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ABSTRACT

This thesis is concerned with the stability properties of solutions of nonlinear
neutral differential equations with multiple time varying delays. Fixed point
theory is used in this thesis to investigate the stability properties of solutions of
nonlinear neutral differential equations with multiple time varying delays. In
particular, the contraction mapping principle is used in this thesis. The non-
linear neutral differential equation is inverted to obtain an equivalent integral
equation. The result of the inversion is used to define a suitable mapping which
is then used to discuss the stability properties of solutions of nonlinear neutral
differential equations with multiple time varying delays. Sufficient conditions
that guarantee that the zero solutions of nonlinear neutral differential equations

with multiple time varying delays are asymptotically stable are derived.
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CHAPTER ONE

INTRODUCTION

Background to the Study

Differential Equations have been a major branch of mathematics since
their discovery around 17 century. The beginning of differential equation was
attributed to Leibniz, the Bernouli brothers and others from 1680s. Even before
that, in the early 1671, an English mathematician, Isaac Newton in his unpub-

lished notes at that time brought out the following three kinds of differential

equations;
dy
% — f(l'%
dy
% ~ f(l’, y)a
and
ou ou

xa—x—l—y&—y:u.

Presently, the first and second equations are termed as ordinary differential
equations because they have only ordinary derivatives of one or more dependent
variables. The third equation is also having partial derivatives of dependent vari-
ables which is now called partial differential equations. Newton dubbed these
equations as “Fluxions”. Around 1675, the German mathematician Gottfreid
Wilhelm Leibniz, also in an unpublished notes, came out with two different
ideas. This include; his own differential and the very first recorded instance of

the integral symbol

1
/xdw = —12
2
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Both Lebniz and Newton finally published and handed out the solutions
to their differential equations in 1963, marking 1963 as the beginning of differ-
ential equations as a specific field of mathematics.

During the 18th century, Euler and Lagrange made a very good impact on
the theory of differential equations. Euler created the notion of function and he
also initiated the form of writing function and arguments as f(x) meaning that
f is applied to argument x. Euler combined the works of Newton and Leib-
niz together to create tools such as the numerical approximation of integrals
and Euler-muscheroni constant that to a great extent simplified the use of their
calculus in physics. The approach to solving differential equations known as
”Variation of Parameters” which was basically invented by Euler was devel-
oped by Lagrange.

In recent years, mathematicians have gained interest in differential equa-
tions relying on past events. Introducing delays in mathematical models gives a
good narration of concrete phenomena and also help us to make accurate guesses
of their behaviour in the near future. Such delay models can also be termed as
systems with after effect or time delay systems.

In the 19th century, Poincaré (1882) and Lyapunov (1893) laid down the
basis of qualitative theory of differential equations. Poincaré (1882) made a
comprehensive use of geometric methods in regard to the solutions of systems
of differential equations as curves in appropriate space. On this ground he pro-
duced a general theory of the nature of solutions of second-order differential
equations and solved some basic problems on the dependence of elementary so-
lutions on parameters. Lyapunov (1893) on the other hand studied the behaviour
of solutions in a neighborhood of an equilibrium position. He also founded the
modern theory of stability of motion. Birkhoff (1927) in the (1920s) used the
geometric approach developed by Poincaré (1882) to invent many important in-
formation in the qualitative theory of higher-dimensional systems of differential

equations.
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The most effective and reliable tool for investigating the stability proper-
ties of ordinary, partial, functional differential and integro-differential equations
is Lyapunov’s direct method. The importance of this approach is that we can
attain the stability without any previous idea of solutions. Burton (2003) pin-
pointed some challenges to encounter when using Lyapunov’s direct method to
solve problems in stability especially when the equation has unbounded terms
or the delays are unbounded.

Since the Lyapunov’s direct method has some difficulties when it is ap-
plied to stability problems, Mathematicians have diverted their attention to the
fixed point techniques. This technique has solved some problems that the Lya-

punov’s direct Method did not.

Statement of the Problem

Recently, several mathematicians have obtained so many results on stabil-
ity properties of nonlinear neutral differential equations.

In particular, Ardjourni, Derrardjia and Djoudi (2014) obtained sufficient
conditions for which the zero solution of the nonlinear neutral differential equa-

tion

was asymptotically stable.
Ardjouni and Djoudi (2015) also studied the asymptotic stability of a non-

linear neutral differential equation

d N
5 = —;bj(tﬂ(t—n(t))
—f—%@(t,x(t 1)),z (t —1(t)), ...zt —7n()))
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+Gtat—n(t), 2t —n®), . ..xt—T501))

by applying fixed point theory.
Also, Akbulut and Tung (2019) obtained sufficient conditions for which

the zero solution of the neutral differential equation

2

Er— Z —a(t)gi(=(t — Ti(t)))-i—% Z Gi(t,z(t — 7(t)))

i=1 =k

is stable.
However, the stability results obtained by the above authors cannot be

applied to the totally nonlinear neutral differential equation

@ = s —n0)
+ %G(t, z(t—7(t),z(t—n(t), ...zt —7n5()))
+Qtz(t—7n(t),z(t—7(t),...z({t—7n5())).
Purpose of the Study

The purpose of this study is to obtained sufficient conditions for the zero
solution of a nonlinear neutral differential equation with multiple time varying

delays is asymptotically stable.
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Research Objectives

The objective of this thesis is to obtain sufficient conditions under which
the zero solution of the totally nonlinear neutral differential equation
d N
() = - > ai(t)gi(x (t—7i(t)))

=1

+ %G(t,:c t—71(t),z(t —7(t), ...zt —7n(t)))

+ Q(tv z (t B Tl(t)) ) L (t — T2(t)) ey & (t _ TN<t))) (1.1)
is asymptotically stable .

Significance of the Study

The study generalizes some results in stability of a neutral differential
equation with multiple time varying delays and also add to literature which can

be used by researchers in the area of stability of differential equations.

Delimitations

The study considers a totally nonlinear neutral differential equation with
multiple time varying delays and also the study determines sufficient condi-
tions for which the zero solution of the nonlinear neutral differential equation
is asymptotically stable. The study does not take into consideration nonlinear
differential equations with finite or variable delay and also all the terms on the
right hand side of Equation (1.1) are nonlinear, so the results obtained in this

study cannot be generalized for all neutral differential equations.
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Limitations

The fixed point theory is the main tool used in this research because it is
less complex in obtaining the stability solution of neutral differential equation
with delays than the construction of Lyapunov Direct Method which is tedious

and difficult to use.

Organization of the Study

Chapter One talks about the background to the study, statement of the
problem, purpose of the study, objectives of the study, significance of the study
and organization of the thesis. Chapter Two talks about the previous work re-
lated to the study. Chapter Three also talks about various theorems and method-
ology. Chapter four deals with results and discussion of the study. Chapter Five,
which is the final part of the work talks about the summary and conclusions to

the study.
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CHAPTER TWO

LITERATURE REVIEW

Introduction

Many mathematicians have studied stability theory of differential equa-
tions. This chapter focuses on reviewing some related articles relevant to this

work.

Relevant Literature

Many mathematicians have worked on and are still working on the stabil-
ity properties of differential equations which include delays or without delays
and this has resulted in the achievement of several results on stability of solu-
tions of differential equations.

For example, Raffoul (2004) determined some sufficient conditions for

which the zero solution of a scaler neutral differential equation

2/ (t) = —a(t)a(t) + () (t — (1)) + q(z(t), 2(t — g(t))),

with functional delays is stable.

Becker and Burton (2006) also investigated the scaler equation

x(t) = — /t_ a(t, s)g(x(s))ds (2.1)

fort > 0, where 7 : [0,00) — [0,00),a : [0,00) X [-7(0),00) — R, and
g : R — R are continuous functions. They did not only obtain sufficient con-
ditions for the existence and uniqueness of solutions of Equation (2.1) but also
established some sufficient conditions for which the zero solution of Equation
(2.1) is asymptotically stable.

Jin and Luo (2008) obtained sufficient conditions for which the zero solu-
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tion of the neutral differential equation
o/ (t) = —a(t)x(t) —bt)(x —7(t)) + c(t)x! (t — 7(t))

where a,b,c € (RT, RT) witht—7(t) — oo as t — oo is asymptotically stable.
The authors did not use Lyapunov direct method but they got interesting results
even when the delay is unbounded.

Ardjourni, Djoudi and Soualhia (2012) also obtained sufficient conditions

for which the zero solution of the linear neutral integro-differential equation

z/(t) = — Z /t_ a;(t, s)x(s)ds + Z Ci(t)x! (t — 7(t))

is asymptotically stable by fixed point technique.
The work by these authors improved and generalized the work of Becker and
Burton (2006) and Jin and Luo (2008).

Ardjouni et al. (2014) further obtained sufficient conditions for the zero

solution of the nonlinear neutral differential equation

d

Ex(t) = —a(t)g(z(t —7(t)) + %G(t, x(t—7(t))

to be asymptotically stable.
Moreover, Ardjouni and Djoudi (2015) also studied the asymptotic stabil-

ity of the generalized nonlinear neutral differential equation

d 2 d
Zalt) = - Z bi(t)z(t — 7(t)) + %Q(t, 2t —71(1),..., 2t — (1))
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Their results generalized the results of Ardjourni, Djoudi and Soualhia (2012).
The works of Ardjouni and Djoudi (2015) motivated Akbulut and Tung
(2019) and they obtained sufficient conditions for which the zero solution of the

neutral differential equation of the first order

%x(t) =— Z a;(t)gi(z(t —7;(t)) + % Z Gi(t,z(t — 7i(t)))

2 2
i=1 =1

7

1s stable.

Basic Concepts of Ordinary Differential Equations

An ordinary differential equation (ODE) is an equation involving deriva-
tives of an unknown function with one variable.

Examples are

d—x—l—yc—et
dt P
and
Py dy
=4 _iey=o.
dz? dx+ y=0

In symbols, an nth order ordinary differential equation can be expressed in a

general form as

F(x, v, y/.y//, . y(”)> = 0. 2.2)

The differential equation

Ty _ f(x v,y y y(”’l))
dxn ) Y ) Y

is referred to as the normal form of Equation (2.2).
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Delay differential equations

In mathematics, a differential equation in which the derivative of an un-
known function at an unperturbed time is given in terms of values of the function
at earlier times is called a Delay differential equation. Delay differential equa-
tions are also called time-delay systems, systems with after effect, hereditary
systems, or equations with past arguments.

An example is the equation
! (t) = F(t, 2(t), 2(t — T(t))), 2.3)
for ¢ > 0 where 7 > 0 is called the delay with
z(t) = o(t), to — 7 <t < to. (2.4)

The function, ¢y : R — R" is known and continuous and is called the initiatory
history function, for ¢ is the initiatory constant and [ty — 7, to] the initiatory set.

Delays might sometimes be a constant or a function.

Neutral delay differential equation

Delay equations containing delays of the derivatives are termed as Neutral
delay differential equations. Neutral delay differential equations depend on past

and present values of the function. An example is

Chapter Summary

In this chapter, review was done on relevant literature and some basic

concepts of ordinary differential equations.

10
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CHAPTER THREE

RESEARCH METHODS

Introduction

This chapter talks about the methods, definitions and some theorems that

will be use to accomplish the objectives of this research.

Fixed Point Theory

The fixed point theory is one of the most important tools used to investi-
gate nonlinear equations, such as algebraic equations and differential equations.
One of the main backbone of the theory of metric spaces is the fixed point the-
ory. A lot of mathematicians have investigated the Banach fixed point theory in
different directions and have presented generalizations, extensions and applica-
tions of their findings.

Generally, the investigation of the stability of an equation using fixed point
technique involves the construction of a suitable fixed point mapping.

This will be done by transforming Equation (1.1) to a more tractable, but
equivalent, equation which will then be inverted to obtain an equivalent integral
equation.

Next, a suitable complete metric space depending on the initial condition
will be defined.

The Banach Theorem will then be applied to establish the sufficient con-

ditions.

Definition 1 (Metric space)

Let S be a non-empty set, then a mapping d : S x S — R is a metric if
Vx,y, z € S, the following properties are satisfied:
@ d(z,y) =0

(ii) d(z,y) =0,if and only ifx =y

11
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(iii) d(z,y) = d(y,z) and
(iv) d(x,2) < d(x,y) + d(y, z)

Definition 2 (Complete metric space)

Let (S,d) be a metric space. This metric space is complete if every
Cauchy Sequence in it converges to an element of it. A sequence {X,},>1 C S
is a Cauchy sequence if for every ¢ > 0, there exist a positive integer N for all
p,q,> N imply d(Xp, X,) <e.

Contraction mapping principle occurred clearly in Banach (1922) thesis
where it was used to well-establish the presence and uniqueness of solutions of
an integral equation. Due to this, the contraction mapping principle was named
after Stephen Banach Caccioppoli. The theorem is now called Banach Contrac-
tion mapping or Banach Cacciopoli theorem. This theorem has gained more
recognition recently. The effectiveness of the results lies in the application with

intelligently selected metrics.

Theorem 1(Contraction Mapping Principle)

The contraction mapping principle states that if (X, d) is a complete met-

ric space and 7" : X — X is a mapping such that

d(T(x),T(y)) < kd(z,y)

for all z,y, € X, where 0 < k < 1, then there exists a unique z € X such that

T(z) = x.

12
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Definition 3 (Stability)

The zero solution of an ordinary differential equation is stable if for any

e > 0, there exists a 6 > 0 such that |z,| < J implies that

|z (t, to, mo)| < €

fort > tg.

Definition 4 (Asymptotic stability)

The zero solution of an ordinary differential equation is asymptotically
stable if it is stable and in addition to this there exists r(fy) > 0 such that

|zo| < r(ty) implies that

lim |$<t,t0,$0)| =

t—o0

for t > t,.

Chapter Summary

This chapter talks about some theorems and definitions as well as the
method used to obtain sufficient conditions for the zero solution to be asymp-
totically stable. Some definitions and theorems include; metric space, complete

metric space, contraction mapping principle, stability and asymptotic stability.

13
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

This chapter covers the results of stability properties of totally non-linear

neutral differential equations with multiple time varying delays .

Results
Consider the totally nonlinear neutral differential equation

%x(t) - _ Z a;(t)gi(z (t — (1))

=1

+ %G(t,x t—7i(t),z(t —72(t), ...z (t — 7n()))

+Qtz(t—7n@),z(t —7@)),. .,z —1n()) @1
with an initial condition
z(t) = (t) ont € C([m(0),0], R) (4.2)
where
m;(0) = {inf{ t—m(t),t > 0}} and m(0) = min{mi(O), 1<i< N}.

In this thesis the following assumptions are made. Assume that the func-
tions @ (¢, x1,...,xy) and G (¢, 21, ..., xy) are globally lipschitz continuous in

x1, ..., TN, that is, there exists positive constants M, ..., My and Ey, ..., Ey

14
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such that
N
QU1 ow) = QU s yw)| < D0 M7 — i (4.3)
i=1
and
N
‘G(t,xl, nxy) — Gt y, ...,yN)’ < ZEz i — Yill- 4.4)
i=1

Also assume that

Q(t.0,0,...,0)= G(t,0,0,...,0)= 0., and g;(0) = 0,i = 1,...,N.  (4.5)

Let

E = max{El, EQ, 000y EN}

and

A= maX{Ml, MQ, - 558 MN}

Since there is no linear term in the NDE (4.1), it makes it difficult to obtain
a fixed point mapping for NDE (4.1). So, to make NDE (4.1) more tractable,

there is a need to transform it.
Lemma 4.1

If H : [m(0),00) — R is an arbitrary continuous function then Equation (4.1)

is equivalent to the equation

% z(t) = Gtz (t—7(t), z(t — 7)), ...zt —75()))

15
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—H(t) [x(t) — Gtz (t—7i(t),z(t —m(t))

+ H(t) [x(t) — Z i (m))] : (4.6)
Proof.
From Equation (4.6),
d d
E:z:(t) = aG(t, z(t—nt),z{t—7@),..,z0t—1n0))

— H(t) {x(t) — Gtz (t— 1),z (t — n(t))

,...,x(t—TN(t)))}

16

Digitized by Sam Jonah Library



University of Cape Coast https://ir.ucc.edu.gh/xmlui
N

t+ Zdt/t 7i(t) () ds = D ai(t)gi(x (t = 7:(t)))

=1

+ H(t) [x(t) = Z g; (a:(t))] \ 4.7

= S H()gi (x(t) - Z H(t— (1)) (1 _ T/@))
x gi(z (t —7i(t))). (4.8)

17
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Substituting Equation (4.8) into Equation (4.7) gives

d
E:c(t) = EG(t,x(t—Tl(t)),x(t—Tg(t)),...,;I:(t—TN(t)))
— H(t) [x(t) — Gtz (t—mi(t),z(t — 72(t))

,...,CC(t—TN(t)))}

+ 3 HDg (@) — Y H(t = m(t) (1 =7 (1)

18
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£ Hbg () = Y H (= 7(0) (1-7/1)

— H(t)G(t,x (t—m71(t)),z(t —1a(t)),....,x (t — TN(t)))

N N

+ > H®)gi (@) = H(t) Y g: (x(1)) + HE)x(t)

i=1 =1

= Y H - 70) (17 1) gla (t = (1)

N

=Y a(t)gi(x (¢ = 7(t)) ) —H(t)a(t)

+ Z H(t — Ti(t)) (1 — Ti/(t)> 9i (35 (t —7(t)) )
19
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+Qtz(t—7t),z(t—7(t),...x({t—71n5()).

d
= EG(t,x (t—7i(t),z(t —72(t), ...z (t — Tn(1)))

+Qt,x(t—7nt),z(t —7@),...z (¢ —1n())).

This completes the proof.

20
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In Lemma 4.2, there is going to be a derivation of an equivalent integral equa-

tion to Equation (4.1).
Lemma 4.2

Suppose that the hypothesis of Lemma 4.1 hold. Then z(t) is a solution of

equation (4.1) if

- i / Oi(o H(5)g (016)) 5] e (= [ #1010

n {G(t,m(t_71<t)),w(t—72(t>),...,x(t—m(t)))]
H(s)g; (x(s))ds
D> /t_w) (5)gs (a(5))

- /Otexp (— /:H(v)dv) Z/ . () duds

+/Oti[ s)+ H(s— (s ))(1—7’/(5))}

St (— / tH(v)dv) ds

21
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Proof.
Multiplying the terms on both sides of the Equation (4.6) by exp ( fot H (v)dv),

gives

22
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s @ (t—TN(t)))
~ e (/O H(v)dv) HOG (b2 (t — 1(8)) s (t — (1)

sy (L — TN(t)))

23
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s (t—TN(t)))
~ exp (/0 H(v)dv) HOG (b2 (t — (t)) s (¢ — (¢)
s (t—TN(1)) )

- ( /0 t H(v)dv) H#) [x(t) - i_vj . (x(t))] | (4.10)

Integrating Equation (4.10) from 0 to ¢ gives

/ot % KI(S) —G(s,z(s = 7i(s)),2 (s — 7(s

—
~—
~—

24
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ez (s —TN(S)))]ds
- /Ot exp (/0 H(v)dv) H(S)G{(s,x (s —11(s)) 2 (5 — m(s))

st = 7w(6)|

25
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- /0 H(s)G(s,z (s —1i(s)), 2 (s — 72(s)), ..., w (s — 7 (s)) )ds

<o [ HE)0)

[ o ([ i) e [x@ _ igims»]

u=ll

26

Digitized by Sam Jonah Library



University of Cape Coast https://ir.ucc.edu.gh/xmlui

,...,x(s—TN(s)))]ds

27
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_ /Ot exp (/0 H(v)dv> H(S)G{(s,m (s = 1(5)) 2 (5 — 7a(s))

,...,x(s—TN(s)))} ds

o [ow ([ o) ais [ g ]& @i

Dividing through Equation (4.11) by exp < f[f H (U)d@) gives

[x(t) —Gt,x(t—7(t)),x(t —12(t), ...,z (t — TN(T,))):|

_ [WO)—G(0,¢(0—T1(0))7¢(0—7'2(0))a---7¢(0—TN(0)))}

e (= [ o)

e[ [ ([ rom) S [ ot au
cesn (— [ 00)]

[ e ([ He dv)iﬁa (5= ()
exp (= [ o) o

t N

v [[S 86 (-6 a6 o)
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X exp ( /0 S H(v)dv> exp <— /0 t H(v)dv) ds

+ / [Q(S,m_ﬁ@)),x(s—Tz<s>>,...,x<s—m<s>>>

X exp ( /0 SH@)@) exp (— /0 tH(v)dv)}ds

B 4 (/OSH(v)dv> W <— /OtH(v)dv”ds

i /Ot exp (/0 H(s)dv) H(s) [:c(s) — ;g (x(s))]

X cx (— /0 H(v)dv) )
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« {exp ( / SH(U)dU) exp (— /O tH(v)dv)]

/{ZH (1 /(s ))gz(x(s—n(s)))ds]

« {exp ( /0 H(v)dv) exp (— /O tH(v)dv)]

o /Ot {Q(S,LE (s —71(s)), 2 (s — 72(5)) .o (5 — TN(S)))dS]

’ [exp (/OSH(v)dv) ol 1 (— /OtH(v)dvﬂ

x {exp ( /0 SH(S)dU> exp (— /0 tH(v)dv)] ds.

- [@0(0)—G(O,@D(O—Tl(())),w(()—72(0))7--~,¢(0—TN(0)))}

o (= [ 01
/ Z / )) duds ]
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< Jow (- [ o+ [ ) |
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[ [, omenan:
H/HM/H )
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_ [¢(0)—G(Oa@/)(—ﬁ(o))a¢(—72(0))a--~»¢(—TN(0)))]

X exp <— /0 tH(v)dv)
+ /0 t
- (_ / tH(v)dv)

—/0 [Z a;(s)gi(z (s — 7i(s)) )dS}

X exp (— / tH(v)dv)

Z % /j ( )HW)gi (z(w)) dUdS]
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+ {G (tyz(t—7(t)),z(t —7(t),...,x(t — TN(t))):|

X [x(s) - Zgi (x(s))] ds. (4.12)

/Ot exp (— /:H(v)dv) 2 - 5;(5) H(u)g; (z(u)) duds
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ool [ [ | montee

xexp( /H ) (4.13)

Substituting Equation (4.13) into Equation (4.12) gives

ot) = {wm>—Gaxquﬂmu¢w—nw»www«ﬂwm»ﬂ

- (— /0 tH(v)dv)

+ {G (t,z(t—7(t)),x(t —72(t),....,x (t — TN(t))):|

DY ORI
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~ exp (- /0 t H(v)dv> il /_ 1(0) H(s)g: (1(s)) ds

— H(s)G(s,z (s = 71(s)) .z (s — 72(s))
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_ /Ot exp <— /St H(U)dv) H(S)iil/sin(s) H(u)g; (z(u)) duds
+ /Ot Zil [ —a;(s) + H(s — 7(s)) (1 _ Tz‘/<8)):|

x gi(z (s — 7i(s)) Jexp (- / tH(v)dv) ds
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+/Otiill—ai(s)+ﬂ(s—n(s)) (1—7/<s))]
x gi( (s — 7i(s)) )exp (— /:H(U)dv> ds

Q(s, x(s—711(8)),x (s —T12(s)),....,x (s — 7n(5)) )

- H(S)G(s,m (s —7(s)),z(s—12(s)), ...,z (s — Tn(s)) )]
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< gs(e (s — () Jexp <_ / H(v)dv) s

— H(S)G(S,$ (s =71(8)), (s —72(8)), ...,z (s — Tn($)) )]

X exp (— /:H(v)dv) ds

N

+ [ Hes) [x<s> a (m(s»] exp (— / t H(v)dv) ds.

This complete the proof.

Define

Sy ={+ m(0),00) — R, 6(t) = (t) for t € [m(0), 0],

and fort >0, |p(t)] < 6}

where

ol )

fort € [m(0), 00). Then (Sy, |.|) is a Banach space.

Let

_klZ/ v) + w;(v)] dv,
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and

wi(v) = Lla;(v) + H (v — 75(v)) (1 . TZ/(U)) LveE000)  (4.14)

where 7 =1,2,..., N.
Let H : [m(0),00) — R* be a continuous function and define a mapping if
B i — g} DY

(Po)(t) = (t), if t € [m(0),0]

and for ¢t > 0,

(Po)(t) = l¢(0)_G(07¢(—71<0)),1/1(—72(0))w--ﬂﬁ(—TN(O)))
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¥ /
— HEG, (5,65 = 1(5)) 10 (5 = 1a(5)) 65 = 7 (5)))
<o (- [ Hwa) as

b [ oo (- [ @)

x [¢<s> > a (¢(s>>] ds. (4.15)

=k

Q5,0 (s —11(s)) . & (s = 72(5)) , ... 0 (s — 7w (9)) )

In Lemma 4.3 the conditions for the mapping P to be a contraction are given.
Lemma 4.3

Suppose that conditions (4.3) and (4.4) hold and there exists a constant [ > 0
such that g; is lipstchitz on [—[,[]. If L is a Lipstchitz constant for both g;(x)
and x — g;(z) on [—[,{] and H(t) > 0 for t > m(0).

Assume further that

N 4N 1
Y G . :
L[k+(kl+kl+1>]_a<1 (4.16)

Then P : S, — Sy is a contraction and also continuous.

Proof.
Let ¢, 7, € Sy; Then

|Po(t) — Pn(t)|,

42

Digitized by Sam Jonah Library



University of Cape Coast https://ir.ucc.edu.gh/xmlui

< |Gt =n(t), ¢t =72(t), ... (t = 7n (1))
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+ H(S)‘G(S, ¢ (s—11(s), ¢ (s —72(s)), ... (s — T (5)) )
—Gsn(s— () (s — 7o), (s — TN(S)))‘] ds

X exp (Z hi(t) + > hi(s —7i(s)) = > hi(s — n(s))>

=1 i=1

X exp (_ / tH(v)dv)

. / o <_ / t H(v)dv) H(s)|o(s) — 3 g ()

=1

X exp (— Z hi(t) + Z hi(s) — Z hi(3)> ds. 4.17)

i=1 =1

By applying lipschitz condition in Equation (4.17) it follows that

|Po(t) — Pn(t)|,

< Y Eifott —n(t) =ntt - m(0)]
X exp <Z hi(t) + Zhi (t—7(t)) — th‘ I Tz(t))>
H(S)L|o(s) —n(s
*;/mm (S)L|6(s) — n(s)|
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X exp (— Z hi(t) + Z hi(s) — Z hi(s)) ds. (4.18)

The terms on the right side in Equation (4.18) will be denoted by [,,, n = 1, ..., 6.
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The expression

in equation (4.18) is Simplified as follows.

N N

—Zhi(t)+zhi(t—7i(t))
- _kgz/ v) + w;(v dv+klZ/ " H@) + w(v)] do

N

— —“2/ v) + w;(v dv—klZ/t_Ti(t) [H(v) + w;(v)] dv

=1

Also,

_ _kzZ/ v) + w;i(v dv+klZ/ v) + w;(v)] dv
_ _klZ/ v) + w;(v dv—klZ/ v) + w;(v)] dv

= —klZ/ v) 4 w;(v)] dv

—kl /:H(v)dv

IN
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Moreover,

= —kKl Z/O [H(v) + w;(v)] dv — ki Z/ [H(v) + w;(v)] dv
_ —k:lZ/ B e

Finally,

t 4 s—Ti(s)
S /0 LOFSTONETDY /O [H (v) + wi(v)] dv

= —k;zZ/ [H(v)+wi(v)]dv—kl2/ ()[H(v>+wi(v)]dv

i—1 Y5~ Ti(s
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Now, the terms in (4.18) are simplified one after the other.

Thus,
I = exp| —kl H(v) + w;(v)] dv
p< )Y B CORTD) )
XZEZ-WS—%(S))—n(s—n(S))\
X exp (— Zh (t — Ti(t))> : (4.19)
Also,

I < é/t;@) exp (—kl /:H(v)dv> H(S)L‘sﬁ(S) —77(5)‘

N
X exp (— > hi(s)) ds. (4.20)
=1

Moreover,

N s

o< [eo (= [ Hww)a@Y [ Hwlow i)

=1

s N
X exp (—kl/ H(v)dv) exp <— hl(u)> duds. (4.21)

=1

Furthermore,
N t N t
I, & Z/ exp (—klZ/ wi(v)dv) w;(s)
i=1 79 i=1Ys

< |6 (s =7(s) = (s = 7(s))]
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N
X exp (— Z hi (s — Tz(s))> ds. (4.22)
i=1
Similarly,
t t N N
I; < / exp (—/ H(v)dv) [ZMZ +H(S)ZE1}
0 s i=1 1

i=

N

x Y 18(s = 7u(s)) = (s — 7i(s))|

i=1

N

X exp (—kl /u s H(v)dv) exp (— > (s Ti(s))> ds. (4.23)

=1

Finally,

o< [ (- tH(v)dv) H(s)L|o(s) = n(s)

« exl (—kl / : H(v)dv> . (- Z:: hi(s)> ds.
< /Ot - (— /:H(v)dv B /:H(v)dv) H(s)

exp (— Z hz(s)> ds.

< /O 0 (—(1 kD) / tH(U)dU) H(s)

xL‘qb(s) — n(s)‘ exp (— Z hi(s)> ds. (4.24)

=1

x L

¢(s) —n(s)
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Substituting Inequalities (4.19), (4.20), (4.21), (4.22), (4.23), and (4.24) into
(4.18) gives

Po(t) - Po(t)|,

N

+ Z/t;(t) exp (—k:l /:H(v)dv) H<S)L‘¢>(S) - n(S)(

i=1

oo (St}

X exp (—k:l /J S H(v)dv) exp (- f: hi(u)) duds

+ é/ﬂths)M(s—n(s)) ——
X exp (—klé/j wi(v)dv> exp (—éhi 7 Ti(s») ds
—i—/otexp (_ /:H(v)dv) [éMﬁrH(s)éEl}

X Z |6(s — 7i(s)) — n(s — 7i(s))]
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X exp (—k;l / S H(v)dv) exp (- ihi (s — Ti(s))> ds

=1

v [ (~am tH(M) H(s)L| () ~ (s

X exp (— Zhl(s)) ds.

Consequently, by using (4.16), we obtain

(Po)(®) — (Pn)(t)|,

N (4N 1
< [ Ze(Zr— V|-
= {k+(kl+kl+1>} 6=l

< ol =1l

Thus, showing that P is a contraction.
Given any € > 0, choose 0 = %, where

T LN
o i il LT

such that for |¢ — n| < ¢, then

[(Po)(t) - (Po)()|

h

N (4N 1
< f CARS
= L{k +<kl +kl+1)}5
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— % Kl kl+1)]p

Therefore showing that P is continuous.

This completes the proof.

In the next theorem the stability results for the zero solution of Equation (4.1)

are stated.

Theorem 4.4

Suppose conditions (4.3) and (4.4) and the hypothesis of Lemma 4.3 hold. Sup-

pose further that the following hold:

(A1) g;, (1 =1,2,...,N), are odd and strictly increasing on [—e, €|, = —

are non-decreasing on [0, €.
(A2) There exists an o € (0, 1) such that
N N

S+ Y [ RCZES T

=1l i=1

« /0 exp (_ :H(v)dv) H(s) / ;(S) H ()| duds

[—ails) + H (s = 7(s)) (1= 7 (9))] |as

N N

X Z[MZ + Ei|H(s)|]ds < aZgi(e),Vt > 0.

i=1 i=1
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Then the solution of Equation (4.1) is stable.

Proof.

Given any € > 0, choose ¢ such that

(1+2E>+Zgz / s)ds < ( 1—0429z (4.25)

_7—1

and |¢)| < 4, then for an arbitrary ¢ € Sy, the terms on the right hand side of
the Equation (4.15) will be denoted by /,,,n =1, ..., 7.

Thus,

= [9(0) = G(0,% (~=11(0)) ¥ (=72(0)) , -, ¥ (=7(0)))

3 [ Hn @)

IN

[H(0)[+G (0.9 (=71(0)) ¥ (=72(0)) s (=7 (0)))|

IA
(@Y%
_I._
[«%)
N
&
+
||'M
Y
=

N N
< G5 3E+> o) [ |HEs)|ds
i=1 =1 -7i(0)
N 0
< S0+ Y E)+ > a0 / ’H(s)‘ds. (4.26)
i=1 > | -7(0)
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L = |Gt =n0),6(t =) 6 (= (D)

4.27)

(VAN
S.M

< Zgi(e) /tj H(s)ds. (4.28)
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< /0 Cexp (— / tH(U)dv) H(s)i / ;(s)‘H(u) 1) uds
< /0 Cexp (— / tH(v)dv) H(s)i / STi(S)‘H(u) gi(€)duds

N

< 2_; gi(€) /0 — <— / tH(U)dU) H(s) / :(S)‘H(u)‘duds. (4.29)

5| = \/Z{ ) sk HE (1_7/<5>)}

VAN
o\¢
|
=
V)
S~—
+
oS
V2l
\]
-
V)
N—
N—r
T
—
|
\]

~
e
V)
N~—
N—
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<

s)+ H (s — 7 (1 7'/())

X exp (- / t H(v)dv) gi(€)ds
i_v;gxe) [ew (- [ #wa)

X ‘ —a;(s)+ H (s — 1:(9)) (1 - 7'/(3)) ‘ds. (4.30)

IN

IN
o\ﬂ
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S)) N0 (3 - TQ(S)) s @ (S - TN(S)) ) ‘]

<o (- [ tH(v)dv) ds

/O — (— / tH(v)dv)

/Otexp (— /:H(v)dv)e 1
o (- [ oy

(@)
N
S

INA
f — ==
|
14+
NS
o
r »—
D\’\*
D
X
o
|
=
=
=
N——

[eZMi+eZEi|H(s)|] ds

> M+ ZEi\H(s)\ ds

) ZM + Y Ei|H(s)|| ds

) i{M - E1-|H(s)|]ds, 431)

v | [H(s)|ds. (4.32)
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Substituting Inequalities (4.26), (4.27), (4.28), (4.29), (4.31), (4.32), (4.33), and

(4.34) into (4.15) gives

‘qu(t)’ <

IA

5<1+ZE>+Z% / (s)\ds+eZEi

+(0)

¥ i a [ ;(t) BT égi@

< e (= [ ) 1o o [ HGduds
+ S0 [ (- [ mow)

« [=as(s)+ H (s = (s)) (1= 7/())] ds

—I—é/otexp(—/st dv)i[M + Ej|H(s }d

=

(1—a)) ae) +a Zgi(E) +e=) (e
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N N N N
= Zgi(E) - Zgi(d - 04291(6) + aZgi(e) +e=c¢€.
i=1

i=1 1=1 1=1

This implies that |(P¢)| < e.

Therefore, showing that zero solution of Equation (4.1) is stable.

In the next theorem, results for the asymptotic stability of the zero solution of

Equation (4.1) are stated.

Theorem 4.5

Assume that the hypothesis of Theorem (4.4) hold. Then the zero solution of
Equation (4.1) is asymptotically stable if and only if

t
/ Hw)dv — o0 as t— oo. (4.33)
0

Proof.

First, assume that condition (4.33) holds. Then set

K := sup{exp(— /Ot H(v)dv)}. (4.34)

t>0

According to definition 4, the zero solution of a differential equation is asymp-
totically stable if it is stable and in addition for each t, > 0 there is an 7 (ty) > 0
such that |[¢|| < r(to) implies that z(t) — 0 as t — oo. It has already been
proved in Theorem 4.4 that the zero solution is stable.

Define

S5 ={ m(0),00) = R, () =(t) for t € [m(0), 0],

and fort >0, |o(t)| <€, ¢(t) > 0ast — oo}
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Also, define the mapping by P : S} — Sy by

(Po)(t) = {w<o>—G<o,w<—n<o>>,w<—72<o>>,...,w—m(o»)

_Zl/— ds]exp( /H )
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x [¢(8) > (¢(s>>] ds. (4.35)

=1

Consider |(P¢)(t)|. But first note for any ¢ € S, that

l9:(6(t)] < L|o(t)].

Denote the seven terms on the right hand side of Equation (4.35) by I3, I, ..., I7
respectively. It is obvious that the first term /; tends to zero as ¢t — oo, by
condition (4.33). Also due to conditions (4.3), (4.4) and (4.5) and the facts that
¢(t) — 0and t — 7;(t) — oo as t — oo, the second term in Equation (4.35)
tends to zero as t — oo. What is left now is to show that each of the remaining
terms in Equation (4.35) tends to zero as ¢t — o0.

Let ¢ € S, be fixed. For a given € > 0 we choose Ty > 0 large enough such
that t — 7;(t) > Tp, implies |¢(s)| < ¢, if s > t — (). Therefore, the third term

I3 in Equation (4.35) satisfies

s [ Gl 6 o

N t
< Z/ H(s)L|o(s)|ds
&=l t—Ti(t)
N t
< LEZ/ H(s)ds
i=1 tf‘l'i(t)
< Lae.

Thus I3 — 0 as t — oo.
Now consider I, for a given ¢ > 0, there exists a 7} > 0 such that s > T}

implies |¢(s — 7;(s))| < e. Thus, for ¢ > T}, the term I, in Equation (4.35)
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satisfies

wos foo(-[a0)aoy [ o
< Mo (= [ r0) a0 X [ oo
e[ (= ) Aoy [ ] o o

< ol [ e (= [ H0)HOS [ oy

t
+Le/ exp( / ) Z/ u)duds.
T s—7i(8)

By condition (4.33), there exists 75 > T} such that ¢ > 75 implies

s ol [ e (= [ ) o3 [ s
= s 60| <exp— /T t H(v)dv) /0 - (— / : H(v)>

Z / w)duds.

gi (¢ ‘duds

Now, applying assumption A2 in Theorem (4.4) gives

< g ool (e~ [ o) [Foo (- [ 100)
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+Le /T t exp< / > Z / w)duds

< Le+ Laoe

IN

2Le.

Thus I, — 0 as ¢ — oo. Similarly by using conditions (4.3) and (4.4) and
assumption (A2) in Theorem (4.4), if t > Ty then I5, Is and I; in Equation

(4.35) satisty

s Lo (= f o) 2 [0 o 00 11

=1

xgi| (¢ (s — 7i(s)) ) |ds

IN

sup |¢(6 ‘/ LZ —a;(s +Hs—rz())(1—7i/(s)>]

0>m(0)

X exp (— /:H(v)ch))

/T —G—H(S—TZ( )) (1—7/(3))]

X €exp (— /:H(U)dU)

sup ‘(b ‘ Z [—ai(s) - H(s — TZ'(S)) (1 — T/(s))}

d>m(0)

IN
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Is <

IA

IA

IN

X exp (— /T t H(v)dv) /O e (— / " H(v)dv)

e /Tj ﬁ: [_ai(3> + H(s —7i(s)) (1 — T/(S)ﬂ

X exp (_ / tH(v)dv)

< Le+ Lae

< 2L,
/0{Q(Saﬁb(s—71(5))a¢(3—72(3))a---:¢(5—7'1v(3)))

+ H(s)|G, (5,0 (s = 71(5)), & (5 = 72(5)) s o0 & (s = T (5))) ]
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N

X Z[Mi + EiH(s)}ds

=1
N

+e /t exp <— /St H(v)dv) Z[Mi + By|H(s)||ds

g =1

< €+ e

IN

2€,
and

ds

I < /Otexp (- /Otf'—f(v)dv)\(zs(s)—égi(ws))

< s o] [ o (= [ G0 H6)1]0)

6>m(0)

+Le /T t - (_ / tH(v)dv) el

Le + Lae

IN

IN

2Le.

Thus I5, I, and I; — 0 as t — oo. In conclusion, (P¢)(t) — 0 ast — oo as
required.

Conversely, suppose condition (4.33) fails, then there exist a sequence {t¢,},
t, — oo as n — oo such that lim,,_, fo" H(v)dv = B for some € R*. Also

positive constant may be chosen to satisfy —.J < fot" H(v)dv < Jforalln > 1.

65

Digitized by Sam Jonah Library



University of Cape Coast https://ir.ucc.edu.gh/xmlui

To simplify our expressions, define

Z[ ] — ai(s) + H(s — ()1 — 7/ (5))]

i=1

+H (s) /S ( )H(u)du}—FMi + E;H(s)| + LH(s)

for all s > 0. By condition (A2) in Theorem 4.4 gives

/0 i (— / g H(v)dv) §)ds < ( Zg, ) (4.36)

Thus, Inequality (4.36) can be written in the form

/Otn exp (— /Om H(v)dv + /OSH(U)dU) 0(s)ds
(flégi(e) + L).

This implies that

/Ot” exp <— /Om H(v)dv) e (/O H(U)dv) 0(s)ds

<oc lil gi(e) + L) . (4.37)

Dividing through Equation (4.37) by exp <— fot "H (v)dv) gives

/0 e ( /0 s H(v)dv) 0(s)ds
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<aiilgi(e) + L> exp (/Om H(v)dv)

< (ozZZN;gi(e) + L) exp(J).

IN

Thus the sequence { [ exp ([ H(v)dv) 6( )ds} is bounded so there exists a

convergent sub-sequence and for brevity of notation, assume that

G s
lim exp (/ H(v)dv) 0(s)ds =,

for some v € RT and choose a positive integer m so large that

/ exp(/H dv) ds<45K

for all n > m, where dy > 0 satisfies

{50 <1+ZE)+Z% (&) /_nw (s)ds}Kexp(J)

Now consider the solution z(t) = x(t, t,,, v) of Equation (4.1) with ¢(t,,) = do
and |9 (s)| < g for s < t,,.

Choose v so that

{¢<tm>— Gilts (b — (b)), (b = Talb))s e ¥t — T (b))

N

[ G >

i=1

dp.

N | —
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It follows from Equation (4.35) with x(t) = (Pz)(t) that for n > m

Y

v

v

‘w(tn) = G, Yt = 1(tn)), Pt = 72(tn)), s Y (tn = T (t)))

N tn

= / H(s)gu(00(s))ds

i=1 Y tn—Ti(tn)

%50 exp <— /t; H(v)dv) - /t; exp (— / < H(v)dv) 0(s)ds
%50 exp (- /; H(v)dv) ~exp (— /0 . H(v)dv)

tn
%50 exp (—/ H(v)dv) > %50 exp (=2J) >0 (4.38)
tm

On the other hand, if the zero solution of Equation (4.1) is asymptotically sta-

ble, then z(t) = z(t,t,,,v) — 0 ast — oo. Since t,, — 7;(t,) as n — oo and

assumption A2 in Theorem 4.4 holds, it follows that

w(tn) - G(tm w(tn - T(tn))a w(tn - T(tn))a ) ¢(tn - TN(tn)))
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N tn

- Z/t H(s)gi(¥(s))ds = 0asn — oo

i=1 n—Tq (tn)

which contradicts Equation (4.38). Hence condition (4.33) is necessary for the
asymptotic stability of the zero solution of Equation (4.1).

The proof is complete.

Chapter Summary

This chapter dealt with sufficient conditions for which the zero solution of
nonlinear neutral differential equations is asymptotically stable by the contrac-

tion mapping principle.

69

Digitized by Sam Jonah Library



University of Cape Coast https://ir.ucc.edu.gh/xmlui

CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

This chapter gives a brief summary and conclusions of the study. The
summary briefly gives a general overview of the research problem, objectives,

methods, and results of the study.

Summary

As indicated in the objectives of the research, the research is on the stabil-
ity properties of solutions of a certain nonlinear neutral delay differential equa-
tion with multiple varying delays. The main tool that was used to investigate
the stability properties of this nonlinear neutral differential equation is the Fixed
point theory. The nonlinear differential equation was transformed into an equiv-
alent integral equation. The integral equation was then used to define a mapping
that was used to study the stability behaviour of the nonlinear neutral differential
equation with multiple time varying delays. Since the mappings were contrac-
tions, the contraction mapping principle was used. An asymptotic stability of

the zero solution of a nonlinear neutral delay differential equation was proved.

Conclusion

Sufficient conditions for the asymptotic stability of the zero solution of
the nonlinear delay differential equation with multiple time varying delays have

been established.

Recommendations

This problem can be fruitfully studied by using a variable delay or a finite

delay.

70

Digitized by Sam Jonah Library



University of Cape Coast https://ir.ucc.edu.gh/xmlui

REFERENCES

Akbulut, I. & Tunc, C. (2019). On the stability of solutions of neutral
differential equations of first order. Int. J. Math. Comput. Sci,
14(4):849-866.

Ardjouni, A. & Djoudi, A. (2015). Stability in totally nonlinear neutral
differential equations with variable delay using fixed point theory.
Proyecciones (Antofagasta), 34(1):2544.

Ardjouni, A., Derrardjia, I., & Djoudi, A. (2014). Stability in totally nonlinear
neutral differential equations with variable delay. Acta Mathematica
Universitatis Comenianae, 83(1):119-134.

Ardjouni, A., Djoudi, A., & Soualhia, I. (2012). Stability for linear neutral
integro-differential equations with variable delays. Electronic journal
of Differential Equations, 172(2012):1-14.

Banach, S. (1922). Sur les operations dans les ensembles abstraits et leur
appli- “cation aux equations int ~ egrales. ~ Fundamenta mathematicae,
3(1):133-181.

Becker, L. C. & Burton, T. (2006). Stability, fixed points and inverses of
delays. Proceedings of the Royal Society of Edinburgh Section A:
Mathematics, 136(2):245-275.

Birkhoff, G. D. (1927). Stability and the equations of dynamics. American
Journal of Mathematics, 49(1):1-38.

Burton, T. (2003). Stability by fixed point theory or liapunov’s theory: A

comparison. Fixed point theory, 4(1):15-32.

71

Digitized by Sam Jonah Library



University of Cape Coast https://ir.ucc.edu.gh/xmlui

Jin, C. & Luo, J. (2008). Stability in functional differential equations
established using fixed point theory. Nonlinear Analysis: Theory,
Methods &Applications, 68(11):3307-3315.72.

Lyapunov, A. M. (1893). A new case of integrability of differential equations
of motion of a solid body in liquid. Rep. Kharkov Math. Soc., 2, 4:81—
85.

Poincare, H. (1882). Th ~ eorie des groupes fuchsiens. = Acta mathematica,
1(1):1-62.

Raffoul, Y. N. (2004). Stability in neutral nonlinear differential equations with
functional delays using fixed-point theory. Mathematical and computer

Modelling, 40(7-8):691-700.

72

Digitized by Sam Jonah Library





