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ABSTRACT

Canonical Correlation Analysis (CCA), which is a widely used covariance anal-

ysis method is a technique that is not fundamentally designed for multivariate

multiple time-dependent data (MMTDD) structure that could be suitably par-

titioned on two subsets of response and predictor variables. This means that

for such data problems, the conventional CCA would not yield practical results.

The literature also shows scanty work in this area. This study therefore designs

and implements grouping scheme discriminant canonical correlation analysis

(GSDCCA) for handling this problem so that the time effect is adequately cap-

tured in the computation of the correlation coefficient between the two sets of

variables. It first identifies key matrices underlying the concert and presents the

design in both theory and illustration. Using data on six weather conditions in

Ghana spanning the period 2000 to 2021, the demonstrations show that correla-

tion coefficient between heating and cooling sets of weather conditions varies at

different time points, and that the overall correlations are quite higher than that

obtained from data assumed to be time-independent. The procedure is therefore

recommended as an innovative approach for handling MMTDD.
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CHAPTER ONE

INTRODUCTION

The background includes the definitions of key concepts related to Canon-

ical Correlation Analysis (CCA) and the characteristics of the study’s illustrative

data. It provides the primary motivation for the investigation, which will later

be represented in the problem description. The study methodology and the data

problem analysis are given adequate space in this chapter because of the study’s

relevance. CCA connects two sets of variables by finding linear combinations

of variables that maximize correlation between them (Helwig, 2017; Hotelling,

1936). Helwig describes two typical uses for CCA - Data reduction and Data in-

terpretation. A restricted set of linear combinations is utilized in data reduction

to account for the co-variation between two sets of variables. Data interpreta-

tion is aided by identifying features (canonical variates) that are significant for

explaining co-variation between two sets of variables. An attempt is made to

clarify the ideas, provide evidence for their use, and talk about possible uses.

Background to the Study

One of the easiest methods for identifying commonalities among datasets

is covariance analysis. CCA is one covariance analysis approach frequently used

in statistics. It is a method used in many different fields to investigate the link

between a set of variables that make up the same dataset—a set of predictor vari-

ables, X, and a set of response variables, Y. A variety of fields have used CCA

in several applications (Samarov, 2009). Since its introduction by Hotelling

(1935), Rencher (2002) led the development of a multivariate approach with the

express goal of detecting the kinds of correlations that occur within one set of

variables as well as between two groups of variables. The goal of CCA is to

ascertain whether the criterion set of variables has an impact on the predictor

sets of variables when it is known, based on some theory (Joshua, 2016).

1
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Sharma, (1996) proposed the following four relevant situations for application

of CCA.

1. Insurance providers are looking to see if there is a correlation between the

types of insurance policies purchased and individual characteristics.

2. The availability of running water, heating and cooling conditions, kitchen

and restroom facilities, and type of housing as quality-related factors that

a health department is examining to determine if there is a correlation

between these and incidences of minor and serious illness, as well as the

number of disability days.

3. When it comes to several health-related issues including weight, stress

levels, hypertension, and anxiety, a medical researcher is interested in

whether people’s dietary and lifestyle choices have an impact on their

health.

4. A consumer goods company is curious to know if there is a correlation

between the types of products purchased and consumer personalities and

lifestyles.

Each of the aforementioned scenarios aims to establish whether there is a

connection between two specific groups of variables. The best method for find-

ing connections between two sets of data is the CCA. Meteorologists use CCA

to look at the link between response variables like minimum temperature, max-

imum temperature, and solar radiation and a few other weather-related factors

including wind, relative humidity, and precipitation. The intricacy of the data

makes it necessary to model their interaction in order to predict weather condi-

tions. Consequently, a natural framework for this kind of study is provided by

CCA (Richardson, 1981).

A growing number of research make use of CCA as a key method. In the

publications (Hair, Black, Babin, & Anderson, 2006; Rencher, 2002; Tandanai,

2
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2015; Yang, Liu, Tao, & Cheng, 2017), it is established that regression analy-

sis and CCA are two different things. Regression analysis is used to describe

relationships and to predict outcomes when both independent and dependent

variables are present. One dependent variable can be compared to a large num-

ber of independent variables using regression, and multiple regression analysis

is a necessary step in the process. Regression analysis, then, focuses on one-

to-many relationships, where as, CCA deals with multiple response variables

versus multiple predictor variables (Dattalo, 2014; Zhihua & Zhen, 2010).

Same individuals are used to assess the p variables in the first group of

variables and the q variables in the second group of variables. Given two datasets

(Joshua, 2016), CCA generates as many canonical pairs of linear combinations

as min(p, q). The objective of CCA in this part is to combine the two variables

provided by

Ui = α′
iY and Vj = β′

jX (1.1)

such that the correlation between the two linear functions Ui and Vj is maxi-

mized, where, αi = (αi1, αi2, ..., α1p)
′ and βj = (βj1, βj2, ..., βjq)

′ are the coef-

ficient vectors of Y and X, respectively. The very first step in the fundamental

principle of CCA is to find one linear combination of the response variables,

U1, and one linear combination of the predictor variables, V1 that constitute the

same dataset (Lai & Fyfe, 1998).

Given the amount of attention that CCA has received over the past few

years, it appears likely that the exploration of novel statistical modeling domains

is just getting started. Due to its significance in mathematical and statistical

analysis as well as other applications, the applicable data are those specifically

designed for multivariate multiple regression that have more or less established

names and notations (Mardia, Kent, & Bibby, 1979). Model generation and

model optimization were the two viewpoints from which (Yang, Liu, Wei, &

Tao; 2021) analyzed its theory. They have noticed that CCA has drawn a lot of

3
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interest as a potent approach for fusing multi-modal features.

Measuring the degree of the relationship between two sets of data is the

goal of CCA, like that of regression analysis. It is comparable to factor analysis

for constructing variable composites. It is also similar to discriminant analysis

in that it can generate independent dimensions with the aim of obtaining the

highest correlation between the dimensions for each set of variables. In order to

maximize the relationship between response and predictor variable sets, CCA

determines the best structure or dimensionality for each variable set (Roungu,

Matair, Sanwar & Azizur, 2013).

The CCA technique, according to the literature (Benton, Huda, Biman,

Reisinger, Zhang, & Arora, 2019), finds the maximally correlated linear projec-

tions of two random vectors. It is a basic multi-view learning strategy. When

given two input views, Y ∈ ℜdy and X ∈ ℜdx , using a cross-covariance matrix

Σ12 and covariance matrices Σ11 and Σ22, respectively, CCA finds the directions

that maximize the correlation between the two input perspectives provided by

(U∗, V ∗) = arg max
u,v

Corr (U ′Y, V ′X) (1.2)

This formulation can be expressed as a constrained optimization as it is invariant

to affine transformations of U and V given by

(U∗, V ∗) = arg max
u,v

U ′Σ12V (1.3)

under the conditions that U ′Σ11U = V ′Σ22V = 1.

Multivariate Multiple Time-dependent data (MMTDD), which is preva-

lent in many application domains, shows several attributes over time. Numer-

ous other fields make use of the data that is produced when observations are

made on a collection of units over time. Examples include, but are not limited

to, the financial sector’s asset price and volatility over time, the application of

4
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various weather conditions, the monitoring of heart or brain activity by medical

equipment, the evolution of disease as indicated by appropriate biomarkers in

epidemiology, and the nation’s growth as indicated by economic indices (Casa,

Bouveyron, Erosheva, & Menardi, 2021).

It is possible to treat each sample component as a function in this scenario

because there are often multiple regularly sampled observations available. In

contrast, longitudinal studies frequently only include a small number of obser-

vations throughout time with sparse and inconsistent measurements. A recent

study of related techniques employed in CCA has revealed that, due to the fact

that this is not always the case, there has been a growing interest in cluster-

ing methodologies that seek to describe heterogeneity among multivariate time-

dependent observed trajectories. The methods that have been covered thus far

are widely used when tracking a single attribute over an extended period of time

for a large number of individuals.

The basic structure of the MMTDD is fairly represented in the literature

(Casa et al., 2021) as (n× d× T ), where T represents the total number of time

events, d represents the total number of time-dependent variables, and n repre-

sents the total number of observations (subject count). CCA and such data may

actualy be regarded as time-independent if the effect of T is not appropriately

captured in the designed of the procedure. In order to incorporate the time ef-

fect the stated basic structure of the MMTDD could further be partitioned as

(n1 × d× t1), (n2 × d× t2), ..., (nr × d× tr) for suitably determined tr, r < T ,

such that the link between Y and X might be seasonally reflected in the average

of the CCA. In this study we demonstrate how the optimal value of r is de-

termined via multiple discriminant analysis. This procedure is what is referred

to in this study as grouping scheme discriminant CCA (GSDCCA). Thus, the

grouping scheme (GS) is an approach that is intended to incorporate the time

effect into CCA via discriminant analysis (DA) in order to effectively handle

the time-dependent multivariate data (TDMD).

5
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Canonical correlation analysis shares fundamental implementation chal-

lenges with all other multivariate approaches. The impacts of measurement

error, the categories of variables that can be used, and the varieties and transfor-

mations of those variables are all relevant to CCA (Luo, Dacheng, Yonggang,

Kotagiri, & Chao, 2015). Without considering the effects on sample size, re-

searchers are inclined to add a large number of variables in both the response

and predictor variable sets. Very tiny sample sizes will not accurately reflect the

connections, hiding any significant links. Even when practical significance is

not indicated, very large samples will frequently imply statistical significance.

A high dimensional link between two sets of variables is attempted to be re-

duced into a few pairs of canonical variables by the technique’s maximizing

component (Roungu et al., 2013).

The practical attractiveness of CCA is enhanced by the efficient and nu-

merically stable computation of canonical correlations between linear sub-spaces.

Canonical correlations are also generally unaffected by the uniform scaling of

individual patterns, since they reflect changes within a set by a subspace. Be-

cause of this, CCA-based methods are particularly well-suited for a range of

computer vision applications where variations may arise from variations in light

or duration of exposure for the photosensitive material (Arandjelovic, 2013).

CCA is a data reduction strategy since it only requires a small number

of canonical variates to indicate the relationship between two sets of variables

(Sharma, 1996). According to Jaiswal, Poonia, and Kumar (1995), this suc-

cessful multivariate technique has been widely accepted in a number of sectors,

including education, marketing, psychology, social science, political science,

ecology, and sociology-communication.

6
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Statement of the Problem

CCA appears to underline several multivariate statistical techniques. In

most of the techniques, the application of canonical correlation is only seen

in the software output. As a result of the rigorous mathematical nature of the

concept, its application is not clearly demonstrated. The structure of the data

for which results are reported in standard texts are mostly non-time dependent

in nature.

Specifically, the results of CCA on raw data, mean-corrected data, and

standardized data are not clearly distinguished. Since the approach has been

primarily theoretical, the execution of methods for data analysis has not been

explicitly stated. Although numerous models of CCA have been suggested by

various research, some conclusions are only stated in the text due to the mathe-

matical complexity of the concept and the literature on the subject lacks a sys-

tematic presentation (Yang et al., 2021). A comparative analysis of the CCA

in the literature at different times and eras reveals striking characteristics. This

problem of finding an overall purpose correlation measure is approached by a

number of research work. The literature does not, however, provide any tech-

niques for performing CCA based on grouping scheme for time-dependent data

structures.

In order to give a comprehensive and logical study of the interactions be-

tween various multivariate sets of variables that are also time series in nature,

the aim of this thesis is to describe the links between CCA and Discriminant

analysis. For effective presentation of the procedure, the fundamental approach

would be the examination of key matrices that are involved in generating canon-

ical variates, to make more explicit mathematical results that are stated in the

standard text in the context of this study. The main problem from the literature,

is identified to be an apparent lack of clarity and complexity in the presenta-

tion of applications of CCA. In spite of the numerous application and evolving

7
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extensions, statistical data still provides the need for further applications and

extensions. There appears to be scanty in the literature a procedure designed for

data that may be designed to have groupings with time-dependent (or constitute

time series) nature.

Although CCA is described in widely used statistical computing packages

and is available in many textbooks, there are certain technical and interpretive

issues that prohibit practitioners from regularly using it. Problems with comput-

ing, interpretation, statistical significance, and the handling of discrete variables

are some of these (Shafto, Degani, & Kirlik, 1997). Again, the benefits of ex-

panded CCA methods have been shown in individual research, but the use of

CCA with grouping scheme approach via discriminant analysis method is yet to

be explored.

Purpose of the Study

The main aim of this thesis is to develop grouping scheme discriminant

canonical correlation analysis method that is suitable for Time-dependent struc-

ture. Specific objectives are to:

1. provide a review of fundamental approaches to canonical correlation anal-

ysis in multivariate multiple data with time-dependent structure.

2. develop a procedure that identifies a grouping scheme for Multiple-group

discriminant analysis that yields the optimal discriminant canonical cor-

relation statistic measures.

3. use the identified optimal grouping scheme to obtain more precise canon-

ical correlations among two sets of variables with time- dependent struc-

ture.

8
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Significance of the Study

1. This thesis will provide a method for assessing the effectiveness of ex-

tension of canonical correlation analysis to Time-dependent multivariate

data structure through a modification of multiple discriminant analysis.

The study therefore provides tools for handling correlation analysis of

multivariate time series data.

2. Through the presentation of a class of mathematical tools necessary to

give a sufficient grasp of the concept, the study will present a focused and

coherent presentation of the idea of canonical analysis.

3. This work will contribute to the research information on canonical cor-

relation so that it can help in further work. The multivariate multiple

Time-dependent dataset could then be modified using the generated codes

to produce canonical variables for further use.

Justification of the Study

Research works, in general, are supposed to add to the store of knowledge,

both in theory by helping to appreciate and understand certain occurrences and

phenomena of life, and in practice, to assist in devising efficient means of ad-

dressing problems, if they exist. Consequent to the above, the justification of

this work lies in the following:

1. Most of the well-known CCA researchers have not yet explored Dis-

criminant Canonical Correlation Analysis of Time-Dependent Multivari-

ate data structure. This area if effectively studied could enhance the ap-

plication of CCA.

2. Multivariate multiple Time-dependent data structure research will add to

the repository of knowledge in canonical correlation analysis research.

9
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Definition of Terms

The following definitions of canonical correlation analysis will be used in

this thesis throughout.

Canonical variable and canonical variate

The two supplied sets Y and X that are being examined both contain the

original values or elements in their main sets, and are known as the canonical

variables. The variables that are created from the original variables as weighted

averages are known as canonical variates (Marden, 2015). The original variables

of Y are always used to create a set of Y variates, and the same is true for the

creation of a set of X variates. The collection of response variates and the set of

predictor variates can be combined linearly to create a canonical variable.

Canonical weights

These are the weights that are utilized to build the linear combination,

similar to regression coefficient. Larger weights have a greater impact on the

function, whereas negative weights denote an inverse link to original variables.

The variables, assuming they have weights with distinct signs, exhibit an inverse

relationship. If and only if the weights have the same signs, the variables have a

direct link (Marden, 2015; Nail, 2002).

However, there are issues with how the results should be interpreted, par-

ticularly when the weights are unstable because of multi-collinearity. It may be

assigned a small weight or even no weight because the variance in that partic-

ular variable has already been explained by the other components. Weights are

unable to accurately convey the significance of a variable in this context (Mar-

den, 2015, Tandanai, 2015). Another problem with CCA is the variability of

canonical weights from one sample to the next.
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Canonical structures or loadings

The relationship between each variable and its variate in two groups with

different variables is referred to as canonical loading (canonical structure). Its

result is evaluated similar to principal component analysis. Using the correla-

tions of each variable (Tandanai, 2015), it is possible to compute each variable’s

contribution to its own canonical variate. It measures the correlation between

the variables and the corresponding canonical variates, as well as the variance

that one variable contributes to the variance of another.

Canonical cross-loadings

This is the connection between every response variable that has been ob-

served and a canonical variate. It gauges the degree to which the initial response

variable and the predictor canonical variate are correlated. It offers a more accu-

rate method for calculating the correlation between the response variables and

the predictor variables (Marden, 2015).

Dependent variables set

The dependent (response) variables set covers p variables given by Y =

(Y1, Y2, . . . , Yp). The equation Ui = α′
iY is the linear combination for the ith

canonical variate in the set of response variables Y. In the illustrative dataset, the

response variable set is the monthly data on maximum temperature, minimum

temperature, and solar radiation. Thus, Y = (Y1, Y2, Y3) with 264 observations.

Hence, the set of response canonical variates is given by U = AY, where

A =


α11 α12 α13

α21 α22 α23

α31 α32 α33


Independent variables set

The independent (predictor) variables covers q variables given by X =

(X1, X2, . . . , Xq). The jth linear combination of canonical variates of the pre-
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dictor variables set given by Vj = β′
jX. In the illustrative dataset, the predictor

variables set is the monthly data on weather conditions which are precipitation,

wind, and relative humidity. Thus, X = (X1, X2, X3) with 264 observations.

Hence, the set of predictor canonical variates is given by V = BX, where

B =


β11 β12 β13

β21 β22 β23

β31 β32 β33



Components of canonical correlation functions

CCA helps to estimate possible association among different variables, Y

in the dependent set with variables, X in the independent set as shown in Figure

1. The figure gives the canonical loadings (CL), proportions of variance ex-

plained (PVE), canonical correlation coefficients (CCC), and the percentage of

eigenvalues (EV) for both sets (Joshua, 2016).

Figure 1: Structural Equation showing Components of CCA Functions

The number of canonical correlation functions (CCF) that can be extracted is

equal to the number of components in the smaller set of canonical variate (Dat-

talo, 2014; Joshua, 2016).
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Canonical Correlation Analysis Assumptions

The key presumptions for canonical correlation analysis (Priya, 2018) are

as follows:

1. Just like multivariate regression analysis, CCA requires a sizable sample

size to produce a trustworthy model.

2. Multicollinearity among one or more variable groups prevents the use of

CCA. That is, none of the variables should have correlations close to 1.

3. The Gaussian distribution or multivariate normality of the variables in

the population from which the sample was taken should be one of the

fundamentals of CCA.

Checklists for Canonical Correlation Analysis Assumptions

The assumption that the variable distributions in the population from which

the sample was taken are multivariate normal forms the basis of the tests for the

significance of the canonical correlations. The following checklists (Tabach-

nick, 1989) guide the execution of CCA:

Check for missing data

When screening the data for outliers, attention should be given to patterns

of missing numbers. When a row has missing values, the computer ignores

it. The analysis should be skipped in order to collect data on the remaining

variables if it appears that one or two variables account for the majority of the

missing values (Priya, 2018).

Check for multivariate normality and outliers

Strong normality assumptions are not made by CCA. Outliers, like in all

least squares methods, can pose major issues. The numerous univariate nor-

mality tests and graphs should be utilized to thoroughly examine the data for

outliers (Priya, 2018).
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Check for linearity

The CCA makes a claim that the factors are related to one another linearly.

The scatter plots should be examined for each set of variables, giving particular

attention to any curved or peculiar patterns. Analysis will be less helpful when

there are curved relationships (Priya, 2018).

Check for multicollinearity and singularity

Since the analysis requires inverse matrices, multicollinearity must be ex-

amined. Multicollinearity occurs when one variable approaches a weighted av-

erage of the others. The exactness of this relationship is known as singularity.

Separate Principal Components Analysis could be conducted on each set of vari-

ables. Eigenvalues at or close to zero indicate multicollinearity issues, hence the

problematic variables could be removed (Priya, 2018).

Eigenvalues and eigenvectors of canonical factorization

The Eigenvalue eigenvector equation is given as follows if λ is a scalar, v

is a vector that is not equal to zero, and A is a (p × p) square matrix.

Av = λv (1.4)

The eigenvalue and eigenvector of the matrix A are λ and v, respectively, ac-

cording to Equation (1.4). (Magnus, 2019; Rencher, 2002; Gentle, 2017). Other

names for eigenvalue include a latent root (λ), a characteristic value (C), or a

suitable value. Equation (1.4) can now be written (A − λI) v = 0 to determine

λ and v.

If |A − λI| ̸= 0, then there is only one solution, which is v = 0. Consequently,

(A − λI) has an inverse. To determine non-trivial solution, we consider the

characteristic equation |A − λI| = 0.

The characteristic equation has p roots, as λ1, λ2, ..., λp. It is possible that

not all of the λ’s will be unique or non-zero. It is important to point out the
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following lemmas as the idea will be useful in Chapter 3.

1. If and only if C and D are two given matrices, then the matrices CD and

DC have the same eigenvalues.

2. Let C and D be two matrices, where D is positive definite and suppose

that the problem maxv(v′Cv) is given subject to the constraint: v′Dv = 1.

When v is the eigenvector of D−1C corresponding to the largest eigen-

value, then the maximum is reached (Coleman and Hardin, 2013; Mag-

nus, 2019).

Singular value and singular value decomposition

Singular value decomposition (SVD) aims to transform a dataset with

many values into a dataset with significantly fewer values but with a signifi-

cant amount of the variability that exists in the original data. Because of its

uniqueness, the SVD is among the most important and useful decomposition in

all of matrix theory and applications. The equation shows a factorization of the

S = UXV′ (1.5)

(p × p) matrix S, where X is a (p × m) diagonal matrix with non-negative com-

ponents, U is a (p × p) orthogonal matrix, and V is a (m× m) orthogonal matrix

(Gentle, 2017; Magnus, 2019). All other entries in a (p × m) diagonal matrix

are zero, and its diagonal has min(p,m) components. The SVD or canonical

singular value factorization of S is the resolution of Equation (1.5). The singu-

lar values of S are the components along the diagonal of X, that is xi (Gentle,

2017). If we rearrange the items in X such that x1 ≥ x2 ≥ ... ≥ xmin(p,m),

nothing changes when we do the same with the columns of U.

Spectral Decomposition of Symmetric Matrices

The concept of the spectral decomposition of symmetric matrices (SDSM)

is used widely, as will be seen throughout the course of the investigation. We
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state the SDSM as follows before introducing additional ideas that will be help-

ful in the methodology (Magnus, 2019; Nizamettin, Abasiyanik, Ersan, & Barik,

2006):

Theorem 1.1

Assume that the matrix A ∈ ℜp×p is symmetric. Then, A = PDP′ is the

product of a diagonal matrix D ∈ ℜp×p and an orthogonal matrix P ∈ ℜp×p.

The eigenvalues of A are represented by the diagonal entries of D, while the

corresponding eigenvectors are represented by the columns of P:

D = diag(λ1, λ2, ..., λp); P = [P(1),P(2), ...,P(p), ]; AP(i) = λP(i), i = 1, 2, ..., p

By definition, P′ = P−1 is satisfied by an orthogonal matrix P, indicating that

the columns P are orthonormal. The Spectral Decomposition of A is given by

the formula A = PDP′ of a symmetric matrix in terms of its eigenvalues and

eigenvectors (Magnus, 2019).

Some important related matrices

In this study I shall rely very much on certain properties of the variance-

covariance matrix (C) to establish functional relationship among groups of vari-

ables. One important such property is the diagonalisability of the matrix. An-

other property is a matrix that has similarity with another matrix (G). I will point

out the relevance of having two matrices to be similar. There are important con-

sequences for these two stated properties. In this section, I will discuss these

properties and their consequences. Since a diagonalisable matrix must neces-

sarily be similar to another matrix, I will first introduce similar matrices.

Similarity of matrices

If there is a non-singular matrix S ∈ Mp such that G = S−1CS, then

a matrix C ∈ Mp is said to be comparable to G ∈ Mp. The transformation

C − S−1CS is called a similarity transformation (Magnus, 2019), and we write
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C−G. Quite obviously, similarity is an equivalence relation. By this definition,

we subsequently state the property of similar matrices in Theorem 1.2.

Theorem 1.2

Similar matrices have the same characteristic polynomial. This is because from

the definition above, since G = S−1CS, then considering the difference G− λI,

we should have

G − λI = S−1CS − λI = S−1CS − λS−1IS = S−1 (C − λI)S

It follows that

det (G − λI) = det
(
S−1 (C − λI)S

)
= det

(
S−1
)
det (C − λI) det (S)

= det (C − λI)

Thus, C and G have the same characteristic polynomial. Consequently, they

should also have the same eigenvalues. Again, since

det (G) = det
(
S−1CS

)
= det

(
S−1
)
det (C) det (S) = det (C)

similar matrices have the same determinant. It also follows that tr(G) = tr(C).

Diagonalisability of a Matrix

Diagonal matrices provide the easiest forms of matrix analysis. In this

thesis, diagonalising the variance-covariance matrix will provide additional in-

formation about the analysis of variance (ANOVA) (Magnus, 2019; Nail, 2002).

Definition:

A matrix C ∈ Mp is diagonalisable if C is similar to a diagonal matrix. It
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should therefore be able to demonstrate that the characteristic equation of the

matrix C and the matching diagonal matrix are the same, in accordance with the

specification given above. Before proving this relation, some results should first

be noted. Now let C ∈ Mp be non-singular and D ∈ Mp, a diagonal matrix.

The above definition means that C = QDQ−1. Let the columns of Q being

v1, v2, ..., vp. Then

Cvi = QDQ−1vi = QDei = λiDei = λivi

where the ith standard vector is ei, and the ith diagonal element of D is λi (Mag-

nus, 2019; Nail, 2002).

Cauchy-Schwarz Inequality

The Cauchy-Schwarz Inequality is useful for restricting difficult-to-calculate

expected values. It enables us to divide E[X1, X2] into two pieces, one for each

random variable, to create an upper bound (Mukhopadhyay, 2000). This essen-

tially means that the product of the expected squares of the two random vari-

ables, E(Y 2)E(X2), will always be less than or equal to the expected value of

the product for Y and X, E(Y X)2. Supposing s and t are any two (p × 1) vec-

tors, then the Cauchy-Schwarz inequality (Mukhopadhyay, 2000; Nelsen, 1994;

Schwarz, 1888; Win & Wu, 2000) is given by

(s′t)2 ≤ (s′s)(t′t) (1.6)

and equality is attained if and only if s = ct for some arbitrary constant c.

The difficulty with CCA has been introduced, and the purpose of the study

has been explained, in this chapter. It is determined that the presentation of CCA

obviously lacks both clarity and simplicity. The difficulty is attributed to the
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technique’s mathematical complexity and the absence of clear instructions for

using it in the standard texts. Within the constraints provided, the application

will concentrate on applying CCA in the examination of multivariate linear re-

lationships. The important matrices that may be helpful in CCA are anticipated

and introduced in this work. In this chapter, the characteristics of these matrices

have been covered in some detail.

The various extensions made for CCA though quite many do not cover

data with all structures that are common. Some of these structures that equally

requires attention are those that are multivariate multiple in nature with time-

component. Datasets which are time- dependent in nature offers another type of

multivariate multiple data for which CCA could be extended. Review is made of

relevant application techniques involved with CCA such as singular value and

singular value decomposition.

Another useful technique identified is the Cauchy-Schwarz Inequality-

which is helpful for limiting difficult-to-calculate predicted product of two vari-

ables. The eigenvalues and eigenvectors of canonical factorization have been

mentioned together with covariance matrices and vectors in CCA.

Organization of the Study

This thesis will consist of the following five chapters: The First Chap-

ter is introduction. This chapter highlights the framework, problem statement,

investigation’s purpose, research questions, significance, rationale, and study or-

ganization. The intellectual underpinnings and other writers’ perspectives will

be considered in Chapter Two, Review of Related Literature, where the study’s

theoretical framework and conceptual framework will be emphasized. Chapter

Three will be concerned with the method and procedure that will be adopted in

carrying out the study. It discusses the procedures used to get the data, the theo-

retical underpinnings of the statistical methods employed in the study, and some
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techniques utilized to manage the data. The implementation of the procedure

to data and the discussion are presented in Chapter Four. The summary of the

entire results, conclusion and suggestions for effective data modeling decisions

as well as for related studies will be presented in Chapter Five.
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CHAPTER TWO

LITERATURE REVIEW

Introduction

To determine the usage of canonical correlation analysis (CCA), a thor-

ough evaluation of pertinent literature is carried out. I begin by outlining the

notations that will be used throughout this thesis. The literature on recommen-

dation systems and other kinds of CCA are then briefly reviewed. A survey is

made of the prior extensions and uses of CCA in the recommendation systems

fields of research and present an overview of some essential CCA approaches as

background for the suggested algorithms.

Theoretical Framework of Similar Studies of CCA

Nayir & Saridas (2022) found a link between culturally sensitive teach-

ing responsibilities and creative job behavior. Their goal was to ascertain, from

teachers’ perspectives, the relationship between creative work practices and cul-

turally sensitive teaching obligations. The first canonical function is computed

to maximize the correlation between datasets on innovative work behavior and

roles of culturally responsive teachers. Their preliminary research indicates that

there is approximately 77% difference between data sets on innovative work

behavior and roles of culturally sensitive teachers. The results of the CCA

also showed a positive relationship between the variables of generating and

implementing ideas and finding supporters for ideas in the dataset of innova-

tive work behavior, as well as between the variables of the culturally mediating

teacher and the culturally regulating teacher in the dataset of culturally respon-

sive teacher roles. (Nayir & Saridas, 2022).

According to Samarov (2009), the process of finding chemicals with po-

tentially significant biological action is known as drug discovery. The issue was
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that there were too many substances to look through, often in the millions, mak-

ing experimental testing unfeasible. Therefore, substances that did not show a

lot of biological activity were filtered out using computational techniques. This

virtual screening process, also known as filtering, narrows the search field so that

the remaining compounds can undergo experimental testing. Samarov (2009)

offered a solution to the issue of virtual screening using CCA and a number of

enhancements that made use of spectral and kernel learning concepts. These

techniques were specifically used to address the protein-ligand matching issue.

The behavior of CCA in the High Dimension Low Sample Size scenario was

further investigated using the results of the theoretical study.

Roungu, Matair, Sanwar and Azizur (2013) presented CCA - an applica-

tion to bank performance and client happiness. To determine the association,

they used five consumer satisfaction indicators as their predictor variables and

four bank performance indicators as their response variables. The findings of

three trials demonstrated that the earning per share (0.7146) and branch count

(0.6704) had a substantial impact on the coefficient of customer satisfaction vari-

ables. Additionally, they observed that bank performance variables liability had

a stronger correlation with canonical performance variables (r = 0.7849). To-

tal asset was one of the variables that had a less influence overall (r = 0.5916).

The degree of Branch (r = 0.7181) and earning per share (r = 0.6291) were

the most significant variables in terms of their customer satisfaction variables,

proving the significance of all four examined variables. Additionally, the re-

search of Roungu et al. (2013) focuses on assessing bank performance based

on client satisfaction with CCA. The main causes of customers’ dissatisfaction

with banks are their high loan interest rates, inadequate deposit interest rates,

and expensive preservation costs, despite the fact that banks firmly believe they

are committed to meeting their customers’ needs and becoming their first choice

for banking. Since the indicators of bank performance and customer satisfaction

are highly correlated, CCA is qualified to analyze this using its techniques and
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provide insightful commentary on the choice of variables and overall correla-

tion. Roungu et al. (2013) only took into account private banks in their analysis

that contributed to the stock market.

Shafto, Asaf and Kirlik (1997) investigated the problems associated with

the interpretation, management, computation, and statistical significance of dis-

crete variables and proposed viable solutions. They argued that a range of

datasets used in human factors research, including field study data, data from

part- and full-mission simulations, and data from flight recorders, should be

used with CCA. In order to identify the issues and suggest answers, Shafto et

al. (1997) used canonical correlation expertise to analyze a field study of crew-

automation interaction in commercial aircraft. The study encompasses views

from the cockpit of crew members interacting with the Boeing 757 / 767 air-

craft’s autonomous flight control system while on commercial flights operated

by a prominent American airline. Each data record included a number of vari-

ables that described the circumstances of the change in mode selection as well

as the change itself. Over 1500 records, each of which was distinguished by

75 different factors, made up the initial dataset used in the CCA analysis. The

context or scenario accounted for around half of the variables, and the crew’s re-

sponse—that is, their selection of an autoflight mode configuration—accounted

for the other half.

To gain a deeper understanding of the temporal fluctuations and cou-

pling dynamics between the two time-varying sources, (Xuefei, Jun, Sandst-

edea, & Luoc, 2019) created the Time-Dependent CCA. From multilevel time

series data, time-dependent canonical vectors can be extracted using the Time-

dependent CCA technique. It was strongly suggested to use CCA, a method

for generating linear projections in multivariate data analysis that improve the

correlation between two sets of variables. Whilst using time series data, serial

correlations between observations are usually ignored while calculating corre-

lations. They suggested a convex formulation of the issue that makes use of
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the singular value decomposition (SVD) characteristics that are present in all

answers to the CCA problem. They tested the proposed approach using sim-

ulated datasets. To examine how aging affects brain connections, they used it

on a real resting state functional magnetic resonance imaging dataset. As a fur-

ther method for assessing the dynamic pattern of brain connections, they also

created a novel metric called canonical correlation variation. Additionally, Xue-

fei et al. (2019) looked into the temporal dynamics induced by various motor

activities using their suggested strategy in a task-related functional magnetic

resonance imaging. They showed that the Time-dependent CCA-based strategy

outperforms previous techniques in both feature extraction and temporal varia-

tion detection.

Discriminative multiple CCA was introduced by (Lei-Gao, Lin-Qi, &

Ling-Guan, 2021) for the analysis and synthesis of multimodal data. They dis-

covered that it could extract more distinct features from multimodal informa-

tion representations. They deliberately chose projected trajectories that boosted

within-class correlation and minimized between-class correlation in order to

maximize the use of the multimodal data. Lei-Gao et al. (2021) analytically

proved that the optimally projected dimension via Discriminative multiple CCA

could be rather precisely anticipated during this process, resulting in improved

performance and a significant decrease in computational cost. By drawing the

conclusion that CCA, multiple CCA, and discriminative CCA are particular ex-

amples of Discriminative multiple CCA, they created a unified structure for

CCA. To demonstrate how well the Discriminative multiple CCA prototype

could identify human emotions and handwritten numbers, they used it. Nu-

merous tests revealed that multiple discriminative CCA performed better than

conventional techniques such as discriminative CCA, discriminative canonical

analysis with multiple canonical correlations, and serial fusion.

Akour, Rahamneh, Kurdi, Alhamad, Al-Makhariz, Alshurideh, & Al-Hawary

(2023) examined student performance in Jordan’s in-person and virtual learning
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environments using the CCA Method. By identifying the linear combinations

of the two sets of data with the highest correlation, their research aims to deter-

mine the current correlations between the two sets of variables. The Al-Balqa

Applied University researchers used the canonical correlation test to assess how

strongly the degrees of in-person and online business education among their

participants related to one another. For the objectives of analysis and result ex-

traction, Akour et al. (2023) applied their study to a sample of students from

Al-Balqa Applied University, specifically the faculty of Business. At the alpha

level of significance, the findings of the Akour et al. (2023) study demonstrate

that the canonical correlations of all three roots are statistically significant. For

roots 1, 2, and 3, the response variables and the predictor variables have the first,

second, and third canonical correlations of 0.98, 0.965, and 0.907, respectively.

The canonical variables for the response and predictor account for 93.24, 4.7,

and 2.047 percent of the variance, respectively. The study recommends assess-

ing Jordan’s experience with online learning at colleges and other institutions

using the canonical correlation.

Benton, Khayrallah, Biman, Reisinger, Sheng, & Raman (2019)’s method

for learning nonlinear transformations from arbitrary numbers of data views

made sure that the resulting transformations were as mutually informative as

feasible. While there are techniques for both linear many-view representation

learning generalized the CCA and nonlinear two view representation learning.

They demonstrated how Deep Generalize CCA blends nonlinear deep represen-

tation learning’s adaptability with statistics’ capacity to take into account data

from many sources, or viewpoints. Both the Deep Generalize CCA formula-

tion and a powerful stochastic optimization technique were described. They

studied and evaluated Deep Generalize CCA representations for three down-

stream tasks: recommending hashtags, indicating acquaintances from a dataset

of Twitter users, and phonetic transcription using auditory and articulatory mea-

surements. Benton et al. (2019) presented Deep Generalize CCA, a non-linear
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multiview representation learning method from any number of views. By em-

ploying several views, they demonstrated that Deep Generalize CCA could learn

Twitter user representations important for subsequent tasks, such as hashtag sug-

gestion, and they outperformed earlier work in phoneme recognition when us-

ing labels as a third view. Until now, CCA-style multiview learning approaches

have only been able to learn representations from a maximum of two views or

to transform the input views strictly linearly.

Chacko (1986) discovered that a linear combination of variables from each

of the two sets of variables is required to maximize the correlation between the

two sets of data. The six interest groups—realistic, investigative, artistic, social,

enterprising, and conventional—were combined to form his response variables.

Additionally, the correlation between the Introversion or Extroversion Scores

and the Academic Comfort Score was additionally looked at. His study indi-

cates that 52.36% of the variation in the response variables can be replicated on

average by the predictor variables for the first function. Typically, the predictor

variables might account for 20.32% of the variation in the response variables for

the second function. For the response variables, the first and second functions,

respectively, can only reconstruct averages of 26.13% and 8.95% of their vari-

ance. When the variables in the set were predicted by every variable in the other

set, the average multiple correlation for the variables in the set equals the pooled

redundancy coefficients for the variables that were supplied. His response and

predictor variables’ pooled redundancy coefficients were, respectively, 72.67%

and 35.08% (Chacko, 1986).

In addition to presenting a tutorial on CCA, (Hardoon, Szedmak, & Shawe-

Talyor, 2004) developed a revolutionary universal method for obtaining pictures

based only on their content. Then, this is used for retrieval that is mate-based and

content-based. The generalized vector space model was not as accurate for pic-

ture retrieval, according to experiments. They illustrated how the ideal a priori

regularization parameter k for various regimes might be selected. They there-
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fore concluded that Kernel CCA is an effective method for image retrieval via

content. Future tests by Hardoon et al. (2004) will include additional data sets.

They could see that as the CCA process is generalized, the initial issue might be

modified and reframed as a total distance issue or a variance minimization issue.

To explain the structure of some specific spaces generated by more appropriate

various kernels, more research into this special duality between the correlation

and the distance is needed. When dealing with kernel space problems where

the coordinates are unknown but the inner products and separations between the

points are known, these methods can provide tools. For some issues, it is ad-

equate to know the coordinates of a small number of specific locations, which

can be stated using the inner product that is already known.

Likewise remarkable is the work of Akbas & Takma (2005). They found

links between egg weight, sexual maturity age, and body weight and egg produc-

tion. They planned their research to look at the connections between two groups

of nesting hen-related factors. Their response variables were the number of eggs

at three different dates; their predictor variables for CCA were the age at sexual

maturity (ASM ), body weight (BW ), and egg weight (EW ). They demon-

strated a strong canonical link between the first and second sets of canonical

variates. The age of sexual maturity, as opposed to body weight and egg weight,

had the most influence on variation in the number of eggs produced at three dis-

tinct times (EN1, EN2, and EN3) when using canonical weights and loadings

with CCC, according to Akbas & Takma (2005). Only two pairs of canonical

variables were considered since the canonical correlations between the first and

second pair of canonical variables were determined to be significant. For the

first pair of canonical variates, the estimated canonical correlation was 0.81, for

the second pair, it was 0.152, and for the third pair, it was 0.024. Akbas and

Takma (2005) noted that there were strong relationships between (ASM , BW ,

and EW ) and the first set of canonical variates (EN1, EN2, and EN3). The

outcomes of their study demonstrated that the standardized coefficients’ signs
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appropriately represented the impacts of ASM , BW , and EW on EN1, EN2,

and EN3. Additionally, the effects of ASM and BW on the amount of eggs

produced at three distinct periods in comparison to EW were also accurately

portrayed.

The work of Kabir1, Merrill, Shamim, Klemn, Labrique, Parul, Keith,

and Nasser1 (2014) merits attention as well. Five birth size measures and ten

maternal features serving as predictor variables and response variables, respec-

tively, were compared using CCA. These researchers employed 14506 women

who gave birth to singletons in a double-masked, cluster-randomized, placebo-

controlled study of prenatal vitamin A or B-carotene supplementation in rural

Bangladesh. With a value of 0.42 and a p-value less than 0.001, their investi-

gation’s initial Canonical Correlation Function showed a significant interaction

between infant sex and premature delivery on birth size. Following the CCA,

the Kabirl et al. (2014) study’s multivariate analysis of variance showed a sig-

nificant interaction impact on birth size between infant sex and early delivery.

Male and female term newborns were larger than male and female preterm and

term kids. Their research led to the discovery of this type of interaction impact

on birth size in a large body of literature. The strong relationship between an

infant’s birth weight and maternal variables was investigated using CCA. The

maternal characteristics that affected or did not affect infant size at delivery, as

identified by CCA, were consistent with the literature’s documentation of these

kinds of correlations.

To test the viability of their proposed strategy, Lei-Gao et al. (2021)

conducted information fusion experiments using the Ryerson Multimedia Lab

(RML) and eNTERFACE (eNT) audiovisual databases, respectively. Users can

access these through the RML database, which illustrates the six main emo-

tions—disgust, fear, surprise, anger, sadness, and happiness—with video clips

featuring eight people speaking in six different languages. The video was recorded

at 30 frames per second, while the audio was sampled at 22,050 Hz. The facial
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region had an average dimension of about 112 x 96, and the image frames were

720 x 480 in size. Each of the six main emotions was captured on camera by

43 people in the eNT database at sampling rates of 25 frames per second for the

video and 48,000 Hz for the audio channel. The facial region had an average

size of around 260 x 300 over the 720 × 576 photo frames in the experiment,

which used 456 audio samples from ten participants and eight patients from the

eNT database and the RML database, respectively. For training and testing, they

divided the two audio samples into subsets with 360 and 96 samples, respec-

tively. Prosodic and Formant Frequency characteristics were initially evaluated

as a standard for emotion recognition (Lei-Gao et al., 2021). The percentage of

successfully identified samples to all testing samples was used to determine the

recognition accuracy.

Arandjelovic (2013) addressed the issue of matching vector collections

that were present in the same input space. He offered a strategy that was based

on CCA, a statistical method that has been effective in tackling a number of pat-

tern recognition issues. His CCA extension searches for the variability patterns

that are most comparable between the two sets when matching sets. His first

major contribution was the development of a sound framework for accurately

inferring such modes from data in the environment of uncertainty caused by

noise and sampling. Arandjelovic (2013) claimed that the extended CCA lacked

free parameters that could not be found solely by data, despite maintaining the

efficiency and closed form keywords of the CCA. His second major contribution

is that he showed that extended CCA can match sets in a discriminative learning

framework more easily than CCA. We then conducted an empirical evaluation

of the theoretical work he had done on the problem of face detection from sets

of rasterized appearance photographs. The results demonstrated that his method

(Extended CCA) already outperformed CCA and its quasi-discriminative equiv-

alent, limited CCA, for all values of their free parameters.

Convolutional neural networks have lately drawn more interest in the ma-
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chine learning and computer vision fields as a result of the work of (Bernardo &

Eulanda, 2017), enhancing the performance of a number of related applications.

They disclosed that only a limited number of the most recent deep learning

network architectures—principal component analysis network, CCA network,

and linear discriminant analysis network, among others—have been suggested

for the classification of objects and faces. They continued by saying that these

architecture solutions had proven to be highly effective, had a straightforward

implementation, and allowed for quick prototyping of effective picture catego-

rization applications. The filters used in these methods, however, might not be

able to extract highly discriminative features in increasingly difficult computer

vision problems. Bernardo and Eulanda (2017) created a network of discrimi-

native canonical correlations called the discriminative canonical correlation net-

work, which employs filters created from the analysis of discriminative canon-

ical correlations to yield more discriminative information. By learning filters

from discriminative canonical correlation, they claim, the network will develop

discriminative properties and generate more accurate and discriminative data.

They established the value of discriminative canonical correlation Network with

tests on four datasets.

Sisi, Hanyu, Wang, Zhou, & Shaochun (2020) looked into the connection

between Yangtze River water quality and marine development. The Yangtze

River’s aquatic ecosystem and shipping data were assessed using CCA from

2006 to 2016. Using data from the shipping prosperity index and mainline

freight traffic, they looked at the development of Yangtze River shipping. When

evaluating the aquatic environment of the Yangtze River, researchers also took

into account petroleum contamination, biochemical oxygen demand, waste wa-

ter discharge, ammonia nitrogen concentration, and the potassium permanganate

index. According to their investigations, the volume of mainline freight had a

big impact on how much wastewater was produced and how much gasoline was

polluting the water. They were also conscious of the interdependence between
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the aquatic environment and shipping on the river.

Hou, Heng, & Quansen (2018) provided a description of the sparse reg-

ularized discriminative CCA for multi-view semi-supervised learning. By in-

corporating label information from their primary samples, the traditional unsu-

pervised CCA strategy for learning multi-view data representation has recently

been turned into supervised methods. Their research showed that the need for a

lot of labeled samples makes it difficult to deploy supervised CCA versions in

practice. To extract the most discriminative information from the fewest practi-

cable labeled samples, they proposed a unique sparse regularized discriminative

CCA technique that maximizes the use of the label information. By creating

sparse weighted matrices from different viewpoints and extracting fused multi-

view features that were not only the most correlated but also contained the es-

sential discriminative structure information, they were able to incorporate the

structure information into the original CCA framework. To assess their method,

both the handwriting dataset and the face dataset were employed. They eventu-

ally understood that its utility and superiority were demonstrated by experimen-

tal results and assessments of it against other pertinent algorithms.

By analyzing Discriminative Multiple CCA, (Lei-Gao et al., 2021) pro-

posed a novel technique for efficient information fusion. Their usage of the

provided algorithm to show that discriminating representation works best when

the number of projected dimensions is fewer than or equal to the number of

classes (c) in the fused space is the most significant addition to their work. The

significance of the contribution lies in the fact that the discriminative represen-

tations can be derived without computing the complete transformation process

by computing only the first c projected dimensions of the discriminative model.

When handling complex issues, the capability is especially appealing. Addi-

tionally, they used mathematics to show that the suggested Discriminative Mul-

tiple CCA, which unifies correlation-based information fusion methods, was a

special case of the CCA, Multi-modal CCA, and Discriminant CCA. The pre-
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sented technique solves the multi-feature and multi-modal information fusion

challenges by recognizing handwritten numerals and human emotions. The re-

sults of the experiments showed that by using effective practical pattern recogni-

tion, the suggested technique enhances recognition performance with a notably

reduced dimensionality of the feature space.

With respect to a number of model spaces, Chao, Zongning, Zhao, and

Zhou (2015) established rate-optimal non-asymptotic minimax estimation. Their

literature did not offer many theoretical counterarguments for them. In high-

dimensional situations, they thought about the issue of estimating the top canon-

ical correlation directions. For many applications requiring massive amounts of

data, many high-dimensional techniques have been proposed, based on the sup-

position that the primary canonical correlation routes are sparse. They used an

enlarged sin-theta theorem and an empirical process limit for Gaussian quadratic

forms with rank restrictions to create the minimax upper bounds and find two

unexpected events.

Multimodal recognition happens, in accordance with study by (Tingkai,

Songcan, Jingyu, Xuelei, & Pengfei, 2009), when the non-robustness of uni-

modal recognition is noticed in real-world circumstances. For them, a potent

method for multimodal recognition is feature fusion via CCA. But since paired

samples are necessary for CCA, there are a number of unexpected reasons why

this requirement might not be easily satisfied. They added that the class infor-

mation in the sample data is not fully utilized by CCA. Due to these restric-

tions, CCA is unable to extract more distinguishing features for recognition.

To address these issues, a brand-new multimodal identification technique called

Discriminative CCA with Missing Samples is created. It incorporates class in-

formation into the CCA framework for recognition. In order to reduce calcula-

tion time and space, discriminative CCA with missing samples can accept miss-

ing samples without having to artificially make up for them. Their test results

showed that discriminative CCA with missing samples outperformed compara-
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ble multimodal recognition methods and that the amount of missing data had

little impact on how accurately discriminative CCA with missing samples rec-

ognized objects.

Langworthy (2020) showed that the robust correlation estimator yields

consistent and asymptotically normal CCA estimates. Next, an accurate cor-

relation estimator based on modifications to Kendall’s tau rank correlation co-

efficient was used to extend CCA. Additionally, he described a bootstrap-based

testing method for locating instructive canonical routes. His simulations demon-

strated that for data from skewed and heavy-tailed distributions, this robust es-

timator outperforms traditional CCA. Using Diffusion Tensor Imaging and in-

formation on brain white matter structure, he used this method to show a con-

nection between lateralization of white matter brain structure and higher EF

test scores in six-year-old children. In the multivariate survival context, when

failure time data could be appropriately suppressed, he then defined Principal

Component Analysis. he covariance and correlation matrices were predicted to

exist for the counting processes denoted by the corresponding martingales and

failure times.

To get principal direction estimates, Langworthy (2020) used eigen de-

composition of these covariance and correlation matrix estimations. These es-

timations were asymptotically normal and consistent. He used this approach

to analyze data from a pancreatic cancer clinical trial and was able to identify

groups of adverse events that were medically significant. He finally extended ro-

bust CCA to this environment when there were more than two sets of variables

and at least one of those sets was high-dimensional. He applied changes to

Kendall’s tau to produce the same reliable correlation estimate. He also applied

cross-validation to the testing and dimension reduction processes. It was discov-

ered that this cross-validation testing technique was dependable when the data

came from a heavy-tailed elliptical distribution, in contrast to traditional tech-

niques. Langworthy (2020) expanded his analysis of Diffusion Tensor Imaging
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and EF data to include brain gray matter volume data from 88 distinct brain re-

gions in order to more thoroughly examine the association between brain struc-

ture and EF test outcomes.

Extensions of Canonical Correlation Analysis

Various extensions have been so far made to the basic formulations of

CCA according to the work of (Yang, Liu, Wei, & Tao, 2021). Those extensions

are outlined in Table 1 together with the author and year of first mentioned.

Table 1: Some Categorical Extensions of Canonical Correlation

Category of Extension Name of Author(s) Year
Multi-View CCA Vinograde 1950
Deep CCA Asoh & Takechi 1994
Kernel CCA Lai & Fyfe 2000
Regularization of CCA Hardoon, Szedmak & Shawe-Talyor 2004
Probabilistic CCA Bach & Jordan 2005
Discriminative CCA Kim, Kittler & Cipolla 2006
Sparse CCA Parkhmenko, Tritchler & Beyene 2007
Locality Preserving CCA Sun & Chen 2007
Repeated CCA of KPM Srivastava & Dayanand 2008
Tensor CCA Luo, Dacheng, Yonggang, Kotagiri & Chao 2015
Source:Yang et al. (2021)

According to Yang et al. (2021), recent developments in data gathering

and statistical analysis support the application of CCA in advanced research.

The CCA decomposition, which maximizes the correlation between pairwise

variables in the shared subspace, is the main technique for reducing the dimen-

sionality of two-set data. Several CCA models have been put forth over the

course of eighty years of development using various machine learning tech-

niques. The field, however, lacks a comprehensive analysis of the most recent

innovations. Their survey had as its goal to offer a comprehensive overview of

canonical correlation analysis and its extensions. First, they looked explicitly

at model construction and model optimization from the perspective of the CCA
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theory. Yang et al. (2021) introduced Eigen Value Decomposition (EVD) and

Singular Value Decomposition (SVD), two commonly utilized solution tech-

niques. There was also a taxonomy of current advances. It was classified into

seven categories: Deep CCA, Probabilistic CCA, Kernel CCA, Locality pre-

serving CCA, Multi-view CCA, Sparse CCA, and Discriminative CCA. They

also presented two or three typical mathematical models for each group and

talked about their advantages and disadvantages. They compiled the data sets

and open-sources for use after providing explanations of the representative uses

and quantitative findings of those seven groups in actual scenarios. Further, they

provided a number of interesting new study directions that might help progress

the current state of the art.

Yoshida, Junichiro, & Kenji (2017) suggested using sparse kernel CCA

for high-dimensional data to find nonlinear relationships. They claim that as

high-throughput technologies in genomics, transcriptomics, and metabolomics

have advanced, there has been a rise in the need for bioinformatics tools that

can integrate highly dimensional data from various sources. They found that

feature selection and the recording of multiple canonical components were not

possible with previous CCA extensions, including kernel CCA, which were

used to record nonlinear connections. To choose the proper kernels within the

context of multiple kernel learning, they created a novel technique known as

Two-stage kernel CCA. They discovered that the Two-stage kernel CCA of the

multiple kernel learning framework had initially selected the pertinent kernels.

Weights were then established using non-negative matrix decomposition and L1

regularization. They showed that Two-stage kernel CCA could identify many,

nonlinear correlations among high-dimensional data and multiplicative interac-

tions between components using fictitious datasets and real nutrigenomic data.

They also discovered that Two-stage kernel CCA, as opposed to earlier nonlin-

ear CCA approaches, could more precisely find nonlinear connections among

high-dimensional data.
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Vinograde (1950) was the first to investigate multi-view CCA, but his ap-

proach fell short of the second desired attribute. Steel (1951) created a system of

complex equations. He used compound matrices to locate multi-group canonical

solutions, but in actuality, his problems were quite challenging. The generalized

CCA was first presented by (Horst, 1961). He created an iterative method for

detecting canonical variates and applied it to several groups before discovering

the method’s convergence property in 1963, but the outcomes were unsatisfac-

tory. The pairwise correlations of several points of view were evaluated using

two formulations in the same year: the maximum variance (MAXVAR) and the

total sum correlation (SUMCOR). His thesis focuses on two generalizations of

CCA that have been published in the literature: sum of square correlations (SS-

COR). From an optimization perspective, the SUMCOR issue formulation is

noteworthy in and of itself because it also occurs in other circumstances. He

originally introduced a novel, provably convergent strategy based on an iter-

ative method for addressing multivariate eigenvalue problems in order to find

non-linear higher order patterns.

Rupnik (2016) investigated a variety of the generalizations. SUMCOR

is generally shown to be NP-hard, and then showed how to reformulate it into

a computationally feasible Semi Denite Programming (SDP) issue. He devel-

oped various computationally workable bounds on global optimality based on

the reformulation, which go in addition to the locally optimal solutions. Rupnik

(2016) developed a novel preprocessing step to address large-scale SDP diffi-

culties that arise from an application to cross-lingual text analysis. He looked

into how to use his techniques on real datasets that had missing data. Due to

the unique nature of the missing data in the topic under consideration, the SS-

COR optimization problem, which was subsequently compressed to a manage-

able eigenvalue problem, is implicated. Then he showed how to develop cross-

linguistic similarity models using the algorithms, and he utilized the models to
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do cross-linguistic cluster linking. Using news streams in many languages, a

real-time global analysis was conducted using the cross-lingual cluster linking

method.

Kettenring (1971) outlined five extensions of the traditional Two-group

CCA theory. In these extensions, many models were created employing the

cross-correlation with a wide range of methodologies. To exploit the significant

nonlinear link between two sets of variables and produce a range of combina-

tion techniques, CCA was coupled with deep networks (Asoh & Takechi, 1994;

Lai & Fyfe, 1998; Lai & Fyfe, 1999; Hsieh, 2000; Andrew, Arora, Bilmes &

Livescu, 2013; Yang et al., 2017). In order to describe the nonlinear mappings

for CCA, Asoh and Takechi developed the first combination in 1994 using two

multilayer perceptrons. Three feed-forward neural networks were combined

by Hsieh to create the non-linear CCA, which non-linearly generalizes CCA

(Hsieh, 2000).

Ignacio, Sebastien, Pascal, & Alain (2008) developed the exploratory sta-

tistical technique known as CCA to identify correlations between two data sets

that were gathered on the same experimental units. The calculations are done us-

ing R’s cancor () function, but more work was needed to provide the researcher

access to other tools that would make it easier to analyze the data. They created

numerical and graphical data and provided the researcher with the capacity to

manage missing values using the free CCA R package from the Comprehensive

R Archive Network. To handle data sets with more variables, their package ad-

ditionally includes a regularized form of CCA. Examples are provided through

the examination of a data collection from a mouse nutrigenomic study (Ignacio

et al., 2008).

Locality Preserving CCA was developed by Sun & Chen (2007) to reduce

the overall non-linear complexity of data while preserving its local linear struc-

ture. They found that when the sample size is large, calculating the distances

between neighbors takes time. After suggesting Least Squares based CCA, they
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noticed that their results were essentially identical to MAXVAR results. The

output layers were to have the maximum linear correlation possible. Andrew

et al. (2013) constructed a back propagation deep model, added the nonlinear

component, and adjusted the network weights. In order to train two-view fil-

ters, (Yang et al., 2017) developed a network that applies CCA to each layer

of a stacked convolutional network. The label information is crucial to them in

terms of classification issues.

In order to effectively utilize the discriminant information, (Sun, Chen,

Yang, & Shi, 2008) introduced discriminant CCA by taking into consideration

the intra-class and inter-class similarities of different perspectives. As an al-

ternative to discriminant CCA, they introduced Multi-view linear discriminant

analysis, which merged CCA with linear discriminant analysis. Deep canon-

ical correlation auto-encoders was first introduced by (Wang, Guan, & Venet-

sanopoulos, 2015). Deep neural network models of deep canonical correlation

auto-encoders, however, are difficult to comprehend and need a lot of data to fit.

Benton et al. (2019) developed the Deep neural network-based Deep General-

ized CCA, which was a non-linear expansion of MAXVAR generalized CCA.

They looked at the labels’ one-hot encoding matrix as an additional viewpoint

to make use of the classifier information. As a result, this dissertation offers an

overview of numerous representative CCA techniques.

Yang et al. (2021) presented two or more exemplary mathematical models

for each set of analyses, highlighting both their advantages and disadvantages.

They talked about the relationship between two widely used CCA solution tech-

niques, such as, Singular value decomposition techniques and Eigen-value de-

composition methods. Bach & Jordan (2005) presented the first probabilistic

explanation of CCA, which was a latent variable model for two Gaussian ran-

dom vectors. Similar to the probabilistic justification for principal component

analysis, they offered a probabilistic reading of CCA. Additionally, they con-

sidered Fisher linear discriminant analysis to be a CCA between vectors that
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had the required definitions. Their interpretation advances our understanding

of CCA as a model-based approach and facilitates the incorporation of CCA

models into more comprehensive probabilistic models. Following (Yang et al.,

2021), the use of CCA and its extension increased. This demonstrates how es-

sential CCA has become as a tool for today’s rising tide of scholars.

Tensor CCA was first suggested by (Luo, Dacheng, Yonggang, Kotagiri,

& Chao Xu, 2015) for multi-view dimension reduction. They demonstrated

how it is possible to directly maximize the correlation of many points of view by

looking at the high-order covariance tensor and developed Tensor CCA, a simple

modification of CCA that can handle data from any number of points of view.

Directly maximizing the canonical correlation of various perspectives is the goal

of Tensor CCA. Most importantly, they showed how to solve the multi-view

canonical correlation maximization problem by rapidly obtaining the optimal

rank-one approximation of the data covariance tensor using the widely-known

alternating least squares method. The high order correlation data found in the

various viewpoints was analyzed by Luo et al. (2015) in an effort to identify a

more precise common subspace shared by all features. A non-linear extension of

Tensor CCA was proposed as a result of their research. Experiments on a range

of challenging tasks, including the annotation of web photos, the prediction of

large-scale biometric structures, and the classification of online advertisements,

proved the validity of their proposed methodology.

Witten, Tibshrani, and Trevor-Hastie (2009) proposed the penalized ma-

trix decomposition, a state-of-the-art technique for calculating a matrix’s rank-

K. The formula they arrived at was X̄ =
∑K

k=1 dkukv′
k. In this equation, the

squared Frobenius norm of X - X̄ is minimized by uk, vk, and dk. The singular

value decomposition is regularized as a result. It would be interesting to look

into how the L1 - penalties on uk and vk lead to a sparse vector decomposition of

X. They showed how to construct a method for sparse main components where

L1 - penalty is given to vk but not to uk when applying the penalized matrix de-
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composition. In fact, their findings offer a helpful method for the ”SCoTLASS”

technique that has been recommended for obtaining sparse main components.

OThis approach is shown in a set of publicly accessible gene expression data.

Witten et al. (2009) discovered parallels between the penalized CCA method

generated by the penalized matrix decomposition applied to a cross-products

matrix and the SCoTLASS sparse principal component analysis approach. To

implement their penalized CCA approach, they used both simulated data and a

genomic data collection consisting of assessments of gene expression and DNA

copy number on the same set of samples.

Coleman and Hardin (2013) investigated the multivariate CCA approach.

They carefully described how CCA identifies the most highly correlated linear

combinations of variables from two datasets and examined the mathematics that

supports it. They followed by comparing the performance of CCA with clean

multivariate normal data and with contaminated data to show how contamina-

tion inhibits CCA from accurately capturing the structure of the population co-

variance matrices. After that, M-estimation was added to the sample covariance

matrices, which was successful for large observation values but unsuccessful for

observation values close to the total number of variables. To solve this problem

and enhance interpret-ability, they looked at Sparse CCA, as it was defined by

(Parkhomenko et al., 2007). They found that the results from extending Sparse

CCA to produce multiple sparse canonical vectors and including robust esti-

mate in the sample covariance matrices performed better than the results from

robust CCA. They next examined PITCHf/x variables and traditional statistics’

coefficients of linear combinations while using robust Sparse CCA to analyze

baseball data.

Golugula, Lee, Master, Feldman, Tomaszewski, Speicher, and Anant (2011)

introduced the Supervised Regularized CCA , a unique data fusion approach

that, in contrast to CCA and Regularized CCA, may fuse with a feature selec-

tion scheme and is computationally affordable. They gave examples of how
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multi-scale, multi-modal imaging and non-imaging data can be statistically in-

tegrated and depicted using Supervised Regularized CCA. They created a com-

bination quantitative histologic-proteomic classifier utilizing Supervised Regu-

larized CCA in order to identify individuals with prostate cancer who are most

likely to experience a 5-year biochemical recurrence after surgery.

According to Golugula et al. (2011), Supervised Regularized CCA is sta-

tistically significantly faster than Regularized CCA and can perform regular-

ization as well as identify patients at risk of biochemical recurrence more accu-

rately than principal component analysis, CCA, or Regularized CCA. It can also

create a meta-space with samples that is more stratified than the meta-space cre-

ated by CCA or Regularized CCA. Although the fused prognostic classifier they

developed for their research to predict biochemical recurrence appears promis-

ing, they also identified certain disadvantages such as: They only examined 19

datasets since, as was already mentioned, mass spectrometry is rather expen-

sive. They were able to ascertain that their fused Supervised Regularized CCA

classifier would yield an accuracy of 93%, or more than 95% of the time, if

their dataset were expanded to 56 studies. This was done by applying a minimal

sample size derivation model.

In the future, Golugula et al. (2011) planned to assess their classifier on

a cohort like this. The classifier should have been trained and evaluated using

a randomized cross validation technique, ideally. Unfortunately, the size of the

cohort also placed a limit on this. Although their research employed both para-

metric and non-parametric feature selection techniques, the use of parametric

selection techniques would be feasible with Supervised Regularized CCA and

a bigger dataset for classification, given that the underlying distribution could

be calculated. For datasets with less sample sizes, a non-parametric feature se-

lection method may be more appropriate. In the context of various application

domains and problem domains, they will use supervised regularized CCA to

new imaging and non-imaging datasets in their upcoming work.
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Hwang, Jung, & Takane (2011) suggest that functional CCA should be

extended to examine more than two sets of functional data. Their technique,

which is a regularized variant of multiple-set CCA, uses a roughness penalty as

a regularization term for each set of functional data. The recommended strat-

egy was successful in identifying the brain regions that were engaged during a

successful fMRI investigation on verbal working memory. Using their method,

(Hwang et al., 2011) were able to create canonical variates of signal changes

over scans that were distinct to each experimental condition. The neural net-

works that were commonly active during the experiment across different people

were identified by the object evaluations of the voxels produced by integrating

these canonical variates.

Conversely, the working memory trial settings could not be accurately

matched to the canonical variates generated by traditional multiple-set CCA.

According to this perspective, multiple-set CCA might have shown a correla-

tion between several sets of BOLD signal changes that come from sources of

brain activity apart from the study conditions. The results of multiple-set CCA

are therefore unlikely to be worth interpreting from substantive perspectives. To

enhance its data-analytic capabilities and application, (Hwang et al., 2011) may

further develop and expand their suggested method. For more in-depth inves-

tigations, they can include linear limitations in their suggested method. In this

case, the suggested methodology was used to examine the initial data before

employing a design matrix to assess the results while accounting for the experi-

mental conditions. But at the start of the research, they may categorize a design

matrix like that as linear restrictions and divide the data according to it. Their

suggested approach is only applicable to the data made available by the design

matrix at the following stage. This could result in a solution that is more suited

to the specifics of the experiment.

A method for Non-parametric CCA, was proposed by (Tomer, Weiran &

Karen, 2016). For them, CCA is a traditional method of representation learning
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for identifying linked variables in multi-view data. There have been several non-

linear extensions of the original linear CCA put forth, such as deep neural net-

work and kernel techniques. These algorithms search for optimally correlated

projections among user-defined families of functions. They are computationally

intensive. It is interesting to note that Lancaster had already investigated the

theory of nonlinear CCA in a population environment in the 1950s, but his find-

ings did not lead to the development of useful algorithms. To create a workable

method for Non-parametric CCA, (Tomer et al., 2016) went back to Lancaster’s

theory.

Specifically, Tomer et al. (2016) showed that the reaction can be expressed

through the use of the singular value decomposition of a particular operator as-

sociated with the joint density of the views. As a result, Non-parametric CCA

was reduced to solving an eigenvalue problem by inferring the population den-

sity from the data. While this seems on the surface to be similar to kernel CCA,

it differs significantly in that no kernel matrices need to be inverted. Accord-

ing to Tomer et al. (2016), one of the views experienced a linear projection,

while the other was non-parametric in a partially linear CCA variation. Their

non-parametric, partially linear CCA algorithms outperformed kernel CCA and

comparable to deep CCA, which employed a kernel density estimate derived

from a sparse sample of nearest neighbors.

Tomer et al. (2016) were memory-efficient, frequently ran significantly

quicker, and performed better than kernel CCA. They provided closed-form

solutions to the Non-parametric CCA and partially linear CCA problems and

demonstrated how the Singular value decomposition of a kernel defined by the

point-wise mutual information between the views might yield the best non-

parametric projections. This results in a straightforward technique that, for mod-

erately sized data sets, beats Kernel CCA and matches deep CCA in terms of

performance on many datasets while being more computationally economical

than both.
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Canonical correlation analysis was employed by Cankaya, Balkaya, &

Karaagac (2011) to evaluate the associations between Plant Characteristics and

Yield Components of fifty-six red pepper populations that were gathered from

the Black Sea region of Turkey’s Samsun area. The researchers determined that

each of the canonical correlation coefficients (0.708, 0.635, and 0.413) between

the canonical variable pairings was significant at (P < 0.01). As compared

to other Yield Components, the results of their canonical correlation research

showed that the number of fruits per plant had the greatest explanatory power

of the canonical variables estimated from their dependent variables of 56 red

pepper populations. When compared to other characters, Fruit Length and Plant

Height made the largest contributions to the explanatory power of canonical fac-

tors generated from their independent variables. Their study’s findings suggest

that in order to maximize output per plant in red pepper genotypes, one should

take advantage of plant height, fruit width, and fruit wall thickness.

Using CCA, Combes (2008) demonstrated the relationships between sen-

sory and physicochemical indices in the meat of rabbits raised using three dif-

ferent breeding techniques. He claims that a range of physicochemical measure-

ments were performed on meat from rabbits raised in accordance with a stan-

dard (STAND), high quality norm (LABEL), or low growth breeding (RUSSE)

system. These measurements included weight of retail cuts, color parameters,

ultimate pH, femur flexure test, Warner-Bratzler shear test, water holding ca-

pacities, and cooking losses. The meat on the rabbit’s back and leg looked the

best to him. Leg pain was significantly reduced by the rank order of STAND

> LABEL > RUSSE. Combes (2008) found that there were substantial corre-

lations (R(2) = 0.73 and 0.68 between the two first pairs of canonical variates)

between sensory and physicochemical variables in CCA. Specifically, a link was

observed between sensory discomfort and the WB shear test variables that were

recorded on raw longissimus muscle (LL). There was a correlation between the

fibrous characteristic in the rear and cooking loss in LL. When evaluated inde-
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pendently, only the RUSSE rabbits displayed the same connections between the

variables as those found for the total dataset.

One of the main issues with high-dimensional data analysis in the real

world is how to extract relevant and meaningful characteristics from multi-view

data (Ankita & Pradipta, 2023). The multi-set CCA is a well-known statistical

method for combining data from several perspectives. It finds a linear sub-

space that strengthens the relationships between different points of view. They

demonstrated how the computationally expensive nature of the existing meth-

ods for identifying the multi-set canonical variables limits the usefulness of the

multi-set CCA in real-world huge data research. Owing to the limited sample

size, there is a chance that the covariance matrices of every high-dimensional

viewpoint will encounter the singularity problem. Furthermore, many of the

currently in use multi-set CCA-based feature extraction techniques are unsuper-

vised (Ankita & Pradipta, 2023).

To them, how to extract essential and pertinent features from high-dimensional

data in real-world applications is one of the key challenges. In light of this, a

brand-new supervised feature extraction approach is put forth that combines

multimodal, multidimensional data sets by resolving the multi-set CCA’s max-

imal correlation problem. To make determining the canonical variables of the

multi-set CCA less computationally complex, a new block matrix form is pre-

sented by (Ankita & Pradipta, 2023). The supervised ridge regression optimiza-

tion technique can effectively compute the multi-set canonical variables than to

the analytical formulation. It solves the ”curse of dimensionality” issue brought

on by high-dimensional data and makes it possible to generate pertinent features

sequentially at a substantially lower cost. The effectiveness of the suggested

multi-block data integration technique is illustrated on several real and bench-

mark cancer data sets, and a comparison with other currently employed methods

is provided (Ankita & Pradipta, 2023).

Recently, with the introduction of pertinent computer software, this tech-
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nique’s utilization began to increase. However, certain studies in the fields of

animal science and even poultry science (Akbas & Takma, 2005; Jaiswal et al.,

1995) utilised CCA. Finding a linear combination of each pair of variables that

maximizes the correlation between the two functions is the goal of CCA, ac-

cording to Glahn (1967). He pointed out that this analysis is equal to multiple

regression in some circumstances while DA is equivalent in other techniques.

He suggested a generalized correlation coefficient, explained how his formulae

for canonical variate prediction work, and gave an example of CCA. He also

examined the relationships between these techniques. Srivastava & Dayanand

(2008) used generalized CCA to look at the correlations between two groups of

frequently or longitudinally seen data and a block Kronecker product matrix to

illustrate the dependence of their chosen variables across time. They used their

linked matrix to derive canonical correlations and canonical variates from their

data.

Review of Discriminant Analysis in Multivariate Statistics

From the work of Shelley (2007), we use a method known as discriminant

analysis (DA) to evaluate the available data when the response variable is cate-

gorical and the predictor variable is of an interval type. A response variable is

divided into different categories when it is referred to as a categorical variable.

One of the three dummy variables, Dummy Variables 1, 2, or 3, as an example,

can serve as the category answer variable. In essence, a discriminant function is

a linear collection of predictor variables that accurately differentiates between

the response variable categories. Creating discriminant functions is the aim of

the DA method. We can use this opportunity to look for significant differences in

the predictor variables between the groups. It also evaluates the classification’s

accuracy (Shelley, 2007). The amount of categories the response variables have

is how DA is defined. Since statistics holds that all propositions are true until
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infinity, the type used in this case is Two-group DA when the dependent variable

has two categories. When the dependent variable has three or more categories,

Multiple-group DA is utilized (Shelley, 2007). The fact that just one discrimi-

nant function can be generated for a Two-group distinguishes the different types

of DA significantly from one another. Nevertheless, a multitude of discriminant

functions can be computed using Multiple-group DA (Rencher, 2002).

Multivariate procedures called discrimination and classification are used

to separate different groups of things and assign new objects to existing cat-

egories. Classification is the process of identifying and classifying objects or

ideas into designated groups. Classification can also be defined as the process

of grouping information based on similarities. It is a list of how frequently a

variable has specific scores or ranges of scores. In data management, data can

be divided and arranged in accordance with predetermined criteria for a vari-

ety of professional or individual objectives. Classification is used in predictive

modeling with machine learning to give input data with a class label. An email

security software, for instance, might use natural language processing to cate-

gorize emails as ’spam’ or ’not spam’ based on their content (Rencher, 2002;

Shelley, 2007).

The DA process is largely exploratory. Insofar as they produce well de-

fined criteria that may be used to fresh item assignment, classification tech-

niques are less exploratory than other processes. Discrimination typically calls

for less problem structure than classification does (Johnson & Wichern, 2007).

First developed by Fisher (1936), linear discriminant analysis is one of the most

widely used discriminant analysis methods.

Relationships with CCA and Discriminant Analysis Techniques

The relationship between discriminant analysis and CCA is covered in

Chapter 3. Additionally discussed in that chapter are some benefits of CCA
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over discriminant analysis when dealing with numerous groups. Discriminant

analysis is essential for statistical pattern identification. According to (Samarov,

2009)’s research, there are many difficulties that could be related to the prob-

lem of classifying a set of observations into various groups. Finding any logical

groupings in the data is the goal when categorizing or clustering because the

categories are unknown. Data classification is frequently done using linear dis-

criminant analysis (Duda, Hart, & Stork, 2000; Fisher, 1936). This section pro-

vides an overview of linear discriminant analysis and illustrates how it applies

to CCA.

Chapter Summary

The body of work demonstrates how thorough the idea of canonical corre-

lation analysis has been researched. A few research delved into great detail, and

publications also included data analytic applications. In addition to the subject’s

concentration on mathematics, it is clear that many authors have used a variety

of strategies in dealing with the canonical correlation analysis and discrimi-

nant analysis techniques. In numerous presentations, key matrices have been

stated without any justification. There are some research that appear to have

derived the key matrices but with obvious disconnections. The diverse methods

frequently result in misconceptions about the concept of canonical correlation

analysis. This chapter has discussed a few extensions and applications of dis-

criminant analysis and canonical correlation analysis. A number of canonical

correlation analysis applications, such as the relationship between discriminant

canonical correlation analysis and canonical correlation analysis, have been re-

viewed.

The literature makes it abundantly evident that little research has been

done on the use of CCA in multivariate time-dependent data. Thus, this area

still remains grey for further exploration.
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CHAPTER THREE

RESEARCH METHODS

Introduction

This chapter looks at the primary technique this thesis employed and

delves deeply into the main strategies it employed to arrive at its conclusions.

Review of data notation for numerous multivariate multiple time-dependent

variables are considered. Reviewing the broad key matrices as well as the funda-

mental prerequisites and presumptions for using the matrices are also pertinent.

This chapter provides some multivariate multiple discriminant analysis methods

for selecting a reasonable model, along with CCA methods for these models. All

the formulae used in this thesis are thoroughly discussed in this chapter.

Research Design and Source of Data

This thesis is designed as both data-based and technique-based type of

study. Secondary data is used for the modeling and analysis. The monthly types

of weather conditions data which span from 2000 to 2021 with sample size of

n, equals Two hundred and sixty-four (264) months was collected from Ghana

Meteorological Agency (G.Met) through the Department of Geography, Univer-

sity of Cape Coast. This analysis’ primary goal is to generate ideas of grouping

scheme multiple discriminant canonical correlation analysis (GSMDCCA) and

the CCA general results from the given software outputs to know to what extent

is the response variables influenced by the predictor variables and what are those

measures that should be taken based on the results obtained. The necessary data

is empirically analyzed using Matlab, Minitab and IBM SPSS Statistical Soft-

wares in addition to manual calculations. The Latex software is used to generate

the entire work.
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Descriptions of the link between the given weather conditions

The response variables set covers 3 variables given by Y = (Y1, Y2, Y3),

where Y1 denotes maximum temperature, Y2 is the minimum temperature, and

Y3 is the solar radiation, with 264 observations. Similarly, the predictor variables

covers 3 variables given by X = (X1, X2, X3), where X1 is the precipitation,

X2 is the wind, and X3 denotes relative humidity, also with 264 observations.

I must completely explain the relationship between the response variables

and the predictor variables using the specified weather conditions from the lit-

erature in order to obtain the answers to the structural equations for each of the

three roots that are displayed in Figure 1 of Chapter One. As shown in the liter-

ature, temperature is directly proportional to the global solar radiation and dew

point also relates directly to the temperatures. This means that decrease in so-

lar radiation decreases the temperatures and increase in solar radiation leads to

an increase in temperatures (Knappenberger, 1993; Mehdi, 2020; Richardson,

1981). The solar radiation, minimum temperature and maximum temperature

are known as the heating variables whereas, the precipitation, wind and relative

humidity in the atmosphere are known as the cooling variables (UGC, 2022).

The average precipitation will rise as a result of low evaporation as heat-

ing variables at the surface of the planet fall or become lower. It follows that, the

climate becomes cool which leads to an increase precipitation in several places.

Similarly, if the heating variables become high or increase, the climate becomes

very warm which is expected to decrease precipitation in several places (Knap-

penberger, 1993; Mehdi, 2020; Richardson, 1981).

Relative humidity in the atmosphere has an inverse relationship with heat-

ing variables. If the heating variables become very low or decrease it will lead

to an increase in relative humidity, thus the air becomes wet. Also if the heating

variables increase, the air becomes dry, which follows that the relative humidity

will decrease (Knappenberger, 1993; Mehdi, 2020; Richardson, 1981).
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Principles and Analytical Approach of Canonical Correlation Analysis

Given two interrelated random vectors Y = (Y1, Y2, ..., Yp)
′ and

X = (X1, X2, ..., Xq)
′, assume, for convenience, that p ≤ q. The number of

variables in each set of variables, p ≤ q, is used to determine the random vectors.

The combined covariance matrix is produced by using the enhanced random

vectors. Let E(Y) = µy and E(X) = µx be their respective expectations.

The resulting combined (Johnson & Wichern, 2007; Mazuruse, 2014) random

vector, Z, and its mean vector, µ are, respectively, given as

Z =


Y

· · ·

X

 and µ =


E(Y)

· · · · · ·

E(X)


The combined covariance matrix (Σ) for the enhanced random vector is

Σ = E(Z − µ)(Z − µ)′

=

[
E(Y − µy)(Y − µy)

′ E(Y − µy)(X − µx)
′

E(X − µx)(Y − µy)
′ E(X − µx)(X − µx)

′

]

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
(3.1)

where (Ronald, 2011) D(Y ) = Cov(Y, Y ) = E(Y − µy)(Y − µy)
′ = Σ11 is

a (p × p) and D(X) = Cov(X,X) = E(X − µx)(X − µx)
′ = Σ22 is a (q

× q) sample covariance matrices for variable sets Y and X, respectively, and

Cov(Y,X) = E(Y − µy)(X − µx)
′ = Σ12 = Σ′

21 is a sample matrix of the

cross-covariance between Y and X. Thus, Σ is a block matrix, where Σ11 and

Σ22 stand for the respective within-sets covariance matrices and Σ12 = Σ′
21 is

the between-sets covariance matrix. The notations used follow the convention

in the literature (e.g; Borga, 2001; Ignacio et al., 2008; Ronald, 2011; Zhou, Lu,
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& Cheung, 2017).

Constructions of canonical variables

The CCA aims to express any potential correlation structure between the

first set of variables (Y) and the second set of variables (X) in terms of a few

linear combinations, α′
iY and β′

jX, respectively. Suppose two datasets are given,

then CCA produces canonical pairs of linear combinations as many as min(p, q).

The two linear combinations are presented as follows: Both the linear combina-

tion U and the linear combination V are obtained from the first set of variables,

Y, and the second set of variables, X, respectively (Carroll, 2006). Let αi and

βj be the canonical coefficient vectors for a fixed number of i = 1, 2,..., p and j

= 1, 2,..., q. Then, Ui = α′
iY and Vj = β′

jX are the two linear combinations of

Y and X, respectively. Consequently, the linear combinations for variance and

covariance matrices of CCA variates are given by the following equations.

V ar(Ui) = α′
iΣ11αi, V ar(Vj) = β′

jΣ22βj , and V ar(Ui, Vj) = α′
iΣ12βj .

The coefficient vectors αi and βj are obtained (Mazuruse, 2014; Reiter, 2010)

such that

Cov(α′
iY, Vj) = Cov(Ui, β

′
jX) = 0

V ar(α′
iY, Ui) = V ar(β′

jX, Vj) = 1

Using Σ11, Σ22, and Σ12 as inputs (Amit & Sharmishtha, 1998), the fundamental

goal of CCA is to identify α and β to maximize the correlations between Ui and

Vj . The correlation between U = α′Y and V = β′X is given as

ρi = Corr(U, V )

⇒ ρi =
α′Σ12β√

α′Σ11α
√
β′Σ22β

(3.2)
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Let f = min (p, q), and i = 1, 2, . . . .., f , then the next goal of CCA is to identify

canonical variates Ui = α′Y and Vj = β′X so that the group of variables Ui and

the group of variables Vj are both uncorrelated with unit variance. It follows

that

Cov(Ui, Uj) = Cov(Vi, Vj) =


0; for i ̸= j

1; for i = j

Since ρi is the canonical correlation coefficient between Ui and Vj , for i = 1, 2,

..., f , then

Cov(Ui, Vj) = Cov(Vj, Ui) = 0; for i ̸= j

Cov(Ui, Vj) = Cov(Vj, Ui) = ρi; for i = j; i = 1, 2, ..., f.

Hence, for p = 3, we have U1, U2, U3 as canonical variates for the first set (Y)

and for q = 5, we have V1, V2, V3, V4, V5 as canonical variates for the second set

(X). Thus for p = 3 and q = 5, the correlation matrix for U′ = [U1, U2, U3] and

V′ = [V1, V2, V3, V4, V5] has the form as given in the general canonical correla-

tion matrix below (Nail, 2002; Samarov, 2009).

U1..U2..U3...V1..V2..V3..V4..V5

U1

U2

U3

V1

V2

V3

V4

V5



1 0 0 ρ1 0 0 0 0

0 1 0 0 ρ2 0 0 0

0 0 1 0 0 ρ3 0 0

ρ1 0 0 1 0 0 0 0

0 ρ2 0 0 1 0 0 0

0 0 ρ3 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1


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The variables V4 and V5 thus constitute a set VR that is uncorrelated with U and

V\VR and are therefore the redundant set in V. In order to optimize the cor-

relation between Ui and Vj , the canonical coefficient vectors α and β must be

chosen. The optimization issue can be found in Equation (3.3) for any normal-

ization of α and β (Marden, 2015, Samarov, 2009).

ρ∗i = max
α,β

α′Σ12β√
α′Σ11α

√
β′Σ22β

(3.3)

The optimization problem in Equation (3.3) can be reduced to the form

ρ∗i = max
α,β

Corr(α′Y, β′X) = α′Σ12β (3.4)

subject to the constraints: α′Σ11α = 1 and β′Σ22β = 1.

Canonical variables by Cauchy Swartz inequality

Since Σ11 and Σ22 are positive definite, Cov(U, V ) can be written as

Corr(α′Y, β′X) =
α′Σ12β√

α′Σ11α
√
β′Σ22β

(3.5)

Let Σ
1
2
11α = wy, ⇒ α = Σ

− 1
2

11 wy and Σ
1
2
22β = wx, ⇒ β = Σ

− 1
2

22 wx; where wy

and wx are new coefficient vectors. Substituting α and β into Equation (3.5)

gives

Corr(α′Y, β′X) =
w′

yΣ
− 1

2
11 Σ12Σ

− 1
2

22 wx√
w′

ywy

√
w′

xwx

(3.6)

By Cauchy Swartz inequality, we have

w′
yΣ

− 1
2

11 Σ12Σ
− 1

2
22 wx ≤

√
w′

yΣ
−1
11 Σ12Σ

−1
22 Σ21

√
w′

xwx (3.7)

If the maximum is achieved at y = e1, then a real symmetric matrix M contains

the eigenvalues λ1 ≥ λ2 ≥ ... ≥ λp and eigenvectors e1, e2, ..., ep such that
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maxy

(
y′My
y′y

)
= λ1. Thus, y′My ≤ λ1y′y and Equation (3.8) is attained.

w′
yΣ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 wy ≤ ρ∗21 w′
ywy (3.8)

In Equation (3.8) equality is attained at wy = e1 and in Equation (3.7) equality

holds if wx = Σ
− 1

2
22 Σ12Σ

− 1
2

11 e1.

That is; Σ
1
2
11α = wy = e1, ⇒ α = Σ

− 1
2

11 e1 and β = Σ−1
22 Σ12Σ

− 1
2

11 e1 Equation

(3.8), therefore, gives

max
α,β

Corr(α′Y, β′X) ≤

√
ρ∗21 w′

ywy

w′
ywy

=
√

ρ∗21 = ρ∗1

Hence ρ∗i = α′Σ12β as required.

Computations of Canonical Variates and Canonical Correlations

Given linear combinations of the original variables, Y and X are utilized

to determine all canonical pairs of variables.

The first canonical pair of variables

If the first canonical variate pair is (U1, V1), where the two linear combi-

nations, U1 and V1 are given by U1 = α′
1Y and V1 = β′

1X, respectively, and let

the correlation between U1 and V1 be equal to ρ1 . We select the coefficients

α1 = (α11, α12, ..., α1p) and β1 = (β11, β12, ..., β1q) to maximize the canonical

correlation, given by ρ∗
1
, between the first pair of canonical variate, subject to

the constraints: V ar(U1) = V ar(V1) = 1. The required first pair of canonical

variate equations are given as

U1 = α11Y1 + α12Y2 + ...+ α1pYp

V1 = β11X1 + β12X2 + ...+ β1qXq
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The first pair of canonical variates (Marubayashi, André, Luciano, Rodrigo, &

Elias, 2014) can be written in terms of Σ11 and Σ22 as: U1 = u′
1Σ

− 1
1

11 Y and V1 =

v′
1Σ

− 1
1

22 X, where u1 is the first eigenvector of the matrix P1 = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11

and v1 is the first eigenvector of the matrix P2 = Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 (Helwig,

2017). The correlation between U1 and V1 is given by

ρ1 = Corr(U1, V1) = Corr(α′Y, β′X) =
Cov(U1, V1)√

V ar(U1)
√
V ar(V1)

(3.9)

Thus, Equation (3.10) is the maximization of the first canonical correlation co-

efficient, where Σ11 and Σ22 are positive definite matrices.

ρ∗1 = max
α,β

α′
1iΣ12β1j√

α′
1iΣ11α1i

√
β′
1jΣ22β1j

(3.10)

where ρ21 is the first eigenvalue of the matrix P1 = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 [ρ21 is

also the first eigenvalue of the matrix P2 = Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 ] (Borga, 2001;

Helwig, 2017). The first canonical correlation’s goal is to establish α11, α12, ..., α1p

and β11, β12, ..., β1q (Mazuruse, 2014; Sharma, 1996) in such a way that the

canonical correlation, ρ∗1, between U1 and V1, is at its highest.

The kth canonical pair of variables

The kth pair of canonical variates is identified such that ρ∗k is maximum.

Now,

Uk = αk1Y1 + αk2Y2 + ...+ αkpYp

Vk = βk1X1 + βk2X2 + ...+ βkqXq

where Uk and Vk are the kth pair of canonical variates for Y and X, respectively.

The kth pair of canonical variates can be written in terms of Σ11 and Σ22 as:

Uk = u′
kΣ

− 1
1

11 Y and Vk = v′
kΣ

− 1
1

22 X, where uk is the kth eigenvector of the

matrix P1 = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 and vk is the kth eigenvector of the matrix
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P2 = Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 (Helwig, 2017). The two linear combinations Uk

and Vk, both of which have unit variance and maximize the correlation among

all other possible linear combinations, make up the kth canonical correlation.

Hence, maximization of the correlation between Uk and Vk is given by Equation

(3.11), where Σ11 and Σ22 are positive definite matrices.

ρ∗k = max
α,β

α′
kiΣ12βkj√

α′
kiΣ11αki

√
β′
kjΣ22βkj

(3.11)

where ρ2k is the kth eigenvalue of the matrix P1 = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 and ρ2k is

also the kth eigenvalue of the matrix P2 = Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 (Helwig, 2017).

To identify the k sets of canonical variate pairs; (U1, V1), (U2, V2), ..., (Uk, Vk);

is the general objective of CCA (Mazuruse, 2014) such that the corresponding

canonical correlations; ρ1, ρ2, ...., ρk; are mutually maximized. The objective of

CCA is to increase the correlation between two linear combinations of the two

variables supplied by the initial canonical correlation, according to (Coleman &

Hardin, 2013; Mazuruse, 2014). Clearly, canonical correlation is a maximiza-

tion problem with restrictions.

Fundamental Approaches to Canonical Correlation Analysis

The two fundamental approaches of the concept of CCA need to be high-

lighted to identify the key matrices for its extraction. The main matrices in-

volved in the construction of the canonical variables are generated through two

fundamental approaches of the Lagrange Multiplier and the Cauchy-Schwarz

Inequality.

Lagrange multipliers approach of the canonical variables

Assume that the Lagrange multipliers ρy and ρx are connected to the

(Obben, 1992) variance-covariance matrices of Y and X, respectively. Then,
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by, the corresponding Lagrangian, we have

L (α, β, ρy, ρx) = α′Σ12β − ρy
2
(α′Σ11α− 1)− ρx

2
(β′Σ22β − 1) (3.12)

Equation (3.13) is obtained by taking a partial derivative with regard to α on

both sides of Equation (3.12), and then setting the resultant equation to zero.

∂

∂α
L (α, β, ρy, ρx) =

∂

∂α

[
α′Σ12β − ρy

2
(α′Σ11α− 1)− ρx

2
(β′Σ22β − 1)

]

Σ12β − ρyΣ11α = 0 (3.13)

Multiply both sides of Equation (3.13) by α′ yields

α′Σ12β − ρyα
′Σ11α = 0 (3.14)

Similarly, with respective to β and further simplification gives

Σ21α− ρxΣ22β = 0 (3.15)

and hence,

β′Σ21α− ρxβ
′Σ22β = 0 (3.16)

From Equations (3.16) and (3.14), we have

α′Σ12β − ρyα
′Σ11α− [β′Σ21α− ρxβ

′Σ22β] = 0

⇒ −ρyα
′Σ11α + ρxβ

′Σ22β = 0

⇒ ρx = ρy = ρ
F

Since ρx = ρy = ρ
F

, the generalized eigenvalue decomposition problem can

then be written from Equations (3.13) and (3.15) as

58

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 0 Σ12

Σ21 0


α
β

 = ρ
F

Σ11 0

0 Σ22


α
β

 (3.17)

If Σ11 and Σ22 are positive definite and invertible, then α and β can be expressed

in the following ways:

From Equation (3.13),

α =
Σ−1

11 Σ12β

ρ
F

Also from Equation (3.15),

β =
Σ−1

22 Σ21α

ρ
F

Putting β =
Σ−1

22 Σ21α

ρ
F

into Equation (3.13) and simplifying yields

Σ12Σ
−1
22 Σ21α

ρ
F

− ρ
F
Σ11α = 0

⇒ Σ−1
11 Σ12Σ

−1
22 Σ21α− ρ2

F
α = 0

⇒ Σ−1
11 Σ12Σ

−1
22 Σ21α = ρ2

F
α (3.18)

Hence the eigenvalue of the matrix, Q1 given in Equation (3.18) is λ1 = ρ2F ,

where

Q1 = Σ−1
11 Σ12Σ

−1
22 Σ21 (3.19)

Let α = Σ
− 1

2
11 e1, then from Equation (3.18), we have

Σ
− 1

2
11 Σ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 e1 = λ1Σ
− 1

2
11 e1

⇒ Σ−1
11 Σ12Σ

−1
22 Σ21

(
Σ

− 1
2

11 e1
)
= λ1

(
Σ

− 1
2

11 e1
)

Hence the first eigenvector of the matrix Q1 is Σ
− 1

2
11 e1. By expressing Equation

(3.18) as a determinant equation as

∣∣Σ−1
11 Σ12Σ

−1
22 Σ21 − λ1I

∣∣ = 0,
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then ∣∣∣Σ− 1
2

11

∣∣∣ ∣∣∣Σ− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 − λ1I
∣∣∣ ∣∣∣Σ 1

2
11

∣∣∣ = 0∣∣∣Σ− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 − λ1I
∣∣∣ = 0

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 e1 − λ1e1 = 0

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 e1 = λ1e1 (3.20)

This means that the eigenvalue of the matrix,

P1 = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 (3.21)

is λ1, which is the same as that of matrix Q1 and e1 is the normalized eigen-

vector associated with λ1. Suppose the matrix A = Σ
− 1

2
11 Σ12Σ

− 1
2

22 is a parameter

that maximizes the correlation between the ith canonical pair of variables. Mul-

tiplying both sides of Equation (3.20) by A′ and simplifying the resulting result

yields

Σ
− 1

2
22 Σ21Σ

− 1
2

11

[
Σ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11

]
e1 = λ1

[
Σ

− 1
2

22 Σ21Σ
− 1

2
11

]
e1

⇒ Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22

[
Σ

− 1
2

22 Σ21Σ
− 1

2
11

]
e1 = λ1

[
Σ

− 1
2

22 Σ21Σ
− 1

2
11

]
e1

Hence λ1 is the eigenvalue of the matrix

P2 = Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22 (3.22)

which is the same as that of Q1 and P1. The corresponding eigenvector, f1 of

the matrix P2 is the normalized form of Σ
− 1

2
22 Σ21Σ

− 1
2

11 e1.

Similarly, putting α =
Σ−1

11 Σ12β

ρF
into Equation (3.15) and simplify yields

Σ21Σ
−1
11 Σ12β

ρF
− ρFΣ22β = 0
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⇒ Σ−1
22 Σ21Σ

−1
11 Σ12β − ρ2Fβ = 0

⇒ Σ−1
22 Σ21Σ

−1
11 Σ12β = ρ2Fβ (3.23)

This means that the eigenvalue of the matrix,

Q2 = Σ−1
22 Σ21Σ

−1
11 Σ12 (3.24)

is λ1, which is the same as that of Q1, P1, and P2. It follows from the matrix

results for P2 that the eigen equation is given as

Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22

(
Σ

− 1
2

22 Σ21Σ
− 1

2
11 e1

)
= λ1

(
Σ

− 1
2

22 Σ21Σ
− 1

2
11 e1

)
(3.25)

Multiply through Equation (3.25) by Σ
− 1

2
22 gives

Σ
− 1

2
22 Σ

− 1
2

22 Σ21Σ
−1
11 Σ12Σ

− 1
2

22

(
Σ

− 1
2

22 Σ21Σ
− 1

2
11 e1

)
= λ1

(
Σ

− 1
2

22 Σ
− 1

2
22 Σ21Σ

− 1
2

11 e1
)

Σ−1
22 Σ21Σ

−1
11 Σ12

(
Σ−1

22 Σ21Σ
− 1

2
11 e1

)
= λ1

(
Σ−1

22 Σ21Σ
− 1

2
11 e1

)

Therefore, (λ1, f2) is the eigenvalue-eigenvector pair of the matrix Q2 and f2 is

the first column of the normalized form of the matrix Σ−1
22 Σ21Σ

− 1
2

11 e1. Noting that

AA′ = P1 (see summary of key matrices), it implies that the first five matrices

P1,P2,Q1,Q2, and A have the same non–zero eigenvalues. Thus, for the linear

combinations U = α′Y and V = β′X

ρ∗1 = max
α,β

Corr
[
e′1Σ

− 1
2

11 Y, f′1Σ
− 1

2
22 X

]

is attained for U = e′1Σ
− 1

2
11 Y and V = f′1Σ

− 1
2

22 X.
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Cauchy-Schwarz inequality approach of extracting canonical variates

Suppose that both Σ11 and Σ22 are positive definite in order to maximize

the optimization problem. The optimization problem is then given by

ρ∗i = max
α,β

α′Σ12β√
α′Σ11α

√
β′Σ22β

ρ∗i = max
α,β

α′Σ
− 1

2
11 Σ12Σ

− 1
2

22 β√
α′α

√
β′β

(3.26)

Let p ≤ q, and without loss of generality, let α = Σ
− 1

2
11 θy and β = Σ

− 1
2

22 θx, where

θy and θx are the new correlation coefficient matrices of Y and X, respectively.

Substituting α = Σ
− 1

2
11 θy and β = Σ

− 1
2

22 θx into Equation (3.26) and simplifying

yields

ρ∗i = max
θy ,θx

θ′yΣ
− 1

2
11 Σ12Σ

− 1
2

22 θx√
θ′yθy

√
θ′xθx

(3.27)

The numerator of Equation (3.27) is maximized, subject to the constraints:

θ′yθy = 1 and θ′xθx = 1. Hence, if the vectors s = Σ
− 1

2
22 Σ21Σ

− 1
2

11 θy;

⇒ s′ = θ′yΣ
− 1

2
11 Σ12Σ

− 1
2

22 ; t = θx.

To apply the Cauchy-Schwarz inequality (Mukhopadhyay, 2000; Nelsen, 1994;

Schwarz, 1888; Win & Wu, 2000), the square root on both sides of the inequality

yields

(s′t) ≤ (s′s)
1
2 (t′t)

1
2 (3.28)

Hence, the substitution gives

(s′t) =
[
θ′yΣ

− 1
2

11 Σ12Σ
− 1

2
22 Σ

− 1
2

22 Σ21Σ
− 1

2
11 θy

] 1
2

[θx
′θx]

1
2

=
[
θ′yΣ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 θy

] 1
2

[θx
′θx]

1
2 (3.29)
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From the maximization results, suppose that λ1 is the largest eigenvalue of the

matrix P1 given as

P1 = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11

Then (s′t)2 ≤ λ1θy
′θy and the equality holds if θy = e1, the normalized eigen-

vector associated with λ1. Thus, the vector s can now be written as;

s = Σ
− 1

2
22 Σ21Σ

− 1
2

11 e1 and θx ∝ Σ
− 1

2
22 Σ21Σ

− 1
2

11 e1.

It follows that the first linear transformation U1, of the vector Y given the p lin-

ear transformation U1 = M′Y with coefficient as the first column α = M1 of

the transformation matrix M given by

M1 = Σ
− 1

2
11 e1

where; e1 = Eig
(
Σ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11

)
1
. Thus, M1 = Σ

− 1
2

11 Eig
(
Σ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11

)
1

which is the matrix of transformation (Apanyin, 2021). It follows from defini-

tions above that the eigen equation is given by

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 e1 = λ1e1 (3.30)

Given the matrix A = Σ
− 1

2
11 Σ12Σ

− 1
2

22 , multiplying both sides of Equation (3.30)

by A′ and simplifying the result yields

Σ
− 1

2
22 Σ21Σ

− 1
2

11

[
Σ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11

]
e1 = λ1

[
Σ

− 1
2

22 Σ21Σ
− 1

2
11

]
e1

Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22

[
Σ

− 1
2

22 Σ21Σ
− 1

2
11

]
e1 = λ1

[
Σ

− 1
2

22 Σ21Σ
− 1

2
11

]
e1

Hence λ1 is the eigenvalue of the matrix P2 given as

P2 = Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22
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The corresponding eigenvector, f1, is the normalized form of the matrix, Σ
− 1

2
22 Σ21Σ

− 1
2

11 e1.

The first eigenvector of P2 is now given by Eig
(
Σ

− 1
2

22 Σ21Σ
−1
11 Σ12Σ

− 1
2

22

)
1

It follows that the first linear transformation V1, of the vector X given the q lin-

ear transformation V1 = (N′X)1 with coefficient as the first column β = N1 of

the transformation matrix N given by

N1 = Σ
− 1

2
22 Eig

(
Σ

− 1
2

22 Σ21Σ
−1
11 Σ12Σ

− 1
2

22

)
1

and the ith linear transformation is given as

Ni = Σ
− 1

2
22 Eig

(
Σ

− 1
2

22 Σ21Σ
−1
11 Σ12Σ

− 1
2

22

)
i

Expressing Equation (3.30) as a determinant equation gives

Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 e1 − λ1e1 = 0

∣∣∣Σ− 1
2

11

∣∣∣ ∣∣∣Σ− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 − λ1I
∣∣∣ ∣∣∣Σ 1

2
11

∣∣∣ = 0

∣∣Σ−1
11 Σ12Σ

−1
22 Σ21 − λ1I

∣∣ = 0 (3.31)

This means that the eigenvalue of the matrix

Q1 = Σ−1
11 Σ12Σ

−1
22 Σ21

is λ1, which is the same as that of the matrices P1 and P2 in Equations (3.21)

and (3.22). Multiply both sides of Equation (3.30) by Σ
− 1

2
11 to determine the

corresponding eigenvector.

Σ
− 1

2
11 Σ

− 1
2

11 Σ12Σ
−1
22 Σ21Σ

− 1
2

11 e1 = λ1Σ
− 1

2
11 e1

Σ−1
11 Σ12Σ

−1
22 Σ21

(
Σ

− 1
2

11 e1
)
= λ1

(
Σ

− 1
2

11 e1
)

(3.32)
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Hence the first eigenvector of Q1 is Σ
− 1

2
11 e1 which is the same as M1. Expressing

the matrix P2 as a determinant equation gives

∣∣Σ−1
22 Σ21Σ

−1
11 Σ12 − λ1I

∣∣ = 0

This means that the eigenvalue of the matrix

Q2 = Σ−1
22 Σ21Σ

−1
11 Σ12

is λ1, which is the same as that of the matrices P1, P2, and Q1 in Equations

(3.19), (3.21) and (3.22). It may be shown similarly that the first eigenvector of

Q2 is the normalized form of the vector Σ−1
22 Σ21Σ

− 1
2

11 e1.

Generalization of the canonical correlation results

The salient results of the review thus far must be written in some concise

form (Apanyin, 2021). By considering the matrix Pi given as

Pi = Σ
− 1

2
ii ΣikΣ

−1
kkΣkiΣ

− 1
2

ii ; k =


i+ 1; i = 1

i− 1; i = 2

the matrix Qi is obtained in terms of Pi as follows:

Qi = Σ
− 1

2
ii PiΣ

1
2
ii = Σ

− 1
2

ii

(
Σ

− 1
2

ii ΣikΣ
−1
kkΣkiΣ

− 1
2

ii

)
Σ

1
2
ii

= Σ−1
ii ΣikΣ

−1
kkΣki
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Thus, Qi has the same eigenvalues as Pi with the corresponding ith eigenvectors

of Σ
− 1

2
ii ENi

, where ENi
= Eig(Pi), i = 1, 2; and

ENi
=


EN1 ; i = 1

Σ
− 1

2
22 Σ21Σ

− 1
2

11 EN1 ; i = 2

Canonical correlation variables from the generalized results

I need to further summarize the generalized canonical variables from the

generalized results given. Let p and q linear transformations be defined by

u = ϑ′
yY and v = ϑ′

xX, respectively, for the sub-vectors of Z′ = (Y,X) us-

ing the matrices P1 and P2. Then the new variables u and v constitute canonical

variables if ϑy = Σ
− 1

2
11 EN1 and ϑx = Σ

− 1
2

22 EN2; and P1 and P2 have the same

non-zero eigenvalues (Ankita & Paradipta, 2023; Apanyin, 2021).

Theorem 3.1

The matrices of transformation Pi and Qi, where i = 1, 2 are similar matrices.

Proof

Qi − γI = Σ
− 1

2
ii PiΣ

1
2
ii − QiγQ−1

i

= Σ
− 1

2
ii PiΣ

1
2
ii − γ

(
Σ

− 1
2

ii PiΣ
1
2
ii

)(
Σ

− 1
2

ii PiΣ
1
2
ii

)−1

= Σ
− 1

2
ii PiΣ

1
2
ii − Σ

− 1
2

ii γΣ
1
2
ii

= Σ
− 1

2
ii (Pi − γI) Σ

1
2
ii

It follows that

det (Qi − γI) = det
(
Σ

− 1
2

ii

)
det (Pi − γI) det

(
Σ

1
2
ii

)
= det (Pi − γI)
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This indicates that Pi and Qi have equal roots in their characteristic equations.

Theorem 3.2

The matrices of transformation P1 and P2 by themselves are similar matrices.

Proof

P1 − γI = AA′ − γP1P−1
1 = AA′ − γ (AA′) (AA′)

−1

= AA′ − γAA−1 = A
(
A′ − γA−1

)
= A (A′A − γI)A−1

= A (P2 − γI)A−1

It follows that

det (P1 − γI) = det (A) det (P2 − γI) det
(
A−1

)
= det (P2 − γI)

This means that the matrices of P1 and P2 have the same characteristic roots.

In general, I can conclude that the first five matrices P1,P2,Q1,Q2, and A have

equal non-zero eigenvalues, since Pi and Qi, where i = 1, 2 have equal charac-

teristic roots, then, P1 and P2 also have equal characteristic roots.

Summary of key matrices and their relationships

It is noted in the definitions that the matrix Σ
− 1

2
ii , where i = 1, 2 is a crucial

matrix that gives the new variables and their basic property of independence.

The matrix

A = Σ
− 1

2
11 Σ12Σ

− 1
2

22

is the basic matrix for determining the new variables which constitutes the ma-

trix factor by which (Ankita & Paradipta, 2023; Apanyin, 2021) the ith corre-

lation between the pair of variables (Y,X) is maximum among the remaining
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(r–i + 1) pairs, where r = min (p, q). Some important matrices are Pi, where i

= 1, 2 and the matrix P1 may be written in terms of A as

AA′ = Σ
− 1

2
11 Σ12Σ

− 1
2

22 Σ
− 1

2
22 Σ21Σ

− 1
2

11 = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 = P1

Similarly,

A′A = Σ
− 1

2
22 Σ21Σ

− 1
2

11 Σ
− 1

2
11 Σ12Σ

− 1
2

22

= Σ
− 1

2
22 Σ21Σ

−1
11 Σ12Σ

− 1
2

22

= P2

It follows from the definitions that the canonical variables are the ordered eigen-

vectors of the matrices Qi, i = 1, 2. The required eigenvectors are however ex-

tracted as the product of Σ
− 1

2
ii , and the eigenvectors of Pi. Then, we have to

express Qi in terms of Pi as

Σ
− 1

2
ii PiΣ

1
2
ii = Σ

− 1
2

ii

(
Σ

− 1
2

ii ΣikΣ
−1
kkΣkiΣ

− 1
2

ii

)
Σ

1
2
ii

= Σ−1
ii ΣikΣ

−1
kkΣki

= Qi

This implies that the first five matrices P1,P2,Q1,Q2, and A have the same

non–zero eigenvalues. These are seen to have the same eigenvalue or character-

istic roots as already observed.

Let {Qit} be a sequence of input matrices for t = {1, 2, 3, ..., d}, d <

T where tg(g = 1, 2, ..., d) is some g partition of the original time period T

and t1 = T under various schemes, s = 1, 2, ..., T . The optimal scheme is

equivalent to the g-group discriminant analysis for that scheme that yields more

optimal values than a two-group discriminant analysis statistics. Now let for

Qit, let the corresponding sequence of eigenvectors be Eig(Qit) and λt(Qit) be
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the corresponding values. For any time event (t), the eigen equation is given by

[Qit − Λt(Qit)]Eig(Qit) = 0

where Λt is f × f diagonal matrix , f = min(p, q). The time-dependent eigen

equations are therefore given as

{Σ−1
ii ΣikΣ

−1
kkΣ

−1
ki }t − Λt{Σ

− 1
2

ii Eig(Pi)}i
= 0

The solution to the above equation gives the matrix Λt. The response variable,

Y, and the predictor variable, X, have an average matrix of overall canonical

correlation that is provided by

Λ =
1

g

g∑
t=1

Λt

Computation of Canonical Coefficient Vectors

Before the canonical coefficient vectors α and β can be computed directly,

the matrices Σ11,Σ22,Σ12 and Σ21 must first be estimated from the given data.

The generalized eigenvalue decomposition problem is solved (Chenfeng & Don-

grui, 2021; Hardoon et al., 2004) by the equation

 0 Σ12

Σ21 0


α
β

 = ρ
F

Σ11 0

0 Σ22


α
β

 (3.33)

where Σ11 =
1
N

YY′+ryI, Σ22 =
1
N

XX′+rxI, and Σ12 =
1
N

YX′. It follows that

ry and rx are positive definite regularization coefficients of Y and X, respec-

tively, (Bickel & Levina, 2008). The covariance matrix YY′ or XX′ is singular

when the feature dimensionality is high and hence the optimization problem is

under-determined (Chenfeng & Dongrui, 2021).

The second approach for computing the canonical coefficient vectors α
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and β directly performs singular value decomposition (SVD) on matrix A. Sup-

pose ωy and ωx are the kth leading left and right singular vectors of A, then the

canonical matrices are given by α = Σ
− 1

2
11 ωy and β = Σ

− 1
2

22 ωx and hence the

correlation ρ (α′
kY, β′

kX) is equal to the kth leading singular value of A (Chen-

feng & Dongrui, 2021). Once α and β are found, the new projected features,

the canonical variables, can also be computed by using U = α′Y and V = β′X.

Once this is done, the singularity issue can be resolved by applying regulariza-

tion to the covariance matrices.

Linear Discriminant Analysis

Linear discriminant analysis (LDA) is Bayes optimum when the class dis-

tributions are assumed to be identically distributed Gaussian (Ding & Li, 2007;

Du & Swamy, 2014). Similar to principal component analysis (PCA), LDA is

frequently used for pattern recognition, information retrieval, face recognition,

and image retrieval. The assumption is that there are (yi, xi) ∈ ℜg × (0, 1)g,

i = 1, 2, ..., n observation-label pairings. Assume that Cj, j = 1, 2, ..., g is the

set of points yi that are members of the class j (Duda et al., 2000; Fisher, 1936;

Samarov, 2009). Let the observations yi be a collection of climate heating vari-

ables (maximum temperature, minimum temperature, and solar radiation) and

xi be labels for cooling variables (precipitation, wind, and relative humidity).

Assume that Y ∈ ℜn×p is a matrix whose rows correspond to the observa-

tions yi. Declare X ∈ ℜn×q to be the label matrix, where the indicator function

is I and the definition of the ijth element is xij = I(yj) ∈ Cj . One approach to

think about LDA is to find a vector of weights, vy, for each column of Y such

that the linear combination of Yvy maximizes the ratio of within-class variance

to between-class variance. This is what Equations (3.36) and (3.37) state (Duda

et al., 2000). I presume that Y has been mean-centered to make notation easier.

The number of observations in class j and the cardinality of Cj are indicated by
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the expressions |Cj| and nj , respectively. Considering that mj is the average of

the observations yi for class j, then

mj =
1

nj

ni∑
i:xi∈Cj

(yi) (3.34)

The sum of squares total is defined by Duda et al. (2000) as

ST =

g∑
i=1

ni∑
j:xj∈Ci

(
yjy

′
j

)
= (n− 1)Syy (3.35)

where the sample covariance matrix of Y is denoted by Syy. The sum of squares

within class, (SW ) and between class, (SB) can be added to obtain the sum of

squares total, (ST ) (Duda et al., 2000), such that

SW =

g∑
i=1

ni∑
j:xj∈Cj

(
yj − mi

) (
yj − mi

)′ (3.36)

SB =

g∑
i=1

(nimim′
i) (3.37)

and hence

ST = SB + SW (3.38)

The LDA optimization problem (Duda et al., 2000; Samarov, 2009) is then given

as

v∗
y = arg max

y

(
v′
ySBvy

)
(3.39)

Subject to the constraint: v/

ySWvy = 1. Supposing δ is a Lagrange multiplier,

then the modified Lagrangian is given by

L (vy, δ) =
(
v′
ySBvy

)
− δ

(
v′
ySWvy − 1

)
(3.40)

The following equation can be obtained by taking the partial derivative with

respect to vy on both sides of Equation (3.40) and setting the resultant equation
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to zero.

∂

∂vy

L (vy, δ) =
∂

∂vy

[(
v′
ySBvy

)
− δ

(
v′
ySWvy − 1

)]
= 0

⇒ SBvy − δSWvy = 0 ⇒ SBvy = δSWvy

It follows that

[
g∑

i=1

(nimim′
i)

]
vy = δ

 g∑
i=1

ni∑
j:xj∈Cj

(
yj − mi

) (
yj − mi

)′ vy (3.41)

which gives the generalized eigenvalue issue in LDA. The projected points are

then applied to the resulting eigenvectors, vy, resulting in y∗
i = y′

ivy. A class

is chosen for an observation y∗
i depending on which class center mj = m′

jvy,

where j = 1, 2, ..., g is closest, given by

arg min
j

∣∣|y∗
i − m∗

j |
∣∣2

Two-group discriminant analysis

The total number of categories that the response variable has is what de-

fines discriminant analysis (DA). In this scenario, Two-group DA is utilized

when the response variable has two categories. Let a linear combination of Xj

(Glahn, 1967) be given by

Z =

g∑
j=1

λjXj (3.42)

Let z̄1 be the mean of the Z values for n1 observations in group one (1) and z̄2

be the mean of Z values for n2 observations in group two (2). Now∑n1

j=1 (z1j − z̄1)
2 is a measure of variation in group one (1).∑n2

j (z2j − z̄2)
2 is a measure of variation in group two (2).∑2

i=1

∑ni

j=1 (zij − z̄i)
2 is a measure of variation in Z within the two groups of

variables.
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Let (z̄1 − z̄2)
2 be a measure of separation of values of Z between the two

groups. Then Z is found such that λ maximizes (Glahn, 1967; Hardle & Simar,

2007) the expression by

G =
(z̄1 − z̄2)

2∑2
i=1

∑ni

j=1 (zij − z̄i)
2 (3.43)

where

z̄1 − z̄2 =

q∑
s=1

λsX̄s1 −
q∑

s=1

λsX̄s2 =

q∑
s=1

λs

(
X̄s1 − X̄s2

)
= λT

(
X̄1 − X̄2

)

(z̄1 − z̄2)
2 = λ′ (X̄1 − X̄2

) (
X̄1 − X̄2

)′
λ = λ′Bλ = β (3.44)

Let X̄p1 − X̄p2 = dp, the difference in mean measurements on the pth variable

in the first and second groups (Hardle & Simar, 2007). It follows that

(
Z̄1 − Z̄2

)2
= (λ1d1 + λ2d2 + ...+ λrdr + ....+ λgdg)

2 =

(
g∑

p=1

λpdp

)2

⇒
(
Z̄1 − Z̄2

)2
=

g∑
p=1

Σg
q=1λpλqdpdq

=

g∑
p=1

g∑
q=1

λpλq

(
X̄p1 − X̄p2

) (
X̄q1 − X̄q2

)
= λ′Bλ

The sequence in the denominator lead to the cross-product given by

Spq =
2∑

i=1

ni∑
j=1

(
Xpij − X̄pi

) (
Xqij − X̄qi

)
(3.45)
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Now

2∑
i=1

ni∑
j=1

(
Zij − Z̄i

)2
=

2∑
i=1

ni∑
j=1

[
λ1(X1ij − X̄1i) + λ2(X2ij − X̄2i) + ...+ λg(Xgij − X̄gi)

]2
=

2∑
i=1

ni∑
j=1

g∑
p=1

g∑
q=1

[
λpλq(Xpij − X̄pi)(Xqij − X̄qi)

]
=

g∑
p=1

g∑
q=1

(λpλq)
2∑

i=1

ni∑
j=1

(Xpij − X̄pi)(Xqij − X̄qi)

=

g∑
p=1

g∑
q=1

(λpλq)Spq

⇒
2∑

i=1

ni∑
j=1

(
Zij − Z̄i

)2
= λ′Wλ

where Spq is the Within-group Sum of Squares Cross-Product (Chang-Ha, 2011;

Sun, Chen, Yang, Hu, & Shi, 2009).

Similarly,
2∑

i=1

ni∑
j=1

(zij − z̄i)
2 = λ′Wλ = ω (3.46)

where the total number of group covariance matrix is indicated by G, the within-

class covariance matrix is represented by W, and the between-class covariance

matrix is represented by B. The coefficients in Equation (3.42) are determined

to maximize (Hardle & Simar, 2007) the ratio

G =
λ′Bλ
λ′Wλ

=
SSCPB

SSCPW
=

β

ω

From ∂G
∂λr

= 0; for all r = 1, 2, ..., q, and hence,

∂G
∂λr

=
ω ∂β

∂λr
− β ∂ω

∂λr

ω2
= 0

⇒ ∂ω

∂λr

=
ω

β

∂β

∂λr

=
1

G
∂β

∂λr

Now, if dr = X̄r1 − X̄r2 = Xrij − X̄ri.
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∂β

∂λr

= 2λ
/Bdr = 2 (λ1d1 + λ2d2 + ...+ λrdr + ....+ λqdq) dr.

Also if C =
∑q

i=1 λidi is a constant, we get the following equation:

∂β
∂λr

= 2Cdr. C eventually cancels out in G. Thus, any multiple of a set of λ

that satisfies Equation (3.42) maximizes G. Therefore, there is no unique set of

λ’s maximizing G.

Similarly,

∂ω

∂λr

= 2 (λ1Sr1 + λ2Sr2 + ...+ λrSrr + ....+ λqSrq) ;

The coefficients in λ = (λ1, λ2, ..., λk) may be determined from Equation (3.42)

in either of two ways. Now let us consider the following equation (Chang-Ha,

2011; Chu & Watterson, 1993; Sun et al., 2009).

Srt =
ni∑
j

(Xrj − X̄r)(Xtj − X̄t) =

ni∑
j=1

XrjXtj − niX̄rX̄t (3.47)

where Srt =
∑ni

j

(
Xrj − X̄r

) (
Xtj − X̄t

)
is the sum of squares cross-product

in Xr and Xt; where r, t = 1, 2, ..., q. Noting that W is of the form

W = λ′Σωλ =

g∑
p=1

g∑
q=1

λpλqSpq (3.48)

Hence, ∂ω
∂λr

= 2 (λ1Sr1 + λ2Sr2 + ...+ λrSrr + ...+ λpSrp + ...+ λgSrg)

Similarly,

B =

g∑
p=1

g∑
q=1

λpλqdpdq (3.49)

Multiple-group discriminant analysis

There are many situations where discriminating between more than two

categories may be of importance. That is, a goal of Multiple-group DA is
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to determine how few discriminatory functions are necessary to account for

the majority of group discrimination. There are g groups with same set of

variables, Xi = (X1, X2, ..., Xg), i = 1, 2, ..., g. Data matrix is given by

X = (X1, X2, ..., Xg)
′. Let µi be the mean for Xi. For groups i = 1, 2, ..., g, we

have the following data matrix layout from the work of (Ali, 2019; Simo, Styan,

& Jarkko, 2011):

1. If µ1 = µ2 = ... = µg, sample means X̄1, X̄2, ..., X̄q may differ.

2. Denote Xsji, where (s = 1, 2, ..., q; j = 1, 2, ..., n; i = 1, 2, ..., g) as the

values on Xs, the sth variable for the jth individual (observation) in the ith

group.

From a Two-group DA, the total sum of squares cross-product can be stated as

T = X′
(

I − 1

n
11′
)′(

I − 1

n
11′
)

X = X′HX (3.50)

where H =
(
I − 1

n
11′
)′ (I − 1

n
11′
)

is the centering matrix (Hardle & Simar,

2007; Simo et al., 2011). The discriminant scores can be obtained from total

SSCP matrix given above as follows: Let Zi = (λ′X) i, where

Z =



λ′X1

λ′X2

...

λ′Xg


=



Z1

Z2

...

Zg


=



X1λ

X2λ

...

Xgλ


= Xλ (3.51)

The SSCP matrix of Z scores is Z ′HZ, given by

Z ′HZ = λ′X′HXλ = λ′Tλ

= λ′ (W + B)λ

= λ′Wλ+ λ′Bλ

= WZ +BZ
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where WZ =
∑g

i=1 Z
′
iHZi. By extending to the multiple case, where Z̄ is the

vector of grand means, we have

BZ =

g∑
i=1

ni

(
Z̄i − Z̄

)2
=

g∑
i=1

ni

(
λ′X̄i − λ′X̄

)2
=

g∑
i=1

ni

[
λ′ (X̄i − X̄

)]2
= λ′Bλ

From Z = Xλ, then Zi = Xiλ = (Xiλ) 1 and Z =



X1λ

X2λ

...

Xgλ


.

By following the given procedure (Simo et al., 2011) we get

Zi =



X1λ

X2λ

...

Xgλ





1 0 · · · 0

0 1 · · · 0

...
... . . . ...

0g 0g · · · 1g


= (Xλ) Ig (3.52)

Fisher linear discriminant function

Assume that Σ is the variance covariance matrix for the p variables in

X. The discriminant function will be represented by the expressions δ = v′X,

where v is a p× 1 vector of weights. The resulting discriminant scores’ sum of

squares, δ, is then stated as

δ′δ = (X′v)′ (X′v) = v′XX′v = v′STv
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But ST = SB + SW . It follows that

δ′δ = v′ (SB + SW ) v = v′SBv + v′SWv

The vector of weights, v is estimated, such that, G∗, described in Equation (3.53)

is maximal (Fisher, 1936).

G∗ =
v′SBv
v′SWv

(3.53)

By differentiating G∗ with respect to v and then equating to zero, leads to

(S−1
W SB − λI)v = 0

Thus, the weight vectors, v, are the eigenvectors of S−1
W SB. The function,

δ = x′v, is thus called the Fisher Discriminant Function (Fisher, 1936; Sharma,

1996; Sun, Chen, Yang, & Shi, 2008). Only the ratio of the weights is unique;

the weights are only unique relative to one another.

Statistical significance of multiple-group discriminant analysis

The discriminant functions might not all be numerically significant. The

Chi-square (χ2) value, is calculated to determine the overall statistical signifi-

cance of all discriminant functions (Sharma, 1996; Sun et al. 2008) using the

expression

χ2 =

[
n− 1−

(
p+G

2

)] K∑
k=1

ln (1 + λk) (3.54)

where there are n total observations in each set, p number of discriminator vari-

ables, G groups, K discriminant functions, and λk as the eigenvalue of the kth

discriminant function. The aforementioned process is continued until the χ2

value is no longer significant in the case of K discriminant functions. In order

to determine the statistical significance of the r discriminant function, the χ2
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value with (p− r + 1)(G− r) degrees of freedom is typically calculated as

χ2
r =

[
n− 1−

(
p+G

2

)] K∑
k=r

ln (1 + λk) (3.55)

Discriminative Canonical Correlation Analysis Extension

Regularization of CCA, Repeated CCA of Kronecker Product Matrix,

Kernel CCA, Deep CCA, and Discriminative CCA are some of the CCA ex-

tensions that have been proposed to increase the flexibility of CCA for big di-

mensional data (Chu, Liao, Ng M, & Zhang, 2013; Hardoon & Shawe-Taylor,

2011). I consider the extension of Discriminative CCA in this thesis. Label

information is used in Discriminative CCA to train the correlation matrix and

integrate similarity across classes and within classes (Kim, Kittler, & Cipolla,

2007; Sun et al., 2009). Depending on whether local scattering is investigated

or not, Discriminative CCA deals with the Global or Local Discriminative CCA

multivariate data analysis models that are now in use.

Global discriminative canonical correlation analysis

Theoretically, I assume that the pairwise variables are divided into k classes,

with ni occurrences in the ith class. As indicated by the accompanying vectors,

let Y and X, respectively, represent the starting sets of variables in the first and

second sets of variables:

Y = (y1,1, y1,2, ..., y1,n1 , .., yk,1, yk,2, ..., yk,nk
)

X = (x1,1, x1,2, ..., x1,n1 , .., xk,1, xk,2, ..., xk,nk
)

where yi,p represent the pth data sample in Y’s ith class and xi,q represent the

qth data sample in X’s ith class. Equation (3.56) was developed using the con-

ventional discriminant canonical correlation technique, which increases within-
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class correlation and decreased between-class similarity by using class label

information (Sharma, 1996; Sun et al. 2008; Yang et al., 2021).

arg max
α,β

ρ = α′Cwβ − τα′Cbβ (3.56)

subject to the constraints: α′C11α = β′C22β = 1, where the coefficient vectors

of Y and X are, respectively, α and β. The weights of the within-class and inter-

class correlations are maintained in proportion to each other by the parameters

τ > 0. The within-class correlation is denoted by Cw, and the between-class

correlation by Cb.

Cw =
k∑

i=1

ni∑
p=1

ni∑
q=1

yi,px
′
i,q = YMDX′ (3.57)

Cb =
k∑

i=1

k∑
j=1

ni∑
p=1

ni∑
q=1

yi,px
′
j,q = −YMDX′ (3.58)

An all in one square matrix of dimension ni × ni makes up each block of the

blocked diagonal matrix, C12. From the literature, Equation (3.56) can be rewrit-

ten as

arg max
α,β

ρ = α′YMDXβ (3.59)

subject to the constraints: α′C11α = β′C22β = 1. In Equation (3.59), the global

discriminative CCA difficulty can be resolved using the generalized eigenvalue

decomposition technique. The Lagrangian equation can be modified (Hardoon

et al., 2004; Samarov, 2009) from Equation (3.59) as

L (δy, δx, α, β) = α′C12β − δy
2
(α′C11α− 1)− δx

2
(β′C22β − 1) (3.60)

where C12 = YMDX, δy and δx are the Lagrangian multipliers of Y and X, re-

spectively. By taking partial derivatives with regard to α and setting the resulting
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equation to zero gives

C12β − δyC11α = 0 (3.61)

Similarly, by taking partial derivatives with regard to β and setting the resulting

equation to zero gives

C21α− δxC22β = 0 (3.62)

Multiply both sides of Equation (3.61) by α′ yields

α′C12β − δyα
′C11α = 0 (3.63)

Similarly, multiply both sides of Equation (3.62) by β′ yields

β′C21α− δxβ
′C22β = 0 (3.64)

It follows therefore that δx = δy = δF . Supposing C11 is positive definite and

invertible, then α can be made the subject from Equation (3.61) as

α =
C−1

11 C12β

δF
(3.65)

Similar assumption for C22 leads to

β =
C−1

22 C21α

δF
(3.66)

Now substituting β into Equation (3.61) follows that

δ2Fα = C−1
11 C12C−1

22 C21α (3.67)

Similarly, substituting α into Equation (3.62) yields

δ2Fβ = C−1
22 C21C−1

11 C12β (3.68)
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Equations (3.61) and (3.62) are the generalized eigenvalue problem for global

discriminative CCA. Equations (3.63) and (3.64) may be written in terms of δF

as

α′C12β − δFα
′C11α = 0

β′C21α− δFβ
′C22β = 0

Hence, the generalized eigenvalue decomposition problem for global discrimi-

native CCA is written formally as

 0 YMDX

XMDY 0


 α

β

 = δF

 YMDY 0

0 XMDX


 α

β

 (3.69)

It is observed (Sakar & Kursun, 2017; Wilms & Christophe, 2015) that the

model is highly sensitive to outliers and noisy samples because Equations (3.57)

and (3.58) generate between-class and within-class correlation matrices that

maximize correlation for any pair of samples.

Local discriminative canonical correlation analysis

The class separation characteristic persists even after the local discrimi-

native CCA takes into account the local information of the data points (Peng,

Zhang, & Zhang, 2010; Shin & Park, 2011; Yang et al., 2021; Zuobin, Kezhi,

& Ng, 2017). Local designs are typically maintained by the k adjacent group-

ings. For example, (Peng et al., 2010) updated the local within-class covariance

matrix, CL
w and the local between-class covariance matrix, CL

b based on the k

nearest neighborhoods as

CL
b =

N∑
i=1,u1

N∑
j=1,u2

yix
′
k + ykx′

i (3.70)
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CL
w =

N∑
i=1,t1

N∑
j=1,t2

yix
′
k + ykx′

i (3.71)

where t1 = yk ∈ Nw(yi), t2 = xk ∈ Nw(xi) and u1 = yk ∈ N b(yi) u2 =

xk ∈ N b(xi); Nw(yi) and N b(yi), respectively, are the k nearest neighbors

of yi between-class and within-class; The k nearest neighbors of xi that are

between-class and within-class are N b(yi) and Nw(xi), respectively. Suppose

that C∗
12 = CL

b −τCL
w, then the local discriminative CCA’s optimization problem

can be expressed as

arg max
α,β

ρ = α′C∗
12β (3.72)

subject to the constraints: α′C11α = β′C22β = 1.

The normal CCA can be solved in this situation using the SVD prob-

lem (Peng et al., 2010; Yang et al., 2021). Local discriminant CCA minimizes

within-class correlation and maximizes between-class similarity in terms of lo-

cal neighbors as opposed to global samples to reduce the effects of outliers as

seen in Equations (3.73) and (3.74). Shin & Park (2011) assessed the local dis-

tribution by integrating the nearest neighborhood scatter matrix between classes

and among classes, without changing the correlation matrices given in the global

discriminative CCA.

Sb =
k∑

i=1

ni∑
p=1

[
yi,p − µk

w(yi,p)
] [

yi,p − µk
w(yi,p)

]′
(3.73)

Sw =
k∑

i=1

ni∑
p=1

[
xi,p − µk

w(xi,p)
] [

xi,p − µk
w(xi,p)

]′
(3.74)

The within-class KNN mean of yi,p is represented by µk
w(yi, p). The local scat-

terness for Y and X in projection subspace can be written as α′Sbα and β′Swβ,

respectively. The issue becomes optimizing these scatters given that they must

be smaller to better classification performance and the Lagrangian equation
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(Hardoon et al., 2004; Samarov, 2009) is given as

L(α, β, λy, λx) = α′C12β − λy

2
(α′Sbα− 1)− λx

2
(β′Swβ − 1) (3.75)

where λy and λx are the Lagrangian multipliers of Y and X, respectively.

By taking partial derivatives with regard to α and β and setting the resulting

equations to zero leads to

C12β − λySbα = 0 (3.76)

and C21α− λxSwβ = 0 (3.77)

Subsequently, λx = λy = λ. Supposing Sb is positive definite and invertible,

then

α =
S−1
b C12β

λ

Similarly,

β =
S−1
w C21α

λ

Making substitutions gives

α =
S−1
b C12

λ

(
S−1
w C21α

λ

)
λλα =

(
S−1
b C12

) (
S−1
w C21α

)
λ2α = S−1

b C12S−1
w C21α (3.78)

Similarly,

β =
S−1
w C21

λ

(
S−1
b C12β

λ

)
λλβ =

(
S−1
w C21

) (
S−1
b C12β

)
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λ2β = S−1
w C21S−1

b C12β (3.79)

Equations (3.78) and (3.79) are the generalized eigenvalue problem for local

discriminative CCA, which may be written as

 0 C12

C21 0


α
β

 = λ

Sb 0

0 Sw


α
β

 (3.80)

By evaluating the scatter matrix, which measures the dispersion of data points

that deviate from the local mean relative to the global mean, the model is better

able to adapt to the intricate class distribution. To evaluate the local structure,

(Zuobin et al., 2017) introduced the Intra-class and Extra-class Discriminative

Correlation Analysis. Because the scatter matrix, S1
w, predicts the scatter of data

points’ deviations from the local mean instead of the global mean, the model is

more robust to the complex class distribution. The between-class scatter matrix,

S1
b , exhibits the following properties.

S1
b =

k∑
i=1

ni∑
p=1

[
yi,p − µk

e(yi,p)
] [

yi,p − µk
e(yi,p)

]′
(3.81)

where µk
e(yi,p), a weight matrix emphasizing boundary information, is the extra-

class k closest neighbors mean of yi,p. By using the between-class scatter ma-

trix, preprocessing rather than modeling retains more of the categorization struc-

ture of the input feature. The drawbacks of the global and local discriminative

CCA (Zuobin et al., 2017) are as follows: 1. Because the correlation matrix

Cw is of the typical order of (k-1), the maximum number of features that may

be extracted is (k-1). Information loss could result from this, especially if the

class size is tiny. 2. The computational and spatial complexity of the k nearest

neighborhoods approach is considerable. 3. The application of k nearest neigh-

borhoods would be restricted if the sample distribution across various groups

is unbalanced. We shall show that, by modulo a scalar, the generalized eigen
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problem in all of the aforementioned eigen issues is nearly the same (Samarov,

2009; Zuobin et al., 2017).

Link Between Canonical Correlation Analysis and DA

It is possible to construct a multiple-group discriminant analysis as a canon-

ical correlation problem with group membership as the dependent variable coded

using dummy variables (Duda et al., 2000; Samarov, 2009; Zuobin et al., 2017).

Let the observations yi be a collection of heating variables, xi be labels for cool-

ing variables, Ci is the collection of points, n is the number of observations-

label pairs, and ni is the number of observations in class i, where i = 1, 2, ..., g

(Samarov, 2009) then, average of the observations for class i is

mi =
1

ni

∑
i:xi∈Ci

(yi) (3.82)

If I define yi = I(xi∈ci) as the label matrix with ith entry being defined as the

indicator function, the class labels matrix, Y ∈ ℜn×g and I as the indicator

function, I have

Y =



1n1 0 · · · 0

0 1n2 · · · 0

...
... . . . ...

0 0 · · · 1ng


It is clear from this that if mi is the average of the observations for class i

SY X = Y′X =



n1m
′
1

n2m
′
2

...

ngm
′
g


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It follows that

S−1
Y Y = (Y′Y)

−1
=



1
n1

0 · · · 0

0 1
n2

· · · 0

...
... . . . ...

0 0 · · · 1
ng


Thus,

SXY S−1
Y Y SY X =

g∑
i=1

nimim
′
i = SB (3.83)

I begin with the sample canonical correlation matrix equation given in Equation

(3.84), where ρ
H

is the canonical correlation coefficient and α is the coefficient

vector.

SXY S−1
Y Y SY Xα = ρ2

H
(n− 1)SY Y α (3.84)

From Equation (3.35), I have

ST =

g∑
i=1

nj∑
i:xi∈Cj

(yiy
′
i) = (n− 1)Syy

Substituting Equations (3.35) and (3.83) into Equation (3.84) yields

SBα = ρ2HSTα (3.85)

Since ST = SB + SW (Samarov, 2009; Zuobin et al., 2017), then

SBα = ρ2H (SB + SW )α

SBα = ρ2HSBα + ρ2HSWα

SBα =

(
ρ2H

1− ρ2H

)
SWα (3.86)

Hence, this link will be relevant by first determining the optimal groupings in

the data for which discrimination is maximum.
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Procedure to generalize the link between CCA and DA

I first go over the basic CCA problem in this section in order to create

an algorithm that determines the optimum grouping schemes for every feasible

Multiple Discriminant Analysis (MDA) that produces the highest CCA. Assum-

ing that Y and X are the observations made at the same time and that both are

column-centered, with Y = [y1, y2, ..., yN ] ∈ ℜN×dy , X = [x1, x2, ..., xN ] ∈

ℜN×dx , α ∈ ℜdy×l, and β ∈ ℜdx×l. The number of observations is N , the num-

ber of canonical vector pairs I attempt to compute is l, and the feature dimen-

sions for Y and X, are dy and dx, respectively. Let r = rank(Y), s = rank(X)

and t = min(r, s) (Abdeldjalil & Seghouane, 2016; Chu et al., 2013; Xuefei et

al., 2019). The typical CCA problem can then be examined as

min
α,β

||Yα− Xβ| |F

subject to the constraints: α′Y′Yα = 1 and β′X′Xβ = 1.

Theorem 3.3 explains how to solve the above definition using the Singular Value

Decomposition (SVD) technique. Let me examine the SVD for Y and X as

follows:

Y = Qy [Σy, 0] [U1, U2]
′ = QyΣyU

′
1

X = Qx [Σx, 0] [V1, V2]
′ = QxΣxV

′
1

where U1 ∈ ℜdy×r, U2 ∈ ℜdy×(dy−r), Σy ∈ ℜr×r, Qy ∈ ℜN×r, V1 ∈ ℜdx×s,

V2 ∈ ℜdx×(dx−s), Σx ∈ ℜs×s, and Qx ∈ ℜN×s. I also consider the SVD of

Q′
yQx as Q′

yQx = PyΣP
′
x, such that Py ∈ ℜr×r, Σ ∈ ℜr×s, and Px ∈ ℜs×s.

Now let me denote the distinct eigenvalue of Q′
yQx as λ1 > λ2 > ... > λk >

0 with multiplicity for these k eigenvalues being σ1, σ2, ..., σk, it follows that

mq =
∑q

i=1 σi. Py and Px can be defined as follows, where kyIdy and kxIdx are
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the two regularization terms of Y and X, respectively, with ky > 0 and kx > 0.

Thus,

Py = Y′ (YY′ + kyIdy)
−1 Y

Px = X′ (XX′ + kxIdx)
−1 X

Theorem 3.3

Suppose l =
∑q

i=1 σi for some 1 ≤ q ≤ k (Chu et al., 2013), then (α, β) is the

solution of optimization problem if and only if

α = U1Σ
−1
y Py (:, 1 : l)B + U2Fy

β = V1Σ
−1
x Px (:, 1 : l)B + V2Fx

where B ∈ ℜl×l is orthogonal vector, Fy ∈ ℜ(dy−r)×l, and Fx ∈ ℜ(dx−s)×l

are arbitrary vectors. According to (Xuefei et al., 2019), the sparse canonical

correlation analysis can be viewed as fixing the issue if l =
∑q

i=1 σi for some

1 ≤ q ≤ k as

min
α,β

||α| |l1 + ||β| |l1

subject to the constraints of Theorem 3.3, are equivalently expressed as U ′
1α =

Σ−1
y Py (:, 1 : l) and V ′

1β = Σ−1
x Px (:, 1 : l), with corresponding optimal values

Ds(ρs) and D(ρ), respectively. The element-wise l1 penalty is defined as ||∗| |l1

and ||∗| |F is the Frobenius norm.

Theorem 3.4

Suppose l =
∑q

i=1 σi for some 1 ≤ q ≤ k and let A = 1√
l
, then AD ≤ Ds ≤ D.

Algorithms of CCA and multiple-group discriminant analysis

Let n be the total number of observations, d be the mean of the total num-

ber of time-dependent variables, and T be the total number of time events that
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were recorded. I present a number of computer simulations in this part to show

how well the suggested algorithm works. I contrast the performance of the sug-

gested algorithm with current cutting-edge discriminant canonical correlation

analysis (DCCA) techniques.

Formulation of Grouping Schemes Discriminant CCA

Grouping scheme (GS) is an approach that is intended in this study to

incorporate the time effect into the canonical correlation analysis via discrimi-

nant analysis in order to effectively handle the Time-dependent multivariate data

(TDMD). The number of possible group-analysis that can be performed is de-

noted as G = (2, 3, ..., t− 1) for data on t years. Thus, m ∈ G. For a particular

identified best grouping scheme for an m-group analysis GSm(:, j), I note that

there would be multiple values of m in G. The following are the required formu-

lations of grouping schemes discriminant canonical correlations for Two-group

(GS2) and Three-group (GS3) discriminant analysis, respectively.

GS2 =



1y1 1y1 1y1 · · · 1y1

2y2 1y2 1y2 · · · 1y2

2y3 2y3 1y3 · · · 1y3

2y4 2y4 2y4
. . . ...

...
...

... . . . 1yt−1

2yt 2yt 2yt · · · 2yt


and GS3 =



1y1 1y1 1y1 · · · 1y1

2y2 1y2 1y2 · · · 1y2

3y3 2y3 1y3 · · · 1y3

3y4 3y4 2y4
. . . ...

3y5 3y5 3y5
. . . 1yt−2

...
...

... . . . 2yt−1

3yt 3yt 3yt · · · 3yt


The general formulation of grouping scheme discriminant canonical correlation

for Multiple-group discriminant analysis (GSm) is given as
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GSm =



1y1 1y1 ... 1y1 ... 1y1 1y1

2y2 1y2 ... 1y2 ... 1y2 1y2

3y3 2y3
. . . ... ...

...
...

...
... . . . 1yj ... 1y

(t−m)
1y

(t−m+1)

mym (m− 1)ym ... 2yj+1
. . . ...

...

mym+1 mym+1 ...
... . . . (m− 1)yt−2 (m− 2)yt−2

...
... ... (m− 1)yt−1 · · · myt−1 (m− 1)yt−1

myt
myt

... myt
... myt

myt


where m = 3, 4, ..., t and j = 3, 4, ..., t.

Suppose GSm(:, j) is the best grouping scheme, where Z = (Y|X) is the com-

bined variables of Set 1 and Set 2, then the augmented data that incorporates the

scheme is given by

ZF = [Y|X : GSm(:, j)]

It follows that ZF ∈ ℜp+q+m and GSm(:, j) ∈ ℜm, where the number

of variables in Sets 1 and 2 are denoted by the numbers p and q, respectively.

Hypotheses Testing of Discriminant Canonical Correlation Analysis

In order to arrive at the optimal grouping scheme, we need to analyze some

related hypotheses in canonical correlation analysis and discriminant analysis.

Equations below offer the null and alternative hypotheses for computing the sta-

tistical significance of canonical correlation analysis, where f is the min(p, q).

Let ρr be the rth canonical correlation, where r = 1, 2,..., f .

H0 : ρ1 = ρ2 = ρ3 = ... = ρ
f
= 0

H1 : ρ1 ̸= ρ2 ̸= ρ3 ̸= ... ̸= ρ
f
̸= 0
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If R12 is the correlation matrix describing the correlation between X and Y vari-

ables, then the null hypothesis asserts that R12 = 0. We can test the hypotheses

using a variety of test statistics.

Wilks’ Lambda text statistic

A statistic for testing the statistical significance of canonical correlation

is Wilks’ Lambda (∧) which may range from a value of zero to one. The test

statistic based on Wilks’ Lambda, ∧ is given by

⇒ ∧ = Πm
r=1(1− ρ2

r
) (3.87)

The closer Lambda is to zero the more likely canonical correlation will be sta-

tistically significant. The statistical significance of (∧) or the likelihood ratio

(Checko, 1986; Sharma, 1996) is tested by using the test statistic

B = −[n− 1− 1

2
(p+ q + 1)]ln∧ (3.88)

Hotelling’s T-square test

To perform a multivariate test of differences between the mean values

of two groups, Hotelling’s T 2 statistic is utilized. As per the null hypothesis,

S, the centroid of the two groups, is identical. Multiple analysis of variance

(MANOVA) and multiple analysis of covariance (MANCOVA) both make use

of Hotelling’s T 2 (Rathbun, Wiesner, Srabashi, Roths & Romer, 2023; Joungy-

oun, Youngrae, Johan & Sungim, 2023). The Hotelling’s T 2 statistic is given

by

T 2 = n
(
X̄ − µ0

)′ S−1
(
X̄ − µ0

)
(3.89)

T 2 is roughly Chi-square, χ2 distributed with p degrees of freedom when n

very large. The population variance-covariance matrix, Σ, is substituted for the
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sample variance-covariance matrix, S, in equation (3.89).

χ2 = n
(
X̄ − µ0

)′
Σ−1

(
X̄ − µ0

)
(3.90)

When the data are normally distributed, the test is thus exactly Chi-square dis-

tributed with p degrees of freedom (Rathbun et al., 2023).

Pillais test statistic

The Pillais trace is the test statistic for a MANOVA. Its value ranges from

0 to 1. When Pillai’s trace is close to 1, there is strong evidence that the explana-

tory variable influences the response variable values in a statistically significant

way (Pillais, 1955). Thus,

Pillai′s trace =

q∑
i=1

λi

1 + λi

(3.91)

where λi is the ith eigenvalue and q denotes the number of variables, for i =

1, 2, ..., q. This test is regarded as the most effective and reliable statistic, par-

ticularly for detecting assumptions that are not met. Pillais is the ideal choice

when the sample size is small, the homogeneity of variance-covariance assump-

tion of the MANOVA is broken, or your cells have varied sizes. However, Pillais

tends to be less effective than the other three when the degree of freedom of the

hypothesis exceeds one. Roy’s Maximum Root is a far better choice when there

is a significant divergence from the null hypothesis or when there are significant

discrepancies in the eigenvalues (Pillais, 1955; Seber, 1984).

Roys test statistic

In contrast to some other widely used summary statistics (such as Hotelling’s

and Pillai’s), Roy’s Largest Root (Johnstone & Nadler, 2017; Warner, 2013)
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only reports explained variance for one discriminant function, as stated by

Roy′s Largest Root = λi(1 + λi) (3.92)

where λi is the ith eigenvalue. Weighted linear composites of quantitative vari-

ables are produced via discriminative functions. Always, the trace of Hotelling

is smaller than or equal to the biggest root of Roy. According to (Johnstone &

Nadler, 2017; Warner, 2013), if they are equivalent, it could suggest one of the

following:

(i) One dependent variable is largely linked to the effect,

(ii) Significant correlation exists between the dependent variables,

(iii) The effect’s influence on the model is minimal.

Wilks test statistic

Wilks’ test statistic is given in terms of λ by Equation (3.93), where λi

is the ith eigenvalue of the matrix P1 = Σ
− 1

2
11 Σ12Σ

−1
22 Σ21Σ

− 1
2

11 ; q denotes the

number of variables (Cankaya et al., 2011).

Wilks statistic =

q∑
i=1

1

1 + λi

(3.93)

The F test statistic

The F test statistic for ρ2
i
’s statistical significance can be found in Equa-

tion (3.94) (Cankaya et al., 2011).

F =
1− λ

1
k
i

λ
1
k
i

fb2
fb1

≈ Ffb2 ,fb1
(3.94)

In this case, λi = Πn
i (1 − ρ2

i
); f = min(p, q); fb1 = pq;

fb2 = ck − 1
2
pq + 1; c = n− 1

2
(p+ q + 3); k =

√
p2q2−4
p2+q2−5

;
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where the total number of cases is n, p denotes the number of response vari-

ables, q denotes the number of predictor variables, and ρ2
i

denotes the ith eigen-

value of the matrix, Q1 = Σ−1
11 Σ12Σ

−1
22 Σ21 or the squared canonical correlations

(Cankaya et al., 2011).

Chapter Summary

The development of grouping scheme discriminant canonical correlation

analysis (GSDCCA) and its application to data with time-dependent structure

are the primary goals. The methodology has provided a thorough analysis of the

canonical variable construction process. It has in the process discovered about

six important matrices for creating canonical variables. The element matrices of

the partitioned variance-covariance matrix were used to create, Σ
− 1

2
ii , i = 1, 2,

and A = Σ
− 1

2
11 Σ12Σ

− 1
2

22 , two of these matrices. In order to create the new vari-

ables, the review made it possible to determine the proper interpretation and

uses of these matrices. It has been noted that the matrix β = Σ12Σ
−1
22 , whose

columns represent the regression coefficients of the regression functions without

intercepts, is an important matrix.

The connections between these factors have also been discovered. Also

looked at are the methods for calculating the connection between CCA and DA

functions. There have been two primary fundamental procedures looked at.

These are the conditional distribution of Cauchy-Schwarz Inequality technique

and the Lagrangian multiplier technique. These two fundamental approaches

are thoroughly explained in this chapter. It has been noted that the outcomes

of these two strategies are identical and generated similar results so far as the

key matrices for CCA are concerned. The general methodology of various ex-

tensions of CCA have been so far made to the basic formulations. Those ex-

tensions are outlined and also explained into details using the two fundamental

approaches given above together with the author and date of first mentioned.
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This chapter looked at the canonical correlation variables’ theoretical char-

acteristics and described them in three ways. It can be shown that the new vari-

ables in each situation should have one of six essential characteristics, which,

taken together, substantially cover their independence and unit variance. The

partitioned sample variance-covariance matrix, which would produce new canon-

ical correlation variables with amply supported attributes, has been studied for

its structure. The methodology of the general formulation of grouping scheme

discriminant canonical correlation analysis for Multiple-group discriminant anal-

ysis is discussed in this chapter. By incorporating the ideal grouping scheme into

canonical correlation analysis, the time-effect of the data is expected to improve

the true correlation between the two sets of variables.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

A number of theoretical concepts are presented in Chapter Three that are

always important to keep in mind when performing canonical correlation anal-

ysis (CCA). This chapter’s statistical modeling component of the work makes

use of these ideas. Preliminary analyses in the chapter include discriminative

statistics, CCA results, statistical significance and subsequent studies of higher

inferential analyses including results of grouping scheme discriminant canoni-

cal correlation analysis (GSDCCA) that establishes a connection between CCA

and DA. The problems developed in Chapters Two and Three are put to use in

this chapter, which help to identify the key matrices involved in creating canoni-

cal variables using the illustrative dataset described in Chapter One. The goal of

the implementation of the codes is to create the canonical variables while simul-

taneously ensuring that they have the necessary attributes. In this case, the first

set of codes is described. The SPSS syntax uses the command for MANOVA

and the sub-command ”discrim” in a one-factorial design. The response vari-

ables are listed first in the MANOVA command, followed by the predictor vari-

ables. I combine all response and predictor variables into a single factor and

use the WITH command to separate the two groups. For all covariates, the sub-

command, discrim, generates a CCA outputs. Covariates are defined after the

word WITH. ALPHA specifies the level of significance required to extract a

canonical variable.

Series Plots of the Six Monthly Weather Conditions in Ghana

The time series plots of the monthly weather conditions data in Ghana

from January 2000 to December 2021 are shown in Figure 2. In the plots, two
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hundred and sixty-four (264) observations are provided. The two temperature

Figure 2: Series Plots of data on six monthly Weather Conditions

variables have similar characteristics with slightly higher variation in the sec-

ond. In both cases, there is a gentle increasing linear trend with considerable

variability up to about the year 2011, after which the pattern assumes a sharp

negative linear trend till the end of the series; with variation in the last few por-

tion being quite high. There appears to be a stationary trend for the other four

conditions with very low variability particularly in Solar Radiation from the be-

ginning to 2011. There is similarly quiet stable trend in Relative Humidity with

large spikes at few time periods. The stable trend in Precipitation and Wind

is rather characterized by large variability throughout the period. The general

trend in all the six series however suggests evidence of non-stationarity in the

mean. These generally appears to be a noticeable change in the behavior of all

the series around the year 2011.

Table 2 shows the correlation matrix for all six variables. It can be seen

from the table that there are some strong relationships, particularly among
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Table 2: Canonical Correlation Matrix for Set 1 and Set 2 Variables

Variable Max T Min T Solar Rad Precip Wind Rel Hum
Max Temp 1.0000
Min Temp 0.5785 1.0000
Solar Rad 0.5502 0.5316 1.0000
Precip -0.0897 -0.0977 -0.1770 1.0000
Wind -0.1373 -0.0533 -0.1023 -0.0518 1.0000
Rel Hum -0.6890 -0.6425 -0.2805 0.1053 0.1240 1.0000
Source: Researcher’s computations (2023)

Maximum Temperature, Minimum Temperature and Solar Radiation. There are

also both positive and negative relationships among some variables, but the cor-

relations between those variables are far less than unity. The highest correlations

are observed between each of the two temperature variables and Relative Hu-

midity. Generally, there is negative correlation between heat measure variables,

Y = Maximum Temperature, Minimum Temperature, Solar Radiation and cool-

ing measure variables, X = Precipitation, Wind, Relative Humidity.

Extraction of canonical correlation variables

The codes used in this chapter divide the data into the first three columns,

which make up the sub-vector Y = (Y1, Y2, Y3) of responses and the last three

columns, which make up the sub-vector X = (X1, X2, X3) of predictors to

demonstrate the extraction of canonical variables from the dataset. The CCA

is thus performed on p = 3 response variables and q = 3 predictor variables. In

this case three canonical variate pairs or canonical roots are generated since the

min(p, q) in both sets is three.

Derivation of Canonical Correlation Functions

Table 3 displays the canonical correlation coefficients (CCC) for every

pair of the three fundamental canonical variates. The three degrees of freedom,

their significance, and the percentage of variation that is explained are listed in
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the table. The first canonical roots as well as eigenvalues, Wilks statistics, the

number of canonical variate pair has CCC of 0.731 and accounts for 87.27%

of the correlation’s explained variance. The results show that there is a high

statistically significant association between the response variables and the other

climatic parameters for all three of the canonical roots likelihood ratio tests.

Table 3: Relevant CCA Statistic Measures from Original Data

Root CCC ρ2i Eig. V Wilks L Pct. C. Pct F Sig.
1 0.731 0.534 1.145 0.398 87.270 87.270 32.112 0.000
2 0.345 0.119 0.135 0.854 10.316 97.586 10.654 0.000
3 0.175 0.031 0.032 0.969 2.414 100.000 8.236 0.004

Source: Researcher’s computations (2023)

The high association between the test findings for the predictor variables and the

response variables gives credibility to the validity of this study. Wilks Statistic or

Lambda is interpreted as the opposite of R-squared statistic. If Wilks Lambda is

close to zero, it means that there is high correlation between response variables

and predictor weather conditions. There is little association between the re-

sponse variables and the predictor weather conditions if Wilks Lambda is close

to one. The findings indicate that each of the three correlation coefficients is

significant.

Canonical correlation coefficient matrix

It is possible to reduce the structure of the canonical correlation coeffi-

cient matrix—which is used to verify the properties of the new variables—to

that of the generic matrix shown below. The diagonal elements of the canonical

correlation coefficient matrix’s sub-matrix, Λ = diag(0.731 + 0.345 + 0.175),

demonstrate the correlation between the pair of variables (Ui, Vi), where i = 1, 2,

and 3. All correlation coefficients are positive in this situation. The appropriate-

ness of the components of the partitioned sub-vectors of the weather condition
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variables is demonstrated by the canonical correlation coefficient matrix.

CCC =



1 0 0 0.731 0 0

0 1 0 0 0.345 0

0 0 1 0 0 0.175

0.731 0 0 1 0 0

0 0.345 0 0 1 0

0 0 0.175 0 0 1



Results of canonical loadings

The findings include correlations between the observed variables, the canon-

ical variate, the raw and normalized canonical coefficients, and the proportion

of variation for each set that can be accounted for by the canonical root. The

outcomes for the two set of variables are shown below. Table 4 gives the canon-

ical loadings for response variables set. To precisely assess how well the ini-

tial response variables and the canonical variate pairs are correlated, structural

coefficients or canonical loadings are used. The maximum temperature and the

minimum temperature are the largest contributors to the first variate in this situa-

tion, according to the correlations between the response and canonical variables.

Their various contributions to each variate are represented by these weights.

Table 4: Canonical Loadings for Response Variables

Variate Number 1 2 3
Maximum Temperature 0.93456 0.29508 -0.19882
Minimum Temperature 0.84927 0.48353 -0.21200
Solar Radiation 0.38873 0.01271 -0.92126
Source: Researcher’s computations (2023)

The first canonical variate’s key factor is its maximum temperature. The min-

imum temperature is the primary component of the second canonical variate.

Solar radiation is the primary cause of the third canonical variate. The canon-
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ical loadings for the group of predictor variables are displayed in Table 5. It

follows from the table that as far as the first canonical variate is concerned, rel-

ative humidity is the main contributor. The second and third canonical variates

are primarily influenced by wind and precipitation, respectively.

Table 5: Canonical Loadings for Predictor Variables

Variate Number 1 2 3
Precipitation -0.05945 -0.14456 0.98771
Wind -0.33783 0.93899 0.06463
Relative Humidity -0.97538 -0.21996 0.01566
Source: Researcher’s computations (2023)

Dimension reduction analysis

Table 6 displays the Wilks’ Statistics or Lambda, F -ratios, degrees of free-

dom, and significance of each of the three canonical roots. I put the canonical

response and predictor variates’ hierarchical structure to the test. The first sig-

nificance test examines each of the three canonical roots of importance, from

root 1 to root 3, here F = 32.112 with p < 0.05 and Wilks Lambda is 0.398.

Table 6: Dimension Reduction Analysis - Likelihood Ratio

Root Nos. Wilks Lamb F Ratio Hypoth. DF Error DF Sig. of F
1 TO 3 0.398 32.112 9.000 628.055 0.000
2 TO 3 0.854 10.654 4.000 518.000 0.000
3 TO 3 0.969 8.236 1.000 260.000 0.004

Source: Researcher’s computations (2023)

The second test does not include the first root and examines roots two to three

which gives F = 10.654 with p < 0.05 and Wilks Lambda is 0.854. The final

test examines root three alone. All the three roots are found significant.

Results of canonical correlation coefficient vectors

In order to optimize the expected correlations between Ui and Vi, the

canonical coefficient vectors α and β are extracted as follows.
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α =


1.4934 −2.3610 0.5976

−0.9927 2.8886 −0.3790

−0.0438 −0.0382 −0.2625


and

β =


0.0108 −0.0215 0.3689

−0.2282 1.0214 0.1358

−24.0480 −8.4671 −2.6866


where the columns represents the canonical variates in each of the sub-vectors

of response and predictor variables, respectively.

Results of Canonical Variates and the Canonical Correlations

Up to three pairs of canonical variates can produce the three canonical

correlation coefficients in this study since each set contains only three variables.

Table 7: Raw CCCs for Response and Predictor Variables

Unst Var α
1i

α
2i

α
3i

Unst Var β
1i

β
2i

β
3i

Max Temp 1.493 -2.361 0.598 Precip 0.011 -0.022 0.369
Min Temp -0.993 2.889 -0.379 Wind -0.228 1.021 0.136
Solar R -0.044 -0.038 -0.263 R Hum -24.048 -8.467 -2.687√

Σα2
ij 1.794 3.731 0.755

√
Σβ2

ij 24.049 8.529 2.715

Stand Var α∗
1i

α∗
2i

α∗
3i

Stand Var β∗
1i

β∗
2i

β∗
3i

Max Temp 0.833 -0.633 0.792 Precip 0.0004 -0.003 0.136
Min Temp -0.553 0.774 -1.024 Wind -0.0095 0.120 0.050
Solar R -0.024 -0.010 -0.093 R Hum -1.0000 -0.993 -0.990
Source: Researcher’s computations (2023)

The response and predictor variables’ unstandardized raw canonical coefficients

are described in Table 7. The table provides the canonical equations for the first,

second, and third sets of canonical variates. The standardized variates are also

given in the lower portion of the table. In each case, the standardized variate,
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U∗
i has coefficients subject to the condition that

V ar (U∗
i ) = α∗

i
′αj = Σα∗2

ij =
1

Σα2
ij

Σα∗2
ij = 1.

Given that for i = 1, 2, 3 and j = 1, 2, 3, then the unstandardized canonical

variates are given as follows:

Ui =
3∑

j=1

αijyj and Vi =
3∑

j=1

βijxj

The variates may be standardized by the normalization conditions as follows:

U∗
i =

1√∑3
j=1 α

2
ij

3∑
j=1

αijyj and V ∗
i =

1√∑3
j=1 β

2
ij

3∑
j=1

βijxj

The equations for the first pair of unstandardized canonical variates denoted by

U1 and V1 are given as

U1 = 1.4934Y1 − 0.9927Y2 − 0.0438Y3

V1 = 0.0108X1 − 0.2282X2 − 24.0480X3

For example, for U∗
1 , we have

√
Σα2

j =
√

(1.4934)2 + (−0.9927)2 + (−0.0438)2 = 1.7938

U∗
1 =

1.4934

1.7938
Y1 +

−0.9927

1.7938
Y2 +

−0.0438

1.7938
Y3

U∗
1 = 0.8325Y1 − 0.5534Y2 − 0.0244Y3

Subject to: Variance (U∗
1 ) = (0.8325)2 + (−0.5534)2 + (−0.0244)2 = 1, where

Y1 denotes Maximum Temperature, Y2 represents Minimum Temperature and
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Y3 is Solar Radiation. Similarly, for V ∗
1 we have

√
Σβ2

j =
√
(0.0108)2 + (−0.2282)2 + (−24.048)2 = 24.0491

V ∗
1 =

0.0108

24.0491
X1 −

0.2282

24.0491
X2 −

24.048

24.0491
X3

V ∗
1 = 0.0004X1 − 0.0095X2 −X3

Subject to: Variance (V ∗
1 ) = (0.0004)2 + (−0.0095)2 + (−1)2 = 1, where X1,

X2 and X3 denote Precipitation, Wind and Relative Humidity, respectively. The

normalized canonical equations for the first set are given by the following equa-

tions:

U∗
1 = 0.8325Y1 − 0.5534Y2 − 0.0244Y3

V ∗
1 = 0.0004X1 − 0.0095X2 −X3

The standardized pairs (U∗
2 , V

∗
2 ) and (U∗

3 , V
∗
3 ) are the remaining two pairs of

canonical variates and are given in the lower portion of Table 7.

Test of Statistical Significance of CCA Functions

It is vital to establish and validate the statistical significance of the canon-

ical correlation coefficients prior to understanding the canonical variates and

their canonical correlations. In this section, the null and alternative hypotheses

are presented in order to evaluate the statistical significance of the traditional

findings presented in Chapter 3. The test statistic is provided by

Bi = −[n− 1− 1

2
(p+ q + 1)]ln∧i

The values of ∧i are given in Table 3. Using these data, Table 8—which con-

tains a section of Table 6—gives the statistic values and a summary of the test

findings.
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Table 8: Statistical Significance of all the CCA Functions

Function CCC ∧i df Bi Significance
1 0.735 0.3978 9 239.2071 0.0000
2 0.345 0.8537 4 41.0529 0.0000
3 0.175 0.9690 1 7.9223 0.0040

Source: Researcher’s computations (2023)

The second and third canonical correlation variates can be used to determine

their statistical significance once the first canonical variates’ influence has been

reduced. Within rounding errors, the value of ∧2 given in Table 8 is the same

as the value of Wilk’s Lambda given in Table 6. A 4-degree-of- freedom Chi

square distribution for B2 is statistically significant.

The statistical significance of the third canonical correlation can be per-

formed once the effects of the first and second canonical variates have been

considered. Now within rounding errors, the value of ∧3 given in Table 8 is also

the same as the value of Wilk’s Lambda of the third canonical root given in Ta-

ble 6. A 1-degree-of-freedom Chi-square distribution for B3 is also statistically

significant.

For example, the statistical significance of the first canonical correlation

is calculated using the following formula: The first root’s Wilk’s Lambda, ∧1,

is given by

∧1 = (1− ρ21)(1− ρ22)(1− ρ23)

= (1− 0.534)(1− 0.119)(1− 0.031)

= (0.466)(0.881)(0.969)

= 0.3978

This value is identical, within rounding errors, to the likelihood ratios given in

Tables 3 and 6. The corresponding statistic B1 is given as

B1 = −[n− 1− 1

2
(p+ q + 1)]ln∧1
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⇒ B1 = −[264− 1− 1

2
(3 + 3 + 1)]ln(0.3978)

= −(259.5)(−0.9218)

= 239.2071

The 9-degree-of-freedom Chi square distribution for B1 in this case is statisti-

cally significant. The null hypothesis is rejected since there are non-zero canon-

ical correlation values. By rejecting the null hypothesis, it is demonstrated that

at least the first canonical correlation is statistically significant.

Total proportion of variance explained

Table 9 compares the overall percentage of variance explained by the re-

sponse variables and the corresponding predictor variables.

Table 9: Total Proportion of Variance Explained by the Two Sets

Can Var Set 1 by Set 1 Set 1 by Set 2 Set 2 by Set 2 Set 2 by Set 1
1. 0.582 0.311 0.356 0.190
2. 0.107 0.013 0.317 0.038
3. 0.311 0.010 0.327 0.010

Source: Researcher’s computations (2023)

Graphical Representation of the CCA Functions

Figures 3 through 5 demonstrate the data from Tables 3, 4, and 5, as well

as the correlation between the response and the predictor variates. Figure 3

shows the structural equation of canonical correlation results for the first root.

Precipitation is quite near to zero, but all of the dependent variables have posi-

tive canonical loadings while the independent variables have negative canonical

loadings.
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Figure 3: Structural Equation showing the First Canonical Root

Figure 4 depicts the structural equation of canonical correlation results for the

second root. The canonical loading of criterion variables are positive and those

of independent variables are negative except for Wind, which is also high. Total

proportion of variance explained by both sets are 10.7% and 31.7%, which are

very small and the variance in percentage explained from Eigenvalues is given

as 10.3% which is also small.

Figure 4: Structural Equation showing the Second Canonical Root

The explanations in Figure 4 demonstrate that this second root cannot suffi-
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ciently account for the correlation pattern between the criterion variables and

various types of meteorological conditions. This second root indicates a very

weak connection between the dependent and independent variables, although

being statistically significant. Therefore, this canonical root cannot be used to

depict the correlation structure between the response variables and the predictor

factors.

The structural equation for the third root’s canonical correlation results is

shown in Figure 5. In contrast to the first two, the loading of the third root on

the responses are all negatives. Similarly, the sign in the predictors have also

reversed as into positive. This third root shows an approximate low correlation

between the response variables and the predictor factors, even if it is also statis-

tically significant.

Figure 5: Structural Equation showing the Third Canonical Root

Grouping Scheme Discriminant CCA Results

Table 10 shows the overall canonical correlation coefficient and the other

relevant statistics. Thus, the correlation coefficient between the subgroups of

heating variables and cooling weather variable subsets is 0.9014 without taking
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into account discrimination resulting from the effect of the year. Now, I examine

the effect of the year by first assuming that the year introduces only Two-group

discrimination in the data. Higher statistics values from Two-group discriminant

canonical correlation would provide the basis for Multiple-group discriminant

canonical correlation to be studied subsequently.

Table 10: Overall Tests of Significance for Original Data

Test Statistic Pillais Hotellings Wilks Roys Eig V CCC
Value 0.8127 4.3388 0.1873 0.8127 4.3388 0.9014
Significance 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Source: Researcher’s computations (2023)

Two-group discriminant canonical correlation analysis results

Figure 6: Grouping Scheme Pictorial map for 2-group DCCA Functions

The Two-group DCCA is designed in the GS pictorial map given in Fig-

ure 6, where blue colour denotes dummy variable one and red colour denotes
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dummy variable two. I generate the GSs pictorial map and use it to run several

Two-group DCCA from GS one through GS twenty (r - 1), where r is the total

number of years to check which one has the highest DCC, the highest Eigen-

value, the lowest Wilks Lambda and the highest Chi-square value as shown in

Table 10. GS is an approach that is intended to incorporate the time effect into

the CCA via DA in order to effectively handle the time-dependent multivariate

data (TDMD).

Table 11: Statistic Measures of 2-Group GS DCCA Functions

GS DCCC C Class Eig V W Lambda Chi-Square
1 0.141 61.0 0.020 0.980 5.221
2 0.219 65.9 0.050 0.952 12.697
3 0.341 70.8 0.131 0.884 31.965
4 0.425 76.1 0.220 0.819 51.598
5 0.466 75.4 0.278 0.783 63.502
6 0.580 78.8 0.507 0.663 106.263
7 0.556 77.0 0.448 0.690 95.964
8 0.578 74.6 0.501 0.666 105.117
9 0.628 80.3 0.652 0.605 129.981

10 0.700 86.0 0.962 0.510 174.606
11 0.781 89.8 1.564 0.390 243.834
12 0.851 93.6 2.619 0.276 333.130
13 0.898 97.3 4.143 0.194 424.140
14 0.907 98.9 4.627 0.178 447.452
15 0.878 95.8 3.377 0.228 382.372
16 0.835 92.0 2.311 0.302 310.115
17 0.720 87.9 1.474 0.404 234.660
18 0.720 86.0 1.074 0.482 188.894
19 0.632 86.0 0.666 0.600 132.276
20 0.541 84.8 0.251 0.707 89.849
Source: Researcher’s computations (2023)

Table 11 reports the first DCCCs and other relevant statistic measures of the

2-group discriminant canonical correlation analysis functions (DCCAFs). GS

14 has the best statistic values among all the schemes, which falls on the 168th

month, the end of 2013. That is, assuming the data may be suitably segmented

into two, then the partition that is provided by month 168 is the partition that
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provides the best correlation between the two subsets weather conditions. This

partition is given by the 14th GS. It is worth noting that the highest discriminant

canonical correlation coefficient (DCCC) obtained in this case is 0.907 which is

slightly higher than that in Table 10.

Figure 7: Series Plots of Statistic Measures of 2-group DCCA Functions

Figure 7 depicts the plots of the Two-group DCCAFs confirming that the opti-

mal values are all in the GS 14. Hence, GS 14 is the best GS so far as Two-group

discrimination is concerned. The overall CCC corresponds to one of the FDCCs

of Two-grouping schemes. This CCC may not necessarily be the highest among

all FDCCs of the GS but in my case they are the highest.

Multiple-group discriminant canonical correlation analysis results

I perform several grouping scheme discriminant canonical correlation anal-

ysis (GSDCCA) from Three-group up to Sixteen-group DCCA. This primary

goal of this section is to determine whether all FDCCs, Eigenvalues and Chi-

Square values in a given Multiple-group are greater than or equal to the statis-

tics of Two-group’s 14th GS values in Table 11 with corresponding lowest Wilks
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Lambdas. In all the Multiple-group DCCA that are examined, the various colours

as defined in the graph are used to denote the dummy variables for the respective

schemes.

Three-group grouping scheme DCCA functions results

Figure 8 depicts the grouping schemes pictorial map for 3-group DCCA

functions. The details in this figure are used to generate the needed classification

of Three-group discriminant functions shown in Table 12 to check whether all

the relevant statistics are more optimal than those given in the 14th GS shown in

Table 11.

Figure 8: Grouping Scheme Pictorial map for 3-group DCCA Functions

Table 12 reports the statistics values of the Three-group canonical discriminant

functions. Here, Grouping Scheme 4 has the most optimal statistics and fall on

the 48th month, at the end of 2003. However, the correct classification (92.4%)

is not the highest among all the correct classifications. The 17th GS reports the
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highest correct classification of 95.5%. All the FDCC values are greater than

the overall CCC of 0.901, all the Wilks Lambda values are less than the overall

value of 0.187 and the respective Eigenvalues are also greater than the overall

Eigenvalue of 4.339 as expected.

Table 12: Statistic Measures of 3-Group GS DCCA Functions

GS FDCC C. Class. Eig V W. Lambda Chi-Square
1 0.910 82.6 4.794 0.170 457.736
2 0.919 86.4 5.452 0.148 493.471
3 0.929 89.8 6.347 0.121 546.418
4 0.934 92.4 6.854 0.105 582.402
5 0.926 87.9 6.055 0.114 560.914
6 0.917 89.4 5.296 0.113 564.120
7 0.912 83.7 4.970 0.133 522.307
8 0.911 83.0 4.854 0.140 508.272
9 0.910 83.7 4.801 0.137 512.907

10 0.908 88.3 4.714 0.129 528.497
11 0.907 88.6 4.655 0.128 531.192
12 0.917 89.4 5.294 0.133 520.539
13 0.923 88.3 5.726 0.142 504.193
14 0.910 93.2 4.794 0.155 482.027
15 0.908 90.9 4.720 0.151 488.936
16 0.911 93.6 4.893 0.146 497.272
17 0.917 95.5 5.314 0.140 508.981
18 0.919 93.9 5.453 0.145 498.589
19 0.922 90.9 5.664 0.147 496.067
20 0.917 88.6 5.270 0.157 478.591
Source: Researcher’s computations (2023)

Figure 9: Series Slots of Statistic Measures of 3-group DCCA Functions
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Figure 9 depicts the plots of the statistics of the Three-group discriminant CCA

functions confirming the four optimal values in the GS 4.

Four-group grouping scheme DCCA Functions results

Figure 10 depicts the grouping schemes pictorial map for Four-group

DCCA functions. The details in this figure are used to generate the needed

table for statistic measures of Four-group DCCA functions.

Figure 10: Grouping Scheme Pictorial map for 4-group DCCA Functions

Table 13 reports the relevant statistics of the Four-group GS DCCA func-

tions. In this case, all the FDCC values are greater than the overall CCC of

0.902, the Wilks Lambda values are less than the overall value of 0.187 and the

respective Eigenvalues are also greater than the overall Eigenvalue of 4.339 as
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required. It is observed that GS 4 has the most optimal values for all the statistic

measures.

Table 13: Statistic Measures of 4-Group GS DCCA Functions

GS FDCC C. Class. Eig V W. Lambda Chi-Square
1 0.919 77.7 5.468 0.150 489.375
2 0.934 83.0 6.813 0.120 547.881
3 0.945 86.6 8.342 0.089 623.733
4 0.948 91.7 8.884 0.074 672.814
5 0.933 84.8 6.760 0.089 624.132
6 0.920 80.7 5.476 0.094 609.164
7 0.916 78.0 5.186 0.115 558.404
8 0.921 75.0 5.596 0.122 542.141
9 0.927 77.7 6.082 0.110 569.401

10 0.922 84.8 5.679 0.103 586.450
11 0.917 86.7 5.317 0.100 595.289
12 0.920 85.2 5.534 0.110 570.155
13 0.924 82.2 5.825 0.121 545.563
14 0.920 84.8 5.508 0.116 555.945
15 0.909 81.8 4.739 0.108 573.591
16 0.914 84.5 5.056 0.104 584.822
17 0.921 80.3 5.626 0.106 579.601
18 0.925 81.4 5.964 0.109 572.374
19 0.929 78.4 6.289 0.106 578.697
20 0.928 81.1 6.185 0.097 600.922
Source: Researcher’s computations (2023)

Figure 11: Series Plots of Statistic Measures of 4-group DCCA Functions
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Figure 11 depicts the plots of the relevant statistic measures for Four-group dis-

criminant canonical correlation analysis functions confirming that the most op-

timal values are all in grouping scheme 4, the 48th month, at the end of 2003.

Five-group grouping scheme DCCA functions results

Figure 12 depicts the grouping scheme pictorial map for Five-group group-

ing scheme discriminant canonical correlation analysis functions. The details in

this figure are used to generate the needed information.

Figure 12: Grouping Scheme Pictorial map for 5-group DCCA Functions
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Table 14 reports the statistic measures of the Five-group discriminant canon-

ical correlation analysis functions. From the table, all the statistic measures

for each GS are better than the overall canonical correlation coefficient statistic

measures. Grouping scheme 14 has the most optimal values over all the statistic

measures and are achieved on the 168th month, at the end of 2013, which is the

same as reported in the Two-group discriminant canonical correlation analysis

functions scores given in Table 11.

Table 14: Statistic Measures of 5-Group GS DCCA Functions

GS FDCC C. Class. Eig V W. Lambda Chi-Square
1 0.936 79.5 9.347 0.059 727.005
2 0.946 83.3 8.565 0.082 644.846
3 0.947 86.4 8.642 0.064 709.626
4 0.948 84.5 8.887 0.057 739.447
5 0.934 75.8 6.784 0.076 664.485
6 0.920 71.2 5.477 0.088 626.025
7 0.931 73.1 6.538 0.088 625.616
8 0.935 73.1 6.921 0.080 651.043
9 0.937 75.8 7.172 0.077 661.864

10 0.932 78.4 6.613 0.080 648.902
11 0.923 76.9 5.716 0.099 596.702
12 0.959 86.4 11.323 0.060 725.510
13 0.958 86.4 11.246 0.069 689.782
14 0.967 89.0 14.375 0.045 799.903
15 0.936 83.7 7.117 0.062 718.082
16 0.930 81.4 6.453 0.067 696.751
17 0.941 77.7 7.804 0.068 692.513
18 0.937 73.1 7.202 0.077 660.971
19 0.934 73.9 6.795 0.085 635.070
20 0.922 72.3 5.681 0.096 604.435
Source: Researcher’s computations (2023)

Figure 13 depicts the plots of Five-group grouping scheme canonical discrim-

inant statistics confirming the highest score of the first discriminant canonical

correlation, the highest score of Eigenvalue, the highest score of Chi-Square

value and the lowest score of Wilks Lambda, all in the grouping scheme 14, the

168th month, at the end of 2013.
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Figure 13: Series Plots of Statistic Measures of 5-group DCCA Functions

Six-group grouping scheme DCCA functions results

Table 15 depicts the five relevant statistic measures of the Six-group GS

Table 15: Statistic Measures of 6-Group GS DCCA Functions

GS FDCC C. Class. Eig V W. Lambda Chi-Square
1 0.945 71.6 8.365 0.079 653.744
2 0.952 77.3 9.604 0.057 738.338
3 0.948 80.7 8.829 0.052 759.978
4 0.948 81.1 8.949 0.051 764.437
5 0.934 71.6 6.854 0.070 681.691
6 0.920 67.4 5.511 0.085 632.212
7 0.931 69.3 6.501 0.077 658.579
8 0.935 68.2 6.926 0.071 680.794
9 0.938 70.1 7.270 0.061 718.990

10 0.935 77.3 6.917 0.054 752.116
11 0.937 76.5 7.138 0.059 729.125
12 0.952 76.9 9.571 0.058 731.516
13 0.961 77.3 11.937 0.056 742.029
14 0.961 79.9 12.123 0.048 777.800
15 0.946 79.9 8.600 0.055 745.050
16 0.931 78.8 6.457 0.063 708.749
17 0.934 71.6 6.854 0.070 681.691
18 0.937 73.1 7.202 0.077 660.971
19 0.935 67.0 6.920 0.074 670.785
20 0.924 66.7 5.845 0.071 680.211
Source: Researcher’s computations (2023)
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discriminant canonical correlation analysis functions. From the table, all the

first discriminant canonical correlation (FDCC) values are greater than the over-

all canonical correlation coefficient of 0.902, the Eigenvalues are greater than

the overall Eigenvalue of 4.339 and the Wilks Lambda values are less than the

overall value of 0.187 reported in Table 10. However, correct classification

value reduces for all grouping schemes due to increased group-discrimination.

The 4th GS reports the highest correct classification of 81.1%. The 14th group-

ing scheme reports the most optimal values of the remaining statistic measures

which are achieved on the 168th month, at the end of 2013. Figure 14 depicts the

plots of the statistics for the Six-group grouping scheme discriminant canonical

correlation analysis functions confirming the most optimal values all in group-

ing scheme 14.

Figure 14: Series Plots of Statistic Measures of 6-group DCCA Functions

Seven-group grouping scheme DCCA functions results

Figure 15 depicts the grouping scheme pictorial map for Seven-group

grouping scheme discriminant canonical correlation analysis functions which
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is used to generate the requisite information.

Figure 15: Grouping Schemes Pictorial map for 7-group DCCA Functions

Table 16 depicts the statistics of Seven-group discriminant canonical correla-

tion analysis functions. From the table, for each grouping scheme, measures

are more optimal than corresponding values of the overall canonical correla-

tion coefficient except for the correct classifications that decrease as a result of

increased group discrimination. The grouping scheme 14 reports the most opti-

mal values for all five measures which also fell on the 168th month, at the end

of 2013.
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Table 16: Statistic Measures of 7-Group GS DCCA Functions

GS FDCC C. Class. Eig V W. Lambda Chi-Square
1 0.950 69.3 9.347 0.059 727.005
2 0.951 73.5 9.509 0.050 766.905
3 0.946 75.8 8.534 0.047 785.478
4 0.943 73.9 7.986 0.052 757.882
5 0.943 68.2 8.090 0.058 731.603
6 0.925 64.8 5.952 0.075 663.451
7 0.931 64.8 6.524 0.071 677.124
8 0.939 66.3 7.434 0.064 704.327
9 0.939 65.9 7.399 0.057 735.468

10 0.935 70.1 6.929 0.050 767.748
11 0.937 71.6 7.148 0.053 754.499
12 0.952 71.2 9.574 0.048 778.181
13 0.956 76.1 10.717 0.055 743.672
14 0.968 81.8 14.928 0.032 881.004
15 0.947 74.6 8.614 0.050 770.788
16 0.931 71.6 6.471 0.059 724.858
17 0.935 67.4 6.963 0.066 697.764
18 0.942 68.2 7.815 0.068 689.833
19 0.945 67.4 8.386 0.058 728.640
20 0.938 68.2 7.264 0.058 728.935
Source: Researcher’s computations (2023)

Figure 16: Series Plots of Statistic Measures of 7-group DCCA Functions
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Figure 16 depicts the plots of Seven-group DCC functions confirming the most

optimal values for all four measures of discrimination. My results show that

from Group-seven up to Group-twenty, only first six canonical discriminant

functions for each Multiple-group are used in the analysis.

It is noteworthy that, at this point, aside from the Two-group grouping

scheme discriminant CCA, it is the Four-group, Five-group and Seven-group

grouping scheme discriminant CCA that produce the most optimal statistics val-

ues over all five measures for the same best grouping scheme.

Summary statistic measures for all best multiple-groups DCCAFs

Table 17 depicts the summary of all the highest scores of the GS classifica-

tions of all the Multiple-groups from Two-group to Sixteen-group, reporting the

highest FDCC values, the highest Eigenvalues, the lowest Wilks Lambda values

and the highest Chi-square values and their respective grouping schemes.

Table 17: Summary Statistic Measures for all Best Multiple-Groups

Group FDCC Eig V Wilks L. Chi-Sq GS Month Year
2 0.907 4.627 0.178 447.452 14 168th 2013
3 0.934 6.854 0.105 582.402 4 48th 2003
4 0.948 8.884 0.074 672.814 4 48th 2003
5 0.967 14.375 0.045 799.903 14 168th 2013
6 0.961 12.123 0.048 777.800 14 168th 2013
7 0.968 14.928 0.032 881.004 14 168th 2013
8 0.956 10.601 0.046 789.584 14 168th 2013
9 0.964 13.190 0.047 784.399 14 168th 2013

10 0.965 13.628 0.047 791.777 5 60th 2004
11 0.965 13.715 0.040 866.505 4 48th 2003
12 0.962 12.294 0.038 808.021 14 168th 2013
13 0.963 12.924 0.036 828.047 14 168th 2013
14 0.965 13.669 0.034 876.168 14 168th 2013
15 0.964 12.996 0.034 841.741 4 48th 2003
16 0.962 12.385 0.043 752.701 4 48th 2003

Source: Researcher’s computations (2023)

Since the best GS may not report the highest correct classification, the correct
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classification is not provided in the table. The table confirms that Seven-group

grouping scheme multiple discriminant canonical correlation analysis outper-

forms all the other groupings, from Three-group to Sixteen-group. Again, out

of all the Multiple-groups, it is GS 14 of Seven-group canonical discriminant

function that gives the most optimal statistics for all four measures. Hence, GS

14 of the Seven-group GS discriminant CCA is used to perform the remaining

analyses.

Again 60% ( 9
15

) of the possible Multiple-group DA yields GS 14 as the

best grouping scheme. The findings also show that when the time impact is con-

sidered at the canonical correlation analysis, the correlation between the subset

of cooling variables and heating variables improves, rising from 0.901 to 0.968.

Figure 17: Plots of Overall Best-group DCCA Functions Statistic Measures

From Figure 17, the highest FDCC sharply increased from 3-group up to 5-

group and slowly decrease from 5-group up to 7-group and slowly decreases

again from there to Sixteen-group. The Eigenvalues shows similar results as the

FDCC. The movement of the Wilks Lambda is the reverse of the corresponding

FDCC. The figure confirms that 7-group reports the highest FDCC value for all

Multiple-groups and hence outperforms all of them from 3-group to 17-group.
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Figure 18 depicts the first nine plots from 3-group to 11-group of overall

best highest FDCC values from GS 1 to GS 20. The figure confirms that GS 14

reports the highest values for a number of Multiple-group FDCC, for example,

5-group, 6-group, 7-group and 8-group.

Figure 18: Plots of Multiple-group FDCCs from 3-group to 11-group

Figure 19: Plots of Multiple-group FDCCs from 2-group to 11-group

Figure 19 depicts the first ten series plots of the original data from Two-group
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to Eleven-group FDCC values from GS 1 to GS 20. The figure confirms that all

the Multiple-group’s FDCC values are higher than the highest Two-group DCC

value of 0.907 in GS 14 given in Table 11 as well as the overall value of 0.901

also in Table 10.

Figure 20: Plots of Correct Classifications from 2-group to 10-group

Figure 20 reports the first nine series plots from Two-group to Ten-group of

correct classification values from GS 1 to GS 20. The figure confirms that the

Two-group GSDCCA outperforms all the Multiple-group GSDCCA, follows by

the Three-group, Five-group, Four-group, Seven-group GSDCCA, etc., and the

Ten-group GSDCCA gives the lowest so far as GS 14 is concerned.

Statistical Significance of DCCA Functions

Table 18 displays a summary statistics of the DCCFs for GS 14 of the

Seven-group discriminant canonical correlation analysis. The six (6) discrimi-

nant canonical correlation Functions are selected for the analysis in this study.

According to the Chi-square test, the chi-square number provided in the table’s

first row indicates the statistical significance of every potential function, not just
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the first function. To evaluate the overall statistical significance of the CCA co-

efficients, I calculate the Chi-square values for each of the six functions.

Table 18: Best Seven-Group Discriminant CCA Functions

Fun DCC Chi-Sq Eig V Var C Var W Lamb Sig.
1 0.968 881.004 14.928 95.0 95.0 0.032 0.000
2 0.578 170.995 0.503 3.2 98.2 0.513 0.000
3 0.432 66.515 0.230 1.5 99.7 0.772 0.000
4 0.207 13.488 0.045 0.3 99.9 0.949 0.142
5 0.091 2.205 0.008 0.1 100.0 0.991 0.698
6 0.017 0.075 0.000 0.0 100.0 1.000 0.785

Source: Researcher’s computations (2023)

The first Chi-square (χ2
1) value is computed as follows:

χ2
1 =

[
n− 1−

(
p+G

2

)] 6∑
k=1

ln (1 + λk)

=

[
264− 1−

(
6 + 7

2

)]
[ln (15.928) + ln (1.503) + ...+ ln (1.008) + ln (1.0)]

= (256.5)(3.434540902)

= 880.9597

where λi are the eigenvalues. Within rounding error, the Chi-square value of

880.9597 is the same as the Chi-square value given in Table 17. The result

means that at least the first DCC is statistically significant because the Chi-

square value in this case is statistically significant. If the additional discriminant

functions are statistically significant, it means that they explain substantially the

difference between the Seven-group than the initial discriminant function.
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The second Chi-square (χ2
2) value, is obtained as follows:

χ2
2 =

[
n− 1−

(
p+G

2

)] 6∑
k=2

ln (1 + λk)

=

[
264− 1−

(
6 + 7

2

)]
[ln (1.503) + ln (1.23) + ...+ ln (1.008) + ln (1.0)]

= (256.5)(0.6665)

= 170.9573

Noting that the initial discriminant function’s eigenvalue is ignored. The third

Chi-square (χ2
3) value, is obtained as follows:

χ2
3 =

[
n− 1−

(
p+G

2

)] 6∑
k=3

ln (1 + λk)

=

[
264− 1−

(
6 + 7

2

)]
[ln (1.23) + ln (1.045) + ln (1.008) + ln (1.0)]

= (256.5)(0.2590)

= 66.4335

The fourth Chi-square (χ2
4) value, is obtained as follows:

χ2
4 =

[
n− 1−

(
p+G

2

)] 6∑
k=4

ln (1 + λk)

=

[
264− 1−

(
6 + 7

2

)]
[ln (1.045) + ln (1.008) + ln (1.0)]

= (256.5)(0.05199)

= 13.3354

A significant Chi-square finding indicates that the second, third, and fourth func-

tions significantly explain the group difference not captured by the first dis-

criminant function. It may be concluded that the second discriminant function

explains at least some of the difference between the Seven-group that is not
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described by the first discriminant function, as seen by its statistically signifi-

cant Chi-square value (170.9573). The same is true for the third discriminant

function Chi-square value (66.4335). The fourth, fifth, and sixth discriminant

functions are not statistically significant as in Table 18.

Estimation of Discriminant CCA Function Scores

Table 19 depicts the unstandardized discriminant canonical correlation

function coefficients that are used to generate the needed functions for depen-

dent and independent variables. This section provides the various control pa-

rameters for calculating the discriminant functions. Six discriminant canonical

correlation functions can be computed for Seven-group discriminant canonical

correlation analysis.

Table 19: Unstandardized Discriminant CCA Functions Coefficients

Variable Fn 1 Fn 2 Fn 3 Fn 4 Fn 5 Fn 6
Max. Temp. 2.411 1.986 -1.138 -0.778 2.470 -0.738
Min. Temp. -0.185 -1.689 1.606 1.114 -2.503 0.263
Solar Rad. 0.035 -0.001 -0.108 0.078 -0.025 0.243
Precipitation 0.005 -0.180 0.231 0.041 0.212 0.164
Wind -0.154 -0.397 -0.673 0.570 0.627 -0.331
Rel. Humid. 1.278 34.859 10.562 17.087 7.252 -8.249
Constant Term -61.680 -35.431 -14.341 -27.394 -10.459 16.221

Source: Researcher’s computations (2023)

Simulation Studies of Time-Independent Data

Consistent with the first part of this chapter, the first part of the simula-

tion assumes a Time-independent data that does not incorporate the effect of

the time (years). Using the simulated data thus obtained, the GSDCCA will be

carried out to establish the relevance of the concept of grouping scheme pro-

posed in this thesis. The second part of the simulation would then assume a
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time-dependent data that incorporates the effect of the year based on the best

Seven-group GSDCCA identified at the end of the first part of this chapter.

Simulation of Multiple-group DCCA functions

This section is to build a simulation result tables that identifies the best

grouping scheme for all possible Multiple-group Discriminant Analysis. Through

the use of datasets for simulated weather conditions, we assess the effectiveness

of the suggested approach. My approach and findings are compared with those

of the original weather circumstances using discriminant canonical correlation

analysis of Time-independent data structure. The summaries of the simulation

data are presented in Table 20 where n represents the total number of observa-

tions, d represents the mean of the total number of time-dependent variables,

and T is the total number of time events that were recorded.

Table 20: Parameters for Time-Independent Simulation Data

Sum Stats Max T Min T Solar R Precip Wind Rel Hum
n 264 264 264 264 264 264
d 27.281 26.500 22.071 1.779 5.793 0.824
T 1.761 1.612 4.555 2.786 0.978 0.040

Min Value 22.250 21.897 9.061 -6.168 3.000 0.708
Max Value 32.285 31.079 35.014 9.704 8.571 0.938
Source: Researcher’s computations (2023)

Series plots of simulation for Time-independent weather condition

The plots of the monthly simulated weather conditions data in Ghana from

January 2000 to December 2021 are shown in Figure 21. We can see from

the figures that the data exhibit random changes with no noticeable patterns.

The magnitudes of the seasonal fluctuations remain the same, although the data

values tend to rise over time. Although it is not always the case, the tendency

in simulated weather conditions data generally appears to be seasonal. Most of
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the data points depart marginally from the mean. This implies that mean non-

stationarity is present in this situation.

Figure 21: Series Plots of data on Six monthly Time-Ind. Simulation

Summary results of simulated data for DCCA functions for all 3 Roots

Table 21 shows the overall simulated CCC value of 0.7138, the overall

Wilks Lambda value of 0.4905, and the overall Eigenvalue of 1.0386. The sim-

ulated data is used to generate 2-group up to 16-group GS DCCA to check if the

results of the statistic measures are less than or greater than the overall results

given in Table 21. It is also used to confirm the general results in the original

data.

Table 21: Overall Tests of Significance for Time-Ind. Simulation

Test Statistic CCC Eig V Wilks Roys Hotellings Pillais
Value 0.7138 1.0386 0.4905 0.5095 1.0386 0.5095
Significance 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Source: Researcher’s computations (2023)

Time-independent simulation results of 2-group DCCA functions

Table B1 in the appendix depicts Two-group GSDCCA. The 3rd GS re-

ports the highest FDCC of 0.163 which is less than the overall value, the highest

131

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



correct classification of 61.4%, the highest eigenvalue of 0.027 which is less

than the overall value, the lowest Wilks Lambda value of 0.973 which is greater

than the overall value, and the highest Chi-square value of 7.014 as expected.

Thus, optimal values for the Two-group GSDCCA are no better than the overall

statistic measures. Similarly, Tables B2 and B3 show results for Three-group

and Four-group GSDCCA, with GS 4 yielding the optimal statistic measures.

Table B4 shows that GS 13 yields the optimal results in Six-group GSDCCA.

In all of these, the highest correct classification is attained by the best identified

grouping scheme.

Time-independent simulation results of Higher-group DCCA functions

Table 22 depicts Five-group grouping scheme discriminant canonical cor-

relation analysis.

Table 22: Time-Independent Statistics Measures of 5-Group DCCAFs

GS FDCC C Class Eig V W Lambda Chi-Square
1 0.201 21.6 0.042 0.923 20.764
2 0.183 23.5 0.035 0.926 19.681
3 0.216 25.8 0.049 0.914 23.186
4 0.214 27.3 0.048 0.924 20.482
5 0.181 25.0 0.034 0.940 15.940
6 0.170 28.0 0.030 0.943 15.090
7 0.185 25.4 0.036 0.926 19.710
8 0.211 27.3 0.047 0.929 18.987
9 0.214 26.5 0.048 0.922 21.051

10 0.164 27.3 0.028 0.937 16.621
11 0.162 21.6 0.027 0.942 15.407
12 0.169 21.2 0.030 0.930 18.581
13 0.216 23.9 0.049 0.911 24.070
14 0.240 28.4 0.061 0.897 28.097
15 0.176 25.8 0.032 0.927 19.496
16 0.164 22.0 0.028 0.936 16.996
17 0.213 27.3 0.047 0.924 20.445
18 0.213 26.9 0.048 0.929 19.092
19 0.219 29.9 0.050 0.919 21.836
20 0.171 26.5 0.030 0.942 15.435
Source: Researcher’s computations (2023)
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The grouping scheme 14 reports the most optimal statistics for all measures ex-

cept for correct classification. All of these optimal values are no better than the

overall values in Table 21.

Table 23: Time-Independent Statistics Measures of 7-Group DCCFs

GS FDCC C Class Eig V W Lamb Chi-Square
1 0.213 19.3 0.048 0.880 32.728
2 0.181 22.0 0.034 0.891 29.513
3 0.236 25.4 0.059 0.886 31.128
4 0.211 22.0 0.047 0.896 28.145
5 0.187 17.8 0.036 0.905 25.556
6 0.191 20.8 0.038 0.913 23.474
7 0.194 17.4 0.039 0.911 23.962
8 0.215 19.7 0.049 0.904 25.897
9 0.215 20.8 0.049 0.899 27.421

10 0.170 20.8 0.030 0.917 22.248
11 0.177 20.1 0.032 0.910 24.114
12 0.186 22.3 0.036 0.900 27.070
13 0.213 22.3 0.047 0.876 34.102
14 0.252 20.8 0.065 0.875 34.106
15 0.212 22.0 0.047 0.893 28.942
16 0.182 20.5 0.034 0.916 22.609
17 0.193 16.7 0.039 0.900 27.102
18 0.215 24.2 0.048 0.909 24.536
19 0.221 17.8 0.051 0.877 33.611
20 0.179 20.8 0.033 0.904 25.981
Source: Researcher’s computations (2023)

Time-independent simulation results for Seven-group grouping scheme discrim-

inant canonical correlation analysis is shown in Table 23. The grouping scheme

14 reports the most optimal statistic for all measures except for correct classifi-

cation but are no better than the overall values in Table 21.

Table 24 depicts the summary of all the highest scores of the grouping

scheme Time-independent simulation results of all the Multiple-groups from

Two-group to Sixteen-group, reporting the the optimal values for the relevant

measures including their respective grouping schemes. The table confirms that

Seven-group grouping scheme discriminant canonical correlation analysis has
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the optimal statistic measures and outperforms all the other Multiple-group

grouping scheme discriminant canonical correlation analysis.

Table 24: Summary Statistic Measures for all Best Time-Indep. DCCAFs

Group FDCC Eig V W Lamb Chi-Sq GS Month Year
2 0.163 0.027 0.973 7.014 3 36th 2002
3 0.214 0.048 0.945 14.532 4 48th 2003
4 0.215 0.048 0.924 20.895 4 48th 2003
5 0.240 0.061 0.897 28.097 14 168th 2013
6 0.241 0.061 0.885 31.320 13 156th 2012
7 0.252 0.065 0.875 34.106 14 168th 2013
8 0.224 0.053 0.877 33.592 14 168th 2013
9 0.203 0.043 0.895 28.283 11 132nd 2010
10 0.166 0.028 0.928 19.019 5 60th 2004
11 0.216 0.049 0.904 25.617 4 48th 2003
12 0.202 0.042 0.901 26.575 14 168th 2013
13 0.211 0.046 0.886 30.823 14 168th 2013
14 0.197 0.040 0.879 32.521 14 168th 2013
15 0.192 0.038 0.914 22.631 4 48th 2003
16 0.208 0.045 0.901 26.234 4 48th 2003

Source: Researcher’s computations (2023)

These results demonstrate that as predicted by my approaches, the Seven-group

algorithm outperforms the other Multiple-groups of my generated Grouping

Scheme Discriminant Canonical Correlation Analysis methods. Here, 40% ( 6
15

)

of the possible Multiple-group grouping scheme discriminant canonical correla-

tion analysis yields grouping scheme 14 as the best grouping scheme as shown

in Table 24 compared 60% ( 9
15

) in the original data.

Figure 22 depicts the first nine series plots of the Time-independent FDCC val-

ues from Two-group to Ten-group ranging in size from GS 1 to GS 20. The

figure confirms that all the FDCC values are no better than the overall value of

0.714 given in Table 21.
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Figure 22: Plots of Time-Ind. Multiple-group FDCCs from 2 to 10-group

Simulation Studies of Time-Dependent Data

Using the simulated data thus obtained, the grouping scheme discriminant

canonical correlation analysis will be carried out to establish the relevance of the

concept of grouping scheme proposed in this thesis. This part of the simulation

would then assume a Time-Dependent Data that incorporates the effect of the

year based on the best Seven-group grouping scheme discriminant canonical

correlation analysis identified at the end of the first part of this chapter.

Time-dep. simulated data summary results for DCCA functions

Table 25 shows the overall Time-dependent simulated canonical corre-

lation coefficient (CCC) value of 0.8861, the overall Wilks Lambda value of

0.2148, and the overall Eigenvalue of 3.6546. The time-dependent simulated

data is used to generate Two-group up to Sixteen-group GS discriminant canon-

ical correlation analysis to check if the results of the first discriminant canonical

correlation (FDCC) values and Eigenvalues are higher than the overall results

of 0.8861 and 3.6546, respectively, and the Wilks Lambda values are also less
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than the overall result of 0.2148. It is also used to confirm the general results in

the original data.

Table 25: Overall Tests of Significance for Time-Dependent Data

Test Statistic CCC Eig V Wilks Roys Hotellings Pillais
Value 0.8861 3.6546 0.2148 0.7852 3.6546 0.7852
Significance 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Source: Researcher’s computations (2023)

The series plots of the Time-dependent monthly simulated weather conditions

data are shown in Figure 23. All the six variables especially, the two temper-

ature variables are seen to follow the pattern in the original data as expected.

The data exhibit random changes with noticeable patterns. The magnitude of

seasonal fluctuations do not remain the same, although the data values turn to

rise over time. The Time-dependent monthly simulated weather conditions data,

therefore, mimic the original data as expected.

Figure 23: Series Plots of data on six monthly Time-dependent simulation
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Table 26 reports the summary statistics of the response and predictor variables

for the Time-dependent simulation data, based on the Seven-group discriminant

canonical correlation analysis with best grouping scheme of 14.

Table 26: Parameters for Time-Dependent Simulation Data

DV Sum Stats Max T Min T Solar R Precip Wind Rel H
n1 168 168 168 168 168 168
d 28.39 27.47 23.65 1.56 5.59 0.81

1 T1 0.84 0.89 2.84 2.51 0.96 0.03
Min V 26.53 25.09 5.29 0.00 3.06 0.63
Max V 29.94 29.52 26.35 15.96 7.82 0.89
n2 12 12 12 12 12 12
d 26.23 25.64 19.10 2.56 6.07 0.85

2 T2 0.24 0.28 6.21 3.19 0.77 0.01
Min V 25.80 25.02 7.37 0.00 4.43 0.82
Max V 26.66 25.96 24.05 11.00 7.31 0.87
n3 12 12 12 12 12 12
d 25.86 25.39 20.07 0.51 5.93 0.84

3 T3 0.24 0.29 4.01 3.62 0.84 0.01
Min V 25.59 25.00 10.86 0.00 4.50 0.83
Max V 26.36 26.00 23.85 11.05 7.28 0.86
n4 12 12 12 12 12 12
d 25.53 25.01 20.21 0.42 6.88 0.81

4 T4 0.37 0.56 4.35 0.61 0.88 0.03
Min V 24.82 23.86 13.28 0.00 5.61 0.77
Max V 25.95 25.63 24.47 1.76 8.15 0.85
n5 12 12 12 12 12 12
d 25.16 24.50 18.95 1.49 6.23 0.83

5 T5 0.32 0.23 4.18 2.69 0.87 0.02
Min V 24.64 24.15 11.26 0.00 4.60 0.79
Max V 25.64 25.04 25.02 7.90 7.46 0.86
n6 12 12 12 12 12 12
d 24.69 24.28 17.63 1.42 6.28 0.86

6 T6 0.25 0.22 5.14 1.84 0.57 0.01
Min V 24.40 23.86 8.34 0.00 5.05 0.84
Max V 25.17 24.66 24.59 5.72 7.18 0.87
n7 36 36 36 36 36 36
d 24.71 24.19 18.58 2.46 5.75 0.88

7 T7 0.37 0.44 5.83 3.66 0.84 0.02
Min V 23.87 23.16 1.58 0.00 3.70 0.83
Max V 25.31 24.97 26.05 13.41 7.10 0.90

Source: Researcher’s computations (2023)
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Simulation of Time-dependent multiple-group GS DCCA functions

In this section, I use the best GS 14 of the optimal Seven-group DCCA

to build a simulation that identifies the best GS for all possible Time-dependent

Multiple-group DCCA. Through the use of datasets for simulated weather con-

ditions, I assess the effectiveness of the suggested approach. My approach

Table 27: Statistic Measures of 2-Group GS DCCAFs for Time-Dep.

GS FirstDCC C Class Eig V W Lambda Chi-Square
1 0.150 68.9 0.023 0.977 5.919
2 0.288 65.2 0.037 0.965 9.339
3 0.209 67.0 0.046 0.956 11.537
4 0.230 63.6 0.056 0.947 14.064
5 0.321 64.4 0.115 0.897 28.147
6 0.379 67.0 0.168 0.856 40.127
7 0.453 69.3 0.258 0.795 59.454
8 0.528 74.6 0.387 0.721 84.707
9 0.598 79.9 0.557 0.642 114.657

10 0.676 85.2 0.843 0.543 158.317
11 0.748 90.9 1.272 0.440 212.530
12 0.848 94.3 2.552 0.282 328.259
13 0.857 95.5 2.776 0.265 344.119
14 0.903 99.6 4.413 0.185 437.418
15 0.860 95.1 2.839 0.261 348.388
16 0.833 90.9 2.275 0.305 307.230
17 0.764 86.7 1.401 0.416 226.888
18 0.740 89.0 1.209 0.453 205.288
19 0.626 85.2 0.645 0.608 128.973
20 0.496 82.2 0.327 0.754 73.221
Source: Researcher’s computations (2023)

and findings are compared with those of the original weather circumstances

discriminative CCA. I run several Multiple-group DCCA based on the Time-

dependent simulation eventhough the underlying structure is Seven-group. First,

Two-group DCCA is carried out for GS 1 through GS 20 to check which one has

the best statistic values among all the schemes for the five statistic measures. As

shown in Table 27, GS 14 has the best statistic values among all the schemes,

which falls on the 168th month, at the end of 2013. That is, assuming the data
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may be suitably generated into two, the partition that is provided with month

168 as the partition line provides the best correlation between the two subsets

weather conditions. This partition is given by the 14th GS. It is worth noting

that the highest DCC obtained in this case is 0.903 which is slightly higher than

the overall value of 0.886 given in Table 25.

Figure 24: Series Plots of Time-Dep. Statistic Measures of 2-group DCCA

Figure 24 shows the plots of the statistics for the Two-group DCCA of the Time-

dependent simulation, confirming that the optimal values are all in the GS 14.

Hence, GS 14 is the best GS so far as Two-group discrimination is concerned.

The overall CCC corresponds to (DCC = 0.903) of the Two-grouping schemes.

Several functions are then performed from Three-group up to Sixteen-group GS-

DCCA. This section’s primary goal is to determine whether all the five statistics

measures in a given Multiple-group are greater than or equal to the statistics of

Two-group’s 14th GS values in Table 27.

Table 28 reports the statistics values of the Three-group discriminant canon-

ical correlation analysis of Time-dependent data. Here, GS 3 has the most op-

timal statistics and fall on the 36th month, at the end of 2002. However, the

17th GS reports the highest correct classification value. All the FDCC values

are greater than the overall CCC of 0.8861, all the Wilks Lambda values are less
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than the overall value of 0.2148 and the respective Eigenvalues are also greater

than the overall Eigenvalue of 3.6548 as expected.

Table 28: Statistic measures of 3-Group GS DCCAFs for Time-Dep.

GS FDCC C Class Eig V W Lambda Chi-Square
1 0.913 86.4 4.990 0.163 468.578
2 0.921 89.0 5.600 0.146 496.817
3 0.937 92.4 7.181 0.117 554.647
4 0.927 88.6 6.112 0.135 517.398
5 0.919 84.1 5.427 0.146 497.772
6 0.917 83.0 5.280 0.147 495.932
7 0.913 81.4 5.029 0.149 492.795
8 0.909 81.4 4.765 0.150 491.194
9 0.909 86.4 4.732 0.143 502.245

10 0.906 91.3 4.588 0.137 514.516
11 0.903 93.2 4.415 0.147 496.020
12 0.913 91.7 5.005 0.138 511.076
13 0.905 93.9 4.534 0.159 476.108
14 0.905 89.8 4.522 0.176 448.823
15 0.908 88.6 4.720 0.169 459.938
16 0.913 90.5 4.979 0.155 481.700
17 0.918 95.8 5.395 0.137 514.268
18 0.915 91.7 5.148 0.155 482.085
19 0.919 92.8 5.419 0.153 484.460
20 0.908 89.0 4.722 0.172 454.867
Source: Researcher’s computations (2023)

Figure 25: Series Plots of Time-Dep. Statistic Measures of 3-group DCCA
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Figure 25 depicts the plots of the statistics measures in Table 28 confirming that

the four optimal statistic measures are in the grouping scheme 3.

Table 29: Statistic measures of 4-Group GS DCCAFs for Time-Dep.

GS FDCC C Class Eig V W Lambda Chi-Square
1 0.918 79.5 5.391 0.151 488.306
2 0.937 86.7 7.215 0.116 555.980
3 0.950 88.3 9.317 0.089 625.480
4 0.944 88.3 8.172 0.092 616.025
5 0.929 78.8 6.330 0.119 549.896
6 0.923 72.0 5.741 0.132 522.244
7 0.915 70.8 5.168 0.141 504.804
8 0.915 73.9 5.134 0.138 510.165
9 0.925 79.2 5.951 0.116 555.349

10 0.919 83.7 5.449 0.113 563.436
11 0.919 89.4 5.396 0.108 573.628
12 0.922 83.3 5.664 0.116 556.793
13 0.910 83.7 4.847 0.146 498.592
14 0.915 81.4 5.148 0.132 523.197
15 0.908 82.6 4.721 0.134 518.568
16 0.916 84.5 5.234 0.114 561.203
17 0.926 83.3 6.020 0.102 588.594
18 0.923 75.8 5.765 0.122 543.445
19 0.930 75.8 6.389 0.120 547.911
20 0.923 75.4 5.723 0.135 516.458
Source: Researcher’s computations (2023)

Table 29 reports the relevant Four-group grouping scheme discriminant canon-

ical correlation analysis of The Time-dependent simulated data. In this case,

all the first discriminant canonical correlation values are greater than the overall

canonical correlation coefficient of 0.886, the Wilks Lambda values are less than

the overall value of 0.215 and the respective Eigenvalues are also greater than

the overall Eigenvalue of 3.655 as shown in Table 25. It is observed that group-

ing scheme 3 has the most optimal discrimination variables but the grouping

scheme 11 reports the highest correct classification.

Figure 26 depicts the plots of the relevant statistics for Four-group First

DCCA in Table 29 confirming that the most optimal values are all in grouping
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scheme 3, the 36th month, at the end of 2002.

Figure 26: Series Plots of Time-Dep. Statistci Measures of 4-group DCCA

Table 30: Statistic measures of 5-Group DCCAFs for Time-Dep.

GS FDCC C Class Eig V W Lambda Chi-Square
1 0.921 76.5 5.617 0.128 529.663
2 0.950 82.2 9.341 0.077 661.443
3 0.952 83.3 9.737 0.069 689.721
4 0.944 83.7 8.195 0.072 677.964
5 0.930 72.7 6.355 0.103 585.040
6 0.923 63.6 5.741 0.123 539.037
7 0.921 63.3 5.604 0.132 521.547
8 0.932 68.9 6.590 0.109 570.102
9 0.947 79.2 8.773 0.076 662.331

10 0.940 84.5 7.567 0.076 661.982
11 0.925 77.3 5.961 0.107 576.207
12 0.949 86.7 9.087 0.079 654.408
13 0.948 86.0 8.784 0.085 634.728
14 0.968 90.9 14.959 0.050 773.702
15 0.933 74.6 6.674 0.097 600.796
16 0.934 78.4 6.884 0.084 637.256
17 0.937 76.1 7.232 0.092 615.178
18 0.933 68.2 6.697 0.108 573.590
19 0.939 67.8 7.461 0.101 589.943
20 0.929 67.4 6.286 0.113 561.583
Source: Researcher’s computations (2023)
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Table 30 reports the statistics of the Time-dependent simulation Five-group

grouping scheme discriminant canonical correlation analysis. From the table,

all the statistic measures for each grouping scheme are better than those of the

overall statistic measures given in Table 25. Grouping scheme 14 has the most

optimal statistic measures over all the five measures and are achieved on the

168th month, at the end of 2013, which is the same as obtained in Table 27 for

Two-group grouping scheme discriminant canonical correlation analysis. Fig-

ure 27 depicts the series plots of the results given in Table 30.

Figure 27: Series Plots of Time-Dep. Statistic Measures of 5-group DCCA

Table 31 shows the classification of Time-dependent simulation Six-group

grouping scheme for five relevant statistics. All of the values in the table are

more optimal than the overall statistic measures. However, correct classification

value reduces for all grouping schemes due to increased group-discrimination.

The grouping scheme 12 reports the most optimal statistics measures which are

achieved on the 144th month, at the end of 2011.

Figure 28 depicts the series plots of the statistic measures for the Time-

dependent simulation Six-group discriminant canonical correlation analysis con-

firming that the most optimal statistic measures are all in the GS 12.
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Table 31: Statistic measures of 6-Group GS DCCAFs for Time-Dep.

GS FDCC C Class Eig V W Lambda Chi-Square
1 0.929 65.5 6.351 0.107 573.393
2 0.958 75.0 11.043 0.064 707.006
3 0.953 70.1 10.006 0.066 698.996
4 0.944 74.2 8.221 0.071 679.122
5 0.930 66.7 6.367 0.102 585.540
6 0.923 61.4 5.744 0.122 540.873
7 0.921 61.4 5.620 0.126 531.743
8 0.932 62.9 6.613 0.108 570.882
9 0.948 68.9 8.784 0.076 662.382

10 0.943 73.5 8.054 0.072 675.231
11 0.937 64.4 7.188 0.090 620.004
12 0.958 75.0 11.092 0.064 707.630
13 0.948 72.7 8.861 0.078 655.120
14 0.953 73.9 9.899 0.070 682.540
15 0.935 67.4 6.970 0.092 613.935
16 0.934 74.2 6.885 0.084 637.557
17 0.930 66.7 6.367 0.102 585.540
18 0.933 68.2 6.697 0.108 573.590
19 0.939 60.2 7.464 0.101 589.665
20 0.931 60.2 6.463 0.110 568.297
Source: Researcher’s computations (2023)

Figure 28: Series Plots of Time-Dep. Statistic Measures of 6-group DCCA
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Time-dependent simulation of Seven-group DCCAFs results

Table 32 depicts the statistics of Seven-group DCCA functions of the

Time-dependent simulation. From the table, for each grouping scheme, mea-

sures are more optimal than corresponding values of the overall statistic mea-

sures except for the correct classification values that decrease as a result of in-

creased group discrimination. The GS 14 reports the most optimal values for all

five measures which also fall on the 168th month, at the end of 2013.

Table 32: Statistic Measures of 7-Group GS DCCAFs for Time-Dep.

GS FDCC C Class Eig V W Lambda Chi-Square
1 0.935 61.0 6.971 0.092 611.413
2 0.956 62.9 10.557 0.063 708.341
3 0.957 66.7 10.944 0.055 743.455
4 0.937 64.0 7.236 0.084 634.443
5 0.937 59.1 7.180 0.094 607.818
6 0.927 61.4 6.140 0.110 566.127
7 0.925 59.1 5.956 0.118 548.747
8 0.932 59.8 6.617 0.107 573.304
9 0.948 62.9 8.786 0.076 662.627

10 0.943 64.8 8.055 0.072 676.383
11 0.939 57.6 7.410 0.083 638.225
12 0.959 65.9 11.417 0.053 725.137
13 0.942 64.8 7.843 0.083 638.118
14 0.980 87.5 24.350 0.022 975.570
15 0.937 60.2 7.192 0.085 632.267
16 0.934 65.9 6.886 0.083 638.787
17 0.930 61.0 6.368 0.102 585.923
18 0.937 67.0 7.222 0.096 602.695
19 0.948 62.9 8.850 0.076 661.376
20 0.939 56.4 7.450 0.094 607.101
Source: Researcher’s computations (2023)

Figure 29 depicts the plots of Time-dependent simulation Seven-group DCCA

confirming the most optimal values for all five statistic measures of discriminant

canonical correlation analysis. It is amazing that up till now, besides the Two-

group grouping scheme discriminant canonical correlation analysis, it is the

Five-group, Six-group and Seven-group grouping scheme discriminant canon-
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ical correlation analysis that produce the most optimal statistic values over all

five measures for the same best grouping scheme.

Figure 29: Series Plots of Time-Dep. Statistic Measures of 7-group DCCA

Summary Statistic Measures for all Best Time-Dep. M-Groups DCCA

Table 33 gives the summary of all the highest scores of the grouping

scheme classifications of all the Multiple-groups from Two-group to Sixteen-

group of the Time-dependent simulated data, reporting the five statistic mea-

sures and their respective grouping schemes. Since the best grouping scheme

may not report the highest correct classification, it is not provided in the table.

The table confirms that 7-group GS discriminant canonical correlation

analysis outperforms all the other multiple groupings, from 3-group to 16-group.

Again, out of all the Multiple-groups, it is GS 14 of 7-group discriminant canon-

ical correlation analysis that gives the most optimal statistics for all measures.

In this section, 67% (10
15

) of the possible Multiple-group discriminant analysis

yields grouping scheme 14 as the best grouping scheme. The results of the study
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subsequently confirm the earlier claim that when the time impact is taken into

account in the CCA, the correlation between the subsets of heating and cooling

variables improves from 0.886 to 0.980.

Table 33: Summary Statistic Measures for all Best Time-Dep. m-Groups

Group FDCC Eig V W Lamb Chi-Sq GS Month Year
2 0.903 4.413 0.185 437.42 14 168th 2013
3 0.937 7.181 0.117 554.65 3 36th 2002
4 0.950 9.317 0.089 625.48 3 36th 2002
5 0.968 14.959 0.050 773.70 14 168th 2013
6 0.958 11.092 0.064 707.63 12 144th 2011
7 0.980 24.350 0.022 975.57 14 168th 2013
8 0.966 14.101 0.046 787.56 14 168th 2013
9 0.971 16.291 0.039 826.67 14 168th 2013
10 0.960 11.638 0.050 765.34 5 60th 2004
11 0.961 12.154 0.049 767.57 14 168th 2013
12 0.954 10.027 0.058 723.09 14 168th 2013
13 0.953 9.903 0.057 725.12 14 168th 2013
14 0.967 14.363 0.036 837.06 3 36th 2002
15 0.956 10.577 0.048 769.37 14 168th 2013
16 0.962 12.530 0.039 812.25 14 168th 2013

Source: Researcher’s computations (2023)

Figure 30: Plots of Time-Dep. Multiple-group FDCCs from 2 to 11-groups

147

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Figure 30 depicts the first ten series plots of the Time-dependent data from

Two-group to Eleven-group first discriminant canonical correlation values from

grouping scheme 1 to grouping scheme 20. The figure confirms that all the first

discriminant canonical correlation values of Time-dependent Multiple-group are

higher than the highest Two-group discriminant canonical correlation value of

0.903 in grouping scheme 14 in Table 27 as well as the overall value of 0.886

also in Table 25.

Summary Statistic measures of all optimal values of 7-group DCCA

Table 34 reports the summary statistics results of optimal values of Seven-

group discriminant canonical correlation analysis for the four statistical Mea-

sures all in grouping scheme 14. The table confirms that Time-dependent simu-

lation of Seven-group grouping scheme discriminant canonical correlation anal-

ysis outperforms the original data and the Time-independent simulation so far

as the statistical measures are concerned.

Table 34: Summary Statistic Measures of Optimal 7-Group DCCA

Stats Measures Original Data Time-Ind. Sim Time-Dep. Sim
First DCC 0.968 0.252 0.980
Eigenvalue 14.928 0.065 24.350
Wilks Lambda 0.032 0.875 0.022
Chi-Square 881.004 34.106 975.570
Optimal Percent. 60% 40% 67%
Source: Researcher’s computations (2023)

Again, out of all the Multiple-groups, it is grouping scheme 14 of Seven-group

discriminant canonical correlation analysis that gives the most optimal statistics

for all four measures. The results therefore shows that incorporating the time-

effect into canonical correlation analysis achieves the time relationship between

subsets variables within the data. It follows from Table 35 that Time-Dependent

canonical correlation coefficient for roots one, two and three values of 0.774,
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0.353 and 0.181, respectively, using the fourteenth grouping scheme of Seven-

group discriminant canonical correlation analysis’s dummy variables, outper-

forms the original data canonical correlation coefficient values of 0.731, 0.345

and 0.175, respectively.

Table 35: Time-Dependent CCCs Using GS 14 of 7-Group DCCA

CCC Λ1 Λ2 Λ3 Λ4 Λ5 Λ6 Λ7 Average
ρ1 0.66 0.70 0.83 0.84 0.92 0.64 0.84 0.774
ρ2 0.50 0.27 0.30 0.33 0.35 0.25 0.48 0.353
ρ3 0.14 0.14 0.16 0.22 0.14 0.17 0.31 0.181

Source: Researcher’s computations (2023)

The original canonical correlation coefficient matrix is given by

CCC =



1 0 0 0.731 0 0

0 1 0 0 0.345 0

0 0 1 0 0 0.175

0.731 0 0 1 0 0

0 0.345 0 0 1 0

0 0 0.175 0 0 1


The Time-dependent canonical correlation coefficient matrix is also given by

CCC =



1 0 0 0.774 0 0

0 1 0 0 0.353 0

0 0 1 0 0 0.181

0.774 0 0 1 0 0

0 0.353 0 0 1 0

0 0 0.181 0 0 1


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Discussion

Canonical correlation was used in this thesis to show that it is an appropri-

ate technique for evaluating correlations between sets of data. Using a grouping

scheme discriminant canonical correlation analysis, the relationship between

the heating and cooling variables is examined. Canonical variates in canonical

correlation analysis are generated in a method that maximizes the correlation be-

tween each set of variables. There exists no correlation between any two sets of

canonical variates, for example, (α′Y2, β
′X2) is uncorrelated with (α′Y1, β

′X1).

A full discussion of two-group discriminant analysis is given. The method of

discriminant analysis involves first determining which discriminant variables,

also referred to as the best collection of variables, offer the greatest discrimina-

tion between the heating and the cooling variables. The discriminator variables

are then combined linearly to create an estimated discriminant function. The

values derived from the discriminant function are known as discriminant scores.

In order to determine the discriminant scores with the biggest feasible ratio of

between-groups sum of squares to within-groups sum of squares, the discrim-

inant function is assessed. Sorting incoming data into one of the two groups

according to the values of their discriminant scores is the ultimate goal of dis-

criminant analysis.

This thesis also investigates multiple-group discriminant analysis, which

is a generalization of two-group discrimination analysis, and the connection be-

tween canonical correlation analysis and discriminant analysis. It turned out

that, in terms of geometry, multiple-group discriminant analysis reduced to se-

lecting a new set of axes in order to best describe the major differences between

the groups by projecting the points onto the original axis. The projection of the

points onto the second axis described the maximum of what the first axis could

not explain, and so on, until the axes, or min(G − 1, p), were identified. Our

results show that from Group-seven up to Group-twenty, only first six canonical

discriminant functions for each Multiple-group are used in the analysis. It is
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noteworthy that, at this point, aside from the Two-group grouping scheme dis-

criminant canonical correlation analysis, it is the Four-group, Five-group and

Seven-group grouping scheme discriminant canonical correlation analysis that

produce the most optimal statistics values over all five measures for the same

best grouping scheme.

In this thesis, I suggest a generalized form of the grouping scheme dis-

criminant canonical correlation analysis. According to the nature of the ob-

jective function, a set of discriminant analysis parameters is provided. When

choosing these parameters, cross validation is taken into account by comparing

the estimated additive components. The association between heating variables

and cooling variables is examined using a groping scheme-based test that is pre-

sented. The suggested method can successfully discover nonlinear relationships

between heating factors and cooling variables, according to a simulation analy-

sis, this reveals the relative weight of each variable in the groups as well. These

benefits will be beneficial in a variety of research fields involving multivariate

data. The suggested approach might not be able to handle cases where there are

interactions between many variables within each group because of the additivity

assumption.

The grouping scheme discriminant canonical correlation analysis test re-

quires more calculation time than the traditional canonical correlation analysis,

which utilizes a straightforward test statistic like canonical correlation coeffi-

cient, Wilks’ lambda, and Chi-square. Distributed computing, on the other hand,

effectively reduces the compute load. On the other hand, intensive computation

is unavoidable for choosing the discriminant parameters in the grouping scheme

discriminant canonical correlation analysis. Therefore, it is worthwhile to look

into creating an algorithm to speed up processing or discovering a computation-

ally more efficient technique of selection. The classical canonical correlation

analysis can consider the second canonical variates that maximize the correla-

tion Corr (α′Y1, β
′X1) among all alternatives that are uncorrelated with the first
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canonical variates. Although canonical correlation analysis makes this difficult,

it is nevertheless worth looking into for future research because it might disclose

extra structural information about groups that the canonical correlation analysis

model is insufficient to account for.

Chapter Summary

In the first place, the findings merely demonstrated a basic model fit, and

several sections in-depthly evaluated the significance of each canonical root.

The first canonical root performs better than the second and third, but all three

possible canonical roots are shown to be statistically significant. Canonical

weights and loadings from canonical correlation analysis demonstrate that, for

all three roots, the contribution of precipitation to variance in maximum tem-

perature, lowest temperature, and solar radiation is greater than that of the wind

and the relative humidity. The three canonical correlation coefficients are dis-

covered to not equal zero, rejecting the null hypothesis. The first canonical root

is used to look at the correlation pattern between the response variables and

the other types of weather conditions. Furthermore, the findings demonstrate

that throughout the investigation, there was a very strong positive correlation

between the response variables and the predictor factors.

Second, the theoretical underpinnings are examined and the link between

canonical correlation analysis and discriminant analysis are presented. The

canonical correlation analysis problem is created using the Pearson correlation

coefficient, and it is then solved using the popular techniques of Eigen-Value

Decomposition and Singular-Value Decomposition. Then, sixteen groups of

the Discriminant canonical correlation analysis family algorithms are created,

ranging in size from Three-group to Sixteen-group. The representative models

are presented for each grouping using simulation methods, and analytical com-

parisons are used to summarize their strengths and flaws. The Seventh group
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discriminant canonical correlation analysis outperforms all other top Multiple-

groups, achieving the greatest first discriminant canonical correlation value, the

highest eigenvalue and the highest Chi-square value with corresponding lowest

Wilks Lambda value. The normal canonical correlation of simulated data gives

very low results. All the Multiple Discriminant Analysis yield a non significant

results. It follows that canonical correlation analysis is meaningful when vari-

ance covariance matrix is well defined. The data in each of the variables should

have quite distinct variations. If this fails, canonical correlation analysis may

fail but the corresponding DA can work.

The non-significant results of the simulation is found to be as a results of

assuming a Time-independent structure. This case arises by simulating the data

with statistics of the original data without reference to time (year-effect). The

statistics of partitioned data based on the best grouping scheme of 14 for optimal

Multiple-group discriminant analysis of Seven (7) is used to obtain a more rep-

resentative simulated data that closely mimics the original data. A number of

grouping scheme discriminant canonical correlation analysis demonstrate that

the optimal relationship between the two subset variables of the Time-dependent

data is established by the 14th grouping scheme of the Seven-group discriminant

canonical correlation analysis. In light of the findings, grouping scheme tech-

niques can be used for canonical correlation of Time-dependent data.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

The summary, conclusions, and recommendations based on the study’s

findings are presented in this chapter. The purpose of this thesis is to examine

the application of grouping scheme discriminant canonical correlation analysis

(GSDCCA) of multivariate multiple Time-dependent data (MMTDD) structure.

Finally, based on the results and findings, an appropriate conclusion and recom-

mendation of the link between CCA and discriminant analysis are provided.

Summary

It is challenging to understand the concept of CCA because of how it is

presented, which appears complicated. This might be because the method is

mathematically intensive. As a result, it is necessary to conduct a study that

provides a CCA in a rational and approachable manner. Therefore, the study’s

objectives are to provide simple procedures for producing canonical variables

using generated codes and to explicitly state the logical justification for the re-

sults. It has facilitated the application of CCA to multivariate multiple time-

dependent data structure.

The sort of data structure required for a multivariate linear connection is

examined in the study. It is necessary to build such a dataset for the same in-

dividuals using a multivariate random vector that may be appropriately divided

into two sub-vectors and whose components may have a linear connection with

one another. A typical set of 264 observations on weather conditions in Ghana

has been described in detail and considered pertinent for use in the study. The

research anticipates and introduces a number of significant matrices that may be

useful in CCA. The square root of the variance covariance matrix is a crucial
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matrix. It is discovered that in order to generate the required CCA, a critical

matrix must generate predictor variables with zero means and unit variances.

Important matrices used in the CCA are required to possess similarity and di-

agonalizability properties. CCA has reportedly been used for a while, and from

the standpoint of data analysis, it is most frequently used in conjunction with

other multivariate methods like factor analysis and principal component analy-

sis. There are numerous methodologies used in the theoretical presentations of

the ideas that can be found in renowned texts. In several of these methods, the

salient matrices of the canonical extraction have been claimed without proof.

The theoretical properties of the canonical factors have been examined.

It is observed that, the new variables should exhibit a few characteristics that

broadly cover their independence to unit variance. By describing the multivari-

ate multiple Time-Dependent in terms of the characteristics of the canonical

variables, it is possible to express the canonical correlation matrices in terms of

sums of matrices that incorporate diagonal matrices. On this foundation, it has

been demonstrated that the matrix concatenation decomposition method may

successfully recover the variation in the original subset of response variables

that is explained by predictor canonical variables.

The body of work demonstrates how thorough the idea of CCA has been

researched. A few research delved into great detail, and publications also in-

cluded data analytic applications. In addition to the subject’s concentration on

mathematics, it is clear that many authors have used a variety of strategies in

dealing with the CCA and DA techniques. The diverse methods frequently result

in misconceptions about the concept of CCA. Some applications and extensions

of DA and CCA have been reviewed. Several applications have been reviewed

in dealing with canonical correlation analysis including the link between CCA

and discriminant CCA. It is clear from the literature that scanty work is done

regarding application of CCA in multivariate time-dependent data. Thus, this

area still remains grey for further explanation.
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The development of grouping scheme discriminant canonical correlation

analysis (GSDCCA) and its application to data with time-dependent structure

are the primary goals. The methodology has provided a thorough analysis of the

canonical variable construction process. It has in the process discovered about

six important matrices for creating canonical variables. In order to create the

new variables, the review made it possible to determine the proper interpretation

and uses of these matrices.

There have been two primary fundamental procedures looked at. These

are the conditional distribution of Cauchy-Schwarz Inequality technique and the

Lagrangian multiplier technique. These two fundamental approaches are thor-

oughly explained in this chapter. It has been noted that the outcomes of these

two strategies are identical and generated similar results so far as the key ma-

trices for CCA are concerned. The general methodology of various extensions

of CCA have been so far made to the basic formulations. Those extensions are

outlined and also explained into details using the two fundamental approaches.

I looked at the canonical correlation variables’ theoretical characteristics and

described them in three ways. It can be shown that the new variables in each

situation should have one of six essential characteristics, which, taken together,

substantially cover their independence and unit variance. The methodology of

the general formulation of grouping scheme discriminant CCA for Multiple-

group discriminant analysis is discussed. The time-effect of the data is antici-

pated to enhance the genuine correlation between the two sets of variables by

introducing the optimum grouping scheme into CCA.

In the first place, the findings merely demonstrated a basic model fit, and

several sections in-depthly evaluated the significance of each canonical root. It

is observed that all the three potential canonical roots are statistically significant

but the first canonical root outperforms the second and third roots. Canoni-

cal weights and loadings from CCA demonstrate that, for all three roots, the

contribution of precipitation to variance in maximum temperature, minimum

156

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



temperature, and solar radiation is greater than that of the wind and the rela-

tive humidity. The first canonical root is used to look at the correlation pattern

between the response variables and the other types of weather conditions. The

results show that there is a very high positive association between the response

variables and the predictor variables.

The theoretical underpinnings are examined and the link between CCA

and DA are presented. The CCA problem is created using the Pearson corre-

lation coefficient, and it is then solved using the popular techniques of Eigen-

Value Decomposition and Singular-Value Decomposition. Then, sixteen groups

of the Discriminant CCA family algorithms are created, ranging in size from

Three-group to Sixteen-group. The representative models are presented for

each grouping using simulation methods, and analytical comparisons are used

to summarize their strengths and flaws. The Seventh group discriminant CCA

outperforms all other top Multiple-groups, achieving the most optimal statis-

tic values. The normal CCA of simulated data gives very low results. All the

Multiple DA yield a non significant results. It follows that CCA is meaningful

when variance covariance matrix is well defined. The data in each of the vari-

ables should have quite distinct variations. If this fails, CCA may fail but the

corresponding DA can work.

The non-significant results of the simulation is found to be as a results of

assuming a Time-independent structure. This case arises by simulating the data

with statistics of the original data without reference to time (year-effect). The

statistics of partitioned data based on the best GS of 14 for optimal Multiple-

group DA of Seven is used to obtain a more representative simulated data that

closely mimics the original data. A number of grouping scheme Multiple Dis-

criminant CCA demonstrate that the optimal relationship between the two sub-

set variables of the Time-dependent data is established by the 14th GS of the

Seven-group discriminant CCA. In light of the findings, GS techniques can be

used for CCA of Time-dependent data.
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Conclusions

In the thesis, the relationship between two groups of random vectors has

been carefully examined. By removing the canonical variables from both sets,

it has investigated the correlation between the two sets of variables. It gave the

multivariate multiple Time-dependent model canonical factors in order to link

one subset vector of response variables to another subset vector of predictor

variables. The study of such a multivariate relationship makes use of a num-

ber of mathematical and statistical concepts. The Cauchy-Schwarz inequality,

similar matrices, matrix diagonalization, spectral decomposition of symmetric

matrices, vector orthogonalization, conditional distributions, multivariate least

squares estimates, and matrix concatenation are some of the concepts covered

in this procedure.

To fully understand extracting canonical variables, one must identify the

crucial matrices that result in the required change of the original variables. The

research also discovered generalized correlations between these significant ma-

trices. The theoretical characteristics of the new canonical variables have been

examined and explained using six main techniques that generally encompass the

independence between the new variables and unit variance. It has been demon-

strated that the inverse matrix must be a combination of the matrices that gener-

ate the required canonical variables.

The study determines appropriate dataset structure and partitioning, as

well as the relevant matrices, that enable us to reach the intended theoretical

result in order to achieve this. It has been proven that canonical variables can

be extracted from normalized, centered, or unprocessed data. Knowledge of

the pertinent matrices involved in extracting canonical variables and the identi-

fication of the required data structure have allowed for the creation of pertinent

MATLAB codes that create canonical variables with the desired attributes. The

research focused on multivariate multiple time-dependent data (MMTDD) and
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canonical correlation analysis. The general form of Multivariate multiple Time-

dependent has been described in three distinct ways in order to describe the

three different data structures. The data format for the multivariate multiple

time-dependent applications does not appear to have been given consideration

in the literature.

Even though the expanded CCA methods’ benefits have been shown in

individual research, a thorough comparison of CCA and DA methods is still

lacking. Using a dataset of weather conditions, this study compares the existing

CCA and MDA detection algorithms. Performance evaluation utilized real and

results are validated by simulation. From the findings, Seven-group DA greatly

enhances the determination of the true correlation between the two sets of vari-

ables with time-dependent structure. Additionally, for the combination method

based on the conventional CCA and the multiple DA, Seven-group DA produced

the best results.

It is observed that the adoption of grouping scheme in discriminant canon-

ical correlation analysis incorporates quite effectively the time effect into the

computation of the canonical correlation. This way, a more practical result is

obtained. From the illustrative dataset, higher over all correlation coefficients

are obtained for the two sets of variables when the time-dependent structure is

considered than when the data is assumed to time-independent. In particular,

correlations could be much higher between the two sets of variables for some

years than others. The results therefore reflects the reality and thus provides

justification for the technique adopted.

Recommendations

The research clearly demonstrates the implementation of the right pro-

cedures for multivariate multiple time-dependent data. For rapid extraction of

time-dependent canonical variables from multivariate multiple time-dependent
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data, the provided procedures may be useful. The results of this work have

demonstrated the usefulness of the proposed grouping scheme discriminant canon-

ical correlation analysis. This will offer more explanation for future grouping

scheme mechanisms and serve as a foundation for experimental validation and

verification. It is demonstrated that the classical CCA may not be for multivari-

ate multiple time-dependent data appropriate.

Future Work

For now, there is considerable interaction time with the data by the use

of the proposed methodology. The grouping scheme discriminant CCA proce-

dure therefore requires some enhancement in order to reduce implementation

time. The approach could also serve as a fundamental step for obtaining what

may be known as a Fundamental Multivariate Canonical Time Series Modelling

(FMCTSM). By this, it should be possible to determine canonical correlations

between the two sets of variables over time.
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Marubayashi, H., André, F., Luciano, P. S., Rodrigo, R. M., & Elias, N. M.

(2014). Canonical-correlation analysis applied to selection-index metho-

dology in quails. Livestock Science.

Mazuruse, P. (2014). Canonical correlation analysis. Journal of Financial

Economic Policy

Mehdi, K. (2020). Satellite Remote Sensing in Hydrological Data Assimilation.

Springer Science and Business Media LLC.

Mukhopadhyay, N. (2000). Probability and Statistical Inference. CRC Press.

Nail, H. T. (2002). Applied Multivariate Analysis. Springer-Verlag, New York,

Berlin, Heideberg.

Nayir, F., & Saridas, G. (2022). The relationship between culturally respon-

sive teacher roles and innovative work behavior: Canonical correlation

analysis. Journal of Educational Research and Practice. 12, 36–50.

https://doi.org/10.5590/JERAP.2022.12.1.03

Nelsen, R. (1994). Proof without words: Cauchy-Schwarz inequality. Math.

Mag., 67 (1), 20.

Nizamettin, B., Abasiyanik, M. F., Ersan, S., & Barik, A. S. (2006). Canonical

Correlation Analysis of Factors Involved in the Occurrence of Peptic Ulc-

ers. Digestive Diseases and Sciences.

167

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Obben, J. (1992). Performance of the Ghanaian rural banks: A canonical corre-

lation analysis. Oxford Agrarian Studies.

Parkhomenko, E., Tritchler, D. & Beyene, J. (2007). Genome-wide sparse

canonical correlation of gene expression with genotypes. BMC Proc.,

1 (1). Art. no. S119.

Peng, Y., Zhang, D., & Zhang, J. (2010). A new canonical correlation analysis

algorithm with local discrimination. Neural Process. Lett., 31 (1), 1–15.

Pillai, K. C. S. (1955). Some New test criteria in multivariate analysis. Ann

Math Stat: 26 (1), 117–21.

Priya, C. (2018). Performing canonical correlation anaylsis. https://www.pro-

jectguru. in/publications/performing-canonical-correlation-analysis-cca/

Rathbun, S., Andrew, W., Srabashi, B., Roths, S., & Romer, M. (2023). Applied

multivariate statistical analysis. STAT 505, Elberly Collage of Science,

Pennsylvania State University.

Reiter, M. (2010). Enhanced multiple output regression based on canonical co-

rrelation analysis with applications in computer vision.

Rencher, A. C. (2002). Methods of multivariate analysis. Second Edition, John

Wiley and Sons, INC. Publication, Brigham Young University.

Richardson, C. W. (1981). Stochastic Simulation of Daily Precipitation, Temp-

erature, and Solar Radiation. Water Resources Research.

Ronald, C. (2011). Regression Analysis. Springer Texts in Statistics.

Roungu, A. M., Matair, R., Sanwar, H., & Azizur, R. (2013). Canonical correla-

tion analysis - an application to bank performance and consumers satis-

faction. International Journal of Advanced Scientific and Technical Rese-

arch, 3 (1), http://www.rspublication.com/ijst/index.html.

Rupnik, J. (2016). Multi-View canonical correlation analysis. Faculty of Physics

and Mathematics, University of Ljubljana, Slovenia.

168

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Sakar, C. O. & Kursun, O. (2017). Discriminative feature extraction by a neural

implementation of canonical correlation analysis. IEEE Trans. Neural

Netw. Learn. Syst., 28 (1), 164–176.

Samarov, V. D. (2009). The analysis and advanced extensions of canonical

correlation analysis. Doctoral thesis, University of North Carolina, Chapel

Hill. http://cdr.lib.unc.edu.gh.

Schwarz, K. (1888). Uber ein die fl¨achen kleinsten fl¨acheninhalts betreffen-

des problem der variationsrechnung. Retrieved January 7, 2018 from:

https://link.springer.com/chapter/10.1007, 2F978-3-642-50665-9-11.

Seber, G. A. F. (1984). Multivariate Observations. New York: John Wiley and

Sons.

Shafto, M., Asaf, D., & Kirlik, A. (1997). Canonical correlation analysis of da-

ta on human-automation interaction.

Sharma, S. (1996). Applied Multivariate Techniques. John Wiley and Sons Inc.,

New York.

Shelley, M. (2007). Multivariate Techniques for Dichotomous Dependent Varia-

bles : An Application to Public Policy. Public Administration and Public

Policy.

Shin, Y. & Park, C. (2011). Analysis of correlation based dimension reduction

methods. Int. J. Appl. Math. Comput. Sci., 21 (3), 549–558.

Simo, P., Styan, G. P. H., & Jarkko, I. (2011). Matrix Tricks for Linear Statisti-

cal Models. Springer Science and Business Media LLC.

Sisi, Q., Hanyu, L., Liang, W., Wenqiang, Z. & Shaochun, Y. (2020). Canonical

correlation study on the relationship between shipping development and

water environment of the Yangtze river.

Srivastava, J., & Dayanand, N. N. (2008), Canonical Correlation Analysis of

Longitudinal Data, Denver JSM, Proceedings, Biometrics Section, 563-

568.

169

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Steel, R. G. (1951), Minimum generalized variance for a set of linear functions,

Annals Maths. Statist., 22 (7) 456 – 460.

Sun, T. & Chen, S. (2007). Locality preserving CCA with applications to data

visualization and pose estimation, Image Vis. Comput., 25 (5) 531–543.

Sun, T., Chen, S., Yang, J., & Shi, P. (2008), A novel method of combined fea-

ture extraction for recognition. In Proc. Conf. Data Mining, 1043–1048.

Sun, T., Chen, S., Yang, J., Hu, X., & Shi, P. (2009), Discriminative canonical

correlation analysis with missing samples, in Proc. World Congr. Com-

put. Sci. Inf. Eng., 95–99.

Tabachnick, B. (1989), Using Multivariate Statistics, 2nd ed., New York, Harper

Collins Publishers, Inc.

Tandanai, R. (2015), Canonical Correlation Analysis of Aggravated Robbery

and Poverty in Limpopo Province. Master’s thesis. South Africa Univer.

http://hdl.handle.net/10500/19629

Tingkai, S., Songcan, C., Jingyu, Y., Xuelei, H., & Pengfei, S. (2009), Discri-

minative Canonical Correlation Analysis with Missing Samples,

Tomer, M., Weiran, W., & Karen, L. (2016). Non-parametric Canonical Cor-

relation Analysis. Proceedings of the 33rd International Conference on

Machine Learning, New York, NY, USA, 2016. JMLR: W & CP, 48 (2).

UGC (2022). Solar radiation - Understanding Global Change. A project of

the University of California Museum of Paleontology. University of Ca-

lifornia Regents. https://ugc.berkeley.edu

Vinograde, B. (1950), Canonical positive definite matrices under internal linear

transformations, Proc. Amcr. Math. Soc., 1 (2), 159 – 161.

Wang, Y., Guan, L., & Venetsanopoulos, A. N. (2015). “Kernel based fusion

with application to audiovisual emotion recognition,” IEEE Trans. on

Multimedia, 14 (3), 597-607.

Warner, R (2013). Applied Statistics: From Bivariate Through Multivariate

Techniques. SAGE.

170

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Wilms, I., & Christophe, C. (2015). Sparse canonical correlation analysis from

a predictive point of view. Biometrical Journal.

Win, H. & Wu, S. (2000). Various proofs of the Cauchy-Schwarz inequality. Re-

trieved January 1, 2018 from: http://www.ajmaa.org/RGMIA/papers/v12e/

Cauchy-Schwarzinequality.pdf

Witten, M. D., Tibshrani, R., & Trevor, H. (2009), A penalized matrix decom-

position, with applications to sparse principal components and canonical

correlation analysis, Advance Access publication, 515 – 534.

Xuefei, C., Jun, K., Sandstedea, B., & Luoc, X. (2019), Time-dependent Cano-

nical Correlation Analysis for Multilevel Time Series.

Yang, X., Liu, W., Tao, D., & Cheng, J. (2017). Canonical correlation analysis

networks for two-view image recognition. Inf. Sci., 385 (9), 338 – 352.

Yang, X., Liu, W., Wei, L., & Tao, D. (2021). A survey on canonical correlation

analysis. Inf. Sci., 33 (6), 2349 – 2368.

Yoshida, K., Junichiro, Y., & Kenji, D. (2017). Sparse kernel canonical correla-

tion analysis for discovery of nonlinear interactions in high-dimensional

data. BMC Bioinformatics, 18:108 DOI 10.1186/s12859-017-1543-x

Zhihua, J. & Zhen, Y. (2010). On using non-linear canonical correlation analy-

sis for voice conversion based on Gaussian mixture model. Journal of

Electronics (China).

Zhou, Y, Lu, H. & Cheung, Y. M. (2017). Bilinear probabilistic canonical cor-

relation analysis via hybrid concatenations. In Proc. 31st AAAI Conf.

Artif. Intell., 2949–2955.

Zuobin, W., Kezhi, M., & Ng, G. W. (2017). Effective feature fusion for pattern

classification based on intra-class and extra-class discriminative canoni-

cal correlation analysis. In Proc., 1–8.

171

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



APPENDICES

APPENDIX A: PROOF OF SOME LEMMAS

The following are the proofs of the eigenvalue and eigenvectors canonical

correlation factorization for the two given lemmas.

Lemma A-1

If and only if C and D are two given matrices, then the matrices CD and

DC have the same eigenvalue (Coleman and Hardin, 2013; Magnus, 2019).

Proof

If [I − CD] is invertible, then [I − DC] is also invertible, and let M = (I − CD)−1

be the required matrix.

⇒ (I − DC) (I + DMC) = I + DMC − DC − DCDMC

= I + D (MC − CDMC)− DC

= I − DC + D (I − CD) (MC)

= I − DC + D (I − CD) (I − CD)−1 C

= I − DC + DC = I

Lemma A-2

Let C and D be two matrices, where D is positive definite and suppose that

the equation Maxv(v′Cv) is given subject to the constraint: v′Dv = 1. When

v is the eigenvector of D−1C corresponding to the biggest eigenvalue, then the

maximum is reached (Coleman and Hardin, 2013; Magnus, 2019).

Proof

Since D is positive definite and invertible, a positive square root exists. Suppose

this square root is given by D
1
2 ; which is positive definite, symmetric, and diag-

onalizable by the spectral theorem definition. If w = D
1
2 v ⇒ v = D− 1

2 w. Then
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Equation (1.7) can be rewritten as

max
v

(v′Cv) = max
w

(D− 1
2 w)′C(D− 1

2 w)

max
v

(v′Cv) = max
w

w′D− 1
2 CD− 1

2 w (A1)

Equation (A1) is subject to the following constraint:

v′Dv =
(

D− 1
2 w
)′

D
(

D− 1
2 w
)
= w′D− 1

2 DD− 1
2 w = w′w = 1

Let D− 1
2 CD− 1

2 = ΓΛΓ′ be the spectral decomposition (Coleman and Hardin,

2013; Magnus, 2019). It follows from the literature that: 1. For diagonal with

eigenvalues of D− 1
2 CD− 1

2 , Λ is diagonal.

2. Γ = [v1|v2|v3|....vn] is a column matrix of eigenvectors corresponding to the

entries of Λ. By the spectral theorem, they form an orthonormal basis in Rn.

Now let z = Γ′w, then

z′z = (Γ′w)
′
(Γ′w) = w′ΓΓ′w = w′w

The last equality follows since Γ is a matrix composed of orthonormal columns

(Coleman and Hardin, 2013). Equation (A1) reduces to the form in Equation

(A2) subject to the constraint: z′z = 1.

max
w

w′D− 1
2 CD− 1

2 w = max
w

w′ΓΛΓ′w = max
w

(Γ′w)
′
ΛΓ′w = max

z
z′Λz

⇒ max
w

w′D− 1
2 CD− 1

2 w = max
z

n∑
i=1

λiz2i (A2)

Because Λ is just a diagonal matrix with λi on the ith diagonal, the final line

naturally follows. Note that for maxzz′Λz, we can switch directly from maxi-

mizing over w to maximizing over z because Γ is constant given C and D. If we
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let λ1 be the largest eigenvalue, then from Equation (A2) we have

max
z

n∑
i=1

λiz2i ≤ max
z

n∑
i=1

λ1z2i ≤ max
z

λ1

n∑
i=1

z2i = λ1 (A3)

The final equality is determined by the constraint: z′z =
∑n

i=1 z2i = 1. Note

that equality in Equation (A3) is attained for z = [1, 0, 0, ..., 0]′. By the Spectral

Theorem, v1, z2, ..., zn form an orthonormal basis in Rn, it must be the case that

v′
ivj = δij . Thus, v1 = w is the unique answer to the set of equations. Remem-

ber that the largest eigenvalue of D− 1
2 CD− 1

2 is represented by the eigenvector

v1. Therefore, v = D− 1
2 v1.

By Lemma 1.1, D− 1
2 CD− 1

2 and D−1C have the same eigenvalues, so λ1 is

also the largest eigenvalue of D−1C. Note that D− 1
2 CD− 1

2 v1 = λ1v1.

D−1Cv = D−1CD− 1
2 v1

= D− 1
2 D− 1

2 CD− 1
2 v1

= λ1v1 = λ1D− 1
2 v1

D−1Cv = λ1v (A4)

λ1 is the largest eigenvalue of D−1C and v = D− 1
2 w = D− 1

2 v1. Remember that

z was maximized when w = v1 leads to (Coleman and Hardin, 2013; Magnus,

2019) v = D− 1
2 v1, which is the eigenvector of D−1C corresponding to the λ1,

the greatest eigenvalue of D−1C.
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APPENDIX B: PROOF OF CAUCHY-SCHWAZ INEQUALITY

The inequality holds if either s = 0 or t = 0. Suppose that s and t are

not positive definite, that is, s ≤ 0 and t ≤ 0, and consider the vector(s − θt),

where θ ̸= 0 is a scalar. It follows that |s − θt| > 0 is a positive definite and by

expanding yields Equation (B1).

(s − θt)′ (s − θt) = s′s − s′θt − θt′s + θ2t′t = (t′t)θ2 − 2(s′t)θ + s′s

(s − θt)′ (s − θt) = (t′t)θ2 − 2(s′t)θ + s′s (B1)

Equation (B1) is a quadratic equation in terms of θ. By the method of complet-

ing the squares and further simplification gives Equation (B2).

(s − θt)′ (s − θt) = s′s + θ2t′t − 2θs′t > 0 ⇒ s′s + (t′t)
[
θ2 − 2θs′t

t′t

]
> 0

s′s + (t′t)

[
θ2 − 2θs′t

t′t
+

(
s′t
t′t

)2

−
(

s′t
t′t

)2
]
> 0

s′s − (t′t)
(

s′t
t′t

)2

+ (t′t)

[
θ2 − 2θs′t

t′t
+

(
s′t
t′t

)2
]
> 0

∴ s′s − (s′t)2

t′t
+ (t′t)

[
θ − s′t

t′t

]2
> 0 (B2)

Since (t′t)
[
θ − s′t

t′t

]2 ≥ 0 for all θ in Equation (B2), it follows that the inequality

holds if s′s − (s′t)2

t′t ≥ 0

⇒ s′s − (s′t)2

t′t
≥ 0 ⇒ (s′s) (t′t)− (s′t)2 ≥ 0 ⇒ (s′s) (t′t) ≥ (s′t)2

By changing the sides of the equation above yields the required Cauchy-Schwarz

Inequality (Mukhopadhyay, 2000; Win and Wu, 2000). ⇒ (s′t)2 ≤ (s′s) (t′t)
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APPENDIX C: PROOF OF THEOREM 3.4

From the constraints of Equation (3.118) we have the following equations:

α = U1Σ
−1
y Py (:, 1 : l)B + U2Fy and β = V1Σ

−1
x Px (:, 1 : l)B + V2Fx

The above equations are equivalent to the following equations:

U ′
1α = Σ−1

y Py (:, 1 : l)B and V ′
1β = Σ−1

x Px (:, 1 : l)B

By taking B = I , since Bf is also orthogonal, we have Ds ≤ D. On the other

hand, for Bf and αf which satisfy the following equations,

U ′
1α

f = Σ−1
y Py (:, 1 : l)Bf

V ′
1β

f = Σ−1
x Px (:, 1 : l)Bf

we obtain the following equations:

U ′
1α

fB−1
f = Σ−1

y Py (:, 1 : l)

V ′
1β

fB−1
f = Σ−1

x Px (:, 1 : l)

It follows from the literature that
(
αfB−1

f , βfB−1
f

)
∈ ρ, for all α, β ∈ ρ and B

orthogonal vector. Hence the above equations yield

U ′
1α = Σ−1

y Py (:, 1 : l)

V ′
1β = Σ−1

x Px (:, 1 : l)

Multiplying both sides of the above equations by B yields the following eqns:

U ′
1αB = Σ−1

y Py (:, 1 : l)B

V ′
1βB = Σ−1

x Px (:, 1 : l)B
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This means that (αB, βB,B) ∈ ρs. Specifically, we can take α = αfB−1
f , β =

βfB−1
f and B = Bf for all

(
αf , βf ,Bf

)
∈ ρs. This implies (αB, βB,B) | (α, β) ∈

ρs, B is orthogonal = ρs, where B ∈ ℜl×l, and as a result, the issue in Equation

(3.118) is comparable to the issue in Equation (C1).

min
α,β

||αB| |l1 + ||βB| |l1 (C1)

Subject to the constraints: U ′
1α = Σ−1

y Py (:, 1 : l) and V ′
1β = Σ−1

x Px (:, 1 : l).

Based on the orthogonality of B and the norm equivalences of finite dimensional

spaces, the norm results is finally given in Equation (C2).

1√
l

∑
i

||α| |l1 =
1√
l

∑
i

||α (i, :)| |l1

≤
∑
i

||α (i, :)| |l2

=
∑
i

||α (i, :)B| |l2

≤
∑
i

||α (i, :)B| |l1 =
∑
i

||αB| |l1

⇒ 1√
l

∑
i

||α| |l1 =
∑
i

||αB| |l1 (C2)

Equation (C2) depicts that AD ≤ Ds and Ds ≤ D is already known. It follows

that AD ≤ Ds ≤ D where A = 1√
l

yields the proof as required.
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APPENDIX D: TIME-IND. SIMULATION OF SOME GSDCCA

Table D1: Simulation Results of Two-Group GS Discriminant CCA

GS FDCC C Class Eig V Chi-Square W Lambda
1 0.092 58.0 0.009 2.218 0.991
2 0.115 60.6 0.013 3.447 0.987
3 0.163 61.4 0.027 7.014 0.973
4 0.139 57.6 0.020 5.063 0.981
5 0.102 55.7 0.010 2.700 0.990
6 0.121 56.4 0.015 3.841 0.985
7 0.146 58.7 0.022 5.595 0.979
8 0.134 56.4 0.018 4.680 0.982
9 0.108 58.3 0.012 3.053 0.988

10 0.104 53.4 0.011 2.825 0.989
11 0.098 53.4 0.010 2.488 0.990
12 0.104 55.7 0.011 2.820 0.989
13 0.126 56.1 0.016 4.170 0.984
14 0.134 56.1 0.018 4.665 0.982
15 0.082 53.8 0.007 1.746 0.993
16 0.121 54.2 0.015 3.818 0.985
17 0.119 55.7 0.014 3.718 0.986
18 0.146 57.2 0.022 5.561 0.979
19 0.132 58.0 0.018 4.577 0.982
20 0.106 57.2 0.011 2.922 0.989
Source: Researcher’s computations (2023)
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Table D2: Simulation Results of Three-Group GS Discriminant CCA

GS FDCC C Class Eig V W Lambda Chi-Square
1 0.142 37.9 0.021 0.972 7.235
2 0.154 42.0 0.024 0.966 8.875
3 0.209 39.4 0.046 0.950 13.285
4 0.214 40.5 0.048 0.945 14.532
5 0.181 39.8 0.034 0.962 10.134
6 0.164 39.8 0.028 0.961 10.242
7 0.179 41.7 0.033 0.953 12.439
8 0.157 42.8 0.025 0.961 10.317
9 0.145 39.0 0.022 0.967 8.569

10 0.137 36.0 0.019 0.973 7.155
11 0.143 33.0 0.021 0.972 7.295
12 0.158 34.5 0.026 0.965 9.172
13 0.173 39.8 0.031 0.955 12.024
14 0.142 42.0 0.020 0.968 8.400
15 0.139 41.3 0.020 0.977 6.087
16 0.139 41.3 0.020 0.969 8.273
17 0.148 39.4 0.022 0.961 10.290
18 0.160 38.3 0.026 0.961 10.320
19 0.157 40.9 0.025 0.961 10.283
20 0.193 42.4 0.039 0.958 11.069
Source: Researcher’s computations (2023)
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Table D3: Simulation Results of Four-Group GS Discriminant CCA

GS FDCC C Class Eig V W Lambda Chi-Square
1 0.195 29.2 0.039 0.949 13.622
2 0.164 31.1 0.028 0.945 14.475
3 0.214 34.1 0.048 0.925 20.157
4 0.215 34.5 0.048 0.924 20.895
5 0.181 33.0 0.034 0.948 13.729
6 0.166 32.2 0.028 0.956 11.651
7 0.179 34.1 0.033 0.939 16.152
8 0.196 33.7 0.040 0.937 16.699
9 0.167 30.7 0.029 0.946 14.266

10 0.160 29.2 0.026 0.952 12.796
11 0.152 25.0 0.024 0.951 12.909
12 0.158 27.7 0.026 0.952 12.766
13 0.175 27.7 0.032 0.949 13.431
14 0.162 28.8 0.027 0.951 12.909
15 0.149 24.2 0.023 0.967 8.712
16 0.139 29.9 0.020 0.959 10.755
17 0.156 31.1 0.025 0.947 14.178
18 0.166 31.4 0.028 0.938 16.597
19 0.183 31.4 0.035 0.932 18.041
20 0.205 29.5 0.044 0.938 16.635
Source: Researcher’s computations (2023)
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Table D4: Simulation Results of Six-Group GS Discriminant CCA

GS FDCC C Class Eig V W Lambda Chi-Square
1 0.215 20.1 0.048 0.897 27.821
2 0.183 24.2 0.035 0.904 25.806
3 0.230 25.4 0.056 0.894 28.876
4 0.214 25.4 0.048 0.905 25.697
5 0.190 21.2 0.038 0.916 22.667
6 0.181 21.6 0.034 0.937 16.852
7 0.193 20.8 0.039 0.918 22.029
8 0.215 23.9 0.048 0.919 21.669
9 0.215 25.0 0.048 0.914 22.993

10 0.170 22.7 0.030 0.925 19.989
11 0.177 21.2 0.032 0.922 20.800
12 0.186 25.0 0.036 0.903 26.181
13 0.241 24.2 0.061 0.885 31.320
14 0.186 22.3 0.036 0.907 24.953
15 0.195 23.9 0.040 0.905 25.598
16 0.178 21.2 0.033 0.924 20.351
17 0.190 21.2 0.038 0.916 22.667
18 0.213 26.9 0.048 0.929 19.092
19 0.223 23.5 0.052 0.912 23.744
20 0.172 26.1 0.031 0.933 17.785
Source: Researcher’s computations (2023)
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