives, method and results of the study. The con-

clusions encompasses the overall results of the study with respect to the

research objectives of the study. Some recommendation based on the work

done is also presented.

Summary

In this thesis, as set out in the research objectives, the stability and

asymptotic stability of a system of first order ordinary differential equations

with finite delay were investigated. In the process a fundamental matrix

solution was used to invert the ODE into an integral system from which

a fixed point mapping was derived. A suitable complete space was then

defined. Using the Banach fixed point theorem or contraction mapping

principle. This mapping was used to obtain sufficient conditions for which

the zero solution of a system of ODEs with finite delay is asymptotically

stable.

Conclusion

Sufficient conditions for the stability of the zero solution of a system

of first order ordinary differential equations with finite delay have been

established.

Also, sufficient conditions for the asymptotic stability of the zero

solution of the system of first order ordinary differential equations with

finite delay have been established.

Recommendation

Fixed point theorems should be applied to systems of first order or-

dinary differential equations with finite delay for stability investigations.
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