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ABSTRACT 

In this work, the underlying mechanisms in coastal wetlands were 

examined in relation to the long-term mangroves' response to 

anthropogenic activities and sea level rise. Geographic information 

systems and dynamic modeling methodologies were used. The 

complexity of mangroves makes it difficult to assess mangrove forests 

in tropical coastal locations using simply passive remote sensing 

techniques. In order to overcome these difficulties, a unique GIS method 

called GEE that combines optical satellite imagery and synthetic 

apelture radar was introduced. The effect of tidal currents on the 

mangrove ecosystem was investigated using a process-based model. 

Three model scenarios of 100 tidal cycle each were run, with three 

variables consisting of no sea level rise (constant), low sea level rise (0.3 

m), and extremely high sea level rise (2.5 m). The findings indicate that 

between 2009 and 2019, the area of the mangroves decreased by roughly 

16.9%. Overall accuracy of 99.1 %,84.6%, and 98.9% were recorded for three 

scenarios of 2019 classification. Mangrove height and AGB show that in 

year 2000, height and AGB range from 2.0 to 12.7 m and 0 - 368 mg ha-', 

respectively, while in 2020, height and AGB ranged from 2.0 - 6.3 m and 0 

- 88 mg ha-' respectively. The dynamic modeling results show that the 

relative hydro-period for the scenarios "no sea level rise (constant)", "low 

sea level rise (0.3 m)" and "extremely high sea level rise (2.5 m)" was 

64%, 65% and 71 %, respectively. 
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CHAPTER ONE 

INTRODUCTION 

Mangroves which serve as a buffer between terrestrial and marine ecosystems, 

flourish and thrive in coastal regions with mean monthly air temperatures 

above 20°C, with very few exceptions (Blasco et a!., 2019). Although 

mangrove forests only make about 1 % of total land area, they are thought to 

be the most carbon-rich ecosystems in the tropics and subtropics. 

According to Bunting et a!. (2018), mangrove forests in Africa covered about 

2,746,500ha in 20 I 0 and support the vulnerable coastal population by offering 

crucial ecosystem services like natural marine protection, mitigating coastal 

erosion, improving water quality, and providing alternative livelihoods (Gedan 

et a!., 2011; Kuenzer and Tuan, 2013; Lee et a!. , 2014; Mondal et aI., 2018). 

Mangroves cover about 7600 ha along the coast of Ghana and seven major 

mangrove species, including Laguncularia racemose (white mangrove), 

Avicennia germinans (black mangrove), Rhizophora harrisonii (red 

mangrove), Rhizophora racemose (Red mangrove), Rhizophora mangle (Red 

mangrove), Acrostichum aureum (Golden leatherback), and Cornocarpus 

erectus (Terrain mangrove), have been confirmed (Fatoyinbo and Simard 

2013, Ellison et a!., 2015; Nortey et a!., 20 I 6). 

These ecosystems offer numerous vital functions, but they have undergone 

severe degradation and are in danger of disappearing (Alongi, 20 I 2; 

Breithaupt et a!. , 20 I 2). According to estimates, the rate of loss over the last 

two decades has been twice as fast as the rate of loss of terrestrial rainforest 

during same time (Mayaux, et a!., 2005). A further estimate places the loss of 
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mangrove forests at roughly two-thirds during the past century, with an annual 

loss of 1-8% and a drop in global land area of at least 20-50% (more than 3.6 

million ha) as a result (FAO, 2007; Miththapala, 2008; World Mangrove 

Network, 2012). Mangrove loss has been mostly linked to climate change and 

deforestation. It is crucial to have a better understanding of our coastal 

wetlands, but these habitats are challenging to evaluate and/or model because 

of how greatly their characteristics vary around the world (Meselhe et aI., 

2017). 

Climate change is already having an impact, and it is anticipated that these 

consequences will grow in breadth and amplitude over time. According to 

reports, human activity is thought to be responsible for at least 50% of the 

observed global temperature increases since 195 I , primarily through the 

emission of greenhouse gases from the production of oil and gas (Clarke et aI., 

2007). Coastal managers have sought to better inform the public about the 

negative effects that climate change will have on human and natural 

communities, as well as what may be done to lessen or prepare for such 

effects. Traditional research fields are constrained by their single-domain, 

single-boundary focus, which results in a restricted understanding of coastal 

ecosystems. Therefore, integrated modeling strategies are required to link the 

engineering, geomorphology, and ecology fields. Such multidisciplinary 

modeling methods would enhance comprehension of long-term landscape 

changes brought on by either human activity or extreme weather events 

(Meselhe et aI., 2017). 
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The underlying mechanisms in coastal wetlands are examined in this work 

using a geographic information system and a dynamic modelling 

methodology. Through the use of the Google Earth Engine (GEE) platform, 

this study introduced a unique method that combines optical and radar images 

for more accurate mapping of mangroves and calculating their above-ground 

biomass density in order to precisely evaluate the effects of anthropogenic 

pressure on the temporal changes of mangrove. The response of mangroves to 

tidal current caused by sea-level rise as a climate change driver was simulated 

using the dynamic modeling methodology. 

Study Background 

Understanding coastal and marine processes is essential to quantify changes to 

the mangrove ecosystem. To track changes in mangrove forests, space-based 

technologies like remote sensing has the capability to collect data from 

previously unreachable areas (Son et aI., 2015). For a more precise 

measurement of mangrove extent, several authors advise fusing optical 

satellite data and synthetic aperture radar (Attarchi and Gloaguen, 2014; 

Ayman et aI., 2017; Hu et aI., 2020). 

A number of studies have been conducted on the extent of mangroves across 

Africa, including those by Kovacs et al. (2010), Salami et al. (20 I 0), Omo

Irabor et al. (2011), De Santiago et al. (2013), Fatoyinbo and Simard (2013), 

Kuenzer et al. (2014), Hoppe-Speer et al. (2015) and Brown et al. (2016). 

Although many of the studies are global in scope, they lack the geographical 

explicit resolution necessary to follow locally the Sustainable Development 
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Goals (SDGs) that have been adopted by the African Union and the United 

Nations. 

For natural capital and carbon accounting, structural factors like tree height 

and aboveground biomass (AGB) of forests are important · considerations. 

They also provide soft defense for flood protection and play important roles in 

mitigating climate change by regulating the carbon balance on a global scale 

(Houghton, 2005). Deforestation has been identified as a significant source of 

greenhouse gas emissions worldwide and as a danger to the ecological 

services that mangrove forests supply (lPCC, 2007). Evaluation of plans 

intending to lessen the effects of climate change using natural solutions 

requires accurate quantification and monitoring of temporal and spatial 

changes in mangrove cover and biomass (Omar et aI., 2014). 

It has been underlined how crucial remote sensing is in this context as one of 

the main sources of spatial information (Fatoyinbo and Simard 2013, 

Lagomasino et al 2016). Given the complexity of the tropical mangrove forest 

ecosystem, remote sensing methods are not without their limits when 

assessing mangrove height and above-ground biomass. When it comes to 

obtaining structural information with accurate estimates at different scales, 

both active and passive remote sensing systems have their advantages and 

disadvantages (Son et aI., 2015). In the tropics, cloud cover, the intricacy of 

the mangrove forest ecosystem, and saturation at specific biomass levels make 

it difficult to use only optical satellite technology for mangrove monitoring 

and assessment (Steininger, 2000; Omar et aI., 2014). 
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Conventional mapping methods have been employed successfully by many 

researchers to offer data on forest structure, but these methods are constrained 

by the availability of images, the requisite computational power, and the 

required technical know-how (Gorelick et aI., 2017; Yancho et aI. , 2020). In 

particular for mangrove mapping and monitoring, new techniques and 

technology are ushering in a new era (Wulder et aI. , 2018; Wang et aI., 2019; 

Yancho et aI., 2020). Cloud computing such as Google Earth Engine (GEE) 

platforms provide unprecedented access to a large collection of ready-to-use 

geospatial data and computing tools for quick and seamless processing 

(Gorelick et aI. , 2017 ; Yancho et aI., 2020). 

In more recent years, scientists have studied the dynamics of sea level rise 

(such as the nonlinear response of hydrodynamics to sea level rise), but there 

hasn't been much work done in Ghana or elsewhere in Africa to address the 

combined feedback processes and the evolution of many interrelated systems, 

such as the nonlinear response and the influence of hydrodynamics, 

morphology, and ecology under sea level rise. Changes in hydrological 

systems have a significant impact on coastal wetlands as a result of global 

climate change (Qiusheng, 2018). To better manage and maintain Ghana's 

wetland resources, it is therefore necessary to examine these dynamic changes. 

At the study site, there has been little research on mangrove productivity in 

terms of biomass density (Aheto et aI., 2011; Nortey et aI., 2016). However, 

none of the researchers took into account the long-term development paths of 

future mangrove behavior in terms of their productivity and some significant 
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long-term feedback processes (such as the relationships between hydroperiod 

and mangrove mortality in response to climate change). 

Statcmcnt of the Problem 

Coastal zones are subject to increasing economic activities driven primarily by 

mining activities and oil exploration and exploitation, including but not 

limited to POlt operations. These activities have given rise to other activities 

that have reportedly resulted in accelerated coastal erosion, coastal flooding 

and increased acidity, depletion of coastal resources (e.g., mangrove 

wetlands), and general pollution of coastal waters. 

Although wetland protection has been prioritized by 159 nations through the 

Ramsar Convention since inception, wetlands continue to be threatened by 

various . forms of anthropogenic activity (Ramsar Convention Secretariat, 

2013). Due to population growth in coastal zones around the world, pressure 

on coastal wetland resources for agricultural intensification continues to 

increase. In addition, the effects of global climate variability on coastal 

wetlands through variations 111 hydrological systems are also pronounced 

(Qiusheng, 2018). We need to study these dynamic changes in the coastal 

zone, particularly in relation to mangrove ecosystem and to better manage and 

conserve our wetland resources. 

Mangroves have been used as a traditional source for many products such as 

timber, fuel and food. Determining the biomass of mangrove forests is a useful 

way to estimate the amounts of these components. Accordingly, Aheto et aI., 

(2011) state that the analysis of the existing biomass is one of the accepted 
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approaches of assessing the health of forest ecosystem. According to Friends 

of the Nation (2014), Anlo Beach wetland complex consists of relatively 

disturbed mangroves, which this work aims to quantify. The assessment of 

mangrove ecosystem in tropical coastal zone using only optical satellite data is 

hampered by cloud cover effects. In literature, most mangrove assessment in 

Ghana (Nortey et a!. , 2016; Aheto et a!., 2011) have mostly been done using 

optical satellite imagery. In this study, an approach that combine optical and 

radar data to reduce the effect of cloud cover and enhance the accuracy of 

mangrove assessment was proposed. 

It has been stated in literature that the impact of climate change on coastal 

wetlands through changes in hydrological systems are significant and can have 

far-reaching effects on these important ecosystems (Qiusheng, 2018). 

However, information on these impacts vis-a-vis the response of mangrove is 

limited in Ghana. In this study, a process-based model was used to simulate 

the impact of climate change such as sea level rise (SLR) on mangrove 

ecosystem. 

Objective 

The overall objective is to study the underlying processes causing changes in 

coastal wetlands through GIS and dynamic modeling, particularly in relation 

to the response of mangroves to anthropogenic activities and projected sea 

level rise scenarios. 
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Specific Objectives 

The specific objectives are to: 

1. map the spatial and temporal changes of mangrove and surrounding 

ecosystem between 2009 and 2019 

2. investigate the effect of using passive or active remote sensing data on the 

accuracy of the modeling outputs. 

3. assess the impacts of land modifications and Sea level rise on Mangrove 

productivity in terms of biomass density. 

4 . assess the dynamics of the wetland Morphology under varying sea level 

conditions. 

Research hypotheses 

Four hypotheses were tested in order to fulfill the above-mentioned specific 

objectives: 

(1) There is no significant spatial modifications in the Land Cover of the study 

location over two time periods (2009 and 2019) in the study area. 

(2) The type of satellite remote sensing (e.g., active or passive) has no effect 

on the accuracy of the model outputs 

(3) There is no relationship between tidal hydrodynamics and Mangrove 

productivity and future forecasting is not possible. 

(4) There is no possibility of understanding some feedback processes in the 

Mangrove wetland (e.g., the relationship between elevation and accretion) at 

longer-time scale in response to climate change. 

Statistical Hypothesis 

Hoi There is no significant Modifications in the Land Cover of the study 

location 
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HAl There is significant Modifications in the Land Cover of the study location 

Ho2 Satellite remote sensing type has no effect on mangrove mapping accuracy 

HA2 Mangrove mapping accuracy depends on satellite remote sensing type 

Ho3 There is no relationship between tidal hydrodynamics and Mangrove 

productivity 

HA3 There is relationship between tidal hydrodynamics and Mangrove 

productivity 

H04 There is no possibility of understanding some feedback processes in the 

Mangrove wetland 

HA4 It is possible to understand some feedback processes in Mangrove wetland 

Justification 

The world's coastal wetlands habitats and resources have come under 

tremendous pressure in recent decades. Human development and resource 

exploitation, coastal population growing at three times the global average, 

rising sea levels, changing climate and fluctuations in sediment transport due 

to river damming, coastal erosion control, etc.; all create unprecedented 

challenges. To address these challenges, the dynamics of coastal wetland 

zones must be better understood. However, information about this zone and its 

dynamics is difficult to obtain regularly and over large areas due to 

inaccessibility by land and sea. 

Coastal environment managers need information and data on the possible 

effects of sea level rise in order to be alert and prepared for uncertainties under 
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future sea levels and to make accurate decisions for the management of human 

and natural communities. Mapping mangrove extent and change over time as 

well as modelling the imminent effects of sea level rise can help coastal 

managers focus on conservation practices. 
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CHAPTER TWO 

REVIEW OF LITERATURE 

The Importance of Coastal Wetlands Vegetation 

Mangroves, seagrasses and salt marsh are some of the highly important 

vegetation along the coast which are responsible for the provision of a range 

of ecosystem services. Several scholars have demonstrated that these 

vegetations are highly efficient carbon sinks (Laffoley & Grimsditch, 2009; 

Duarte et aI. , 2010; Kennedy et aI., 2010; Mcleod et aI. , 2011). Even with their 

comparatively small global coverage, coastal vegetation like mangroves, 

seagrasses and salt marsh sequester more carbon dioxide than their terrestrial 

counterparts, in addition to organic carbon, due to their productivity and 

efficiency in trapping sediments (Mcleod et aI., 2011). 

Coastal wetland vegetation provides vital breading space for various species of 

fish, shellfish as well as other animals and delivers sufficient food/nutrient 

availability to support vital natural community changes. Small wet-dry tropical 

estuaries provide the necessary foraging, spawning and nursery environments 

for benthic and pelagic organisms that are of recreational and/or commercial 

value (Sheaves et aI., 2010). Coastal wetland vegetation represents a transition 

between marine and terrestrial environments and thus hosts a diverse set of 

fauna and flora (Ellison, 2009). Many organisms from the marine environment 

also migrate to coastal wetland vegetation to breed, particularly because the 

vegetation provides a haven from predators and strong wave action (Asbridge, 

2018). Coastal wetland vegetation such as mangroves support some 
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endangered species such as proboscis monkeys, scarlet ibis and straight-billed 

ranger (Valiela et a!. , 2001). 

Wetland vegetation also provides protection from coastal flooding by 

stabilizing sediments, which in turn dampen turbulence and currents, recycle 

nutrients, filter and enhance water quality (Hughes et a!., 2009). Mangroves in 

particular provide coastal protection by mitigating flooding and storm events, 

including those associated with strong winds and waves in coastal areas, in 

part due to their high density, buttress root systems and often taller vegetation 

creating a complex vegetation structure (Asbridge, 2018) . Several studies have 

reported that mangroves dampen violent storm surges, reducing their wave 

height by up to 20% above 100m. (Mazda et a!. , 1997; Chang et a!., 2006; 

Alongi, 2008). They do this with the large networks of buttresses and 

pneumatophores that bind the sediment and cause reduced erosion as they 

impede water flow and slow wave speeds (Wolanski, 2007, Barbier et a!., 

2011). 

Coastal wetland vegetation is often cited as hyperaccumulating systems due to 

their natural ability to purify contaminated water (Chiu et a!., 2004). Coastal 

vegetation sediments can efficiently bind heavy metals, which are 

immobilized as sulfides in the absence of oxygen, with high organic matter 

composition and low pH (Peters et a!., 1997). This suggests the potential of 

wetland vegetation for phytoremediation, which can be used for industrial 

wastewater treatment (Chen et a!., 2009) to provide a low-cost and low

maintenance approach to wastewater treatment (Conley et a!., 1991) and also 
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to remove most heavy metals and prevent them from reaching offshore 

ecosystems such as coral reefs (Wolanski, 2007). 

Coastal wetland vegetation provides various economic and commercial values, 

for example by providing coastal protection, mangroves limit damage to 

businesses, property, agriculture and fisheries, and by sequestering carbon, 

mangroves can potentially bring blue carbon income to local residents and 

governments (Asbridge, 2018). Coastal communities have traditionally used 

wetland vegetation for a number of purposes, including local timber collection 

for building homes, boats, fishing poles and charcoal/firewood. Some 

mangrove leaves are traditionally used as food (e.g., fresh leaves of Avicennia 

alba) for humans and to feed animals, while others have medicinal values 

(e.g., the bark of Rhizophora mucronata has been used to treat diabetes) 

(Bandaranayake, 1998, Rahrnatullah et aI., 2010). Tannins and sap extracted 

from the bark of certain mangrove species can be used to improve the 

durability of fishing nets (Prasad, 2011) and to make medicines, sugar, 

insecticides and pesticides (Bandaranayake, 1998). Secondary products from 

these vegetations, including but not limited to fish, honey, wax and shellfish, 

also have commercial value and market demand. 

Mangrove Ecosystem 

Mangroves grow and thrive in a setting that acts as a buffer for both terrestrial 

and marine organism. Mangrove is a universally important ecosystem found in 

the intertidal tropical and subtropical zones as shown in the Figure 1. These 

ecosystems are mostly trees and shrubs found in flat areas of sand or mud 

adapted to estuarine or saline environments. They are really exceptional 
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because they can tolerate huge amounts of brackish water. Its ability to survive 

in oxygen-poor soils is because of the root adaptation. These ecosystems are 

of course beneficial to the survival of millions of people across the world. 

High on the list of these natural benefits, alongside carbon sequestration are 

the defense of seashore and man-made structure from severe storm, the raising 

of fish, and the making of charcoal. Mangroves cover less than 1 % of the 

global land but are regarded to be the highest carbon-rich environments in the 

tropics and subtropics. Mangrove forest was included in the IPCC Strategic 

Plan for Climate Action through a series of wetland amendments (Lucas et aI., 

2014). 

W America E America W Africa I E Africa Indo-Malesia Australasia 
Atlantic East Pacific (AEP) Indo West Pacific (IWP) 

t.:~. Isotherm of 20°C for the coldest month 
~ Major ocean currents (redrawn from Duke et al., 1998) 

Figure 26: Global Mangrove Distribution (Cited in Blasco et al. , 2019) 

Mangrove forests survive mainly in coastal areas where the average 

temperature is above 20°C and where, with rare exceptions, ground ice 

formation does not exist (Blasco et aI., 2019). The distribution of mangroves is 
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dominant in six geographic zones of the world (Figure I) (Chapman, 1976; 

Snedaker, 1982; Rao, 1987; Saenger & Bellan, 1995; Duke et aI., 1998; 

Blasco et aI., 2019). The predominant species of mangroves in these 

geographic zones are shown in Table 2. Dense mangrove forests with very tall 

mangroves (up to 60 m tall) are predominant in bioclimatic settings (Blasco et 

aI., 2019; Simard et aI. , 2019). Mangroves can grow in arid regions in the form 

of short mono-specific stocks (Dodd et ai., 1999). The Ganges Delta in Bengal 

hosts a substantial area of mangroves (> 600,000 ha) (Blasco et ai., 2019). A 

study by Spalding et ai. , (1997) states that the entire global mangrove 

coverage is about 18,000,000 ha and most of it is found in South Asia and 

South-east Asia (Table 1). Very few countries such as Indonesia, Australia, 

Brazil and Nigeria dominate the area statistics and account for approximately 

43% of the global mangrove out of the 70 or so countries where these 

ecosystems are found , with Indonesia alone having 23% and 12 countries 2/3 

(Spalding et ai., 1997). Government decisions and management plans 

regarding mangrove ecosystems in these countries will determine world 

mangrove status in the near future (Hamilton & Snedaker, 1984). Blasco et ai., 

(2019) argue that as many as 30% of these ecosystems are degraded. 

Table 2: Global and Country Specific Estimates of mangrove areas 

Regions 

South and Southeast Asia 

Australasia 

America 

West Africa 

East Africa and Middle East 

Total area 
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Global Extent (ha) 

7517300 (41.5%) 

1878900 (10.4%) 

4909600 (27.1 %) 

2799500 (15.5%) 

1002400 (5.5%) 

18107700 
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Indonesia 

Australia 

Brazil 

Nigeria 

Malaysia 

India 

Bangladesh 

Cuba 

Mexico 

Main countries 

Papua New Guinea 

Colombia 

Guinea 

Total 

Spatial Coverage (ha) 

4250000 

1150000 

1380000 

1050000 

640000 

670000 

630000 

550000 

530000 

410000 

360000 

290000 

11910000 

Source: Spalding et a!. 1997, cited in Balsco et a!., 20 I 9 

Mangroves cover around 0.7% of tropical and subtropical forest areas 

worldwide in over 118 nations (Bunting et a!., 2018; Siikamaki et aI., 2012; 

Donato et a!., 2011; Page et aI., 2011). Murdiyarso et al. (2015) argues that 

mangrove can sequester and store 3 to 4 times more carbon for each 

equivalent area of tropical forest. In particular, mangroves found in dominant 

peatlands are expected to store 25-50% higher organic carbon in the soil 

(Rovai et aI., 2018) and host about 1.6% of entire biomass in tropical forest 

(Hutchison et a!. , 2014). For Africa, mangroves cover approximately 

2,746,500 ha in the year 2010 and maintain vulnerable coastal popUlations by 

delivering vital ecosystem services, including storm surge mitigation, coastal 

erosion mitigation, water quality improvement and the provision of alternative 
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livelihoods «Bunting et aI., 2018; Mondal et aI. , 2018; Lee et aI., 2014; 

Kuenzer & Tuan, 2013; Gedan et aI., 2011). 

Basically, studies evaluating and monitoring mangroves 111 Africa are 

unequally distributed (Pinki et aI., 2019). There are several studies on the 

extent or dynamics of mangroves across Africa (Lagomasino et aI., 2019; 

Brown et aI., 2016; Hoppe-Speer et aI., 2015; Kuenzer et aI., 2014; De 

Santiago et aI., 2013; Fatoyinbo & Simard, 2013; Omo-Irabor et aI. , 2011; 

Kovacs et aI., 2010; Salami et aI. , 2010), but many of them are largely 

concentrated in a few countries. However, a large number of such research are 

global in nature, but lack a suitable spatial resolution for tracking local 

progress towards the achievement of Sustainable Development Goals. 

Mangrove ecosystem can help to achieve a number of SDGs, most notably 

Goal 6 and Goal 15 because they serve as important indicators for monitoring 

local, regional and global progress. Mapping mangrove extent both locally and 

globally is critical to understanding progress towards achieving these goals 

(Barenblitt & Fatoyinbo, 2020a). 

There are different types of mangroves, mainly red, black and white (Figure 

2). A report by Fatoyinbo and Simard (2013) shows that mangroves cover 

about 7,600 ha along the Ghana coast, seven major mangrove species are 

known in Ghana. These species are white mangrove, black mangrove, and red 

mangrove (Ellison et aI., 2015; Nortey et aI., 2016). Red mangroves are the 

most salt tolerant, white the least. Mangroves are generally short trees, but 

some can reach 60 m in height and can reach high levels of above-ground 
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biomass. In addition to structural differences, some may have large curved 

roots while others do not. 

WHITE MANGROVES 
BLACK MANGROVES 

RED MANGROVES 

Figure 27: Different types of mangroves based on their Salt Tolerance 

Source: wetlandsandwildlife. wordpress.com 

Mangrove Dynamics, Structure and Function 

Extensive research has been carried out to improve our understanding of the 

structure and complexity of mangroves (Lugo et al., 1980; Twilley, 1982; 

Sassekumar & Loi, 1983; Adaime 1985; Duke, 1988; Lahmann, 1988; 

Woodroffe et al., 1988; Saenger & Snedaker, 1993; Fromard et al., 1998). 

Mangrove height ranges from 12 m to 20 m and rarely exceeds 25 m, litter 

falls from 12 - 16 t/halyr (dry matter) in the equatorial and sub-equatorial 

regions. Near the tropics, their mean height is about 8 to 12 m and the average 

annual litterfall is estimated at 8 t/ha. Within the temperate coastal zone, a 

place where mangroves are exceptional, mangrove height rarely exceeds 4 m 

and litter-falls decline to 4 t/halyr. (Blasco et al., 2019). Simard et al. (2019) 

emphasized that precipitation intensity, temperature variation and frequency of 

extreme events (e.g., cyclone) explain 74% of global dynamics in maximum 

18 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



mangrove height, biomass density and litter drop, however they found the 

tallest mangrove canopy in Equatorial Africa where stocks are up to 62.8 m 

tall. The high primary productivity and brief residence time of manure in most 

mangrove ecosystems underlines their importance not only for fisheries but 

also for other species (Snedaker & Lugo, 1973). 

Although they provide many valuable ecosystem goods, mangrove has 

experienced significant anthropogenic related degradation (Alongi, 2012; 

Breithaupt et aI., 2012). It has been estimated that the rate of degradation over 

the past two decades has overwhelmed that of rainforest (Mayaux, et aI., 

2005). Most of the ecosystems (2/3) have disappeared in the last century, 

resulting in a loss of 1-8% mangroves per year and no less than 20-50% 

reduction in global land area (FAO, 2007; Miththapala, 2008; World 

Mangrove Network, 2012). The main reason for mangrove loss is 

deforestation for land conversion, principally for aquaculture development, 

establishment of salt pans, and other agricultural expansion. The rapid loss of 

mangroves to deforestation can contribute significantly to the total carbon 

emissions (Donato et aI., 20 II). 

However, recent research suggests that the rate of global mangrove loss may 

now be reduced as the top threat from deforestation is declining from an initial 

estimate of 0.7% between 2000 and 2005 to around 0.16% to 0.39% per year 

in 2016 (Spalding et aI., 2010; Hamilton & Casey, 2016). Therefore, most 

observed changes in the mangrove ecosystem can be attributed to climate 

variability which leads to temperature, precipitation and air pressure 

fluctuations. (Asbridge et aI., 2015). Some of the challenges in mapping 
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mangrove ecosystems are the need for high-resolution imagery, as these 

ecosystems tend to cover a narrow band along the coast. Therefore, given the 

nature of mangrove areas that are more prone to cloud cover, it can someti mes 

be difficult to find cloud-free optical imagery over these areas. Additionally, 

the state of these ecosystems is dynamic due to ebb and flow differences, 

which can affect satellite signal. 

Coastal Wetlands Vegetation Conservation 

One of the first global efforts towards prudent use of wetlands by indigenous 

peoples, national and international action, is the 1971 Ramsar Convention with 

a commitment to help achieve sustainable development around the world. 

Mangroves have been designated according to the Ramsar Convention as a 

forested tidal wetland with 262 locations worldwide and an area of 27,000,000 

ha (Ramsar, 2012; Lucas et ai., 2014). National wetland inventories have been 

among the top priorities of Ramsar Convention signatories with the sole aim 

of ensuring judicious use of wetlands in different regions (Lucas et aI., 2014). 

However, the challenges of the convention were the procedures used and data 

management, leading to the 2005 Ramsar resolution (MEA, 2005; Ramsar, 

2005; Rosenqvist et ai., 2007b; Lucas et aI., 2014). 

Recognizing the need for more accurate information on glob~l mangroves, a 

number of initiatives have been implemented by several international 

organizations over the past four decades to improve our knowledge of 

mangrove forest conversion or loss for reference years. Major international 

initiatives include: (1) the conservation of migratory species of wild animals 

(CMS, 1979); (2) Convention on biological diversity (CBD, 1993); (3) the 
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United Nations Framework Convention on Climate Change (UNFCCC, 1992); 

(4) the Intergovernmental Science Policy Platform on Biodiversity and 

Ecosystem Services (IPBES, 2012). These efforts aim to provide better and 

improved data on habitat conversion and future trajectories (Lucas et a!., 

2014). 

Accurately quantifying the extent of mangroves, through mapping is one of 

the key tools needed to support the Ramsar Protocols and any 

intergovernmental initiative aimed at enabling signatories to achieve the goal 

of the initiative. Maps like the JAXA Carbon Initiative Global Wetland 

Inventory, can also give information on the extent of disturbance due to 

flooding within the defined wetland areas. In addition, information on the 

impact of policy measures is required to assess their effectiveness in terms of 

prudent use of wetlands. This information is necessary to encourage 

sustainable development and policy adaptation and to ensure adequate 

representation of wetland types in the Ramsar List (MacKay et a!., 2009). 

One of the first global mangrove maps was created by combining previous 

maps, ground surveys and remote sensing data (Spalding et a!., 1997). A 

global atlas of mangroves was updated by UNEP-WCMC and published in the 

year 2010 (Spalding et a!., 20 I 0). Giri et a!. (2011) produced another revised 

baseline for world mangrove distribution based on Landsat data. The 

distribution baseline map serves as an important tool for mangrove 

conservation and management, as well as for systematically assessing the 

performance of the ecosystem goods they offer. On the other hand, a number 

of recent interventions have attempted to use more specific data on mangrove 
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services. These include, but are not limited to: (1) Mangrove Conservation 

Alliance (BirdLife International, 20 11); (2) Mangrove Capital Program 

(Wetlands International); (3) International network for the conservation and 

sustainable use of Mangrove genetic resources. 

The need for a coordinated effort to address issues related to the effect of 

climate variability on coastal ecosystems necessitated the creation of the blue 

carbon initiative by the United Nations Environment Program (UNEP). The 

program objectives are to promote research and develop strategies and 

programs for the conservation as well as the restoration of coastal ecosystems. 

These policies and programs include globally applicable measurement 

standards to support financial platforms (e.g., National Measurement, 

Reporting and Verification (MR V) Systems). Despite these interventions, 

timely and more accurate information on mangrove dynamic trends at the 

local , regional, and global scales has not been routinely and consistently 

provided. Closer look at the social and economic value of mangroves is also 

needed to guarantee that the ecosystems are not underestimated in decisions 

making regarding their use. Consistency in the use of spatial and temporal 

methods is crucial to guarantee adequate and more consistent estimations of 

extent within and between regions. 

Conservation Efforts in Africa 

There is ample evidence of the successful establishment of Mangrove 

plantations in West Africa and Central Africa involving governments, NGOs 

and local communities. For example, since 1993 there have been fragmented 

mangrove planting efforts in some parts of Africa, notably Senegal, Guinea 

22 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



and Ghana (Gordon et aI., 2015). By 2014, more than 450 ha of Mangrove 

plantation had been established in Central Africa and more than 60 ha of 

mangrove plantations had been created in West Africa (Armah et aI., 2009). 

The plantations were established in these countries with the efforts of projects 

led by the state ministries responsible for mangroves, local communities and 

NGOs. Universities and parliamentarians have stepped up efforts ofNGOs in 

Cameroon. In general, plantation establishment in West Africa (61.8%) was 

more strongly encouraged by government efforts, while in Central Africa, 

NGO efforts (51.9%) were more pronounced. Donor organizations include: 

European Union, PNUD, FIDA, GEF, FFEM, NC IUCN, SSNC, GTZ, AFD 

and PAFT. 

Mangrove restoration activities in Ghana were integrated into some coastal 

projects between 1995 and 2000 (Annah et aI., 2009). Examples of such 

initiatives are the Large marine ecosystem project in the Gulf of Guinea; The 

Lower-Volta mangrove project supported by the United Kingdom and a 

community campaign in Ghana involving two communities with additional 

help from an NGO (Resource & environment development organization 

(REDO)) and the Department of forestry in Winneba where over 6,000 

reproductive plants have been planted; Obane mangrove restoration project in 

Ada with over 2000 seedlings of Rhizophora sp. and Avicennia germinans 

planted by people through community work (AMN, 2009). 

Advances in Satellite Data Applications for Wetland Studies 

Advances in systematic monitoring to understand changes in wetlands are 

needed to regulate how mangrove ecosystems are continuously changing due 
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to human-made impacts or natural drivers, or both (Pimple et aI., 2018). 

Accurate quantification of temporal changes in mangrove ecosystem IS 

essential for better understanding of many marine processes. Mapping of 

mangrove forests requires enormous amount of money for fieldwork because 

of the difficulties related to access within the mangrove ecosystem (Zhang et 

aI., 2014). Space based technologies like remote sensing have tremendous 

capability to map changes in mangrove forests by capturing data from an 

otherwise inaccessible landscape (Son et aI. , 2015). Two main types of remote 

sensing data exist namely; passive remote sensing and active remote sensing. 

Active remote sensing provides data in the form of images (e.g., SAR) and in 

the form of altimeter, while passive remote sensing provides optical imagery 

(e.g., Landsat). 

SAR and LiDAR Data Applications 

SAR data is useful for assessing and mapping mangrove extent, even in the 

tropics where cloud effects are predominant (Vermeulen et aI., 2005; Horritt, 

2006; Mason et aI., 2007; Schumann et aI. , 2007; Di Baldassarre et aI., 2009; 

Long et aI., 2014), due to the properties of the sensor backscatter mechanism 

and signal penetration for different targets (Musa et aI. , 2015). Because of its 

high penetrating power, SAR is suitable for land cover research as well as land 

use monitoring (Owe, et aI., 2001). Table 3 and 4 show the interaction 

between Mangroves and Radar Signal at Different bands as well as the 

corresponding backscatter range. The higher the backscatter, the rougher the 

surface. For example, the reflectivity of SAR for an undisturbed body of water 

gives very little backscatter and very dark images. However, when the water 
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body is disturbed by wind, turbulence or surrounding vegetation, backscatter 

increases and produces a bright or gray image (Erika et aI., 2020). 

Several GIS and geospatial techniques have been applied for mangrove 

assessment (Long et aI., 2014; Musa et aI., 2015; Pinki et aI., 2019). Most 

studies often use data from passive satellite such as Landsat due to their larger 

spatio-temporal coverage as well as easy data accessibility (Brown et aI. , 

2016; Wang et aI. , 2019; Pinki et aI. , 2019). The recent availability of active 

satellite data with increasing spatio-temporal coverage has led many scientists 

to increasingly use data from SAR for a more accurate mapping of the 

mangrove changes (De Santiago et aI., 2013 ; Thomas et aI. , 2018; Pinki et aI., 

2019). 

Cloud cover conditions does not affect Radar imagery (SAR) and it has 

therefore been used to map mangrove changes over time (Thomas et aI., 

2017). The global availabil ity of cloud free radar imagery since 1996 to the 

present has enabled few researchers to monitor mangrove extent worldwide 

(Thomas et aI. , 2018). For the assessment of mangrove changes, scientists use 

different classification systems and algorithm (Fatoyinbo et aI. , 2013; Giri et 

aI., 2015; Kamal et aI., 2015; Pinki et aI., 2019). The novel cloud computing 

platform like Google Eatih Engine (GEE) with unrestricted access to global 

mosaics of geospatial data are now increasingly accessible and provide 

straightforward analysis for large satellite imagery (Chen et aI., 2017; Pinki et 

aI., 2019). Google Earth Engine provides over 15 classification techniques 

using artificial intelligence, such as CART and RF for robust land cover 

classifications (Giri et aI., 2015; Diniz et aI., 2019; Shrestha et aI., 2019). 
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Cloud computing procedure based on robust algorithms is very helpful for 

systematic monitoring and continuous assessment (Pinki et aI., 2019). 

European space agency (ESA) satellite-l and - 2, which was launched from 

1991 to 2011, ENVISA T advanced synthetic aperture radar which was 

commissioned from 2002 to 2012, and Canadian space agency (CSA) 

RADARSAT I (1995 to 2013) and RADARSAT-2 (2007 to present) are 

among the high-capacity space-borne SAR to monitor mangroves on a global 

scale, with C-band historical archives (Lucas et aI. , 2014). In addition, German 

space agency (DLR) successfully completed TandemX mission in 2010, 

comprising Terra-SAR-X and COSMO-SkyMed, forming a cluster of 4 

sensors to provide X-band SAR imagery. However, the disadvantage of X

and C-band images captured by previous sensors is that systematic global 

coverage has not occurred over time and there are also issues of cost and 

complexity (Lucas et aI. , 2014). The TanDEM-X mission is very useful for 

mangrove monitoring, as the sensor-derived global digital elevation provides 

useful information on mangrove canopy elevation and above-ground biomass 

throughout its range (Lucas et aI., 2014). 

Changes in mangrove structure as a function of elevation changes can be 

estimated by comparing tree height estimates from the TanDEM-X with 

estimates from SRTM (Lucas et aI., 2014). The major L-band sensors on a 

global scale are the Japanese earth resources satellite (JERS-l) and the 

advanced land observing satellite (ALOS) phased array L-band (PALSAR) 

which were used from 1992 - 1998 and onwards 2006 - 2011 respectively 

(Shimada & Ohtaki, 2010; Shimada et aI., 2010; Lucas et aI., 2014). These 

26 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



two sensors represented efficient acquisition approaches that have yielded 

consistent pantropical and global L-band mosaics annually (Rosenqvist et aI., 

2000, 2007a; Lucas et aI., 2014). 

PALSAR-2 was launched in 2014 as a continuation of the mission to monitor 

the nearshore tropics and subtropics, specifically mangrove monitoring with 

reliable, efficient and cloud-free data around the world with better sensitivity 

to 3D wood structure of mangroves, allowing the retrieval of above-ground 

biomass (AGB) density (Lucas et aI., 2007; Lucas et aI., 2014). Part of JAXA's 

Carbon initiative was used to develop the Global Mangrove Watch (Lucas et 

aI., 2007; Rosenqvist et aI., 2010; GMW (JAXA), 2013; Lucas et aI., 2014). 

Historical JERS-l and PALSAR images alongside the Global Mangrove 

Watch were used by Giri et al. (2011) to improve Landsat-based mangrove 

base-maps for several years (e.g., 1996, 2007, 2008, 2009 and 2010) and 

changes detected by ALOS-2 PALSAR-2 were quantified. Baseline 

measurements of structure and aboveground biomass generated from SRTM, 

ICESA T and GLAS have been widely used for mangrove monitoring by a 

number of authors (Simard et aI., 2006, 2008; Fatoyinbo & Simard, 2013; 

Lucas et aI., 2014). The PALSAR image (L-band) can be used to differentiate 

huge (> 10m) mangroves with buttress from those without as they have 

relatively low HI-! backscatter for the L-band (Lucas et aI., 2007). Therefore, 

the combination of active and passive satellite data allows for the 

quantification of changes in both volume and structure, including tree species 

losses and gains (Lucas et aI., 2014). 
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Radar remote sensing works in interferometrically when the data is acquired 

from multiple single acquisition of the same target from different sensor 

positions. Interferogram refers to the change in signature of topography, 

noise/speckle, displacement, cloud effects, and baseline error between two 

SAR images. The importance of phase differences in interferometric data such 

as InSAR allows detection of land cover change (Lucas et aI., 2014). 

Dellepiane et al. (2004) used this feature to identify flooded areas over 

wetlands. Their method was based on the concept of fuzzy connectivity, which 

can spontaneoLisly select shorelines from two different InSAR images due to 

consistency in the images. InSAR images calibrated with satellite altimetry 

data have been applied successfully to estimate sea level changes (Kim et aI. , 

2009; lung et aI., 2010). Non-flooded areas, flooded vegetation and water 

bodies were distinguished based on backscatter and interferometric 

consistency (Musa et aI., 2015). Interferometric data were used to categorize 

forest age (Pinto et aI., 2012) and to estimate tree crown height (Simard et aI., 

2006, Simard et aI., 2008, Fatoyinbo et aI. , 2013, Lagomasino et aI. , 2015, Lee 

et aI., 2015, Simard et aI., 2019). 
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Table 2: Radar Signal Interaction with Mangroves at Different bands 

Type of Depth of Penetration 
Band 

K Few tens of centimeters 

X Up to 1/3 of canopy height 
(Lorey' s height) 

C 

L 

P 

higher penetration and 
coherence 

Very high penetration 

Similar to L-band with high 
Microwave penetration into 
Canopy 

Backscatter Type 

Straight bounce 

Straight bounce, volume scatter for 
small canopy size and double 
bounce that increases at low 
biomass 

Straight bounce, volume scatter for 
small canopy size and double 
bounce that increases at low 
biomass 

Dominant direct bounce in tall 
forest. Volume scattering dominate 
in shorter forest. Double bounce 
increases at low biomass and in 
open forests . 

Dominant direct bounce in tall 
forest. Volume scattering dominate 
in shorter forest. Double bounce 
increases at low biomass and in 
open forests slightly higher than L
band 

Source: SERVIR SAR Handbook Chapter 6 by Marc Simard 

LiDAR is another method with the ability to precisely capture the 3D aspect of 

mangroves and can therefore be applied to assess the biomass of forests with 

better reliability (Tianyu et a!., 2020). LiDAR is one of the active satellites 

that effectively penetrates dense tree canopies and can be used to collect data 

about their structure (Lim et a!., 2003; Tianyu et a!., 2020). This technique is a 

key breakthrough in forest monitoring, as it is able to calculate canopy height, 

forest above-ground biomass including other structural parameters, and is non-

saturating even under high-biomass bioclimatic conditions (Nsset et aI., 2011; 
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Babcock et aI., 20 IS). Airborne and space-based LiDAR are capable of 

obtaining large-scale data, but limitations in global coverage limit their 

application on a continental to global scale (Hu et aI. , 2016). The ICESA T 

mission was the only LiDAR instrument to generate global coverage data, 

which provided a vital source of data for estimating tree height and biomass 

(Tianyu et aI. , 2020). However, the mission ended up in orbit within 7 years. 

Table 3: Backscatter Range for Mangroves 

Radar Band 

P-band (HH 
polarization) 

P-band (HV 
polarization) 

P-band (VV 
polarization) 

L-band (HH 
polarization) 

L-band (HV 
polarization) 

L-band (VV 
polarization) 

C-band (HH 
polarization) 

C-band (HV 
polarization) 

C-band (VV 
polarization) 

Shrub Mangrove 

- -17dB 

- -22dB 

- -10dB 

- -2SdB to -ISdB 

- -2SdB to -20dB 

- -20Db to -12dB 

- -12Db 

-20 to -lSDb 

- -12dB 

Tall Mangrove 

- -8dB (increases with 
AGB) 

- -14dB (increases with 
AGB) 

- -7dB (increases with 
AGB) 

Decreases from -SdB to 
-18dB with increase in 
AGB 

Decreases from -lSdB 
to -22dB with increase 
inAGB 

Decreases from -8dB to 
-16dB with increase in 
AGB 

- -7dB 

- -14dB 

- -6dB 

Apart from mangrove mapping, remote sensing products such as imagery, 

OEM, altimeter, etc. can be used as numerical model setup and validation 

(pereira-Cardenal, et aI., 2011). For example, estimates from satellites for 

river current, channel width, surface roughness, and water levels are used for 
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calibration and validation. Surface roughness is a very sensitive parameter that 

directly affects water level and flood extent (Schumann et a!., 2007) and can 

be used to reduce outliers from the calculated water level (Woldemicheal et 

a!. , 2010). Satellite-generated flood maps were used to calibrate hydrological 

models for single and numerous flooding (Di Baldassarre et a!., 2009). 

Satellite images of a particular event, taken almost simultaneously by two 

satellite sensors, were used by Di Baldassarre et a!. (2009) to calibrate a 

hydrological model based on the 'possible' extent of flooding from the two 

images, and the result shows that satellite data can be reliable for flood 

mapping. 

Optical satellite data 

For several decades, remote sensing data collected via optical satellites for 

monitoring changes in mangrove extent around the world has been available 

with various limitations (Lucas et a!., 2014). Recent high-resolution passive 

remote sensing (e.g., Worldview) deliver detailed information for mangrove 

extent mapping at local level, however global coverage is a serious limitation 

and the collection of this data is often not repeated (Wang et a!., 2004; Proisy 

et a!., 2007; Neukermans et a!., 2008; Wang et a!., 2008; Lucas et a!., 2014). 

Mangrove assessments at regional level can be done with optical imagery of 

moderate resolution such as Landsat, SPOT, or ASTER but continuolls 

detection of changes has proven difficult in most regions where cloud cover 

impedes steady observations from passive satellites (Spalding et a!., 1997; Giri 

et a!., 2011; Lucas et a!., 2014). 
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Basically, prevIOus worldwide maps of mangrove changes were generated 

from passive remote sensing data from various sources (Spalding et aI., 2010). 

The mapping was essentially performed using multi-year data as cloud cover 

affects the information in a single time. Despite the disadvantages associated 

with optical data, mangrove baseline extent maps generated from them are 

valuable because such maps are difficult to generate from SAR data alone, 

irrespective of the fact that cloud cover effects are overcome. In particular, 

using only L-Band or C-Band SAR data to map the extent of mangroves is 

insufficient when mangroves are adjacent to other terrestrial forests and 

plantations, as there are similarities in the nature of their backscatter 

properties. It is generally easier to distinguish and map mangroves when 

bounded by sparsely vegetated surfaces, as they exhibit higher backscatter in 

both the L-Band and C-Band for HV and HH polarizations, although there 

may be confusion when there is high ground mangrove biomass with broad 

buttress systems due to the low backscatter associated with such mangrove 

(Lucas et aI., 2007). 

Increasingly, advances in satellite are being used to overcome this limitation, 

such as the use of Landsat sensors to intensify cloud-free observations by pixel 

mining and the application of synthetic aperture radar systems alone or in 

combination with optical imagery to enable observations independent of 

weather or lighting effects (Zhu & Woodcock, 2012; Nascimento et al.; 2013). 

Another way out is to limit mangrove mapping to an area where there is a high 

presence of mangrove. 
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Satellite-derived DEM Data Applications (AGB and structure) 

Estimates of mangrove stand height, carbon storage, and surface and 

underground biomass can be produced for a mapped area when the baseline of 

mangrove extent is already known. This can be derived either from allometric 

equations or from satellite estimates. (Comley & McGuinness, 2005). Most 

satellite estimations of above-ground biomass were generated using digital 

elevation model (SRTM) acquired in 2000 (Giri et aI., 2011; Fatoyinbo & 

Simard, 2013), but using TanDEM-X mission, which was published in 2014 is 

another useful sensor for monitoring mangrove above-ground biomass, as the 

sensor-derived global DEM provides data to estimate mangrove height around 

the world (Lucas et aI. , 2014). By means of the canopy height estimates from 

TanDEM-X mission together with those from SRTM (Shuttle radar 

topographic mission) can show changes in the mangrove ecosystems (Lucas et 

aI., 2014). 

The satellite estimates of above-ground biomass can be further improved by 

integrating synthetic aperture radar imagery such as ALOS PALSAR data into 

the digital elevation model (Omar et aI., 2014). Some studies performed in 

Australian mangroves show that where many buttress roots occurred, the raise 

in L-band backscatter with above-ground biomass was discontinued at an 

altitude of 8-12 m and backscatter decreased proportionally to the increase in 

above-ground biomass (Held et aI. , 2003). Exploiting backscatter mechanism 

in mangroves, a new mapping approach using the canopy elevation model 

(CHM) and SAR backscatter was developed to distinguish between 

mangroves with buttress roots and those without (Lucas et aI., 2007). This 
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type of information can be applied to estimate the stages of mangrove 

regrowth and also infer species structure. More information on the 

researchable issues that remote sensing techniques can be applied are shown in 

Table 4. The strength and weakness of satellite sensors for mangrove studies 

are summarized in Table 5. 

Table 4: Researchable issues with remote sensing techniques 

Needed information 

Extent 

Social-economic 

cultural values 

Target Audience 

Policy, Land holders 

and Policy 

Food security (actual Local population, 

and predicted quantity commercial, 

e.g., fish, game, fruit, government at all levels 

grain) 

Primary Objective 

To delineate areas of 

conservation and 

exploitation 

To maintain and 

increase general well

being 

Ensuring the continuous 

supply of food to the 

popUlation 

Fiber and fuel amounts Local population, To determine potential 

Commercial 

Biochemical and genetic Commercial, Policy 

material 

resources and ensure the 

sustainability of the 

mangrove habitat 

Maintain 

condition 

biodiversity 

habitat 

and 

Extent and rate of Conservation, policy, Estimate area, trend of 

Mangrove removal science community area loss, causes and 

consequences 

Habitat structure and Conservation, Science Assessment of breeding 
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floristic composition 

Regeneration 

restoration rates 

community 

and Conservation, 

commercial, 

community 

science 

Suitable Areas for Conservation, policy 

Mangroves 

Extent and Mangrove Conservation 

zonation 

site status for species 

Identify 

potential 

extensions, 

uses and 

sustainably used areas 

To identify potential 

restoration areas 

Assessing the role and 

potential of coastal 

protection 

Sea Level Rise Impact Policy, 

Community 

Science Comprehend the effects 

Soil loss and deposition 

Hydrodynamics 

quality of soil 

and 

Biomass, Volume, 

Carbon stocks and 

cycling 

Land use workers 

Land use workers, 

Local authorities 

Policy, research 

community, commercial 

35 

of global climate 

variability 

Indicates 

mangrove 

colonization 

occurring 

where 

loss and 

are 

View degraded areas for 

remediation 

To measure current 

resources and quantify 

current and future 

carbon sequestration 

capacity 
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Table 5: Strength and weakness of remote sensing sensors for mangrove 
studies 

Cloudless 
Images 

Sensitive 
to 
vegetation 

Sensitive 
to 
structural 
component 

Sensitive 
to biomass 

Worldwide 
acquisition 

Time 
series data 

L-Band SAR 

JERS- PALSAR PALSAR-
1 2 

Source: Lucas et aI. , 2014 

C-
Band 
SAR 

Gaps and limitations of Satellite Application 

X- Optical RS 
Band 
SAR 

Landsat SPOT/ 
ASTE 
R 

./ 

Although active and passive remote sensing applications have been useful in 

mangrove monitoring and assessment, the measurements are not without 

limitations. Most limitations arise from sensor errors, data processing 

techniques, seasonal variations and measurement times, target distance, etc. 

Passive remote sensing is limited to daytime data collection and it is not very 

useful in cloud-prone areas because the target object can't be reached (Smith, 

1997). There are a number of limitations with optical data; For example, the 

spatial resolution of optical satellite data is often coarse and may not deliver 

highly detailed resolution suitable to distinguish between vegetation types, the 
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sensor doesn't capture cloudless images and can't enter dense tree canopy. 

However, these limitations also depend on time, season and hydraulics during 

data collection (Sun et aI., 2010). 

The effectiveness of radar data for mangrove research is subject to weather 

conditions (e.g., wind and rain), angle of incidence, low vegetation and the 

instrument polarization mode used during data collection (Musa et aI., '2015). 

For example, the HH polarization performs better for mapping mangrove 

extent compared to VH and VV polarizations. However, the latter are 

particularly useful for flood monitoring (Schumann et aI., 2007). A source of 

confusion in SAR data is that certain features such as open water and low 

vegetation, urban areas and flooded areas, topography and flooded vegetation 

appear similar and present difficulties 111 data interpretation. Mapping 

mangrove extent using only radar data IS challenging, especially when 

mangroves border forests. 

The limitation of the satellite-supported digital elevation model lies in the data 

quality. The accuracy of the digital elevation model (DEM) data required for 

mangrove structural studies and other studies involving topographical 

considerations is dependent on the collection methods, handling, and surface 

features. Digital elevation models acquired from passive satellites tend to have 

high deviation, high RMSE and lower vertical accuracy than those derived 

from active satellites such as airborne LiDAR or SAR (Fraser & Ravanbakhsh, 

2011). However, DEMs derived from optical satellites have wider coverage 

and are therefore valuable topographic data sources (Gorokhovich & 

Voustianiouk,2006). 
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Novel App.'oach for Mangrove Mapping and Monitoring 

Scientists are currently developing pioneering approaches to make satellite 

data more usable and to overcome current data limitations. For instance, 

cloud-masking can remove a greater percentage of clouds from optical images, 

increasing data availability. An example of these novel techniques is the 

google earth engine (GEE) which is a free cloud based geo-spatial processing 

platform built from a number of publicly available data . GEE gives access to 

many satellite imageries from a number of NASA and ESA satellites such as 

Landsat and Sentinel imagery. It works with a llser-versus-server interface 

where users can work on objects through the server to instruct google for 

processing and to send the outcome back for display. By default, GEE 

projection is WGS84 with access to planetary scale data. 

Sea Level Rise Effects on Coastal Areas 

Currently, coastal areas face the threat of flooding, erosion, saltwater intrusion 

and other natural disasters as sea levels rise (Williams & Ismail, 2015). Along 

the Gulf of Guinea, sea level rise data shows more than 3 mm yea(l from 

1993 to 2010 (ESA, 2012). It is projected that the SLR in Africa will increase 

by 10% (on average) compared to the global increase and that a 4°C 

temperature increase will increase the SLR to about 850-1250 mm by the 

period 2080-2100 (fPCC, 2013). A large population along the coast is at risk 

from coastal flooding and adaptation costs could rise to over 9% coastal Africa 

GDP (Niang-Diop et aI., 2005). 

There are approximately 33 countries and 7 islands that form the belt of the 

African coast, which are very productive environments affected by various 
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hazards caused by storm surges, floods, hurricanes and cyclones worsened by 

sea level rise. Most of these hazards have caused severe flooding and erosion, 

which has claimed many lives and valuable assets (El-Shahat et aI., 2019). 

Socioeconomic impacts within African communities have also exacerbated 

their vulnerability, making the future impact of SLR even more devastating. 

Analysis of in situ sea level measurements for Ghana from the Takoradi 

station from 1925 to 1970 (Figure 3) shows that sea level is rising by 2 .1 

mm/yr, which agrees with estimates elsewhere (lPCC, 2007; Woodworth et 

aI. , 2009). The measurements from 1970 to 1996 appear biased due to 

instrument aging and mechanical problems with the tide level (Figure 3). The 

gauge ultimately failed in 1996, and was later replaced in 2008, resulting in 

missing data from 1996 to 2008, making remote sensing data very important 

in identifying current sea level rise. The African center of meteorological 

application for development (ACMAD) predicted in 2016 that warming in 

Africa could reach 1.5°C at the end of 2050 and increase to 3°C after 50 years. 

This could worsen the impact and exacerbate the effects of continental climate 

change. This will aggravate the severity and speed of tide and possibly cause 

coastal flooding. 
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Figure 28: In-situ measurements and sea level analysis ofTakoradi gauging 
station, Ghana. Source: Permanent service for mean sea level 2013; Cited in 
Isaac et al., 2017 

I 

Sea level rise can reduce the availability of freshwater for domestic use and 

affect the freshwater habitat of aquatic organisms (IPCC, 2007b; Van, et aI., 

2012). These impacts may not be uniform globally but may be subject to the 

dynamics of the social, physical and economic situations of coastal zone. 

Accordingly, different areas may experience different intensities of sea level. 

Relative sea level rise is the change in sea level with respect to land elevation 

at a given location. Its value is therefore greater where land subsidence occurs 

than in stable coasts. Coastal processes such as river channel flow, tidal 

currents and waves determine the unique ch~racteristics of a particular coastal 

landform (Nicholls et aI., 2007). 
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Fluvial estuaries rely on upstream sediment supply from rivers, whereas 

coastal estuaries are formed by coastal tidal and wave processes (Musa, 2018). 

Estuaries are typically very abundant in biodiversity and are recognized to 

change with increasing anthropogenic activity upstream, which increases the 

amount of sediment transpOlied downstream (Mcmanus, 2002). Subsidence 

occurs along coasts when sediment supply is reduced during flooding or 

hydrocarbon abstraction from the aquifer (Ericson et a!., 2006; Wesselink et 

a!., 2015). Subsidence increases retention time, which increases waterlogging 

and eventually leads to prolonged flooding (Nicolls et a!., 1999). As a result of 

differential land subsidence, estuaries show different values for the mean sea 

level rise. 

Sea level rise is predicted to disrupt many biophysical activities that contribute 

to the development of mangrove terrain elevation. Sea level rise is expected to 

lengthen the hydroperiod, which may result in allochthonous sedimentation 

and possibly vetiical accretion. Sediment accumulation results in increased 

nutrients that can affect the growth and decomposition of mangrove root 

(McKee et a!., 2007; Lovelock et a!., 20 11 b). Sea level rise increases water 

depth and allows tidal currents into the mangrove ecosystem and subsequently 

increases the rate of erosion (McKee et a!., 2007). Sea level rise will aggravate 

waterlogging of the mangrove ecosystem, potentially affecting root growth in 

some mangrove species and leading to severe hypoxia (McKee, 1996). Sea 

level rise is likely to raise groundwater levels and increase saltwater intrusion, 

affecting plant growth. While few studies have examined the response of 
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mangroves to local sea level, it is evident that sea level changes may affect the 

mangrove ecosystem in a variety of ways. 

Selected Indicators for Coastal Vulnerability 

Vulnerability could be described as the inherent properties of an element that 

determine its susceptibility or level of proneness of an element (person, 

property or environment) to the adverse effects of hazards. The exposure 

indicators for this study were chosen because of the possible contributions to 

coastal flooding, seawater intrusion and erosion. All indicators are mainly real 

characteristics of the coast apart from nearness to the sea and population 

density, which are human variables. 

Topographic Considerations 

Topography is related to the height of an area above mean sea level and is an 

important indicator of how the area will be influenced by sea level rise 

because low-lying areas are easily flooded and there is a correspondingly 

greater risk of propelty damage from flooding and other storm processes (Van 

et aI. , 2012). Recent study by El-Shahat et ai. (2019) points out that major 

coastal estuaries in Africa are flat, making them vulnerable to coastal flooding. 

This has resulted in eroded beaches (particularly sandy beaches) and increased 

soil and water salinity 

Coastal Slope 

Slope is a measure of steepness in relation to the adjacent land and is an 

important indicator of the vulnerability of the coast. The slope controls the 

overflow of water and subsequent flood. For this reason, places with gentle 
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slope are more susceptible to tide as compared to places with steep slope 

(Aich et aI., 2014). EI-Shahat et al. (2019) reports that 9% of the African 

country has a slope <0.1% (extremely vulnerable), 21% a slope between 0.1-

0.5% (very vulnerable), 18% a slope between 0.5-1% (moderate vulnerable) 

and 28% have a slope <= 3% (low vulnerability), 24% have slopes> 3% (very 

low vulnerability). This indicates that large coastal estuaries in Africa have 

gentle slopes where slight increase in water level can inundate a huge area. 

Geomol'phology and Soil Type 

Geomorphology is a term used to describe the formation of landscape patterns 

and the processes that shape them. The nature of coastal landform governs its 

vulnerability to erosion and its resilience to tidal forces . Rocky terrain and 

cliffs are less vulnerable, lagoons and estuaries are more vulnerable while 

beaches, deltas and offshore islands are highly vulnerable (Pendelton et aI., 

2010). During coastal flooding, flood water seeps into the soil depending on 

the size of the pores. This process relates to infiltration, which depends on soil 

type, structure and moisture content. The process of infiltration is a crucial 

factor in dealing with floods. Sandy soil has a higher infiltration rate than 

other soil types. The tidal erosion process relies on the gradient of slope, 

structure of the soil and rate of flow. Soil classification and its hydrological 

groups are shown in Table 6. 
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" .. 

Table 6: Hydrological Soil Groups and Infiltration Rate 

Soil Group Rate of Soil Description Potential of 

Infiltration (in/h) Run-off 

A >= 30 Sand, loamy sandy Low 

B 0.15t030 Sandy loam, loam Moderate 

C 0.05toO.15 Sandy clay loam, silt High 

loam 

D o to 0.05 Clay loam, silt clay Very high 

loam, sandy clay & 

clay 

Source: National engineering handbook, 2009; Cited in Aja et aI., 2019 

Relative Sea Level Rise (RSLR) 

RSLR refers to the height of the sea above a known datum, recorded with tide 

gauges and averaged over a year (Yin et aI., 2012). The larger the RSLR, the 

more susceptible a place is. In recent decades, many scholars have focused on 

the impacts of relative sea level rise around the world (Gornitz et aI., 2001; 

Walsh et aI. , 2004; Miller et aI., 2013; Ezer et aI. , 2014; Wadey et aI., 2017; 

Rehman et aI., 2020), emphasizing the relevant exposure to coastal hazards for 

low-lying areas and small island states. The relative change in sea level is the 

result of the combined effects of polar ice cap advance or retreat (eustasy) and 

vertical tectonic movement, which show significant spatial and temporal 

variability (Fabrizio et aI., 2020). Relative SLR can lead to a long-lasting 

retreat of many coasts worldwide by shifting the coast inland or by introducing 

sediments into inlet systems (Toimil et aI., 2020). Varying the relative SLR 
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could have significant effects on near-shore hydrodynamics and lead to more 

cases of extreme thresholds (Wahl et aL, 2017; Vousdoukas et aL, 2018). This 

can potentially exacerbate tidal flow as a result of nonlinear interactions (Arns 

et aL, 2017; Idier et aL, 2017). 

Yearly Rate of Shoreline Erosion 

The extent of spatial soil erosion along the coast influences sea level rise 

response. Given coastal vulnerability, places affected by erosion are expected 

to be more vulnerable, while areas accumulating sediment are less vulnerable 

(Kumar & Kunte, 2012). Coastal erosion control in climate change context can 

be achieved by making accurate projections of long-term coastal changes 

(Toimil et aL, 2020). Information about the annual rate of coastal erosion can 

be used to define setback limits, plan for the relocation of affected people or 

assets, anticipate potential losses to flood defences and recreation, and decide 

whether or not to implement protective measures such as beach replenishment 

(Jongejan et aL, 2016; Stripling et aL, 2017; Mehvar et aL, 2018). 

Average Range of Tide 

The mean range of tide is the variance between averaged high tides and 

averaged low tides and it is directly related to coastal hazards resulting from 

sea level rise (Yin et aL, 2012). Considering coastal susceptibility, places with 

wide range are more vulnerable compared to places with small range. Average 

range of tide is calculated using time-series tide data, but in situations where 

this data is unavailable, a hydro-dynamic model can be used to forecast tidal 

level (Kumar & Kunte, 2012). Tidal current affects sediment transport, 
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morpho-dynamics and alternately exposes or inundates much of the adjacent 

beach and inner surf zone (Davis, 1985). 

Average Height of Wave 

Wave moves sediment from a point to a different point along the coast. The 

theory of linear wave states that the energy from wave is comparative to wave 

height squared. Hence, wave height can be used as a substitution for wave 

energy (Yin et aI., 2012). Places with higher waves are more susceptible than 

areas with low wave heights. Climate change is altering wave propagation 

(Wong et aI. , 2014; Morim et aI. , 2019). Fluctuations in wave propagation can 

increase or lead to a decrease in coastal drift (Idier et aI., 2013) and can cause 

alterations in the rate of oscillation on seashores (Ranasinghe, 2016). 

Variations in wave conditions may increase erosion along the coast. 

Population Density 

Densely populated areas are more vulnerable to coastal disasters (Mclaughlin 

et aI., 2002). Human settlement in coastal areas increases the cost of risk, 

coastline modification and the likelihood of erosion. EI-Shahat et al. (2019) 

reports that Ghana is one of the fourteen countries in Africa with sizeable 

urban populations along the coast. 

Nearness to the Coast 

The nearness of assets to sea governs its vulnerability to storm surges, 

flooding, erosion and waves. As communities in high-flood-risk zones 

increase worldwide, the number of people exposed to flooding and other 

coastal hazards will most likely increase. Any increase in disasters, regardless 

of magnitude, will affect development efforts. Proximity of land to coast is a 
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very important parameter reflecting land exposure to SLR effects. 

Accordingly, areas located within 2.5 km to 5 km from the coast are at high 

risk (EI-Shahat et aI., 2019). 

Coastal Resilience 

Resilience originated from ecological discipline as a valuable theory for 

researchers in the area of environmental related hazards. According to Holling 

(1973), resilience is the measure of a system's capability to resist changes in 

state-variables, drive-variables and parameters. This theory emphases on an 

ecosystem's ability to quickly recover from a major disruption and continue to 

support its core functions . [n coastal risk management, resilience has been 

described as the capacity of a system to bounce back from coastal hazards 

(Bruijn, 2004). For social-ecological system, Adger et al. (2002) describes 

resilience as the capacity of a system/structure to manage the impacts of 

external pressure while preserving the basis of life. Here, a system/structure 

refers to different organizational levels, which can be households, 

communities, economic sectors, or population groups (Brooks, 2003). For 

Buckle (2006), resilience means the capacity to survive loss, while Norris et 

al. (2008) defines resilience as a procedure that combines a number of 

adaptation abilities with positive operation after a disruption. 

Resilience as an idea was seen in a web of socio-ecological systems (Folke et 

aI., 1998; Adger, 2000; Folke, 2006). System resilience has to do with the 

ability of renewal, reformation as well as development in a socio-ecological 

system and the ability to preserve its uniqueness (Walker et aI., 2004; 

Cumming et aI., 2005; Maguire & Hagan, 2007). Three major attributes of 
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resilience occur in literature, regardless of different definitions from different 

disciplines (Carpenter et ai., 2001). The first attribute has to do with the speed 

of recovery from disasters (Bruijn, 2004). Second deals with the extent of a 

disaster (Colding et ai., 2003). The last attribute relates to the ability to acquire 

knowledge from disruptions and help build new things (Folke et ai., 2002, 

Berkes & Seixas, 2005). 

Consequently, the traditional method of measuring resilience in terms of the 

rate at which a system recovers may not explain its full meaning as multiple 

factors such as those relating to demography, economic, political, social, 

cultural, and geographic environment must be considered (Gaillard, 2007). 

Nonetheless, such factors are always changing at various stages of 

investigation (Adger, 1999; Buckle, 2006; Brouwer et ai., 2007). 

Understanding the change/uncertainty, adaption and co-creation for self

reorganization have been shown to be important factors in building household 

resilience in Cambodia (Marschke & Berkes, 2006). Other researchers such as 

Marshall and Marshall (2007) identified the ability to learn, plan and self

reorganization among the factors that help measure an individual's resilience 

level at a study conducted in Australia. 

Norris et ai. (2008) identified socio-economic development, access to 

information/capital and community literacy as important skills that can build 

community resilience. Socioeconomic development in this context refers to 

growth in the economy, stability of livelihood and equitable circulation of 

resources for the people (Adger, 1999) and societal support systems between 

and within the community (Mathbor, 2007). Access to information refers to 
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early warning systems for providing information to the public. Community 

competency denotes the ability of members of the community to learn how to 

solve problem and collaborate. Resilience is multi-dimensional in nature and 

therefore it is hard to apply in reality (Cumming et aI., 2005). 

Marschke and Berkes (2006) used a subjective well-being method to 

implement resilience based on livelihood perspective in Cambodian. However, 

they used a qualitative method to study household and community well-being 

without quantifying indicators of resilience. Some researchers are of the 

opinion that well-being has to do with feeling and thinking (Copestake & 

Camfield, 2009). This type of subjective well-being approach has been 

generally accepted in livelihood research particularly in developing countries 

(Narayan et aI. , 2000). Adaptation can be more active in mitigating hazardous 

effect if the existing resilience of the system is properly assessed (Brooks, 

2003). This will show how to change the characteristics of the system that 

directly affect its resilience, such as: the nature of the terrain, over population 

or lack of clean water, etc. System resilience indicates its capability to adapt 

and also to take advantage of disasters as a future opportunity (Alwang et aI., 

2001). Resilience is composed of physical components (e.g dikes) and 

nonphysical components (e.g past experiences). 

Plans for resilience can be properly initiated for a system or carried out 

through casual series of events. Official resilience plans are properly planned 

prior to execution. Conversely, the informal resilience approach has been part 

of the traditional knowledge of the people for years. Unofficial approaches 

are: (1) Emergency response methods developed in time of hazard, (2) 
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attempts by the people to protect their property; these are mostly reactive in 

nature, depending on the readiness of individual resources (Bierbaum et aI., 

2013). Formal plans are usually intentional efforts by governments to improve 

people's livelihoods (Bachmair et aI., 2012). 

Coastal Adaptation and Mitigation Strategies along the West Africa 

Coast 

The coastal zone of the Gulf of Guinea is currently facing an imminent 

transformation in terms of infrastructure, tourism, fisheries , agricultural 

expansion and general urban growth. Demographic pressure along the coast is 

leading to excessive natural resource degradation and unprecedented coastal 

pollution (World Bank, 2016). Especially, the coastal areas covering Ghana, 

Togo, Benin and Nigeria, are witnessing a high rate of erosion and sand 

mining, leading to the depletion of land and other assets. As sea levels keep on 

rising due to climate variability, coastal hazards along these areas have also 

increased (ESA, 2012). Sea level rise and its attendant effects require a 

reassessment of coastal protection plans and strategies (Musa, 2018). Coastal 

protection plans go beyond physical protection and include a combined impact 

of preparedness, mitigation and prevention (World Bank, 2016). Coastal 

research in the past showed that coastline was fairly stable but slightly 

influenced by sea level, nevertheless, the situation is different since 20th 

century as a result of anthropogenic intervention (Tilmans et aI., 1991). 

Coastal interventions that caused severe erosion within the Gulf of Guinea are 

the Port of Lagos (1908-1912), the Port of Cotonou (1960), the Akosombo 

Dam (1963), and the Port of Lome (1964). The construction of coastal harbors 
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caused erosion 111 the downward drift areas. For example, following the 

construction of the Port of Lome, erosion took its toll on densely populated 

areas downward the coast, threatening valuable coastal infrastructure and 

necessitating the construction of permanent groins to protect the affected 

areas. The Republic of Benin is also threatened by erosion due to the port of 

Cotonou in connection with sand mining at Seme (Addo et aI., 2011). 

The coast of Ghana is not spared as around 50% of the 550 km of coastline are 

highly endangered, particularly in the Volta Basin (NBCC, 201l). Ghana, with 

a large fishing community (about 2.9 million) along the coast, is severely 

affected by erosion due to natural and anthropogenic interference (Tilmans, 

Jakobsen & LeClerc, 1991). Rate of soil loss in Keta area has been reported to 

be between 8 and 10m-year because of the blocking of sediments from Volta 

River by the Akosombo Dam (Addo et aI., 2011). Structural coastal defenses 

were built to protect the coastline around Keta from erosion (Nairn et aI., 

1998). Notable projects include the Keta Sea defense Project (KSDP), which 

was completed in 2004 and involved dredging, construction of groins, and 

evacuation of vulnerable people (Danquah et aI., 2014). Keta Sea defense 

Project significantly decreased erosion at Keta area but amplified the severity 

of down-drift erosion in the areas east of the KSDP and around the Volta 

Estuary (Addo et aI., 20] 1; Appiah, 20] 6). 

The coastline of Nigeria (approx. 850 km) is home to the most densely 

populated cities in Africa. Notable among them is Lagos, which has a 

population of over 20 million and is constantly growing (NPC, 2010; World 

Population Review, 2017). Due to population pressures, the Lagos coast has 
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faced various man-made encroachments ranging from harbor construction, 

sand mining from the beach and dredging, as well as the new construction of 

non-natural islands, making the coast very dynamic. Human-induced 

interventions have affected the coasts of West Africa, creating changes of 

erosion and accretion patterns (Musa et aI., 2015). Quite a lot of shoreline 

maintenance techniques have been employed to protect the shoreline, 

including sand nourishment, creation of groins and revetments (Orupabo, 

2008). 

Modeling the morphology and Hydrodynamics of Wetlands in a Data 

Scarce Areas 

Numerical modeling of coastal dynamics in estuaries and wetlands is anchored 

on the principles of continuity, mass and momentum conservation. 

Considering a controlled volume of water in a channel for an unsteady flow, 

the principles of conservation of mass and momentum dictate that the mass 

inflow minus the mass outflow equals the rate of change of volume. The 

momentum equation explains the forces acting on a controlled volume of 

water. Dependent on the characteristics of a channel, averaging is performed 

so that the flow of water can be modeled using either one dimension, two 

dimensions, or three dimensions. In order to model wetland dynamics, in-situ 

data of water levels, soil friction and topographical information are important. 

However, the unavailability of data has set back many researchers, particularly 

in developing countries. 
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Two-Dimensional Modeling of Tides 

Lamb (1932) made the first attempt to understand tidal processes through 

systematic studies of the linearization equations of motion. With the advent of 

computers, numerical models using finite difference elements for more 

accurate representation of tidal hydrodynamics gained importance 

(Leendertse, 1967). In the late 1960s, several researches were carried out at 

the University of Waterloo, Canada to study the flow properties of vegetated 

canals (Kowen et aI. , ] 969). These studies included several laboratory 

experiments in which roughness elements were attached to a flume, then water 

flow was generated over the roughness elements, monitored and controlled by 

means of a pilot tube method to record velocity distributions. The study 

proposes using a logarithmic law to fit the standards of the roughness 

parameter and the intersection point to plot a vertical profile of the average 

velocity. This assumes that there is equilibrium over the roughness elements 

and that turbulence generation is balanced locally. 

Numerical modeling was used by Li and Shen (1973) to forecast the 

transportation of sediment in a vegetation area using a turbulence 

superposition technique. The assumption was that local drag coefficients had a 

value of 1.2 and gave average drag coefficients of 1.1 for turbulent activities 

with no plant density, and they related the effects on sediment yield for 

different forms of taIl vegetation. A quantitative approach to estimate 

manning's roughness as a measure of drag was developed by Petryk and 

Bosmajian (1975) . This technique examines the depth of flow, which is either 

less than or equal to the highest vegetation, and is important in estimating the 
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variations In manning's roughness with respect to the change in depth. 

Alternatively, the use of biomechanical concepts and field methods to estimate 

the roughness of natural vegetation has been proposed by Kowen and Li 

(1980) . 

A mathematical model for estimating conservation of momentum in multi

connected flows was developed by Raupach and Shaw (1982). Following this 

mathematical approach, Raupach et al. (1986) performed several experiments 

that highlighted the nature of atmospheric flows over a vegetation using wind 

tunnel in a laboratory to generate currents and atmospheric flows over an 

artificial canopy of vegetation. The velocity measurement was obtained on the 

simulated canopy and several terms constituting the balance of kinetic energy 

within the canopy were estimated. Their results underscored the importance of 

turbulent kinetic energy over the canopy in channel flow modelling. Temporal 

domain separation was difficult in linear models because of local changes, 

leading to the development of time steps. This approach was able to solve the 

shallow water equation for tidal dynamics with higher accuracy and allowed 

the model to look more closely at tidal component relationships (Westerink, 

1989). It was also considered that water circulation affects the overall 

performance of the model and a finite element technique was used to 

overcome instability because of nonlinear flow occurring at the water and land 

interface (Sidn & Lynch, 1988). In addition, the general wave equation was 

developed to solve the tidal motion equations using a finite element mesh that 

draws a clear boundary line for the model. 
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Based on the relationship between turbulence generation and energy transfer 

between aquatic plants, Nepf (1999) setup a model representing vegetation 

resistance and intensity of turbulence. D'Alpaos et al. (2006) advanced a 

numerical model to improve the cross-sectional view of channel flow, 

capturing sediment dynamics in the channel, vegetation changes and water 

flow resistance, and biomass gain as a result of vegetation. The effect of 

hydroperiod on vegetation survival on the indicated channel section is also 

captured by the model. 

Despite the importance of the General Wave Continuity Equation (GWCE) in 

the linear flow model, field studies have shown that there is still room for 

improvement. Accordingly, Ltittich et al. (1992) developed the ADCIRC 

model, which uses finite element 2D and integrates depth while accounting for 

geometric boundaries, bathymetric differences, and elevation changes. The 

advanced circulation model was validated and used in different estuaries and 

flood plains for hydrodynamic tidal marsh productivity modeling as well as 

flood assessment (Bcaopoulos et aI. , 2008; Hagen et aI., 2012; Alizad et aI., 

2014). Militello et al. (2004) documented the coastal modeling system (CMS), 

which calculates hydrodynamics, morphology and sediment changes under 

general tidal, wave and wind forcing. CMS can be coupled with the ADCIRC 

model (Luettich et aI., 1992). 

Tidal Wetland Analysis 

Water inflow into any coastal wetland is primarily caused by tides. Tidal 

current account for most of the energy in the ocean and can therefore be 

predicted. Semi-diurnal tides account for about 80% of the kinetic energy 
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exchange processes on the inner and middle shelves (Blanton et aI., 2004). 

The earliest models used for tidal simulation revealed significant differences 

between the theories and practical measurements. This has led to further 

advances in newer models that can better simulate tidal flow and circulation. 

There are basically two types of tidal circulation with a number of individual 

components, namely: semi diurnal and diurnal. Diurnal tides refer to daily 

tides with a single low tide and high tide on each tide day, while semi-diurnal 

tides refer to daily tides with two low tide and two high tides on each tide day. 

A tidal constituent refers to the push or pull exerted on the ocean by a massive 

body like the moon. 

There are various tidal constituent and their changing relationship with the 

global ocean, resulting in daily fluctuations in tides in different locations. The 

National Oceanic and Atmosphere Administration (NOAA) considers 37 

constituents to represent full tide. Of the 37 tidal components defined by 

NOAA, there are 8 major components of interest: N2, K2, M2, S2, K 1, 01, 

Ql, and PI. The major lunar semi-diurnal tide with the greatest effect on 

ocean tides is designated M2 and occurs every 12.4 hours. The main solar 

semi-diurnal tide is denoted S2 and occurs every 12 hours. The elliptical lunar 

semi-diurnal tide which occurs every 12.7 hours, is N2. The luni-solar semi

diurnal tide, which occurs every 11.97 hours, is K2, while K 1 is the daily lunar 

tide, which occurs every 23.9 hours. The second daily lunar tide that occurs 

every 25.8 hours is 01 and PI is the solar daily tide occurring every 24 hours. 

Finally, Ql is the Moon's major elliptical diurnal tide and occurs every 26.9 

hours. Each of the constituents has a different frequency and amplitUde, 
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creating a varying total collective tide when they come together. This 

phenomenon recurs after 15 days. Tidal components are key variables for most 

numerical models used to simulate tidal energy. Tidal responses occur at 

different frequencies, which are determined by combining astronomical 

frequencies and frequencies of nonlinear exchanges in Basic Principles 

(Parker, 1991). 

In lagoons and estuaries, in addition to tides, other factors affecting water 

circulation within the area are wind, bottom roughness, water inflow, rainfall 

and evaporation, making the physical science behind estuarine circulation very 

complex. The estuary system is highly dependent on tidal, bathymetric, and 

bottom roughness conditions, as well as turbulence energy. Regardless of the 

complexity of estuaries and wetlands, the key feature is the interchange of 

flows within the system in averaging circulation (MacCready & Geyer, 2010). 

From first-generation models to current models with many improvements in 

tidal energy parameterization, the evolution of equilibrium flow continues to 

use similar assumptions and solutions. 

The dynamics of a wetland is represented by the rate of accretion with respect 

to hydroperiod. The accretion itself results from the inorganic and organic 

entrapment of sediment and the production of organic matter within the 

wetland. There is a relationship between wetland accretion and biomass 

production with respect to the tidal hydroperiod (Morris, 2002). Therefore, if 

biomass productivity and its change because of sea level rise is modeled in 

coastal wetlands, the effects of sea level rise could be effectively quantified. 

Tidal dynamics can be modeled using a 2D hydrodynamic model to provide 
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sea surface elevation when a number of parameters are known as well as the 

site bathymetry (Alizad et aI., 2015). 

Models for Wetland Studies 

In general, modeling the wetland environment is very difficult and has only 

gotten easier with the rapid growth of computer programming over the past 

several decades . Basically, the solution lies on the Navier-Stokes equations for 

shallow water using various numerical techniques. With a two-dimensional 

(2D) depth averaged model, the analyses become faster. Several studies have 

been performed on 20 models that do not account for wetland depth, most of 

this work had several limitations in predicting reality (Trepel et aI., 2000; 

Ganju et aI., 2016; Iglesias et aI., 2019). Therefore, it is recommended to 

utilize a depth integrated 2D model that considers the depth of the wetland 

platform. The most commonly used 2D models for wetland studies are: 

WASPIDYNHYDR5 , Surface water modeling system (ADCIRC and CMS) 

and Mike21 (Danish Hydraulic Institute) Delft3D, TELEMAC-MASCARET, 

SWASH, ROMS, MOHID, SELFE, Tuflow-FY, FVCOM etc. 

The main difference between 3D and 2D models is that 3D bathymetry 

consists of several small cells that can create any desired volume. In 3D and 

2D models, the volume of water is defined using bathymetry and the 

characteristics of the water and the area. Factors such as evaporation, 

barometric pressure and wind can be added for these types of models. They 

are essentially powered by gravity, air pressure and wind. The model is able to 

simulate various biological processes, physical processes and chemical 
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processes. The pro of 2D model over 3D model is that it is less time 

consuming both in terms of mesh generation and simulation time. 

Strength of CMS Model for Nearshore Modeling 

The coastal modeling system (CMS) is a 2D finite volume circulation and 

morphology model that solves the shallow water equation to calculate water 

surface elevations, current velocity and transportation of sediment on a 

quadtree grid (Militello et aI., 2004). CMS has been integrated into the surface 

water modeling System (SMS). CMS has three sediment transport modules 

(Buttolph et aI. , 2006), which are linked to the CMS-flow to calculate 

morphological changes and sediment exchanges on grid cells (Buttolph et aI., 

2006). One more vital attribute of the model is the depiction of nonerodable 

cells which can be a coastal defense structure (Hanson & Militello, 2005). 

CMS encompasses menus and control modules within SMS that permit the 

specification of input and output and the level of interaction among the various 

processes. SMS also comprises utilities for data visualization, result 

calculation, monitoring of simulation progress, and execution of the project. 

CMS-Flow is very effective for computation, simple to setup and has all the 

features essential for coastal engineers. The model has been used in many 

inlets and the sensitivity have been highly tested . 

Researchable Issues using CMS Model 

The Coastal Modeling System (CMS) was developed and verified in mUltiple 

researches dealing with bathymetric analysis. CMS was primarily used to 

study hydro-dynamic behaviors on the Texas coast (Brown et aI., 1995). CMS 

has been used to assess water velocity fluctuations in the Gulf Intracoastal 
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Waterway (Militello & Kraus, 1998). CMS was used to analyze wind-forced 

circulation in the non-tidal bay of Baffin (Militello, 1998; Militello & Kraus, 

2001). Militello, (2002) and Militello et a!. (2003) used CMS to calculate flow 

velocity of one month time interval and changes in bed elevation. A successful 

coupling of CMS with ADCIRC was demonstrated by Militello and Zundel, 

(2002). CMS was used by the USA army corps of engineers (USACE) coastal 

inlet research program (CIRP) to calculate tidal and wave forced currents at an 

ideal inlet and ebb shoal for storm waves (Militello & Kraus, 2003). Another 

study by Militello and Zundel (2003) demonstrated how to couple CMS and 

STWA VE (a surface wave model) and its ability to compute morphologic 

changes and sediment transport. Current uses include the computation of 

hydro-dynamics and morphologic changes for both tidal and wave driven 

(Bounaiuto & Militello, 2004; Lin et a!. , 2004). Batten and Kraus (2006) used 

CMS flow to assess bank erosion at Mattituck Inlet, New York. Buttolph et a!. 

(2006) described improvements in the two-dimensional circulation model 

(CMS) and its ability to compute sedimentation at inlets, shipping channels 

and adjacent beaches. Li et a!. (2009) presented efforts to numerically model 

littoral sediment transport to simulate physical processes on high-energy 

coasts at the Bight of San Francisco, California. Snchez et a!. (2011) utilized 

the coastal modeling system (CMS) to model the long-term morpho-dynamics 

of coastal barrier inlet systems. 

Summary of Literature Review 

Coastal vegetation like mangroves, seagrasses and salt marsh provide 

ecosystem services and sequester more carbon dioxide than terrestrial 

counterparts due to their productivity. They are beneficial to the survival of 
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millions of people. Mangroves have experienced significant anthropogenic 

degradation. Mapping mangrove extent is critical to understanding progress 

towards achieving SDGs, as it serves as indicators for monitoring local, 

regional and global progress. To address issues related to the effects of 

anthropogenic degradation and climate variability on coastal ecosystems, 

timely and accurate information on mangrove dynamic trends is needed. 

Though there have been several efforts to assess mangrove ecosystem in 

Africa, most of these studies have always used optical satellite imagery which 

is affected by cloud cover. In the present study, a new method that combines 

optical and radar imagery to reduce the effect of cloud cover was proposed. 

Also , the impact of climate change on mangrove ecosystem have been 

reported in literature. However, information on these impacts vis-a.-vis the 

response of mangroves is limited in Ghana. Therefore, a 2D model was used 

to study the impacts of sea level rise on mangrove ecosystem. 
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CHAPTER THREE 

METHODOLOGY 

Study Location 

This study was conducted at the Anlo Beach Wetland complex which is 

situated along the coastal belt in Shama District, Western Region of Ghana as 

shown in Figure 4. The study domain covers about 50.42 kro2 and lies roughly 

within latitudes 5°1'30"N and 5°3'5"N, and longitudes 1 °34'30"W and 

1 °37'30"W. The area is covered by relatively disturbed mangrove vegetation, 

lying within the plains of Pra River which opens directly into the Atlantic 

Ocean (Friends of the Nation, 2014). 

I',~ 

"54'50"W 

Figure 29: Map of study location 

"24'20"W 
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Anlo Beach is situated at the lower area of Pra River Basin which is 

characterized by high surface temperature of about 21.74°C to 31.6°C for 

minimum and maximum (Bessah et aI., 2018). The climate of this area is 

classified as 'tropical monsoon (Am) (Kottek et aI" 2006), with mean monthly 
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relative humidity greater than 70%, all year round (K wabena et a!. , 2013). The 

dominant soil types in the upper part of the basin are Acrisols and Lixisols 

which are characterized by fairly high possibility for runoff (Ross et a!., 2018), 

exposing the low parts of the watershed to water disasters during periods of 

heavy rainfall (Bessah et a!. , 2020). 

A Friends of the Nation (2014) on-site survey found that the elevation is 

generally low and ranges from 0 - 42m, the shoreline has an uneven sandy 

beach, and the sea areas are typically open, with medium- to high-energy 

pounding surf as the dominant wave type. According to the Coastal Resources 

Center and Friends of the Nation (20] 0), the rate of coastline erosion has been 

calculated to be 100 m per 50 years on average. The wetland has varying 

hydrological and chemical conditions and it is predominantly shallow (0.25-

1.5 m) . The neighboring marshes is dominated by Paspalum vagina/urn 

(Poaceae) , whereas the mangrove species that predominate here include 

Avicennia, Rhizophora, and Laguncularia (Okyere, 2018). 

An estimated 2,231 people live in the Anlo Beach community, the majority of 

them are fishermen (1,028 men and 1,203 women), according to the Coastal 

Resources Center/Friends of the Nation, (2010). Additionally, this population 

depends 011 the mangrove ecosystem for a variety of purposes, which 

intensifies the dynamics of land use change. 

Research Design and Methodological Approach 

To address the stated objectives, this study was organized into four sub-

headings, namely mangrove extent mapping, mangrove structural assessment, 

hydrodynamic modelling, and mangrove growth or mortality under different 

SLR. A cloud-based computing through Google Earth Engine (GEE) was 
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implemented as a I . . nove approach to mangrove assessment and mOl1ltormg. A 

field campaign was conducted for ground truthing and to capture domain 

characteristics which were fed into a remote-sensing based wetland Response 

Model with biological feedback, to forecast mangrove ecosystem responses to 

sea level rise as a climate driver. Radar and optical satellite data were used in 

GEE to study the impact of using different remotely sensed data on the 

precision of mangrove mapping and assessment. 

Mangrove Extent Mapping 

Mangrove extent maps were created by classifying both optical and radar 

images separately and in combination. The maps were created for two time 

periods, namely 2009 and 2019, to examine changes in mangrove extent over 

time. The Google Earth Engine database was filtered for Sentinel-l imagery 

that is in Wide Swath (IW) interferometric mode, descending pass, 25 m 

resolution, VH and VV polarization and falls within the region of interest. The 

Sentinel-I dataset was filtered by date to retrieve images from 2019. The 2009 

ALOS PALSAR-2 image was acquired from the JAXA website (Table 7). The 

corresponding Landsat8 and Landsat 7 images were also retrieved from 

Google Earth Engine database. The images: Landsat 8 surface reflection Tier!, 

Landsat 7 surface reflection Tier!, Sentinel-l image, PALSAR-2 image and 

global mangrove distribution data were called into the Google Earth Engine 

code editor. Then the images were visualized in the layer bar. A speckle filter 

was applied to the SAR images to minimize speckle noise (Ayman et aI., 

2017) and the speckle filtered images were also added to the layer bar (Figure 

5). The Sentinel-l dataset in the Google Earth engine is ready for analysis 
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because it has already undergone processing such as formal noise removal, 

terrain and radiometrically corrected. The ALOS PALSAR-2 data was 

converted from LoglO to decibels (db) using the formula below (Jaxa, 2006; 

Lavalle & Wright, 2009). 

yO = 10 log 10 (DN 2
) + CF .. .. .......... .. .............. .. ............ .. .......... . 1 

Where yO = Sigma naught in dB, ON = digital number (pixel value), CF 

(calibration factor) - -83.0 for the PALSAR data. 

The quality of the optical images was improved by creating a function that 

removes cloud shadows (Hansen et aI. , 2013). The normalized difference 

vegetation index (NOVl) was calculated from the optical image to obtain a 

composite image, which was used as an information layer to inform the 

classifier (Nathan et aI. , 2018). Then the image was also added to the layers. 

This procedure was done with Landsat 8 (for 20 \9) imagery and Landsat 7 

(for 2009) imagery. 

Table 7: Description of Oatasets used for Mangrove Extent Mapping 

SI Data Description Source 
N Type & 

Date 

1 

2 

Sentinel 
1 

(2019) 

ALOS 
PALSA 

A synthetic aperture radar (C-Band) with Google Earth 
interferometric wide swath mode (IW), 
having a descending pass, a resolution of 25 Engine 
m, dual polarization of VV and VH. Image 
Collection 10: Platform 
ee.lmageCollection("COPERNlCUS/S 1_ G 
RD"), more details can be found at Database 
https://developers.google.com/earth
engine/guides/sentinell. 

A synthetic aperture radar at L-Band, Japan 
having a 10° X \ 0° 111 longitude and 
latitude, a resolution of 25 m, dual 
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3 

4 

R-2 

(2009) 

Landsat 
8 
Surface 
Reflecta 
nce Tier 
1 

(2019) 

Landsat 
7 
Surface 
Reflecta 
nce Tier 
1 (2009) 

polarization of HH and BY, this data has Aerospace 
been ortho-rectified and slope corrected . 
Image Collection ill : Exploration 
N06W002 09 sl HH 
N06W002 - 09 -s I-HV , available at Agency (JAXA) 
http://wvN:.eo~c.Utxa.jp/ALOS/en/palsar fn 
f/fnf index.htm EORC 

Has been atmospherically corrected and Google 
contain five visible and near-infrared bands, 
two short wave infrared bands and two Engine 
thermal infrared bands. Image Collection 
fD: platfonn 
ee.lmageCollection("LANDSAT/LC08/CO I 
/Tl_TOA"). More details at database 
https://landsaLusgs.gov/ 

Has been atmospherically corrected and Google 
contain four visible and near-infrared bands, 
two short wave infrared bands and one Engine 
thermal infrared band. Image Collection ill: 

ee. Image Collection 
(ILANDSAT/LE07/COI/Tl_TOA"). More 
details at https://landsat.usgs.gov/ 

platform 

database 

Earth 

Earth 

5 Global A baseline global distribution map of 
Mangro mangroves for year 2010. GMW was 
ve produced by Aberystwyth University 111 https://data.une 
distribut collaboration with solo earth observation 
ion (soloEO) It provides geospatial information p_ 
vector about mangrove extent and changes. 
(GMW) 

(2010) 

Construction of Random Forest Model 

wcmc.orgldatas 

ets/45 

The approach used in the current study follows that of Erika et a!., (2020); 

Barenblitt and Fatoyinbo (2020b), where backscatter representative samples 

are collected for one land cover of interest. Supervised classification (random 

forest classification) involves the creation of training samples (Figure 5) to 

train the classifier (Pelletier et a!., 2016; Shelestov et a!., 2017). Training and 
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validation data for thO . 
IS work IS based on field campaigns conducted between 

December 2020 and April 2021. The global mangrove distribution vector 

(Table 7) was also d d C nee e as relerence data to guide the creation of training 

samples. 

.. 

Datnbnse 

, ________ -! S)11Wetic ApertUre R.,dar 
'----------.:.., ·Sentinel· l 

":.:':.: ' i 

·ALOS PALSAR·2 

;t',. ; 
~!~~. IH'O,('('s'iioJ; 

~Sp(~k\r flllt'"n!: 
,; " .... 

6Hrf.y or 0Jlh,'al & 
SAR Imag"" 

Figure 5: Flowchart of Data Extraction and Random Forest Model 

SAR Classification 

The speckle-filtered VH image was displayed and a polygon symbol was 

selected from geometry import box close to the drawing tool to add training 

data. Each newly created layer, e.g., open water, represents a class in the 

training data and was stored as a FeatureCollection named Landcover. Four 

different land cover classes were selected for: open water, mangroves, other 

vegetation/wetlands and bare land. The defined classes were merged to get a 

single collection here referred to as 'new FeatureCollection'. 
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The newly created FeatureColiection was used to retrieve the values of 

backscatter for each identified land cover for the Sentinel-I. The Sentinel-l 

(SAR) image was defined and the training points were used to create the 

' training' data (new FeatureColiection). This creates a 'training point' 

statistics based on the classes (new FeatureColiection) and was used to 'train' 

the classifier (random forest) . The classification was 'run' and result shown in 

the 'layers ' bar. 

Landsat Image Classification 

Again, the newly created FeatureColiection was used to retrieve the values of 

reflectance for each land cover class identified for the Landsat 8 imagery that 

was also defined. The ' training' data was created by overlaying the training 

points (new FeatureColiection) on the image and used 'B I', 'B2', 'B3', 'B4', 

'B5', 'B6', 'B7', 'NDVI' to generate the statistics. This was used to 'train' the 

random forest classifier. 

Both Landsat and SAR Classification 

Now, the newly created FeatureColiection was used to retrieve the values of 

backscatter for each land cover class selected for both Landsat 8 and Sentinel-

1 imagery. Both the optical and SAR images were defined and the training 

data were obtained by overlaying the training points on the defined image as 

shown in Figure 8. This was used to train the classifier (random forest). The 

classification was 'run' and the result shown in the 'layers' bar. 

Comparison of Time Series 

The processes described above were repeated using PALSAR-2 imagery 

(2009 imagery) and Landsat 7 imagery (2009 imagery). The mangrove 
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changes for the two time periods were calculated for each scenario using a 

function called 'reduce region' and the values were converted to hectares 

(Barenblitt and Fatoyinbo, 2020b). 

Independent Assessment of Classification Accuracy 

Overall, 1553 training sample points were created using stratified random 

sampling technique (Figure 7-9). The classification accuracy was evaluated 

using an error matrix according to the classifier. The training samples were 

divided randomly, using 1232 points (80%) to train the model and 321 points 

(20%) for validation. This eliminates systematic errors resulting from using 

the same sample points to training and validation (Pimple et al., 2018). The 

output of the stratified random sample points was exported to Google Drive 

and used to perform accuracy assessment independently in QGIS using the 

method described by Barenblitt and Fatoyinbo (2020b) . This method involves 

using high-resolution satellite imagery available in QGIS to validate each 

point. 
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Figure 6: Optical and synthetic aperture radar image overlay 

Figure 7: Independent A ccuracy Assessment for the year 2019, Independent 
Accuracy Assessment for Landsat 8 Image 
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Figure 30: Independent Accuracy Assessmentfor the year 2019, Independent 
Accuracy Assessment for Sentinel-1Image 

Figure 31: Independent Accuracy Assessmentfor the year 2019, Independent 
Accuracy Assessment for both Sentinel-1 and Landsat 8 
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Mangrove Structural Assessment 

Mangrove above ground biomass (AGB) as at year 2000 was estimated using 

basal area weighted height estimates from the SRTM DEM (Simard et aI. , 

2019). The AGB estimates from satellite was compared with field 

measurements to examine the temporal and spatial variation over time. 

Estimation of Mangrove Stand Height 

Mangrove canopy height is a key element in calculating aboveground biomass 

and carbon sequestration rates since it has a strong correlation with carbon 

turnover through litterfall production (Saenger & Snedaker, 1993; Rovai et aI., 

2016). In this study, Mangrove canopy height estimate was done using SRTM 

digital elevation measurement (Farr et aI., 2007) generated in February 2000. 

Mangrove height estimation was done following an approach that had had 

been effectively applied at regional scales (Simard et aI., 2008; Simard et aI. , 

2006; Fatoyinbo & Simard, 2013). The SRTM DEM values represent a height 

that lies between the elevation of the ground and the canopy's highest point 

(aka Lorey's height) (Simard et aI. , 2008; Simard et aI., 2006; Lagomasino et 

aI., 2016). The maximum height is estimated to be 1.697 X (times) this value 

based on empirical data from field measurements (Simard et aI., 2019). We 

used the global mangrove distribution vector to isolate mangrove areas and 

mask non-mangrove regions in the SRTM elevation data set (Giri et aI., 2011). 

To estimate mangrove height, the SAR image (ALOS PALSAR-l) and the 

SRTM elevation model were clipped to the global mangrove distribution 

vector file (Figure 2) . This extracts the backscatter values for the areas where 

the baseline mangrove vector indicates that there are mangroves. These values 

and the SRTM elevation were used to estimate the maximum canopy height 
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using a regression model that relates SRTM elevation measurements to 

maximum canopy height as described by Simard et al. (2019). 

SRTM Hmax == 1.697 X HSRTM ... . .. . ........ . .. . .... . .... . .. ... . .. .. . ... 2 

where HSRTM is the original DEM, and SRTM Hmax is the new canopy height 

data set. 

Estimation of Mangrove Above Ground Biomass 

Once mangrove canopy height is established, estimates of above-ground 

biomass (AGB) can be generated from tree size and tree height components 

using allometric equations (Comley & McGuinness, 2005). The AGB of the 

mangrove forest in this study was estimated based on the relationship between 

mangrove biomass and canopy height (Simard et aI. , 2019; Lucas et aI., 2014). 

The general equation that relates SRTM to canopy height and aboveground 

biomass is as follows: 

Aboveground Biomass (B) == 3.25 X Hba 1.53 ..... . .• . ... . . .• . . ..... ... . . 3 

Where, weighted height of basal area (Hba) - 1.08*SRTM 

Field Data Collection 

Mangrove inventory involves either direct measurements of the biomass 

through destructive harvesting of specific trees, or indirect calculation from 

measurements of tree sizes and inferences using allometric equations (Chave 

et aI., 2005; Keller et aI., 2001). While the destructive method involves cutting 

down the trees, the non-destructive method relies on an allometric equation 

(Gibbs et aI., 2007). Allometric formulars are gotten from various physical 

tree parameters such as DBH, height, crown diameter, etc. (Vashum & 
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Figure 32: Laying of Transecl during Field Work 

Figure 33: Mangrove Height Measurement during Field Work 
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Jayakumar 2012) TI · I d· . 
, . 11S met 10 IS used to evaluate bIOmass and carbon stock 

of trees without felling them. However, allometric equations are often site and 

species dependent. A universal allometric relationship described by 

Komiyama et al. (2005) is generally recommended for calculating above 

ground mangrove biomass on-site. This allometric equation is used in the 

current study to calculate above ground biomass for a number of individual 

trees in sample quadrants. The total biomass of the plot was gotten from the 

addition of all biomass values of each quadrant along the transect. The 

biomass was then expressed in milligram per hectare (mg/ha). 

For this study, ground-based mangrove inventory data was collected using 

indirect estimation and systematic random sampling designs. Field surveys 

were conducted from December 2020 to April 2021 (Figure 12-14). In order to 

survey the mangroves, a 100-meter transect was created perpendicular to the 

shoreline using measuring tape. For sampling, four distinct 5 m x 5 m 

quadrants were set up 25 m apart. Four different 5m x 5m quadrants were set 

up for sampling, spaced 25m apart. Sampling points coordinates were 

recorded with a Garmin 64s GPS to capture specific areas in the field. The 

height and diameter measurements (DBH) were carried out for all mangrove 

species above 2m in all quadrants during the course of the field surveys. A 

calibrated long pole was used to measure the heights of each tree species. 

DBH was captured with Electronic Digital Calipers. 

Site specific allometric equations are rare for mangrove, and thus universal 

equations are most frequently used. For this study, AGB was estimated using 

two different universal allometric equations (Chave et aI., 2005; Komiyama et 
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a!., 2005) and a regional allometric equation (Njana et aI., 2015) which were 

developed specifically for mangrove since there is no published allometry for 

the st d . u y site. These allometries were chosen because they are primarily 

dependent on wood density and height. The universal pantropic equation by 

Komiyama et al. (2005) is given below: 

AGB = 0.251 D2.46 P ..... . . .. ... .. .... .. .. .. ..... . ... . ... .. ..... .... .... ... (4) 

Where, 

AGB = above ground biomass (kg/tree), p = wood density (g cm -3) and D = 

DBI-! (cm). This equation has a standard error of 8.5% (Komiyama et aI., 

2005; Fatoyinbo et a!., 2018). 

The universal model by Chave et al. (2005) for mangrove forests is given by 

equation (5) : 

AGB = 0.0509 P D2 H ..... . .. .. ...... .. . .. ... ..... ..... .... ................... (5) 

Where, 

AGB = above ground biomass (kg/tree), p = wood density (g cm-3
) and 0 = 

DBI-! (cm) and H = height (m). This model integrates tree height information 

to reduce the standard error. 

Another allometric equation which integrates height, OBH and wood density 

is given by Njana et al (2015) equation: 

1.13 D2.08 HO.29 (6) AGB = 0.353 P ....... .......................... .............. .... .. . 

Where, 

AGB = above ground biomass (kg/tree), p = wood density (g cm-
3

) and D = 

DBH (em) and H= height (m). 

76 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



These models were developed to estimate biomass of Avicennia and 

Rhizophora species which are also indigenous mangrove species in the study 

area. Wood density used in this study is from the World Agroforestry Wood 

Density Database as reported by Muhd-Ekhzarizal et al. (2017) and Fatoyinbo 

et al. (2018). Since the wood densities are not specific to Ghana, average value 

of 0.87 was used (Table 10). 

Figure 34: DBH Measurement During Field Work 
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Table 8· Wo d d . 
• 0 enslty for mangrove species 

Mangrove Type Density (g cm-3
) 

Low Mid High 

Avicennia marina 0.79 0.81 0.85 

Bruguiera gymnorrhiza 0.63 0.84 1.05 

Ceriops tagal 0.87 0.97 1.09 

Heriteria littoralis 0.83 0.98 1.23 

Lumnitzera racemosa 0.75 0.88 0.97 

Rhizophora mucronata 0.94 1.02 1.12 

Sonneratia alba 0.62 0.78 1.00 

Xylocarpus granatum 0.59 0.70 0.83 

Source: World agroforestry wood density database cited in Fatoyinbo et af. 
(2018) 

Hydrodynamic and Morpho-dynamic Modeling 

The general flowchart for conducting numerical modeling is shown in Figure 

15. The planning phase includes meetings with supervisors to review the 

modeling objectives and key features that govern circulation and 

sedimentation in the study area. 
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Figure 35: Overview of the General Modeling Steps 

The data acquisition and processing were carried out. The main data for this 

study includes: bathymetry, shoreline profile, digital elevation model and 

sediment properties in the study area. A Google Earth image covering the 

entire study site was extracted and corrected, yielding structure and shoreline 

locations. All data collected provided enough information for the description 

of the physical processes going on in the study area and provided a strong 

basis for the configuration and calibration/validation of the eMS as outlined in 

the sections below. 
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Model Background 

Hydrodynamic calculations In this study were performed using coastal 

modeling system (CMS). CMS is one of the models in surface water modeling 

system (SMS). The SMS was originally built by the Environmental Modeling 

Research Laboratory (EMRL). The CMS is an integrated numerical modeling 

system used to simulate water levels, near-shore waves and currents, sediment 

transport and morphology changes for coastal seas and small estuary systems 

(Lin et a!., 2008; Reed et a!., 2011). CMS was designed for channel 

performance and sediment exchange between inlets and adjacent beaches. 

CMS-Flow computes currents and water levels and other physical processes in 

the coastal zone (Buttolph et a!., 2006; Wu et a!., 2011). The model includes 

an integrated representation of sedimentation and morphology changes 

through transport rate formulations. The morphology change is calculated 

using two-time steps, for rate of transport and for morphology change. CMS

Flow rely on the SMS for grid generation, model setup and results display. 

Classic applications of CMS-Flow involve analysis of both past, present and 

future performance of navigation channels; wave and current interactions in 

canals and near shipbuilding structures; and transport problems of sediment 

management within coastal inlets and surrounding beaches. 

Underlying Equations and Numerical Principles 

CMS Flow model uses 2D finite volume to solve the shallow water equation 

of conservation of mass and momentum. The relevant equations are resolved 

on a quadtree grid by means of a completely implicit finite volume technique. 

Finite volume method is based on the truth that many natural laws are similar 
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to the principles of conservation of momentum and mass. From this notion, the 

method develops a formulation comprising conservation of flow equations 

defined in an averaged sense over the grid cells. The strength of the finite 

volume technique is that it performs only flow evaluations for the element 

boundaries. This advantage also applies to non-linear problems, making the 

method robust for non-linear conservation laws usually encountered in 

sediment transport or water quality. 

The general equations of mass and momentum conservation may be written 

as: 

oh o(huj) 
at+~=O ...... .... ...... ... .... ..... .... ... .. .. .. ..... .... ... ......... .... . 7 

) 

mb Tbi •.. . ...•..•...... .•••• • . • • ........ .• ...••••.•..•.••..... . • •. . • •.•..•.•. •••. .•.• 8 
P 

where 

t = time (s), h = water depth (m), Ui = current velocity (m/s), Ie = Coriolis 

parameter (rad/s). Eij= 1, for i = l,j = 2, Eij= -I, for i = 2,j = I, and Eij= 0, 

otherwise, p = sea water density (~1 025 kg/m\ g = gravitational constant 

(~9.81 m/s\ Vt = horizontal turbulent eddy viscosity (m2/s), Lbi = wave

averaged bed shear stress (Pa), mb = bed slope coefficient, Sij = wave 

radiation stress (Pa m), and Rij = surface roller stress (Pa m). NB the full 

mathematical derivations of these equations are beyond the scope of this 

study. 
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Sediment Transport Formula 

In eMS, sediment transport is modeled using the total load sedimentation 

equation (Sanchez & Wu, 2011): 

where Ct = concentration of total load (kg/m\ Ct. = concentration of total 

load equilibrium (kg/m\ at = coefficient of total load adaptation, Vi = 

coefficient of sediment mixing (m2/s), Ws = velocity of sediment fall (m/s), rs 

= suspended sediments fraction, and f3t = factor of total load correction. 

The coefficient of total load adaptation is calculated as: 

a t = Uh/(LtW
s
) .. ..... . . .. . . . . .. .. . . .... . ..... ... . ... . . .. . . . . . . ... •.... •. .. .•. . .. 10 

Where 

L t = the length of total load adaptation (m) 

The bed change formul ar is as follows: 

Where 

Ps = sediment density (kglm\ Pm = bed porosity, Zb = bed elevation(m), Ds 

= coefficient of empirical bed slope (constant), qb = rate of transport of bed 

load mass (kg/mls) (Sanchez et aI., 2014). 

Model Assumptions 

George E. P. Box is known with saying that all models are wrong: some 

models are useful. This statement denotes that a model is only an abstraction 

of reality. Two dimensional models have been defined by scientists and 
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engineers with ce t '. .. r am assumptions to enable mathematical solutIOns. These 

assumptions and its understanding allow the modeler to determine the 

suitability of a model to a specific scenario or set of conditions. If the physical 

phenomenon represented by the model do not match with the model 

formulation assumptions, the model is incorrect and less suitable. Here is a 

general numerical assumption: the calculation of hydrodynamics and 

sedimentation relies on the assumption of a constant bed topography and only 

the rate of sedimentation or erosion for this topography is calculated at each 

location. 

Data Collection for Setting-Up and Parameterization of the Model 

Data for the preliminary model construction, calibration, and prediction for 

this study was collected from December 2020 to May 2021. The field 

campaign followed the method described by Jose et al. (2017) and consisted of 

general identification of landforms of the study area, identification of 

dominant plant species, determination of in situ biomass density, 

measurements of critical hydraulic controls, retrieval of tidal gauge data 

(surface water level) and bathymetry. Figure 16 shows the overview of the 

approach as used in this study. The data requirements for this study are as 

presented in Table 9. 
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Figure 36: Overview ofbio-morpho-feedback interactions incorporated into 

the model 

Required Data and Sources 

Table 9: Required Data and Sources for Hydro-dynamic Simulation 

SIN Data Type Source 

Topographic data USGS SRTM DEM 
https://earthexplorer.usgs.gov/ 

2 Bathymetric data GEBCO 
https://www.gebco.netldata 

3 Land cover data and Shoreline profile USGS Website/Google Earth 
https://earthexplorer.usgs.gov/ 

4 Water level measurements Gaging Station/ Copernicus 
Marine and ESAICCI Product 
CMEMS 

5 Biomass Density and Mangrove stand 
height Field work 

6 GPS Coordinates Field work 

84 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Model Setup and Calibration 

Working with Bathymetry 

Model set-up involves the process of mesh generation, the choice of model 

parameters, and the specification of model forcing . The bathymetric data used 

in this study comes from the general ocean bathymetric chart (GEBCO) 

https:llwww.gebco.netJdata . The elevation data used is from the shuttle radar 

topography mission at https:llearthexplorer.usgs.gov/. All bathymetric datasets 

were converted to a common reference system (WGS 1984, UTM zone 30N) 

so that the same horizontal plane and vertical datum reference and unit (m) are 

maintained. The scatter datasets were imported into the SMS environment and 

the datasets were merged to obtain a single bathymetry as shown in Figure 17 

below. 
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Figure 37: Merged Scatter Dataset (Bathymetric data) 
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Computational Grids (Quad tree Generation) 

The bathymetry and an arc that defines the shoreline of the study area were 

used to create the computational grid (Figure 18). The bathymetry is imported 

as a scatter point dataset while the shoreline is represented as an arc in the 

CMS flow coverage. In addition, an elevation data set was included and the 

projection for the project was defined. A quadtree generator coverage was 

created and selected to become the active coverage. By means of the create 2D 

grid frame tool, the extent of the domain of computation was defined and 

converted to quadtree grids. This defines the cells, assigns depth values to 

each cell, and creates strings of cells around the boundaries. 

Boundary Conditions for CMS-Flow 

Boundary conditions for a eMS flow simulation are defined using feature arcs 

in a eMS flow boundary coverage. A boundary arc enclosing the ocean side of 

the quad tree grid was created from the top where the grid frame meets the 

shoreline arc, then following the grid frame border around to where it meets 

the shoreline arc again (Figure 17). Both the shoreline arc and the ocean 

boundary condition arc are unassigned by default. Boundary conditions and 

the defining tidal signals were assigned to the arc around the grid boundary. 
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Figure 40: Feature polygon/or Grid Generation 
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F or more effi . . 
. IClent simulation, active and inactive regions were created and 

used to desianate a h 
b reas t at never get wet as inactive. To do this, a polygon 

(Figure 18) was t d . . . 
crea e 111 the activity coverage to enclose the land while 

chanaing the ocea . ., . . . 
b n regIOn lram lI1actlve to active. 

The activity classification coverage was then mapped to quadtree grid (Figure 

19). The resolution of the grids was adjusted to capture the rate of flow in the 

river and channels. The minimum grid size was set to 5 m while the largest 

grid size was set to 160 m as shown in Figure 20. 

The model was forced at the offshore boundary with tidal constituents and sea 

surface elevation generated using Copernicus Marine and the ESA/CCI 

product CMEMS (Figure 21). Manning roughness values were defined in the 

model based on the distribution of 3 classes of land cover exposed to tides 

(Table 10): forested wetlands; emerging herbaceous wetlands; and open water 

(Liege & Westerink, 2006). Model calibration and simulations were 

performed using these values as they relate to bed properties according to 

empirical data and numerical experiments (Mattocks et aI., 2006). 
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Figure 41: Quadtree Grid, Save Point and Grid Resolution Adjustment 

Table 10: Manning Roughness Values for Different Surfaces 

SIN Land Cover Type Manning roughness (n) 

1 Built-up, open space ' 0.0404 

2 Built-up, low intensity 0.0678 

3 Built-up, medium intensity 0.0678 

4 Built-up, high intensity 0.0404 

5 Bare land 0.0113 

6 Deciduous Forest 0.36 

7 Evergreen Forest 0.32 

8 Mixed Forest 0.40 

9 herbaceous wetlands 0.1825 

10 woody wetlands 0.086 

11 open water 0.025 

Source: Sanchez et aI., 2011 
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Table 11: Model parameters, initialization and boundary conditions 

Tab 

General 

Flow 

Sediment Transport 

Output 

Item 

Start Daterrime 

Simulation duration 

Ramp duration 

Solution Scheme 

Number of threads 

Hydro-dynamic time step 

Wetting and Drying 
depth 
Bottom Roughness 
Dataset 

Sediment density 

Sediment porosity 

Bed load scaling factor 

Suspended load scaling 
factor 
Morphologic acceleration 
factor 

Bed slope diffusion 
coefficient 

Total load adaption 
length 
Sediment size class 
diameter 
Minimum bed layer 
thickness 
Maximum bed layer 
thickness 
List1 

List2 

List3 

Water surface elevation 

Current velocity 

Morphology 

Transport 

91 

Setting 

01/011200012:00:00 am 

744hrs 

24hrs 

Implicit 

4 

600 seconds 

0.05 

Manning' s N= 0.025, 
0.086, 0.1825 

2650 kg/m3 

0.4 

1.0 

1.0 

100 

0.1 

10m 

0.26mm 

0.05m 

0.5m 

[0] [0.5] [744] 

[0][3][744] 

[0][1][744] 

List1 

List1 

[Checked]List2 

[Checked]List3 
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CMS Calibration and Simulation 

A first step before th . I' e Slmu atIOn of the hydrodynamics and morphodynamics 

was the calibration f th eMS . . o e model. The model calIbratIOn was performed 

using an established method, in which the most sensitive parameter 

(Manning's roughness) was manually adjusted. Manning roughness values 

were defined in the model based on the distribution of 3 classes of land cover 

exposed to tides (Table 10): woody wetlands; emerging herbaceous wetlands; 

and open water. Model calibration and simulations were performed using 

these values as they relate to bed prope11ies based on empirical data and 

numerical experiments . Three different simulations of one month (one tidal 

cycle) were run with different values of Manning's roughness. The simulations 

aim to predict the influence of surface roughness on the ability of the model to 

calculate the water surface elevation. Simulated time series of water surface 

elevations were compared with measured water surface elevations. The 

goodness-of-fit statistics was used to assess model performance. The model 

was calibrated by comparing the simulated water surface-elevation results to 

gauge measurements, and the best fit was used for longer-term simulations. 

We calculated the goodness-of-fit statistics using the standard error of the 

estimate (Sy.x): 

Sy.x = 
I,(residuals 2

) 12 ....... .. .... .. .. ..... ... ............... ................. 
n-k 

Where, n == number of values, k == number of parameters fit by regression. 

The model parameters were specified as indicated in Table 11. The 

hydrodynamic model solves the shallow water equation and calculates the 

current velocities, the water surface-elevation and the morphology changes. 
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The model also calculates the relative hydroperiod, which was used in a 

vegetation model to study t·he . I . potentIa Impact of SLR on the · mangrove 

ecosystem. 

Sea Level Rise Scenarios 

Imaginary open boundaries of CMS-Flow enable water exchange together 

with model-forcing, such as Water level variations. Fresh water inflows or 

water surface elevation can be specified along this boundary. Water level 

changes can be obtained from measurements of coastal tide gauges or 

composed of tidal constituents. In the CMS, the general formula for the water 

surface elevation (WSE) boundary is given by: 

~B =~O+~E+1'.~ · .. ..... . . . ... . . . .. . ......... . . . .. .. . . .. . . . .. ............. 13 

Where 

~B = boundary water surface elevation, ~o = initial boundary water surface 

elevation, ~E = specified external boundary water surface elevation, and 1'. ii = 

water surface elevation off-set. The variables are measured in meter. 

Longer term Simulation and Incorporation of Sea Level Rise Scenarios 

For this study, sea level rise (SLC) curve scenarios were used to simulate the 

effects of sea level changes (Figure 21). Sea level rise forecasts based on 

various socioeconomic scenarios are the subject of periodic assessment reports 

from the Intergovernmental Panel on Climate Change (JPCC, 21). The 

National Oceanic and Atmospheric Administration (NOAA) created a web-

based tool to determine worldwide future SLR rates based on the most recent 

IPce forecasts and accounting for local land subsidence (Li & Brown, 2019). 

The SLR curves were obtained for the global ocean and were specified in the 
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assign boundary conditions section of the SMS interface. Since there is 

currently no local SLR projection, it is appropriate to apply global SLR 

scenarios in the study region. 

The CMS model was run with different SLC scenarios to simulate the 

influence of SLR projections on the hydro- and morpho-dynamics of the area. 

Each simulation utilized one of three SLR scenarios for the 2100 projection, 

which included a low scenario (0.3 m), an extremely high scenario (2.5 m) and 

no sea level rise (constant) scenario. 

The total simulation time was set to 31 days (corresponding to a complete tidal 

cycle) and a morphological acceleration factor of 100 was specified in the 

model control, which makes it equivalent to 100 tidal cycles (-8.4 years) 

condition (Styles et a!., 2018). Process-based morpho-dynamic models such as 

CMS require enormous computing time for simulations. The morphological 

acceleration factor is therefore a valuable tool available in CMS to minimize 

simulation time (Lesser et a!., 2004). 

94 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



QU.dtr .. .a(m) 

21.00 N 

<1.22 1 -t." 

·O.u 

·10.11 

·11., • 
• 21.17 

· ·u ... 

... .22 

.81.00 

Eley,"tlol1 & Tidal Forcing 

l ii41 

Figure 42: Model Control and Parameterization 

~ 
~ 
.E 
II 
.J 
<I) 
II: 

NOM . IIL 2017 Rt1IIlve ... Ltv.1 Chlnge IctneMOIlo< : Global ... Ltv.1 Chlnge 

2.5 r---------------------~ "" IO/J.lOI7E.e.rn. 

2.0 

1.5 

1.0 

0.5 

.... OOJJJOI7 HtjI 

...... NOW'j17~ 

.... ~17~~ 

...... NOM2017 n-c.CI'r 

.... N0M20l1ltlo' 

0.0 L ..... ~~~:=:====~ _______ _.J 
2060 2070 2080 2000 2010 2020 2030 2040 2100 

Year 

Figure 43: Sea level Rise Scenariosfrom Year 2000 - 2100 

95 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Mangrove Growth and Mortality under varying SLR 

The growth and I t l·t f . . . 
nOI a I y 0 mangroves are governed by lIlundatlOn penods 

and bed elevation (Krauss et aI. , 2008). Mangrove tree growth is described by 

Shugart (I 984), Chen and Twilley (1998) and Berger and Hildenbrandt 

(2000), as follows : 

aD = GD(l-(DH)/ (Dmax Hmax) 
at (274+3bzD-4b

3
DZ)· · · .. .. .•. ... . .. . ... .. .... . ... . ....••...•.. • . . • .. .. 14 

where 

D = stem diameter (cm), H = tree height (cm), and t = time (years). Dmax and 

Hmax = maximum stem diameter and tree height. The mangrove dimensions 

are based on field observations and mangrove inventory. G, b2 and b3 are 

growth parameters (van Maanen et aI., 2015). 

Equation 14 describes mangrove growth over time under ideal growth 

conditions. In effect, however, mangrove growth is restricted by external 

pressures. Inundation (1) and competition (C) pressure are considered to be the 

major factors governing mangrove growth and the effects are accounted for by 

adding correction factors to Equation 14 (Chen & Twilley, 1998; Berger & 

Hildenbrandt, 2000; van Maanen et aI. , 2015; Xie et aI., 2020): 

aD _ GD(l-(DH)/(DmaxHmax) * I ~ C ............ .... . .......... . ........... . .. 15 
at - (274+3b zD-4b3 DZ) 

The factors 1 and C have a range from 0 (no growth) to 1 (unlimited growth). 

The inundation (1) depends on the hydroperiod and it is assumed that there is 

an optimal inundation regime where the rate of growth is highest (I = 1), with 

reduced growth rates (I < 1) when the mangroves are submerged for either 

longer or shorter periods (van Maanen et aI., 2015). The growth and 
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development of tl . le mangrove trees are therefore dependent on the regIme of 

inundation and the bed elevation. This type of mangrove growth rate response 

to' d ' mun atlOn has been previously demonstrated by Krauss et al. (2008). 

Competition between trees affects growth based on nutrient availability. The 

correction factor for competition (C) is thus a function of the mangrove trees 

biomass (van Maanen et aI., 2015). Mangrove begins to die after prolonged 

periods of growth suppression due to external factors (Berger & Hildenbrandt, 

2000). So, if J = 1 and C = 1, then tree growth is finest; while lower values 

mean tree growth is limited by flood stress and competition. Tfthe product I*C 

in Equation (15) is below 0.5 for the period under consideration, mangrove 

density practically decreases (van Maanen et aI., 2015; Xie et aI., 2020). 

I=a*p2+b * p+c .. ........ .. .. .............................. . 16 

where p represents the relative hydroperiod (T(inundated)/T(tide)) and a, b, 

and c are constants which were set to -16, 16, and -3 (Appendix 1). 

Equation (15) suggests that there is a maximum growth rate for a given 

hydroperiod. The assumption is that there is an ideal inondation regime when 

the growth rate is maximal (1 = 1), with reduced rates of growth (1 < I) when 

the mangroves are inondated for either shorter or longer periods (van Maanen 

et aI., 2015). The values of a, band c were chosen such that J = 1 when the 

mangroves are flooded half the time (p = 0.5) (Xie et aI., 2020). 

c- 1 ....... ... ..... . .......... .. ............................ .17 
- l+exp[d(Bo.s-B)] 

where 
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d is a constant = -0.00005 and Bo.s is the value of B for which C = 0.5 and it is 

~ 1.04'105 kg/ha 

In this study, eMS was used to simulate the relative hydroperiod for different 

sea-level rise scenarios which was fed into the dynamic vegetation model to 

calculate inundation regime as well as competition stress, to give insight into 

mangrove response to hydro- and morphodynamics triggered by SLR. The 

relative hydro periods were used in Equation 16 to calculate the inundation 

stress (1) and then Equation 17 was used to calculate the competition factor 

(C) based on the mangrove biomass density from the field work. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Mangrove Extent 

Several iterations were run using different datasets of Sentinel-I , Landsat 8 

separately and a combination of both (i.e., Sentinel-I + Landsat 8) which 

represents the three scenarios for 2019. This process was repeated using 

ALOS PALSAR-2 and Landsat 7 to get the corresponding scenarios for 2009. 

The results of mangrove extent and other land cover changes for the two time 

periods (2009 and 2019) are presented in Figure 22. 

3000 - _ Water Body (ha) 

C Mangrove (ha) 

C Bare LandIBuiltu p (ha) 

Other 
E:J VegelalionlWetla nd (ha) 

I-1: 2000 

tl 
w 

~ 
u 

i-l _ 1000 

1m In n I. . o 

. 44' LULC Change Detection for 2009 and 2019 using Different FIgure. . 
Classification Scenano 

. I sSl'fication scenarios were established to quantify the extent of Three mam c a 

d ther land cover classes for two-time period: classification of mangroves an 0 

'fi . of SAR data only, and the third scenario optical data only, classl lcatlon 
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combined both 0 f I d 
pica an SAR data (Figure 23 - 28). The result of Landsat 8 

data only (2019) h d s owe Mangrove extent of 1259 ha, water body extent of 

'1622 ha' Bare la d -t f . , n ex ent 0 524 ha and other vegetation extent of 2617 ha 

while Landsat 7 (2009) data showed Mangrove extent of 1321 ha, water body 

extent of ' 1620 ha ', Bare land extent of 266 ha and other vegetation extent of 

2634 ha (Figure 22). The overall classification accuracy for Landsat 8 was 

98.9% with Kappa Coefficient of 0.979 while the overall accuracy for Landsat 

7 was 96.8% with Kappa Coefficient of 0.94. The second classification 

scenario showed Mangrove extent of 933 ha, water body extent of '1115 ha' , 

Bare land extent of 144 ha and other vegetation extent of 1741 ha for Sentinel-

I (2019) while ALOS PALSAR-2 (2009) data showed Mangrove extent of 

979 ha, water body extent of ' 1104 ha', Bare land extent of 208 ha and other 

vegetation extent of 1731 ha (Figure 22). The overall classification accuracy 

for Sentinel-I classification was 84.6% with Kappa Coefficient of 0.718 while 

the overall accuracy for ALOS PALSAR-2 was 96.6% with Kappa Coefficient 

of 0.938. The third classification scenario showed Mangrove extent of 1340 

ha, water body extent of '1891 ha', Bare land extent of 549 ha and other 

vegetation extent of 2062 ha for Sentinel-I and Landsat 8 combined (2019) 

while ALOS PALSAR-2 and Landsat 7 (2009) combination showed 

Mangrove extent of 1613 ha, water body extent of' 1770 ha', Bare land extent 

of 370 ha and other vegetation extent of 2617 ha. The overall classification 

accuracy for both Sentine1-1 and Landsat 8 when combined together was 

99.1 % with Kappa Coefficient of 0.984 while the overall accuracy for both 

ALOS PALSAR-2 and Landsat 7 was 99.6% with Kappa Coefficient of 0.992. 

The error/confusion matrix of mangrove classification for each scenario are as 
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shown in Table 12-17. The result showed that the combination of optical 

imagery alongside th· syn etJc aperture radar reduced the error of omission or 

commission of rna d . ngroves an Increased the user's/producer's accuracy up to 

99%. 

Figure 45: Mangrove extent Map for the year 2009 for Optical Image only 

(Landsat 7) 

.' I . 
) . .. -:- fI~ 

r • 

• r 

. 46. Llangrove extent Map for the year 2009 for PALSAR Image only FIgure . lVll • 
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· -

Figure 47: Mangrove extent Map for the year 2009 for both Optical and 
PALSAR Data 

Figure 48: Mangrove change Mapsfor the year 2019 for Optical Image only 

(Landsat 8) 
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Figure 49: Mangrove extent Mapfor the year 2019 for Sentinel-1 Image only 

Figure 50: Mangrove extent Mapfor the year 2019, for both Optical and 

Sentinel-1 Data 
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Table 12' Conf . M . 
8 I 

. USlQn atrtx of mangrove change mapping using Landsat 
mage 

Classes Open Mangroves Bare Vegetation/ Row User's 
Water Land Wetland Total Accuracy 

Open Water 
(%) 

81 0 0 0 81 100 
Mangroves 0 635 0 12 647 98.1 
Bare Land 4 0 28 0 32 87.5 
Vegeta tion/Wetland 0 3 0 942 945 99.7 
Column Total 85 638 28 954 1705 
Producer's 95.3 99.5 100 98.7 
Accuracy 
(%) 

Overall Accuracy - 98.9%; Kappa Coefficient = 0.979 

Table 13: Confusion Matrix of mangrove change mapping using Sentinel-
1 (SAR) Data 

Classes Open Mangroves Bare Vegetation/ Row User's 
Water Land Wetland Total Accuracy 

(%) 

Open Water 79 0 2 0 81 97.5 
Mangroves 0 521 0 126 647 80.5 

Bare Land 2 0 23 7 32 71.9 

Vegetation/ 0 119 6 820 945 86.8 

Wetland 
Column Total 81 640 31 953 1705 

Producer's 97.5 81.4 74.2 86 

Accuracy 
(%) 

Overall Accuracy = 84.6%; Kappa Coefficient - 0.718 

Table 14: Confusion Matrix of mangrove change mapping using a 
combination of Optical Satellite Image and SAR (2019) 

Classes 

Open Water 
Mangroves 

Open 
Water 

Bare Land 
Vegetation/Wetland 0 
Column Total 85 

81 
o 
o 

Producer's 
Accuracy 
(%) 

100 

Mangroves 

0 
642 

0 
9 
651 
98.6 

Bare 
Land 

0 
1 
32 
0 

33 
96.9 

Vegetation/ 
Wetland 

0 
4 
0 
936 

940 
99.6 

Row 
Total 

81 
647 
32 
945 
1705 

User's 
Accuracy 
(%) 

100 
99.2 
100 
99 

Overall Accuracy 99.1%; Kappa Coefficient - 0.984. 
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When mapping ad' . 
n mOl11tonng coastal ecosystems over an extended period of 

time usino solely opt'c I til ' ' . .. 
b I a sae Ite Imagery, MWlta et al. (2012) and W IJedasa et 

a!. (2012) noted a number of drawbacks. For effective land-use and land-cover 

mapping, recent developments in machine learning classifiers and a 

proliferation of high-performance cloud computing platforms, such as Google 

Earth Engine (GEE), have made it possible to merge optical and radar data 

(Jhonnerie et a!., 2015; Midekisa et aI., 2017; Erika et aI., 2020). 

The results show that there are differences in all three classification scenarios 

for each period (2009-2019). For example, classification using Synthetic 

Aperture Radar data showed that most structural aspects were captured but 

underestimated the vegetation cover and this is consistent with observations in 

other studies (Carreiras et aI., 2013; Lucas et aI., 2014; Nathan et aI., 2018). In 

contrast, optical satellite image classification captured the tree canopy more 

(Erika et aI., 2020) but seems to overestimated the extent. The ALOS 

PALSAR-2 data was more effective in characterizing mangroves than the 

Sentinel- I data, likely due to the high penetrability of the L-band into 

mangrove tree canopy as compared to C-band. 

Table 15: ConfusionlError Matrix of Land Cover Classification using 

Landsat-7 Image. 

Classes Open Mangroves Bare Vegetation! Row User's 
Water Land Wetland Total Accuracy 

{%} 

Open Water 76 0 2 3 81 93.8 
4 615 1 27 647 95.1 Mangroves 
1 4 26 1 32 81.3 Bare Land 

Vegetation/W etland 0 12 0 933 945 98.7 

Column Total 81 631 29 964 1705 

Producer's 93.8 97.5 89.7 96.8 

Accuracy 
(%) 

96.8%; Kappa Coefficient 0.936. Overall Accuracy 
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Table 16: Confusio IE M' ALOS PALS n rror atflx of Land Cover Classification using 
AR-2 Image. 

Classes Open Mangroves Bare Vegetation! Row User's 
Water Land Wetland Total Accuracy 

Open Water {%} 

Mangroves 
76 0 0 5 81 93.8 
0 615 0 32 647 95 .1 

Bare Land 1 4 23 4 32 71.9 
Vegetation!Wetland 0 12 0 933 945 98.7 
Column Total 77 631 23 974 1705 
Producer's 98.7 97.5 100 95 .8 
Accuracy 
(%) 

Overall Accuracy = 96.6%; Kappa Coefficient = 0.938. 

The LULC changes for the study area between 2009 and 2019 are as presented 

in Figure 22 - 28. The results of the scenario that combined both optical and 

radar images showed that there have been changes in the various LULC (water 

body, mangrove, bare lands/built-up and other vegetation/wetland) over the 

two-time period. In 2009, mangrove covered 1613 ha, bare land/built-up areas 

accounted for 370 ha, other vegetation/wetland accounted for 2617 ha while 

water body covered about ' 1770 ha' equivalent. In 2019, mangrove decreased 

to 1340 ha, bare lands/built-up increased to 549 ha, other vegetation/wetland 

decreased to 2062 ha while water body increased to 1891 ha. There is 

significant change in mangrove cover (16.9% loss), bare land/built-up areas 

(45% gain), other vegetation/wetland (21 % loss) and water body (7% gain). 

This indicates that mangrove and other vegetation have been converted to 

either bare land (which could be agricultural land) or built-up areas. Water 

body has also taken up part of the areas which were previously covered by 

either mangrove or other vegetation. 
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Table 17: Confusion/E . 
combinat' f rror Matnx of Land Cover Classification using a 

• Ion 0 Landsat-7 Image and ALOS PALSAR-2. 

Classes 

Open Water 
Mangroves 
Bare Land 
Vegetation/Wetland 
Column Total 
Producer's 
Accuracy 
(%) 

Overall Accuracy 

Open 
Water 

81 
0 
0 
0 
81 
93.8 

Mangroves 

0 
647 
1 
1 
649 
97.5 

Bare 
Land 

0 
0 
26 
0 
26 
96.9 

Vegetation! Row 
Wetland Total 

0 81 
0 647 
5 32 
944 945 
964 1705 
99.5 

99.6%; Kappa Coefficient = 0.992. 

User's 
Accuracy 
(%) 
93 .8 
95.1 
81.3 
98.7 

We used confusion matrices and an independent accuracy assessment to 

provide detailed statistical information for each classification scenario. The 

confusion matrix for Sentinel-] image classification alone showed that out of 

647 pixels which were identified as Mangrove, 52] pixels were correctly 

classified while the confusion matrix for the corresponding optical image 

alone showed that out of 647 pixels which were identified as Mangroves, 635 

pixels were correctly classified (Table 12-17). However, relatively high 

confusion was found between mangrove and other vegetation for Sentinel-] 

and ALOS PALSAR-2 classification as revealed by the independent accuracy 

assessment (Figure 7 - 9). It was also revealed that the Sentinel-l and ALOS 

PALSAR-2 images alone tend to underestimate the mangrove vegetation 

canopy, however, ALOS PALSAR-2 performed better than Sentinel-I (Figure 

22). On the other hand, Landsat 7 and Landsat 8 alone tend to overestimate the 

vegetation cover. The overall classification accuracy for the Sentinel-I image 

was 84.6%, while the overall accuracy for the Landsat 8 alone was 98.9%. The 

overall accuracy when both images were combined was 99.1 % with kappa 

coefficient of 0.984 showing that the classification using a combination of 

optical and radar data has a better agreement in the observations (Table 15-
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17). It was observed that the combination of Landsat-7 and ALOS PALSAR-2 

produced better aCCl . d' . Iracy m Icatmg that L-band performs better than C-band. 

The third classificaf . " . Ion scenano that combll1es optIcal and radar data YIelded 

the best classific f I ~ . a Ion resu ts lor 2009 and 2019 as the classes were relatIvely 

well distributed, capturing both clustered mangroves and mangrove patches 

near the water body (Figure 23-28). The visual interpretation showed that the 

third classification scenario achieved a better result, indicating the high 

potential of this mangrove assessment and monitoring method. The 

independent accuracy assessment underscores the robustness of this approach, 

as shown in Figure 7 - 9. Despite the fact that the same 'training sample' was 

used to train the classifier, the accuracies differ depending on the scenario. 

The scenario combining both optical and radar data showed better agreement 

and less confusion compared to when either optical or radar data was used. 

This study confirms that combining synthetic aperture radar data with optical 

satellite data is the way forward in mangrove assessment and mapping, as 

recommended by several authors (Attarchi & Gloaguen, 2014; Ayman et aI., 

2017; Hu et aI., 2020). The random forest algorithm performed well to clearly 

classify the different land cover classes within the study area. The resulting 

classification is consistent with other studies that used random forest 

algorithms for land cover classification (Ming et aI., 2016; Thanh et aI., 2020). 

Estimation of Canopy Height and Above Ground Biomass 

The mangrove canopy height map was generated for the year 2000 using the 

global mangrove distribution vector file, SRTM DEM, and SAR data. This 

h t'I 'lzed to create estimates of AGB for the same time period. was t en u I 
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Mangrove He~ht EstImates for Yar 2000 
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Figure 29: Mangrove Height Estimates/or Year 2000 

N 

Legend 
_ 0 • 11.24 MIl/hII 

o 11.26 ·42." Mg/ha 

_ 42.1 • '0B.22 Mg/ha 

_ 101.23·357.7' Mg/ha 

Figure 30: Mangrove AGB Estimates/or Year 2000 

The analysis of mangrove canopy height distribution shows that in year 2000, 

mangrove canopy height ranges from about 6.3 - 12.7 m (Figure 29). This 

estimate of mangrove height significantly corresponds to previously reported 

values in different estuaries in Ghana (Abeto et aI., 2011 and Nortey et aI., 
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2015). The spat" I d' 'b . 
la Istn utlOn of aboveground biomass patterns is determined 

by the relative influence of local environmental gradients, as well as the 

spatial distribution of m '" I' (Th angroves species 111 a given coasta region om, 

1982; Rovai et aI. , 2018). The result of AGB estimate for year 2000 showed 

that above ground biomass ranged from 0-368 mglha (Figure 30). 

Field inventory of above ground biomass 

The tree diameter at breast height (DBH) ranged from 0.67 to 6.48 cm for all 

species. Mangrove height ranged from 2.3 to 6.34 m. This indicates that the 

mangrove forest shows little structural development and agrees with the 

results of Aheto et aI., 20 II and Nortey et aI., 2015 at different estuaries in 

Ghana. There is a strong correlation between height and diameter at breast 

height of the trees sampled. The results of AGB estimates varied depending on 

which allometric model was used, as shown in Table 18 below. The 

aboveground biomass observed in the first quadrant is as follows: 65.33, 39.80 

and 87.52 (kg ha· l) for the equation developed by Komiyama et aI., 2005; 

Chave et aI., 2005 and Njana et aI., 2015 (Table 17). Aboveground biomass 

ranged from 0 to 87.52 kg ha·'. Generally, AGB estimates decreased with 

distance from the shoreline. 

Table 18: Analysis of plot level field AGB (Kg ha-l) generated using 
three allometric models 

Quadrant H(m) DBH (cm) AGB (kg) AGB (kg) AGB (kg) 
A B C 

I 3.2- 6.3 1.4-6.48 65.33 39.80 87.52 

2 2.3 -6.0 0.67 -4.91 32.77 19.16 43.40 

3 0 0 0 0 0 

4 2.5-6.10 4.48 8.75 5.43 11.54 
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The best estimate f b 
o a oveground biomass was obtained with the regression 

model couplino- tre h . h . 
b e elg t, wood densIty, and diameter at breast height, which 

agrees with the re It f I su so ot1er researchers (Nortey et aI., 2015; Fatoyimbo et 

aI., 2018). It was found that GEE has the potential to estimate the spatial 

distribution of AGB d ·t· . . ensIles In mangroves. The SRTM canopy elevatIOn was 

also very strongly correlated with the field elevation measurements. The main 

aim of using GEE in this study was to explore its ability to estimate AGB 

using SRTM data. Previously, AGB estimation involved highly complex 

calculations that required Python or Java code in MATLAB software 

(Lagomasino et al. 2016; Nsset et aI., 2016; Qi & Dubayah, 2016). 

Preliminary Hydrodynamic Simulations 

Model Calibration Result 

The model was calibrated by comparing simulated water surface elevation 

results against gauge measurements. The comparisons between simulated and 

measured water surface elevation for the Takoradi Gauge Station are shown in 

Figure 31 - 33. The simulated and measured water surface elevations matched 

better when the Manning's roughness value was set to 0.1825 and this setting 

was used for the simulation of 100 tidal cycles. For the standard error of 

estimate (Sy.x), the smaller the values, the better the estimates. The 

corresponding goodness-of-fit statistics are presented in Table 19. 
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Observed vs Simulated for N= 0 .025 

Observed 

Simulated 

Figure 3 J: Com"uted Ob . d 
N 

r VS selve . Water Surface Elevation (Manning 's 
=0.025) \J 

Observed vs Simulated for N= 0 .086 
Simulated 

Observed 

&00 

Figure 32: Computed vs Observed Water Surface Elevation (Manning 's 

N=0.086) 

Observed vs Simulated for N= 0.1825 
Observed 

Simulated 

500 

Figure 33: Computed vs Observed Water Surface Elevation (Manning's 

N=0.1825) 

For the one-month simulation using Manning' s N=0.1825 and without SLR, 

the maximum current velocity was 0.06 mls (Figure 34), the maximum 

sediment concentration recorded in a small section of the domain was 0.001 
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kg/m
3 

(Figure 35) d h an t ere was no noticeable morphology change (accretion 

or erosion) throughout the area (Figure 36). 

Table 19: Descriptive and Goodness 
Simulations 

of Fit Statistics for Preliminary 

SN Description Observed Simulated data 
data 

N=O.025 N=O.086 N=O.1825 

Number of 773 773 773 773 
values 

2 Minimum 0.1310 -0.6362 -0.3039 -0.2267 

3 Maximum 1.798 1.801 1.779 1.685 

4 Range 1.667 2.437 2.083 1.912 

5 Mean 1.005 0.2702 0.4633 0.5688 

6 Std. Deviation 0.3744 0.6714 0.4992 0.4102 

7 Std . Error of 0.01347 0.02393 0.01779 0.01475 
Mean 

8 Lower 95% CI 0.9790 0.2232 0.4283 0.5398 
of mean 

9 Upper 95% CI 1.032 0.3172 0.4982 0.5977 
of mean 

10 Coefficient of 37.24% 248.5% 107.8% 72.12% 

variation 

11 Skewness -0.03162 0.5930 0.8492 0.8582 

12 Kurtosis -0.8560 -0.9393 -0.3122 0.03129 

13 Goodness of Fit 0.3764 0 0.5001 0.4098 

(Sy.x) .6732 
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o 1000 2000 

Figure 34: Current Magnitude and Velocity jor 1 Month Simulation 

\ ·0.001 

Total Sec~iml'nt 
0.52 kcv.m/s 
0.00 ka/m/. -

o 1000 2000 

Figure 35: Sediment Concentration and Transportjor 1 Month Simulation 
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Erosion and Accretion (mJ 

2.00 0 

·1.60 + 
·1.20 

.-0.80 

·1.20 

o 1000 2000 

Figure 36: Morphology Change for 1 Month Simulation 

Figure 37: Current magnitude and velocity for no-sea level rise scenario over 

100 Tidal Cycles 
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-0.001 

-0.001 

Figure 38: Sediment concentration and total sediment transport for no-sea 
level rise scenario for J 00 Tidal Cycles 

Long Term Simulation Result 

The results of current magnitude and velocity, total sediment concentration 

and transport, and morphological changes after a 100 tidal cycle (-8.4 years) 

simulation under varying sea level curve are presented in Figure 37 - 45 and 

Table 19. The impacts of different SLR scenarios (constant, low and extreme 

high) on current magnitude and velocity are as shown in Figures 37,40 and 

43, respectively. Figures 38, 41 and 44, respectively show the impacts of 

constant, low and extreme high SLR on sediment concentration as well as total 

sediment transport. Figures 39, 42 and 45 show the impacts on accretion and 

erosion. These values appear to be similar in Figure 37 - 45, however, Table 

19 clearly shows the variations. Morphology change was calculated by 

subtracting the accretion from the erosion and this is interpreted as net 

morphology change (Table 19). 
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The net morphology changes (i.e. , difference between erosion and accretion) 

for no sea level rise scenarios (constant), low sea level rise scenarios (0.3 m) 

and extremely high sea level rise scenarios (2.5 m) are -1.84 m, -1. 74 m and -

2.29 m, respectively. It was observed that the area will be inundated 71 % of 

the time under extreme high sea level scenario. 

Effects of Different SLR Scenarios on hydrodynamics 

To investigate the influence on the hydrodynamics, the flow fields for constant 

SLR, low SLR and extremely high SLR were extracted over the investigation 

period. The result shows that the magnitude and direction of the current are 

influenced by the SLR scenario. This result is shown in Table 20. 

Erosion and Acc,.t~ (m) 
Q 

2.00 

, 
'. 

J 
1.60 

·1.20 

·0.80 0. J 
'0- "" 

\ .OAO ~ .~. ,.'f 
" ~ ' ~ •... , 
.~ ~ ~ 

~ 
•• «~o Q 

• ' " • C> 0 
~ <) op 

'. 0 . 

-2.00 

9 Ch 'n morphologyfior no-sea level rise scenario for J 00 Tidal Figure 3 : ange I 

Cycles 
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• •• • -'\ItP ••• I 
o 1000 2000 

Figure 40: Current magnitude and velocity for low sea level rise scenario for 
100 Tidal Cycle 

Morphological Changes Triggered by Different SLR Scenarios 

The varying sea level rise curve are used in this study to investigate how the 

ecosystem responds to different rates of sea level rise and whether this 

response is constant or accelerates through time. The outputs of these model 

runs are analyzed for bed morphology changes as shown in Figure 50. It was 

observed that extreme SLR favoured high sediment deposition (accretion) 

around the mangrove area with reduced erosion downwards (Figure 50). 

The hypsometric curves of the constant, low, and extremely high SLR effects 

on morphological changes after 100 tidal cycles as shown in black, blue, and 

red-coloured lines in Figure 50 show that, although the differences are small, 

significant morphological changes occurred toward the end of the simulation 

period. This finding is similar to the obse~ations of van Maanen et aI., 2013 
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in a sandy tidal embayment. The relative impact of SLR on accretion and 

erosion can be see fl· h . . 
n 10m t ese curves. The change In hypsometry for different 

SLR . 
scenanos became more pronounced after about 5 years, showing that 

accretion mainly occurred before this period. The Preliminary model 

simulation of one month (one tidal cycle) without SLR confirms this 

observation. It could be inferred from the result that sediments were mainly 

redistributed in the first 4 years to reach equilibrium. This is similar to the 

observation of Li et aI., 2013 at a naval station in USA. Interestingly, it was 

observed that erosion was more pronounced with low and constant SLR 

whereas erosion decreased with extreme high SLR scenario at the end of the 

simulation period. Again, van Maanen et al. (2015) and Khojasteh et al. 

(2021) recorded that during sea level rise, mangrove can enhance accretion 

while hindering erosion downwards . In general , sea level rise resulted in 

downward erosion of the shoreline, a process which was influenced by the 

presence of mangroves in the upper part around the inlet. 
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Figure 41 : Sediment concentration and total sediment transport for low sea 
level rise scenario over 100 Tidal Cycles 

ERltlion and Acc,.Ilon 
D 

.-... ~ .. , 
o 1000 2000 

Figure 42: Change in morphology (m)for low sea level rise scenario over 100 

Tidal Cycles 
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Table 20: Hydro a d h d' . b" n rnorp 0- ynarnlc results for different corn mahons 
of SLR over 100 Tidal Cycles 

SN Parameters Values for different scenarios 

NoSLR LowSLR Extreme SLR 
1 Max current velocity 0.564 0.613 0.548 

(m/s) 

2 Max sediment 0.075 0.078 0.077 
concentration 
(kglm3

) 

3 Total Sediment 0.069 0.124 0.071 
Transport (kg/m/s) 

4 Net morphology -1.836 -1.74 -2.288 
change (m) 

5 Hydroperiod (%) 0.64 0.65 0.71 

1000 

't de and velocity for extreme high sea level rise Figure 43: Current magnz u 
scenario over 100 Tidal Cycles 
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o 1000 zoOo 

Figure 44: Sediment conc t 1" d . h. hi. en ra Ion an total sediment transportfor extreme 
Ig sea evel rIse scenario over 100 Tidal Cycles 

0.' 

1000 2000 

Figure 45: Change in morphology for extreme high sea level rise scenario 

over 100 Tidal Cycles 

Additional details about the flow characteristics in tidal environments can be 

found in velocity curves, total sediment transport, and water surface elevation 

(Hunt et ai., 2015). As a result, each SLR scenario's ~enerated current 

magnitude, total sediment concentration, total sediment transport, and water 
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surface elevaf 
Ion curves were compared (Figure 47 _ 50). The outcome 

demonstrates th ttl · . 
a 1e scenarIO wIth the highest SLR had the greatest effect on 

the depth-averaged and cell-centered water surface elevation, current 

magnitude total sed ' . . . , Iment transport, and velocIty. FIgure 46 shows the non-

linear impacts of SLR on morphology changes, indicating that the extreme 

SLR will favour more sediment deposition and increase the hydroperiod while 

lower SLR will increase erosion. Building up elevation will be a critical 

adaptation strategy for mangrove ecosystems under lower SLR (Krauss et aI., 

20 I 0). 

Changes in bed elevation in the mangrove ecosystem depend on a combination 

of biophysical feedbacks (Kirwan & Megonigal, 2013). Such feedbacks 

include the damping of water velocities by mangroves, the increase in mineral 

sedimentation, and the deposition of organic matter by mangroves. If there is 

enough sediment input to move at the same speed with rising sea levels, land 

subsidence will not occur and mangroves may not be uprooted by tides 

(perona et aI., 2014; van Maanen et aI., 2015). 
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Figure 46: Hypsometric Curve for Morphological Changes induced by SLR 
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Figure 47: Impact of different SLR Scenarios on Current Magnitude and 

Velocity 
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Figure 49: Impact of different SLR Scenarios on Sediment Transport 
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Sedimentation and r I . 
e atIve sea level change relationship is very important for 

mangrove survival (K 
rauss et aI., 2013). Sea level rise is projected to raise 

water levels in est·' d 
ualles an may lead to potential flooding and erosion of 

neighboring beache (S & p " 
sweet ark, 2014). Under hIgh envIronmental stress 

caused by rap'd I I . . 
I sea eve flse and reduced sedIment supply, mangrove 

behavior is mainly governed by the abiotic factors (Xie et aI., 2020). 

The relative hydroperiod of mangrove ecosystem changes with sea level rise, 

and the environment may see a decrease in mangrove cover as a result 

(Ellison, 1991). It is anticipated that most mangrove ecosystems may not be 

able to keep up with predicted sea level rise because sedimentation is 

declining (Lovelock et aI., 20 I 5). However, some process-based models 

predict that mangrove ecosystems are less vulnerable to sea level rise (Ellison, 

1991 ; Krauss, et aI. , 2013; Lovelock, et aI., 2015). 

Influence of Varying Sea Level Rise on Mangrove Vegetation 

To examine the possible impacts of SLR on mangrove ecosystem, this study 

focused on how different scenarios of SLR will impact the inundation regime. 

Table 21: Relative Hydroperiod, Inundation and Competition Stress for 
different Sea Level Rise Scenarios 

SN Sea Level Rise Relative Inundation I*C 

Scenarios Hydroperiod Stress(I) (C=O.99) 

Constant Sea 0.64 (64%) 0.68 0.67 

Level 

(No change) 

2 Low Sea Level 0.65 (65%) 0.64 0.63 

Rise 

3 Extreme High Sea 0.71 (71%) 0.3 0.29 

Level 
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The inundation re · . . 
gllne IS an Important factor that controls mangrove survival. 

The results are Pd· 
resente m Table 21 . It was observed that the mangrove will 

be inundated for t I (710 . . 
00 ong Yo of the tllne) under extreme SLR. Accordmg to 

van Maanen et aI. , (2015), Mangrove mortality occurs when the product of the 

correction factors for mangrove growth caused by inundation (1) and 

competitive stress (C) is less than 0.5 . According to our findings, under the 

extreme high SLR scenario, the product of inundation (1) and competitive 

stress (C) is 0.29 which is less than 0.5 (Table 21), indicating that during 

periods of extreme sea level rise, the mangroves may stay submerged for a 

longer time, which may have an impact on their growth and general 

productivity. This finding is consistent with the observations of other 

researchers from different places (Geselbracht et aI., 2015; van Maanen et aI., 

2015; Xie et aI., 2020). According to Crase et al. (2013), mangrove roots 

cannot withstand being submerged for more than half of the tidal cycle . 

127 

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Conclusion 

CHAPTER FIVE 

CONCLUSION AND RECOMMENDATIONS 

The destruction of t . I . 
roplca and subtropical mangrove forests worldwide is one 

of the most urgent . 
environmental catastrophes of our time. The world may not 

achieve the Sustainable Development Goals without addressing deforestation 

and increasing resto' t' f . la Ion 0 mangroves and other forests . In this paper, we 

elaborated an approach to synthesizing the relevant database in a spatial 

framework using the Google Earth Engine platform and a random forest 

algorithm to generate more accurate mangrove extent maps. Cloud computing 

techniques and machine learning algorithms such as Google Earth Engine, as 

used in this study, have demonstrated the potential for accurate quantification 

of mangrove stand as well as various other land uses, particularly in c1oud-

prone areas. This could allow for more accurate estimation of mangrove 

changes at local, regional or global scales and to track progress in the 

sustainable development goals (SOGs). 

The combination of optical satellite data alongside synthetic aperture radar and 

random forest algorithm could be valuable for quantifying changes in 

mangrove ecosystems and their surroundings to fill knowledge gaps essential 

C M management and conservation. Overall, there is a significant lor an grove 

(16.9%) decadal decline in mangrove extent at the study site which could be 

attributed to land conversion, reflecting the need for conservation and 

. te monitoring and management. appropna 
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The hydrodynamics of h 
t e ecosystem are significantly impacted by the tidal 

flow caused by various sea I I' 
eve nse scenarios. This in turn impacted the 

morpho-dynamics h' h . . 
, W IC In turn ll1f1uenced the growth and development of 

Mangroves The rate f I I . 
. 0 morp 10 oglcal change is affected by the rate of sea 

level rise, with higher sea level rl'se leading to greater accretion and 

inundation The b d fil h' . . e pro I e ypsometnc curve shows the Impacts of the sea 

level rise scenario on morphology. For the three sea level scenarios tested, 

hypsometry appears to be relatively linear over the first half of the simulation. 

However, after 5 years there was a sharp change in morphology that lasted 

until the end of the simulation period. The influence of sea level rise on 

mangrove dynamics could be significant, particularly in situations with 

extremely high sea levels. Additionally, the relative hydroperiod for the three 

scenarios tested are 64%, 65%, and 71 %, suggesting that for the scenario with 

a substantial rise in sea level, the ecosystem is submerged 71 % of the time, 

adding to the stress on mangroves. 

This type of study can help coastal managers to understand where mangroves 

are currently found and how they have changed over time. The maps produced 

in this study are suitable to inform coastal management in the region and the 

methodology can be reproduced for the entire coastal zone of Ghana and 

beyond. In order to manage mangrove ecosystems effectively, it will be 

crucial to comprehend the intricate interactions between tidal flow, coastal 

hydrodynamics, morpho-dynamics, sea level rise, and their effects on 

tation policymakers in charge of preparing coastal mangrove 
mangrove vege . 

c tl e effects of climate change will find this information useful. 
ecosystems lor 1 
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Although OUr model . 
estImates mangrove extent fairly well, the main limitation 

to this study is the lack f 
o up-to-date data for the study area e.g., 2020 data and 

high-resolution images (e.g., 10m) as at the time of this analyses. Another 

drawback is tl t I . 
la on y ul1lform vegetation was taken into account. To 

investi oate how tl " . 
'" lese species mteract With one another and whether zoning 

happens as indicated in the literature, more vegetation types could be added 

(Alongi, 2002; Liu et a\., 2018). 

It is important to mention that the hydrodynamic model for this study was 

calibrated with water surface elevation from a single station outside the study 

domain . In the future, the model will be calibrated with not only water surface 

elevation from the location but also with current velocity. This will help 

inform further research that will also take longer-term simulation into account. 

Recommendations 

Based on the findings of this study, it is advised that the government should 

develop a conscious management strategy that goes beyond meeting 

immediate community needs and includes current and alternative livelihood 

strategies, sustainable resource management systems, and sustained public 

awareness on mangrove services and their value under climate change. In 

areas where degradation has taken place, it should be encouraged to 

continually replant mangrove propagules. 

To promote resilience and adaptation, rules that protect at-risk coastal 

. . t be upheld. These rules control illicit mining, indiscriminate 
commUnities mus 

. . lective logging and deforestation, as well as the spread of 
sand mmmg, se 

. I -lying and flood-prone areas. The reduction of non-climate 
settlement mto ow 
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stressors such as pollution, deforestation and land conversion are therefore 

recommended as adaptation options to enhance the resilience of the existing 

ecosystem. Reducing non-climate stressors can help to build the resilience of 

ecosystems by lowering the burden of existing stressors and enabling them to 

better cope with the additional stresses imposed by climate change. For 

example, reducing deforestation and land conversion can help to maintain the 

integrity of ecosystems and reduce the risk of habitat loss and fragmentation. 

It is advised that the government of Ghana implements a deliberate 

management plan to reduce GHG emissions and work with the university to 

create a database that includes information on rivers (such as water levels, 

currents, bathymetry, and water quality), land (such as topography, land use, 

and land cover), estuaries (such as water quality, water levels, and rivers), 

wetlands (such as area, biodiversity, and vegetation), and nearshore (such as 

area, water levels/tide changes, land use, etc .) in order to facilitate more 

coastal research. In other words, more measurement and surveying stations 

ought to be set up at various points along Ghana's coast. 
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Appendix l:_Dynamic vegetation model parameters 

Growth 
SIN Parameter Value Unit Source 

Berger and 
Hildenbrandt, 2000; 

Growth 162 cm-yr Chen and Twilley, 
constant G 1998 

Berger and 

Growth Hildenbrandt, 2000; 

2 constant 48 _04 Chen and Twilley, 

b2 1998 

Berger and 

Growth Hildenbrandt, 2000; 

3 constant 0_172 Chen and Twilley, 

b3 1998 

4 Fitness Xie et aI. , 2020 

function 
constant a -16 

5 Fitness Xie et aI., 2020 

function 
constant b 16 

6 Fitness 
Xie et aI., 2020 

function 
constant c -3 
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Appendix 2: 

1,/1 Load Sentinel-I C-band SAR Ground Range collection (log scale, VV, 
descending) 

var collection VV = ee.lmageCollection('COPERNICUS/S 1_ ORD') 

.filter(ee.Filter.eq('instrumentMode', 'IW')) 

· fi Iter( ee . Filter.1 istContains('transmitterReceiverPolarisation', 'VV')) 

.fi I ter( ee.Filter.eq ('orbitProperties -'pass', 'DESCEND IN 0')) 

.filterMetadata('resolution_ meters', 'equals' , 10) 

.fi I terBounds( roi) 

.select('VV'); 

II Load Sentinel-I C-band SAR Ground Range collection (log scale, VH, 
descending) 

val' collection VH = ee.lmageCollection('COPERNICUS/S 1_ GRD') 

.filter( ee. Filter.eq(,instrumentMode', 'IW')) 

· fi I ter( ee. F i Iter. I istContai ns('transm itterRecei verPo larisati on', 'VH')) 

.fi I ter( ee.Fi Iter.eq('orbitProperties -'pass', 'DESCENDIN 0')) 

.filterMetadata(,resolution _meters', 'equals' , 10) 

· filterBounds(roi) 

.select(,VH'); 

print( collection VV, 'Collection VH'); 

2.//Filter by date 

var SARVV = collection VV.filterDate(,20 19-08-0 I', '2019-08-1 O').mosaicO; 

var SARVH = collectionVH.filterDate(,20 19-08-0 1', '2019-08-1 O').mosaicO; 

3.// Add the SAR images to "layers" in order to display them 

Map.centerObject(roi, 7); 

Map.addLayer(SARVV, {min:-15,max:0}, 'SAR VV', 0); 

Map.addLayer(SARVH, {min:-25,max:0}, 'SAR VH', 0); 

. I d sk from the pixel QA band of Landsat 8 SR data. 
4.// FunctIOn to c ou rna 

function maskClouds(image) { 
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II Bits 3 and 5 are cloud shadow and cloud, respectively. 

var c1oudShadowBitMask = ee.Number(2).pow(3).intO; 

var cloudsBitMask = ee.Number(2).pow(5) .intO; 

II Get the pixel QA band. 

var qa = image.select('pixel_qa'); 

II Both flags should be set to zero, indicating clear conditions. 

var mask = 

qa. bitwiseAnd( cloudShadowB itMask).eq(O).and( qa.bitwiseAnd( cloudsBitMas 
k).eq(O)); 

II Return the masked image, scaled to [0, I]. 

return image.updateMask(mask) .divide( I OOOO).copyProperties(image, 
["system :time _start"]); 

} 

5'//Add Spectral Indices for Mangrove Mapping using Landsat 8 Imagery 

var addindicesL8 = function(img) { 

IINDVI 

var ndvi = img.normalizedDifference(['B5','B4']).rename('NDVl') ; 

II NDM [ (Normalized Difference Mangrove Index - Shi et al 2016 - New 

spectral metrics for mangrove forest identification) 

var ndmi = img.normalizedDifference(['B7','B3']) .rename('NDMI'); 

II MNDWI (Modified Normalized Difference Water Index - Hanqiu Xu, 

2006) 

var mndwi = img.normalizedDifference(['B3','B6']) .renameCMNDWI'); 

II SR (Simple Ratio) 

var sr = img.selectCB5').divide(img.select('B4')).rename('SR'); 

II Band Ratio 54 

. 54 -' g select('B6').divide(img.select('B5')).renarne('R54'); 
var ratio - 1m . 

II Band Ratio 35 
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var rati035 = img select('B4') d ' 'd . • . IVI e(lmg.select('B6')).rename('R35'); 

II GCYI 

var gcvi = img.expression('(NIRIGREEN)-I',{ 

'NIR':img.select(,B5'), 

'GREEN':img.select(,B3') 

} ).rename('GCYI'); 

return img 

} ; 

.addBands(ndvi) 

.addBands(ndmi) 

.addBands(mndwi) 

.addBands(sr) 

.addBands(rati054) 

.addBands( rati03 5) 

.addBands(gcvi); 

6. II Filter Landsat data by Date and Region 

var year = 2019; 

var startDate = (year-I )+'-0 1-0 I'; 

var endDate = (year+l)+'-12-31 '; 

II Apply filters and masks to Landsat 8 imagery 

var 18 = L8.filterDate(startDate,endDate) 

II Mask for clouds and cloud shadows 

.map(maskClouds) 

IIAdd the indices 

.map(addlndicesL8) 

7. II Composite the Landsat image collection per pixel, per-band basis using 

.medianO 
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var composite = 18 

II Uses the median reducer 

.medianO 

II Clips the composite to our area of interest 

.clip(roi); 

8. II Mask to areas of low elevation and high NDVI and MNDWI 

II Clip SRTM data to region 

var srtmClip = SRTM.clip(roi); 

IIMask to elevations less than 65 meters 

var elevationMask = srtmClip.lt(45); 

llUsed the NDVI and MNDWI bands to create masks 

var NDVIMask = composite.select(,NDVI').gt(0.25); 

var MNDWIMask = composite.seiect(,MNDWI').gt(-0.50); 

IIApply the masks 

var compositeNew = composite 

.updateMask(NDVIMask) 

. updateMask(MND W IMask) 

. updateMask( elevationMask) 

9. II Display results 

IISelect bands and parameters for visualization 

var visPar = {bands:['85','86','84'], min: 0, max: 0.35}; 

IIAdd layer to map 

Map.addLayer(compositeNew.clip(roi), visPar, 'Landsat Composite 2019') 

10. IIApply filter to reduce speckle 

var SMOOTHING_RADrUS = 50; 
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var SARVV jiltered = SARVV.focal_mean(SMOOTHING_RADlUS, 'circle', 
'meters'); 

var SARVH_filtered = SARVH.focal_mean(SMOOTHING_RADlUS, 'circle', 
'meters'); 

IIDisplay the SAR filtered images 

Map.addLayer(SARVV _filtered, {min:-15,max:0}, 'SAR VV Filtered',O); 

Map.addLayer(SARVH_filtered, {min:-25,max:0}, 'SAR VH Filtered',O); 

IICreate Training Samples and Merge Feature Collections 

var newfc = 

Open_water .merge(Vegetation _ W etland).merge(Mangroves ).merge(Bare _Ian 

d) ; 

11. IIDefine the bands you want to include in the model 

var bands = ['B5','B6','B4','NDVl','MNDWl','SR','GCVI'] 

IICreate a vari able called image to select the bands of interest and clip to 

geometry 

var image = compositeNew.select(bands).clip(roi) 

IIAssemble samples for the model 

var samples = image.sampleRegions( { 

collection: newfc, II Set of geometries selected for training 

propelties: ['landcover'], II Label from each geometry 

scale: 30 II Make each sample the same size as Landsat pixel 

d C I n('random')· /1 creates a column with random numbers }).ran om 0 urn , 

d I I·t our samples to set some aside for testing our model's 
IIHere we ran om y sp 1 

accuracy 

II using the "random" column we created 

. _ 8. II R ghly 80% for training, 20% for testing. 
var split - 0., ou 
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:: 

var training = samples.filter(ee.Filter.ltCrandom', split)); IISubset training data 

var testing = samples.filter(ee.Filter.gteCrandom', split)); IISubset testing data 

IIPrint these variables to see how much training and testing data you are using 

printCSamples n =', samples.aggregate_countC.all')); 

printCTraining n =', training.aggregate_countC.all')); 

print(Testing n =', testing.aggregate _ countC .all')); 

12. IIDefine the SAR bands to train your data 

var final = ee.lmage.cat(SARVV _filtered,SARVH_filtered); 

var bands = ['VI-l','VV']; 

var training = final.select(bands).sampleRegions( { 

collection: newfc, 

properties: ['landcover'], 

scale: 30 }); 

IITrain the classifier 

var classifier = ee.Classifier.randomForestO·train( { 

features: training, 

classProperty: 'landcover', 

inputProperties: bands 

} ); 

IIRun the Classification 

I 'fied - final select(bands).classify(classifier); var c ass I I - . 

IIDisplay the Classification 

Map.addLayer( classified, 

7 
I tte' ['1667fa' 'ee9alc', '04bd23', '37fe05']}, 

{min: 1, max: ,pa e· , 

'SAR Classification'); 
. t 'x representing resubstitution accuracy. 

II Create a confusion ma n 
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print('RF- SAR error matrix: " c1assifier.confusionMatrixO); 

print('RF- SAR accuracy: " c1assifier.confusionMatrixO.accuracyO); 

1/7.1) Creating Stratified Random Samples 

val' stratSamples = classified.stratifiedSample( { 

numPoints: 150, I/Number of points per class 

c1assBand: 'classification', 

region:roi, 

scale: 30, 

geometries:true 

} ); 

IIAdd a 15m Radius buffer around each point 

var strat8uff= function(feature) { 

var num = feature.get(,c1assification'); 

return feature.buffer(15) .set(,c1assification', num); 

} ; 

IIMap the buffer across all points (see export code below 

var stratPoints = stratSamples.map(stratBuft) 

13. IIRepeat for Landsat 

IlDefine the Landsat bands to train your data 

b d 18 - ['B1' '82' 'B3' '84' '85', '86', 'B7','NDVI']; var an s - , , , , 

., 18 - composite select(bandsI8).sampleRegions( { val' tramll1g - . 

collection: newfc, 

properties: ['Iandcover'], 

scale: 30 

} ); 
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IITrain the classifier 

var classifierlS = ee.Classifier.randomForestO.train( { 

features: traininalS 
b , 

classPropelty: 'Iandcover' , 

inputProperties: bandslS 

} ); 

If Run the Classification 

var classi fiedlS = composite.select(bandsIS).classify( classifierlS); 

IlDisplay the Classification 

Map.addLayer( classifiedlS, 

{min: I, max: 7, palette: ['1667fa', 'ee9alc', '04bd23', '37fe05']}, 

'Optical Classification'); 

II Create a confusion matrix representing resubstitution accuracy. 

print('RF-LS error matrix: " classifierlS.confusionMatrixO); 

print('RF -LS accuracy: " classifierlS.confusionMatrixO.accuracy()); 

//7.1) Creating Stratified Random Samples 

Apendix 3: Code for Estimation of Mangrove Stand Height 

1. IIClip the radar images and elevation to the mangrove vector files 

var mangroves_2007 _HH = dB _2007 _HH.clip(mangroves); 

var mangroves_2007_HV = dB_2007_HV.clip(mangroves); 

var mangroves _2017 _HH == dB _2017_ HH.clip(mangroves); 

var mangroves_2017 _HV == dB_20l7 _HV.clip(mangroves); 

var mangroves_1996JIH == dB_I 996_HH.clip(mangroves); 

var elevation == srtm.clip(mangroves) 
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2. IIAdd the images to the layers bar 

Map.addLayer(mangroves_2007 _HH ,{min:-15,max:-3}, 'Mangrove 2007 
HH',O); 

Map.addLayer(mangroves_2007 JIV ,{min :-27,max :-5}, 'Mangrove_2007 
HV',O); 

Map.addLayer(mangroves_2017 _HH ,{min:-15,max:-3}, 'Mangrove_2017 
HH',O); 

Map.addLayer(mangroves_20l7 JIV ,{min:-27,max:-5}, 'Mangrove_20l7 
HV',O); 

Map.addLayer(mangroves_1996_HH ,{min:-25,max:0} , 'Mangrove_l 997 
HH' 0)' , , 

Map.addLayer(elevation ,{min:-5,max:30}, 'Elevation', 0); 

3. IICalculate maximum canopy height from SRTM dem 1.697*SRTM 

var canopy _height= elevation.multiply(1 .697); 

4. Iladd the maximum canopy height to the layers bar 

Map.addLayer( canopy_height, {l11in:0,max: 1 OOO} , 'Mangrove Height-SRTM', 

0); 

Appendix 4: Code for Estimation of Mangrove Above Ground Biomass 

1. IICalculate above ground biomass from SRTM canopy height 

3.25*(l.08*SRTM)"1.53 

var biomass_height= elevation.multiply(1.08).pow(1.53).multiply(3.25); 

2. Iladd the biomass image to the layers bar 

Map.addLayer(biol11ass_ height ,{l11in:0,max: 1 OOO}, 'Mangrove Biomass

SRTM',O); 
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