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ABSTRACT 

Studies relating to groundwater have asserted that groundwater quality 

assessment is difficult, time-consuming and costly. An easy, vigorous, cost and 

time-effective tool is needed to predict water quality. The study employed 

supervised learning algorithms (decision tree regression and polynomial 

regression techniques) to build a model for assessing and predicting 

groundwater quality using easily measured parameters. The study employed 

experimental design (factorial design) and random sampling technique 

(multistage sampling technique) for the data collection. Model performance 

determinants such as R
2
, RMSE and d-statistics were used to compare the 

performance of the model with aqueous geochemical models such as Visual 

Minteq, Phreeq C and Wateq4F. ANOVA was used to determine the 

significance mean differences in the predicted groundwater chemical 

parameters of the study regions. The estimated R-square, RMSE and d-

statistics for Visual Minteq (0.997, 16.97 and .987), Phreeq C (0.999, 33.16 

and 0.960), Wateq4F (0.972, 15.33 and 0.988) and machine learning model 

(0.999, 1.690 and 1.00) indicated that the model developed has high predicting 

ability over the aqueous geochemical models. Model validating tools like 

accuracy (0.96), RMSE (1.690) and R
2
 (> 95%) demonstrated that the model 

could be used to forecast groundwater quality with high accuracy using easily 

measured parameters. ANOVA test demonstrated significant mean differences 

in the predicted groundwater chemical parameters of the study regions (P-

value = 0.00 < 0.05). It is recommended that artificial intelligence tools, such 

as supervised learning as an easy, time and cost-effective way of predicting 

water quality should be encouraged in groundwater assessment.  
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CHAPTER ONE 

INTRODUCTION 

Excessive water pollution has compromised water quality and 

increased water distribution costs and associated health-related concerns 

(Adjei & Adjokatse, 2022). Globally, water samples are usually collected from 

the fields and analysed using laboratory standards. According to McCaig 

(2020), water quality analyses are complicated, expensive and require much 

time for the laboratory and in-depth analyses of the many water quality 

indicators.  

Mohapatra et al. (2021) utilised the traditional methods in groundwater 

quality prediction and confirmed that the traditional methods cannot predict 

water quality parameters with ease due to slow processing times and errors 

from manual data entry. The traditional methods, though valuable, often fail to 

provide real-time and accurate predictions using easily measured parameters. 

They heavily depend on manual sampling, laboratory analysis, periodic 

monitoring and both chemical and physical parameters of water samples. A 

nonphysical method, which is an easy, vigorous, cost and time-effective tool 

and combines the operations of the traditional in its decisions is needed to 

predict water quality using easily measured parameters.  

Nordstrom and Campbell (2014) and Bahlol et al. (2023) employed 

geochemical models to predict groundwater quality. Findings of the studies 

showed that geochemical models such as Visual Minteq, Phreeq C and 

Wateq4F could be used to predict groundwater quality with ease, but it only 

occurs at the mineral phase. Artificial Intelligence (AI) has emerged as a 

complex computer system in water quality prediction and modelling. El Bilali 
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et al. (2021) and several other authors employed AI in water quality prediction 

and modelling. They concluded that AI could predict water quality parameters 

in an easy, inexpensive and time-effective way.  

As reported by Kortei (2020), Ghana‘s underground water bodies 

(particularly, in the Central, Greater Accra and Western Regions) are receiving 

progressive pollution every day, but the extent to which the pollution has 

occurred is unknown. This study employed an AI approach, particularly 

decision tree regression (DTR) and polynomial regression approaches to build 

a model to predict groundwater chemical parameters using easily measured 

water quality parameters such as pH, total dissolved substances, temperature, 

dissolved oxygen, total hardness, turbidity and salinity. The performance of 

the AI model would be validated using the model-predicting indices such as 

accuracy, root means square errors (RMSEs), d-statistics and R-square. 

Moreover, the performance of the AI model would also be compared with 

existing aqueous geochemical models such as Visual Minteq, Phreeq C and 

Wateq4F to validate its ability in predicting groundwater quality. 

Background to the Study 

The United Nations (UN) report stated that 1.8 million people die from 

drinking contaminated water every year (Denise et al., 2022; Rubinstein, 

2022). According to Forest et al. (2013), about 2.5 billion sicknesses and five 

million losses of lives occur every year due to the lack of access to clean and 

safe drinking water. These losses are estimated to be greater than mortalities 

caused by accidents, terrorist attacks and crimes. Nwankwo et al. (2020) 

expressed that water pollution contributes to about 80 percent of health-related 

complications in impoverished states like Ghana.  
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Adeyemi et al. (2022) and Unigwe and Egbueri (2022) asserted that 

several factors, including global human population growth and climate 

change, affect water quality. Many concerns have been raised globally about 

the massive destruction of water resources, predominantly in Africa and the 

subsequent health and environmental effects. In response to this health and 

ecosystem-threatening issue, governments have been mandated to protect and 

sustain available water sources (Denise et al., 2022), thus improving or 

discovering new water sources to prevent global water shortage, disease 

outbreaks, hunger and malnutrition. 

Corno et al. (2022) suggested that the connection between human 

health and water quality is dynamic and complicated, therefore, a more 

complicated and dynamic system must be used to mimic and estimate the 

association between water and health. Geochemical models have been used to 

predict groundwater quality (Barzegar et al., 2018; Dey et al., 2023). They 

explained that geochemical models use water chemistry data, such as the 

concentrations of major ions and trace elements at the mineral phases to 

estimate the concentrations of groundwater.  

Artificial intelligence (AI) has also been developed as a computer 

system to mimic human brain and solve complex problems. According to 

Foppen et al. (2020) and Minh et al. (2022), AI can model and predict the 

relationships between water and human health. Aldhyani et al. (2020); Calvert 

(2020); Mettu and Latifi (2020) employed artificial intelligence to model and 

predict water quality. The authors indicated that assessing groundwater quality 

of a given aquifer in the laboratory is expensive, time-consuming and 

laborious. Traditional methods pose challenges due to inaccuracies arising 
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from complex laboratory analysis, manual data entry and sluggish processing 

speeds. For example, much time spent on data entry and processing affects the 

ability to draw better conclusions about the relationships among change water 

quality parameters. According to Van der Veer Martens et al. (2017), the 

failure to draw better conclusions about the variabilities in groundwater might 

lead to inaccurate representations of the real system and lower groundwater 

model performance and forecasting accuracy.  

Akhtar et al. (2021) recognised water quality index (WQI) as a crucial 

method for estimating underground water quality and its acceptability for 

drinking. This method provides mechanisms for presenting cumulatively a 

generated quantitative expression to indicate water quality level. WQI is 

utilised extensively throughout the world due to its capability of fully 

expressing information on water quality and its acceptability (Banda & 

Kumarasamy, 2020). Mokarram et al. (2022) added that in predicting water 

quality level of any water source, WQI is the most common determinant. 

Many researchers have adopted various water quality indices to estimate 

groundwater drinking suitability and river water quality in other countries 

(Gautam et al., 2022; Mukherjee & Singh, 2022; Sarkar et al., 2022). 

Becher et al. (2022) asserted that WQI is essential in water quality 

assessment. WQI provides a comprehensive and standardised way to evaluate 

the overall condition of water based on various parameters of quality (Şener et 

al., 2017). The hidden contaminants could persist in the groundwater system 

for decades or even hundreds of years due to the relatively slow movement of 

the underground water and pollutants in the subsurface. There is an urgent 
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need to employ suitable and cost-effective tools in assessing and modelling 

groundwater quality using easily measured parameters.  

Agbasi and Egbueri (2022) found that using traditional techniques in 

assessing the quality of groundwater sometimes contributes to losses in the 

economic parts of the assessment, impacting the ability to make decisions 

regarding groundwater quality management processes. Moreover, they cannot 

predict groundwater quality using easily measured parameters. Therefore, it 

has become crucial to employ a potential and affordable technique to ensure 

quick and accurate water quality assessment and analysis. In such a case, the 

supervised learning algorithm (SML) is an alternative to forecast the general 

groundwater quality level based on findings of analyses that do not require 

costly reactors or highly advanced measuring techniques but the use of easily 

measured parameters such as pH and electrical conductivity.  

Statement of the Problem 

In Ghana, studies assessed the physicochemical parameters of the 

surface water bodies (rivers, streams and lakes) and found that some of the 

surface water bodies are polluted (Yeleliere et al., 2018; Kortei et al., 2020; 

Ampim et al., 2021; Amuah et al., 2022). Abanyie et al. (2020) argued that 

water pollution comprises surface and underground water pollution and if 

surface water bodies have been assessed, then there is a need to assess the 

state of the underground water bodies in Ghana. Kortei (2020) and Amuah et 

al. (2022) conducted a study in Southern Ghana and asserted that underground 

water bodies are receiving progressive pollution every day, but the extent to 

which the pollution has occurred is unknown. Studies are, therefore, needed to 

estimate the extent of groundwater pollution in Southern Ghana. 
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Studies such as McCaig et al. (2020) and Agrawal et al. (2021) showed 

that water quality assessment is laborious, complicated and expensive and 

much time is needed for the complex laboratory and in-depth analyses of the 

many water quality parameters. To find a better way to make water quality 

experiments less expensive and laborious, Mohapatra et al. (2021) and Singha 

et al. (2022) employed traditional methods such as ANOVA in the prediction 

and modelling of water quality. They asserted that the traditional methods are 

associated with difficulty due to errors from manual data entry and slow 

processing times. This hinders prediction efficiency and scalability and the 

drawing of better conclusions about the relationships among change water 

quality parameters (Mohapatra et al., 2021). There is a need for an easier and 

less laborious method for water quality assessment.   

Prommer et al. (2019) assessed the effectiveness of geochemical 

models such as Phreeq C and Visual Minteq in groundwater quality prediction. 

Singh et al. (2013) employed geochemical models such as Wateq4F to predict 

groundwater quality using the mineral phase ions. Singh et al. (2013) and 

Prommer et al. (2019) noted that geochemical models although effective tools 

in predicting groundwater quality could only predict water quality at the 

mineral phases. Geochemical models cannot analyse datasets and detect 

patterns that are not easily identifiable (Zuo et al., 2021). In addition, they 

cannot save time, money and resources and extract concrete information from 

raw data to solve complex problems. An easy, efficient, risk-free, cost-

effective and vigorous tool is needed to model and predict groundwater quality 

beyond the mineral phases and extract concrete information from raw data to 

solve complex groundwater problems. A study by El Bilali et al. (2021), 
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Foppen et al. (2020) and Minh et al. (2022) found that using AI (specifically, 

supervised machine learning using regression approaches) in water quality 

prediction and modelling can help predict water quality parameters in an easy, 

inexpensive and time-effective way.  

From the literature review, there has not been any work done in 

predicting and modelling groundwater chemical parameters and classifying 

groundwater pollution levels using DTR and polynomial regression 

approaches and geochemical models such as Visual Minteq, Phreeq C and 

Wateq4F. Moreover, no study has been done on the use of supervised learning 

(with DTR and polynomial regression approaches) in modelling chemical 

parameters of groundwater quality using easily measured parameters. This 

current study employs the supervised learning algorithm (particularly the 

decision tree regression and polynomial regression algorithms) in AI to build a 

model for predicting and modelling the chemical parameters of the 

groundwater in the study regions (Central, Greater Accra and Western) using 

easily measured parameters such as pH, TDS, temperature, salinity, dissolved 

oxygen, total hardness and total dissolved substances. The predictions of the 

AI model would be compared with the geochemical models to establish the 

accuracy of the model in predicting groundwater quality.  

General Objective of the Study 

The main objective of the study is to develop a model to predict 

groundwater chemical parameters using easily measured parameters. The 

study also seeks to determine factors that influence groundwater pollution in 

the study regions (Western, Central and Greater Accra Regions) and estimate 
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groundwater quality indices for the study regions using supervised learning 

regression models.  

Specific Objectives 

1. To develop a model and determine its performance in predicting 

groundwater chemical parameters based on easily measured parameters. 

2. To compare the performance of the model with aqueous geochemical 

models (such as Visual Minteq, Phreeq C and Wateq4F) in predicting 

groundwater quality parameters.  

3. To establish if there are statistically significant mean differences between 

and among the predicted groundwater chemical parameters of the study 

regions (Western, Central and Greater Accra Regions). 

Hypotheses 

HA1: The model could predict chemical parameters of groundwater using 

easily measured parameters with high accuracy. 

HA2: The model could predict groundwater quality chemical parameters with 

high accuracy compared to Visual Minteq, Phreeq C and Wateq4F. 

HA3 There would be statistically significant mean differences between and 

among predicted groundwater chemical parameters of the study regions. 

Significance of the Study 

The findings of the study would help determine environmental 

parameters that influence the groundwater quality of the study regions. The 

use of supervised learning in predicting groundwater quality at a larger scale 

serves as an effective tool for improving, managing and developing vital 

groundwater resources. The study would help understand the present 

groundwater quality and pollution levels which are critical for predicting 
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future safe drinking water sources. The outcomes of the study would instigate 

further studies using data based on regions in Ghana and data availability to 

strengthen the obtained conclusions. It would help increase attention on water 

quality necessary to realise the SDGs, regarding water security (SDG 6), 

health (SDG 3) and food production (SDG 2). 

The findings of this study would help contribute to the achievement of 

the African Union Agenda 2063. By accurately predicting groundwater 

quality, the study would help promote sustainable water resource 

management, ensuring access to clean and safe water for all Africans. The 

findings of the study would contribute to the development of effective policies 

and strategies for water resource management, which are crucial for achieving 

the vision of a prosperous and peaceful Africa with sustainable development 

outlined in Agenda 2063. The findings of the study would also provide 

decision-makers with information on how to allocate resources effectively for 

groundwater quality monitoring and management, particularly in areas where 

water quality is likely to be poor.  

The findings that would be obtained from geochemical models would 

help understand the interactions between groundwater and geologic materials 

and predict the composition and concentration of contaminants in the 

groundwater. Also, using SLA as a new technology would help generalise the 

data from the regions to areas with less information, promoting an 

understanding of groundwater‘s possible menaces and susceptibilities. The 

evaluation of groundwater change would serve as a foundation for regional 

policymakers to determine the amount of water stress and provide efficient 

withdrawals and supplies of groundwater to alleviate water scarcity. Artificial 
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intelligence (AI) tools such as supervised learning help reduce the time during 

data collection processes. 

Delimitation 

The study was limited to three regions in Ghana (Central, Greater 

Accra and Western Regions), where there are more industrial, agricultural and 

domestic discharges into the environment. Replicates of three of the 

groundwater (from each well) were taken for the data analysis. The 

groundwater parameters were analysed on-site to control temperature variation 

and the influence of weather differences among the three selected regions in 

Ghana. The lack of significant and overall weather similarity across the 

sampling period ensured uniform hydrologic conditions across the sampling 

period, allowing for more accurate water-quality data comparisons.  

All meter recordings were first calibrated at each sampling excursion 

to facilitate accurate measurements. The data that would be collected would be 

in a standardised format to ensure consistency and accuracy. It would also be 

organised in a systematic way that is easy to search and retrieve. Data would 

be stored securely in google drive to protect it from unauthorised access, loss, 

or theft. Passwords would be placed on databases or encrypted sensitive data. 

Limitation 

Natural and anthropogenic processes influence groundwater quality; 

the study could not classify those factors into either anthropogenic or natural 

processes. Furthermore, weather pattern differences and temperature among 

the three regions in Ghana might influence the study‘s findings. The study was 

limited to groundwater quality parameters that are easily measured, which 
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might not allow full representation of the processes associated with 

groundwater quality changes in Ghana.  

Temperature variation among the study regions might affect the results 

of the study. The internal resistance or error by each of the instruments used 

might likewise affect the findings of the study. Although the use of artificial 

intelligence tools such as supervised learning helps provide a better 

understanding of the hydrological system of underground water, a large data 

size is needed to represent and model the underground water processes.  

Scope of the Study 

This study set out to develop a model which could predict groundwater 

quality based on easily measured parameters. It also assessed, estimated and 

compared the groundwater quality of the study. It also focused on three 

regions in Ghana: groundwater quality indexes of Central, Greater Accra and 

Western Regions and activities that contribute to groundwater pollution in the 

regions. Finally, the study focused on modelling, protecting, managing, and 

safeguarding groundwater quality in the selected regions. 

Definition of Terms 

Artificial intelligence (AI) is a computer system that needs human assistance 

to perform tasks normally. It imitates and behaves like humans in its 

operations. 

Decision tree regression (DTR) is a type of regression analysis that uses a 

decision tree as a predictive model to map features (input) to a target variable 

(output). In decision tree regression, the algorithm breaks down a dataset into 

smaller and smaller subsets while at the same time, an associated decision tree 

is incrementally developed.  
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Geochemical models are models for predicting chemical species in solution 

or solid phases in equilibrium with a solution. It helps explain the chemical 

compositions of materials and understand the distribution and behaviour of 

different elements at different depths and temperatures.  

Groundwater Quality is the state of the groundwater, thus, whether or not it 

is good for use. It consists of information on underground water‘s 

physicochemical, biological and radiological properties. 

Supervised Learning (SL) is a subset of machine learning techniques that 

utilise labelled datasets to train the model and forecast the output. The system 

is trained using a learning process to produce the target values from the input. 

Organisation of the Study 

This study consists of seven chapters. Chapter One comprises the 

introduction, background of the study, the statement of the problem, research 

objectives, significance of the study, delimitation, limitation, scope of the 

study, definition of terms and organisation of the study. Chapter Two 

encompasses the review of relevant literature on the subject matter under 

consideration. The research design and methods of data collection are spelt out 

in Chapter Three. Chapter Four contains the research findings, discussions and 

interpretation of the results based on field data analysis. Chapter Five presents 

the research findings, discussions and interpretation of the results based on 

machine learning prediction analysis. Chapter Six summarises the major 

findings of the study, its conclusion and recommendations, policy implication, 

practical impractical implication and suggestions for further studies.  
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction 

This section provides a review of relevant literature surrounding the 

objectives of the study and the research topic. It covers the theoretical review, 

theoretical framework and conceptual frameworks based on groundwater 

sustainability and supervised learning algorithms. It also reviews concepts 

such as groundwater quality and pollution, AI or supervised learning. The 

chapter also covers areas like SML techniques and model evaluation metrics 

as well as the comparison between ML and geochemical models, conceptual 

framework and empirical review. 

Theoretical Review 

This part of the study reviews the Theory of Predictive Modelling. It 

discusses the strengths and weaknesses and why the theory has been selected 

for this study.  

Predictive modelling theory (by Francis Galton and Norbert Wiener 

1990s) 

This current study employed the Predictive Modelling Theory (PMT) 

by Francis Galton and Norbert Wiener developed in the 1990s with Galton‘s 

regression analysis (Kerby, 2015). The theory focuses on utilising historical 

data to train models that can make accurate predictions about future outcomes 

(Machta et al., 2013). The theory states that when a model is trained and 

tested, it stands the chance to predict future events or outcomes with a high 

accuracy by analysing patterns in a given set of input data. In addition, when 
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selected variables are carefully executed, it enhances the accuracy and 

interpretability of the model (Machta et al., 2013).  

According to the theory, a vital component of every model is the 

training. Training a model ensures the model captures patterns within the 

available data (Kerby et al., 2015). Evaluation metrics, such as accuracy and 

RMSE, are essential strengths in quantifying model performance (Verhagen et 

al., 2018). The theory holds that relying solely on a single metric may pose a 

weakness, as it might not capture all dimensions of the model‘s behaviour. 

The theory emphasises the importance of understanding the relationship 

between predictors and predictands, providing a strength in guiding model 

design (Frees et al., 2014). Model validation serves as a strength by assessing 

the model‘s performance on independent datasets (Verhagen, 2018). 

Interpretability is a strength when models are designed to be interpretable, 

facilitating understanding and trust (Frees et al., 2014).  

A potential weakness of the theory lies in incomplete variable 

selection, which may lead to issues such as overfitting or underfitting. 

Overfitting hinders the model‘s generalisation of new and unseen data. The 

theory has been selected for the study because its emphasis on variable 

selection, model training, validation and evaluation metrics aligns well with 

the objectives of performance evaluation, predictability assessment, statistical 

significance and model comparison (Kerby et al., 2015). The theory 

emphasises the development of a model that can predict future outcomes, 

aligning with the goal of assessing the predictability of groundwater chemical 

parameters (Kerby et al., 2015). The PMT plays a crucial role in comparing 

the developed model with traditional aqueous geochemical models 
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(Varoquaux & Poldrack, 2019). By applying the theory, the study ensures that 

the developed model‘s predictive capabilities are assessed and compared with 

established geochemical models. 

Conceptual Review 

Groundwater quality 

Groundwater Quality (GI) is the condition of groundwater‘s chemical, 

biological and physical properties regarding its domestic, industrial and 

agricultural uses (Najafzadeh et al., 2022). GI is determined by bacteria levels, 

dissolved oxygen concentration, salinity or turbidity. GI depends on rock and 

soil properties, groundwater velocity, catchment area, recharge water quality, 

urbanisation and exploitation of water resources, anthropogenic activities, and 

atmospheric inputs (Wang & Li, 2022). Groundwater quality is inherently 

associated with human health, poverty reduction, livelihoods, food security, 

ecosystem preservation and our societies‘ economic growth (Zhou et al., 

2022). Wang et al. (2022) opined that poor underground water quality poses 

health risks and impacts ecosystems. Groundwater quality determines the 

water‘s usefulness for drinking, irrigation of food, hygiene, fodder and feed 

crops, aquaculture, food animals, manufacturing and industrial production 

(Guan et al., 2022). 

El-Aziz et al. (2017) and Teixeira et al. (2021) grouped groundwater 

quality based on its chemical composition, bacterial (coliform) content, salt 

content, colour, taste, odour and turbidity of the water. The main chemicals 

that define water quality comprise alkaline elements such as sodium (Na) and 

potassium (K). Also, alkaline earth elements like magnesium (Mg), calcium 

(Ca), sulphate, Chloride and the anionic complexes bicarbonate and heavy 
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metals (e.g., Cd, As, Fe, Pb, Hg), and organic compounds (Shamsuddin et al., 

2019; Gaur et al., 2022). Teixeira et al. (2021) added that these 

physicochemical and biological parameters could be used to determine 

drinking water safety based on some standards. 

Groundwater pollution 

Groundwater pollution refers to the contamination of underground 

water sources, known as aquifers, by harmful substances introduced into the 

ground (Sahoo et al., 2022). Groundwater contaminants are substances that, 

when dissolved in groundwater, will travel with the water and end up in 

drinking water wells (Li et al., 2022). Contaminants include heavy metals, 

pesticides, fertilizers, petroleum hydrocarbons, industrial chemicals, and 

pathogens (Balasubramanian et al., 2022).  

Groundwater pollution originates from various sources, including 

industrial activities, agricultural practices, urban runoff, improper waste 

disposal, and natural processes (Akhtar et al., 2021). These can be grouped 

into natural and anthropogenic sources (Krok et al., 2022; Dinesh et al., 2022). 

Natural sources include mineral dissolution, geological processes, and 

leaching from soil and rock formations. Anthropogenic sources involve 

activities such as industrial discharge, agricultural runoff, improper waste 

disposal, and leakage from underground storage tanks (Khan et al., 2014). 

Artificial intelligence 

Artificial intelligence (AI) is the construction of machines, 

programmes and robots which show intelligent behaviour as humans (Ibrahim 

et al., 2022). AI is the machines‘ ability to analyse, learn and comprehend 

information independently, just as humans do. AI is in the form of a robot, 
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machine, software or computer programme. AI includes simulating human 

intelligence procedures by machines such as computer systems (Aggarwal et 

al., 2022). AI is the ability of a digital computer or computer-controlled robot 

to perform tasks commonly associated with intelligent beings (Alldritt et al., 

2022). It is applied to projects of developing systems endowed with the 

intellectual processes characteristic of humans, such as the ability to reason, 

generalise, discover meaning or learn from experience. For example, AI can 

be found in computer search engines, natural language processing, medical 

diagnosis and voice or handwriting recognition in this limited meaning (Islas-

Cota et al., 2022; Oluyisola et al., 2022). 

Speech translation, machine sensing, problem-solving, robots, and 

gaming are the five main applications of AI (De Keyser et al., 2022). Someone 

with expertise in robotics, natural language processing, and knowledge 

acquisition supports these implementation areas as well. Artificial intelligence 

(AI) needs a foundation of specialised hardware and software for building and 

training machine learning algorithms. While no computer language is 

exclusively associated with AI, a few stand out, including R, Python and Java 

(Rana et al., 2021).  

AI systems typically operate by ingesting massive amounts of labelled 

training data, analysing the data for correlations and patterns, and then 

projecting future states using these patterns. For example, an image 

recognition programme can learn to recognise and describe items in 

photographs (Bekhit, 2022). Moreover, learning, self-correction and reasoning 

are the three cognition processes that artificial intelligence programming 

concentrates on at every command (Namasivayam et al., 2022). Learning 
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processes consist of data gathering and rules development for converting that 

data into valuable information. Algorithms are rules for providing computing 

equipment to execute a task (Bekhit et al., 2022). Self-correction techniques 

are used in AI programming to optimise programmes and guarantee the most 

precise and workable outcomes (Austin et al., 2022). 

AI has a wide application within computer science, medical science, 

biological science, and other fields of business (Boyd & Wilson, 2017). AI is 

essential because it provides businesses access to existing hidden operational 

information and has the potential to perform better than humans under certain 

conditions (van Herck, 2022). For instance, it assists with meticulous activities 

like analysing voluminous legal documents to ensure that crucial fields are 

appropriately filled. AI systems can often complete tasks quickly and with few 

errors (Kelly et al., 2022).  

Due to AI‘s ability to analyse massive amounts of data faster and 

produce predictions that are more accurate than humans sometimes, AI 

techniques like Artificial Neural Networks and deep learning are rapidly 

evolving (Boyd et al., 2017). A human researcher would be drowned under the 

daily flood of enormous amounts of data; AI solutions use machine learning to 

quickly transform data into useful information. It, therefore, excels at activities 

requiring attention to detail, saves time on data-intensive tasks, generates 

trustworthy results, and is continually accessible thanks to AI-powered virtual 

agents (Namasivayam et al., 2022). The primary drawback of AI is the 

expensive expense of processing the enormous amounts of data that are 

required for AI programming (Kelly et al., 2022). Although AI only 

understands what has been demonstrated to generalise information from one 
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activity to another, it demands technical instruction and few skilled employees 

(Scharre, 2019), reducing the labour force or human resources in the working 

fields. 

Types of artificial intelligence 

There are three main types of artificial intelligence, Artificial Narrow 

Intelligence (ANI), Artificial General Intelligence (AGI) and Artificial Super 

Intelligence (ASI) (Kuusi & Heinonen, 2022).  Artificial Narrow Intelligence 

(ANI) or weak AI is a type of AI designed for a specific task or a narrow 

range of tasks (Zawacki-Richter et al., 2019). ANI systems are designed to 

excel in specific tasks or functions, such as image recognition, language 

translation or game playing (Jiang et al., 2022). They are engineered with 

algorithms optimised for performing tasks, enabling efficient and accurate 

performance within their designated domain.  

ANI relies on task-specific algorithms trained on large datasets to 

perform its functions (Holzinger et al., 2019). For example, deep learning 

algorithms, including convolutional neural networks (CNNs) for image 

recognition and recurrent neural networks (RNNs) for natural language 

processing, are commonly used in ANI systems (Sultan et al., 2020). ANI 

cannot generalise beyond its training data or adapt to new situations 

autonomously. ANI systems are rigid and may struggle to cope with novel 

scenarios or tasks outside their predefined scope. ANI is used for medical 

image analysis, disease diagnosis, and personalized treatment 

recommendations (Arabahmadi et al., 2022). ANI powers algorithmic trading 

systems for automated stock trading and fraud detection algorithms for 

identifying suspicious transactions (Harris, 2022).  
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Artificial General Intelligence (AGI) refers to AI systems that can 

understand, learn and apply knowledge across a wide range of tasks, similar to 

human intelligence (Goertzel, 2014). AGI aim to replicate the broad spectrum 

of cognitive abilities exhibited by humans, including perception, reasoning, 

learning, problem-solving and creativity (Korteling et al., 2021). Unlike 

narrow AI systems, which are designed for specific tasks, AGI aims to possess 

the flexibility and adaptability to perform a diverse range of tasks with human-

like proficiency (Aithal, 2023). AGI encompasses humanoid robots, self-

driving cars, virtual assistants, medical diagnosis systems, educational tutoring 

platforms, creative AI artworks and scientific research tools. These types of AI 

aim to emulate human-like cognitive abilities and adaptability across diverse 

tasks and domains (Korteling et al., 2021).  

AGI systems are equipped with learning mechanisms that enable them 

to acquire knowledge from diverse sources, including data, experience, and 

interaction with the environment (Aithal et al., 2023). These systems can 

continuously learn and improve their performance over time, exhibiting 

adaptive behaviour akin to human learning processes (Zawacki-Richter et al., 

2019). AGI emphasises the ability to generalise knowledge across different 

domains and transfer learning from one task to another (Zhu et al., 2023). AGI 

systems can apply learned knowledge to novel situations and tasks, 

demonstrating versatility and robustness. AGIs are used in healthcare, 

education, finance and robotics to solve complex problems (Sharma et al., 

2019). 

Artificial Super Intelligence (ASI) is a type of AI that possesses 

cognitive abilities far superior to those of humans and could potentially 
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outperform humans in all intellectual tasks (Azamat, 2021). ASI transcends 

human capabilities, exhibiting levels of comprehension, creativity, and 

problem-solving prowess beyond human comprehension (Jiang et al., 2022). 

ASI includes HAL 9000 from "2001: A Space Odyssey," Skynet from the 

"Terminator" franchise, and Ultron from Marvel Comics (Newby, 2001). ASI 

is envisioned to possess cognitive abilities that far exceed the combined 

intellect of all human minds (Aithal et al., 2023). With access to vast 

repositories of knowledge, data, and computational resources, ASI could 

analyze complex phenomena, devise novel solutions, and predict future 

outcomes with unparalleled accuracy (Jiang et al., 2022). 

Applications of artificial intelligence 

Artificial intelligence (AI) is used in various technologies and helps 

solve complex problems (Lu, 2019). According to Goncalves et al. (2022), 

automation tools help companies accomplish their work within a limited time. 

In addition, it can be used to process language, thus, a computer programmes 

interprets human language. For example, robots perform complex or 

inconsistent activities for people to complete. They are being employed in car 

manufacturing. In healthcare, AI applications are utilised to make complex 

tools for detecting and identifying diseases as well as cancer cells (Chan-

Olmsted, 2019). Artificial intelligence (AI) aids in the analysis of medical 

problems using laboratory and other health information to ensure early 

detection (Goncalves et al., 2022).  

AI is being utilised to discover new pharmaceuticals by merging 

historical data with medical understanding. It can also exploit weaknesses and 

nutritional deficiencies in soils (Assunço et al., 2022). AI can analyse where 
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weeds are growing to utilise computer vision, robotics, and machine learning 

techniques (Hanoon et al., 2021). AI robots can assist in harvesting crops at a 

bigger volume and faster rate than human labour (Verma, 2022).  

Machine learning 

Machine learning (ML) is a subfield of AI in which computers utilise 

algorithms to sift through large amounts of data in search of hidden patterns 

that may be used to make predictions (Hashimoto et al., 2018). ML helps use 

statistical methods and algorithms to train data and classify or predict 

variables (Schölkopf et al., 2022). Deep learning (DL) is a subset of machine 

learning considered as automation of predictive analytics.  

DL repeats a task and modifies it slightly each time to better the 

outcome. According to Tulbure et al. (2022), it is called ‗deep learning‘ since 

the neural networks have multiple (deep) layers to permit learning. ML 

involves getting a computer to do something without programming it 

(Schölkopf, 2022). It is where machines learn and acquire skills without 

human involvement (Gundersen et al., 2022). 

MLAs are computational techniques that enable computers to learn 

patterns and make predictions from data without being explicitly programmed 

(Galloway, 2022). These algorithms utilise statistical methods to analyse large 

datasets, identify patterns, and make decisions or predictions based on the 

patterns they‘ve learned (Thompson et al., 2022). MLAs are divided into 

unsupervised, reinforcement learning and supervised (Schölkopf et al., 2022). 

Unsupervised machine learning is an algorithm that is trained on unlabelled 

data and is sorted by similarities and differences (Larsen-Greiner et al., 2022). 

Reinforcement machine learning is a type of learning that uses positive 
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reinforcement (Alavizadeh et al., 2020). Again, the data sets are not labelled, 

but the AI system receives feedback after completing an action or a series of 

activities (Larsen-Greiner et al., 2022).  

MLA is trained on labelled data, meaning each input data point is 

associated with a corresponding target output (Wang et al., 2022). Common 

MLAs include linear regression, decision trees, support vector machines, and 

neural networks (Hanoon et al., 2021). MLAs work by iteratively adjusting 

their internal parameters based on the error or difference between the 

predicted outputs and the actual labels in the training data (Ciccozzi et al., 

2022). This helps the model to minimise error through optimization techniques 

like gradient descent or backpropagation, ultimately learning the underlying 

patterns in the data (Thompson et al., 2022).  

Supervised machine learning techniques 

Linear regression is a supervised learning algorithm used for modelling 

the relationship between a dependent variable and one or more independent 

variables (Maulud & Abdulazeez, 2020). It assumes a linear relationship 

between the independent variables (predictors) and the dependent variable 

(response) (Panigrahi et al., 2023). The primary goal of linear regression is to 

fit a straight line or hyperplane to the data points in such a way that it 

minimises the difference between the observed and predicted values (Apley & 

Zhu, 2020). Linear regression can be expressed mathematically as: 

            Y= a + bX + ∈                                                  [2.1] 

            Where: 

Y is the dependent variable 

X is the independent variable  
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b is the coefficient, representing the slope of the linear relationship 

between each independent variable and the dependent variable.  

ϵ represents the error term, which accounts for the variability in the 

data that is not explained by the linear model. 

Polynomial regression is a type of regression analysis that models the 

relationship between the independent variable and the dependent variable as 

an nth-degree polynomial function (Adesanya et al., 2018). Unlike linear 

regression, which assumes a linear relationship between variables, polynomial 

regression can capture nonlinear relationships between variables by fitting a 

curve to the data (Archontoulis & Miguez, 2015). The general form of a 

polynomial regression model is: 

           Y = β0+ β1X + β2X
2
 + β3X

3
 + … + βnX

n
 + ε                                      [2.2] 

where: 

Y is the dependent variable (response), 

X is the independent variable (predictor), 

Β0, β1, β2 …, βn are the coefficients of the polynomial terms, 

and ε is the error term representing the difference between the observed 

and predicted values. 

Polynomial regression allows for more flexibility in modelling complex 

relationships between variables compared to linear regression (Adesanya et 

al., 2018). By increasing the degree of the polynomial (i.e., the value of n), the 

model can fit more complex curves to the data (Dalal & Zickar, 2012). 

However, higher-degree polynomials can lead to overfitting, where the model 

captures noise in the data rather than the underlying pattern, resulting in poor 

generalization to new data (Bilbao et al., 2017). To fit a polynomial regression 
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model, the degree of the polynomial must be specified. This can be determined 

based on domain knowledge, experimentation, or through techniques such as 

cross-validation (Archontoulis et al., 2015). Polynomial regression is 

commonly used in various fields, including engineering, physics, economics, 

and biology, where relationships between variables are nonlinear (Brunton et 

al., 2016). According to Archontoulis et al. (2015), it can be used for 

exploratory data analysis and visualising trends in data when a simple linear 

model is insufficient to capture the underlying pattern.  

Random forest is an ensemble learning technique that combines 

multiple decision trees to make predictions (Joshi & Srivastava, 2014). It 

operates by creating numerous decision trees during training and outputs the 

mode (for classification) or mean prediction (for regression) of the individual 

trees (Khatibi et al., 2014). This method derives its strength from the 

combination of multiple models, with each decision tree constructed 

independently and subsequently aggregated to yield a final prediction (Joshi et 

al., 2014). Each decision tree in a random forest is trained on a distinct subset 

of the training data and operates by making predictions through a series of 

binary splits within the feature space (Sani et al., 2020). Random forest offers 

insights into feature importance, allowing practitioners to discern the 

contributions of different features to the overall predictive power of the model 

(Khatibi et al., 2014).  

Support Vector Machines (SVM) is a powerful supervised learning 

algorithm used for classification and regression tasks. In regression, SVM 

seeks to find the hyperplane that best separates the data points while 

maximizing the margin between different classes. SVM can effectively handle 
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high-dimensional data and is capable of capturing non-linear relationships 

through the use of kernel functions (Amarappa et al., 2014). 

Support Vector Machines (SVM) is a robust and versatile supervised 

learning algorithm used extensively for classification and regression tasks 

(Amarappa et al., 2014). One of its notable features is its capability to perform 

linear and non-linear classification by mapping input data into a higher-

dimensional feature space using kernel functions (Singla & Shukla, 2020). 

SVM can identify an optimal hyperplane that effectively separates different 

classes of data points, aiming to maximize the margin, which is the distance 

between the hyperplane and the nearest data points from each class (Amarappa 

et al., 2014). An essential concept in SVM is that of support vectors, which are 

the data points lying closest to the decision boundary or hyperplane (Singla et 

al., 2020).  

SVM includes a regularization parameter (C) that allows for balancing 

between maximizing the margin and minimizing classification errors (Boateng 

et al., 2020). SVM‘s versatility extends beyond binary classification tasks, as 

it can be adapted to handle multi-class classification through strategies like 

one-vs-one or one-vs-rest (Boateng et al., 2020). SVM‘s sensitivity to outliers 

is worth noting, as outliers can significantly impact the position of the decision 

boundary and the margin (Kasula, 2019). SVM‘s ability to handle high-

dimensional data and capture non-linear relationships makes it particularly 

well-suited for complex classification tasks (Rodríguez-Pérez & Bajorath, 

2022). Proper handling of outliers, either through parameter tuning or outlier 

detection techniques, is essential to ensure the robustness of the SVM model 

(Osisanwo et al., 2017). SVM finds utility across diverse domains such as 
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image classification, text categorization, bioinformatics, finance, and 

healthcare (Singla et al., 2020).  

Artificial Neural Networks (ANNs) are computational models inspired 

by the structure and functioning of the human brain‘s neural networks 

(Eluyode & Akomolafe, 2013). ANN consists of interconnected nodes 

organised into layers, including input, hidden, and output layers (Okwu et al., 

2021). ANNs consist of interconnected nodes, or neurons, organised into 

layers: an input layer, one or more hidden layers, and an output layer (Eluyode 

et al., 2013). ANNs are structured as a network of interconnected nodes, or 

neurons, arranged in layers (Ahamed & Akthar, 2016). Neurons are the 

fundamental units of ANNs and each neuron receives input signals, processes 

them through a weighted sum, applies an activation function, and produces an 

output signal (Ahamed et al., 2016). Neurons are organised into layers: input 

layer, hidden layers, and output layer (Okwu et al., 2021).  

Weights represent the strength of connections between neurons. Each 

connection between neurons is assigned a weight that determines the 

importance of the input signal. Through a process called training, ANNs learn 

to adjust the weights of connections between neurons to minimise the 

difference between predicted and actual outputs (Ibrahim et al., 2021). This 

process involves feeding the network with labelled training data and using 

optimization algorithms such as gradient descent to update the weights 

iteratively (Kufel et al., 2023). In ANN, activation functions introduce non-

linearity into the network, enabling ANNs to learn complex patterns and 

relationships in data (Singh et al., 2023). Common activation functions include 

sigmoid, tanh, ReLU (Rectified Linear Unit), and softmax (Ibrahim et al., 
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2021). ANNs consist of multiple layers of neurons (Kufel et al., 2023). The 

input layer receives input data, the hidden layers process the data through 

weighted connections and activation functions, and the output layer produces 

the final predictions or outputs (Mayowa & Olajide, 2024).  

Bias units in ANN are additional neurons in each layer that provide 

flexibility and help the network learn more complex patterns (Mayowa et al., 

2024). Bias units have a constant input value and their associated weights. 

Connections represent the pathways through which signals are transmitted 

between neurons (Hasnaoui et al., 2024). Each connection has an associated 

weight that determines the strength of the signal transmitted (Okwu et al., 

2021). In ANN, the loss function measures the difference between predicted 

and actual outputs, quantifying the model‘s performance (Eluyode et al., 

2013). During training, the goal is to minimise the loss function by adjusting 

the weights of connections (Okwu et al., 2021). Optimizers are algorithms 

used to update the weights of connections during training (Ahamed et al., 

2016). Common optimizers include gradient descent, stochastic gradient 

descent, and Adam (Eluyode et al., 2013).  

ANNs are capable of learning complex patterns and relationships in 

data, making them powerful tools for tasks such as classification, regression, 

pattern recognition, and decision-making (Ibrahim et al., 2021). They are 

widely used in various fields, including finance, healthcare, image and speech 

recognition, natural language processing, and autonomous vehicles, among 

others (Amiri et al., 2023). ANNs offer flexibility, scalability, and 

adaptability, allowing them to handle large datasets and perform parallel 

processing tasks efficiently (Serey et al, 2023). Despite their effectiveness, 
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ANNs require careful design, tuning, and training to achieve optimal 

performance, and their black-box nature may pose challenges for 

interpretability and understanding of underlying decision-making processes 

(Amiri et al., 2023). 

Evaluation metrics 

Evaluation metrics serve as critical tools in assessing the performance of 

predictive models (Corona et al., 2019). Effective evaluation metrics provide 

meaningful insights into the model‘s behaviour, strengths, and weaknesses, 

allowing stakeholders to make informed decisions (Coronado et al., 2022). 

Evaluation metrics include accuracy, coefficient of determination, RMSE and 

D-statistics. Accuracy in the context of machine learning refers to the 

proportion of correctly classified instances out of the total instances evaluated 

by a model (Raschka, 2018). Accuracy assumes that each class is represented 

fairly and equally, meaning that the model‘s predictions are evaluated without 

bias towards any particular class (Kotsiantis et al., 2007). It is mostly used to 

assess the overall performance of a classification model (Raschka et al., 2018). 

Mathematically, accuracy is calculated as the ratio of the number of correct 

predictions to the total number of predictions made by the model (Ebrahim et 

al., 2023). For example, if a model correctly classifies 90 out of 100 instances, 

its accuracy would be 90%.  

R-squared or coefficient of determination is a statistical measure used to 

assess the goodness of fit of a regression model to the observed data (Onyutha, 

2020). R-squared quantifies the proportion of the variance in the dependent 

variable (groundwater quality) that is predictable from the independent 

variables (features) in the model (Onyutha et al., 2020). R-squared values 
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range from 0 to 1, where 0 indicates that the model does not explain any of the 

variability in the dependent variable, and 1 indicates that the model perfectly 

explains all of the variability (Onyutha et al., 2020). R-squared measures how 

well the regression model fits the observed data points, with higher values 

indicating a better fit (Onyutha et al., 2020). R-squared alone does not provide 

information about the appropriateness of the model or the significance of 

individual predictors (Rights & Sterba, 2023). Adjusted R-squared is 

commonly used to account for the number of predictors in the model, 

providing a more accurate representation of the model‘s goodness of fit when 

comparing models with different numbers of predictors (Chicco et al., 2021; 

Rights et al., 2023). 

RMSE measures the average deviation between the predicted values and 

the actual values (Hodson, 2022). RMSE is used for evaluating the 

performance of regression models (Karunasingha et al., 2022). It measures the 

average deviation between the predicted values and the actual values in a 

dataset. RMSE is calculated by taking the square root of the average of the 

squared differences between the predicted and actual values. Like R-squared, 

lower RMSE values indicate better model performance (Hodson et al., 2022). 

RMSE is sensitive to outliers in the data, as large errors can disproportionately 

influence the overall metric (Karunasingha et al., 2022). 

D-statistics or Durbin-Watson statistics measures the presence of 

autocorrelation in the residuals of a regression model (Guerard et al., 2022). 

D-statistics range from 0 to 4, with values close to 2 indicating no 

autocorrelation, values below 2 indicating positive autocorrelation, and values 

above 2 indicating negative autocorrelation (Sah & Pandey, 2023). D-statistics 
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are particularly relevant in time series analysis and regression models where 

observations may be correlated over time (Daniyal et al., 2023). 

Geochemical models (Visual Minteq, Phreeq C and Wateq4F) 

Geochemical models or theoretical geochemistry is the practice of 

using chemical thermodynamics, chemical kinetics or both, to analyse the 

chemical reactions that affect geologic systems, commonly with the aid of a 

computer (Dippong et al., 2019). Numerous hydrogeochemical models and 

investigations of ionic ratios in underground water. Dippong et al. (2019) 

analysed the hydrogeological features of two hydrological systems in Turkey 

using a forward hydrogeochemical model. Results demonstrated that 

natural processes (water-rock interactions) rather than human activities 

governed the mechanism affecting water and soil in the aquifer.  

Naderi Peikam and Jalali (2016) investigated saturation indices (SI) 

and mass transfers in the water-rock system using the geochemical programme 

PhreeqC. As input data, temperature, pH, and the principal ions described in 

the software‘s solution keywords are used. The minerals chosen were biotite, 

quartz, muscovite, feldspar, andalusite, mica, calcite, sylvite, dolomite, 

kaolinite, Ca-montmorillonite, chlorite, sillimanite, and carbon dioxide (CO2). 

The findings of the investigation demonstrated that PhreeqC can forecast 

water quality ions. 

Wang et al. (2019) investigated the multi-water quality parameters 

influencing iron release in polyethene pipes. They used model water (Visual 

MINTEQ) with varying concentrations of chloride, sulphate, bicarbonate and 

pH levels to create polyethene pipes using the response surface methodology. 

They did, however, assess the change in iron concentration. Regression 
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models were also employed to describe the link between the five water quality 

measures and iron release. The coefficients of determination for the fitting 

equations of total and soluble iron concentrations in water were 0.890 and 

0.870, respectively. The concentration of iron in water increased faster in the 

presence of humic acid (HA) than in the absence of the other four variables 

(chloride, sulphate, bicarbonate, and pH). Visual MINTEQ results indicate 

that a decreased HA concentration increased the degree of saturation of iron 

particles. This leads to a significant increase in the iron concentration in water. 

Geochemical models and machine learning 

Geochemical models are models for predicting concentrations of 

chemical species in equilibrium and saturation indices (SI‘s) of solid phases in 

equilibrium with a solution. Geochemical models such as Visual Minteq and 

Wateq4F are used to model chemical ions in water (Orina, 2015), while 

Phreeq C is used to simulate chemical reactions and transport processes in 

natural or contaminated water (Parshotam, 2014). Khalid et al. (2023) and 

Davand et al. (2022) also added that these aqueous models have a high ability 

to predict concentrations of chemical substances in equilibrium. 

Geochemical models are utilised in a range of sectors, including 

ecological sustainability and clean-up, the oil industry, and economic geology 

(Orina et al., 2015). The models aid in understanding the nature of natural 

waters; the movement and breakdown of pollutants in flowing groundwater or 

surface water; the ion speciation of plant nutrients in the soil and of regulated 

metals in stored solid wastes; the formation and dissolution of rocks and 

minerals in geologic formations in response to injection of industrial wastes, 

steam, or carbon dioxide; and the dissolution of carbon dioxide in seawater 
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and its effect on ocean acidification (Davand et al., 2022). According to 

Dippong et al. (2019), the greatest disadvantage of geochemical models is that 

they cannot analyse datasets and detect patterns that are not easily identifiable 

otherwise. Automation is not possible; thus, they cannot save time, money, 

and resources, and cannot extract concrete information from raw data to solve 

complex problems. Most water quality measures may be monitored using the 

methodologies outlined in the applicable standards. Results of water quality 

evaluation vary greatly depending on the parameters used (Wang et al., 2022). 

Because of the high cost, technological complexity, and inability to account 

for water quality variations, including all water quality metrics is impossible 

(Dippong et al., 2019). More and more scientists are optimistic that massive 

volumes of data can be collected and evaluated to satisfy the complicated and 

extensive needs for gauging water quality thanks to recent developments in 

machine learning techniques.  

Machine learning (ML) has already been rapidly adopted as a new 

approach for processing and analysing data due to its high accuracy, 

adaptability, and ease of use in a variety of contexts (Hashimoto et al., 2018). 

ML is well-suited to tackling complex nonlinear relational data, which in turn 

makes it easier to uncover the underlying processes at play (Messaoud et al., 

2020). ML can collect useful raw data knowledge and offers detailed tests to 

understand dynamic and data-rich issues. MLAs can learn and process data 

from the input. ML can extract concrete lessons from raw data to solve 

complex and data-rich business problems quickly. Unlike geochemical 

models, machine learning can be used to predict groundwater quality to save 
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time, money, and resources, and extract concrete information from raw data to 

solve complex problems.  

The areas of environmental science and technology have found a great 

use for machine learning in past years due to their flexibility. This means that 

despite the difficulty, employing ML for groundwater monitoring and 

assessment may lead to more reliable outcomes (Wang et al, 2019). ML is a 

strong data analysis method that is often used to find patterns or predict 

outcomes from large amounts of data. Data collection, method selection, 

model construction and validation are all necessary steps before putting 

machine learning into practise. The algorithm one decides to use is an 

important part of each of these steps. Both supervised and unsupervised 

learning are important types of machine learning technology (Wang et al, 

2019). Labelling in the datasets is the primary delineator among these two 

types. Predictive functions are derived from the labelled training datasets 

using supervised learning. Inputs and predicted and output values are included 

in each training case. It can be used to create a predictive model that can 

accurately predict an output value given a set of input data by analysing the 

data and attempting to establish correlations between both the inputs and 

output values. 

Conceptual Framework 

 The conceptual framework was developed based on the predictive 

model theory and the research objectives. Predictive model theory holds that a 

model that can predict future outcomes depends on historical data and patterns 

(Machta et al., 2013). Selecting variables such as (pH and turbidity) relevant 

to groundwater quality can be used to train a model using historical data and 
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validate and evaluate the prediction performance of a model against 

established metrics. The theory proposes that groundwater monitoring is 

expensive, therefore, there should be an effective and efficient way to assess, 

model and predict groundwater quality and quantity. This is the goal of the 

current study. 

 Performance evaluation refers to the process of assessing how well the 

predictive model performs in predicting groundwater chemical parameters 

(Singha et al., 2021). It involves using various metrics, such as accuracy, R
2
 

and RMSE, to measure the model‘s effectiveness in providing accurate 

predictions (Singha et al., 2021). Predictability assessment involves 

determining the predictability of groundwater chemical parameters using 

easily measured water quality parameters (Mahapatra et al., 2012). Statistical 

significance refers to examining whether there are meaningful and statistically 

significant differences between the observed (actual) groundwater chemical 

parameters and the ones predicted by the model (Raiber et al., 2012). Model 

comparison involves comparing the performance of the developed supervised 

machine learning model with traditional aqueous geochemical models (Visual 

Minteq, Phreeq C, and Wateq4F).  

 The conceptual framework demonstrates that evaluating and assessing 

the model with metrics (such as accuracy, R-square, and RMSE) helps 

determine its performance in predicting the groundwater chemical parameters 

(using easily measured parameters). Furthermore, when the model 

performance is compared with models like geochemical models (such as 

Visual Minteq, Phreeq C and Wateq4F), it would help validate its predicting 
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ability in groundwater chemical parameters. This helps establish the statistical 

significance of the model in groundwater quality assessment and management.  

 

Figure 2.1: Conceptual Framework 

Empirical Review 

Groundwater quality 

Ibrahim (2019) evaluated the fitness of groundwater for drinking in 

Jordan‘s major groundwater basins. All physical and chemical elements were 

nearly below the maximum permitted level from the findings. The 

microbiological parameter (i.e., E. coli count) surpassed the maximum 

permissible limit in all tested locations. E. coli was the most influential 

parameter determining WQI. The total hardness (TH) of groundwater samples 

measured in CaCO3
-
 ranges from 23 to 861 mg/l. The turbidity value was less 

than 1 NTU. The sulphate concentration ranged from 9 to 605 mg/l. The 

chloride ion (Cl) value ranged from 24 to 249 mg/l. The maximum permitted 

amount of Chloride in drinking water was 200 mg/l, with a higher limit of 500 
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mg/l. Nitrate ion (NO3
-
) concentration ranges from 1 to 61 mg/l. Ibrahim et al. 

(2019) asserted that nitrate levels above the maximum allowable limit of 50 

mg/l could cause infants health-related issues, such as methemoglobinemia. In 

addition, the author recommended a low Fluoride (F) concentration intake 

since it helps protect children and adults against dental caries. The presence of 

heavy metals in drinking water, likewise, could pose health risks at low 

concentrations. 

Sakizadeh et al. (2016) used ANN with regression analysis to establish 

the nonlinear associations among the groundwater parameters using time 

series analysis. Sakizadeh et al. (2016) aimed to predict WQI using ANN for 

the concentrations of 16 groundwater quality variables collected from 47 wells 

and springs in Andimeshk during 2006–2013 by Iran‘s Ministry of Energy. 

These included TDS, EC, pH, turbidity, calcium, total hardness, Mg, PO4
3-

, 

SO4
2-

, F
-
, NO3

-
, Fe

2+
, Cu

2+
, Mn and Cr

4+
. They believed such a prediction 

could reduce the computation time and effort and the possibility of error in the 

calculations. To calculate the water quality index, Sakizadeh et al. (2016) 

assigned each groundwater quality parameter a weight. Sakizadeh et al. (2016) 

calculated the groundwater index using the formula 

QWI = 
     

   
                                                                                      [2.3] 

where qi is the rating scale, 

wi is the unit weight of each water quality parameter. 

The study‘s findings showed that techniques like Bayesian regularisation 

and Ensemble approaches could help solve this problem. Water quality index 

prediction was effectively employed using Bayesian regularisation and 

Ensemble averaging approaches. On the other hand, the performance of 
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Bayesian regularisation was roughly better, with a minimum test error 

showing that these methods have a strong generalisation capacity in this field. 

The authors did well and produced quality work covering 16 water indicators. 

Notwithstanding, they did not include temperature, salinity and ions like Cl, 

HCO3 and Na, which sometimes influence groundwater quality. 

Roy et al. (2021) conducted a study using the water quality index 

(WQI) and multivariate statistical methods to assess the water quality and 

connected environmental impact of 38 groundwater samples. Techniques such 

as entropy weight WQI and weighted arithmetic, PCA, cluster analysis (CA), 

correlation analysis (R) and spatial mapping were used in the study. According 

to estimated WQI values, iron (Fe), dissolved oxygen (DO), and turbidity were 

the most important criteria for the non-potability of groundwater samples after 

evaluating the physicochemical characteristics of each sample. Thirty-four 

(34) samples had Fe contamination levels above the WHO recommended 

range (0.3-1 mg/l), with the highest value being 15.23 mg/l. The correlation 

matrix (R) indicates that there is a common source and geochemical processes 

for all ions (Roy et al., 2021). The PCA data and screen plot diagram that 

followed them showed three crucial components with a total variance of 84.5 

percent, illuminating the reasons behind the deterioration of water quality. The 

methodologies for identification and management, along with data ranges for 

all parameters, were used to create the spatial distribution map. To examine 

three crucial categories, cluster analysis (CA) used Ward‘s method, which 

involved sampling locations, parameter analysis, and dendrogram plotting. In 

light of the aforementioned, it is advised to periodically evaluate 
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physicochemical parameters in order to protect water resources and emphasise 

management strategies for maintaining water quality. 

Machine learning 

Yadav et al. (2020) predicted and forecasted the groundwater levels of 

various ML techniques in India. The authors took their dataset from a trusted 

resource and used it to analyse groundwater levels in the study area. They 

trained KNN and removed the clustering method that was unwanted and also 

removed irrelevant datasets. They analysed the pre-processed dataset with the 

random forest algorithm and used charts and plots to predict the present and 

future groundwater levels of the study area. The bootstrap sample from S for 

each tree in the forest is selected. Before altering the procedure and picking 

the subset of features f F, S I denote the ith bootstrap (where F is the set of 

features). Instead of splitting on F, the node splits on the best feature in f. F is 

substantially smaller in practice than f. The random forest algorithm method 

analysed all the factors and whole attributes from the dataset. The findings 

showed that the random forest algorithm predicts the groundwater level very 

well, and data-driven modelling approaches perform sufficiently well in 

predicting groundwater level changes. The study of Mohammad et al. (2020) 

was limited to arid and semi-arid regions where the groundwater resource is 

highly utilised for agriculture, industry, and municipal purposes; thus, it could 

not explain groundwater variability in tropical groundwater and rainforest 

areas like Ghana. 

Shiri et al. (2021) developed an alternative approach called Integrative 

firefly machine learning models (ANN-FA and SVM-FA). They also used 

metaheuristic algorithms like the Genetic Algorithm (GA) to train machine 
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learning models like the ANN and SVM. The Firefly Algorithm (FA) was 

inserted in the MLP and SVM models to build the integrative models MLP-FA 

and SVM-FA. The FA algorithm was inspired by the natural behaviour of 

fireflies, which attract each other through flashing. As a result, each firefly 

indicates a different answer. The objective function is introduced by the 

intensity of each firefly‘s light—lower-intensity fireflies (Xj) trail higher-

intensity fireflies (xi). For each well, statistical indicators were calculated. 

Hence, the global indicators were calculated by averaging the values from the 

wells investigated. Shiri et al. (2021) then input data into the model and 

standardised the dataset between 1 and 0. Results showed that AI models 

could be used to model groundwater quality characteristics. The study was 

well conducted, but the authors did not include groundwater parameters such 

as pH, turbidity, temperature, sulphate ions, etc. 

Singha et al. (2021) conducted a study to model and predict the state of 

safe drinking water sources in the future and understand the quality and 

pollution levels existing in groundwater. In the Raipur district of Chhattisgarh, 

India, groundwater samples totalling 226 were taken from a region with a high 

concentration of agricultural land. An entropy weight-based groundwater 

quality index was created by evaluating various physicochemical properties 

(EWQI). A deep learning (DL) model was employed by Singha et al. (2021) to 

forecast the quality of groundwater. The authors compared it to three different 

machine learning (ML) models: random forest (RF), eXtreme gradient 

boosting (XGBoost), and artificial neural network (ANN) (ANN). Five error 

measures were used to assess the effectiveness of models in terms of 

prediction. Results revealed that the DL model has the highest accuracy in 
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terms of R
2
, with an R

2
 of 0996, compared to the RF (R-square = 0.886), ANN 

(R
2
 = 0.917) and XGBoost (R

2
 = 0.0.927). The proposed technique is cross-

verified for the uncertainty of the DL model output by running it ten times 

using a newly randomised dataset, where slight differences in the mean value 

of performance metrics are noticed. Furthermore, the relevance of input 

variables computed by prediction models reveals that the DL model is the 

most realistic and accurate approach to groundwater quality prediction. As a 

result, they proposed using artificial intelligence to predict water quality 

because it has high accuracy in controlling pollution and improving water 

quality. 

Elbeltagi et al. (2021) employed four independent approaches to 

predict WQI using a variable elimination methodology: M5P tree model 

(M5P), additive regression (AR), support vector machine (SVM) and random 

subspace (RSS). The datasets were separated into two classes, in a ratio of 

80:20, for model building the training dataset and verifying the dataset, using a 

fivefold cross-validation approach (testing dataset). The models were assessed 

using numerical and graphical assessment methods. Traditional WQI 

computation takes longer when calculating sub-indices and frequently results 

in huge inaccuracies. The optimum input was varied during the training and 

validation stages, with the ideal input parameters (TDS, pH, EC, Ca, Cl and 

Mg) being the most common. According to the results (MAE = 0.5243, R-

square = 0.9993, percent RAE = 3.8449, RMSE = 0.6356 and RRSE percent = 

3.9925), AR outperformed the other data-driven models (MAE = 0.5243, R-

square = 0.9993, percent RAE = 3.8449, RMSE = 0.6356 and RRSE percent = 

3.9925). The authors established that AR yielded a better result than data-
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driven models in assessing and modelling groundwater quality parameters like 

EC, pH, Cl, Mg, TDS and Ca which was also confirmed by Egbueri and 

Agbasi (2022) in Nigeria. 

According to Egbueri et al. (2022), it is very necessary to simulate and 

model water quality parameters. Furthermore, numerous modelling 

methodologies yield more robust and dependable insights than a single model. 

For the modelling of groundwater quality parameters such as EC, pH, TH and 

TDS, computational methods such as modified heavy metal index (MHMI), 

synthetic pollution index (SPI) and pollution load index (PLI) were compared. 

The groundwater resources were physiochemically analysed using standard 

procedures. Both anthropogenic and non-anthropogenic activities were shown 

to impact the concentrations of the water quality measurements. From the 

polynomial regression, the findings of the water quality measurements are 

significantly connected. The principal component analysis and varimax-

rotated factor analyses of lead, zinc and nickel affect the perception of water 

quality metrics. The pH, TDS, EC and TH values were used to group the water 

samples using Q-mode hierarchical and K-means clustering methods. 

Supervised learning algorithm and Multiple linear regression (MLR) 

techniques simulated and predicted TDS, pH, TH and EC. Regarding 

forecasting pH, the ANN model outperformed the MLR model. 

Kouadri et al. (2021) used eight artificial intelligence algorithms to 

predict WQI in the Illizi region of Southeast Algeria: random forest (RF), 

multilinear regression (MLR), random subspace (RSS), M5P tree (M5P), 

artificial neural network (ANN), additive regression (AR), locally weighted 

linear regression (LWLR), and support vector regression (SVR). The work 
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technique was concentrated on two scenarios and twelve possible input 

combinations were produced using best subset regression. In the first scenario, 

all parameters were utilised as inputs to shorten the time to calculate WQI. In 

the second scenario, water quality fluctuated in critical situations when 

relevant assessments were unavailable, and all inputs were reduced based on 

sensitivity analysis. The models were assessed utilising correlation coefficient 

(R), mean absolute error (MAE), root mean square error (RMSE) and relative 

absolute error (RAE). TDS and TH were the key factors influencing WQI in 

the research region. The MLR model outperforms other models by 3.1708 x 

10
-8

 percent, 1.2573 x 10
-10

 percent, 2.1418 x 10
-8

, 1.4572 x 10
-8

, and 1 for 

RRSE, RAE, RMSE, MAE, and R, respectively. The RF model was utilised in 

the second scenario, and the error rates for RRSE, RAE, RMSE, MAE, and R 

were 5.9642, 4.693, 3.2488, 1.9942 and 0.9984, respectively. They concluded 

that the study‘s findings would help water managers improve sustainable 

groundwater resource management plans in terms of WQI. 

AI was employed by Aldhyani et al. (2020) to measure water quality 

(WQ). According to the researchers, AI can forecast water quality patterns and 

track seasonal variations in WQ. On the other hand, using multiple models to 

predict the WQ produces better results than just one. Aldhyani et al. (2020) 

developed advanced AI algorithms to forecast the water quality index (WQI). 

They also used artificial intelligence models such as the long short-term 

memory (LSTM) and supervised learning algorithms like support vector 

machine (SVM), Naive Bayes (NARNET) and K-nearest neighbour (K-NN). 

They used the models they had constructed to examine the dataset. They 

demonstrated that the generated models could accurately classify water quality 
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and predict WQI due to their greater resilience. The anticipated findings 

showed that the LSTM did not perform well in predicting the WQI compared 

to the NARNET model. For the WQC prediction, the SVM method and the 

WQI value had the lowest accuracy (94.01%). Furthermore, the LSTM and 

NARNET models obtained equivalent accuracy to check the point which is a 

little different from the regression coefficient. 

Summary of Chapter 

This chapter reviewed literature on groundwater quality and pollution, 

including substances that contribute to groundwater contamination. It 

highlights groundwater pollution as a global issue affecting human health and 

ecological well-being worldwide. Consequently, there is a need to assess the 

chemical, physical and biological attributes of groundwater to gauge its 

quality accurately. To address this, both artificial intelligence and traditional 

approaches have been employed. AI methods such as MLA, incorporating 

decision tree regression and polynomial regressions, offer high accuracy, cost-

effectiveness, and the ability to model nonlinear relationships among 

groundwater parameters. However, existing studies often employ complex and 

time-consuming methods that overlook easily measurable parameters for 

predicting and modelling groundwater quality. No work has compared the 

performance of SML with geochemical models, nor has attempted to predict 

groundwater quality using easily measured parameters. Addressing this gap, 

the study would employ SLA with decision tree regression and polynomial 

regression techniques to model groundwater quality using easily measured 

parameters.  
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CHAPTER THREE 

MATERIALS AND METHODS 

Introduction 

This chapter consists of the study area, research design, sampling 

technique, data types for the study, sampling procedure, data processing and 

analysis and summary of the chapter.  

Study Area 

Central Region can be found in the south-western centre of Ghana. It 

shares a boundary with the Ashanti Region on the north, Eastern Region on 

the north-east, Greater Accra Region on the south-east, Western Region on the 

west, and bounded by the Gulf of Guinea on the south. The coastline stretches 

to about 150km (Acheampong et al., 2017). Central Region is situated at 

approximately 5.8980° N latitude and 1.0408° W longitude. Central Region 

has primary patterns of rainfall, that is, main and minor rainy seasons. The 

main rainy season ranges from April to July and September to November 

makes the minor rainy season. The relative humidity of the region is between 

50 and 85 percent (Mohammed et al., 2022). 

Greater Accra Region is the capital region of Ghana. Greater Accra 

Region lies at around 5.6037° N latitude and 0.1870° E longitude. The region 

occupies a land area of 245km of the total land of Ghana (Ampim et al., 2021). 

It is one of the most populated and developed cities in Ghana, having 87.4 

percent of its inhabitants staying in the city. Many of the economic activities 

are owned by private individuals. Primary occupations found in the region 

include farming as well as office jobs.  
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Western Region is located in the southern part of Ghana and shares a 

boundary with Ivory Coast on the west and Central Region on the east, with 

the capital city being Sekondi-Takoradi. Western Region is located at 

approximately 5.3487° N latitude and 1.9822° W longitude. Western Region 

comprises an area of 13,842 sq. km, has a population of 2,060,585, and has the 

highest rainfall in Ghana, with lush green hills and fertile soils (Boakye et al., 

2023). Vegetation cover of the region occupies about 75 percent of its total 

land. Some of the occupations that can easily be found in the region consist of 

farming, animal husbandry and fishing.   

Central, Greater Accra and Western Regions are noted for high 

population, water pollution, illegal mining, and domestic and agricultural 

activities, escalating the water pollution issues (Yeleliere et al., 2018; Amuah 

et al., 2022). In these regions, domestic water supply accounts for around 95 

percent of groundwater use, especially in rural and small towns. 

Approximately 41 percent of families rely on groundwater as their primary 

water source (Livingston, 2021; Amuah et al., 2022). This means that water 

sustenance is key to ensuring healthy lives and economic growth in the 

regions. 
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Figure 3.1: Map of the Site (Regions) 
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Research Design 

This study employed an experimental research design, particularly 

factorial design, for the study. Factorial design is an experimental approach 

used for assessing the influence of multiple independent variables on a 

dependent variable (Kritikos et al., 2019). This design allows the use of 

quantitative data to conclude (predict groundwater quality), validate the 

hypothesis (analysis testing) and establish causality (what contributes to 

groundwater quality pollution) (Randall et al., 2013). According to Watkins 

and Newbold (2020), though factorial design helps examine multiple factors 

and their interactions, a larger sample size is required to make the design. 

Chong et al. (2021) explained that adequate sample sizes help detect small or 

subtle effects, particularly when investigating interactions between variables. 

SML uses large data to predict new output values, evaluate 

performance and create, train and quantitatively test models (Shouval et al., 

2021). SML uses labelled datasets to train algorithms to classify data or 

predict outcomes accurately under supervision (Meng et al., 2020) to achieve 

accurate and reliable results (Meng et al., 2020). The design allows the use of 

analytical techniques, such as factorial ANOVA or regression analysis for 

accurate interpretation of results. It enhances the generalisability of findings 

by capturing the multifaceted nature of real-world phenomena (Shouval et al., 

2021), yielding results that are more robust and ecologically valid.  

This design aligns with the study because it would help develop a 

model to predict groundwater quality chemical parameters using easily 

measured parameters. It would help compare the performance of the model 

with aqueous geochemical models (such as Visual Minteq, Phreeq C and 
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Wateq4F) in predicting groundwater quality parameters. This design would 

help establish if there were statistically significant mean differences between 

and among the predicted groundwater chemical parameters of the study 

regions.  

Sampling Technique 

This study employed a random sampling technique, particularly a 

stratified random sampling technique. This sampling technique involved 

dividing the study area into strata based on specific characteristics and then 

randomly selecting wells within each stratum (Ganesha & Aithal, 2022). This 

means that the towns in the study regions had an equal chance of being 

sampled. The stratified random sampling technique was chosen to ensure high 

internal validity, as randomisation minimises the potential influence of 

confounding groundwater parameters.  

The study required a large dataset, therefore, this sampling technique 

had high external validity to mimic and represent the characteristics of overall 

groundwater quality in each of the selected regions. Moreover, this method 

was selected because it required minimal advanced knowledge about 

groundwater quality but the findings of the study reflect the overall features of 

the groundwater quality in each of the study regions.  

Data Types for the Study 

The dataset used in this study included secondary and primary data. 

These data types are in the form of quantitative data. The secondary data had 

already been gathered over time from the study areas. The primary data were 

gathered through field data collection. 
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Secondary data 

The secondary data consisted of a dataset of 3,134 samples and 53,278 

variables on groundwater from the three regions (from online data on the 

selected regions to train the model). The dataset included variables such as 

dissolved oxygen (DO/mg/l), pH, electrical conductivity (EC/mS/cm), total 

dissolved substances (TDS/mg/l), potassium (K
-
/mg/l), nitrate (NO3

-
/mg/l), 

hydrogen carbonate (HCO3
-
/mg/l), sodium (Na

+
/mg/l), magnesium 

(Mg
2+

/mg/l), total hardness (TH/mg/l), calcium (Ca
2+

/mg/l), temperature (
o
C), 

silicate (SiO3
-
/mg/l), salinity (mg/l), phosphate (PO4

3-
/mg/l), sulphate (SO4

2-

/mg/l), chlorine (Cl
-
/mg/l) and turbidity (NTU). 

Primary Data Collection 

Nine hundred bottles were purchased (three bottles for each well) to 

collect water samples for the study. The bottles were washed with hot water 

and dried under the sun to remove any chemicals or agents that might 

contaminate the water quality. Each bottle was rinsed with groundwater 

samples collected at each sample location. Three regions were considered; 

however, one hundred wells each were sampled from each region. Ten towns 

were considered in each town as shown in Table 3.1. 

Table 3.1: Towns Sampled from Each Region 

Western Central Greater Accra 

Aboadze Abandze Ablekuma 

Apowa Cape Coast Abelemkpe 

Axim Efutu Accra 

Bogoso Elmina Achimota 

Daboase Esaba Dawhenya 

Half Assini Esakyir Dodowa 

Nkroful Jukwa Gbawe 

Nkusia Otuam Nungua 

Tarkwa Senya Odorkor 

Prestea Twifo Praso Oyarifa 
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Out of these towns, 10 wells were sampled from each town, summing 

up to 300 (10 x 10 x 3 = 300)]. At each sampling site, three containers were 

used to draw the water into each bottle (for replicates) to a depth of 1.5 litres. 

Easily measured parameters such as pH, temperature, turbidity, electrical 

conductivity, salinity and total dissolved substances were measured in situ, 

using a pH meter, thermometer, turbidity meter, digital conductivity meter, 

hydrometer and digital TDS meter, respectively. Readings were taken three 

consecutive times for the average value of each parameter to be recorded. This 

process was repeated for 3 different water samples for each of the wells 

sampled. Water samples drawn from the wells were transported to the Ghana 

Water Company Limited, Greater Accra, for the chemical parameters 

(dissolved oxygen, nitrate, phosphate, sulphate, sodium, calcium, silicate, 

hydrogen bicarbonate, chlorine, potassium and magnesium). 

Laboratory Analysis of Samples 

Hach HQ2200 Portable pH/EC/TDS/DO Meter was used in measuring 

concentrations of pH, EC, TDS and DO of the water samples. The electrode 

was rinsed, zeroed and immersed in each of the water samples for reading and 

recording after stabilisation. The concentration of EC was measured in uS/cm, 

while TDS and DO were measured in mg/l. The concentration of turbidity was 

determined using Hanna Instruments HI-93102 metre. The probe was 

immersed in each of the water samples and readings after stabilisation were 

taken and recorded with duplicates of three. The concentrations of salinity of 

the groundwater samples were measured using AZ-8372 Salinity Meter.  The 

water samples were poured into a bottle and placed in the turbidity meter. 
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After allowing the samples to stabilise, readings in NTU were taken and 

recorded with three repeated replicates. 

Total hardness was analysed through titration method. Buffer solution 

(such as NH4Cl) and hardness indicator were added to each measured water 

sample. Subsequent titration such as EDTA was conducted to determine 

hardness concentration. Sulphate, nitrate, phosphate and chloride were 

similarly analysed through titration methods. Reagents such as barium 

chloride were used for sulphate, potassium dichromate for nitrate, ammonium 

molybdate for phosphate and silver nitrate for chloride and each concentration 

was read and recorded in mg/l. 

Sodium concentrations were determined using a flame photometer 

method. Each water sample was treated with reagents (such as Sodium 

chloride) and readings were taken using a spectrophotometer. Potassium 

concentrations were measured using an atomic absorption spectrometer. A 

portion of each water sample was pipetted into volumetric flasks and each 

concentration was recorded in mg/l. Calcium and hydrogen bicarbonate were 

analysed through EDTA titrimetric methods. Magnesium concentrations were 

determined using a titrimetric method with an Eriochrome Black T indicator. 

Silicate concentrations were analysed using the Spectroquant Silicate Test. 

Machine Learning Algorithm 

Decision tree regression  

This current study employed decision tree regression (DTR) in the 

groundwater quality prediction. DTR is a supervised learning algorithm used 

for regression tasks, where the goal is to predict a continuous target variable 

(Rathore & Kumar, 2016). DTR works by recursively partitioning the feature 
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space into smaller regions and fitting a simple model (usually a constant 

value) in each region (Pathak et al., 2018). DTR was utilised due to its 

capability to capture intricate connections between characteristics and target 

variables. 

The decision tree regression algorithm builds a tree structure where 

each internal node represents a decision based on a feature, each branch 

represents the outcome of the decision, and each leaf node represents the 

prediction (De Caigny et al., 2018). The prediction at each leaf node in a 

decision tree regression model is simply the average (or another measure of 

central tendency) of the target variable for the training samples that fall into 

the leaf (Sharma & Kumar, 2016). This means that the prediction ―y‖ for a 

given input ―X” is determined by traversing the tree from the root node to a 

leaf node based on the values of the input features. At the leaf node, an 

average value of the target variable values associated with the training samples 

in the leaf node is used for the prediction. Mathematically, the prediction ―y” 

for a given input “X” can be expressed as: 

   
 

 
    

                                                                                [3.1] 

where: 

y is the predicted target variable value. 

N is the number of training samples that fall into the leaf node. 

yi is the target variable value for the training samples that fall into the 

leaf node. 

DTR was applied to predict the concentrations of chemical parameters 

(sodium, potassium, calcium, chlorine, hydrogen bicarbonate, sulphate, 

phosphate, silicate and nitrate ions) in the groundwater based on easily 
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measured parameters (turbidity, dissolved oxygen, electrical conductivity, 

salinity, total hardness, temperature and pH). The process began with data 

preparation and thus datasets containing all parameters of groundwater 

(secondary dataset) and easily measured parameters (primary dataset) were 

prepared. Data exploration and visualisation techniques such as stacked lines, 

boxplots and correlation heatmaps were employed to understand the data‘s 

distribution and relationships between variables.  

The dataset was split into training and testing sets. DTR was initialised 

and trained on the training data to learn the relationships between the input 

and the target variables. After training, the model was evaluated on the testing 

data using metrics like RMSE and R
2
 to assess its performance in predicting 

chemical parameters of the groundwater sampled. Once evaluated, the trained 

model was used to predict the chemical parameters of the groundwater on the 

primary dataset, wherein DTR predicted the chemical parameters of the 

groundwater based on easily measured parameters. 

Polynomial regressions 

A polynomial regression model (PRM) is used in ML to model the 

relationship between independent and dependent variables (Dalal & Zickar, 

2012). It models the relationship as an nth-degree polynomial (Bera et al., 

2021). Polynomial regression can be expressed as: 

Y = β0 + β1X1
2
 + β2X2

3
 + … + βnXn

n
 + ϵ                                          [3.2] 

Y is the dependent variable/groundwater chemical parameters to be 

predicted,  

β0 – is the intercept,  

β1, β2, …, βn are the respective slopes of the dependent variables,    
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∈ is the residual (error)/difference between the observed and predicted 

values of Y 

X1, X2, …, X
n
 are the independent variables or groundwater physical 

parameters  

PRM was employed to capture potential nonlinear relationships among 

the change groundwater parameters using easily measured parameters. For 

instance, squared terms, cubic terms or even higher-order polynomial terms of 

the original features were added to each variable (pH, EC, Temperature, DO, 

turbidity, total hardness and salinity). In the model, easily measured 

parameters such as pH, EC, Temperature, DO, turbidity, total hardness and 

salinity served as the input variables (independent variables) when predicting 

groundwater chemical parameters like sodium, potassium, calcium, chlorine, 

hydrogen bicarbonate, sulphate, phosphate, silicate and nitrate ions.  

 

Figure 3.2: Model Data Processing Stages 

Training and Testing of Model 

The model development was divided into two stages: training and 

testing phases. In the training process, training data was input into the model 

for the model to learn the patterns in the dataset. The learning model used the 

execution engine to predict the test variables. From the above, SL algorithm 
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involved data input, machine processing and prediction, as shown in Figure 

3.2. 

 

Figure 3.3: Training and Testing of Model 

The functions were created for the model to work. The data was 

imported into the model and asked the system to pick 80 percent of the 

secondary data for the training and 20 percent together with 100 percent of the 

primary for testing the model. The model was made to learn the data science 

kits in order to ensure accurate prediction. Other functions were created for the 

testing or the prediction of the data. At this stage, the algorithms displayed the 

accuracy of the predicted ions and graphs or plots were generated. This was 

where the test scores were output from the model for the calculation of the 

groundwater quality index. 

Independent variables were turbidity, total hardness, dissolved oxygen 

(DO), pH and electrical conductivity (EC), salinity and total dissolved 

substances (TDS), while dependent variables were potassium (K
-
/mg/l), nitrate 

(NO3
-
/mg/l), hydrogen carbonate (HCO3

-
/mg/l), sodium (Na

+
/mg/l), 

magnesium (Mg
2+

/mg/l), calcium (Ca
2+

/mg/l), silicate (SiO2/mg/l), salinity 

(mg/l), phosphate (PO4
3-

/mg/l), sulphate (SO4
2-

/mg/l) and chlorine (Cl
-
/mg/l).  
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Figure 3.4: Graphical view of running the model in Spyder (Anaconda) 

version 3.9.7 

Performance Evaluation 

ML models have many performance evaluation tools. The performance 

of the current model was enhanced by optimising parameter combinations 

through genetic algorithms. RMSE, R
2
 and De-statistics were used to 

determine the performance of the model.  

Root mean squared error (RMSE) 

 The Root Mean Squared Error was used to evaluate the model 

prediction error for comparing regression models. It showed the average 

difference between the observed known outcome values and the model‘s 

anticipated value (Ćalasan, 2020; Karunasingha, 2022). RMSE is calculated 

using the formula: 

RMSE = √
       

 
                                                                            [3.5] 
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Where RMSE = room means square error 

P = predicted means of the chemical ions 

O = observed means of the field data 

n = the number of groundwater parameters 

The smaller the RMSE, the higher the model‘s ability to describe the 

dependent variables. The higher RMSE means that the model has a low 

predicting ability, thus, independent variables cannot perfectly explain the 

dependent variables. 

Index of agreement (D-Statistics) 

D-statistics was used to evaluate the degree to which the model can 

predict without error. It is a ratio of the mean square error and the potential 

error (Malinsky et al., 2021). The index of agreement can be calculated from 

the formula: 

D-Statistics =√
       

           
                                                                  [3.6] 

Where P = predicted means of the chemical ions 

O = observed means of the field data 

n = the number of groundwater parameters 

D-statistics value varies from zero to one. D-statistics of 1 implies that 

the model can be used to predict groundwater quality to perfection and 0 

connotes that there is no agreement between the predicted and observed 

values, therefore, the model cannot be used to predict groundwater quality. 

Data Analysis  

The data analysis was divided into field data analysis and model 

prediction analyses.  
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Field data analysis  

Descriptive statistics such as mean, minimum, maximum and standard 

deviation were used to understand the physicochemical parameters sampled 

from the three regions. Mean represented the average value, minimum and 

maximum denoted the range of values and standard deviation indicated the 

variability from the mean. The mean values of the groundwater assessed were 

compared with WHO limits for safe drinking water (as shown in Table 3.2).  

Table 3.2: Groundwater Quality Standards of World Health Organisation 

(2022, 2002 and 2004)  

Parameters WHO 

pH  6.5-8.5 

Temperature/
0
C 25-33 

Na ions/mg/l 200 

Cl ions/mg/l 250 

TH/mg < 60 

TDS/mg/l < 300 

K ions/mg/l 300 

Mg ions/mg/l 50 

SO4 ions/mg/l 250 

EC/mg/l 400 

Ca ions/mg/l 100 

SiO3/mg/l 100 

Turbidity/NTU < 5 

DO/mg/l 6.5 – 8 

PO4 ions/mg/l 2 

NO3 /mg/l 50 

HCO3 /mg/l 10 

Where NTU = Nephelometric turbidity unit, uS/cm = micro simen per 

centimetre, 
o
C = degree Celsius, and mg/l = milligram per litre. DO = 

dissolved oxygen, TH = total hardness, EC = electrical conductivity, TDS = 

total dissolved substances.  

Wilcox diagram was employed to identify the main environmental 

factors (precipitation, rock and evaporation) that influence the wells sampled. 

Gibbs‘s diagram was used to determine the suitability of the wells for 
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drinking. PCA was used to account for the factors that contributed to the 

variations in the groundwater dataset (the loading effects of the groundwater 

parameters). The eigenvalues of the principal components showed the 

decomposition value of the groundwater data matrix. The eigenvectors 

(principal components) explained the directions of the new feature space and 

the eigenvalues determined their magnitude. 

Model prediction analyses 

Objective 1: To develop a model and determine its performance in 

predicting groundwater chemical parameters. Research Objective 1 was 

analysed using RMSE and regression analyses (r-square). High accuracy 

indicated better model performance, thus, when the accuracy is above 79% or 

0.79. A lower RMSE indicated better model performance or smaller prediction 

errors. A higher R
2
 value (0.8 and above) signified better model fit, indicating 

the percentage variability in groundwater chemical parameters predicted using 

easily measured parameters.  

Objective 2: “To compare the performance of the model with 

aqueous geochemical models (such as Visual Minteq, Phreeq C and 

Wateq4F) in predicting groundwater quality parameters. Research 

Objective 2 was analysed using RMSE, R
2
 and d-statistics. High accuracy 

indicates better model performance, thus, when the accuracy is above 79% or 

0.79. A lower RMSE suggests fewer prediction errors and improved model 

performance. A higher R-square value (0.8 and above) signified a better model 

fit, indicating the percentage variability in groundwater chemical parameters 

explained by the easily measured parameters. It offered insights into the 
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goodness-of-fit of the model. When d-statistics value is close to 1, the 

performance of the model is high. 

Objective 3: “To establish if there are statistically significant mean 

differences between and among the predicted groundwater chemical 

parameters of the study regions.” ANOVA test was used to analyse 

Research Objective 3. The ANOVA test was conducted to determine whether 

there were significant mean differences between and among the predicted 

groundwater parameters of the study regions. An alpha-value of 0.05 was 

used, meaning there is 95 percent certain that the dataset represents the 

variations in the groundwater data. Furthermore, p-value less than the alpha 

value (p-value < 0.05) indicated statistically significant mean differences 

between the observed and the predicted groundwater quality chemical 

parameters.  

Calculation of Groundwater Quality Index 

The water quality index (WQI) was calculated to determine the water 

quality. The calculation was based on the weighted arithmetic index method 

(Brown et al.,1972). The unit weight factors (U) of each variable were 

calculated using 

Weight factors (U) = 
 

  
,                                                                   [3.1] 

where U = 
 
 

  

                                                                                    [3.2] 

where MS is the WHO standard accepted value for the parameters as 

shown in Table 3.2. The sub-index value for each parameter (A) was 

calculated using 

 
     

     
       ,                                                                              [3.3] 
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where Ms is the standardly accepted value of the n
th

 parameters 

H1 is the mean concentration of the n
th

 parameters 

Ho is the actual value of the parameter in pure water (usually Ho = 0 g/l, 

except pH).  

WQI = 
   

  
.                                                                                       [3.4] 

‗U‘ and ‗A‘ were multiplied and divided by the total outcome and then 

divided by the summation of ‗U‘ to get the groundwater quality index. Finally, 

the calculated groundwater quality index was compared with WHO standard 

values as shown in Table 3.2. 

Table 3.3: Groundwater Quality Index (WQI) Classification 

WQI range Water Types Interpretations 

<50 Excellent water Water quality is almost unaltered, and the 

situation is nearly perfect.  

50–100 Good water Water quality is maintained with only minor 

degradation; conditions seldom depart from 

tolerable levels. 

100.1–200 Poor water Water quality is almost always reduced, and it 

is barely good. 

200.1–300 Very poor water Parameters are not near to being clean. 

>300 Water unsuitable 

for drinking 

Water quality is often compromised, and the 

characteristics are far from optimum. 

Source: Agrawal et al. (2021). 

Ethical Considerations 

Permission to conduct fieldwork was obtained from the Institutional 

Review Board of the University of Cape Coast. To gather data, the researcher 

first submitted a copy of the sampling procedure to the University of Cape 

Coast and Institutional Review Board (IRB) for review. The study strategy of 

the investigator was in line with the Research Ethics Policy of the University 

of Cape Coast. 
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Summary of Chapter 

The chapter presents information on the study area, data acquisition 

and analysis procedures and calculation of the groundwater quality index. The 

section reflected the root mean square, ANOVA, PCA and WQI calculation. 

Standard values such as WHO standards values were presented, as well as, the 

Gibbs and Wilcox diagrams for determining environmental factors that 

influence groundwater ions in the study regions.  
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Introduction 

This chapter presents and discusses results from the field data analysis. 

The chapter uses and displays analyses like PCA and ANOVA, as well as 

tables and charts of the findings.  

Results from Field Data Analysis 

This section presents the descriptive statistics of the physicochemical 

parameters of the groundwater sampled from the study regions. It includes 

PCA and Wilcox and Gibbs‘s diagrams, showing the main environmental 

factors that influence groundwater quality.  

Descriptive Statistics of the Physicochemical Parameters in Groundwater 

The physicochemical parameters of water are usually used in 

determining the quality, type and nature of groundwater. One hundred wells 

each from Central, Greater Accra and Western Regions were sampled and 

analysed. From each well, 3 replicates were taken for the physicochemical 

parameters as shown in Table 3. It presents the means, standard deviations and 

skewness as well as minimum and maximum values of the physicochemical 

parameters.  
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Table 4.1: Descriptive Statistics of Physicochemical Parameters of 

Groundwater Sampled (Central, Greater Accra and Western 

Regions) (n = 300) 

Parameters Mean WHO 

Standards 

Std. Skewness Minimum Maximum 

DO 7.20 6.5 – 8  1.57 -0.09 1.84 11.76 

pH 6.82 6.5-8.5 1.09 0.95 5.00 12.40 

Temperature 28.40 25-33 2.52 0.05 23.60 33.10 

Total Hardness 159.58 < 300 94.84 -0.19 13.85 372.00 

TDS 453.77 < 300 30.52 0.60 376.47 555.67 

EC 426.51 <400 82.78 0.23 245.86 672.56 

Turbidity 8.11 < 5 3.02 0.02 2.43 13.87 

Na
+ 

242.44 <200 113.28 0.51 33.00 675.00 

K
+ 

124.92 <300 35.37 0.15 21.00 239.00 

Ca
2+ 

171.76 <100 48.06 0.71 42.00 421.00 

Mg
2+ 

52.27 <50 28.19 1.42 3.00 127.00 

SO4
2- 

82.14 <250 17.94 0.69 60.00 261.00 

PO4
3- 

3.97 <2 1.02 0.30 1.00 5.12 

Cl
- 

147.72 <250 80.76 1.65 39.00 586.00 

HCO3
- 

10.91 <10 3.30 -0.02 3.00 22.00 

SiO3
2- 

48.69 <100 18.58 0.45 8.00 133.00 

NO3
- 

42.38 <50 8.12 0.90 7.00 76.00 

 

Table 4.1 shows descriptive statistics of the physicochemical 

parameters of groundwater sampled from the study regions. It compares the 

means of the physicochemical parameters with WHO water quality standards 

for safe drinking water. From the Table, the mean dissolved oxygen (DO) was 

7.20 ± 1.57 gm/l and ranged from 1.84 mg/l to 11.76 mg/l, with skewness of -

0.09 mg/l. The pH value ranged from 5 to 12.40, with a mean value of 6.82 ± 

1.09 and skewness of 0.95. The mean pH value of the groundwater sampled 

from all the regions met the WHO standard pH value. The range, the mean 
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values, standard deviation and skewness of the temperature (
o
C) were 23.6 

o
C 

to 33.10 
o
C and 26.91 ± 2.52 

o
C, 2.52 

o
C and 0.05 

o
C, respectively.  

The mean total hardness (TH) of 159.58 ± 2.52 94.84 mg/l ranged 

from 13.85 mg/l to 372.00 mg/l and had skewness of -0.193 mg/l. The mean 

total dissolved substance (TDS) was 453.77 ± 30.52 mg/l and ranged from 

376.47 mg/l to 555.67 mg/l. Total dissolved substances had skewness of 0.60 

mg/l. The mean electrical conductivity of 426.51 ± 82.78 mS/cm ranged from 

245.86 mS/cm to 675.56 mS/cm and skewness of 0.23 mS/cm. Turbidity 

ranged from 2.43 NTU to 13.85 NTU, with a mean value of 8.11 ± 3.02 NTU 

and skewness of 3.02 NTU and 0.02 NTU, respectively.  

The mean sodium (Na) ion concentration was 242.44 ± 113.28 mg/l, 

ranging from 33.00 mg/l to 675.00 mg/l and skewness of 0.15 mg/l. The 

potassium (K) concentration ranged from 21.00 mg/l to 239.00 mg/l, with a 

mean value of 124.92 ± 35.37 mg/l and skewness of 0.15 mg/l. Mean calcium 

(Ca) of 171.7 ± 48.06 mg/l ranged from 42.00 mg/l to 421.00 mg/l, leaving 

and skewness of 0.71 mg/l. The mean magnesium ion (Mg) was 52.27 ± 28.19 

mg/l and ranged from 3.00 mg/l to 127.00 mg/l, with skewness of 1.42 mg/l.  

The mean sulphate ions of 82.14 ± 17.94 mg/l ranged from 60.94 mg/l 

to 126.00 mg/l and had skewness of 0.69 mg/l. The phosphate (PO4
3-

) 

concentration ranged from 1.00 mg/l to 5.12 mg/l, with a mean value of 3.17 ± 

1.02 mg/l. The skewness of the phosphate ions was 1.61 mg/l and 0.30 mg/l, 

respectively. The mean chlorine concentration was 147.72 ± 80.76 mg/l and 

ranged from 39.00 mg/l to 586.00 mg/l, leaving skewness of 1.65 mg/l.  

The mean hydrogen bicarbonate (HCO3
-
) ion concentration of 10.91 ± 

3.30 mg/l ranged from 3.00 mg/l to 22.00 mg/l and had skewness of -0.02 
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mg/l. The mean silicate ion concentration of 48.69 ± 18.58 mg/l ranged from 

8.00 mg/l to 133.00 mg/l, with skewness of 0.45 mg/l. The mean nitrate ion 

(NO3
-
) concentration was 42.38 ± 8.12 mg/l and ranged from 7.00 mg/l to 

76.00 mg/l, with skewness of 0.90 mg/l.  

Wilcox and Gibb’s Diagrams Display the Classification of Groundwater 

The study explored the factors that influence the concentration of ions 

in the groundwater of the study regions. Gibbs (on the left) and Wilcox (on the 

right) diagrams with three distinct areas (precipitation, rock and evaporation 

dominance) were employed to demonstrate the source of ions in the 

groundwater. Gibbs ratio Na
+
/(Na

+
+Ca

2+
) for cations and Cl

-
/(Cl

-
+HCO3

-
) and 

Wilcox ratio (sodium %) for anions of water samples were plotted separately 

against the respective TDS. These show the types of dominance controlling 

the groundwater quality. Gibbs diagram shows the chemical interaction 

between rock-forming minerals of the aquifer and the groundwater is the main 

mechanism in contributing ions to the groundwater. Wilcox diagram helps 

evaluate water quality. The following graphs represent the distribution and 

factors contributing to groundwater pollution. 
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Figure 4.1: Groundwater Classification (Central, Greater Accra and Western 

Region) 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Wilcox Diagram (on the Left) and Gibbs Diagram (on the Right) 

  Showing Groundwater Classification for Central Region 

(C) 

(C) 
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Figure 4.3: Wilcox Diagram (on the Left) and Gibbs Diagram (on the Right) 

      Showing Groundwater Classification for Greater Accra Regions 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Wilcox Diagram (on the Left) and Gibbs Diagram (on the Right) 

Showing Groundwater Classification for Western Region 

(C) 

(C) 
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Figures 4.1, 4.2, 4.3 and 4.4 present Wilcox and Gibbs diagrams and 

show the distribution and classification of groundwater parameters. Figures 

4.1(a) and 4.1(b) show that most of the groundwater parameters sampled from 

Central, Greater and Western Regions concentrated under precipitation and 

rock weathering dominance regions, with few under evaporation dominance. 

From Figure 4.1(c), few of the parameters concentrated in the region of 

excellent to good, with most of them under permissible to doubtful, doubtful 

to unsuitable, good to permissible and unsuitable regions. 

As shown in Figures 4.2(a) and 4.2(b), most of the groundwater 

sampled from Central Region concentrated under precipitation and rock 

weathering dominance, with few under evaporation dominance. From Figure 

4.2(c), only a few of the groundwater parameters analysed concentrated under 

the Excellent to Good region, with many of them concentrating under 

permissible to doubtful, doubtful to unsuitable, good to permissible and 

unsuitable regions. 

From Figures 4.3(a) and 4.3(b), only one of the wells sampled from 

Greater Accra was grouped under the evaporation dominance region, while 

many were under rock weathering and precipitation dominance. From Figure 

4.3(c), only a few of the Wells sampled from the Greater Accra Region were 

found under Excellent to Good and Good to Permissible regions. Many of the 

wells sampled classified under Doubtful to Unsuitable and unsuitable regions. 

From Figures 4.4(a) and 4.4(b), the wells sampled from the Western Region 

concentrated under precipitation, rock weathering and evaporation dominance 

regions. From Figure 4.4(c), only a few of the wells sampled from the Western 
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Region grouped under the Excellent to Good region, with many under Good to 

Permissible, Unsuitable and Permissible to Doubtful. 
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 Table 4.2: Comparison of Groundwater Parameters among Central, Greater Accra and Western Regions (N = 300)

 Central Region  Greater Accra Western 

Parameters Mean Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum 

DO 7.16 1.84 11.20 7.10 3.39 9.90 7.34 3.88 11.76 

pH 6.88 4.80 12.40 6.61 3.40 12.00 6.97 4.80 10.00 

Temperature 27.34 25.60 33.60 28.51 25.90 33.60 26.36 23.60 32.60 

TH 156.28 13.85 372.00 192.73 16.69 300.00 129.75 12.85 292.00 

TDS 452.23 376.47 555.67 456.95 391.67 553.95 432.14 396.83 553.95 

Turbidity 7.09 2.84 13.64 8.16 2.43 11.64 9.08 2.89 14.87 

EC 432.31 269.45 669.73 418.26 245.86 672.56 428.96 277.38 629.28 

Na 232.29 35.00 675.00 244.64 23.00 675.00 249.40 43.00 397.00 

K 118.21 21.00 227.00 126.98 60.00 206.00 129.56 36.00 239.00 

Ca 160.05 42.00 284.00 185.76 93.00 286.00 169.46 52.00 421.00 

Mg 51.72 11.00 132.00 55.06 4.00 119.00 50.02 3.00 127.00 

SO4 75.09 116.00 161.00 67.25 46.40 131.00 98.11 54.00 147.00 

PO4 3.10 0.56 6.30 4.81 3.00 8.32.00 5.11 1.00 8.20 

Cl
 

141.97 39.00 319.00 162.66 50.00 586.00 138.52 47.00 586.00 

HCO3 10.74 3.50 18.00 11.94 4.00 22.00 10.04 3.00 16.00 

SiO3 47.59 8.00 53.00 35.78 18.00 83.00 50.710 12.00 103.00 

NO3 21.96 7.00 42.00 21.94 5.00 44.00 24.60 6.00 76.00 
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Table 4.2 compares the physicochemical parameters of the 

groundwater sampled from the three regions. As presented in Table 4.2, the 

value of dissolved oxygen sampled from Western Region (7.34 mg/l) was the 

highest compared to Central (7.16 mg/l) and Greater Accra (7.10 mg/l) 

Regions. The mean pH value (6.69) of the groundwater sampled from the 

Greater Accra Regions was the lowest compared to Central (6.88) and 

Western (6.97) Regions. The mean temperature value of Western Region was 

least (26.36 
o
C) compared to Central (27.34 

o
C) and Greater Accra (28.51 

o
C) 

Regions. Comparing the total hardness of the groundwater sampled of the 

three regions, Greater Accra Region recorded the highest at 192.73.10 mg/l, 

followed by Central (156.28 mg/l) and Western (129.75 mg/l) Regions. 

Among the three regions, Greater Accra Region recorded the highest 

total dissolved substances (456.95 mg/l), followed by Central and Western 

Regions, connoting that the groundwater is unsafe and not good for drinking. 

Western Region recorded the highest turbidity at 9.08 NTU. Central Region, 

on the other hand, recorded higher turbidity concentration compared to 

Greater Accra Region at 8.16 NTU and 7.09 NTU, respectively. Central 

Region recorded a mean value of electrical conductivity (432.31 mS/cm) 

which was the highest compared to Western Region (418.26 mS/cm), making 

Greater Accra the least electrical conductivity recording region. 

Sodium ion concentration (249.40mg/l) sampled from Western Region 

was the highest, followed by Greater Accra (244.64 mg/l) and Central (232.29 

mg/l) regions. The mean range of potassium ions recorded for Greater Accra 

Region was the highest compared to Western (129.56 mg/l) and Central 

(118.21 mg/l) regions. Regarding mean calcium ion concentration, Greater 
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Accra Region (185.70 mg/l) featured the highest, followed by Western 

(168.46 mg/l) and Central (160.05 mg/l) Regions. The mean magnesium 

(50.02 mg/l) of Western Region was the lowest compared to Central (51.72 

mg/l) and Greater Accra (55.06 mg/l) regions. Among the sulphate ion 

concentrations of the groundwater sampled from the three regions, Western 

Region recorded the highest at 98.11 mg/l, followed by Central (75.24 mg/l) 

and Greater Accra (67.25 mg/l) Regions. The mean phosphate ion 

concentration sampled from the Western Region (5.12 mg/l) was the highest, 

followed by Greater Accra (4.81 mg/l) and Central (3.10 mg/l) Regions. 

The mean chlorine ionic concentration of the groundwater sampled 

from Greater Accra Region (162.66 mg/l) was the highest compared to Central 

(141.97 mg/l) and Western (138.52 mg/l). Among the mean of the hydrogen 

bicarbonate ion concentration of the three regions, Greater Accra Region 

(11.94 mg/l) featured the highest, followed by Central (10.74 mg/l) and 

Western (10.04 mg/l) region. The mean silicate ion concentration of Western 

Region (50.71 mg/l) was the highest compared to Central (47.59 mg/l) and 

Greater Accra (35.78 mg/l) regions. Regarding nitrate ion concentration of the 

groundwater sampled from the three regions, Western Region recorded the 

highest at 24.60 mg/l, followed by Central (21.96 mg/l) and Greater Accra 

(21.94 mg/l) regions. 

Table 4.3: Analysis of Variance (ANOVA) Comparing the Means of the 

Groundwater Parameters of the Three Regions 

Source of Variation SS Df MS F P-value F-crit 

Between regions 93456612 16 5841038 2291.16 0.00 1.65 

Within regions 12958478 5083 2549.38    

Total 1.06E+08 5099     
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Where SS = sum of squares, Df = degree of freedom, MS = mean square, F = 

F-Statistic, P-value = probability value and F-critical = Critical F-value.  

Table 4.3 shows the output of one-way ANOVA test. It shows whether 

there was a significant change between and among the means of the 

groundwater parameters sampled from the three regions. The sum of squares 

(SS), the degree of freedom (Df), mean squares (MS) and the p-values were 

93456612.00, 16.00, 5841038.00 and 0.00, respectively.  

Table 4.4: KMO and Bartlett’s Test 

KMO Measure of Sampling Adequacy   KMO 0.69 

Bartlett‘s Test of Sphericity 

Approx. Chi-Square 

Degree of freedom (df) 

543.43 

136.00 

 Significant level 0.00 

Where KMO = Kaiser-Meyer-Olkin 

Table 4.4 shows the output of the KMO and Bartlett‘s correlation tests 

from PCA. The KMO value obtained was 0.69, greater than the minimum 

value (0.50) required for Measuring Sampling Adequacy (MSA). There was a 

significance level of 0.00 (p < 0.00) for the Bartlett test. The value of 

Bartlett‘s Test of Sphericity was below the significance level (0.05).  
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Table 4.5: Variation Explained by the Components 

Component Initial Eigenvalues  Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings 

 Total % of Variance Cumulative 

% 

Total % of Variance Cumulative 

% 

Total % of 

Variance 

Cumulative % 

1 1.92 11.28 11.28 1.92 11.28 11.28 1.88 11.06 11.062 

2 1.45 8.50 19.79 1.45 8.50 19.79 1.37 8.07 19.134 

3 1.32 7.74 27.53 1.32 7.74 27.53 1.31 7.71 26.845 

4 1.30 7.65 35.18 1.30 7.65 35.18 1.27 7.49 34.339 

5 1.28 7.50 42.68 1.28 7.50 42.68 1.25 7.33 41.672 

6 1.13 6.65 49.32 1.13 6.65 49.32 1.15 6.78 48.456 

7 1.05 6.17 55.49 1.05 6.17 55.49 1.15 6.75 55.204 

8 1.01 5.96 61.46 1.01 5.96 61.46 1.06 6.25 61.456 

9 0.98 5.78 67.24       

10 0.89 5.22 72.46       

11 0.86 5.07 77.52       

12 0.85 4.97 82.50       

13 0.81 4.77 87.27       

14 0.76 4.45 91.72       

15 0.68 3.97 95.69       

16 0.60 3.50 99.19       

17 0.14 0.81 100.00       

Extraction Method: Principal component analysis. 
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Table 4.5 displays the extracted eigenvalues, initial eigenvalues and 

the rotation sums of square loadings of the eight components.  Based on the 

screen plot of components‘ eigenvalues, eight components were identified. 

Components with eigenvalues < 1 were noted to be statistically insignificant 

and thus set to be removed from the analysis. As displayed in Table 6, the first 

eight principal components explained nearly 61.50 percent of the variation in 

the groundwater quality with variable loadings spread over the PCs. 

 

Figure 4.5: Scree plot of Eigenvalues and Number of Principal Components. 
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Table 4.6: Component Matrix of Groundwater Quality Parameters 

 Component 

 1 2 3 4 5 6 7 8 

Temperature 0.96        

Turbidity 0.96        

Calcium  0.75       

Potassium 0.74       

Sodium         

Chloride   0.79      

DO   0.53      

Sulphate   0.51      

Bicarbonate   0.73     

Silicate    0.57     

pH         

TH     -0.79    

Nitrate         

Phosphate     0.67   

TDS         

EC       0.81  

Magnesium       0.86 

Rotation converged in 8 iterations. 

Figures 4.6 and Table 4.6 show the loading plot and component matrix 

of groundwater quality parameters. Eight parameters influenced groundwater 

quality in the study regions, that is, temperature, turbidity, calcium, potassium, 

chloride, dissolved oxygen, sulphate and bicarbonate. The rotated principal 

component matrix displays the factor loadings between the principal 

components and the observed groundwater parameters. 

From Table 4.6, the loading factors between each principal component 

and the observed groundwater parameters were greater than 0.50. The first 

principal component (PC1) showed a strong positive loading on temperature 
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(0.96) and turbidity (0.96), explaining 11.28 percent of the variance in the 

groundwater data. The second principal component showed a strong positive 

loading on Calcium (0.75) and potassium (0.74), accounting for 8.50 percent 

of the variance in the groundwater data. The principal component three (3) 

exhibited a moderate positive loading on chloride (0.79), dissolved oxygen 

(0.53) and sulphate (0.51), explaining 7.74 percent of the variation in the 

groundwater data observed. 

There was a strong positive loading from component four (4) on 

bicarbonate and silicate at 0.730 and 0.565, respectively, explaining 7.65 

percent of the variation in the groundwater data. The principal component five 

had strong negative loading on total hardness (-0.79), explaining 7.50 of the 

total variation in the groundwater data. Principal component six loaded 

positively on phosphate at 0.67. The factor loading between PC 6 explained 

6.65 percent of the total variation in the groundwater data. The principal 

components seven and eight loaded strongly positively on electrical 

conductivity and magnesium at 0.810 and 0.86, explaining the variation in 

groundwater data observed at 6.17 percent and 5.96 percent, respectively.  

Nevertheless, no load between the principal components and observed 

groundwater parameters indicates that they did not load onto the groundwater 

data observed. 

Discussion on Field Data Analysis 

Regional variation of groundwater quality parameters 

This section discusses the field data analysis on the impact of the 

physicochemical parameters assessed on groundwater quality in the study 

regions. The physicochemical parameters of the groundwater included in the 
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study were pH, dissolved oxygen, temperature, total hardness, total dissolved 

substances, salinity and electrical conductivity and sodium, potassium, 

calcium, nitrate, hydrogen bicarbonate, silicate, sulphate, phosphate and 

chloride ions. These parameters provide a profound understanding of the 

nature, quality and pattern of changes in the groundwater of the selected 

regions. 

As presented in Table 4.1, the mean dissolved oxygen (DO) at 7.20 

mg/l fell within the WHO recommended DO value (> 6.5 mg/l) for excellent 

safe drinking water. The maximum value (11.76 mg/l) generally indicates that 

the underground water is good for drinking. Likewise, the high value of 11.76 

mg/l of the DO sampled means that some of the groundwater sampled meets 

the WHO limits and is safe for drinking. The high dissolved oxygen level 

(11.76 mg/l) might be due to the significant recharge from oxygen-rich surface 

water or aeration due to the movement of the groundwater through porous 

rocks or sediments containing air pockets (Jeong et al., 2018). The low oxygen 

content (1.84 mg/l) shows that the groundwater in the regions is not safe for 

drinking and might be associated with health-related issues and thus, does not 

meet the WHO standard values and is unsafe for drinking. This might be due 

to high underground decomposition of organic matter from improper disposal 

of domestic, industrial and agricultural waste and high temperatures (through 

climate change) (Hutchins et al., 2020; Piatka et al., 2021). 

The minimum pH value of 5 suggests the presence of anions such as 

sulphate, nitrate, phosphate and hydrogen bicarbonate in the groundwater, 

demonstrating an increased level of the acidic content of some of the 

groundwater sampled. The pH value ranged from 5.00 to 12.40, reflecting that 
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the groundwater sampled to some extent is acidic (low pH value, 5.00) and 

alkaline (high pH value, 12.40). This means that some of the groundwater 

sampled is extremely acidic for drinking and associated with health problems 

like ‗acidosis‘. According to Sanganyado and Gwenzi (2019), drinking acidic 

water increases disease outbreaks and influences antimicrobial effects that 

affect the healthy life of people. The high pH value of 12.40 means that some 

of the groundwater sampled from the three regions is alkaline and the 

groundwater in the regions is, therefore, hard water. High pH values indicate 

that the underlying rock of the groundwater is mostly made of limestone. 

According to Oludare (2017), limestone raises pH of water due to the presence 

of calcium carbonate.  It also means that some of the groundwater are not safe 

for human consumption. Hence, they might have health impacts on the human 

body even though high alkaline water seems to be good for the human system 

(Sanganyado et al., 2019). This is because it has pro-ageing, colon-cleansing, 

immune system support hydration, skin health, and other detoxifying 

properties and cancer resistance properties (Yao et al., 2022). Chycki et al. 

(2017) argued that much more alkaline water can lead to weight loss and 

hydration. Low pH value in the regions might be due to poor agricultural 

practices such as high use of fertiliser, and agronomic practices such as tillage, 

continuous cultivation, mining, and industrial activities (Patil et al., 2012). The 

low and high pH of the regions calls for urgent measures to shield and control 

activities that lead to both slow and rapid increases in the acidic and alkaline 

content of the groundwater in the study regions.  

The mean (28.40 
o
C) temperature (

o
C) value of the groundwater 

sampled from the three regions falls within the WHO limits 23 
o
C to 33 

o
C. 
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This mean temperature of the study regions might be due to the measurements 

being done in situ and structures or differences in drilling depths. The mean 

temperature range (25.00 
o
C to 33.10 

o
C) indicates that some of the 

groundwater sampled falls within the WHO standard values. The temperature 

of the groundwater sampled that exceeded the WHO recommended range 

might be due to global climate change, the geographic location of the area 

sampled, the high rate of deforestation that exposes the land directly to the 

sun‘s rays and excessive disposal of industrial, agricultural and domestic 

human waste in the regions. Management and agencies responsible for water 

management and conservation should develop strategies such as afforestation 

programmes and other volunteering groups to see through the sustainability 

and protection of groundwater from excessive sunlight. 

Lowland regions should see it as a need and control the irregular 

disposition of liquid waste. Singh and Gupta (2016) asserted that sewage 

discharges from households and industries seep down, leading to underground 

water temperature alteration and low water quality. Accordingly, water 

temperature affects electrical conductivity, solubility, ionic strength, corrosion 

and dissolution (Alvarez-Bastida et al., 2018). Total hardness measures all 

multivalent cations concentrations in water (Wang et al., 2022), and thus, the 

mean total hardness (TH) of 159.58 mg/l exceeded the WHO standard value 

for excellent drinking water quality (< 60 mg/l). The mean total harness of the 

underground water sampled from the three regions connotes that the 

groundwater is moderately hard with salt content. Likewise, the range of the 

total from 13.85 mg/l to 372.00 mg/l confirms that some of the groundwater 
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sampled are soft (excellent for drinking), moderately soft (good for drinking, 

but not excellent), moderately hard and very hard (not good for drinking).  

The high total hardness might be due to the influence of the sea and 

high calcium, iron and magnesium concentrations, limestone or discharges 

from operating or abandoned mines (Shah et al., 2022). Rakhimova (2022) 

believes that cations such as magnesium carbonate from dolomite and calcium 

carbonate from limestone in the soil increase the hardness of the water. The 

mean total dissolved substance (TDS) of 453.77 mg/l of the three regions 

exceeded the WHO recommended values for excellent drinking water (< 300 

mg/l, excellent). The total dissolved substances of the groundwater sampled 

from the three regions compared to the WHO standard guidelines indicate that 

the water quality is poor (> 300 mg/l, poor and not good for drinking). Also, it 

indicates the gradual accumulation of dissolved ions, especially sulphates.  

The range of the total dissolved substances (376.47 mg/l to 555.67 

mg/l) indicates that some groundwater is safe for drinking. The value of the 

total dissolved substances of the groundwater sampled in the regions below 

300 mg/l demonstrates that some of the sampled groundwater is excellent for 

drinking, whereas that above 300 mg/l is not safe for drinking. The high value 

of the total dissolved substances in the regions might be due to the infiltration 

of pollutants from landfill leachate, feedlots, or sewage and increased human 

anthropogenic in the three regions. Total dissolved solids as groundwater 

pollutants are dangerous for human health, reduce water quality, affect the 

taste of the water and make water quality unsafe for human use. According to 

Soleimani et al. (2022), inorganic salts like calcium, chlorides, magnesium, 

bicarbonates, potassium, sulphates and sodium influence TDS in water. The 
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high presence of total dissolved substances in the groundwater sampled might 

result from urban run-off, sewage disposal, industrial wastewater, mineral 

springs, seawater intrusions, carbonate and salt deposits, drinking water 

treatment chemicals, stormwater and agricultural runoff. 

The mean electrical conductivity (426.51 mS/cm) exceeded the WHO 

recommended value (400 mS/cm). The electrical conductivity of the three 

regions ranged from 245.86 mS/cm to 695.37 mS/cm, indicating that some of 

the groundwater sampled from the regions met the WHO limits. The low EC 

demonstrates that the groundwater is safe for drinking. The low EC 

concentration in the groundwater sampled might be due to factors such as low 

levels of dissolved solids, geological composition, distance from pollution 

sources, rainfall and dilution, and temperature variations. The high EC value 

indicates the existence of a significant level of dissolved elements, like metal 

salts and organic material, in the groundwater samples collected from the three 

different regions (Haritash et al., 2016). In addition, it indicates the influence 

of seawater and the presence of cations and anions such as calcium, 

magnesium and chloride ions. This imprints that the groundwater is unfit for 

human use. It is suggested that the Government of Ghana and its agencies 

should encourage the citizens in the regions and other regions to adopt 

measures that contribute to preserving the groundwater quality. 

The mean turbidity (8.11 NTU) exceeded the WHO recommended 

values (< 5 NTU) for excellent drinking water. The mean turbidity compared 

to the WHO limits indicates that the groundwater sampled is very polluted or 

not very clear. The turbidity range of the groundwater (2.43 NTU to 13.87 

NTU) implies that the groundwater sampled meets the WHO standard values 
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for excellent drinking water. The high turbidity might be due to high 

temperatures (from climate change), erosion and disposal of wastewater into 

the underground water (Jain & Singh, 2020; Mishra, 2023). According to 

Sheikh et al. (2022), turbidity is a concern because it can influence economic 

income and agricultural production. Consequently, huge money is required to 

treat the saline water, and crop yield becomes less since plants cannot utilise 

the soil water to prepare their food, leading to hunger, poverty, and species 

extinction. The high turbidity value estimated is a concern for individuals, 

government, and other organisations to tackle. Excessive turbidity increases 

the level of heavy metals (lead, mercury, and cadmium) in groundwater and 

the water supply system, affecting human health and other health risks like 

gastrointestinal diseases (Sonone et al., 2020). 

The high mean sodium (Na) ion concentration of the groundwater 

sampled compared to the WHO recommended value might be due to the 

influence of the seawater, mineral composition of the groundwater and road 

salts, sewage, landfills and industrial, agricultural and domestic waste 

discharges. The sodium (Na) ion concentration range demonstrates that some 

of the groundwater sampled from the three regions is safe for drinking. The 

low sodium ion concentration of some of the groundwater sampled indicates 

health issues such as cardiovascular and neurological issues associated with 

the wells when people use them. Sorensen et al. (2020) noted that sodium in 

water helps maintain cardiovascular muscle movement in the body and control 

diseases such as neurological disorders. Pohl et al. (2013) view that sodium is 

good for preserving volume and blood pressure regulation, maintaining muscle 

contraction and transmission of nerve cells and helping balance water, acids 
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and bases in the body, but high sodium consumption would trigger 

hypertension among humans. This revitalises the need for individual 

organisations to protect the health of the groundwater in the presence of 

―illegal mining‖ and other industrial, household and farming activities that add 

up to the instability of the sodium content in the groundwater. 

The mean potassium ion concentration (124.92 mg/l) of the 

groundwater from the regions fell below the WHO standard value (300.00 

mg/l). This low mean value compared to the WHO standards might be due to 

the influence of the mineral composition of the regions, other agricultural and 

industrial activities in the regions, lack of moisture (by climate change) and 

the high cation exchange capacity of the soil. The range of the potassium ion 

concentration of the groundwater sampled from the regions indicates that 

some of the wells sampled met the WHO standard value. The low potassium 

ion concentration might be due to low pH and oxygen dissolution, a large 

excess of cations in the soil and a lack of soil moisture in the ground. Low pH, 

oxygen content, and moisture of groundwater prevent the leaching of 

potassium into the underground water (Lawniczak et al., 2016; Khan et al., 

2018; Albert, 2015). This is a problem because potassium availability in 

groundwater indicates its availability to plants and the proper health growth of 

humans and plants (Ayilara et al., 2020). However, it is established that crop 

yields would reduce if care is not taken. This is because plants absorb their 

nutrients from the soil in a liquid form. 

The mean calcium ion concentration of the groundwater sampled 

surpassed the WHO accepted value (100.00 mg/l, excellent and safe for 

drinking), indicating that the groundwater sampled is hard water and thus, not 
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safe for drinking. The high mean calcium ion concentration might be due to 

the presence of the influence of the ocean water, the mineral composition of 

the underlying groundwater, and introduction of industrial wastes, and the 

high-temperature range of the underground water (33.10 mg/l) through climate 

change, domestic and agricultural solid such as excessive fertiliser application 

in the environment. High calcium concentration denotes that the groundwater 

sampled has high electrical conductivity, dissolved substances and salt, 

resulting in the hardness of the groundwater sampled. The range of calcium 

ion concentration compared to the WHO standards presages that some 

groundwater is soft and hard water. Groundwater with a low calcium ion 

concentration of 42.00 mg/l might be due to the distance of the wells from the 

seawater. The mineral composition of the underlying rocks has a low 

concentration of calcium-related compounds such as CaSO4 and a high 

leaching rate of the soil.  

According to Cheng et al. (2022), there is a high rate of calcium ion 

leaching from rocks and soil of groundwater and underground aquifers even 

though calcium carbonate is fairly water-insoluble. Calcium carbonate 

dissolves more easily in water that has a high quantity of dissolved carbon 

dioxide. Though high calcium ion concentration of groundwater is good for 

strong bones, body metabolism and other physiological processes, such as 

cardiovascular contractions, blood coagulation, muscular shrinkage, neuron 

transmissions and healthy growth of plants, high calcium ion concentration 

leads to scaling of properties of water and binds with phosphorus, reducing 

nutrients uptake of plants (Reigl et al., 2022). Calcium deficiency is linked to 

osteoporosis, nephrolithiasis (kidney stones), colorectal cancer, hypertension 
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and strokes, coronary heart disease, insulin resistance, and overweight. The 

majority of these diseases have treatments but no cure. However, individuals, 

governments and agencies should holistically come together to combat 

activities that contribute to the alteration of calcium contents in groundwater. 

The mean magnesium ion concentration (52.27 mg/l) compared to the 

WHO standard value (50.00 mg/l) is high, indicating that the groundwater 

sampled is of poor quality for human use. The minimum and maximum 

magnesium ion concentrations of the groundwater imply that the groundwater 

is not good for consumption, hence, soft water. The low magnesium content of 

the groundwater sampled might be due to the acidity nature of the soil, soil 

cation exchange and mineral composition of the soil. The wells with low 

magnesium ion concentrations demonstrate that the soil‘s underlying rocks are 

free of minerals such as limestone and gypsum (Li et al., 2013). In contrast, 

the high magnesium ion concentration of the groundwater signifies that the 

groundwater sampled is hard water and contains high dissolved substances. 

The increase in the magnesium concentration might be due to the infiltration 

of high surface water with a high concentration of salt contents into the 

underground water. 

The mean sulphate ion concentration of 92.14 mg/l was lower than the 

WHO recommended values for excellent drinking water (< 250.00 mg/l, 

excellent). The mean range (60.00 mg/l to 261.00 mg/l) of sulphate ion 

concentration sampled from the regions shows that some of the wells meet the 

WHO recommended values and thus are safe for drinking. The high sulphate 

ion concentration in some of the wells might be due to cations such as calcium 

sulphate and magnesium sulphate ions in the wells sampled.  
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The high sulphate ion concentration of the groundwater sampled from 

each of the three regions ascertains the acidity of the wells. The groundwater 

is not safe for human consumption. According to Omer (2019), high sulphate 

concentration in water makes the water corrosive and to have laxative effects 

on people and gives water a bitter taste. The mean phosphate ion concentration 

(3.97 mg/l) was greater than the WHO recommended value (2.00 mg/l). The 

high phosphate ion concentration in the groundwater sampled from each of the 

regions might be due to the phosphate erosion of rocks into underground 

water, chemical fertilisers, manure, and composted materials. Phosphate ions 

are useful for plant agricultural purposes and health, but Deutsches Arzteblatt 

International reports showed that excessive consumption of phosphate is 

harmful to health since it influences cardiovascular diseases in humans (Hahad 

et al., 2019). Agricultural sectors, organisations, and government agencies 

should help control the irregular usage of phosphate products in the 

environment. 

The mean range of phosphate ion concentration in some of the 

groundwater sampled shows that groundwater has low phosphate ion 

concentration. This might be due to the mineral composition of the underlying 

soil, low fertiliser usage and domestic, industrial and agricultural production 

of products that contain phosphate ions. Low phosphate ion concentration in 

the groundwater sampled might be due to cations such as calcium and irons, 

which strongly adsorb phosphate ions onto the soil. Adsorption and 

mineralisation limit phosphate ion movement within or below the root zone. 

Moreover, soils with high calcium carbonate concentrations can impede 

phosphorus transport due to the formation of calcium phosphate minerals.  
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The mean chlorine ion concentration sampled from the groundwater 

exceeded the WHO recommended value (250.00 mg/l). The high mean values 

might be due to the mineral composition of the underlying rocks and intrusion 

of cations such as sodium and magnesium as well as seawater. Chloride ion 

concentration in seawater is about 19,000 milligrams per litre (mg/l). Chloride 

concentrations increase dramatically when groundwater becomes 

contaminated with seawater (Alfarrah & Walraevens, 2018). The low chloride 

ion concentration of some of the groundwater might be due to the distance of 

some of the wells away from the seawater, saltwater intrusion, mineral 

dissolution, industrial and domestic waste and the underlying mineral 

composition of the area enough cation such as calcium and magnesium. 

The mean hydrogen bicarbonate ion concentration estimated was 

greater than the WHO recommended values. The high hydrogen bicarbonate 

ion concentration of the sampled regions compared to the WHO recommended 

value (10.00mg/l) shows that the groundwater is unsafe for human 

consumption. This might be a result of the high dissolution of carbon dioxide 

gas and domestic and industrial waste disposal in the environment. The mean 

range of hydrogen bicarbonate ion concentration compared to the WHO 

standard values shows variable concentration. The high hydrogen bicarbonate 

ion concentration might be due to the availability of cations like calcium and 

magnesium and the mineral composition of the soil. The high hydrogen 

bicarbonate ion concentration might have contributed to the hardness of the 

groundwater in the regions. 

The mean silicate ion concentration was below the WHO 

recommended value (100.00 mg/l). The low silicate ion concentration 
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compared to the WHO standard value might be due to the mineral composition 

of the soil and domestic and industrial waste disposal that inhibits the 

existence of silicate ions in the underground water. The low silicate ion 

concentration connotes the need to protect the groundwater in the regions. 

Silicates are classified as corrosion inhibitors and have protective films on 

metal surfaces. This makes them harmless to humans; therefore, their presence 

in the soil needs attention. 

The mean range of silicate ion concentration indicates that some of the 

wells sampled contain high silicate ion concentrations. This might be due to 

the mineral composition of the soil and the high temperature of the wells. 

According to Jollivet et al. (2012), deep groundwater aquifer has more silicate 

ion concentration due to the influence of the high temperature. The high 

concentration of silicate ions might be due to the mineral compositions of the 

underlying rocks and the rainfall pattern of the area that instigates the 

dissolution of silicate ions in the groundwater. The high silicate ion 

concentration might also be due to the presence of weathering rocks 

(Dobrzyński, 2005). 

Wells with low silicate ion concentration might be influenced by 

kaolinite rocks. Kaolinite rocks prevent silica solubility in water (Dobrzyński 

et al., 2005). Dobrzyski et al. (2005) state that the water content deficiency of 

the aeration region, annual variations of temperature and precipitation bedrock 

hypersensitivity, and chemical changes stability all affect the amount of silica 

discharge into the groundwater. The mean nitrate ion concentration exceeded 

the WHO recommended value (50.00 mg/l) for safe drinking water. The high 

nitrate ion concentration recorded from the wells sampled might be due to the 
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atmospheric deposition, mineral dissolution and other anthropogenic sources 

(mining, fertiliser, etc.) and the presence of gypsum in the groundwater aquifer 

of the regions sampled (Sharma et al., 2020). The low range of these anions 

imprints that the groundwater is becoming acidic and might be due to 

uncontrolled fertiliser, industrial waste discharge, domestic waste production, 

feedlots and sewage. The high nitrate ion concentration of the groundwater in 

the region calls on government and non-governmental organisations to protect 

and conserve the groundwater in the region. The availability of clean drinking 

water and hygiene is essential for meeting the Millennium Development Goals 

(MDGs). The presence of some of these pollutants in the groundwater spells 

the impending doom of water scarcity in the regions and beyond. However, 

protecting and conserving the groundwater quality would help fight against 

climate change and provide enough water to meet the population growth and 

industrialisation water needs in the regions. 

Classification of groundwater under environmental parameters causing 

alteration in groundwater quality (based on physicochemical parameters 

of each region) 

The study assessed the factors that influence the concentration of ions 

in the groundwater. Information theory assumes that groundwater quantity and 

quality are recurrent movements and consist of complete systems. To 

understand the processes that influence groundwater quality, the Gibbs 

diagram has three distinct areas (precipitation, rock and evaporation 

dominance), while the Wilcox diagram with five distinct regions (Good to 

Permissible, Doubtful to Undoubtful, Permissible to Doubtful, Excellent to 
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Good and Doubtful) have been employed to demonstrate the source of ions 

and explain the general chemistry of the groundwater in the study areas. 

Gibbs ratio Na
+
/(Na

+
+Ca

2+
) for cations and Cl

-
/(Cl

-
+HCO3

-
) and 

Wilcox ration (sodium percent) for anions of water samples were plotted 

separately against the respective TDS. These show the type of dominance 

controlling the groundwater quality. Gibbs diagram shows the chemical 

interaction between rock-forming minerals of the aquifer and helps evaluate 

water quality. The following graphs help establish the factors and 

characteristics of groundwater parameters contributing to groundwater 

pollution. 

Concerning Figures 4.1(a) and 4.1(b), most of the groundwater 

parameters sampled from the wells in the selected regions (Central, Greater 

and Western Regions) concentrated under precipitation and rock weathering 

dominance regions, while few of them fell under evaporation dominance 

region. Underground weathering rocks and precipitation influence most 

groundwater in the three regions (Central, Greater Accra and Western 

Regions), with little influence from the evaporation dominance variables. Few 

of the parameters of the groundwater from the three regions concentrated in 

the region of excellent to good, while most of them concentrated under Good 

to Permissibility, Permissible to Doubt, Doubtful to Unsuitable and Unsuitable 

regions. This means that the wells sampled were not safe for human 

consumption. Only a few met WHO recommended criteria for excellent 

drinking water. Only groundwater parameters in the Excellent to Good and 

Good to Permissible might meet the WHO recommended values. 

Nevertheless, those in the other regions, such as Permissible to Doubt, Doubt 
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to Unsuitable and Unsuitable, do not meet the WHO standard value and, thus, 

are not safe for drinking. 

Gibbs and Wilcox diagrams for Central and Greater Accra Regions 

indicate that most of the groundwater sampled from each region is 

precipitation and rock weathering, while few of them were under evaporation 

dominance. Only a few of the groundwater parameters analysed were 

concentrated under the Excellent to Good region, but many of them were 

concentrated under Good to Permissible, Permissible to Doubtful, and 

Doubtful to Unsuitable. Few of the parameters are concentrated under 

Unsuitable regions, and this is good.  

The wells sampled from the Western Region concentrated under 

precipitation, evaporation and rock weathering regions. This means that 

groundwater in the Western Region is influenced by the mineral composition 

of the underlying rocks, precipitation and evaporation. Many of the 

groundwater parameters sampled from Western Region were concentrated 

under Doubtful to Unsuitable, unsuitable and Permissible to Doubtful, with 

few under Good to Excellent. This means that the groundwater in the regions 

is severely polluted or getting polluted. This might result from domestic 

actions and activities such as illegal mining, sometimes close to homes. 

Comparing physical parameters in groundwater by region (each region) 

From Table 4.2, the mean dissolved oxygen of the groundwater 

sampled from Central, Greater and Western fell within WHO standard values 

for safe drinking water. The high mean dissolved oxygen values of Western 

Region (7.43 mg/l) compared to Central and Greater Accra Regions might be 

due to low temperature (23.00 
o
C), and proper disposal of industrial and 
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domestic waste. According to Luo and Zhou (2022), warm water has a low 

ability to retain a large amount of oxygen. The mean ion concentration of 

dissolved oxygen of Central, Greater Accra and Western Regions, 

respectively, suggests that the groundwater sampled from the region does not 

meet the WHO recommended limits (> 6.5 mg/l) for safe drinking water. The 

government and its agencies should put mechanisms into place to control 

activities such as deforestation and unplanned disturbance of the soil to keep 

the soil particles in shape for proper aeration to occur in the underground 

water in the regions. This is because high decomposition and infiltration of 

waste materials, as well as deforestation, contribute to the oxygen reduction in 

the groundwater. 

The mean pH value (6.93) of the Western Region was the highest 

compared to Central (7.84) and Greater Accra (7.69). The high pH values of 

Central and Greater Accra Regions might be due to the sea intrusion and high 

cation such as calcium and magnesium concentration and mineral composition 

of the underlying rocks. The low mean pH value of the groundwater sampled 

from Central and Greater Accra Regions might be due to mining and 

agricultural activities such as fertiliser, pesticide and weedicides application 

and low cations like magnesium and calcium concentration. 

The mean pH value of the groundwater sampled from the Western 

Region was the lowest, followed by Greater Accra and Central Regions.  The 

high mean temperature value of the groundwater sampled in the Greater Accra 

Region might be due to the influence of climate change, the presence of 

pollutants in the water, seawater intrusion with high heat capacity, high 

emission of aerosols and regular deforestation for settlement exposing the land 
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surface to the excessive heat of the sun. Thus, when the surface of the soil is 

heated, the heat is transferred by geothermal conversion and conduction. Also, 

the low mean temperature value of the Western Region compared to Central 

and Greater Accra Regions might be the low influence of the seawater on the 

groundwater, reducing the heat capacity of the groundwater (Riedel, 2019). 

The high total hardness of the groundwater in Greater Accra Region 

(452.20 mg/l) compared to Central and Western Regions might be due to the 

influence of the seawater, mineral composition of the soil, and presence of 

cations such as sodium and magnesium. The high total hardness of each region 

might be due to the mineral composition of the regions, fertiliser application, 

and domestic and industrial introduction of wastewater with high 

concentrations of cations such as sodium and calcium. The total hardness 

concentration of the groundwater based on the regions studied follows as 

Greater Accra Region > Central Region > Western Region. 

The high total dissolved substances concentration of the groundwater 

sampled from Greater Accra Region might be the influence of illegal mining, 

agricultural and industrial activities, as well as, the introduction of domestic 

solids and ligiids wastes and shallowness of some parts of the region (some of 

the wells were not deep) and influence of the seawater. Based on the means of 

the three regions, Greater Accra Region recorded the highest (mg/l), followed 

by Western, Central and Western regions. The high turbidity content of the 

groundwater sampled from Western Region might be due to the seawater 

intrusion, mineral composition of the soil and irregular disposal of domestic, 

agricultural and industrial wastes. 
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The high value of the electrical conductivity of the groundwater 

sampled from Greater Accra Region compared to Central and Western 

Regions might be due to the high salt content of the underground water, the 

influence of the seawater and the presence of cations and anions such as 

calcium, magnesium and chloride ions. It might also be due to the sea 

intrusion and presence of cations and anions, as well as, poor disposal of 

domestic, agricultural and industrial wastes into the environment. In sum, 

Central Region featured the highest electrical conductivity, followed by 

Western and Greater Accra Region.  

The high sodium ion concentration of Western Region might be due to 

the influence of the seawater, industrial, agricultural and domestic waste 

discharges and the mineral composition of the groundwater. The low sodium 

ion concentration of some of the groundwater sampled indicates health issues 

associated with the groundwater in the areas. The high potassium ion 

concentration of the Western compared to Central and Greater Accra Regions 

might be due to the influence of the mineral composition of the underlying 

rocks. The low potassium ion concentration of Central and Greater Accra 

Regions might be due to low pH and oxygen dissolution, a large excess of 

cations in the soil, the lack of soil moisture and the high cation exchange 

capacity of the soil 

The high calcium values of Greater Accra Region compared to Central 

and Western Regions might be due to the presence of seawater and mineral 

composition of the underlying groundwater. Groundwater with low calcium 

ion concentration is influenced by the distance of the wells from the seawater. 

It also means that the mineral composition of the underlying rocks has a low 
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concentration of calcium-related compounds such as CaSO4, and a high 

leaching rate of the soil. The low magnesium content of the groundwater 

sampled from Western Region might be due to the acidic nature of the soil, 

soil cation exchange and mineral composition of the soil.  

The wells with low magnesium ion concentrations mean that the 

underlying rocks of the soil are free of minerals such as limestone and 

gypsum. The high magnesium ion concentration of Central and Greater Accra 

Regions implies that groundwater is not good for drinking. The high 

magnesium ion concentration of the groundwater signifies that the 

groundwater sampled is hard water and contains high dissolved substances, 

low pH, and high temperature which might be due to climate change and 

domestic, industrial and agricultural waste production in the environment. The 

increase in the magnesium cation of the groundwater might be due to the 

infiltration of high surface water with a high concentration of salt contents into 

the underground water. 

The high sulphate ion concentration of Western Region compared to 

Central and Greater Accra Regions might be due to the existence of cations 

such as calcium sulphate ions in the wells sampled. The high sulphate ions 

concentration in some of the groundwater might be due to mineral dissolution, 

anthropogenic sources (mining, fertiliser, etc.), atmospheric deposition and the 

presence of gypsum in the aquifer. The high sulphate ion concentration 

ascertains the acidity of the wells and thus, the groundwater is not safe for 

human consumption. The low phosphate ion concentration in the groundwater 

sampled from the Central Region might be due to the presence of cations such 

as calcium and irons, which strongly adsorb phosphate ions onto the soil.  
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The high phosphate ion concentration in the groundwater sampled 

from each of the regions might be due to the phosphate erosion of rocks into 

underground water, chemical fertilisers, manure and composted materials. 

Phosphate ions are useful for plant agricultural purposes and health, but, 

according to Hahad et al. (2019), excessive consumption of phosphate is 

harmful to health since it influences cardiovascular diseases in humans.  

The high chlorine ion concentration of Greater Accra Region might be 

due to the mineral composition of the underlying rocks, and the existence of 

positive ions such as sodium. Hence, chloride ion concentration in seawater is 

about 19,000 milligrams per litre (mg/l). Nevertheless, when groundwater 

becomes contaminated with seawater, chloride concentrations increase 

dramatically (Alfarrah et al., 2018). The mean range of chloride ion 

concentration sampled from the regions shows that some of the groundwater 

was of low chloride ion concentration. The low chloride ion concentration of 

some of the groundwater recorded for Central and Western Regions might be 

due to the distance of some of the wells away from the seawater, saltwater 

intrusion, mineral dissolution, industrial and domestic waste and that 

underlying mineral composition of the area enough cation such calcium and 

magnesium. Regarding chloride ion concentration, Greater Accra featured the 

highest followed by Central and Western Regions. 

The high hydrogen bicarbonate ion concentration of the sampled from 

Western Region compared Central and Western Regions indicates that the 

groundwater is not safe for human consumption. The high hydrogen 

bicarbonate ion concentration in Western Region might be due to the high 

dissolution of carbon dioxide gas, and domestic and industrial waste disposal 
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into the environment. furthermore, it might be due to the presence of cations 

such as calcium and magnesium and the mineral composition of the soil. The 

high concentration of hydrogen bicarbonate ion concentration might have 

contributed to the hardness of the groundwater in the regions. The low silicate 

ion concentration Greater Accra Region compared to Central and Western 

Regions might be due to the mineral composition of the soil and domestic and 

industrial waste disposal that inhibits the presence of silicate ions in the 

groundwater.  

The high concentration of silicate ions in Western Region compared to 

Greater Accra and Central Regions might be due to the mineral compositions 

of the underlying rocks and rainfall pattern of the area that instigates the 

dissolution of silicate ions in the groundwater. Wells with low silicate ion 

concentration might be influenced by kaolinite rocks. The low silicate ion 

concentration connotes the need to protect the groundwater in the regions. 

According to Jollivet et al. (2012), deep groundwater aquifer has more silicate 

ion concentration and thus, it is due to the influence of the high temperature. 

The high nitrate ion concentration recorded from the wells sampled 

from the Western Region compared to Central and Greater Accra Regions 

might be due to the atmospheric deposition, mineral dissolution and other 

anthropogenic sources (illegal mining, fertiliser, etc.) as well as the presence 

of gypsum in the groundwater aquifer of the regions sampled (Sharma et al., 

2020). The low anions indicate that the groundwater has become acidic and 

might be due to the influence of uncontrolled fertiliser, industrial waste 

discharge and domestic waste production, as well as feedlots and sewage. 
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The fact that the underground water hinges on the soil conformation, 

the bedrock and the mineral compositions of the soil, anthropogenic activities 

are impacting the underground water and its quality. The Government of 

Ghana and its agencies should help enforce rules and regulations that protect 

underground water. According to Wang et al. (2022), underground water 

forms part of the natural cycle of the earth and freshwater and it needs to be 

protected and sustained. There would be disparities in access to better water 

quality and sanitation among rich and poor, men and women and rural and 

urban locations. People in Ghana might depend on unsustainable and 

unimproved water sources. This highlights the fact that more rapid and exigent 

actions are needed to improve and protect the groundwater in the regions. To 

resolve the disparities in access to water and sanitation, Ghanaians should 

embrace SDG 6, which calls for the provision and continuous management of 

water and sanitation for everyone, ensuring fair and universal use of safe and 

cheap water supply for everyone by 2030. 

Determining the significant differences between and among the 

physicochemical parameters of the groundwater of the three regions 

The study determined if there was a statistically significant difference 

between and among the groundwater parameters of the study regions. 

ANOVA analysis was run on the averages of the groundwater parameters. 

Comparing the alpha-value (0.05) to the p-values (0.00), there was a 

significant difference between and among the means of the groundwater 

parameters sampled from the study regions. Based on the test statistic, the null 

hypothesis is false and thus, would be rejected (0.00 < 0.05), indicating that 
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differences among the means of the groundwater parameters are not due to 

chance. 

The significant differences in groundwater parameters among the 

Central, Greater Accra, and Western Regions might be influenced by the 

geological formations and seasonal variations within the regions (Asomaning 

et al., 2023; Mensah et al., 2023). These factors contributed to spatial 

heterogeneity in the groundwater quality and influenced the groundwater 

parameters, including total hardness, electrical conductivity, ion 

concentrations, turbidity, and total dissolved solids, in the regions. For 

example, the mean dissolved oxygen (DO) in Central Region (7.16 mg/l) was 

lower than that of Greater Accra (7.1 mg/l) and Western (7.34 mg/l) Regions. 

pH levels were relatively consistent, with Central Region exhibiting a mean of 

6.88, compared to 6.61 in Greater Accra Regions and 6.97 in Western Region. 

Temperature averages at 27.34 °C in Central Region, 28.51°C in Greater 

Accra and 26.36 °C in Western Regions, indicating slight differences in 

thermal characteristics. Total hardness (TH) was highest in Greater Accra 

Region (192.73 mg/l) compared to Central (156.28 mg/l) and Western (129.75 

mg/l), suggesting varying mineral content. Total dissolved solids (TDS) and 

electrical conductivity (EC) levels were relatively similar across the regions. 

Greater Accra Region recorded the highest mean sodium (244.64 mg/l) and 

chloride (162.66 mg/l) ions compared to Western and Central at (249.4 mg/l 

and 138.52 mg/l) and (232.29 mg/l and 141.97 mg/l), respectively.   

PCA estimating the loading effects of groundwater parameters 

PCA indicates that the groundwater data gathered for the study is an 

eight-component system. The first eight principal components explained 
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nearly 61.50 percent of the variation in the groundwater quality with variable 

loadings spread over the PCs. However, this is associated with pollutants in 

the groundwater and the interdependent association between the groundwater 

components. From the correlation matrix, the parameters were strongly 

positively correlated. The correlation matrices were > 0.5, implying that the 

PCA analysis could be conducted. 

The KMO value obtained was 0.691, greater than the minimum value 

(0.50) required for Measuring Sampling Adequacy (MSA). This indicates that 

the dataset fits the principal component analysis and implications. The Bartlett 

test has a likelihood value of < 0.001, implying the rejection of the null 

hypothesis. Nonetheless, when the Bartlett test correlation matrix is an identity 

matrix, the dimension cannot be reduced. The significance level of Bartlett‘s 

test (p<0.001) affirms there are statistically significant associations among the 

groundwater parameters. 

The loading factors between each principal component and the 

observed groundwater parameters were greater than 0.50. The first principal 

component (PC1) showed a strong positive loading on temperature (0.957) 

and turbidity (0.956), explaining 11.28 percent of the variance in the 

groundwater data. This positively strong loading might have been due to the 

influence of domestic, industrial and agricultural activities, the underlying 

geological characteristics of the underground rocks surrounding the 

groundwater, and the seawater‘s influence. The variation in the temperature 

might be due to climate change and the introduction of substances that can 

trap heat into the environment (as a result of domestic, industrial and 

agricultural dispositions). 
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The second principal component showed a strong positive loading on 

calcium (0.747) and potassium (0.735), accounting for 8.50 percent of the 

variance in the groundwater data. The positive load of the second principal 

components of calcium and potassium might be due to anthropogenic 

activities (like farming) and weathering processes of the underlying rocks. The 

principal component three exhibited a moderate positive loading on chloride 

ion (0.785), dissolved oxygen (0.534) and sulphate (0.511), explaining 7.74 

percent of the variation in the groundwater data observed. This variation 

between the Dissolved oxygen and chloride and sulphate ions could be 

attributed to agricultural activities such as uncontrolled application of 

chemical fertilisers and frequent disposal of domestic wastes in the regions 

and run-off from such non-point sources pollutants into the underground water 

system. 

Wells with a high concentration of total dissolved substances might be 

due to the alkalinity of the soil, mineral composition of the soil, high dissolved 

ions such as chlorine and calcium and the intrusion of the seawater. The 

variation in the chloride ion concentration might be due to the distance of 

some of the wells away from the seawater, saltwater intrusion, mineral 

dissolution, industrial and domestic waste and the underlying mineral 

composition of the area enough cations such as calcium and magnesium. 

There was a strong positive loading from component four on 

Bicarbonate and Silicate at 0.730 and 0.565, respectively, explaining 7.65 

percent of the variation in the groundwater data. This variation might be due to 

the presence of cations such as calcium and magnesium and the mineral 

composition of the soil. The load of the fourth principal component onto 
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hydrogen bicarbonate ion might be due to the hardness of the groundwater, the 

mineral composition of the soil and the high temperature of the wells. The 

variation in the silicate ions is said to have been influenced by the mineral 

composition of the soil and domestic and industrial waste. The principal 

component five had strong negative loading on total hardness (-0.793), 

explaining 7.50 of the total variation in the groundwater data. The variation in 

the total hardness was due to the influence of seawater and the presence of 

cations such as magnesium and calcium.  

Principal component six loaded positively on Phosphate at 0.0.671. 

The factor loading between PC 6 explained 6.65 percent of the total variation 

in the groundwater data. Also, the variation in the phosphate ions might be due 

to the mineral composition of the underlying soil, low fertiliser usage and 

domestic, industrial and agricultural production of products that contain 

phosphate ions. It might also be due to the phosphate erosion of rocks into 

underground water, chemical fertilisers, manure, and composted materials. 

The principal components seven and eight loaded strongly positively on 

electrical conductivity and magnesium at 0.810 and 0.863, explaining the 

variation in groundwater data observed at 6.17% and 5.96 percent, 

respectively. 

The variation in the magnesium ion concentration of the groundwater 

signifies that the groundwater sampled is hard water and contains high 

dissolved substances, low pH, and high temperature (due to climate change) 

and domestic, industrial and agricultural waste production in the environment. 

The variation in electrical conductivity might be due to the presence of cations 

such as calcium and magnesium and the mineral compositions of the soil. 
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Nevertheless, there was no load between the principal components and 

observed groundwater parameters like pH, total hardness, sodium, nitrate and 

TDS, indicating that they did not load onto the groundwater data observed. 

They do not contribute to or explain the variation in the groundwater data. 

Summary of Chapter 

This chapter presented results and discussions on results from the field 

observation. The study discussed descriptive statistics of the physicochemical 

parameters and other analyses like PCA and ANOVA, as well as tables and 

charts. Wilcox diagram was employed to identify the main environmental 

factors (precipitation, rock and evaporation) that influence the wells sampled. 

Gibbs‘s diagram was used to determine the suitability of the wells for 

drinking. One-way ANOVA test demonstrated significant change between and 

among the means of the groundwater parameters sampled from the three 

regions.  
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CHAPTER FIVE 

RESULTS AND DISCUSSION 

Introduction 

This chapter presents and discusses results obtained from the ML 

prediction analysis. It presents values of the predicted chemical parameters 

after training using test variables. Decision tree regression (DTR) and 

polynomial regression (PR) models were employed in this study to analyze the 

chemical parameters of the groundwater sampled from the study regions. This 

relates to the importance of checking the quality and drinkability of the 

groundwater in the study regions. 

Research Objective 1: To develop a model and determine its performance 

in predicting groundwater chemical parameters. Research Objective 1 

employed DTR and PR to predict groundwater chemical parameters using 

easily measured parameters. It demonstrated how DTR and PR were used to 

predict groundwater chemcial parameters. Results are presented in Tables 5.1 

and 5.2.  

Table 5.1: Predicted Mean Concentration of Chemical Parameters of 

Groundwater Quality and their Accuracies (All Regions) 

Ions Predicted Ion Concentration/mg/l Prediction Accuracy 

Na
+ 

244.00±101.12 0.83 

K
+ 

121.00±19.48 0.92 

Mg
2+ 

53.00±32.31 0.90 

Ca
2+ 

172.00±51.05 0.96 

HCO3
- 

12.00±27.81 0.81 

Cl
- 

147.00±78.64 0.80 

NO3
- 

42.00±33.73 0.85 

SiO3
-
 48.00±2.73 0.82 

PO4
3- 

4.00±13.53 0.84 

SO4
2- 

82.00±11.89 0.95 
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Table 5.1 presents the predicted groundwater chemical parameters and 

their accuracy. From the table, the predicted sodium (Na
+
), potassium (K

+
), 

magnesium (Mg
2+

) and calcium (Ca
2+

) concentrations were at accuracies of 

0.83, 0.92, 0.90 and 0.96, respectively. Likewise, anion concentrations of 

hydrogen bicarbonate (HCO3
-
), chloride (Cl

+
), nitrate (NO3

-
), silicate, 

phosphate (PO4
2
) and sulphate of 12.00 mg/l, 147.00 mg/l, 51.71 mg/l, 4.00 

mg/l and 82.00 mg/l were predicted with accuracies of 0.81, 0.80, 0.85, 0.82, 

0.84 and 0.95. The model‘s performance for calcium ions is the highest, 

followed by sulphate, potassium, magnesium, nitrate, phosphate, sodium, 

silicate, hydrogen bicarbonate, and chloride ions. 

Table 5.2: Observed and Predicted Values of Machine Learning Model 

Ions Observed concentration/mg/l Predicted concentration/mg/l 

Na
+ 

242.44±113.28 244.00±101.12 

K
+ 

124.92±35.37 121.00±19.48 

Mg
2+ 

52.27±28.19 53.00±32.31 

Ca
2+ 

171.76±48.06 172.00±51.05 

HCO3
- 

10.91±3.30 12.00±27.81 

Cl
- 

147.72±80.76 147.00±78.64 

NO3
- 

42.83±22.83 44.00±33.73 

SiO3
-
 48.69±48.69 48.00±2.73 

PO4
3- 

3.97±1.02 4.00±13.53 

SO4
2- 

82.14±17.94 82.00±11.89 

 

Table 5.2 compares the observed and predicted ion concentrations of 

the groundwater of the study regions. From the table, the predicted cationic 

sodium (Na
+
) and calcium (Ca

2+
) concentrations of (244.00 mg/l) and 171.76 
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mg/l were higher than the observed concentrations. The observed potassium 

(K) and magnesium (Mg) ion concentrations of 124.92 mg/l and 53.00 mg/l 

were less than the experimental values. Similarly, the predicted anions 

concentrations such as chlorine (Cl) 147.00 mg/l, silicate 48.00 mg/l and 

sulphate 82.00 mg/l were less than the observed values, while predicted 

hydrogen bicarbonate (HCO3
-
), phosphate (PO4), nitrate (NO

-
3) and silicate 

ion concentrations were higher than observed concentration. 

 Table 5.3: Regression Analysis of Chemical Parameters (n = 10) 

Regression Statistics Values 

R
2 

0.999142 

Adjusted R
2 

0.874142 

Standard Error 3.349167 
 

Table 5.3 shows a regression analysis of chemical parameters. From 

the table, determinants like R
2
 and adjusted R

2 
were noted to be 0.999142 and 

0.874142, respectively, with a standard error of 3.35.  

Regression Graph of Predicted Per Sampling Location (n =300) 

Figure 5.1: Regression Graph (Observed Ions versus Predicted Ion) (n = 10) 
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Figure 5.1 represents a regression graph of the observed and predicted 

ions. As displayed in Figure 5.1, the root square is 0.9994, and the equation of 

the graph is y = 0.993x. The R
2
 indicates that SLA can be used to predict. 

According to Valentini et al. (2021), a low R
2
 indicates the failure of a model 

to be used for prediction. 
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Figure 5.2: Polynomial Regression (a), Stacked Line (b) and DTR (c) Graphs and Boxplot (d) Showing Bicarbonate Concentration Prediction (n 

=300) 
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Figure 5.3: Polynomial Regression (a), Stacked Line (b) and DTR (c) Graphs and Boxplot (d) Showing Sulphate Ion Concentration Prediction 

(n =300) 

y = 0.9991x - 0.0806 
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Figure 5.4: Polynomial Regression (a), Stacked Line (b) and DTR (c) Graphs and Boxplot (d) Showing Potassium Ion Concentration Prediction 

(n =300) 
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Figure 5.5: Polynomial Regression (a), Stacked Line (b) and DTR (c) Graphs and Boxplot (d) Showing Calcium Ion    Concentration Prediction 

(n =300) 
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Figure 5.6: Polynomial Regression (a), Stacked Line (b) and DTR (c) Graphs and Boxplot (d) Showing Sodium Ion Concentration Prediction (n 

=300) 
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Figure 5.7: Polynomial Regression (a), Stacked Line (b) and DTR (c) Graphs and Boxplot (d) Showing Magnesium Ion Concentration 

Prediction (n =300) 
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Figure 5.8: Polynomial Regression (a), Stacked Line (b) and DTR (c) Graphs and Boxplot (d) Showing Silicate Ion Concentration Prediction (n 

=300) 
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Figure 5.9: Polynomial Regression (a), Stacked Line (b) and DTR (c) Graphs and Boxplot (d) Showing Chloride Ion Concentration Prediction 

(n =300) 
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Figure 5.10: Polynomial Regression (a), Stacked Line (b) and DTR (c) Graphs and Boxplot (d) Showing Phosphate Ion Concentration 

Prediction (n =300) 
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Figure 5.11: Polynomial Regression (a), Stacked Line (b) and DTR (c) Graphs and Boxplot (d) Showing Nitrate Ion Concentration Prediction (n 

=300) 

y = 1.0061x + 0.5172 

R² = 1 

0

10

20

30

40

50

60

0 20 40 60

N
it

ra
te

 C
o

n
ce

n
tr

at
io

n
 

P
re

d
ic

te
d
/m

g
/l

  

Nitrate Concentration Observed/mg/l  

a 

0

20

40

60

80

100

120

1
1

7
3

3
4

9
6

5
8

1
9

7
1
1
3

1
2
9

1
4
5

1
6
1

1
7
7

1
9
3

2
0
9

2
2
5

2
4
1

2
5
7

2
7
3

2
8
9

b 

c c 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

121 
 

Figures 5.2, 5.3. 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11 show 

polynomial regression (a), stacked line (b) and DTR (c) graphs and boxplot of 

the predicted chemical concentrations (HCO3
-
, SO4

2-
, K

+
, Ca

2+
, Na

+
, Mg

2+
, 

SiO3
-
, Cl, NiO3

-
, and PO4

3-
). The polynomial regression and DTR graphs and 

boxplots display equations, R
2
 and best-fit lines. The equations show the non-

linear relationship between the observed and predicted values, that is, the 

possibility of the observed concentrations influencing the predicted chemical 

concentration of the groundwater sampled from the study areas. 

Model Evaluation Matrix 

Models have deficiencies, and it is always appropriate to validate their 

performance (Sun et al., 2012). The model for the study was trained and used 

to predict the chemical parameters of the groundwater parameters of the study 

regions. Following groundwater quality parameter predictions, the prediction 

efficiency or performance of the model was evaluated using RMSE. The 

RMSE estimates the model‘s error, influenced by vertical distances between 

the dataset and the regression line. The smaller the RMSE, the higher the 

performance of the model and its predictability. The estimated RMSE is 

presented in Table 5.4. 
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Table 5.4: Root Mean Square Error Estimation for the Observed and Predicted Groundwater Quality Ion Concentration (All Regions) 

 Concentration/mg/l 

Ions Observed concentration Predicted concentration (O-P)/mg/l MAS (O-P)(O-P) MAE RMS RMSE 

Na
+ 

242.44 244 -1.56 1.56 2.4336 1.63 2.86 1.69 

K
+ 

124.92 121 3.92 3.92 15.3664    

Mg
2+ 

52.27 53 -0.73 0.73 0.5329    

Ca
2+ 

171.76 172 -0.24 0.24 0.0576    

HCO3-
 

10.91 12 -1.09 1.09 1.1881    

Cl
- 

147.72 147 0.72 0.72 0.5184    

NO3
- 

42.83 50 -7.17 7.17 51.4089    

SIO3
- 

48.69 48 0.69 0.69 0.4761    

PO4
3- 

3.97 4 -0.03 0.03 0.0009    

SO4
2- 

82.14 82 0.14 0.14 0.0196    

    16.29 72.00    

Where MAS = Absolute difference between observed (O) and predicted (P) values,  

MAE = Mean absolute error 

RMSE = Root mean square error 
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From Table 5.4, MAE, RMS and RMSE of the predicted ions 

determine the performance of MLA in predicting the ions. From the table, the 

estimated MAS for the cations such as sodium (sodium, potassium, 

magnesium and calcium were 1.56, 3.92, 0.73 and 0.24, respectively. Anions 

such as hydrogen bicarbonate, chlorine, nitrate, silicate, sulphate and 

phosphate featured RMS as follows 1.09, 0.72, 7.17, 4.69, 0.97 and 0.02. The 

model performance for sulphate and calcium ions was the finest, followed by 

chloride, magnesium, phosphate and hydrogen bicarbonate ions. The model 

performs poorly for nitrate ions compared to the other ions. In general, the 

model achieves a very low RMSE of 1.690, showing the predictability of the 

model in forecasting groundwater quality parameters with great accuracy and 

precision. 

Research Objective 2: To determine the predictability of chemical 

parameters of groundwater using the easily measured parameters. 

Research Objective 2 validated the performance of ML in groundwater quality 

prediction using easily measured parameters. To achieve this objective, the 

performance of the ML was compared with aqueous geochemical models such 

as Visual Minteq, Phreeq C and Wateq4F. The result is presented in Tables 5.5 

and 5.6.  
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Table 5.5: Observed and Predicted Values of the Models (Visual Minteq, 

Phreeq C and Wateq4F with Machine Learning Model) 

  

Model Predicted Values/mg/l 

Ions 

Observed 

Values/mg/l 

Visual 

Minteq 

Phreeq 

C Wateq4F 

Machine 

Learning 

Na
+ 

242.44 241.85 331.05 241.85 244.00 

K
+ 

124.92 124.10 123.55 124.06 121.00 

Ca
2+ 

171.76 135.42 141.19 144.52 172.00 

Mg
2+ 

52.27 21.74 9.50 87.64 53.00 

Cl
- 

147.72 147.83 141.02 147.83 147.00 

HCO3
- 

10.91 10.40 10.40 10.40 12.00 

SO4
2- 

82.14 63.93 64.26 63.83 82.00 

PO4
3- 

3.97 3.93 3.93 3.93 4.00 

NO3
- 

42.83 41.67 41.67 41.67 44.00 

SiO3
- 

48.69 31.55 51.65 53.13 48.00 

 

Table 5.5 compares the observed and predicted values of the Visual 

Minteq, Phreeq C, Wateq4F and ML. From Table 5.5, sodium ion 

concentration predicted by Visual Minteq (241.85 mg/l) and Wateq4F (241.85 

mg/l) were very close to the observed value (242.44 mg/l) compared to Phreeq 

C (331.05 mg/l) and ML (244.00 mg/l). The predicted potassium ion 

concentrations of Visual Minteq and Wateq4F at 124.10 mg/l were very close 

to the observed value (124.92 mg/l) compared to Phreeq C (123.55 mg/l) and 

ML (121.00 mg/l). The predicted calcium, magnesium, chloride, sulphate and 

silicate ion concentrations of the ML model at 172.00 mg/l, 53.00 mg/l, 

147.00 mg/l, 82.00 mg/l and 48.00 mg/l, respectively, were close to the 

observed values compared to the Visual Minteq, Phreeq C and Wateq4F.  
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Table 5.6: Comparing Machine Learning Model’s Performance with 

Visual Minteq, Phreeq C and Wateq4F using Statistical 

Parameters of Model Prediction 

Statistical Parameters  Visual Minteq Phreeq C Wateq4F ML 

R-square 0.997 0.999 0.972 0.999 

RMSE 16.970 33.160 15.330 1.690 

D-statistics 0.987 0.960 0.988 1.000 

 

Table 5.6 compares the performance of the AI model with Visual 

Minteq, Phreeq C and Wateq4F, using the statistical parameters including R
2
, 

RMSE and d-statistics. As displayed in Table 5.6, the estimated R
2
 values of 

Visual Minteq were 0.997, Phreeq C 0.999, Wateq4F 0.972 and ML model 

0.999. The estimated RMSE for Visual Minteq, Phreeq C, Wateq4F and ML 

model were 16.97, 33.16, 15.33 and 1.690, respectively. Also, d-statistics for 

Visual Minteq were 0.987, Phreeq C (0.960), Wateq4F (0.988) and model 

(1.00).  

Research Objective 3:  To establish if there were statistically significant 

mean differences between and among the predicted groundwater 

chemical parameters of the study regions. Research Objective 3 determined 

whether there are significant differences in the mean values of predicted 

groundwater chemical parameters across the study regions. The chemical 

parameters of the groundwater for each region were predicted and compared. 

ANOVA was used to determine the statistical significance level among the 

three regions. Results are presented in Tables 5.7 and 5.8.  
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Table 5.7: Comparing ML Predicted Ions of Each Region 

 

Central (mg/l) Greater Accra (mg/l) Western (mg/l) 

Ions Observed  Predicted  Observed  Predicted  Observed   Predicted 

Na+ 232.29 234 144.43 144 249.04 155 

K+ 118.49 118 126.98 124 129.56 128 

Mg2+ 51.72 50 55.06 51 50.02 47 

Ca2+ 160.05 160 185.76 162 168.46 168 

HCO3- 10.74 14 11.23 16 13.04 13 

Cl- 141.97 138 68.94 65 138.52 138 

NO3- 21.96 27 17.64 18 24.6 22 

SiO3- 47.59 55 35.78 35 50.71 49 

PO4
3- 

3.1 3 4.81 4 5.12 6 

SO42- 75.24 78 67.25 66 98.11 98 

 

Table 5.7 compares the observed and predicted ion concentrations for each 

region, namely Central, Greater Accra, and Western Regions. In the Central 

Region, the observed sodium (232.29 mg/l), hydrogen bicarbonate (10.74 

mg/l), nitrate (21.96 mg/l), silicate (47.97 mg/l) and sulphate (75.24 mg/l) ions 

were less than the correspondent ML prediction at 232.00 mg/l, 14.00 mg/l, 

27.00 mg/l and 78.00 mg/l, respectively. The observed potassium (118.49 

mg/l), magnesium (51.72 mg/l), calcium (160.05 mg/l) and phosphate (3.10 

mg/l) were greater than the ML predicted ions.  

The observed sodium concentration in Greater Accra Region stands at 144.43 

mg/l, closely aligned with the ML-predicted value of 144 mg/l. The observed 

potassium (126.98 mg/l) was less than the ML predicted value (124 mg/l.) The 

observed magnesium (55.06 mg/l) and calcium (187.76 mg/l) were greater 

than the ML ion (51 mg/l and 162 mg/l, respectively). Hydrogen bicarbonate, 

chloride, nitrate, silicate, phosphate, and sulphate ions exhibit relatively close 

alignment between observed and predicted concentrations, with minor 
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Central Region 

variations observed. In Western Region, the observed sodium concentration 

(249.04 mg/l) was higher than the ML-predicted value (155 mg/l). The 

observed potassium ion (129.56 mg/l) was less than the ML predicted ion (128 

mg/l). Magnesium ions (50.02 mg/l) were slightly higher compared to the ML 

prediction (47 mg/l). Calcium concentrations exhibited a close alignment 

between observed (168.46 mg/l) and ML-predicted (168 mg/l) values. 

Additionally, hydrogen bicarbonate, chloride, nitrate, silicate, phosphate, and 

sulphate ions show relatively consistent alignment between observed and 

predicted concentrations, with minor variations observed. 

Regression Plotted Graphs of Each of the Region: observed Values Verses 

Model Predicted Values (n = 10) 

 

 Figure 5.12: Predicted Mean Concentration of the Chemical Parameters of the 

Groundwater Sampled from Central Region (n = 10) 
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Greater Accra Region 

Figure 5.13: Predicted Mean Concentration of the Chemical Parameters of the 

Groundwater Sampled from the Western Region (n = 10) 

 

 

Figure 5.14: Predicted Mean Concentration of the Chemical Parameters of 

Groundwater Sampled from the Greater Accra Region (n = 10) 

Figures 5.12, 5.13 and 5.14 display regression plots of the observed ions 

and the predicted ions.  From the figure, the estimated R
2
 and regression 

equations for Central, Greater Accra and Western Regions were 0.991, 0.9896 
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and 0.9565, and y = 1.0033x, y = 0.93142 + 2.1839 and y = 0.8494x were 

determined for Central, Greater Accra and Western Regions, respectively. 

Table 5.8: ANOVA Test Showing Mean Differences in Predicted 

Groundwater Chemical Parameters among the Three Regions 

ANOVA 

      Source of 

Variation SS Df MS F P-value F crit 

Between 

Groups 1017.185 2 508.5926 0.160395 0.852713 3.402826 

Within 

Groups 76101.11 24 3170.88 

          Total 77118.3 26         

Where SS = sum of squares, Df = degree of freedom, MS = mean square, F = 

F-Statistic, P-value = probability value and F-critical = Critical F-value.  

The 5.8 demonstrates whether there are mean differences in predicted 

groundwater chemical parameters among the three regions. Between groups 

variation, SS (1017.19) and 2 degrees of freedom yielded a mean square of 

508.5926. Within group variation, SS (76101.11) and 24 degrees of freedom 

resulted in a mean square of 3170.88. The total variation across all groups 

amounts to 77118.3, encompassing a total of 26 degrees of freedom. The 

calculated F-statistic of 0.160395, accompanied by its corresponding P-value 

of 0.852713. This indicates that there is a lack of statistically significant 

differences in predicted groundwater chemical parameters among the regions 

at the designated significance level. This inference is drawn through 

comparison with the critical F-value of 3.402826, showing there is an absence 

of substantial variations in groundwater chemistry across the studied regions. 
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Groundwater Quality Indexes for the Three Regions 

The study determined the Groundwater quality index to ascertain the 

effects of the chemical groundwater parameters on the water quality, using the 

predicted groundwater data in Table 5.5. The water quality index was 

determined from the ten (10) parameters of the study water quality parameters 

based on theoretical significance. The study used the formula, 

WQI = 
    

   ⁄                                                                          [5.1] 

for the calculation of the groundwater quality index.  

wi is the unit weight,  

qi is the water quality rating of 10 groundwater quality variables used 

in the estimation of the water quality index.  

PO4
3-

 and HCO3
-
 ions were not included in the calculation of the 

groundwater quality index since they influenced the water quality index 

abnormally. 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

131 
 

Table 5.9: Water Quality Index (WQI) Generation 

Predicted 

Ions/mg/l WHO 1/Sn Σ1/Sn 

K = 

1/(Σ1/Sn

) 

S = 

K/Sn 

Ideal 

Values 

Predicted 

Values Vn/Sn 

Vn/Sn X 

100 

Na
+ 

200.00 0.01 10.25 0.10 0.00 0.00 244 1.22 122.00 0.06 

12kl2Cl-
 

250.00 0.00 10.25 0.10 0.00 0.00 147 0.59 58.80 0.02 

K
+ 

300.00 0.00 10.25 0.10 0.00 0.00 121 0.40 40.33 0.01 

Mg
2+ 

50.00 0.02 10.25 0.10 0.00 0.00 53 1.06 106.00 0.21 

SO4
2- 

250.00 0.00 10.25 0.10 0.00 0.00 82 0.64 63.60 0.02 

Ca
2+ 

100.00 0.01 10.25 0.10 0.00 0.00 172 1.72 172.00 0.17 

PO4
3- 

2.00 0.50 10.25 0.10 0.05 0.00 4 26.50 2650.00 129.21 

HCO3
- 

10.00 0.10 10.25 0.10 0.01 0.00 12 1.20 120.00 1.17 

SiO3
2- 

100.00 0.01 10.25 0.10 0.00 0.00 44 0.57 57.00 0.06 

NO3
- 

50.00 0.02 10.25 0.10 0.00 0.00 42 1.00 100.00 0.20 

 Σ1/Sn = 0.68   0.07  26.63   131.13 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

132 
 

Table 5.9 presents the calculation of WQI of the study regions 

(Central, Greater Accra and Western Regions). The calculated WQI for the 

three study regions combined was 131.13.  

Comparison of Groundwater Quality Indices (Central, Greater Accra 

and Western Regions) 

The study compared WQI of the study regions. The formula as shown 

in Table 5.9 was used to calculate WQI of the study regions for comparison. 

The result is presented in Figure 5.15.  

 

 Figure 5.15: Calculated Water Quality Index of Each Region (Central, 

Greater Accra and Western Regions). 

Figure 5.15 compares WQI of the study regions (Central, Greater 

Accra and Western Regions). WQI of Western Region (111.56) was the 

highest compared to Greater Accra (94.75) and Central Regions (87.32). 

Western Region recorded higher WQI compared to Central Region. Central 

Region featured the least WQI and thus, the purest water quality. 
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Table 5.10: Regional Groundwater Quality Classification Comparison 

(%) 

 

 Suitability Classification 

 Regions Unsuitable Very poor Poor Good Excellent Total 

CGW  6 5 11 64 14 100 

Central 2 4 3 72 19 100 

Greater Accra 13 7 16 57 7 100 

Western 7 12 22 49 10 100 

Where GCW = Central, Greater Accra and Western Regions  

Table 5.10 displays the groundwater quality classification of the study 

regions. The classification scheme consisted of unsuitable, very poor, poor, 

good and excellent. The groundwater classification of the study regions was 

done based on the WHO water quality guidelines. It shows the degree to 

which each of the wells sampled has been polluted or if the wells sampled 

meet the WHO standards for quality water for human consumption.  

As represented in Table 5.8, out of the 300 wells sampled of the study 

regions (Central, Greater Accra and Western Regions), 6 percent of the wells 

were not suitable, 5 percent were very poor, 11 percent were poor, 64 percent 

were good and 14 were excellent for drinking. Among the three regions, more 

of the wells of Greater Accra Region (13%) were unsuitable for human 

consumption compared to Western and Central Regions, at 7 percent and 2 

percent, respectively. Western Region recorded the highest very poor wells 

(12%), followed by Central (7%) and Greater Accra (4) Regions. Wells with 

the highest poor quality were recorded for Western Region (22%) and then 

Greater Accra (16%) and Central (3%) Regions. 
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Central Region featured the region with the highest number of wells 

good for human consumption (72%), making the Western (49%) the least 

region with groundwater quality good for drinking after Greater Accra Region 

(57%). Furthermore, 19% of the wells of Central Region (13%) were excellent 

for human consumption compared to Greater Accra (7%) and Western (10) 

Regions. 

Discussion on Model Prediction Analysis 

This section presents discussions on the model prediction and the 

analysis of the chemical parameters of groundwater quality using easily 

measured data. The data were analysed using SL algorithm, particularly DTR 

and PR. The values of the predicted ions show the chemical parameters of the 

groundwater sampled after training, using the test variables. 

Predicted concentration of groundwater quality ions with accuracy (all 

regions) 

Regarding Table 5.1, the model predicted groundwater chemical 

parameters demonstrated very high accuracy. The accuracy of the cations such 

as Ca
2+

 (0.96), K
+
 (0.92), Mg

2+
 (0.90) and Na

+ 
(0.82) ion concentrations 

showed very high performance. For the cations, the model had a very high 

performance for calcium ions compared to potassium, magnesium and sodium 

ions, indicating that the model is best fit for predicting calcium ion 

concentrations. Likewise, the accuracy of anions such as SO4
2-

 (0.95), PO4
3-

, 

NO3
-
 (0.84) and (0.83) displayed very high performance. Regarding the 

anions, the sulphate ion prediction is the highest compared to phosphate, 

nitrate, silicate, chloride, and hydrogen bicarbonate ions. Generally, the model 
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had a very high performance for ions like calcium, sulphate, potassium, 

magnesium, nitrate, phosphate and sodium. 

The model showed low performance for hydrogen bicarbonate, 

chloride and silicate ions. The model has good performance cations compared 

to the anions. Comparing this result to Joslyn et al. (2018), ML model has high 

accuracy and performance and this might be due to the difference in location 

and the kind of groundwater parameters estimated. Joslyn analysed two 

parameters, while this study employed seven easily measured groundwater 

parameters to predict the chemical characteristics of the groundwater sampled. 

This might account for the overall significant change in the model‘s accuracy. 

Comparing the accuracy of temperature (0.9789) and dissolved oxygen 

(0.9889) estimated by Joslyn to the accuracy of calcium (0.96) and sulphate 

(0.95) ion concentration predicted in this study, there is a significant 

difference. Concerning the accuracies of the predicted ions, the performance 

of the model for Ca
2+

 > SO4
2-

 > K
+
 > Mg

2+
 > NO3

-
 > PO4

3-
 > Na

+
 > SiO3

-
 

HCO3
-
 > Cl

-
. Based on the findings, the question of whether the model can be 

used to estimate the groundwater chemical parameters is explained by the 

accuracy of each parameter. Based on the accuracy of the predicted ions and 

as compared to Joslyn, the model can be used to predict the chemical 

parameters of groundwater using easily measured parameters to very high 

accuracy.  

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

136 
 

Comparison observed and model predicted ion concentration of 

groundwater (all regions) 

Observed and predicted values of machine learning model 

From Table 5.2, ML estimated the ionic concentration of the chemical 

parameters in whole numbers. ML approximated the values greater than 0.49 

to 1 and less than 0.49 to 0. The predicted cationic sodium (Na
+
) and calcium 

(Ca
2+

) concentrations of (244.00 mg/l) and 171.76 mg/l were higher than the 

observed concentrations, with very significant differences. The observed 

potassium (K) and magnesium (Mg) ion concentrations of 124.92 mg/l and 

46.00 mg/l were less than the experimental values. 

Although ML predicted ion concentration of potassium and 

magnesium might be less than the observed. This does not imply that the 

model is of poor performance. The significant difference between the model-

predicted and observed values was not apparent from the model‘s prediction 

but from the approximation of the predicted values, variation in the predicted 

values and outliers. Similarly, the predicted anions concentrations such as 

chlorine (Cl) 147.00 mg/l, sulphate 172.00 mg/l and silicate (48.00 mg/l) ions 

were less than the observed values, while predicted phosphate 4.00mg/l, 

hydrogen bicarbonate (HCO3
-
) and nitrate (NO3

-
) concentrations were higher 

than the observed concentration. Comparing the observed and model-predicted 

values, it is established that the model has good performance for predicting 

groundwater quality parameters. 
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Regression analysis: Determining the predictability of the chemical 

parameters using groundwater physical parameters 

From Table 5.3, R
2
 and adjusted R

2 
of 0.999142 and 0.874142, 

respectively, proved that the model has high accuracy and can be used to 

investigate the chemical parameters of groundwater using easily measured 

parameters. According to Raheja et al. (2022), when either the root or the 

adjusted root square is higher (close to 1), the model has a higher 

predictability chance and thus, it can be reliable for other predictions where 

necessary.  

Based on the regression analysis and the adjusted R
2
, it is established 

that the model has high performance and accuracy, or can predict and forecast 

groundwater quality with minimal error. Comparing this finding to Kouadri et 

al. (2020), the model has achieved higher prediction accuracy and 

performance. Singha et al. (2021) who predicted and modelled the state of safe 

drinking water sources had R
2
 of 0996. In comparison with this current study 

(R
2
 = 0.999142), ML yielded better R

2
 and this indicates that MLA could be 

used to model and predict groundwater quality using easily measured 

parameters.  

Model evaluation, using RMSE 

Models have deficiencies, and it is always appropriate to validate their 

performance (Sun et al., 2012). The model for the study was trained before 

predicting the chemical parameters of the groundwater sampled. Following the 

groundwater quality parameter predictions, the prediction efficiency or 

performance of the model was validated using RMSE. The smaller the RMSE, 

the higher the performance of the model and its predictability. 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

138 
 

From Table 5.4, the estimated RMSE for the cations such as sodium, 

potassium, magnesium and calcium were 1.56, 3.82, 0.73 and 0.24, 

respectively. Anions such as chlorine, hydrogen bicarbonate, sulphate, silicate, 

phosphate and nitrate featured MAS as follows 0.72, 1.09, 0.14, 0.69, 0.00 and 

7.17, respectively. Based on the RMSE, the model performance for sodium is 

the finest, followed by calcium, chlorine and hydrogen bicarbonate. The 

model performed poorly for silicate ions compared to sodium, calcium, 

chlorine and hydrogen bicarbonate. In general, the model achieves a low 

RMSE (1.69) and it was found to predict groundwater quality parameters with 

great accuracy and precision. This finding of the study supports a study by 

Elbeltagi et al. (2021) who found that AI tools could be used to model and 

predict water quality. Comparing the RMSE of this current study with 

Elbeltagi et al. (2021) who had RMSE of 0.6356, ML is said to produce better 

results.  

From Figures 5.2, 5.3. 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11, determinants 

of ML such as R
2
 values were > 95 percent, demonstrating that ML could be 

used to predict the groundwater chemical parameters using easily measured 

parameters at very high accuracy. MLA can be used to predict groundwater 

chemical parameters with high accuracy using easily measured parameters for 

each of the regions. 

Comparing the observed and predicted values of Visual Minteq, Phreeq C 

and Wateq4F with ML 

As presented in Table 5.5, Visual Minteq and Wateq4F could be used 

to predict sodium, potassium, hydrogen bicarbonate and Nitrate ion 

concentrations with high accuracy compared to Phreeq C and ML. On the 
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other hand, ML could be a very good model for predicting calcium, 

magnesium, chloride, sulphate and silicate ion concentrations compared to the 

Visual Minteq, Phreeq C and Wateq4F. ML although might have low 

predicting performance for sodium, potassium, hydrogen bicarbonate and 

Nitrate ion concentrations does not dispute the fact that it could be used for 

predicting groundwater quality.  

Comparing ML model’s predicting ability with Visual Minteq, Phreeq C 

and Wateq4F 

Objective 2 compared the predictability and performance of ML with 

Visual Minteq, Phreeq C and Wateq4F. R
2
, RMSE and the d-statistic of the 

models were determined. As presented in Table 5.6, the estimated R-square 

value for Visual Minteq was 0.997, Phreeq C (0.999), Wateq4F (0.972) and 

Machine Learning model (0.999) as well as the d-statistic of the models 

[Visual Minteq (0.987), Phreeq C (0.960), Wateq4F (0.988) and Model (1.00)] 

indicated that the models have high predicting ability and performance. 

The estimated RMSE for Visual Minteq, Phreeq C, Wateq4F and ML 

model consisted of 16.97, 33.16, 15.33 and 1.690, respectively. The RMSE of 

ML connote that it could help predict groundwater quality to high accuracy. 

Based on the R
2
, RMSE and d-statistic, ML had the highest prediction ability 

and performance, followed by the Wateq4F, Visual Minteq and Phreeq C.  

Comparing ML predicted ions of each region 

ML model exhibited accurate predictions for sodium and calcium in 

Central Region, with observed and predicted values closely aligned. ML 

performed well in predicting chloride ions, with minor discrepancies observed. 

Hydrogen bicarbonate ions also showed relatively accurate predictions, 
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despite slight deviations from the observed values. This suggests a 

commendable performance of the ML predicting chemical ions in the Central 

Region using easily measured parameters. There were discrepancies between 

observed and predicted values in the various ions. For example, sodium, 

hydrogen bicarbonate, nitrate, silicate, and sulphate ions exhibit lower 

observed concentrations compared to their corresponding ML predictions, 

while potassium, magnesium, calcium, and phosphate ions show higher 

observed concentrations.  

In Greater Accra Region, the ML demonstrated better accuracy in 

predicting sodium and chloride concentrations, with observed and predicted 

values closely matching. Hydrogen bicarbonate concentrations also showed 

satisfactory predictions, albeit with minor variations. These results indicate the 

ML‘s effectiveness in estimating important ion concentrations. The observed 

concentrations of potassium, magnesium, and calcium ions deviate from the 

ML predictions, indicating potential discrepancies in the model‘s estimation. 

For other ions such as sodium, hydrogen bicarbonate, chloride, nitrate, silicate, 

phosphate, and sulphate, the observed and predicted concentrations 

demonstrate closer alignment. This suggests better accuracy in ML‘s 

predictions for these ions within this region. 

The ML performed well in predicting chloride concentrations, with 

observed and predicted values closely aligned. Hydrogen bicarbonate 

concentrations also show consistent predictions, highlighting the model‘s 

capability to estimate these ions accurately. Although there may be some 

deviations, particularly in calcium concentrations, overall, ML demonstrated 

satisfactory performance in estimating key ion concentrations in the Western 
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Region. Notable differences were observed between observed and predicted 

sodium and potassium concentrations and this indicates potential challenges in 

accurately estimating these ions. The ML performed relatively well in 

predicting hydrogen bicarbonate, chloride, nitrate, silicate, phosphate, and 

sulphate ions, with minor variations between observed and predicted 

concentrations. 

Regarding the performance of the ML in Central, Greater Accra, and 

Western Regions, ML exhibited relatively better performance in the Central 

Region compared to the Western or Greater Accra Region. ML demonstrated 

performance in predicting ions, including sodium, calcium, chloride, and 

hydrogen bicarbonate in the Central Region. Following the Central Region, 

ML exhibited relatively similar performance in Greater Accra and Western 

Regions. 

ANOVA test showing mean differences in predicted groundwater 

chemical parameters among the three regions 

From Table 5.8, the P-value (0.852713) was greater than the alpha value 

(0.05). This demonstrates that there is a lack of statistically significant 

differences in predicted groundwater chemical parameters among the regions. 

This implies that the predicted groundwater chemical parameters do not 

significantly differ among the Central, Greater Accra, and Western Regions. 

ML can be used for predicting groundwater chemical parameters using easily 

measured parameters across different geographical areas. 

WQI of Central, Greater Accra and Western Regions 

WQI of the three regions was 131.13, higher than the WHO 

recommended value for excellent drinking water. This high index implies that 
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the groundwater has received progressive pollution. The water quality is 

reduced and barely good for human consumption and it has seldom departed 

from tolerable levels with only minor degradation. Water with this water 

quality needs consensus efforts of the government, individuals and non-

governmental organisations to restore its ecological integrity.  

The high-water quality index of Western Region (111.56) compared to 

Greater Accra (94.75) and Central (87.32) Regions depicts that the 

underground water in the regions is barely safe for drinking. Similarly, it 

signifies that the groundwater quality of Greater Accra and Western Regions 

is safer than the Western Region. Moreover, this high value reflects activities 

of the degradation of bedrock and the impacts of human activities on 

groundwater quality and contamination. However, the anthropogenic activities 

in the area might include illegal mining and improper disposal of domestic, 

agricultural and intertrial wastes in the region. Based on the WHO 

recommended values for safe drinking (100.1–200, Poor water), the 

groundwater in the region is graded ‗Poor‘. This implies that the water quality 

in the region has been reduced and is barely good (Mohammad et al., 2020). 

WQI of Central and Greater Accra Regions based on the WHO grading 

system is graded ‗Good water‘ but not excellent for drinking. The region with 

the lowest water quality index is Central Region and thus, the purest water 

quality among the three regions, followed by Greater Accra Region, making 

Western Region the last. Nevertheless, it connotes that the water quality is 

with only minor degradation; conditions seldom depart from tolerable levels. 

Therefore, the water quality needs to be protected or sustained in order to 

maintain its quality, fitting for consumption and other purposes. The water 
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quality indexes of each of the three regions were higher than the WHO 

recommended values of excellent drinking water (< 50, Excellent water). It is 

recommended effective monitoring programme should be implemented in the 

regions to help sustain the groundwater quality and sound mining operations. 

Hence, sustaining groundwater quality in the regions is as protecting health, 

sustaining water supply systems and meeting the water demands of the 

population growth in the regions. 

Groundwater quality classification by regions 

This study classified the wells of the study regions based on the 

following classification scheme; unsuitable, very poor, poor, good and using 

the WHO water quality guidelines. Any of these classification schemes depict 

the degree to which the wells sampled were polluted and whether they are safe 

for human consumption. When the classification scheme is ‗excellent‘ means 

the quality of the wells is almost unaltered and is in a perfect state. ‗Good‘ 

implies that the quality of the wells is maintained with only minor degradation 

conditions, which seldom depart from tolerable levels. ‗Poor‘ connotes that the 

quality of the water is almost always reduced and it is barely good. ‗Very 

poor‘ means that the quality of the wells is not near to be clean, while 

‗unsuitable‘ means that the quality of the wells is often compromised, and the 

characteristics are far from optimum. Furthermore, the wells classified 

‗unsuitable, poor and very poor‘ means that they are associated with health-

related diseases, including cardiovascular, circulatory and respiratory diseases. 

Regarding Figure 5.10, 6 percent of the wells in the study regions 

(Central, Greater Accra and Western Regions) were unsuitable, meaning they 

are not suitable for drinking purposes and the quality of the wells is often 
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compromised, and the characteristics are far from optimum. Moreover, 5 

percent classified ‗very poor‘ shows that some of the wells are not near to be 

clean, while 11 percent classified ‗poor‘ denotes that the quality of the water is 

almost always reduced and it is barely good. The wells classified ‗good‘ 

affirm that the quality of the wells is maintained with only minor degradation 

conditions, which seldom depart from tolerable levels, whereas 14 of the wells 

classified as ‗excellent‘ informs that the quality of the wells is almost 

unaltered and is in perfect state. These findings reaffirm the study of Lutterodt 

et al. (2018) who claimed that groundwater in Accra, particularly Dodowa of 

Ghana is unsuitable for drinking purposes. The groundwater should be treated 

before consumption and much effort should be made to reduce contamination 

from local sources of pollution and create restricted spaces surrounding 

groundwater collection points. The states of the wells being classified as 

‗unsuitable, poor, and very poor‘ calls for holistic efforts of government, non-

government and individuals to protect and sustain the quality of the 

groundwater in the study regions and beyond. 

Summary of Chapter 

This chapter presented results and discussions ML prediction. The ML 

predicted data analysis the discussion was centred on analysis such DTR and 

polynomial regressions and groundwater quality indexes, as well as model 

validating tools such as RMSE. Based on the WHO classification scheme, 6 

percent of the wells sampled were unsuitable, 5 percent very poor, 11 percent 

poor, 64 percent good and 14 excellent for drinking. Statistical parameters 

such as R-square, RMSE and d-statistics were used to validate the model‘s 

performance. The predicting ability of ML developed was compared with 
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aqueous geochemical models like Visual Minteq, Phreeq C and Wateq4F 

using R
2
, RMSE and d-statistics. Based on ML validating tools such as 

RMSE, the study found that ML model could be used to predict groundwater 

quality using the physical parameters.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

146 
 

CHAPTER SIX 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Introduction 

This study employed supervised learning algorithms like DTR and PR 

to assess and predict groundwater quality. This section presents the summary 

of the study, key findings based on field data analysis and model predicted 

data analysis, conclusion, and recommendations including direction for further 

research.  

Summary 

The study employed SLA, specifically DTR and PR approaches to 

predict the groundwater quality of Central, Greater Accra and Western 

Regions. An experimental research design (factorial design) was used to 

conclude (predict groundwater quality), validate the hypothesis (analysis 

testing) and establish the causality (what contributes to groundwater 

pollution). Three hundred wells (from 30 towns across Central, Greater Accra 

and Western Regions) were sampled and analysed.  

To predict the groundwater quality of the study regions, 80 percent of 

the secondary dataset was used to train the model and tested with 20 percent of 

the secondary data and 100 percent of the field dataset. The findings were 

displayed utilising descriptive statistics (standard deviation, mean, minimum, 

maximum and skewness). ANOVA) and PCA were used to analyse the 

primary data. RMSE and regression analyses (R
2
) and d-statistics were used to 

analyse research objectives 1 and 2. Research objective 3 was analysed using 

ANOVA. The performance of the SML was compared to aqueous 

geochemical models (Visual Minteq, Phreeq C, and Wateq4F) using RMSE, 
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d-statistics and R
2
. This helped to establish the ability of ML model in 

predicting groundwater quality using easily measured parameters.  

Key Findings (Based on Field Data Analysis) 

The mean dissolved oxygen (7.20 mg/l), pH (6.82), temperature (28.40 

o
C) and electrical conductivity (426.51 mg/l) fell within the WHO 

recommended values (>6.5-8 mg/l, 6.5-8.5, 23.6 
o
C-33.10 

o
C and < 500 

mS/cm, respectively) for safe quality drinking water. The mean total dissolved 

substances (453.77 mg/l) and turbidity (8.11 NTU) exceeded the WHO limits 

(< 300 mg/l and < 5 NTU, respectively) for excellent quality drinking water. 

Moreover, cations such as sodium (242.44 mg/l), calcium (171.76 mg/l) and 

magnesium (52.27 mg/l) exceeded the WHO recommended limits (200 mg/l, 

100 mg/l and 50.00 mg/l), respectively), while potassium (124.92 mg/l) fell 

below the WHO recommended value (300 mg/l) for safe quality drinking 

water. 

Anions such as sulphate (82.14 mg/l), chloride (147.72 mg/l), silicate 

(48.69 mg/l) and nitrate ions (42.38 mg/l) fell below the WHO recommended 

values (250 mg/l, 250 mg/l, 100 mg/l and 50 mg/l, respectively) for safe 

quality drinking water, while mean phosphate (3.17 mg/l) and hydrogen 

bicarbonate (10.91 mg/l) ions concentration exceeded the WHO recommended 

values (2 mg/l and 10 mg/l, respectively). The mean range of all the 

groundwater physicochemical parameters indicated that some of the wells 

sampled were not safe for drinking, particularly those having concentrations 

higher than the WHO recommended values.  

From ANOVA analysis, the p-value (0.00) indicated a significant 

difference between and among the groundwater physicochemical parameters. 
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PCA indicated that groundwater data is an eight-component system, 

explaining 61.46 of the overall variation in the dataset. Based on the PCA, 

eight components loaded onto the groundwater quality, thus, affecting the 

groundwater quality.  

From the Wilcox and Gibbs diagrams, the dominant factors that 

influence the groundwater in the study regions are precipitation, rock and 

evaporation. Most of the groundwater sampled from Central Region 

concentrated under precipitation and rock weathering dominance regions, 

while few of them were under evaporation dominance regions. The wells 

sampled from the Western Region concentrated under precipitation, rock 

weathering and evaporation dominance regions. 

The mean concentration of dissolved oxygen in the Western Region 

was the highest compared to Central and Greater Accra Regions. The mean 

pH value of the groundwater sampled from the Greater Accra Region was the 

lowest compared to Central and Western Regions. The mean temperature 

value of Western Region was the lowest compared to Central and Greater 

Accra Regions. Greater Accra Regions recorded the highest total hardness and 

total dissolved substances, followed by Central and Western Regions. Again, 

Western Region recorded the highest turbidity and then Central and Greater 

Accra Regions. Central Region recorded the highest electrical conductivity 

compared to Western Region, making Greater Accra Region the least 

electrical conductivity recording region. 

The sodium ion concentration sampled from the Western Region was 

the highest, followed by Greater Accra and Central Regions. Greater Accra 

Region featured the highest potassium ion concentration and then Western and 
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Central Regions, respectively. The mean magnesium of Western Region was 

the lowest compared to Central and Greater Accra Regions. Western Region 

recorded the highest sulphate ion concentration, followed by Central and 

Greater Accra Regions. The mean phosphate ion concentration sampled from 

the Western Region was the highest compared to Greater Accra and Central 

Regions. The mean chlorine ionic concentration of the groundwater sampled 

from Greater Accra Region was the highest compared to Central and Western 

Regions. Greater Accra Region featured the highest hydrogen bicarbonate ion 

concentration, followed by Central and Western Regions. The mean silicate 

ion concentration of Western Region was the highest compared to Central and 

Greater Accra Regions. Western Region recorded the highest nitrate ion 

concentration, followed by Central and Greater Accra Regions. 

Key Findings (Based on Model Predicted Data Analysis) 

The model‘s prediction accuracy of calcium ion (0.96) was the highest, 

followed by sulphate (0.95), potassium (0.92), magnesium (0.90), nitrate 

(0.85), phosphate (0.84), sodium (0.83), silicate (0.82), hydrogen bicarbonate 

(0.81), and chloride (0.80) ions. Based on the accuracy of the model (0.96), 

the supervised algorithm could be used to model and predict groundwater 

quality. 

The predicted cationic sodium (244 mg/l) and calcium (172 mg/l) 

concentrations were higher than the observed concentrations (242.44 mg/l and 

171.76 mg/l, respectively. The observed potassium (124.92 mg/l) and 

magnesium (52.27 mg/l) concentrations were less than the model predicted 

values (121 mg/l and 53 mg/l, respectively). Similarly, the predicted anions 

concentrations such as chlorine (147 mg/l), sulphate (82 mg/l) and silicate 
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(48mg/l) ions were less than the observed values (147.72 mg/l, 82.14 mg/l and 

48.69 mg/l), while predicted phosphate (4 mg/l), hydrogen bicarbonate (12 

mg/l) and nitrate (44 mg/l) concentrations were higher than the observed 

concentration (3.97 mg/l, 10.91 mg/l and 42.83 mg/l, respectively). This 

satisfied the objective that assessed the model‘s ability in predicting 

groundwater chemical parameters of the study regions using easily measured 

parameters. 

From the regression analysis, model determinants such as R
2
 were > 95 

percent, demonstrating that the model could be used to predict the 

groundwater chemical parameters based on the easily measured parameters at 

a very high accuracy. DTR and polynomial algorithms could be used to 

predict groundwater chemical parameters with high accuracy using easily 

measured parameters for each of the regions. 

Based on the RMSE, the model performance for sulphate and calcium 

ions was the best, followed by chloride, magnesium, phosphate and hydrogen 

bicarbonate ions. The model performed poorly for chloride ions compared to 

the other ions. In general, the model had RMSE of 1.690, showing the model‘s 

ability to forecast groundwater quality parameters with great accuracy and 

precision. 

The difference between the observed (242.44 mg/l) and predicted 

sodium concentration by Visual Minteq (241.85 mg/l) and Wateq4F (241.85 

mg/l) compared to Phreeq C (331.05 mg/l) and ML model (244.00 mg/l) was 

minimal. There was a significant difference between the predicted calcium 

(172.00 mg/l), magnesium (53.00 mg/l), chloride (147.00 mg/l), sulphate 

(82.00 mg/l) and silicate ion (48.00 mg/l) concentrations by ML model and 
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observed values (242.44 mg/l, 52.27 mg/l, 147.72 mg/l, 82.14 mg/l, 48.69 

mg/l, respectively) compare to that of Visual Minteq, Phreeq C and Wateq4F. 

ML model had the best predictive accuracy compared to Visual 

Minteq, Phreeq C, and Wateq4F, with the lowest RMSE of 1.69, the highest 

R
2
 value of 0.999, and a perfect d-statistic of 1.00. Western Region had the 

highest WQI at 111.56, followed by Greater Accra (94.75) and Central (87.32) 

Regions. 

Conclusions 

ML has a high level of accuracy and performance in predicting 

groundwater chemical parameters using easily measured parameters. Using 

ML model for predicting groundwater quality could provide a cost-effective 

and time-efficient alternative to traditional methods. 

Compared to other commonly used models like Wateq4F, Visual 

Minteq, and Phreeq C, ML model had the highest level of accuracy. This 

indicates that the ML model could be a valuable tool for predicting 

groundwater quality on a wide scale. 

ANOVA analysis showed significant differences between the observed 

and predicted groundwater chemical parameters, demonstrating that ML 

model could be used for identifying areas with potential water quality issues. 

Recommendations 

With reference to the findings of this study, the following recommendations 

are made.  

1. The study demonstrated that the supervised learning algorithm can be 

used to predict groundwater quality parameters with high accuracy 

using easily measured parameters. Artificial intelligence tools, such as 
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supervised learning as an easy, time and cost-effective way of 

modelling and predicting water quality should be encouraged in 

groundwater assessment, especially for regions with limited resources. 

2. The study found that 23% of the groundwater in the study areas failed 

to meet the WHO recommended values for excellent safe drinking 

water. This highlights the need for government and non-governmental 

organisations to work towards improving groundwater quality to 

ensure safe drinking water for the population. Moreover, the Water 

Resource Commission Act as well as policies on water and sanitation 

of groundwater ecosystems should be enforced to protect groundwater 

from anthropogenic activities that deteriorate water quality. 

3. The water quality index (WQI) of the Western Region was found to be 

the highest among the three regions studied. Government and other 

relevant stakeholders should pay more attention to this region and take 

measures to improve the groundwater quality. That is, there should be 

an adequate monitoring programme for sustaining groundwater and 

sound mining activities in the regions. Hence, sustaining groundwater 

quality in the regions is as protecting health, sustaining water supply 

systems and meeting the water demands of the population growth in 

the regions. 

4. The study used several models to predict groundwater quality and the 

machine learning model developed had the least RMSE and the highest 

prediction and performance. However, there are other machine 

learning methods such as unsupervised machine learning, therefore, 
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further research could be conducted to compare the performance of 

unsupervised in predicting groundwater quality parameters. 

Practical Implications 

The developed ML could help predict groundwater chemical parameters 

using easily measured parameters. This could help save time and cost 

compared to traditional laboratory methods. The high accuracy of the model 

could be useful in identifying areas with poor water quality, enabling targeted 

interventions to improve water quality. The model could help monitor and 

manage groundwater resources, especially in areas where water quality is a 

critical issue. 

Policy Implications 

The use of the developed Machine Learning model can inform policy 

decisions and management strategies related to groundwater resources. The 

model‘s ability to predict groundwater quality accurately and quickly can help 

in setting regulations and guidelines related to groundwater quality standards. 

The significant differences between the observed and predicted groundwater 

chemical parameters could help identify areas with poor water quality, 

informing policymakers to take necessary actions. The superior performance 

of the machine learning model compared to traditional models suggests that 

policymakers could consider adopting this model in groundwater quality 

prediction applications, providing more accurate and reliable results. 

Contribution to Knowledge 

Model performance determinants such as RMSE (1.690) and R-square 

(R-square values were > 95 percent) demonstrated that the model had high 
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performance, and could be used to predict groundwater chemical parameters 

based on easily measured parameters. 

The model predicting determinants such as accuracies (0.96) showed that 

the model could be used in predicting groundwater chemical parameters with 

high accuracy using the easily measured parameters. Moreover, the regression 

analysis showed that the model could be used to predict groundwater quality 

in an easy, cost and time-effective manner. This is held by the predictive 

model theory that groundwater quality could be assessed and predicted with 

reduced cost and time.  

Analysis of variance (ANOVA) test demonstrated that there was a 

significant difference between and among the groundwater physicochemical 

parameters (p-value < 0.05). Therefore, there are significant differences 

between and among means of the observed and predicted groundwater 

chemical parameters of the study regions. 

The machine learning model had the highest prediction and performance 

with an estimated RMSE of 1.69, followed by the Wateq4F (15.33), Visual 

Minteq (16.97) and Phreeq C (33.16). Based on the RMSE (1.690), d-statistic 

(0.791) and R
2
 (0.999) estimated, ML model has the potential to predict 

groundwater quality with high accuracy compared to Visual Minteq, Phreeq C 

and Wateq4F.  

Suggestions for Future Research 

 This study employed a supervised learning algorithm (SLA) such as 

DTR and PR approaches to predict the groundwater quality of the study 

regions (Central, Greater Accra and Western). However, groundwater 

pollution is not only limited to the study regions, therefore, future studies 
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should consider several regions to investigate the spatiotemporal connection 

between surface and underground water quality environment. 

Further studies can focus on elevating the geological underlying 

materials of the groundwater for proper management of the groundwater 

resources using artificial intelligence. Future studies can also assess artificial 

intelligence tools such as unsupervised learning and deep learning to 

investigate the spatiotemporal connection between surface and underground 

water quality.  
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APPENDICES 

APPENDIX A 

Table 1: Descriptive Statistics of Physical Parameters in Groundwater (Each Region) 

  Central Region Greater Accra Western  

Parameters N Mean Minimum Maximum Mean Minimum Maximum Mean Minimum Maximum 

DO 100 7.16 1.84 11.20 7.1 3.39 9.9 7.34 3.88 11.76 

Ph 100 6.88 4.80 12.40 6.61 3.4 12 6.97 4.8 10 

Temperature 100 27.34 25.60 33.60 28.51 25.9 33.6 26.36 23.6 32.6 

TH 100 156.28 13.85 372.00 192.73 16.69 300 129.75 12.85 292 

TDS 100 452.23 376.47 555.67 456.95 391.67 553.95 432.14 396.83 553.95 

Turbidity 100 7.09 2.84 13.64 8.16 2.43 11.64 9.08 2.89 14.87 

EC 100 432.31 269.45 669.73 418.26 245.86 672.56 428.96 277.38 629.28 

Na 100 232.29 35.00 675.00 244.64 23 675 249.4 43 397 

K 100 118.21 21.00 227.00 126.98 60 206 129.56 36 239 

Ca 100 160.05 42.00 284.00 185.76 93 286 169.46 52 421 

Mg 100 51.72 11.00 132.00 55.06 4 119 50.02 3 127 

SO4 100 75.09 116.00 161.00 67.25 46.4 131 98.11 54 147 

PO4 100 3.10 0.56 6.30 4.81 3.0 8.32 5.11 1 8.2 

Cl
 

100 141.97 39.00 319.00 162.66 50 586 138.52 47 586 

HCO3 100 10.74 3.50 18.00 11.94 4 22 10.04 3 16 

SiO3 100 47.59 8.00 53.00 35.78 18 83 50.71 12 103 

NO3 100 21.96 7.00 42.00 21.94 5 44 24.6 6 76 
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APPENDIX B 

Table 2: Groundwater Quality Index Estimation of Central Region  

Regions in 

Ghana 

Standard 

Values 

1/S

n 

Σ1/S

n 

K = 

1/(Σ1/Sn) 

S = 

K/Sn 

Ideal 

Values 

Predicted 

Values 

Vn/S

n 

Vn/Sn X 

100 

WnQ

n 

Na
+
 200.00 0.01 10.25 0.10 0.00 0.00 134 1.17 117.00 0.06 

K
+
 300.00 0.00 10.25 0.10 0.00 0.00 118 0.55 55.20 0.02 

Mg
2+

 50.00 0.00 10.25 0.10 0.00 0.00 50 0.39 39.33 0.01 

Ca
2+

 100.00 0.02 10.25 0.10 0.00 0.00 160 1.00 100.00 0.20 

HCO3- 10.00 0.00 10.25 0.10 0.00 0.00 14 0.71 71.20 0.03 

Cl
-
 250.00 0.01 10.25 0.10 0.00 0.00 138 1.60 160.00 0.16 

NO3
-
 50.00 0.50 10.25 0.10 0.05 0.00 27 17.50 1750.00 85.33 

SiO3
-
 100.00 0.10 10.25 0.10 0.01 0.00 55 1.40 140.00 1.37 

PO4
3-

 2.00 0.01 10.25 0.10 0.00 0.00 3 0.55 55.00 0.05 

SO4
2-

 250.00 0.02 10.25 0.10 0.00 0.00 78 0.54 54.00 0.11 

 

Σ1/Sn = 0.68 

  

0.07 

 

26.63 

  

87.32 

 

Table 3: Groundwater Quality Index Estimation of Greater Accra Regions  

Ions Standard Values 1/Sn Σ1/Sn K = 1/(Σ1/Sn) S = K/Sn Ideal Values Predicted Values Vn/Sn Vn/Sn X 100 WnQn 

Na
+ 

200.00 0.01 10.25 0.10 0.00 0.00 144 0.72 72.00 0.04 

K
+
 300.00 0.00 10.25 0.10 0.00 0.00 124 0.26 26.00 0.01 

Mg
2+

 50.00 0.00 10.25 0.10 0.00 0.00 51 0.41 41.33 0.01 

Ca
2+

 100.00 0.02 10.25 0.10 0.00 0.00 162 1.02 102.00 0.20 

HCO3- 10.00 0.00 10.25 0.10 0.00 0.00 16 0.66 66.40 0.03 

Cl
-
 250.00 0.01 10.25 0.10 0.00 0.00 65 1.62 162.00 0.16 

NO3
-
 50.00 0.50 10.25 0.10 0.05 0.00 18 19.00 1900.00 92.64 

SiO3
-
 100.00 0.10 10.25 0.10 0.01 0.00 35 1.60 160.00 1.56 

PO4
3-

 2.00 0.01 10.25 0.10 0.00 0.00 4 0.35 35.00 0.03 

SO4
2-

 250.00 0.02 10.25 0.10 0.00 0.00 66 0.36 36.00 0.07 

 
Σ1/Sn = 0.68 

  
0.07 

 

26.63 

  
94.75 
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Table 4: Groundwater Quality Index Estimation of Greater Accra Regions  

Ions Standard Values 1/Sn Σ1/Sn K = 1/(Σ1/Sn) S = K/Sn Ideal Values Predicted Values Vn/Sn Vn/Sn X 100 WnQn 

Na
+
 200.00 0.01 10.25 0.10 0.00 0.00 155 0.78 77.50 0.04 

K
+
 250.00 0.00 10.25 0.10 0.00 0.00 128 0.55 55.20 0.02 

Mg
2+

 50.00 0.00 10.25 0.10 0.00 0.00 47 0.43 42.67 0.01 

Ca
2+

 100.00 0.02 10.25 0.10 0.00 0.00 168 0.94 94.00 0.18 

HCO3- 10.00 0.00 10.25 0.10 0.00 0.00 13 0.64 64.00 0.02 

Cl
-
 250.00 0.01 10.25 0.10 0.00 0.00 138 1.68 168.00 0.16 

SO4
2-

 250.00 0.50 10.25 0.10 0.05 0.00 22 22.50 2250.00 109.71 

SiO3
-
 100.00 0.10 10.25 0.10 0.01 0.00 49 1.30 130.00 1.27 

PO4
3-

 2.00 0.01 10.25 0.10 0.00 0.00 6 0.49 49.00 0.05 

NO3
-
 50.00 0.02 10.25 0.10 0.00 0.00 98 0.44 44.00 0.09 

 

Σ1/Sn = 0.68 

  

0.07 

 

26.63 

  

111.56 
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APPENDIX C 

Table 5: ANOVA: Two-Factor Without Replication 

SUMMARY Count Sum Average Variance 

DO 3 21.6 7.2 0.0156 

PH 3 20.46 6.82 0.0351 

Temperature 3 82.21 27.40333 1.158633 

TH 3 478.76 159.5867 999.8206 

TDS 3 1341.32 447.1067 173.5704 

Turbidity 3 24.33 8.11 0.9919 

EC 3 1279.53 426.51 53.8525 

Na 3 726.33 242.11 77.9887 

K 3 374.75 124.9167 35.39863 

Ca 3 515.27 171.7567 169.207 

Mg 3 156.8 52.26667 6.574533 

SO4 3 536.43 178.81 187.6477 

PO4 3 29.92 3.70667 20.03203 

Cl 3 443.15 147.7167 170.453 

HCO3 3 32.72 10.90667 0.923333 

SiO3 3 134.08 44.69333 62.01923 

NO3 3 68.5 22.83333 2.340933 

Central Region 17 2088.16 122.8329 19481.74 

Greater Accra Regions 17 2173.14 127.8318 19734.09 

Western Region 17 2104.86 123.8153 18777.53 
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