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ABSTRACT

In Principal Component (PC) analysis of an r × p variance-covariance (V-C)

matrix, there is always a loss of information when the first few set of r(< p)

PCs are retained. This study derives a new reduced set of PCs (NRPCs) that is

simply a constant multiple of the first r original PCs (OPCs). Thus, the OPCs

are just a normalization of the NRPCs. The normalizing constant represents the

common variance explained by each of the components in the set of r NRPCs.

Further features of the NRPCs are examined both analytically and practically

in Multivariate Multiple Reduced Rank Regression (MMRRR) modelling. It

is found that for the NRPCs extracted from regular (unweighted) V-C matrix,

the analytical relationship between the NRPCs and the OPCs are preserved in

MMRRR modelling. However, if OPCs are based on weighted V-C matrix,

then the analytical relationship between the two types of PCs does not hold

practically in MMRRR modelling. The results of the study shows that in order

to determine the real spread of PC scores for further analysis, the use of the

NRPCs would be more useful.

iii

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



KEY WORDS

Classical Principal Component

Generalized Principal Component

Orthogonality

Parsimonious

Variance-Covariance

Weights

iv

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



ACKNOWLEDGEMENTS

I thank God Almighty, for his grace has brought me this far.

Good and kind people are also to be acknowledged all the time, especially those

who support you to achieve something in life. I wish to express my sincerest

gratitude to my supervisor, Prof. Bismark K. Nkansah, for his immense guid-

ance, direction and patience. I believe I would not have finished without him.

Again, I wish to say thank you to my co-supervisor, Dr. Arimiyaw Zakaria, for

his help as well.

I say a big thank you to Mr. Solomon Kweku Afful, Dr. Agnes Adom-

Konadu and Mrs. Suzzy Hurson for providing the necessary supports and en-

couragements, and to my sons and sister, Cephas, Michael and Joana, for their

perfect support, understanding and patience particularly during my numerous

absence from home while studying.

Lastly, a very cordial words of thanks to my course mates, especially

Gyamu-Atta Pius who stood by me through out and was very instrumental in

the writing of this thesis.

v

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



DEDICATION

To my children and Mr. Solomon Kweku Afful

vi

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



TABLE OF CONTENTS

Page

DECLARATION ii

ABSTRACT iii

KEY WORDS iv

ACKNOWLEDGEMENTS v

DEDICATION vi

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF ABBREVIATIONS xii

CHAPTER ONE: INTRODUCTION

Background to the Study 1

Statement of the Problem 8

Significance of the Study 10

Scope and Delimitation of the Study 10

Limitation 10

Organization of the Study 11

Chapter Summary 11

CHAPTER TWO: LITERATURE REVIEW

Introduction 12

Principal Component Analysis 12

Weighted Principal Component Analysis 14

vii

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Principal Component Regression 18

Illustrative Dataset 18

Chapter Summary 20

CHAPTER THREE: METHODOLOGY

Introduction 21

Principal Component Analysis 21

Eigenstructrue of Covariance Matrix 23

Singular Value Decomposition 25

Singular Value Decomposition of the Data Matrix 26

Spectral Decomposition of a Matrix 27

Spectral Decomposition of the Covariance Matrix 28

Variance-Covariance Matrix for Principal Component Extraction 29

Linear Transformation of Random Vectors 30

Chapter Summary 31

CHAPTER FOUR: RESULTS AND DISCUSSION

Introduction 32

Proposition for Extracting New Principal Components 32

Further transformations based on the PCs 35

Proposed Methodology 37

Examination of Features of the Extracted New Components 40

Relationship between the new components and the original PCs 42

Deductions from Results on New Components 45

Reduced Rank Regression Modelling 45

Description of Illustrative Datasets 50

Implementation of Results 52

Implementation of Reduced Regression Modelling 59

Chapter Summary 65

viii

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMEN-

DATIONS

Overview 66

Summary 66

Conclusions 68

Recommendations 69

REFERENCES 71

APPENDICES 73

APPENDIX A: CODES FOR IMPLEMENTATION OF THE REDUCED

RANK REGRESSION MODELLING BASED ON COMPONENTS

EXTRACTED FROM REGULAR PRINCIPAL COMPONENTS 73

APPENDIX B: CODES FOR IMPLEMENTATION OF THE REDUCED

RANK REGRESSION MODELLING BASED ON COMPONENTS

EXTRACTED FROM GENERALIZED PRINCIPAL COMPONENTS 77

APPENDIX C: REDUCED REGRESSION MODELLING FOR RESPONSE

VARIABLE 3 FOR VARIOUS REDUCED DIMENSIONS FOR

DATASET 1 BASED ON CLASSICAL PC 82

ix

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



LIST OF TABLES

Page

1 Weighted PCs for various Reduced Dimensions for Dataset 1

(SalesData) based on Ordinary PC Extraction 53

2 Weighted PCs for various Reduced Dimensions for Dataset 2

(US Food) based on Ordinary PC Extraction 54

3 Weighted PCs for various Reduced Dimensions for Dataset 3

(Subscores) based on Ordinary PC Extraction 55

4 Weighted PCs for various Reduced Dimensions for Dataset 2

(USFood) based on Generalized PC Extraction 56

5 Reduced Regression Modelling for Response Variable 2 for var-

ious Reduced Dimensions for Dataset 1 based on Clas-

sical PC 62

6 Reduced Regression Modelling for response variable 1 for vari-

ous Reduced Dimensions for Dataset 1 based on Reg-

ular PC 63

7 Reduced Regression Modelling for Response Variable 2 for var-

ious Reduced Dimensions for Dataset 1 based on GPC 64

x

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



LIST OF FIGURES

Page

1 Best-fit regression line regression line reduces data from two

dimensions into one 5

2 Regression line along second dimension that captures less vari-

ation in the original data 5

3 Plot showing variation in projected data on reduced 1 and 2 new

and original PC dimensions for Dataset 2 based on classical PC

extraction 57

4 Plot showing variation in projected data on reduced 1 and 2 new

and original PC dimensions for Dataset 3 58

5 Plot showing variation in projected data on reduced 1 and 2 new

and original PC dimensions for Dataset 1 based on classical PC

extraction 58

6 Plot showing variation in projected data on reduced 1 and 2

weighted and original PC dimensions for Dataset 2 based on

Generalized PC 59

xi

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



LIST OF ABBREVIATIONS

CMD Coefficient of Multiple Determination

PC Principal Component

MLR Multiple Linear Regression

MMRRR Multivariate Multiple Reduced Rank Regression

NRPCs New Reduced Principal Components

OPCs Original Principal Components

PCR Principal Component Regression

RRR Reduced Rank Regression

SVD Singular Value Decomposition

V-C Variance-Covariance

xii

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



CHAPTER ONE

INTRODUCTION

Dimensionality reduction is the process of transforming multidimensional

data into a significant representation of one with decreased dimensionality (Van

der Maaten, 2007). Ideally, the decreased representation has a dimensional-

ity that is equal to the intrinsic dimensionality of the data. The intrinsic di-

mensionality of the data is the minimum number of parameters needed to ac-

count for the observed properties of the data. Dimensionality reduction is cen-

tral in many areas, since it makes classification, visualization, and compression

of high-dimensional data much easier. A fundamental technique for dimen-

sionality reduction is the Principal Component Analysis (PCA). This technique

basically obtains an orthogonal transformation of a multivariate data. Such a

tranformation may further be used by concentrating on the features of the data

that are captured along the first few transformed variables or components that

retains the geometry of the original data as much as possible. Such a procedure

is widely referred to as dimensionality reduction. In spite of widespread appli-

cation of dimensionality reduction, it comes along with its own curse of loss

of information. This study attempts to examine the various perspectives that

dimensionality reduction has been exploited and to make a novel attempt at ad-

dressing the issue of loss of information that is associated with dimensionality

reduction.

Background to the Study

The concept of Principal Components (PCs) is well-documented in no-

table texts on multivariate statistical analysis (Anderson, 2003; Johnson & Wich-

ern, 2002). The purpose of extracting PCs from dimensional multivariate data

whether by the classical or generalized approach, is to achieve two main objec-

tives; to transform the original data into one for which the variables are uncorre-
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lated such that the new components account for decreasing amounts of variation

in the data, and to use the first few components to account for variation in the

data. Invariably, the use of PC is motivated by the second objective. This is why,

for example, a method of Truncated Singular Value Decomposition (TSVD)

(Xu, 1998) is widely used. However, if the level of multicollinearity in the data

is low as a result of low dependence among the variables, all new components

which are equal in number as the original set of variables will account for some

amount of variation. This means that by using the first few components, there is

a tradeoff between parsimonious use of variables and a substantial loss of infor-

mation contained in the last few variables that are discarded. The information

loss as a result of the tradeoff could be high depending on the number of compo-

nents retained and the information they capture. The loss of information could

affect applications of the method in many ways.

PCs are computed from either the covariance matrix or the correlation ma-

trix. If PCA are extracted from the correlation matrix, then what is effectively

being done in such analyses is to standardize the variables, and then finding

linear mathematical relation of these standardized variables which in turn maxi-

mize variation. The importance of standardizing the variables is to give all vari-

ables equal weight, whereas the original variables may have huge differences

in their variances. In the latter situation, the variables with high variances will

have a significant influence on the first few PCS, which is often undesirable, al-

though sometimes it can be precisely what is desired. Another reason for using

the correlations is that the variables may be measured in different units. In that

case, the relative sizes of the variances and covariances depend critically, and

arbitrarily, on the units used to measure the various different variables. Jollife

(2002) recounts that standardization of the variables is a good strategy for over-

coming this arbitrariness.

The linear combinations of the original variables give the principal com-

2
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ponents. This is expressed mathematically as

yi =

p∑
j=1

wijxj; i = 1, 2, · · · , p. (1.1)

where yi is the ith principal component, xj is the jth variable, and wij is the

weight of the jth variable for the ith principal component. Most importantly,

it is essential to provide meanings to the linear combinations that are formed

after the transformation. One popular way of achieving this ideal is to use the

loadings of the PCs, which are mathematically represented as

lij =
wij

sj

√
λi (1.2)

In Equation (1.2), lij is the loading of the jth variable for the ith principal com-

ponent, λi is the variance or eigenvalue of the ith principal component and sj is

the standard deviation of the jth variable. The lower the loading of a variable,

the less influential it is in the formation of the PCs and vice versa. The loadings

can therefore be used to decide which variables significantly influence the con-

struction of the PCs. Depending on the significance of the loadings, appropriate

meaning or label can be given to each of the p PCs. However, it may not be of

practical use to interpret all p new components. A rule of thumb is that an influ-

ential variable in the formation of a PC should have a loading whose absolute

value is greater than or equal to 0.5.

For PC to be used as a dimensionality reduction technique, one is usually

concerned about the relative importance of the first few PCs that are to be re-

tained within the context of the study. Another point of concern is the amount

of information that may be lost as a result.

3
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Singular Value Decomposition

Singular value decomposition (SVD) is that which represents any matrix

X of column rank r (where n ≥ p) with dimension n× p as a multiplication of

three matrices, A,D, and B such that

X = ADB′ (1.3)

where matrix A and B′ are of dimensions n × r and r × p respectively, and D

is an r × r diagonal matrix. A and B are orthonormal.

According to Baker (2005), three perspectives that are compatible with

one another can be used to examine SVD . It can be viewed as a technique

for converting a set of correlated variables into a set of uncorrelated ones that

more clearly reveal the numerous relationships between the original data items.

At the same time, SVD is a technique for figuring out and ranking the dimen-

sions along which data points display the dominant variation. The third way

of viewing SVD, is that once the dominant variation has been located, we can

use fewer dimensions to determine the best approximation of the original data

points. Thus, SVD can be seen as a method for data reduction. As an illustration

of these ideas, we consider a 2-dimensional data points in Figures 1 and 2. In

Figure 1, the regression line through the points displays the most accurate rep-

resentation of the original data using a one-dimensional object (a line). This is

because it is the line with the shortest distance between each original point and

the line.

A condensed representation of the original data that captures as much of

the original variance as feasible would be obtained if we took the perpendicu-

lar line from each point to the regression line and used the intersection of those

lines as the approximation of the original datapoint. This second regression line,

4
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Figure 1: Best-fit regression line regression line reduces data from two
dimensions into one

Figure 2: Regression line along second dimension that captures less variation
in the original data

perpendicular to the first, is shown in Figure 2.

This line effectively brings out the variability along the original data set’s

second dimension. It can however be seen that unlike that in 1, this line does

a deficient work of estimating the original data. This is because it matches a

dimension presenting less variability. It is feasible to create a set of uncorre-

lated data points using these regression lines that will reveal subgroupings in

the original data that might not be obvious at first glance.

5

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Application of PCA in Regression

A notable application of Principal Component Analysis is in regression

modelling (Liu et al., 2001). The procedure in this application is what is usually

referred to as Reduced Rank Regression (RRR) modelling. In order to introduce

the RRR, the general concept of regression is briefly highlighted.

Linear Regression

Simple regression analyses describe the relationship that exists between

two variables by fitting a straight line, normally called the line of best fit, through

the set of data points. The simple linear regressions model is represented as

Y = β0 + β1Xi1 + εi (1.4)

where Y is the value of the response (dependent) variable, X is the value of the

predictor (independent) variable, β0 and β1 are the regression coefficients, and

ε is the random error term. ε is assumed to be standard normal. Two common

methods used to estimate β0 and β1 are the eyeball fitting method and the method

of least squares.

An extension of the simple linear regression is the multiple linear regression. In

MLR, Y is the dependent variable with more than just one X variable. Suppose

there are p independent variables, the MLR model is

Y = β0 + β1Xi1 + β2Xi2 + · · ·+ βpXip (1.5)

where β0, β1, β2, · · · , βp are the regression coefficients that must be estimated

from sample data.

MLR demonstrates that a set of independent variables explains a signif-

icant amount of the variation in a response variable through a significant test

6
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known as the coefficient of determination (R2). The R2 is the percent of vari-

ance in the dependent variable, explained collectively by all of the independent

variables. Mathematically,

R2 = 1− SSe

SST
(1.6)

where SSe is the error sum of squares and SST is the total sum of squares.

In addition, the relative predictive importance of the independent variables can

be ascertained by comparing the beta weights. To explore the curvilinear ef-

fects, quadratic terms of the independent variables can be added as independent

variables. Cross-product terms can also be added as independent variables to

explore interaction effects. Several R2s can be compared to determine if re-

moving or adding an independent variable to the model helps significantly. The

regression coefficient βj, j = 0, 1, 2, · · · , p is the average amount the depen-

dent changes in magnitude when the independent increases one unit and the

other predictors are held constant. The smaller the magnitude of βj , the less the

dependent variable changes for each unit change in the independent, and vice-

versa. The βj, j = 0, 1, 2, · · · , p is the unstandardized simple regression coeffi-

cient for the case of one independent. When there are two or more independents,

each coefficient is a partial regression coefficient, though it is commonly called

regression coefficient. When they are standardized, they are usually known as

weights.

Reduced Rank Regression

Reduced Rank Regression (RRR) is a multivariate linear regression method

where several response variables are related to the same set of explanatory vari-

ables, and the estimated matrix of regression coefficients is of reduced rank.

This means that the number (r) of estimated regression coefficients is now less

than the original number (p) of original predictor variables. When several re-

sponse variables are studied simultaneously, we are in the sphere of multivariate

7
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regression. The usual description of the multivariate regression model that re-

lates the set of m multiple responses to a set of reduced r predictor variables,

assumes implicitly that the m × r regression coefficient matrix is of full rank.

The literature does not appear to have focused on the effect of the reduced num-

ber of predictors on the subsequent regression model. It should be of interest to

examine the effect of the procedure that led to the reduction in the number of

predictors on the subsequent modelling process.

Extraction of Principal Components

The classical principal component (CPC) is extracted based on the vari-

ous covariance matrix (S) of the data. The use of the CPC has been found to

be fraught with challenges especially when the data contains extreme values.

In order to obtain the desired PCs that reflect the real dominant dimensional-

ity of the data, various studies (Da Costa et al., 2011; Hong et al., 2018) have

adopted the notion of a weighted principal component analysis (WPCA). The

WPCA has been approached from two perspectives. One approach may extract

PCAs based on a weighted variance covariance matrix that pre-assigns relative

weights to the observations based on some similarity measure such as the Ma-

halanobis distance. An example of such a matrix is the one that gives rise to

the generalized principal component analysis (GPCA). It will be apparent in the

literature that the use of the PCA has focused on reducing the effect of anoma-

lies in the variance covariance structure on the results of the true dimensionality

of the data. It appears that the loss of information associated with component

extraction has not been the interest for research.

Statement of the Problem

Dimensionality reduction techniques are all known to be associated with

information loss. The amount of information loss no matter the size, could have

8
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important implication depending on the sensitivity of the area to which the tech-

niques are applied. In spite of the known consequences, one has no choice so

far than to truncate or reduce dimensions only with the motivation of obtain-

ing a parsimonious representation of the data. It will be ideal to remove the

tradeoff between a parsimonious choice and loss of information. PCA is pop-

ular for multivariate orthogonal data transformation that has been widely used

for dimensionality reduction. As pointed out in the background, PCA has seen

widespread application in various fields, and research is also ongoing that seeks

to improve upon the original PCs to achieve various results. It is noticeable

that attempts in this direction have sought to obtain weighted PCs in order to

overcome the challenge introduced by a defective variance covariance matrix, a

matrix that is not positive definite or has some other structural issues that makes

it inadequate for certain statistical analysis. It is clear however that there is no

attempt in the literature to achieve the ideal of removing the information loss

associated with the procedure. As a result, there is the need for an attempt at

producing reduced dimensions in a high dimensional dataset such that the infor-

mation in the original dataset could be preserved along the reduced dimensions.

Objectives of the Study

In this study therefore, the intention is to derive a variant of reduced set

of PCs that retains all information. This will be done by incorporating into the

desired few components, the required graduated amounts of information that

each of the few components must retain so that they collectively explain the

total information.

The study’s specific objectives are to:

1. propose a new component extraction approach that does not lead to infor-

mation loss in the original data

2. examine the characteristics of the new components in relation to the orig-

9
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inal PC extracted based on different variance-covariance structures

3. examine specific features of the new components applied in reduced rank

regression modelling

Significance of the Study

Apart from the benefit of retaining all information in a few reduced com-

ponents, there are other specific use for this proposal. In this study, an ap-

plication will be made to MLR analysis. The approach will serve as a useful

alternative to Best Subset Regression. It will be possible therefore to make a

geometric representation of MLR by reducing it to simple linear so that the re-

lationship among the variables could be presented in the plane. This application

could be extracted to MMLR such that analysis of data obtained on two sets of

variables could be reduced to the case of Simple Linear Regression (SLR). By

this, it will be possible to determine the exact correlation co-efficient between

one set of variables and another set, both of which constitute a sing multivariate

multiple data. This expected result would be a further summary of results of

Canonical Correlation Analysis (CCA).

Scope and Delimitation of the Study

The study is centered on reducing the dimensions of multivariate data in

a manner that there will be no loss of information. Applications to this novel

component extraction will be made to RRR. Although there are many dimen-

sionality reduction techniques, the study will focus on PCA.

Limitation

As an application to RRR, coefficient of determination (R2) in the original

data may not be the same as that of the transformed data in the third chapter.

This may influence the interpretation of the findings from our research.

10
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Organization of the Study

The study is divided into five chapters: Chapter one contains the introduc-

tory part of the study, which highlights the background to the study, statement

of the problem, objectives, significance, limitations and delimitations.

The Chapter two entails literature review of other related literature, which show

methods adopted by previous researchers.

The third chapter discusses the methodology. The fourth chapter also shows the

analysis and discussion. The fifth and final chapter covers the summary, con-

clusion and recommendations, with suggestions for further research, references

and appendices.

Chapter Summary

In this chapter, the problem of the classical principal component has been

introduced and the motivation for the study has been outlined. The pertinent

problem identified is that in the classical PCA, the amount of information loss

after truncation, no matter the size, can have an important implication depending

on the sensitivity of the area to which the technique is applied. It makes clear

the intention of the study to derive a variant of reduced set of PCs that retains

all information in a given dataset. Of significance, the chapter outlines how the

approach will be applied to Reduced Rank Regression modelling, and how it

will serve as a useful alternative to best subset regression.

11
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CHAPTER TWO

LITERATURE REVIEW

Introduction

This chapter shows review of works done by previous researchers. The

review focuses on the Classical PCA, Weighted PCA and Principal Component

Regression (PCR). It is expected that review brings to light the importance of

the various PC techniques and applications considered in this chapter. In the last

section of this chapter, a brief overview of the illustrative datasets that will aid

in the implementation of results is presented.

Principal Component Analysis

As presented in the first chapter of this work, Principal Component Anal-

ysis (PCA) creates new variables from linear combinations of the original ones

such that there is no correlation among the new variables. The total number of

potential new variables is the same as the total number of initial variables. The

advantages PCA brings has seen many researchers using it in their works.

Usman et al. (2012) investigated the rate of crime in Sokoto State, Nige-

ria, using PCA. They analyzed how many principal components should be kept

out of seven variables on crime that were received from the Criminal Investi-

gation Department of the Sokoto State Police Headquarters. The original vari-

ables used for the study were Murder, Assault, Robbery, Theft, Store breaking,

Grievous Harm and Wounding (GHW), and False. According to the findings of

the statistical study, three components accounted for up to 89.40% of the overall

variability of the data set. The first PC described crime as those done against

people and those done against properties. Assault and GHW were discovered

to be the most frequent and serious crimes done against people in Sokoto State,

whereas store breaking was discovered to be the most serious crime performed

12
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against property. Subsequently, the second PC classified the crime into two cate-

gories with respect to the rate of occurrence. Assault, GHW and Store breaking

were found to occur frequently, while Theft, Murder and Robbery were ob-

served to occur less often.

Aboagye and Mensah (2016) analysed students academic performances

in Mathematics and Statistics courses in the Department of Mathematics and

Statistics in the University of Cape Coast. Results for level 300 students in the

department for the 2013/2014 academic year were obtained. Ten courses made

up this list, six of which were in statistics and four of which were in mathemat-

ics. Each of the ten disciplines was used as a variable to be analyzed together

with a number of observations, which were the students’ grades in the various

courses. The researcher revealed his motivation that PCA was employed in his

study because the principal components it produced might be utilized as indica-

tors of how well the pupils were performing. Three key elements were chosen

from the analysis to serve as guidelines or indices for grouping students’ per-

formance. To categorize pupils’ overall performance as good, average, below

average, or excellent, the first principal component was used. Again, based on

the results of the study, the second PC was used to group students according

to their semester performances. It was discovered that the third principal com-

ponent could be used to categorize student performance based on subject. By

this, it would be easy to determine where a student is mathematically inclined or

statistically inclined. Therefore, by using the three retained PCs, observations

revealed that the majority of pupils performed consistently but only averagely in

both courses and both semesters. Few demonstrated particular prowess in either

of the two subjects. This study supported the idea that only a small number of

students could major in just one subject in the department and do so well.

13
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Weighted Principal Component Analysis

This section concentrates on works done by researchers on Weighted Prin-

cipal Component Analysis.

Delchambre (2014) presented a direct PCA based on diagonalizing the

weighted variance–covariance matrix through the power iteration and Rayleigh

quotient iteration spectral decomposition approaches. By reviewing the conven-

tional PCA , the paper considered a situation where we have n variables ( nvar

), from a data matrix X, each having n observations nobs, from which we want

to retrieve n PCs (ncomp). It reviewed the often used matrices along with their

corresponding dimensions: W, the weight of each variable within each observa-

tion, P the orthogonal matrix of principal components, (nvar × nvar), Pcol
i being

the ith principal component, C the principal coefficient matrix (nvar × nvar), and

σ2, the symmetric matrix of variance-covariance (nvar×nvar) associated with X.

The author added that regarding the classical PCA, the aim will be to obtain as

many principal components as the number of variables; that is, ncomp = nvar,

then PCA will aim at finding a decomposition

X = PC (2.1)

such that

D = P′σ2P = P′XX′ (2.2)

is diagonal and for which

Dii ≥ Djj; for all i < j (2.3)

Inferring from Equation (2.2), it was noted that P will be orthogonal. It recorded

that P can be seen as a change of basis which will aid in maximizing the vari-

ance within D and thus minimizing the off-diagonal elements that corresponds
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to the covariance.

It was revealed that unlike the classical PCA, the goal WPCA will be to explain

the whole data set variance according to a given number of principal compo-

nents.

In the work of Da Costa et al. (2009) on a weighted principal component

analysis and its application to gene expression data, they preceded with some

new developments in PCA. In the second part, they introduced a new method

that can be used for variable selection. Their concentration was on situations

where the values of the various variables did not all have the same importance

and where the data could have been infected with noise and contained outliers.

It reviewed that in the usual PCA, the ratios of the original variables’ coeffi-

cients in linear combinations are built from the eigenvectors of the covariance

matrix or the Pearson’s correlation matrix. However, the Pearson’s correlation

coefficient is very sensitive to the presence of outliers and noise. In order to

cope with outliers and noise, the original data used for the study was ranked,

and a correlation was obtained in a Spearman ranked form as
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It was noted that the distance between two ranks in Spearman’s coefficient

given by

D2
i = (ri − qi)

2 (2.4)

does not consider the rank importance. An alternative distance given as

WD2
i =(ri − qi)

2
(
(n− ri + 1) + (n− qi + 1)

)
=D2

i (2n+ 2− ri − qi)

(2.5)

rank correlation coefficient was proposed. In Equation (2.5), the D2
i represents

the distance between ri and qi while the second term of the product is a lin-

ear weighting function which describes the importance of both ri and qi. The

weighted rank correlation was obtained as

Rw = 1− 6
∑n

i=1(ri − qi)
2(2n+ 2− ri − qi)

n4 + n3 − n2 − n
(2.6)

Nevertheless, it was reviewed that this correlation cannot be used when there

are tied values. Subsequently, in order to apply higher weights to the higher

absolute expression values inside each variable, a new weighted rank correlation

coefficient given as

M +N

n∑
i=1

(ri − qi)
2(2n+ 2− ri − qi)

2 (2.7)

was obtained. In Equation (2.7) the constants M and N take values between −1

and +1. The PCs obtained from Equation (2.7) were referred as weighted PCs.

In the second part of their work, they proposed a new PCA-based algorithm

used to iteratively select the most important genes in a micro-array data set.

They showed that the algorithm produced better results when their WPCA was

used instead of the usual PCA.
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Hong et al. (2018) revealed that modern data are increasingly both high-

dimensional and heteroscedastic. In his paper on ”Optimally weighted PCA

for high-dimensional heteroscedastic data”, he considered the challenge of esti-

mating underlying principal components from high-dimensional data with noise

that is heteroscedastic across samples. He recounts that such heteroscedasticity

naturally arises, for example, when combining data from diverse sources or sen-

sors. By that, an appropriate approach to help account for this heteroscedastic-

ity is to give noisier blocks of samples less weight in PCA by using the leading

eigenvectors of a weighted sample covariance matrix. The difficulty of choosing

weights to best recover the underlying components was considered. It was re-

vealed that generally, one cannot know these optimal weights since they depend

on the underlying components that are to be estimated. However, it was shown

that under some natural statistical assumptions, the optimal weights converge to

a simple function of the signal and noise variances for high-dimensional data.

Surprisingly, the optimal weights were not the inverse noise variance weights

commonly used in practice. The theoretical results were demonstrated through

numerical simulations and comparisons with existing weighting schemes.

In the article published by Niu and Qui (2010), The multi-feature fusion

weighted principal component analysis (WPCA) and upgraded support vector

algorithms (SVMs) were used to create a novel face emotion detection tech-

nique. They employed WPCA with multi-features to extract the facial expres-

sion feature and the SVMs to classify human facial expression. The weights

were determined using the distribution of action units in the different facial

areas. They provided empirical proof that, the proposed approach using the

WPCA had a higher recognition rate for all the basic expressions using the clas-

sical PCA.
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Principal Component Regression

Principal Components Regression (PCR) is one of the frequently used

statistical techniques. (Artigue & Smith, 2019). A PC transformation of the

original independent variables is used to form a set of eigenvectors which are

perpendicular to one another, and the variation in the original data is represented

by their corresponding eigenvalues. PCR aims at reducing a large number of

independent variables in a regression model down to a small number of principal

components. The PCs chosen for the multiple regression model are then based

on the amount of variation explained by each PC. Most often than not, these

PCs are truncated for the purpose of the regression.

Illustrative Dataset

As used in Chapter Four, the illustrative dataset on the performance of

sales personnel of a company (labelled as Dataset I in the study) is contained

in several texts (Johnson & Wichern, 2014; Anderson, 2003; Mardia, Kent &

Bibby, 1979). In all of these the data is highlighted to be a typical data for illus-

trating the technique of factor analysis. The data is also one of several datasets

that have been used in studies of problems associated with factor analysis by

Benyi (2018) and on the Kaiser-Meier-Olkin’s measure of sampling adequacy

(or simply KMO) (Nkansah, 2018). These studies reveal interesting features of

the data that show that although it is suitable for factor analysis, no reasonable

factor solution is found for it. Using a procedure for dimensionality detection, it

is found, however, that only one dimension adequately underlies the data. The

findings show that although the data is theoretically suitable for factor extrac-

tion, it practically has only one-factor solution, which is also not suitable. Ad-

ditionally, a factor solution beyond one shows problems of the factor solutions,

which cover contrasting factors and one-indicator factor solutions, Adu (2022)

gives a further and more advanced explanation to this data problem explored
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by Benyi (2018) by using an automated threshold approach in the determina-

tion of dimensionality of multivariate data. This approach confirms the factor-

suitability of the data and reveals that the true measure of factor-suitability of

the data is even slightly higher than what is given by the traditional KMO mea-

sure. The lack of practical factor-suitability is however found to be attributable

to the difficulty to generate a unique homogeneous set with the highest KMO

and the highest number of indicators.

Dataset 2 is on student performance on nine subjects has also been stud-

ied by Benyi (2018) to identify dimensions in the data. Two homogeneous sets

are identified in this data indicating a dimensionality of two. A cut-off value

as low as 0.2 is used by subjective choice to support identification of homoge-

neous groupings in the data. The cut-off value chosen for that study is used to

buttress the point that the choice is dependent on the data structure and that a

good choice is required to identify appropriate dimensionality of the data.

The data labelled as Dataset 2 in the study is an important data for illus-

trating principal components analysis and is usually referred to as the USAFood

data. It covers prices on five food items from twenty three (23) cities of the USA

(Sharma, 1996).
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Chapter Summary

The chapter looked at several works worked on by other researchers using

the classical PCA, WPCA, and PCR. It is presented that the advantages PCA

brings has seen many researchers employ in their works. The chapter has re-

viewed that the literature on WPCA aim at describing the variation in a dataset

based on a given number of PCs. It has also reviewed that the method also per-

mits one to obtain a given number of PCs which are perpendicular, among the

most important ones for the case of challenges with weighted or missing data.

Comparatively, the literature shows that WPCA produces better results than the

classical PCA. The chapter also highlighted the illustrative datasets that will aid

in the analyses.
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CHAPTER THREE

METHODOLOGY

Introduction

This chapter focuses on the various methodologies used in this study. In

the early sections, idea and methods behind PCA, the eigenstructure of a covari-

ance matrix, and the singular value decomposition will be reviewed. The final

sections will look at the V-C matrix for PC extraction, and linear transformation

of random vectors which forms the bases for our new transformation.

Principal Component Analysis

The Principal Component Analysis (PCA) technique is used to create new

variables that are linear combinations of the original variables. The amount of

original variables plus as many new variables as possible can be formed, and the

new variables are uncorrelated with one another.

PCA objectives can be broadly categorized as geometric or analytic.

PCA’s geometric goal is to identify a new set of orthogonal axes such that:

1. The coordinates of the observations with respect to each of the axes give

values for the new variables. The values of the new variable are known as

principle component scores, and the new variables are known as principal

components.

2. The PCs are linear combinations of the original variables.

3. The initial PC explains the most variation in the data.

4. The greatest variation that the first PC did not take into account is taken

into account by the second new variable.

5. The third new variable accounts for the subsequent maximum variance

that the first two have not accounted for.
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6. The variation not taken into account by the first p − 1 variables is subse-

quently explained by the pth new variable.

7. There is no correlation among the p new variables.

Now, if a significant portion of the overall variation in the data can be ex-

plained by a small number of principal components or new variables—preferably

considerably fewer—then the researcher can employ these few principal com-

ponents.

In the analytical sense, supposing that there are p variables, we are inter-

ested in forming the following p linear combinations:



Y1

Y2

Y3

...

Yr

...

Yp



=



λ11 λ12 λ13 · · · λ1p

λ21 λ22 λ23 · · · λ2p

λ31 λ32 λ23 · · · λ3p

...
...

... . . . ...

λr1 λr2 λr3 · · · λrp

...
...

... . . . ...

λp1 λp2 λp3 · · · λpp





x1

x2

x3

...

xr

...

xp



(3.1)

where the PCs are Y 1, Y 2, Y 3, · · · , Yr, Y p, and λij is the weight of the jth

variable for the ith principal component. The weights are estimated using λij so

that:

1. The first principal component, Y1 explains the most variation in the data.

The second principal component Y2, explains the second-most variation

that has not been explained by the first principal component, and so on.

2. λ2
i1 + λ2

i2 + λ2
i3 + · · ·+ λ2

ir + · · ·+ λ2
ip = 1, i = 1, 2, · · · , p

3. λj1 + λj2 + λj3 + · · ·+ λjr + · · ·+ λjp = 0, for all i ̸= j

The requirement in (2), which is somewhat arbitrary, is that the squares of the

weights add up to one. Because it is possible to increase the variance of a
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linear combination by changing the scale of the weights, this condition is used

to set the scale of the additional variables. The new axes are guaranteed to be

orthogonal to one another by the condition provided by (3). How to get the

weights of (2) so that the aforementioned requirements are met is a question in

calculus which the next section will seek to address.

The properties specified in (2) and (3) above may be given alternatively

by matrix-vector form as

D(Y ) =D(P ′X)

=P ′D(X)P

=P ′ΣXP

=P ′PΛP ′P

=IΛI

=Λ

What this means is that:

1. All PCs together account for all variation in the original data.

2. The PCs are independent of each other.

3. Variations explained by PCs are in decreasing order.

Eigenstructrue of Covariance Matrix

Let X = (X1, X2, · · · , Xp)
′ with variance-covariance matrix given as Σ.

Let Λ′ = λ1, λ2, λ3, · · · , λr, · · · , λp be needed in forming the original vari-

ables, and Y = Λ′X be the current variable, a combination of initial variables.

The variation in the new variables is given by E(Y Y ′) which is the same as

E(λ′XX ′λ) or λ′Σλ, the variation in the original variables. The problem is now

reduced to determining the vector of weights λ′ such that the variation in the
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new variable, λΣλ, is optimum over the class of linear combinations that can be

constructed subject to the constraint λ′λ = 1. The maximization problem can

be solved as follows:

ϑ = λ′ΣΛ− χ(λ′λ− 1) (3.2)

where χ is the Lagrange multiplier. The p − component vector of the partial

derivative is given by
∂ϑ

∂λ
= 2Σν − 2χν (3.3)

By setting the above vector of partial derivatives to zero, we obtain

(Σ− χI)λ = 0 (3.4)

For the above system of homogeneous equations to have a non-trivial solution,

the determinant of Σ− χI should be zero. That is

|Σ− χI| = 0 (3.5)

Equation (3.5) is a function in χ of degree p, and thus, has p roots. Let χ1 ≥

χ2 ≥ · · · ≥ χp be the p roots. That is, Equation (3.5) gives p solutions for χ and

each of the solutions is known as the eigenvalue. By solving Equations (3.6)

and (3.7) simultaneously, each solution of χ results in a set of weights given by

the p− component vector λ.

(Σ− χI)λ = 0 (3.6)

λ′λ = 1 (3.7)
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Therefore, the principal eigenvector, λ1 which corresponds to the principal eigen-

value, χ1, is found by solving Equations (3.8) and (3.9).

(Σ− χ1I)λ1 = 0 (3.8)

λ′
1λ1 = 1 (3.9)

Premultiplying Equation (3.8) by λ′
1 gives

λ′
1(Σ− χ1I)λ1 = 0

λ′Σλ1 = χ1λ
′
1λ

′
1

λ′Σλ1 = χ1

The left hand side is the variation of the first PC, Y1, and is the same as the

eigenvalue, χ1. The principal PC, therefore, is given by the eigenvector, λ1

which corresponds to the largest eigenvalue, χ1.

Let λ2 be the second p − component vector of weights to form another linear

combination. The following linear combination can be found such that the vari-

ance of λ′
2X is the greatest subject to the constraints λ′

1λ2 = 0 and λ′
2λ2 = 1.

It can be shown that λ′
2 is the eigenvector of χ2, the second largest eigenvalue

of Σ. Similarly, it can be proven that the remaining PCs, λ′
3, λ

′
4, · · · , λp are

the eigenvectors corresponding to the eigenvalues, χ3, χ4, · · · , χp of the covari-

ance matrix, Σ respectively. The eigenvalues reflect the variation of the new

variables, while the eigenvectors provide the vectors of weights.

Singular Value Decomposition

Singular value decomposition (SVD) is that which denotes any n× p ma-

trix (for cases where n ≥ p) as a multiplication of three matrices, A,D, and B
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such that

Σ = ADB′ (3.10)

where X is an n×p matrix of column rank r, A is an n×r matrix, D is an r×r

diagonal matrix, and B′ is an r × p matrix. Matrix A is orthonormal to matrix

B. Thus,

A′A = I

and

B′B = I

Singular Value Decomposition of the Data Matrix

If X can be represented as a n×p data matrix, then it has the assumption

that its rank is p. B is a square symmetric matrix its columns give the eigenvec-

tors D is a diagonal matrix such that the diagonal values gives the square root

of the eigenvalues corresponding to the original data matrix.

Let the matrix of principal components scores be denoted by η with dimension

n× p . Then

η =XQ

=(PDQ′)Q

=PDQ′Q

=PD
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The variance-covariance matrix, ΣY of the PCs is given by

ΣY = E(η′η) =E
[
(PD)′(PD)

]
=E(D′P ′PD)

=E(D2)

=
1

n− 1
D2

Since D is a diagonal matrix, there is no correlation among the new variables.

The SVD of X also gives the principal component analysis solution. The major

component scores are provided by PD, while the matrix Q provides the weights

for generating the new variables. The variations in the PCs are given by D2

n−1

Spectral Decomposition of a Matrix

The spectral decomposition of a matrix is another name for the singular

value decomposition of a square matrix that is symmetric. This decomposition

assumes that the covariance of any symmetric matrix X can be written as a

multiplication of two matrices, P and Λ, such that

Σ = PΛP ′ (3.11)

In Equation (3.11), P is a symmetric orthogonal matrix with dimension p × p

which contains the eigenvectors of the data matrix, and Λ, contains the eigen-

values of the X matrix. Again,

P ′P = PP ′ = I
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Spectral Decomposition of the Covariance Matrix

As aforementioned, Σ is a square symmetric matrix and can be written in

a spectral decomposition form as

Σ = PΛP ′ (3.12)

where Λ is a diagonal matrix whose elements ae the eigenvalues λ1 ≥ λ2 · · · ≥

λp of the symmetric matrix, Σ. P is a p×p orthogonal matrix whose jth column

is the eigenvector corresponding to the jth eigenvalue.

The principal component scores are denoted by the matrix η = XP and the

variance-covariance matrix of the principal components scores is given by

ΣY = E(η′η) =E
[
(XP )′(XP )

]
=E(P ′X ′XP )

=P ′ΣP

Making substitution for the covariance matrix Σ, we get

ΣY =P ′PΛP ′P

=Λ

as P ′P = I. Thus, the PCs, Y1, Y2, · · · , Yp are uncorrelated with variances equal

to λ1, λ2, · · · , λp respectively. In addition, the trace of Σ is given by

tr(Σ) =
p∑

j−1

σ2
jj
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where σ2
jj is the variation of the jth variable. The trace of Σ can also by repre-

sented as

tr(Σ) =tr(PΛP ′)

=tr(P ′PΛ)

=tr(Λ)

=tr(ΣY )

which is the same as the sum of the eigenvalues of the covariance matrix, Σ of

the original data. The findings from the previous calculations demonstrate that

the total variation in the original variables and that in the new variable are equal.

In conclusion, PCA reduces to finding the eigenvalues and eigenvectors

of the covariance matrix, or finding the SVD of the original data matrix, X , or

obtaining the spectral decomposition of the covariance matrix.

Variance-Covariance Matrix for Principal Component Extraction

PCA is one of the methods that are usually used for outlier detection.

However, it is not specifically designed for outlier detection as it focuses on

maximal dispersion (Jollife, 2002). The PCA is carried out on the usual variance-

covariance matrix of the random vector X = (X1, X2, · · · , Xp) given

D(X) =
1

n− 1
(X − X̄)(X − X̄)′

or

D(X) =
1

n− 1

n∑
j=1

(Xj − X̄)(Xj − X̄)′

(3.13)

A variant of the PCA is the Generalized PCA (GPCA) which is actually de-

signed to reveal dimensions that display outliers. Unlike the PCA, GPCA searches

for the eigenvectors of the matrix product SS∗−1 that are associated with the q
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largest eigenvalues, where S is the usual variance-covariance matrix, that is,

S = D(X), and S∗ is defined as

S∗ =

∑n
j=1K

(
||xj − x∗||2s−1

)
(xj − x∗)(xj − x∗)′∑n

j=1K
(
||xj − x∗||2s−1

) (3.14)

where x∗ is a vector of means. The measure ||X||2m is defined as

||X||2m = X ′MX

and K is a decreasing function given as

K(u) = e−hu

and h = 0.1 as recommended by Caussinus and Ruiz (1990). The expression in

Equation(3.14) suggest that observations that are distant from the center of the

data are given less weight than those that are close to the center. The method of

GPCA is thus based on the spectral decomposition of a scatter estimator relative

to another scatter estimator.

In this study, it will be important to compare the performance of our PCA

extraction based on components exracted from S and the one extracted from

SS∗−1, an example of a weighted variance-covariance matrix.

Linear Transformation of Random Vectors

Let Y = (Y1, Y2, · · · , Ym)
′ and X = (X1, X2, · · · , Xp)

′ be a random

vector with mean vector µ and variance-covariance Σ. If Y = AX where A =

(aij) is an m× p matrix of constants. Then,

1. E(Y ) = Aµ

2. D(Y ) = AΣA′

30

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Chapter Summary

This chapter was organized as follows: Principal Component Analysis,

Eigenstructure of covariance matrix, Singular Value Decomposition of Data

matrix, Spectral Decomposition of a Matrix, Spectral Decomposition of a ma-

trix, and the Variance-Covariance matrix for Principal Component Extraction.

The methodology has presented extensive review of the procedure for conduct-

ing principal component analysis. All the new transformed PCs were extracted

from the Variance-Covariance matrix and the correlation matrix of the original

datasets used in this work. All the datasets were multivariate.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

This chapter looks at the derivation of a novel principal component with

no loss of information from a multivariate dataset. The chapter follows up with

an application of this novel component extraction to three distinct multivariate

datasets. The intention is to compare the total variation explained by the re-

duced set of PCs and that in the corresponding set of the original PC. In the

final section of this chapter, Reduced Rank Regression (RRR) models will be

built for reduced PCs extracted from an ordinary variance-covariance matrix and

weighted variance-covariance matrix. These models will then be compared with

the full model based on the original variables (MLR). Discussion of results will

be presented in the end.

Proposition for Extracting New Principal Components

Instead of truncating to retain the desired PCs with attendant loss of infor-

mation, we can force all the other PCs into the first few PCs, such that there will

be no loss of information. This calls for further transformation. In the illustra-

tive data, we may retain only r PCs out of the original p variables.

We obtain a transformation of X in the form

Y = P ′X (4.1)

where the matrix P whose columns are the eigenvectors of the variance-covariance

matrix of X , Σ is obtained by the spectral decomposition in Equation (3.10)

given by

Σ = PΛP ′ (4.2)
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From Equation (4.1), it can be inferred that if

f(Σ) = P f(Λ)P ′

Then

Σ
1
2 = PΛ

1
2P ′

Now we know that

Σ =Σ
1
2Σ

1
2

⇒ Σ =PΛ
1
2P ′PΛ

1
2P ′

=PΛ
1
2Λ

1
2P ′

Now let S = PΛ
1
2

⇒ Σ = SS ′ (4.3)

where

S = PΛ
1
2 (4.4)

Noting clearly that S ̸= Σ
1
2

Since Σ
1
2 = PΛ

1
2P ′,

Σ
1
2 = SP ′ (4.5)

Suppose the data is transformed by

Y = S−1X (4.6)
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We examine the properties of Y by finding ΣY , the variance-covariance matrix

of Y . That is,

D(Y ) =D(S−1X)

=S−1D(X)S−1′

=S−1ΣXS
−1′

Substituting for ΣX from Equation (4.3),

D(Y ) =S−1(SS ′)S−1′

=S−1SS ′S−1′

=I

This means that the transformation gives components of Y that are independent

with unit variances.

The transformation given by Equation (4.6) is in terms of the original data

X . Suppose now that a similar transformation is carried out on the centered data

(X − µ). Then,

Y = S−1(X − µ)

Examining the expectation E(Y ) and the variance-covariance matrix D(Y ) gives

E(Y ) =S−1[E(X)− µ] = 0 and

D(Y ) =S−1D(X − µ)S−1

=S ′D(X)S−1

=I
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The transformation given by S−1 thus gives the same result for both the original

and centered data.

Further transformations based on the PCs

In this section, a few transformations are first explored to highlight the

motivation for the intended extraction method proposed in the study. The over-

riding principle is to obtain new component that accounts for all information in

the data. In the process, it is also important to examine how each of the new

components contributes to the overall information.

We suppose in the meantime that the transformed components explain

equal (but not necessarily unity) variances. That is,

var(Yi) =
1

p
Tr(Λ), i = 1, 2, · · · , p

This means that the corresponding transformation may be given by

Y = DY S
−1X (4.7)

where

DY = diag

(
1

p
Tr(Λ), · · · , 1

p
Tr(Λ)

)
This means that the V-C matrix of Y is given as

D(Y ) = D(DY S
−1X)

= DY S
−1ΣXS

−1′D′
Y

= DY S
−1SS ′S−1′D′

Y

= DY ID′
Y

= D2
Y

= diag

[(
1

p
Tr(Λ)

)2

, · · · ,
(
1

p
Tr(Λ)

)2
]
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Thus, Equation (4.7) gives a transformation that yields components with equal

amount of variance explained.

In order to obtain the exact variation explained by each component, the trans-

formation above should rather be specified as

Y =
(
D

1
2
Y S

−1
)
X (4.8)

The V-C matrix of the revised Y now becomes

D(Y ) =D
1
2
Y S

−1D(X)S−1D
1
2
Y

D(Y ) =D
1
2
Y S

−1ΣXS
−1D

1
2
Y

D(Y ) =D
1
2
Y S

−1(SS ′)S−1D
1
2
Y

=D
1
2
YD

1
2
Y

=DY

Equation (4.7) gives another transformation that yields independent com-

ponents with equal(one each) variance explained.

It can be noted that

1. Components are independent

2. Components may be expressed to have zero means

3. Variance explained are the same (and equal to 1 if extraction is based on

the correlation matrix rather than the V-C matrix) for all components

The transformation demonstrated above shows that it is possible to learn a par-

ticular transformation that would yield some desired characteristics. In the next

section, we proceed with this strategy to derive the proposed methodology for

extracting new PCs.
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Proposed Methodology

Case I

Suppose without laws of generality that we want only one component to

contain all the information. Then define the matrix of transformation

Q1 =Pdiag(λ1 + λ2 + · · ·+ λp, 0, 0, · · · , 0)
1
2

=Pdiag
(

tr(Λ), 0, 0, · · · , 0
) 1

2

=PΛ
1
2
1

where

Λ
1
2
1 = diag

(
tr(Λ

1
2 , 0, ..., 0)

)
(4.9)

Suppose all the original variables are transformed onto only one PC, then this

PC is given by

Y (1) = Λ
1
2
1 S

where S = PΛ
1
2 as in Equation (4.4).

From Equation (4.9), it can be observed that all the information will be ex-

plained by only the first reduced PC.

Case II

Suppose all the original variables are transformed onto only two PCs, so

that all the information in the data is explained by the two reduced PCs. Then

the transformation that yields these reduced PCs is given by

Q2 =Pdiag

[
λ1

(
1 +

∑p
j=3 λj∑2
j=1 λj

)
, λ2

(
1 +

∑p
j=3 λj∑2
j=1 λj

)
, 0, · · · , 0

] 1
2

=PΛ
1
2
2
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where

Λ
1
2
2 = diag

[
λ1

(
1 +

∑p
j=3 λj∑2
j=1 λj

)
, λ2

(
1 +

∑p
j=3 λj∑2
j=1 λj

)
, 0, · · · , 0

]
(4.10)

Suppose all the original variables are transformed onto only the two PCs, then

the two new PCs are given by

Y (2) = Λ
1
2
2 S

The remaining information in the other original PCs will be forced onto the

two retained PCs in accordance with the proportion of variance explained. This

means that the total variation accounted for by each of the two reduced PCs will

be given as follows:

Var(Y (2)
1 ) =λ1 +

λ1

λ1 + λ2

p∑
j=3

λj

=λ1 +
λ1

λ1 + λ2

SS2

=λ1

(
1 +

SS2

SS1

)

Similarly,

Var(Y (2)
2 ) =λ2 +

λ2

λ1 + λ2

p∑
j=3

λj

=λ2

(
1 +

SS2

SS1

)

Case III

Suppose all the original variables are transformed onto only r reduced PCs

(r ≤ p), so that all the information in the data is explained by the r reduced PCs.
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Then the transformation that yields these reduced PCs is given by

Qr =Pdiag

[
λ1

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)
, λ2

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)
, · · · ,

λr

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)
, 0, · · · , 0

] 1
2

=PΛ
1
2
r

where

Λr =diag

[
λ1

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)
, λ2

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)
, · · · ,

λr

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)
, 0, · · · , 0

] (4.11)

Denote

Ψr = λr

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)

which is the measure of variation explained by Y
(r)
r , the last of the r reduced set

of new PCs.

The generalization of the technique of extracting new components is that

if X = (X1, X2, · · · , Xp) is transformed onto only the r PCs, then the r new

PCs are given by

Y (r) = Λ
1
2
r S

−1 (4.12)

Equation (4.12) is the transformation that gives the proposed extraction of re-

duced PCs with no loss of information. In the next section, we will examine

the features of the new components. First, it will be verified that the variation

accounted for by the set of r reduced components accounts for the entire infor-

mation (variation) in the original data.
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Examination of Features of the Extracted New Components

Consider the projected data on the new component defined in Equation

(4.12) given by

W(r) = Λ
1
2
r S

−1X ′ (4.13)

or W(r) = TX ′, where T = Λ
1
2
r S−1.

The transformed data matrix W(r) may thus be partitioned as

W(r) =

[
(TX ′)′r 0

]
(4.14)

In equation (4.14) (TX ′)′ is the reduced transformed data of dimension (n× r)

and the remaining (p− r) columns are set to zero.

Following this data structure, it can be shown therefore that the total variation

in W(r) is the same as that in X . That is,

tr
(
W(r)

)
= tr(ΣX) (4.15)

Proof of Equation (4.15)

From Equation (4.13),

W(r) = Λ
1
2
r S

−1X ′

= Λ
1
2
r (PΛ

1
2 )−1X ′

= Λ
1
2
r Λ

− 1
2P ′X ′

D
(
W(r)

)
=D
(
Λ

1
2
r Λ

− 1
2P ′X ′

)
=Λ

1
2
r Λ

− 1
2P ′D(X)PΛ− 1

2Λ
1
2
r
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Noting that D(X) =ΣX =PΛP ′, and Λ
1
2
r is as defined in Equation (4.11). Mak-

ing substitutions and simplifying gives

D
(
W(r)

)
=Λ

1
2
r Λ

− 1
2P ′(PΛP ′)PΛ− 1

2Λ
1
2
r

=Λ
1
2
r Λ

− 1
2ΛΛ− 1

2Λ
1
2
r

=Λr

Now taking the trace of

tr(Λr) =

p∑
k=1

λj

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)

=
r∑

k=1

λj

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)

Since λk = 0, for k > r

tr(Λr) =

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)
r∑

j=1

λj

=
r∑

j=1

λj +

p∑
j=r+1

λj

=

p∑
j=1

λj

=tr(Λ)

It can be seen that

tr
(
ΣX

)
=tr
(
PΛP ′

)
=P tr(Λ)P ′

=PP ′tr(Λ)

=tr(Λ)
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Hence, Equation (4.15) is proofed.

This means that the amount of information explained by the reduced trans-

formed r new variables Y (r) is the same as that in the data on the original set of

variables (X).

Relationship between the new components and the original PCs

From Equation (4.12)

Y (r) = Λ
1
2
r S

−1

where S = PΛ
1
2 and Λ = diag

(
λ1, λ2, · · · , λp

)
.

It is not too clear from this equation the explicit relationship between Y (r) and

P , that is, the new components and the original components. In order to specify

clearly the exact relationship between the two sets of components, we carry out

systematic simplification of the matrix products involved. Rewriting Equation

(4.12) gives

Y (r) = Λ
1
2
r Λ

− 1
2P ′

From Equation (4.11)

Λr =diag

[
λ1

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)
, λ2

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)
, · · · ,

λr

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)
, 0, · · · , 0

]

It has been denoted that

Ψr = λr

(
1 +

∑p
j=r+1 λj∑r
j=1 λj

)
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Now for any particular set of r reduced components, the expression

1 +

∑p
j=r+1 λj∑r
j=1 λj

= c

which is a constant for all components in the set.

Thus,

Λ
1
2
r =



√
λ1c 0 0 · · · 0 · · · 0

0
√
λ2c 0 · · · 0 · · · 0

...
...

...
...

... . . . ...

0 0 0 · · ·
√
λrc · · · 0

0 0 0 · · · 0 · · · 0

...
...

...
...

... . . . ...

0 0 0 · · · 0 · · · 0


(p×p)

The transformation is then expanded as

Y (r) =



√
λ1c 0 0 · · · 0 · · · 0

0
√
λ2c 0 · · · 0 · · · 0

...
...

...
...

... . . . ...

0 0 0 · · ·
√
λrc · · · 0

0 0 0 · · · 0 · · · 0

...
...

...
...

... . . . ...

0 0 0 · · · 0 · · · 0



×



1√
λ1

0 0 · · · 0 · · · 0

0 1√
λ2

0 · · · 0 · · · 0

...
...

...
...

... . . . ...

0 0 0 · · · 1√
λr

· · · 0

...
...

...
...

... . . . ...

0 0 0 · · · 0 · · · 1√
λp


×



p11 p12 p13 · · · p1r · · · p1p

p21 p22 p23 · · · p2r · · · p2p
...

...
...

...
... . . . ...

pr1 pr2 pr3 · · · prr · · · prp
...

... . . . ... . . . ...

pp1 pp2 pp3 · · · ppr · · · ppp


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where Pj = (pj1 pj2 · · · pjr · · · pjp)
′, j = 1, · · · , p is the jth origi-

nal principal component. Further simplification gives

Y (r) =



√
c 0 0 · · · 0 0 · · · 0

0
√
c 0 · · · 0 0 · · · 0

...
...

...
...

...
... . . . ...

0 0 0 · · ·
√
c 0 · · · 0

0 0 0 · · · 0 0 · · · 0

...
...

...
...

...
... . . . ...

0 0 0 · · · 0 0 · · · 0



×



p11 p12 p13 · · · p1r · · · p1p

p21 p22 p23 · · · p2r · · · p2p
...

...
...

...
... . . . ...

pr1 pr2 pr3 · · · prr · · · prp
...

... . . . ... . . . ...

pp1 pp2 pp3 · · · ppr · · · ppp



In partitioned matrices form, if Ir×r is an identity matrix, the above product may

be written as

Y (r) =

[ √
cIr×r 0r×(p−r)

0(p−r)×r 0(p−r)×(p−r)

]



P ′
1

P ′
2

...

P ′
r

P ′
r+1

...

P ′
p



=

[ √
cP

(r)′

r×r 0r×(p−r)

0(p−r)×r 0(p−r)×(p−r)

]

Therefore, the relationship between the new components and the original is sim-

ply stated as

Y (r) =
√
cP (r) (4.16)
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where P(r) = (P1, P2, · · · , Pr) is the set of first r original components.

It can therefore be seen that the normalization of the new components gives the

r original components.

Deductions from Results on New Components

It is observed that if Y (r) is the new r−dimensional new PC obtained from

the original PCs P (r), then

Y (r) =
√
cP (r)

Let

W(r) = Λ
1
2
r S

−1X ′

the projection of the data onto the components.

The V-C matrix of W(r) is given as

D
(
(W (r)

)
=Y (r)′D(X)Y (r)

=(
√
c)2P (r)′ΣXP

(r)′

=cΣZ

where ΣZ = diag(λ1, λ2, · · · , λr) is the V-C matrix of the projected data onto

the first r−original PC, P (r) and Z = P (r)X ′.

Reduced Rank Regression Modelling

In this section, we futher examine the features of the new reduced PCs

(NRPCs) in Multivaritate Multiple Reduced Rank Regression (MMRRR) mod-

elling The multiple coefficient of determination of regression of Y on several

predictors

Let Y (r) be the regression model of the transformed data W (r) of the original
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data on X = (X1, X2, · · · , Xp)
′. Then

Y (r) = t′W (r),

W(r) =
(

1 W (r)

)
where 1 = ones(n, 1), a vector of n ones and t =(

t0 t(r)

)′
is the regression coefficients consisting of the intercepts t0 and

the set of r coefficients on the NRPCs.

Noting that the estimated model of a set of response variable Y = (Y1, Y2, · · · , Ym)
′

is thus given as

Y = b′X, b = (X ′X)−1(X ′Y )

The corresponding Least Squares Error (LSE) model in terms of W(r) is given

by

t =
(
W(r)′W(r)

)−1(
W(r)′Y

)
(4.17)

We seek to determine the exact analytical relationship between the components

of b and t. Expanding and simplifying Equation (4.17) gives

t =

[(
1 W (r)

)′(
1 W (r)

)]−1(
1 W (r)

)′
Y

=

(
n 1′W (r)

W (r)′1 W (r)′W (r)

)−1(
1 W (r)

)′
Y

=
F

Det
(
W (r)′W (r)

)( W (r)′W (r) −1′W (r)

−W (r)′1 n

) 1′Y

W (r)′Y


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where

Det
(
W(r)′W(r)

)
=D
(
W(r)

)
=nW(r)′W(r) −

(
W(r)′1

)(
1′W(r)

)
=nW(r)′W(r) −W(r)′11′W(r)

=ΣW

and ΣW = cdiag(λ1, λ2, · · · , λr) = cΣZ , since

D(W) =nW(r)′W(r) −
(
W(r)′1

)(
1′W(r)

)
=ncP(r)(X

′X)P(r)′ −
(√

cP(r)X
′1
)(√

c1′XP(r)′

)
=ncP(r)(X

′X)P ′
(r) − kP(r)X

′11′XP ′
(r)

=c
[
nP(r)(X

′X)P(r) − P(r)X
′11′XP(r)′

]
=cP(r)

[
n(X ′X)−X ′11′X

]
P(r)′

=cP(r)D(X)P(r)′

=cΣZ

Thus,

 t0

t(r)

 =


[
W (r)′W (r)

](
1′Y

)
−
(
1′W (r)

)(
W (r)′Y

)
[
−W (r)′1

](
1′Y
)
+ nW (r)′Y

Σ−1
W

Now noting that

W (r)′W (r) =
(√

cP (r)
oc X ′

)(√
cP (r)

oc X ′
)′

=cP (r)
(
X ′X

)
P (r)′
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Therefore, the intercept t0 is further simplified as follows:

t0 =

[{
cP(r)(X

′X)P(r)′

}{
1′Y

}
−
{√

c1′XP(r)′

}[{√
cP(r)X

′
}
Y
]]

Σ−1
W

=

[
c
{
P(r)(X

′X)P(r)′

}
(1′Y )− c(1′XP(r)′)(P(r)X

′Y )

]
Σ−1

W

=

[{
P(r)(X

′X)P(r)′

}
(1′Y )− (1′XP(r)′)(P(r)X

′Y )

]
Σ−1

W

Introducing ( 1
n
1′Y )D(W ) and canceling it off gives

t0 =

[
1

n
(1′Y )D(W )− 1

n
(1′Y )D(W ) +

{
P(r)(X

′X)P(r)′

}
(1′Y )−

(1′XP(r)′)(P(r)X
′Y )

]
Σ−1

W

=

[
1

n
(1′Y )D(W )− 1

n
(1′Y )

{
ncP(r)(X

′X)P ′
(r) − cP(r)X

′11′(XP ′
(r))
}
+

c
[{

P(r)(X
′X)
}
P(r)(1

′Y )− (1′XP ′
(r))(P(r)X

′Y )
]]

Σ−1
W

=

[
1

n
(1′Y )D(W )− 1

n
1′(XP ′

(r))
{
ncP(r)X

′Y − cP(r)X
′11′Y

}]
Σ−1

W

=

[
1

n
1′Y D(W )− c

n
1′(XP ′

(r))
{
n(P(r)X

′)Y − P(r)X
′11′Y

}]
Σ−1

W

=
1

n
1′Y − 1

n
1′(XP ′

(r))
{
n(P(r)X

′)Y − P(r)X
′11′Y

}
Σ−1

W

=Ȳ − 1

n
1′(XP ′

(r))ΣZYΣ
−1
ZZ(p)

=Ȳ − ΣZYΣZZZ̄
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Taking the coefficient vector t(r) gives

t(r) =

[
nW (r)′Y − (W (r)′1)(1′Y )

]
Σ−1

W

=

[
n
√
c(P(r)X

′)Y −
√
c(P(r)X

′)1(1′Y )

]
Σ−1

W

=
√
c

[
n(P(r)X

′)Y − (P(r)X
′)1(1′Y )

]
1

c
Σ−1

Z

=

√
c

c
ΣZYΣ

−1
ZZ

=
1√
c
ΣZYΣ

−1
ZZ

Thus, the regression coefficients based on the original PC multiplied by the re-

ciprocal of
√
c gives the regression coefficients based on the new PCs except for

the intercept which remain the same for both types of components.

Now, the coefficient of determination (R2) of the model for Yi; i = 1, 2 · · · , n

in terms of X = (X1, X2, · · · , Xp)
′ is given as

r2 =
SSR

SST

where the Sum of Squares Regression (SSR) is given as

SSR =b′X ′Y − 1

n

(∑
Y
)2

=b′X ′Y − 1

n

(
1′Y

)2

and the Sum of Squares Total (SST) is given as

SST = Y ′Y − 1

n

(
1′Y

)2
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Now denoting by SSR(r), the Sum of Square Regression explained in the model

t for W(r). Then

SSR(r) =t′W (r)′Y − 1

n

(
1′Y

)2
=

 1
n

(
1′Y

)
− 1

n
ΣY ZΣ

−1
ZZ

(
P(r)X

′
)
1

1√
c
ΣY ZΣ

−1
ZZ


′ 1′

W (r)′

Y − 1

n

(
1′Y

)2
=
[ 1
n
(1′ · Y )− 1

n
ΣY ZΣ

−1
ZZ(P

(r)X ′)1
]
(1′Y )+

1√
c
ΣY ZΣ

−1
ZZ

(√
c(P (r)X ′)

)
Y − 1

n
(1 · Y )2

=ΣY ZΣ
−1
ZZ(P

(r)X ′) · Y − ΣY ZΣ
−1
ZZ(P

(r)X ′)1 · 1′Y

=ΣY ZΣ
−1
ZZ

[
(P (r)X ′)Y − 1

n
(P (r)X ′)11′Y

]
=
1

n
ΣY ZΣ

−1
ZZ

[
n(P(r)X

′) · Y − (P(r)X
′)11′ · Y

]
=
1

n
ΣY ZΣ

−1
ZZΣZY

The result shows that SSR(r) is in terms of V-C matrices involving the original

components PR. It means that the performance of the NRPCs in regression is

the same as that of the reduced set of original PCs.

Description of Illustrative Datasets

The study makes use of relevant datasets to illustrate the characteristics

of the new components derived in the study. Three datasets are found suitable

for the illustrations, and are labelled as Dataset 1, 2 and 3. All three datasets

are secondary and are contained in various texts on multivariate statistics such

as Johnson and Wichern (2014), Anderson (2003) and Sharma (1996). Dataset

I which is frequently referred to in this thesis as ‘sales performance’ data or

‘sales’ data is one that covers seven variables X = (X1,X2, · · · ,X7) with fifty

responses. The variables are

X1— Sales Growth
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X2— Sales Profitability

X3— New Account Sales

X4— Creativity

X5— Mechanical Reasoning

X6— Abstract Reasoning

X7— Mathematics

The data consists of performance scores in assessment tests of sales personnel of

a firm on the seven variables which measure the quality of the sales staff, and are

believed to reveal performance in sales. The measures on the first three variables

X1,X2, and X3 are converted to a scale, with 100 indicating “average” perfor-

mance. Measurements are also taken for each of the 50 individuals on each

of four tests on the remaining variables X4,X5,X6, and X7 which appears to

measure creativity, mechanical reasoning, abstract reasoning, and mathematical

ability, respectively.

As a result of the composition of this data, it is found convenient to

partition it into two as X′ = (X(1)X(2)) where X(1) = (X1,X2,X3) and

X(2) = (X4,X5,X6,X7). This partition structure is also adopted on studies

in Canonical Correlation Analysis (Apanyin, 2021). In this study, the first sub-

set may be regarded as a set of response variables, whilst the second subset

constitutes the set of predictor variables. It is convenient therefore to write

Y = X(1) and X = X(2). This dataset is particularly useful for illustrating

the performance of the NRPC in multivariate multiple reduced rank regression

(MMRRR) modelling. Only the second subset X(2) is used for illustrating the

relationship between new components NRPC, and the corresponding original

principal components (OPCs). The partition of this dataset is guided to obtain

a meaningful linear relationship between the two subsets, a condition that is

required to make the technique of MMRRR meaningful. The selected dataset

shows that any component of the first set of variables may be influenced by com-

ponents of the second set of variables. As outlined in the literature review, this

51

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



particular data has been used extensively in multivariate studies. It is, however,

being applied for the first time in this study from the perspective of MMRRR

modelling. The data labelled as Dataset 2 is usually referred to as the USAFood

data. It covers prices on five food items collected from twenty three (23) cities

of the United States of America (Sharma, 1996). The food items are Bread,

Burger, Milk, Oranges and Tomatoes.

Implementation of Results

Tables 1 to 3 give the results of the weighted PCs for various reduced

dimensions for various datasets of dimension p based on ordinary component

extraction. That is, the transformations are obtained by weighting the princi-

pal components extracted from the ordinary variance-covariance matrix. For

each set of r reduced component dimension, the corresponding weight (c) is

provided. In each case, the last set of r = p weighted components become the

same as the original principal component. It can be verified that in each case,

dividing the new component by the weight c gives the corresponding ordinary

PC. It can be noticed that any set of r reduced dimensions explains 100% of

information in the data. In particular, the single reduced dimension (for r = 1)

explains 100% information. This means that the total information in the original

p dimensions is now contained in a single transformed dimension.

Table 4 also gives the transformed component for various reduced dimen-

sions for Dataset 2 based on a weighted variance-covariance matrix that yields

generalized PC. It can be seen that the features of the weighted principal compo-

nent are the same as those in Tables 1 to 3. That is, there is no loss of information

even when the weighting is carried out on components extracted from weighted

variance-covariance matrix.
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Table 1: Weighted PCs for various Reduced Dimensions for Dataset 1
(SalesData) based on Ordinary PC Extraction

Var r = 1;
√
c = 1.0913 r = 2;

√
c = 1.0289

1 0.1901 0.1792 0.8761
2 0.2150 0.2028 0.4736
3 0.1232 0.1162 -0.0725
4 1.0456 0.9859 -0.2481

% Exp 100.00 88.7198 11.0778
Cum 100.00 88.7198 100.0000

Table 1 continued

Var r = 3;
√
c = 1.0100

1 0.1759 0.8600 -0.4592
2 0.1990 0.4649 0.8324
3 0.1140 -0.0712 0.3173
4 0.9677 -0.2436 -0.1251

% Exp 85.6558 10.6952 3.6491
Cum 85.6558 96.3509 100.0000

Table 1 continued

Var r = 4;
√
c = 1.0100

1 0.1742 0.8515 -0.4546 0.1948
2 0.1971 0.4603 0.8242 -0.2646
3 0.1129 -0.0705 0.3141 0.9400
4 0.9582 -0.2412 -0.1239 -0.0918

% Exp 83.9677 10.4844 3.5771 1.9708
Cum 83.9677 94.4521 98.0292 100.00
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Table 2: Weighted PCs for various Reduced Dimensions for Dataset 2
(US Food) based on Ordinary PC Extraction

Var r = 1;
√
c = 1.3037 r = 2;

√
c = 1.0945

1 0.0371 0.0312 -0.1809
2 0.2609 0.2190 -0.6919
3 0.0543 0.0456 -0.4839
4 1.2240 1.0276 0.3441
5 0.3593 0.3016 -0.57781

% Exp 100.00 70.481 29.519
Cum 100.00 70.481 100.0000

Table 2 continued

Var r = 3;
√
c = 1.0336

1 0.0294 -0.1709 0.0221
2 0.2069 -0.65359 0.2628
3 0.0431 -0.4570 -0.9187
4 0.9705 0.3249 -0.1254
5 0.2849 -0.5457 0.3731

% Exp 62.861 26.328 10.811
Cum 62.861 89.189 100.0000

Table 2 continued

Var r = 4;
√
c = 1.0041

1 0.0286 -0.1660 0.0214 -0.1905
2 0.2009 -0.6348 0.2552 -0.6613
3 0.0418 -0.4440 -0.8924 0.1081
4 0.9427 0.3156 -0.1218 -0.0693
5 0.2767 -0.5301 0.3625 0.7198

% Exp 59.318 24.844 10.201 5.6367
Cum 59.318 84.162 94.363 100.00

Table 2 continued

Var r = 5;
√
c = 1.0000

1 0.0285 -0.1653 0.0214 0.1897 0.9672
2 0.2001 -0.6322 0.2542 -0.6586 -0.2488
3 0.0417 -0.4422 -0.8887 0.1077 -0.0361
4 0.9389 0.3144 -0.1214 -0.0690 0.0152
5 0.2756 -0.5279 0.3610 0.7168 0.0343

% Exp 58.835 24.642 10.118 5.5909 0.8138
Cum 58.835 83.477 93.595 99.186 100.00
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Table 3: Weighted PCs for various Reduced Dimensions for Dataset 3
(Subscores) based on Ordinary PC Extraction

Var r = 1;
√
c = 1.2618 r = 2;

√
c = 1.13405

1 -0.8003 -0.7193 0.0070
2 -0.7493 -0.6734 0.0028
3 -0.2070 -0.1861 -0.0190
4 -0.5892 -0.5295 0.0256
5 0.0161 0.0145 1.1336

% Exp 100.00 80.769 19.231
Cum 100.00 80.769 100.0000

Table 3 continued

Var r = 3;
√
c = 1.0674

1 -0.6770 0.0066 0.3709
2 -0.6339 0.0027 0.3481
3 -0.1751 -0.0179 -0.0230
4 -0.4984 0.0231 -0.9380
5 0.0136 1.0670 0.0168

% Exp 71.554 17.037 11.409
Cum 71.554 88.5913 100.0000

Table 3 continued

Var r = 4;
√
c = 1.0254

1 -0.6504 0.0063 0.3563 0.7066
2 -0.6089 0.0026 0.3344 -0.7125
3 -0.1682 -0.0172 -0.0221 -0.2102
4 -0.4788 0.0222 -0.9011 0.0201
5 0.0131 1.0250 0.0161 -0.0065

% Exp 66.040 15.724 10.530 7.706
Cum 66.040 81.7643 92.294 100.00

Table 3 continued

Var r = 5;
√
c = 1.0000

1 -0.6342 0.0062 0.3475 0.6890 0.0465
2 -0.5938 0.0025 0.3261 -0.6948 -0.2414
3 -0.1641 -0.0168 -0.0215 -0.2050 0.9645
4 -0.4669 0.0217 -0.8788 0.0196 -0.0945
5 0.0128 0.9996 0.0157 -0.0064 0.0186

% Exp 62.805 14.954 10.014 7.3287 4.8990
Cum 62.805 77.759 87.772 95.101 100.00
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Table 4: Weighted PCs for various Reduced Dimensions for Dataset 2
(USFood) based on Generalized PC Extraction

Var r = 1;
√
c = 2.0501 r = 2;

√
c = 1.4951

1 -3.3530 -2.4454 3.0154
2 -0.5512 -0.4020 -2.0117
3 -1.5702 -1.1452 -0.5788
4 -0.5188 0.3783 0.3730
5 -0.5477 -0.3995 1.3185

% Exp 100.00 53.1889 46.8111
Cum 100.00 53.1889 100.0000

Table 4 continued

Var r = 3;
√
c = 1.2456

1 -2.0373 2.5122 2.3756
2 -0.3349 -1.6760 -1.5931
3 -0.9541 -0.4822 0.8124
4 -0.3152 0.3107 -0.6464
5 -0.3328 1.0985 0.9835

% Exp 36.9175 32.4908 30.5917
Cum 36.9175 69.4087 100.0000

Table 4 continued

Var r = 4;
√
c = 1.0975

1 -1.7950 2.2134 2.0931 2.1780
2 -0.2951 -1.4767 -1.4037 -0.0640
3 -0.8406 -0.4249 0.7158 -0.3688
4 -0.2777 0.2738 -0.5695 -0.0133
5 -0.2932 0.9678 0.8665 -0.3357

% Exp 28.6591 25.2226 23.7483 22.3701
Cum 28.6591 53.8817 77.6299 100.00

Table 4 continued

Var r = 5;
√
c = 1.0000

1 -1.6356 2.0168 1.9071 1.9845 -0.7335
2 -0.2689 -1.3455 -1.2790 -0.0583 0.4773
3 -0.7659 -0.3872 0.6522 -0.3360 -0.6344
4 -0.2530 0.2495 -0.5189 -0.0121 -0.3061
5 -0.2672 0.8819 0.7896 -0.3059 0.6949

% Exp 23.7937 20.9406 19.7166 18.5724 16.2766
Cum 23.7937 44.7344 64.4510 83.0234 100.00
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Figures 3 to 5 further illustrate graphically the component extraction with

no loss of information. The full information explained by the r reduced di-

mensions is seen in the larger spread of the box plot of projections onto the

components extracted from the three datasets described in Section 4.1. Figure 3

for example, gives the boxplot based on dataset 2. In this figure, NP1 is the plot

for the new single reduced dimension and PC1 is the first original component.

The full information explained in NP1 is seen in the longer plot compared to a

much smaller information (58.8%). The second and third plots are the informa-

tion contained in the two 2-reduced dimension components. The structure is the

same for the other two figures. Another observation in the plot shows that when

there is extreme observation in the plot along the original PC, the plot for the

corresponding new dimension also shows the extreme observation.

Figure 3: Plot showing variation in projected data on reduced 1 and 2 new and
original PC dimensions for Dataset 2 based on classical PC extraction

Note: NP21 implies first new PC of the two retained PCs.

NP22 implies second PC of the two retained PCs.
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Figure 4: Plot showing variation in projected data on reduced 1 and 2 new and
original PC dimensions for Dataset 3

Figure 5: Plot showing variation in projected data on reduced 1 and 2 new and
original PC dimensions for Dataset 1 based on classical PC extraction

Figure 6 is the graphical representation of the information explained along

the r reduced dimensions compared to the corresponding original components

extracted from weighted variance covariance matrix that generates generalized

components (GPC). An interesting observation is that projection on the sec-

ond of the two 2-reduced dimension component (WGUS22) (i.e., the third plot)

shows extreme observations whiles projection on the corresponding second orig-

inal GPC (USP2) does not show extreme observations. This is in contrast to a
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feature of the projection when PC is extracted from the ordinary variance covari-

ance matrix demonstrated in Figures 3 to 5. It can be seen that there is a much

greater spread in the single reduced component (WGUS11) than the correspond-

ing original component USP1 that reflects the wide difference in the percentage

information explained (100%) by the single weighted PC and the information

(23.8%) in the first ordinary GPC (USP1).

Figure 6: Plot showing variation in projected data on reduced 1 and 2 weighted
and original PC dimensions for Dataset 2 based on Generalized PC

Implementation of Reduced Regression Modelling

In Tables 5 and 6, various reduced regression models for various response

variables in Dataset 1 are provided for various reduced dimensions based on

PCs extracted form ordinary variance-covariance matrix. As explained from the

formulations in Section 4.1, it is not expected that the full information contained

in the r reduced dimensions would translated into a full coefficient of multiple

determination when the set of r reduced components are used in regression mod-

elling of a response variable in the dataset. As expected, the tables show that the

R2 accounted for by the model in terms of the set of new weighted r reduced

components is the same as that for the model in terms of the corresponding set

of original components. As shown in the derivation of the technique, in each
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case of r reduced dimensions, the intercepts are the same for each pair of mod-

els in terms of the set of new reduced components and the other in terms of the

original components. It can also be verified that dividing the non-intercept co-

efficients of the models in terms of the original PCs gives the corresponding set

of non-intercept coefficients for the model in terms of the weighted PCs.

A number of other observations are worth-noting in the model tables. It

can be seen that for all models in terms of the original PCs, the introduction of

additional PCs does not change the coefficients of the PCs initially in the model.

This is not the case for the models in terms of the new weighted PCs. Thus, for

reduced rank regression (RRR) modelling in terms of the weighted PC, the re-

sulting coefficients are not affected by the orthonormality of the original PCs.

Again, as expected, the pair of models when r = p are the same for the two

types of components.

The last column of the tables give the original multiple linear regression

(MLR) models in terms of the original variables. It can be seen that its coeffi-

cients are different from the full model in terms of the components. However,

the full coefficient of multiple determination (CMD) value (96.52% in Table 5)

for the original MLR is the same as those of the full models in terms of the

components.

Table 7 gives various reduced regression models for Variable 2 in Dataset

1 for various reduced dimensions based on generalized PC (using the weighted

variance-covariance matrix). Unlike the models in terms of PCs extracted from

regular variance-covariance matrix, the table shows that the R2 accounted for by

the model in terms of the set of new weighted r reduced components is not the

same as that for the model in terms of the corresponding set of original GPC. In

fact, in this case, the R2 accounted for by the weighted components could be ex-

tremely small. Another deviation is that for each case of r reduced dimensions,

the intercepts are not the same for each pair of models in terms of the set of

weighted components and the other in terms of the original GPC. It can also be
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verified that dividing the non-intercept coefficients of the models in terms of the

original GPC does not yield the corresponding set of non-intercept coefficients

for the models in terms of the weighted PC.

The results therefore show that the theoretical relation that has been de-

rived to exist between the coefficients of the models in terms of the original GPC

and the corresponding set of coefficients for the models in terms of weighted

PC may not apply in the case where components are not extracted from regular

variance-covariance matrix.
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Table 5: Reduced Regression Modelling for Response Variable 2 for var-
ious Reduced Dimensions for Dataset 1 based on Classical PC

Type of model
r = 1; c = 1.0913 r = 1; c = 1.0913

Coefficient WPC1 PC WPC PC
t0 76.0040 76.0040 73.1287 73.1287
t1 0.8147 0.8891 0.8641 0.8891
t2 0.3423 0.3522
t3
t4

R-sq 0.9217 0.9217 0.9397 0.9397

Table 5 continued

Type of model
r = 3; c = 1.0100 r = 4; c = 1.0000

Coefficient WPC1 PC WPC PC MLR
t0 70.7593 75.3579 75.3579 75.3579 75.3579
t1 0.8803 0.8891 0.8891 0.8891 0.1225
t2 0.3487 0.3522 0.3522 0.3522 0.8673
t3 0.3772 0.3809 0.3809 0.3809 -0.5723
t4 -0.8166 -0.8166 0.7947

R-sq 0.9469 0.9469 0.9652 0.9652 0.9652
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Table 6: Reduced Regression Modelling for response variable 1 for various
Reduced Dimensions for Dataset 1 based on Regular PC

Type of model
r = 1; c = 1.0913 r = 1; c = 1.0289

Coefficient WPC1 PC WPC PC
t0 76.9095 76.9095 74.6041 74.6041
t1 0.5834 0.6367 0.6188 0.6367
t2 0.2744 0.2824
t3
t4

R-sq 0.8999 0.8999 0.9220 0.9220

Table 6 continued

Type of model
r = 3; c = 1.0100 r = 4; c = 1.0000

Coefficient WPC1 PC WPC PC MLR
t0 72.8674 72.8674 68.9209 68.9209 68.9209
t1 0.6304 0.6367 0.6367 0.6367 0.3609
t2 0.2796 0.2824 0.2824 0.2824 0.3001
t3 0.2764 0.2792 0.2792 0.2792 0.7985
t4 0.7008 0.7008 0.4431

R-sq 0.9294 0.9294 0.9550 0.9550 0.9550
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Table 7: Reduced Regression Modelling for Response Variable 2 for vari-
ous Reduced Dimensions for Dataset 1 based on GPC

Type of model
r = 1; c = 1.0913 r = 1; c = 1.0289

Coefficient WPC1 PC WPC PC
t0 102.5688 78.7516 98.1181 69.8695
t1 -0.1798 -0.9707 -0.2512 -0.9868
t2 0.2306 0.7262
t3
t4

R-sq 0.0193 0.8478 0.0296 0.9163

Table 7 continued

Type of model
r = 3; c = 1.0100 r = 4; c = 1.0000

Coefficient WPC1 PC WPC PC MLR
t0 79.5762 76.5175 75.3579 75.3579 75.3579
t1 -0.3050 1.2262 -0.3419 1.8341 0.1225
t2 0.2800 -0.2256 0.3139 -0.1098 0.8673
t3 0.8348 1.9707 0.9359 1.9309 -0.5723
t4 -0.7398 -0.7851 0.7947

R-sq 0.8913 0.9518 0.9652 0.9652 0.9652
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Chapter Summary

The chapter has learnt and derived a new set of reduced PCs from an origi-

nal set of PCs extracted from a given V-C matrix. It has subsequently examined

the features of the new reduced PCs (NRPCs). It is shown analytically that

the NRPCs is a constant multiple of the corresponding set of reduced original

PCs. Thus, the original PCs are found to be a normalization of the NRPCs.

The relationship between the V-C matrices of both the NRPCs and the original

PCs is also determined. The derived NRPCs have been implemented using suit-

able datasets in the literature. The features of the NRPCs are further examined

in application to Multivariate Multiple Reduced Rank Regression (MMRRR)

modelling. Thus, the NRPCs have been examined both analytically and prac-

tically. The application is carried out for component extraction using regular

(unweighted V-C) matrix as well as weighted V-C matrix. It has been found

that the analytical relationship between the NRPCs and the original PCs hold in

MMRRR modelling when PC extraction is based on regular V-C matrix. How-

ever, the analytical relationship between the two types of components is not

found to hold when component extraction is based on weighted V-C matrix.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

This chapter presents an overview of the entire work and conclusions

based on the discussion of results in Chapter Four. Based on that, recommenda-

tions will be given.

Summary

In Chapter One, the problem of the classical principal component was in-

troduced and the motivation for the study was outlined. The pertinent problem

identified was that in the classical PCA, the amount of information loss after

truncation, no matter the size, can have an important implication depending on

the sensitivity of the area to which the technique is applied. It made clear the

intention of the study to derive a variant of reduced set of PCs that retains all

information in a given dataset. Of significance, the chapter outlined how the

approach would be applied to Reduced Rank Regression modelling, and how it

would serve as a useful alternative to best subset regression.

Chapter two considered various works done by other researchers using

the classical PCA, WPCA, and PCR. It is presented that the advantages PCA

bring have seen many researchers employ in their works. The chapter also re-

viewed that the literature on WPCA aim at explaining the overall variation in

a dataset according to a given number of PCs. It has also reviewed that the

method also allows one to recover a given number of perpendicular PCs among

the most important ones for the case of problems with weighted or missing data.

Comparatively, the literature shows that WPCA produces better results than the

classical PCA.

The third chapter was organized as follows: Principal Component Analy-
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sis, Eigenstructure of covariance matrix, Singular Value Decomposition of Data

matrix, Spectral Decomposition of a Matrix, Spectral Decomposition of a ma-

trix, and the Variance-Covariance matrix for Principal Component Extraction.

The methodology presented extensive review of the procedure for conducting

principal component analysis. All the new transformed PCs were extracted

from the Variance-Covariance matrix and the correlation matrix of the origi-

nal datasets used in this work. All the datasets were multivariate.

The chapter four learnt and derived a new set of reduced PCs from an

original set of PCs extracted from a given V-C matrix. It subsequently exam-

ined the features of the new reduced PCs (NRPCs). It showed analytically that

the NRPCs is a constant multiple of the corresponding set of reduced original

PCs. Thus, the original PCs was found to be a normalization of the NRPCs.

The relationship between the V-C matrices of both the NRPCs and the original

PCs were also determined. The derived NRPCs were implemented using suit-

able datasets in the literature. The features of the NRPCs were further examined

in application to Multivariate Multiple Reduced Rank Regression (MMRRR)

modelling. Thus, the NRPCs have been examined both analytically and prac-

tically. The application was carried out for component extraction using regular

(unweighted V-C) matrix as well as weighted V-C matrix. It was found that the

analytical relationship between the NRPCs and the original PCs hold in MM-

RRR modelling when PC extraction is based on regular V-C matrix. However,

the analytical relationship between the two types of components was not found

to hold when component extraction is based on weighted V-C matrix.
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Conclusions

It is a feature of all dimensionality reduction techniques to have an ap-

preciable amount of loss of information when the first few PCs are retained.

The loss of information due to dimensionality reduction means that the spread

or variation in the component scores on the retained PCs does not reflect the

actual variation in the original data. As a result of this phenomenon, extracting

reduced components could have quite crucial implications in sensitive areas of

human endeavor. It therefore becomes necessary to consider reduced PC extrac-

tion that eliminates the loss of information.

The attempt made in this study to address the identified problem learns

from the basic principle that a V-C matrix may be factorized as a product of a

matrix and the transpose of that matrix, and this matrix is further derived from

the spectral decomposition of the V-C matrix. A new reduced PC (NRPC) ex-

traction simply makes use of a product of the factorization of the V-C matrix.

Other background methodology that is employed is the function of a V-C matrix

that is simplified by the spectral decomposition. Too main functions of the V-C

matrix employed in the process involves the square root function and the trace

function

With this study, we have been able to show that it is possible to bring

down the dimensions of a dataset with no loss of information in the original

data. This study derives a new reduced set of PCs (NRPCs) that is simply a

constant multiple of the first r original PCs (OPCs). This means that the OPCs

are just a normalization of the NRPCs. The normalizing constant represents the

common variation explained by each of the components in the set of r NRPCs.

Irrespective of the number r of NRPCs, all the information in the original data is

explained by the NRPCs. This means that even a single dimensional NRPC ac-

counts for 100% information. Further features of the NRPCs are examined both

analytically and practically in Multivariate Multiple Reduced Rank Regression
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(MMRRR) modelling for extraction based on both regular (unweighted) and

weighted V-C matrices of a dataset. It is found that for the NRPCs extracted

from unweighted V-C matrix, the analytical relationship between the NRPCs

and the OPCs are preserved in MMRRR modelling. However, if OPCs are

based on weighted V-C matrix, then the analytical relationship between the two

types of PCs does not hold practically in MMRRR modelling. In this case, the

RRR modelling is found to perform very poorly except when almost all new

components are used in the model. The results of the study shows that in order

to determine the real spread of PC scores for further analysis, the use of the

NRPCs would be more useful.

Recommendations

The result of the study has shown that it is possible to obtain a reduced

set of unstandardized PCs that account for all information in the data. It should

therefore be a preferred procedure for extracting PCs rather than the usual PCA

in the literature.

The study has demonstrated that the derived features of the new PCA are

exhibited by one that is based on the ordinary PCA that are extracted from the

usual V-C matrix. However, some of these features are not exhibited by the

new PCA based on weighted V-C. A natural extension of this work would be

to examine the characteristics of PCs based on V-C matrix that do not allow for

those derived features when transformed by the procedures studies in this work.

This information could provide a guide for a more generalized procedure for

extracting PCs with no information loss.

Another useful area for consideration from this study is an application of

the new PCs that would also lead to zero information loss. For example in this

study, the application of the extracted r−reduced dimensions in Reduced Rank

Regression Modelling does not explain an amount of variation that is equal to
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the Coefficient of Multiple Determination (CMD) of the original Multiple Lin-

ear Regression Modelling in terms of the original variables. It would therefore

be interesting to obtain reduced dimensions that could also lead to zero infor-

mation loss applied in regression in the original data.
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