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ABSTRACT

The main objective of this work is to maximize a performance functional
subjected to a controlled stochastic differential equation of mean-field type
using the stochastic maximum principle approach. The controlled mean-
field stochastic differential equation has a non smooth drift and is driven
by a one dimensional Brownian motion. We started by first showing that,
considering a corresponding sequence of mean-field stochastic differential
equations with a smooth drift coefficient, the corresponding sequence of
solutions will converge to the solution of the mean-field stochastic differ-
ential equation. We study the representation of the stochastic (Sobolev)
differential flow, via a time-space local time integration argument. Lastly,
we look at a control problem where the state process follows the dynamics
of a mean-field stochastic differential equation. Since the drift coefficient is
non smooth, we characterize the optimal control through an approximate
performance functional which is derived using the Ekeland’s variational
principle. Afterwards, we pass to the limit and prove convergence of the

stochastic maximum principle.
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Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

KEY WORDS

First Variation Process (in the Sobolev sense)
Irregular Drift Coefficient

Mean-Field Stochastic Differential Equation
Stochastic Maximum Principle

Time-Space Local Time

Weak Differentiability

v

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

ACKOWLEDGEMENTS

I would like to show appreciation to my parents for the way they raised
me up, I am forever indebted towards them for this gift. My appreciations
go to my supervisor Prof. Olivier Menoukeu Pamen for supervising the
research for this M.Phil. thesis. I benefited a lot from his expertise in the
subject and hope to have learnt very useful practises from him and look
forward to even learn more. My appreciation go to my co-supervisor Prof.
Natalia Mensah for her valuable comments in the write-up of this thesis. 1
would like to also express my heartfelt thanks to Dr. Antoine-Marie Bogso
for assisting me in understanding very technical lemmas and theorems that
helped me to develop this research thesis, thank you very much for your
patience, your sense of humour and for always consoling us with a cup cake
every time we feel like the work load is too much. I would like to also highly
appreciate the support I got from Prof. Ernest Yankson, the Head of the
department of Mathematics of the University of Cape Coast without whom
I am very sure I could not have successfully completed this programme.
I would like to acknowledge the support from the government of Ghana
for funding this research through the African Institute for Mathematical
Sciences in Ghana. I must also mention the support I received from the
members of the stochastic and finance research center at AIMS Ghana for
providing useful feedback on my presentation that helped me to improve

and get better.

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

DEDICATION

To my family.

vi

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

TABLE OF CONTENTS

DECLARATION
ABSTRACT

KEY WORDS
AKNOWLEDGEMENTS
DEDICATION

LIST OF ABBREVIATIONS

CHAPTER ONE: INTRODUCTION
Background to the Study
Research Objective

Significance of the Study
Delimitation

Limitation

Definition of Terms

Organisation of the Study

CHAPTER TWO: LITERATURE REVIEW
Introduction

Stochastic Maximum Principle

Irregularity in the Control Problem
Mean-Field Stochastic Differential Equation

Chapter Summary

CHAPTER THREE: RESEARCH METHODS

Introduction

Vil

ii

iii

iv

vi

ix

Ot = e W W Ny -

10
11

12

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

Existence and Properties of a Strong Solution of the MFSDE under
Study

Compactness of the approximating sequence X,"* in L?

Weak convergence of X;"" to E[X7|F;] in L?

Representation of the Stochastic Differential Flow by Time-Space Lo-
cal Time

Chapter Summary

CHAPTER FOUR: RESULTS AND DISCUSSION
Introduction

Research Framework

Stochastic Maximum Principle

Chapter Summary

CHAPTER FIVE: SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview
Summary
Conclusions

Recommendations

REFERENCES

viil

12
15
49

58
89

90
90
92
117

118
118
119
119

127

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

SDE
MF

RV
MFSDE
11D
MKV
BM
ODE
W.R.T

LIST OF ABBREVIATIONS

Stochastic Differential Equation

Mean Field

Random Variable

Mean-Field Stochastic Differential Equation
Independent and Identically Distributed
McKean Vlasov

Brownian Motion

Ordinary Differential Equation

With Respect To

1X

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

CHAPTER ONE

INTRODUCTION

This work is mainly dedicated to the study of an optimal control prob-
lem subjected to a mean field stochastic differential equation with irregular
coefficients using the maximum principle. Early results in the literature
have shown solutions to optimal control problems subjected to stochastic
differential equations with smooth coefficients. However, since in our set-
ting, the coefficients of the mean field stochastic differential equations are
not smooth, we cannot use the same approach to arrive at the solution.
We aim at approaching this particular setting using a time-space local time

integration approach, hence the novelty in this work.
1.1 Background to the Study

The mean-field theory finds its origin in the field of statistical mechan-
ics, where the interest lies in studying the evolution of an interacting system
of particles. The term mean-field comes from the fact that we expect some
form of averaging in the marginal distribution of the particles as the number
of particles approaches infinity. A SDE of mean-field type is a stochastic
differential equation in which we allow the coefficients of the stochastic dif-
ferential equation to depend on some functional of the distribution of the

states.

As an illustration, let us consider the following mean-field stochastic

differential equation defined as follows:

dX; = b(t, Xo, E(D(X,)), wp)dt + o (t, X, E(U(X,)), u)dB, "
X(0) = Xo, |

for some functions b, o, ® and ¥ and a Brownian motion B;. In the above
equation, we clearly see that the coefficients b and ¢ depend on the expecta-

tion of the state which makes it a SDE of mean-field type. That mean-field

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

SDE represents the mean-square limit of the following:
i\n in 1 - nn i\n 1 - i\n i
dXim = b(t, X~ 2 (X7, ut) dt + o (t, X~ 2 (X}, ut) dB!
Jj= j=

as n — oo. The prior case is one example which has been studied in An-
dersson & Djehiche (2011). The authors in Andersson & Djehiche (2011)
succeeded in characterizing an optimal control for a control problem where
the state process follows the dynamics of the MFSDE written in (1.1),
assuming that the four functions b, o, ® and ¥ are all differentiable in the
space variable. However, the pioneering work in mean-field theory has been
done by Lasry and Lions in Lasry & Lions (2007a) in which the authors
consider a system of interacting players and the objective is to look out for
equilibria as the number of players tends to infinity. The authors did it by
studying the optimal behavior of one player, after fixing the strategy of all
other players, however, by considering that if one player slightly modify his

strategy, it will not affect the overall outcome of the game.

In this thesis, we are also interested in the dynamics of a stochastic
differential equation of mean-field type. However, instead of having the
expectation [E as our measure variable, it will be the law of the process
X, itself, denoted by Px,. In our settings, we will impose some conditions
on the drift coefficient and later on provide some analysis with regards to

characterizing the optimal control considering the assumptions provided.
1.2 Research Objective

In this thesis, our objective is to characterize an optimal control for
a system driven by a SDE of mean-field type having an irregular drift
coefficient b. More precisely, the drift is of at most linear growth. Our goal

is to maximize the following performance functional J:

T
J(a) = E{/ f(s, X3, Pxy, o5)ds + g(X7, Pxz ) |
0
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subjected to:

dth = b(t7 thv PXf? at)dt + dBta Xg =7, t e [O’ T] (12)

where By is a Brownian motion defined on some probability space (2, F, {F; }+>0, P),
a = {ay,t € [0,T]} is a suitable control process adapted to the filtration
{Fi}+>0, and X7 denotes the state of the system controlled by oy, and f
and g some given functions. Further details and definitions will be provided

along the thesis.
1.3 Significance of the Study

One straightforward example of optimal control problem is a produc-
tion planning problem which has been described in Yong & Zhou (1999),
page 52. This is established in the context of wanting to minimize the
cost of having the inventory at a certain level, at a given production rate.
Consequently, it is important to define the rate at which we want to pro-
duce a material, also because the factory has a control over the rate it
uses. The two other important processes are the demand rate, the rate
at which the material is sold and the inventory level of the material. To
formulate the control problem in this scenario, the factory wants to work
with the optimal production rate in order to spend the minimum cost for
the production of material. One logical constraint in this scenario will be
to specify the storage size for the inventory. Solving this optimal control
problem means finding the optimal production rate taking into considera-
tion the constraint. The study developed in this thesis is more theoretical
and abstract, we mostly look at the mathematical properties of the rate
itself that we refer to as the drift coefficient and we make some analysis

assuming that the drift coefficient fulfills some conditions.
1.4 Delimitation

There are several approaches to solving stochastic optimal problems,

which are but not limited to :
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e Dynamic programming: establishes a link between the effect of a
strategy at a specific point in time and the initial condition of the
control problem on one hand and the effect of other strategies that

are chosen due to that initial condition on the other hand,

e Stochastic maximum principle: through which we can characterize an

optimal control by providing necessary conditions for optimality.

The main aim of our work is to solve an optimal control problem via stochas-
tic maximum principle assuming that the drift coefficient of the controlled

state process is non smooth.
1.5 Limitation

Existence and uniqueness have been shown in the case where the mean-
field stochastic differential equation has a drift that is not random. The
case where the drift is random remains an open problem. However in our
case, we can assume that the drift b is of the form b(t, X;, Px,, a(t, X3))
where o = a(t, X;) is a bounded and measurable function, and therefore,

we have existence of a solution of the stochastic differential equation.
1.6 Definition of Terms

In this section, we provide definitions of some concepts that will be used
throughout this thesis. We also give some useful results that are of a great
relevance in our research objective. We will also mention the references and

sources we will mostly rely on for our definitions.

1.6.1 Concepts in Mathematical Analysis

This part is dedicated to defining useful concepts of mathematical anal-
ysis mainly real and functional analysis, which will be used in several proofs

we are going to develop throughout the thesis.
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Theorem 1.6.1 (Mean Value Theorem). If f is a continuous function on

a closed interval [a, b], there is at least one number ¢, a < ¢ < b, so that:

f(b) = f(b) = f(e)(b—a),

on the other hand, we have, by the fundamental theorem of calculus followed

by a change of variables,

flx+h)— flz) = /:Jrh [ (u)du = (/01 i a7 +th)dt) - h,

Kouba (2003).

Lemma 1.6.1 (Fatou’s Lemma). Considering the measure space (Y, D, v),
let A € D. If {g,}n>1 is sequence of positive measurable function on A,

hence,

/lim inf g,dv < lim inf/ gndv,
A A

Heinonen (2005a).

Definition 1.6.1.1 (The Gateaux Differential). Considering the following
three elements, a function g : I — J, a value A # 0 and a vector z € I,

the Gateaux differential d)g in the direction A\ expressed as:

drg(z + €X)|._, = lim glz+ed) - 9(2)7
e—0 £

Long (2009).

1.7 Organisation of the Study

In this thesis, we will develop in the second chapter an overview of well-
known results in the literature in stochastic maximum principle, mean-field
stochastic differential equations and optimal control of systems where, the
state process is a stochastic differential equation with an irregular drift co-

efficient. We will also explain how the mean-field theory came to light and

bt
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how it is assimilated to the theory of stochastic analysis. The third chapter
is dedicated to study of the representation of the stochastic differential flow
using time-space local time which is important because the drift coefficient
in this thesis is not differentiable. The fourth chapter provides a thought
study on the characterization of a control optimizing a given performance
functional for a control problem, where the state is given by a mean-field
stochastic differential equation. In that chapter, we prove necessary con-
dition for optimality through the stochastic maximum principle. We will
close the thesis in the last chapter with a summary of our study, conclusions

and recommendations.
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CHAPTER TWO

LITERATURE REVIEW
2.1 Introduction

Stochastic control theory takes into account uncertainties that are
present in a given state process. One task of stochastic control theory is
to define the path that will take the state variable subjected to noise when
the control involved leads to a minimal cost spent. A control problem af-
fected by randomness in its environment is a stochastic control problem.
Stochastic control problems are usually solved or at least studied using two
well-known approaches that are common in the literature. The first one is
the dynamic programming principle. Richard Bellman in 1952 initiated the
dynamic programming principle in Bellman (1952), which was performed at
two levels. The first level establishes a link between the effect of a strategy
at a specific point in time and the initial condition of the control problem.
The second level however establishes the effect of other strategies that are

chosen due to that initial condition.

On the other hand, the second well-known approach to solving a stochas-
tic control problem is the stochastic maximum principle, which is the method
we will use to study the control problem at our hand. Indeed, the stochastic
maximum principle makes it possible to characterize an optimal control by
providing necessary and with further convexity assumptions, sufficient con-
ditions for optimality. The author in Bismut (1976) made a breakthrough
contribution which paved the way to the field of stochastic control theory
with the use of stochastic maximum principle to provide necessary condi-
tion for optimality. In Bismut (1976), the stochastic maximum principle
was applied to a control problem with a quadratic cost-function. Nev-
ertheless, with the content of the current literature, stochastic maximum
principle can be applied to control problems where the cost-function or the

performance functional need not to be quadratic.
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2.2 Stochastic Maximum Principle

The maximum principle in optimal control was initially formulated in
Boltyanskiy et al. (1962) where the authors develop an approach to find the
optimal path for a state process with a given constraint. The state variable
was deterministic and their approach consisted in removing the constraint
on the optimization problem using the Hamiltonian. Once the control prob-
lem is affected by noise in its dynamics, one way of assessing the study of the
control problem is by using the stochastic maximum principle. For a start,
the author in U. Haussmann (1981) applied the stochastic maximum princi-
ple to solve stochastic control problems including those which were already
solved using the Bellman dynamic programming, however, U. Haussmann
(1981) succeeded in obtaining explicit optimal feedback control using the

stochastic maximum principle.

Early results in the literature reveal the application of the stochas-
tic maximum principle to control problems where the control is chosen to
belong to a convex space. Also, for the controlled state variable, the control
parameter was only put in the drift coefficient of the stochastic differential
equation, not in the diffusion. It is the case for example in Bismut (1976),
Bismut (1978), U. G. Haussmann (1986), Kushner (1972a). An adjoint
process of first order was enough to study the stochastic control problem in
early studies. The very first author who studied a control problem where in
the controlled state variable, the control parameter was put in both the drift
coefficient and the diffusion coefficient was Peng in Peng (1990). Also in the
aforementioned work, Peng does not need the control space to be convex.
The author introduced an adjoint equation of second order to characterize
the optimal control for this type of control problem. The specific applica-
tion of the stochastic maximum principle initially formulated by Peng is

developed in the book Yong & Zhou (1999).
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2.3 Irregularity in the Control Problem

There are results in the literature of stochastic control theory where au-
thors study the stochastic optimal control of systems consisting of a stochas-
tic differential equations having nonsmooth coefficients. One approach used
to tackling this kind of control problems is by using a variational approach
which consists in deriving the maximum principle through a pertubation of
the optimal control. The first work which went in that direction was done
by Kushner in Kushner (1972b). In Kushner (1972b), the author derive a
maximum principle using the first order convex approximation of a set of
controls which is defined by using the variational result of Neustadt. The
drift and diffusion coefficients in Kushner (1972b) were differentiable. On
the contrary, the author in Bensoussan (1982) derive the stochastic max-
imum principle for a control problem, where the coefficients of the state
variable do not need to be differentiable everywhere. More precisely, both
drift and diffusion coefficients are Lipschitz and admits the linear growth
property. The author study the control problem using a variational ap-
proach which consist in convergence of the approximate control problem

with pertubation to the initial control problem without pertubation.

Also, going in that same direction, the author in Brahim (1988) was
able to give necessary conditions for optimality of a system driven by a
stochastic differential equation, where the drift does not need to be differ-
entiable everywhere. The author in Brahim (1988) shows stable convergence
of the maximum principle by approximating the initial control problem into
a sequence of control problems which are smooth using the approximation
developed by Frankowska in Frankowska (1984). In addition, we also have
the study in S. Bahlali & Mezerdi (2005) which extended the result in Peng
(1990) to singular control problems where in their case as well, the control
set does not need to be convex . Later on, the authors in K. Bahlali et al.

(2007) used a similar approach as in Brahim (1988) but with a diffusion

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

coefficient which is degenerate. More authors have contributed in this di-
rection among which we can cite K. Bahlali et al. (1996) and S. Bahlali &
Chala (2005).

One important contribution where the study was done for a control
problem in which the drift coefficient of the state variable was neither dif-
ferentiable nor Lipschitz, has been tackled in Menoukeu-Pamen & Tangpi
(2021a), where a variational approach is also used, but with the difference

that the authors express the adjoint equation using time-space local time.

In the aforementioned literature, the state process under study was not

dependent on a measure variable.
2.4 Mean-Field Stochastic Differential Equation

The idea of having the dynamics depending on the probability law was
seen in the pioneering work of Lasry & Lions (2007b), in which the authors
succeed in deriving a mean-field control problem consisting of nonlinear

differential equations.

In addition, stochastic maximum principle has been used in the lit-
erature to characterize optimal controls of systems driven by stochastic
differential equations which have a dependence on the law of the state pro-
cess. It is for example the case in Carmona & Delarue (2013) where the
authors showed existence and uniqueness of solutions of a system of two
SDE, one is the forward controlled state dynamics and the second is the
adjoint equation. However, let us point out that in their case, the drift b is
differentiable in the state variable and linear in the state and the measure
variables, therefore, deriving the adjoint equation can be done in a classical
way. In this thesis, We consider a case where the drift is irregular, i.e.
we allow our drift to be measurable and to admit the linear growth prop-
erty. An attempt of characterizing an optimal control for a system having
an irregular drift was done in Menoukeu-Pamen & Tangpi (2021a) where

the authors’ idea was to explicitly write the adjoint process, but in terms

10
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of the flow of the state process. We need to remember that they did the
work without the dependence on the measure variable. We will draw our
inspiration from their approach, however, this time, we will consider the

dependence on the law of the state process.
2.5 Chapter Summary

The objective of this part was to present well-known results in the
literature of stochastic control theory. We have seen that it initially started
by considering a control problem where the controls were taken in a convex
space, and the state dynamics had smooth drift and diffusion coefficients. It
gradually moved to the use of variational approaches to derive the stochastic
maximum principle in cases where the coefficients of the state variable are
not necessarily differentiable everywhere. But still, in those cases, there
was no dependence of the state dynamics on its law. However, we presented
cases where it is possible to apply the stochastic maximum principle with
the state driven by a mean-field stochastic differential equation. At last,
we presented a contribution where the state dynamics was a mean-field

stochastic differential having an irregular drift coefficient.

11
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CHAPTER THREE

RESEARCH METHODS
3.1 Introduction

In this chapter, we consider the following mean-field stochastic differ-

ential equation:
dX7 =0(t, X{, Pxp, ci)dt +dB;,  Xg=w, t€[0,7], (3.1)

where the drift coefficient b fulfills some assumptions which will be stated
at the end of this overview. In this part, we assume b to be measurable and
of at most linear growth. {5}, is the Brownian motion defined on the
filtered probability space (€2, F, {F; }icp,1, P) and is one dimensional. The

process {ay }i>0 belongs to the space defined as follows:

D= {(y 1[0, T] x Q@ — R, is progressive such that (3.1) has a unique strong solution}.

(3.2)

The mean-field stochastic differential equation (3.1) admits a strong solu-

tion depending on how the process {oy }>¢ is defined.

3.2 Existence and Properties of a Strong Solution of the MFSDE
under Study

This part is focused on describing the setup used to lay down the prop-
erties of a stron solution of the MFSDE aforementioned. For example, we
have existence of strong solution if the process {a;}:>¢ is a Markovian con-
trol. Since a strong solution exists, we will show that the approximate se-
quence of strong solutions denoted by { X™*},>¢ will converge to the strong

solution itself. We prove so by supposing that the following assumptions

holds:

12
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e the drift b can be decomposed in this form:
b(t7za/'L7a’) = bl(t7zau) +b2(t7zaa)7 (33)

e b :[0,7] x R x P(R) — R is defined such that:

— there exists a constant C' > 0 such that for all t € [0,7], z € R
and p € P1(R),

b (t; 2, p)| < C(L+ [2] + K(u, 6o)), (3.4)

where b, has the following particular form of the linear growth

condition:
bl(tvznu) = Bl(t7znu) +l~71(t7zuu>a (35)

— by is bounded and measurable,

— by is of at most linear growth and differentiable in z with bounded

derivative,

— by is continuous in the third variable i.e. for all u € P;(R) and
all e > 0, 36 > 0 such that,

(Vv e P1(R) : K(u,v) < 6) = |bi(t, z,pu) — bi(t,z,v)| <€, t€[0,T], z€R,
(3.6)

e we will also assume that b; is Lipschitz continuous in the measure
variable uniformly in the other variables which means that we can

find a constant C' > 0 such that:

|b1(t, z, ) — bi(t, z,v)| < CK(u,v). (3.7)

e We assume by : [0,7] Xx R x © — R to be adapted such that and

fulfilling the following conditions:

13
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0
- ‘562(@27(@

+|bo(t, z,w)| < L(w) for all (¢, z,w) € [0, T| xRxQ
with L¢ := E[eCL@I*] < 0o, where we have C' = 48T, where the
value of C is given according to Lemma 3.1 in Menoukeu-Pamen

& Tangpi (2019).

— we assume Malliavin differentiability of by(t, z, -) for every (t, 2) €
[0,7] x R and we can find a process L(t,w) such that the Malli-
avin derivative of by denoted by D;by(s, z,w) satisfies | D;bs (s, 2z, w)| <

~

L(s,t,w) PRdt a.s. forall (t,2) € [0,T] x R,

— [P = sup0<s<T]El(fOT |ﬁ(s,t,w)]2dt)4} < oo and we can find
constants C, 8 > 0, such that E[|Dpbs(s, z,w) — Diba(s, z,w)|*] <
Clt' —t|P,

e the drift b is of at most linear growth i.e. there exists a random
variable C'(w) > 0 and a constant C; > 0 such that for all ¢ €
[0,T],z € R, and i € P1(R),

|b(t7Z7M7w)| S Ol(o(w) 0 |Z| +’C(M750)>7 (38)
where we have,
L = E[eC100F] < o0, (3.9)

with C' = 48T, where the value of C' is given according to Lemma 3.1
in Menoukeu-Pamen & Tangpi (2019). Also, the Kantorovich metric
IC is defined as :

K(p,v) = sup . v € Pi(R),

heLipl (R)

/R h(y) (i — v)(dy)

and,

Pi(R) = {,u‘,u probability measure on (R, B(R)) with / lyldu(y) < oo}
R

14
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we must also take note of the following notation:

T
5(/ b(t7Xt7:ut7at)dBt) B efOTb(tthm’at)dBt_% o bt Kopsacfid (3.10)
0

3.3 Compactness of the approximating sequence X;"* in L?

Considering the same filtered probability space (Q, F,{F},P), as-

sume that b satisfies the decomposition:
b(t,z, pu, ) = IA)l(t, z, 1) + Bl(t, z, 1) + ba(t, 2, @),

such that,

~

e b :[0,7] xR x P;(R) — R is bounded and adapted,

e by :[0,7] xR x Py (R) — R is differentiable in the space variable with

bounded derivative,

e by is bounded measurable and continuously differentiable with bounded

first derivative.

For a given sequence,
bu(t, 2, t, @) = by (t, 2, ) + ba(t, 2, @), (3.11)

such that,

bin [0, 7] x R x Pi(R) = R,n > 1 admits the decomposition,
bin = gl,n +0y, (3.12)

where b, ,, are smooth coefficients converging almost everywhere to by, we

show that the sequence of corresponding strong solutions (X;"*),>1 of the
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MFSDEs:

AX[" = by(t, X[ Py, )t +dB;, 0<t<T, Xp"=z€R, n>1
(3.13)

has the property of relative compactness in L?(P,R) for each 0 < ¢t < T.
Before stating our result, let us define what a Malliavin derivative is. In

this direction, we first give a definition of a symmetric real function.

Definition 3.3.0.1 (Symmetric real function). A real function g : [0, T|" —

R is called symmetric if:

g<t7717 © 7g(t77n) = g(tla S 7tn)a

for all permutations n = (11, -+ ,n,) of (1,---,n), Di Nunno et al. (2009).

Definition 3.3.0.2 (Malliavin derivative). Let F' € L?(P) be Fr—measurable

with chaos expansion

n=0

where f, € L*([0,7]*),n =1,2,--- and

T prtn t3 to
[n(fn) :n'/ / / / fn(t1>"' atn)thl"'thna
0 0 0 0

with L2([0,7]") < L?*([0,T]") being the space of symmetric square inte-

grable Borel real functions on [0, 7",

(1) We say that F' € Dy, if:

HFHI%M,z o= Z””!anHQm([o,T]n) < Q.
n=1

(2) If F € Dy 5 we define the Malliavin derivative DiF' of F' at time t

as the expansion:

D.F = in[n_l(fn(-,t)), telo,T),
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where L,_1(fn(-, 1)) is the (n—1)-fold iterated integral of f(t1,te, - ,tn_1,1t)
with respect to the first to n — 1 variables t1,ts, -+ ,t,_1 and t, =t left as

parameter. Di Nunno et al. (2009).

Our compactness argument is based on the following result:

Lemma 3.3.1. For T" > 0 small enough, we can find a constant Cr s
depending on T" and L? such that the strong solution X;"* of the stochastic
differential equation (3.13) fulfills the following property:

E[| Dy X~ Dy X™*?] < Op ot —t|*, for 0 <#¥ <t <s<T and some a > 0.
The following also holds:

E[| D, X™"|?] < Cre, for a constant Crp» > 0.

The proof of Lemma 3.3.1 relies on the following results which are provided

with proofs:

Lemma 3.3.2. Let b: [0, 7] x Rx P;(R) x 2 — R be a function of at most
linear growth, i.e., for some random variable C'(w) > 0, and a constant
iy >0,

bt y, )| < C1(C(w) + [yl + K1, ),

all z € R and ¢t € [0,7] with T sufficiently small, then for any compact

subset K C R,
T 2
SupE[S(/ b(u, Bl"f,IP’X;c,au)dBu> 1 < 00, (3.14)
zeK 0
T 4
supE{S(/ b(u, B;f,IP’Xg,&u)dBu) 1 < 00, (3.15)
zeK 0

the second Lemma is the following:

17
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Lemma 3.3.3. Let f:[0,7] x R x P;(R) — R, be a bounded measurable
function, then for every t € [0,7], A € R and compact subset K € R, we

have:

Sup E e>‘ f(;t fR f(s’yhu')LBz (ds»dy) < 007 (316)
zeK

where LP(ds, dy) denotes the integration with respect to local time of the

Brownian motion BY = B; + x in both time and space.

Proof of Lemma 3.5.2. Indeed, after splitting the Doléans-Dade exponen-
tial, and applying the Cauchy-Schwarz inequality, we get:

T 2
E[5</ b(u, Bff,]P’Xg,au)dBu> ]
0

- efOT 2b(u, BE Pz o )dBu— [ b(u,BE Pxa ,au,)Qdu:|

— F|efo 26(uBE Pxgau)dBu—4 [§ b(u,Bf Pxg.ou)?dut3 [y b(u,BS Pxy ,au)2du:|

i 2 2
<FE efOT 4b(w,BE P xz a0 )dBu—8 [ b(u,Bﬁ,PXg,au)zdu} E |:66 J o(u,BE ,[P’Xﬁ,au)2du:|

1 1

T 2 T " 5 2
=FE 5(/ 4b(u, By, Px=, Ozu)dBu>} E {eﬁfo b(u, BE Pxz o) du:|
0

N

I

— E 66 fOT b(u7B51]PX7‘f ,au)Qdu:|

the last line holds true because:

T
E[E(/ 4b(u, B'Zf,IPX&c,au)dBu)} =1,
0
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KiExr.d) = sup | | ) = 30)(a)
= sw | [ Pxetas) = [ nsn)
= s | [ HPsy(an — [ 10)Py(a)
= sw | [Py~ [ 0O )
= s | [ () - 0P a)
< s [ [hy) = (O Pzl

< / ly[Px; (dy) = E[1X2])

now, let us evaluate E[| X}|],

¢
E[| X/ =E {x+/ b(u, Xy, Pxz, on,)du + By

|

0
(A
<|z|+E [ b(u, X, Pxe, o) |du + |Bt|}
0
s
<lel+ | (BICHCw) +1X3] + K(XE,00)) du + E| Bl
0
t
<lol+ [ (BICHC(w) + 3|+ EIIX:0)du + Bl
0

] + / (E[CH(C(w)] + 2E[|X2))du + E[| By

2t

= |z +/O (E[C1(C(w)] + 2E[|X7|])du + \/;
< |a| +/0 (E[C1(C(w)] + 2E[| XZ() du + \/?

- bl + cuBlo@e 2 [ B 2
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< |z| + CLE[C(w)]T + 2 E[|XZ|]du +
0

< |z| + C,E[el“ w>|]T+2 E[| X (| du +
0

< |z| + C1E ['C“)|2]T+2 E[|X?| du—I—\/W
0

after applying the Gronwall’s inequality, we get:

[oT )
E[| X7 < 6201T(|x| + 4/ = + C{TE[el®@) ]é),
T

we will use this estimate of E[|X[|] to prove the estimate (3.14) of the

ﬁﬁ

lemma. So,

[b(¢, BY, P, i)
< Gi(C(w) + |B/| + K(Px¢, 6))
< Gi(Clw) +[Bf| + E[[XF(])

= C1(C(w) + | Byl + || + E[| X7 )

2T 2.1
C(w) + |z + | Bl + 62“T(le +/ = + CITE[w ])}
T

[2T 1
C(Cd) e ‘.Z"(l L(L 62C’1T) o |Bt’ e 6201T =B ClT@QClT]E[€|C(w)I2]2}’
™

let E[e‘c(”)‘Q]% be bounded by a certain constant we denote C5, then we

have,

’b<ta B;;C7 ]P)th, at)|

[oT >
< Cl{C(w) + |z (1 + e29T) +|By| + 29T\ | — + C1T* TE[el )] ]é}
N

oT
= 01{0(@ ol (14 €2T) + [ Byl + €T [ — + OlTeQClTCQ}

2
= C1{C(w) + |2|(1 4 27T) + | By| + eQClT\/jTé + C1T6201TC’2}
e
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we now add the following extra term:
ClTGQClT
and we get,

b(t, BY, Pxz, )|
2

< Cl{ _|_ |Z)§‘| 1 + 6201T) + |B | + GZCIT\/jT% L 01T6201T02 + C«lTeQClT}
m
2

{ )+ [2l(1+€*7) + B + eQClT\gTi +(C1Cr + Cl)TGQClT}

2

< Cl{C(w) +|z](1 +€*7) + | B + eQClT\ﬁTi e, + Cl)TezclT}
m

+ Clcg{C(CU) + [z (1 + 7)) + | By + eZClT\/gTi + (C1C, + Cl)Te201T}

the last line before the last comes from the fact that we just added the

following extra term:

2 1
CICQ{C“") +lol(1+ %) + 1B + em\/;“ (G0 + 01>Te201T},

we now get,

b(t, BY Py, o)

< (Cy + C1Cy) {0 + |z| (1 + €27 + |By| + 62017’\/%Té N0 C, + cl)Te%‘lT}
< il {C’ +|x| 1+6201T+201(12T) +|B|+6201T+20102T\/§T;
Cq

(0102 T ) 2ClT+20102T}

let us now update the value of C; by C1(Cy + 1), we get,

2
b(t, BY, Pxp, a)| < 01{C(W) + |2[(1+ 7)) + |By| + ezclT\/;Té - OlTezclT},
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let us now assume that T" < 1, therefore,

2
b(t, Bf , Pxe, oq)| < C’l{C'(w) + |z[(1 4 7)) + | B + 6201T\/;—|— C’lTezclT}

2
< 01 <€201T\/;_’_ 01T6201T> (C(u}) + |[E| + |Bt| + 1)

= Cur(C(w) + |z| + | Bi| + 1),

with Cyr = C; (ewlT\/g A 01T6201T). The last inequality holds true

because:
(
1

1— >0

Cl <€2C1T\/g e 01T€201T)
201 T

1_ LS >0,

Cl (6201T\/g + 01T6201T)

\

and it is true for any value of C,T. Our estimate for [b(t, Bf, Pxz, ay)| will

be,
[b(¢, B, Pxg, 00)| < Cup(Clw) + || + [Bi] + 1), (3.17)

where Cy 7 = O} <6201T\/g+01T6201T> , with this estimate of |b(t, Bf , Pxz, a)|,

b(u,BY Pxe Ja,)2d

we can now find an estimate of E |:€6 I “1, we will use the ap-

proach seen in Menoukeu-Pamen & Tangpi (2019) at page 9 and what

follows will be an adaptation of their proof to our settings,

E {66 I b(uyBﬁ,ngyau)Qdu} - [efoT 602,T<C<w>+x|+Bu|+1>2du}

<E |:6f0T 180§?T(0(w)2+(1+|x)2+|Bu|2)du}
where the last expression comes from using the inequality:

(di+do+ -+ +dp)? <n(d} +d5+ - +d2),
22
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SO0,

E |80 buwB Pxg.au)?du| o J18CF p(1+2)* T | ofy 18CF 1C(w)2du, fg 18(JZYT|Bu2du:|

— 18CE (1))’ TR elSCfYTC’(w)QTefOT 18027T|Bu|2du:|

18C2 .(1+|x|)2T 18C2 .C(w)?T _18C?2 . T(sup | B¢|?)
<e 4,7 Ele 4,7 e 4,7 te[0,7T] ,

next, we apply the Cauchy-Schwarz inequality to get:

- 1 1
2 2
E |:66 fOT b(u,Bf Pxg,on)’du | ~ elBCiT(lH:vDQTE |:636CZ,T|C(w)|2T1 <« |:636CZTT(suptE[O’T] |Bt|2)]

)

. 2 2
let us first estimate E |e30CirT(uPeeo,r [Bel%)

] , we will apply the Taylor ex-

pansion of the exponential function e”. Therefore, we have:

E |i€3602,TT(SuPte[o7T] Bt|2)j| — E |i1 _|_ i (36CE,T(SuptE[O,T] |Bt|2)T)q:| 7

q=1 ¢

{1 =, (36CF pT)4

n T( sup |Bt’2)q:| ,

=1 te[0,7
< (3602,T)"

= (14 X S Rl s B,
=1 q: t€[0,7]

x (36C2.T)?
< (HZ%E[ £ |Bt|2q1),

) t€[0,T]

before going forward, we need to estimate E[sup;¢( | B¢|??] using the Doob’s

maximal inequality,

2 2q g 2
E[ sup |B;|™] < E[| Br[™]

te(0,7)
_ (20 \" T(29)
n 24q!

[\
)
|
—_

Y
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we substitute back the expression of E[sup,c(o 71 |B[*!] into the inequality

T
with E [efo 36CZ,T|BH|2d“} to have,

2
3604T Sup |Bt|2q])

T 2 2
E |efo 36C% r1Bul du:| (1 +
{ >

< (1+Z (36C4TT) (2(123 1)2q . %ﬁﬁ)!)

q

where, a, =

9

0 -77/ 25 \“ y T9(2q)!
q! 2q — 1 24q!

we will now check the convergence of a, using the ratio test,

ratio test for a,:

(36C%  T)7+! <2q L 2) T2 et (94 4 2)

! q+1 ]
M = lim |22 = (Q+1)'2 29 +1 . 20+1 (g 4 1)!
g—o0 | Qg q—00 (36047TT)Q 2q | Tq<2q)!
q! 2¢ — 1 24q]
60T (2‘-’ - 2) M T(20+2)(20+ 1)
g+1 29 +1 20q + 1)

q—00 2q 2q
29 —1

36C7,T%(2q +2)(2¢ + 1) y (2(] + 2) 27+2
2(q+1)2 29+ 1

q—00 2(] 2q
2g —1

3GC’iTT2 x4 (2¢)%+?
2 " (2927
40 (29)*

= 72C; T,
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the ratio test states that for the series a, to converge, we need to have

M <1, which means 72C7 ;1% < 1,

2
2
7202, 7% < 1= 72 <01 (6201T\/j - 01T6201T>> T° <1
’ m
5 2
= 72 <01T (e%“ﬂ’\/i + 01T6201T>) <1
m

1 2 1
= ———<C|T 6201T\/j+0 TeZClT) < —
vi2 = ! ( T = V72

1 2 1
= -—-—< 07T ezclT\/jjL C TeQClT) < —,
6v2 — ( m ! T 6V2

since the left part of the previous inequality is always true, we can remove

it and deal only with the right part,

2 1
C o QClT\/j C TP 201T <
1 (6 - + Cile ~ _6\/57

2 1l
= er\/j—k 627’) — —— <0, where p=C1T,
p( = p 6\/5 3 p 1
= p < 0.105605,

this means,

p < 0.105605,

= (1T < 0.105605,
0.105605

= T < — N
_— Cl b

we have,

0.105605
< 7Y

T 1
< (318)

therefore, we can conclude that the series a, will converge if the condition

(3.18) is satisfied.
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Let us scroll back to what we wrote previously, indeed we had:

E {efoT 3603,T|Bu|2d“} < (1 + Z %) ;
q=1

since we have shown that the series a, converges provided that the condition

on T is fulfilled, we can say:

E {efOT 36CE rBuldu | o (3.19)

we also had,

1
2 2
E |:66 fOT b(u, By Pxz ,au)Qdu] < elSCZ’T(IHJ:l)QT]E [636C§)T|C(w)|2T} < |:6366'Z’TT(supte[oyT]) | B |?

=

2

Y

< 0618CZ,T(1+|1|)2TE |:e36027T|C(w)2T:|

the term E{elgcﬁ,TC(”)PT] looks like our L€ defined in (3.9), therefore is

finite. We can write next,

E [efoT b(“»Bﬁvﬂl’X%vo‘u)Qdu] < CeSCrHD’T | with ¢ changing to a new C),

2 2
since £ {5 ( fOT b(u, z+By, Pxz, ozu)dBu> ] <E {66 Io b(u,Bi:quf’au)Qd“] (you
can see it shown at the beginning of the proof of Lemma 3.3.2), we can
therefore conclude that for any compact subset K C R and for T which is

sufficiently small, the following holds:

T 2
supE{S(/ b(u, Bff,IP’Xg,ozu)dBu) } < 00.
rzeK 0

The next part consists in proving that:

T 4
SupE{g(/ b(u, Bﬁ,ng,au)dBu) } < 00, (3.20)
zeK 0

the proof follows the same approach as in the case in the case of
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2
SUD,c i E [8 < fOT b(u, By, Pxa, au)dBu) < 00. In this direction, we have:

T 4
]E{S( / b(u, Bﬁ,ng,au)dBu) ]
0

=K 64 foT b(u, B vPXﬁ’ 10 )d By —2 foT b(uzBZEJPX,ﬁ :au)Qd“:|

— | o b(u,BE Pz 00)dBu—16 [} b(u,BE Pz o) 2dut14 [ b(u,BE Pya ,au)%lu]

T T - T - 2 g -
<Eled Jo b(u,BE Pxg,au)dBu—32 [y b(u,Bu,ng,au)2du:| E [ezsfo b(u,B Pxz ,oau)Qdu:|

=

1 1

’ 2 T x 2 2
=E|& < / 8b(u7 Bzv P)Qf» Oéu)dBu):| E |:628 Jo b(u, By Pxg,au) d“:|
L 0

NI

?

—F|e28 Jo b(u,BE Pxx ,au)zdu:|

so using the same approach as in the proof of the estimate (3.14), one
can arrive at the step where showing that E |e?® o b(uﬁBﬁ,ng,au)Qdu} is finite

means finding the range where the following applies:

2 1
2p 2p il
p(e \/j—I—pe )——go, where p = C1T
m 4+4/21

which is true when p = C1T < 0.0569487, which means we should have:

T < 0.0569487'

c (3.21)

4
Therefore, we can conclude that sup, ., E [5 ( fOT b(u, B, Pxa, ozu)dBu) }
is finite if the condition (3.21) is satisfied which ends our proof. O

Let us state next a strong theorem which has been derived in Eisen-

baum (2000) which will play a key role in the proof of Lemma 3.3.3.

Theorem 3.3.1. Let f be a measurable function from [0,T] x R x Py(R)
into R. For a given measure p, let us define f*: R x [0,T] — R such that
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fH(s,x) = f(s,x,u). We define the norm || - || by:

I|f“|—2<//f" ewdm> //!xijg;%

consider the set H of functions f* such that || f*|| < co. Then,

t T T »
/ / P4 ) L7 (dr, dy) = / P BIAB, + | AT =7, BE)AW, — / T =, B2,
0o JR T—t T—p T—r

(3.22)

where, B, := Br_,0 <t < T is the time-reversed Brownian motion, and
Wt = Bt—BT—l—fUt TB
of B, Eisenbaum (2000).

Next, we recall the Tanaka’s formula:

Definition 3.3.0.3 (Tanaka’s formula). In stochastic calculus, the Tanaka’s

formula states that:
t
By = / ch0B,) I I (3.23)
0

where B; is a Brownian motion defined under a suitable filtered probability

space, sgn denotes the signum function:

.

+1, x > 0,

sgn(r) =<0, 2 =0,

-1, 2 <0,
\

Proof of Lemma 3.3.3. Using the decomposition (3.22), we have,

E [GA Jo S £4(s,9) LP" (ds,dy)

", [GA Jo $4(5,B3)dBsAA [1_ f*(T—8,B5)AWs= fr_, f*(T=s,B%) 2%5ds |

t - T 5 T Az Bs
_ E[e)‘ fo fH(s,B%)dBs eA fT_t f“(T—s,B?)dWSe—A foz f”(T—s,BS)T_sds]’
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after using Cauchy-Schwarz inequality two times, we get:

E |:6>\ fot Jr fH(s,y)LB” (ds,dy):|

. 1
Bs 2
Tisds]

. 1
Bs 4
T_Sds] 7

1
<E [em N f“(s,BSz)st] ’® [62,\ Sy (T8, BE)AWs =2 [{_, [*(T'=5,BY)

1 1
<FE [62,\fg f“(s,B;”)st] ‘B [€4AfTT_tf”(Tfs,B§)dWS} o [6—4AfTT_tfu(T—s,Bg)

= [ x II x I1I,

where W, = Br_, — By + f b Br- —=ds, is a Brownian motion. Let us next
show that I and I are finite. First, we use the Taylor series expansion of

the exponential function:

D=

(05l sBrdB)

Z
_ ( E[(2) fy /" s,Bg)st)q]>;

q!

E [e”‘ IS f”(s,Bf)dBS:| 7D

»Q

||M8

_ < < (2N)E[( [ fu(s,Bg)st)q})%
q=0

q!

i [

next, we use the Burkholder-Davis-Gundy on the expectation term with

the best possible estimates and we get :

q'

E ehfgf“(S,B?)st]% 1 (Z (N E[( o F#(s, B2)dBy) ]>1

q=0

(NS

2 (20)127g3 B[ ( [1(f)2(s, BY)ds)?]\ 2
< (Z & [(fq! ) }) ’

q=0

since f* is a bounded function, we can write:

[N

E [62>\f0t f“(S’B:)dBSj| 2 < (i (2)\)‘10‘1(]%(}"%(]4 d8)2>
q:

q 1
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The ratio test implies:

Crifg+1)"
M — Ag+1 _ (Q+£)!
Qg qu§
q!
Crtl(q+1)% (g + 1)
(g+ 1)
C’qq%
q
Crtl(q+1)% (g + 1)
- (¢ +1)g!
C’qq%
q'
CCi(q+ 1)3(g+1)2
(g + 1)q!
qu%
q!
~ CCYqg+1)i(q+ D)2 ¢
a (g +1)q! Cq
ote F)

g

(g +1)2q3

Dk

N |=

1 1 1

Thus, lim C[(l—i—l) } ———= = lim Ceze——5 =0 < 1. Since,
L g VAN CEF RS PR

dl

. ¢ N M
the series {a,}4>0 converges, E [62/\ Jo f"(syB?)st] is finite. The same rea-

n 1
soning applies to | [6_4’\ Jr—4 £4(T=5,B3) 725 ds] W Therefore, both I and I1 are

T T As 1
finite. Let us now show that the term /] = E [674)\fo’5 f“(T*S’Bs)Tfsds] !

is also finite.
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For the term II11, we have using the Taylor series expansion of the expo-

Téjs ds}

[i (= 4\ f7_, f1(T - s,Bzf)fi:ds)"]

q!

nential function:

E {e‘u S £ =s,B)

(— 4\ [r, 2f(T — s, BY) L 1ds)q}

0
B| (40 J7L 2040 = 5, B) s )’

q=0 q'
i —4)) QIE[(fT " —S,Bg)\/’f%ﬂ ;_sds)q}
q=0 ¢
next, we apply the Jensen’s inequality with the measure dv; = ; ;78 ds
and we get:
E {6—4,\ JE, (T —s,B7) = ds:|

(—4r q]E{(fT 2T — 5, BE) B ;_Sds)q}

)
q=0

q!
| (&) qE[(fT 3 —S,Bf)\/%dvs)q}
: Z .
g=l)
o (= 4)\)qu]143[] L (FM(T = 5, B9))%( gss)qdys}
<> " :

I
<

q

since f* is a bounded function, we update the value of C' to a new C' to

get:

E[ —A T, FH(T—s,B7) L

Bs ds]

(—4)\)1C9E f;t (fM(T — s, B7))’( gis_ S)qdys}

NE

Q
Il
o

(—4N)ICIE fT t(

NE

q

Q
Il
o
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i (=4N)C? [ B[] A= ) dvs
q=0 q!
i (4N)1C1 fT » [|B 7] dv
— 3 q!
o (4N)1C1 [, » cE[|B,*]%d
< i
q=0 T

w\»—‘

(4070 fr_, 7B Brs["]*d

q=0
5 (N (Jpoy gy [“ag ] dne)
q=0 ¢
(29)]3 (T—s)?
_ i (42) qu(fT t (7= s)g q2%(q!)% d’/s)
q=0 q!

(anyecaleatt (v g,

_ i 28 (g1

q!

1
12
L
2

s (4X)1C1 [29)

]
< Z 22 (q")

q=0 ¢
X [(29))2
40)1C1 :
3 ;( ) q'28(q!)2
& @yer[eg)]?
qz:; ¢!(21!)
= ZO g,

(40)7C7[(2q)1]*
¢!(214!)2

where a, = , the ratio test of a, gives:

. Qgy1
M = lim -%

g—00 Qg
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D=

(4N O ((2(g + 1))
(¢ + )27 (g + 1) )2
e (40)7C[(2¢)!]
ql(21!)?
(4N)1(40)C1C (2 + 2) (29 + 1)(29)!)
(g +1)g!(2 x 24(q + 1)q )2

N

= lim

i (1) [(20)]

q!(27q))?
(c1fa)]* (4N x O((20 +2)(2q + 1)

T ¢'(27g))* (g+1) x 2(g+ 1)z

5 (40)1C1[(2q)!]

¢!(21!)

o (40 X O(2q+2)(2q + 1)

v (g+1) x (2(g+1))2
. (4)) x C(2g +2)2(2q + 1)z
a0 (g+1) x (2¢+2)3

8 (4)) x C(2¢ + 1)z
q—00 ot 1
(40 xC(2g+ 1)z
o0 (g +1)2(g+1)2
o (4X) ><(1J e (2q+1)
q—00 (q—|—1)§ qg+1

VI

= (0L 1.

Since the ratio is less than 1, the series {a,},>0 converges, therefore

the term [E [6_4’\ fg—tfH(T_s’B?)TLidS] is finite. Since it is finite, the term

: 1
I = [e‘“fTTfth(T_s’Bg)%ds} * is also finite. Hence, the three terms I,

II and III are finite. We can then conclude that,

sup E [6’\ Jo S £ (s,9.) LE" (ds,dy)l < 00.
zeK

This is where the proof ends. O]
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Proof of Lemma 3.3.1. First, we derive the explicit representation for the

following expression Dy X* — D, X*. We know that:

dth’x = bn(t, thﬂ;, IPXZL’Z7 Oét)dt + dBt,

t
=X" =3+ B, + / b (u, X%, P, ) du,
0

we also have:

X™M* = + B, +/ b (u, X0 ", Pxnow, ) du
0
t s
=+ Bs + / bn(U,Xg’w,ng,w,au)du + / bn(u,Xg’m,IPX;l,m’au)du
0 t
t s
=x+ B, + / b (U, X7, Pxnzy @y )du + / (b1,n(u, X3p®  Pynow ) + ba(u, X7, ) )dus,
0 t
now, let us take the Malliavin derivative of X", we get:
DtX;L’x
i s
=D, {m + B, + / b (7, X%, Py, o )dr + / (b1,n (1, X7 Pxna) + ba(r, Xf’x,a,,))dr]
0 t
t s
= Dt.’E+DtBS +Dt|:/ bn('f'7 X;L’x,IPX:},z,at)dT'] +Dt|:/ bl’n(r,X?’x7PX;’]w’")d7":|
0 t
+ Dt I:/ bQ(T, Xﬁ’ma ar)dr:|
t

= Li<sy +/ Dt[bl,n(TaXfw,PXf’”)]dr+/ Dby (r, X%, a ) dr
t t

=i +/ b'l,n(r, Xﬁ’I,PXg,w)DtXf’zd7'+/ [b5(r, X% 0 ) Dy X + Dybo(r, X% a)|dr
t t

1+/ b'l‘n(r,X,:“I,[P’X;L,m)DtXf’mdr+/ b'Q(r,Xf’x,a,.)DtXf’xdr—F/ Dybo(r, X%, oy )dr
t ' t t

1 +/ ( /1,71(7“, X% Pxne) + b4 (7, Xf’z,ar))DtX:f’xdr—i—/ Dyibo(r, X0, o )dr
t ¢

:1+/ b;(r,Xf’x,IPXp,z,aT)DtX;"xdr+/ Dybo(r, X0, o )dr,
t t

/

where by and b,

are the derivatives of by and b, with respect to the

second variable which appears after we apply the chain rule. We get:

D X" = 1+/ b;l(u,Xg’x,]P’Xg,z,au)DtX]}’xdu~|—/ Dibo(u, X%, ) du.
¢

t

(3.24)

We obtain a linear ODE of order 1 in D, X[**, with variable coefficient.
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Therefore, one can show that the solution to the above equation can be

explicitly written as follows :
S/ n,r § u g/ n,r
DX = el X ’z’aT)dT<1+ / e~ Ji thn X ’Pxf“’a”d’”DtbQ(u,Xz;"x,au)du).
t

Now, let us first derive the explicit representation for the following

expression Dy X* — D, XW*:

DyX?®— D X7®

. S 2
sb/ 7X7L,:L’]P o d =l ub/ 7X7l7»6’]P; R d
— Jv On (X" Byno ar) r<1+/ ¢ Ji n (X Pxmia o) ’”Dt/bz(u,Xﬁ’x,au)du)
t

S
‘b ,X.,T:L’ZJP n,x Q) d L_Fi ,X:L’IJP) n,x 0 )d
_eft n(r DS ) T<1_|_/ € Ji bt X ) rDtbQ(uanaau)du>
t
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. SO X" Py ) dr <e IV by (r, X" P ynaz o )dr 1>
S
50 (r X208 P, ,ap)dr — [90 (r, X2 Pon,z o )dr
+ i b (X Pnia o) ¢~ Ji b X P ) Dyba(u, X;*, aw)du

/
_ i VX B /t T X Bpaan)dr o
_ ef; by, (r, X" Pz o)dr (eftt/tb;l(r,Xf’x,IF’Xp,z,ar)dr B 1>
4 s efts} b;(r,Xf’x,]P’X;z,mar)dre— I b;L(r,Xf’x,]P’X?,z,oar)dTDt/ b (U, X;L,JJ’ au)du
v
= /8 efts b/n(r,X:L’z,]P’Xg,z,ozr)dre— I bﬁl(r,Xf’z,PX?,z,ar)ertb2 (u’ X;L’w, au)du
b
_ efts b%(r,Xf’I,PX?,m,ar)dr <€ftt/ b’n(r,X?’z,]P’Xg,a:,ar)dr - 1>
N /s e I b;(r,Xf’zJP)ngm»ar)ert, by (u7 X{}’x, au)du
o
B /5 o e b;(r,Xf’E,ng,z,ar)dTDtb2(u7 Xs,’x’ au)du,

t

- efts b%(r,X?’x,PX?,z,ar)dr <eftt’ b%(r,Xf’w,PXp,z,ar)dr -~ 1)

t
= " ,X;L’x,]P’ n,z,w)d
b [ IR R 0 Dy, X3, )
f’
S
— (" ,)(’VL"T,]P> n,T d
+/ e fs n("' T X7 Oér) T’Dt/b2(u7X3,:E’au)du
t

s u n,xr
=[5 0,(r X F Pyn.e,ar)d
v / e~ o I X B an)dr 1y g 0 X )
t

0 X B ) (ef:, by (r X B yno ) 1)

t u
— [, (X% Pyone ar)d
+/ e Jo tn(B X Pyniz an) "Dyba(u, X, cw,)du
t/
° — [20 (r, X o )dr n,r )
+ e~ Js InDRr o an)T (D bg (u, X107, o) — Diba(u, X00®, o)) du,
t
therefore, the explicit representation of Dy X™* — D, X™7 is:
Y S S
Dy X8 _ DX = i VX7 P ) <e S U X7 B ymw )i 1)
S S

t u
Z (X Ponz o) d
+/ e~ Js X s an)dr iy b (0, X, ) du
t/

S u gy n,x
+/ e dr s ’PXpyz’ar)dT(Dt'bz(%Xff’x,Oéu) — Diba(u, X", o) ) du.
t
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Now, let:

Dy X" — D, X" =) + I, + I,

Y

Where7 -[1 — e‘[;:s b;L(T,X:L’x,]P’X;,},z,o{T)dr (61:1 b%(r,X?’x,PX:},z,ar)dT _ 1>
! = [20, (r, X" P yn,a 0 )dr
ILy= [ e Js 00 xS Dby (u, X107, o) du,
t/
B —fub/(’r’XTL’IP 'nwO{»)dT n.x n.x
Iy = [ e Js 00 X Dby (u, X, cu) — Dibo(u, X%, o)) du,
t

our goal is to find the following compactness criteria:

1
E[|Dy XM —D XM ?] < C|t'—t|™, for0<t¢' <t<s<Tandm¢c (5, g)

Hence, we have:

E“Dt/X;l’x =~ Dth’m 2] = ]E[Ijl + [2 + [3‘2]

< BE[|L° + | L + |I5)7]

= 3E[|1,[*] + 3E[| "] + 3E[ I5|°],
we used the following inequality to get the prior expression:

(a1 +ay+---+a,)* <n(al+a5+ -+ a2).

First step: we compute E[|T; |?]:

E[|11]7]

- K ef: b%(ﬁX?’I,PXg,z,ar)dr (eftt/ b%(ﬁX?'I,PX;l,%ar)d” _ 1)

2:|
r 2
_ E ejt.s 2b{'L(T,X:}’I7PX;(‘L,:I:7ar)d7‘ (eftt/ b{n(T,X,’,’}’ZJPX:‘L,w,am)dT‘ o 1) :|

- 2
-E efts2(b’lyn(r,Xf’x,]P’X;L,z)+b2(r,Xf’x,ar))dr (eftt’ by (r X" Pyn.e an)dr 1) }

2
) t )
| o 2 X B Y 2 ) (eft, by (r XP P e r)dr 1) } 7
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we get after applying the Cauchy-Schwarz inequality:

E[|11]7]

2
, t s
_E |:€fts 2b’1’n(r,X? Z,ng,x)dref: 2ba (r, X7 o )dr (Gftl b, (r, X, I,IP’X;L,ac ,ap)dr . 1) :|

Y

1 1
1 4- 1
; 2 t ; 2
< E |:€fts 4b’17n(T,X7@ ﬁ,PX?,z)dreftS 4b2('r,X;L’z,aT)dr:| E |: <6ft, ol (r, X x,]P’X::L,z,OcT)dT - 1) :|

after applying once again the Cauchy-Schwarz inequality on the first term,

we get:

E[|11]7]

1 1
1 4+ L
) : 2 t } 2
< E |:€ft5 4b’1’n(r,Xf Z,Pxp,z)dreftg 4b2(r,Xf’x,ar)dr] E |:(€ft/ bl (r, X, ZJP’X;L,w ar)dr 1) 1

1 1
1 44 L
. i 1 1 ¢ ) 2
S E |:€fts Sbll,n("‘yx»:} I,[P)XfaT)dT‘:| E ]:6_];55 SbIQ(T’aX:LvZ7(X7»)dr:| E |:(eft’ b;m(rvX;L I[P;X:J,T ,Oér)dT _ 1) :|

since the space derivative of by is bounded by a random variable with finite

exponential moment, we can write:
1 4+ L
S8Y (1 X P ona)dr | Lo (X P o0 )d ?
E[IhIﬂSCE[eﬂ 1o (R XF Py ”] EKeft' WX Pxpean)dr _q ) T

t o,y n,r
we next apply the mean value theorem to el on (X" Bypesan)dr 4y

mean value theorem states that,

y+h
9(y+h) —g(y) = / g'(u)du,
’ @
= (/ J(y+ Hh)de) - h,
0
if we consider the function g(y) = e¥ withy = 0 and h = f; v, (r, X" Pxn=, op)dr,

efttl b{,L(T,Xf’:C,PX;L,z7aT)dT _ 1 — e‘[;ftl b,/n(T,X:L’x7PXp,z,O¢T)dT . 607

1 t
— (/ 66 ftt/ bn(”",Xy- ’ ,IPX’,T‘L,I7O[T‘)de0) . (/ b,ln (r, XTT‘L,QJ’ ]P))(;:hz7 Oé,)d?“)
0 t/
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after substituting that right hand side into the expression of E[|I1]?], we
get,

E[|1:[]

1
I 4
s qn/ n,x ) 4 t g/ n,x 2
SOE{eft 801, (r X ’PX?’”W} EKEL'%(T’XT 7Px¢vm’ar>dr—1>]

)

4

s ’ n,x % 1 t g/ n,x t 4 %
— E|:eft Sbl,n(T7X’r 7pxﬁ=z)d74:| E|: (/ 69 ft’ by, (r, X! ,ng,z,ar)drd9> . (/ b;(’l‘, X?’w,PXf*x7a'r)dr> :|
t/

0

we apply once again the Cauchy-Schwarz inequality to obtain:

E[|1[°]

1
1 ¥ 8
< E |:efts 8b,1,n(T,X:L’27PX:‘L,Z )d7“:| 4]E |: (/ 69 ftt/ b’lrL(T,X:L’IJPX:},Z7047»)de6) :| 4
~
0

t 811
]E{(/ b;(r,Xf’x,IP’X;w,ar)dr> }
t/

S -
now, we have E[|[}|?] < CJ - J3 - J3, let us evaluate J7',

il
S n,r 4
J"— K [e J7 80, (r, X ,IP’XlL,x)dr:|
1=

=

4

o n,xr gl Ja
_E {ef; Jo 801 1, (1,2 P e ) LY (drd2)+ [ 86y (r, X" ”,IP’X;L,z)dr:|

afterwards, we apply the Girsanov transform with a change of trajectory

and we get:

PN

Jfb <E |:€fts R SI;’l’n(r,z,PXp,z YLX™ (dr,dz)+ [ 813’1 (T,Xf’I,PX:‘L,z)dT’:|

N

Y

5 1 " S Qpt x . T
—F [6f* Ju SRS 1§ n el T val”’x)mg(/ by (r, By, Pxpee, ar)dBT>:|
0
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we separate the previous expression using Cauchy-Schwarz inequality to

get:

I

7 x s QF/ x T
< E[eft i 88 (12 B ) L ) [ 8B (B B )dr g (/ bu(r, Bﬁﬂj’x;»,x,ozr)dBr)}
0

4

ool

1

o z ~ T 2
=E [ef: Ja 1683 1 (roz Bycp= ) LP (drd2) + 7 161"1(7”3:’%:’2)&} E {5 (/ bn (1, Bf,IP’x:“",ozr)dBr) ]
0
another Cauchy-Schwarz inequality yields:

U

=
=
N

1

ol

T 2
E{E(/ by (7, Bf,PXg,m,ar)dBr) }
0

7 &5 s 7 x
<E [efj Jo 3201 (1,2 Pyn.a)LE (dr,dz):| E {efi 320 (r,BT,]P’X;g,m)dr:|

< 00,

J{' is finite because the first term is finite due to Lemma 3.3.3 since by is
bounded, the second term as well is finite because of the assumption on b

which says that it has bounded space derivative, and the last term is finite

due to Lemma 3.3.2. We continue with J3'

4 t gy n,r 8
JZTL = E|: (/ 69 S by (r, X7 ’PXﬁ'z7aT)drd€) jl
0

1 8
= E{ (/ % S ¥ (X7 Py )dr 46 [ bg(r,xﬁ@,%)drde) ]
0

1
1

N

next, we apply Cauchy-Schwarz inequality two times and we get:
1
4

= 1 8
t n,x n,xr
" </ O SV (r X7 B, )46 [ ) (r, X7 oo d9> ]
LW\l

A 1 4 1 4 L
<E (/ 620 f:/ b’l,n(v',X;L’I,IP’Xg,x )drde) (/ 620 ftt, b’Q(T,Xf’w,ar)drd9> :| *

L 0 0

[ 1 t n,x ° % 1 8 %
S E ( / 629 ft’ b/1771(T‘,Xr ’ 7PX:‘L,I )drd0> :| E |:( / 620 ftt/ b,Q(T,X:}’I,Ocr)de0> :|

L 0 0
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next, we apply the Minkowski inequality to get:

! na 8% 1 814
J; S E |:(/ 29ft/ (TX Pyn, x)drde) :| E |:(/ ezeftt’ bé(rvxﬁ’w,ar)de9> :|
0 0
! tog n,x 1 1 . - %
< </ ]E[6169 Jir 0 (. X7 ,Pxﬂvz)dr} gd6)> (/ E |:6160 S by (r, X5 ,ar)dr:| d@) ’
0 0

we now use the fact that b, is bounded by a random variable with expo-

nential moment and we write:

1
J; S C(/ E[elﬁeft/ InTXr P T dr] d@)
0

160 ftt/ by (X" Pyna )dr:|
’ 3

Let us now evaluate E[e , we have applying the

Girsanov transform with a change of trajectory:

E [6169 I b’lvn(r,Xf’w,PX?,z)dr]

t g T £
=itz [T BB anas. )|
0

! T gk
SE[WM o & W}EF(/bmﬂﬁPm%%M&)]’
0

we then apply the Cauchy-Schwarz inequality two times and we get:

E[@lﬁ@ft/ 17L(7‘anIP na:)d’r:|

2

IN

1
x < t 7 x 2 T 2
E[ vo g ”)drmef“bl(’”’BT’PX?’”dT} Elg (/ ba(r, Bf,ng,x,ar)dBr) }
0

N,

IN

1
E{ 646 [ [ B4 (2P yn.e) LB (dr,dz)‘| 4IE |:6640 i I;’l(r,B}.',]P’Xp,w)dr:|

T 2
E{S(/ by (7, Bf,]P’X'Tn,w,ozr)dBT) }
0

< OQ.

[SI
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Therefore, using the same reasoning as in the proof of J', we can assert

that J3 is finite. We continue with J3"

t 811
Jy ]E[(/ b;(r,Xf’x,IP’Xp,w,ar)dr) }
t/

3 t 8 %
= E[ </ b'l’n(r, X0 Pyna)dr +/ vl (r, X%, ozr)dr) ] ,
# t

1
t 8 t 8 1
<E 27</ ajn(r,Xf’x,]P’ngz)dr + / b (r, X%, o) dr )] ;
t t
t 8 % t 8 i
<2'E /b’Ln(r,Xf’w,IP’Xg,w)dr +2E /bg(r,Xf’T,ozr)dr ] ,
# t

f; by(r, X™* . )dr

8
let us now evaluate E [ } , we have using the Minkowski

inequality:

1
3]s

t
E / by (r, X%, o )dr
t/

t
< [ B Xp= ) b
t/

t
S / ]E[4!6|b/2(T7X;l’I,ar)|2]édr
t

< Clt—1t|

1
8]s
let us now evaluate E [ f; (T, Xﬁ’z,]P’X;L,r)dr‘ } . In the following, we

will apply the Girsanov transform for a change of trajectory and use the
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t
E / bll,n(r7 X% Py )dr
t/

Jun

Minkowski inequality and the Cauchy-Schwarz inequality to separate terms,
1
8] 8
t

t 81 8
=K /b’m(r,Xf""‘“,IF’Xg,z)dr—i—/ b’l(r,Xf"’”,IP’Xg,z)dr ]
t/

tl

0ol

_ t .
<E |27 / by (1, X" Pyna)dr| + 27
t/

8]
1

t
[ Bl X0 B yar
t/

oo
ool

r

1
- : 87 s
< CE /b’l’n(nX”””,IP’Xg,z)dr + CE /b’l(T,Xf’Z,IP)X;w)dT ]
i ¢

0ol

T

¢ 8
< CE /bg,n(r,X"’I,PX;L,z)dr + Cl[by oot = 'l
t/

1
8

+ OByt — ¥

1
16:|16

8

T
< (CE 5(/ by (r, Bf,]P’X;w,a,.)dBT)
0

t
/ bll,n(r7 ngjv PX?”x)dr
t/
1
16
7|

16 e N
] T OB oot — ]

T 2 t
< CE 5( / b (1, B:,ng,z,ar)dBr) / by (ry B, Py )dr
0 #

+ C[Bylooft = 7'

([
SOEl: / bll,n(TuB:7PXf’w)dT
t/

- 014
—cﬂ /%meMAWmmm>} + CI% ool = .
' JR
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1

~ 16 | 16
J; beﬁ,n(TaZ7PXW)LBE(dT,dZ) } , using the

decomposition in (3.22), the expression becomes:

16‘| s

t T—t'
/ b17n (’I“7 B:, ]P’X;L,w)dBr + / bl,n(T -, Bf, ]P’X;(va)dW,n
t/ T—t

16:| 1173

T—t'
/ b1,n(T — r, BE,Pxn=)dW,
T—t
s
:l 16

T—t'
0<t<T JT—t

1
:|16
)

after applying the Burkholder-Davis-Gundy inequality on the martingale

let us continue with E[

¢
E //l;lyn(r,z,IP’X;L,z)LBl(dr,dz)
v JR

:E[

T—t . . B
_/ (T = 7, B, Prpor) =——dr

=4t -

16 16

t
SCE[ / bl,n(raBiaPXf’T)dBT +
t/

16

B,

T—t" o=
/ by (T — 1, By, Pxn.e) dr
Tt El T T

_|_

16 16

¢
<C]E[ sup /b1,n(T,Bfa]P’Xﬁ””)dBr +
0<t<T J1/

+

T—t’A R B
b1 (T — 1, B Pxn.e T d
/T—t e ( " O )T—r "

terms, we get,

1
16] 16

t
E / / by (1, 2, Pxne ) LB (dr, d2)
A R

i 9 8 Tt R 9 8
S CE { </ bl’n(T, Bf, ]P)X:’T) d?”) il / bl,n(T e Bf7 IP)X;L’Z) dr
t T—t

, A 16 _ 1
Tt A B : 16
b1, (T —r, B, Pyn= - ,
t 2 8 % T—t' . . ) 8
< CE (/ bin(r, By, Pxn=) dr) + CE / b1 (T —r, By, Pxne)| dr
t’ T—t
Tt ) - 167 16
CE bin(T — 1, B Pyne)——"—d ,
" /Tt 1l : X )T —

since by ,, is uniformly bounded, we have,

¢
E //IA)Ln(nZ,ng,r)LBl(dr,dz)
v JR

167 16
] < Clt =13 |brnlloc + Cllb1,nl|ooE
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1
16

T—t' Bp_, 5 |6
let us evaluate separately E ‘ Jr_, ﬁdr’ ,

1 1
Ty 167 16 Ty 16 16
Br_ Br_
E/ = gy :// ™ qr| dp|
r— LT —r olJr—y T —r1r
) 16 16
&/m T _1 B dr| dP
_— T s
(e} T—t \/T—T’\/T—T
1
16 16
1 2

oo Tt
1
= / / zdr
—oo |JT—t I =

Tt e ()
1 / 6 122
|| e zdz

dr
r

Tt

=i

<@ / dr|,
T—¢ \/T—T

= C|t'z —¢2|,

< Clt =gz,

the last inequality coming from the following version of the triangular in-

equality:
lv% — w%| < 2lv — w|%, for any real number v,w > 0 and for any p > 1.

Therefore, we have:

t " 16 %
/ /blm(r, z, IPX;L@)LBI(dT, dz) ]
v JR

il " T—t' BT—T
< Clt — ¢ Pl + Cllball-E || [ ar

E

1
16| 16

< Ot = |2 ]|brnl|oo + CJt = 1'[2]|b1n] oo

< Ot —|2]|b1.n]| oo,
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thus, we can find a constant C' such that:

E||[ [ bualrs B 2 (ard2) ] < Clt 13,
t' JR

since we had,

t 8 % t 8 i
Ji < 2'E / L (1, XF P yne )dr +2'E /b;(r,Xf’x,ozr)dr ] ,
# ¢
- 16,1
< B[\ [ [#,002Bxpe) 7 to)| |+ GBI = 1 + Cle - o1,
¢ JR
< Ot = tllbrnl 3 + ClIBy %]t = ¢ + Cle =t/
< CJt -1,

after obtaining all these estimates, let us return back to E[|I;|?], we had:

E[lL)] < CJf - J5 - 5,

<Clt-t|,

Second step: we compute E[|I5|?]:

E[L)] =E

t 2
— [*b (1, X% Pyn,a,an)d
(/ e~ [2 U XF " P xp zian) "Dt,bQ(u,Xﬁ’”ﬁau)du) ]
t/

after applying the Cauchy-Schwarz inequality several times, we get,

E[| L[]

=E

t 2
e (I f X:”z,]P) stk d
< / e~ Jo tnlr X" Bymmsan) TDt/bQ(u,Xg’“,ozu)du> ]
tl

: t
=" K/ (Dt,b2(u’X37x’a“))2du) ‘ < / e 2l tntn A vPXp,z,aT.)drdU)}
4 .
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t ;< u n,x %
S E|: (/ (Dt/bQ(u7 3@, Oéu > :| |: ( *4fs bn(T‘,XT ,ngyz’ar)drdu) :|
"
t 1
(/ lMQ(u’t/’w)|2du> {( —4 [ b, (r X7 Py Mar)drdu)]
#

t t 1
gOLPE[( / 8B (X ’PX“’d’"du)rE[( / —Sffblz(r,X?’z,ar)drdu):|4
t,
! “h u 7 n,x %
SCLPE[( / ¢TI0 B (X )i g )] E[( 161, b’l(ﬁXr"”va;“r)drdu)]
t/
t / n,xr i
X (/ E[ =8 [ bh(r, X7 dr]du)
t/

we now apply the Girsanov transform to get:

N =

E[| L[]

t = . 7T i
S CLpE|: (/ 6_16f5 bl,n(T7Br 7]Px;"'1)d7“du) g (/ bn(r7 ij PX?,Z’ aT)dBT> :|
4 0
t
»: E[ (/ e—lﬁf“ by (r, X7 Pyn.z) ar ) ] % (/ ]E -8 [ bIQ(T,X:L’m,ar)dr} du)
t/
t . T i
S OLpE|: (/ 6716‘1‘5 b (7‘ BTJP nz)d?’d ) g (/ bn(rr- B ]P)X;z,:v’ O{,’,,)dBr) :|
t 0

x|t —t|s x [t — ¢

t N e 2
< CLPE|: (/ 6_16[3 J blv”(rszPX?‘I)LB' (dr7d2)du> :I
t/
T 2 %6 ) \
XE|:8 (/ bn(TanJPXf'I,Oér)dBr) :| ‘t_t/|§ % |t—'[;/|1
0
! ey, B® 1 é
S OLP </ E [6_32 fs f]R bl,n(rvzvpr@)L (dr,dz)} 2du> |t % t/|% $ |t B t/‘%’
t/

< Cpolt — )2,

AN

-
c':"‘

2
by Lemma 3.3.2, we have E{S <f0 (r, BY PX;L,m,ar)dBr> ] which is fi-

nite, and also, we used the following assumption:

. 4
v i sumpeuer B | (J) It | < o0
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third step: we compute E[|I3/%]:

n

s 2
E[|I;"] = E ( / e Je X B e iy b (u, X ) — Dibo(u, Xﬁ’x,au))du) ] :
t

after applying Cauchy-Schwarz inequality, we get,

IEHIg\Z] <E {(/ e I 2b/"(T’X:w’PX?’w’ar)drdu> (/ | Dy bo(u, X%, a,) — Dtbg(u,Xg’r,au)Qdu>} ,
¢

t

we next apply the Cauchy-Schwarz inequality and the Minkowski inequality
to get,

/ e i 2b;(r,vam,]P‘xg,m,av-)dfdu) (/ |Dt/b2(U,X3’f”,au) _ Dtba(u,X,g’m,au)Pdu)}
t t
S w ’ n,xr 2 % &
/ e fs 2 7]P)X?)I7OCT)drdu> :| E|: (/ |Dt’b2(u,XZ7wvau) - DtbQ(qugJaau)Pdu
t t

& u g n,x 1 § 2
/ E[€7 Jot 4by, (r, X7 aPX;L,wyar)dT] 2du>E[ (/ |Dt/b2(u,X3’m,au) _ Dtbg(u,Xﬁ’m,au)|2du> :|
t t

s e e 1 W 1\ 1 u s 1
! (/ ]E[eijs 16b'1m(r,Xf’w,[PX77},a:)dr] Efe- [ 168} (r,X T I,JP’X:,z)dr] "E[e” - 8bl (r, X “,Pxp,z,ozr)dr] 4du>
¢

2

N
ol

N|=

S
X ( E[|Dt/b2(u,X;W,au) = Dtbg(u,Xﬁ’I,au)|4] du)
t

IN

S ~
c(/ Efe /- 16bim<“X?’Ivﬂ”xrvw>dqédu> X |s —t|[t — /|
t

2_ 1

s N ) z i T 16
< C(/ E[e— i 32b11,L(7‘,z,IF’X;z,z)LB (dr,dZ)] 113E|:g </ bn(r’ Bf,]P)Xf’myar)dBr> :| du)
t 0

x |s —t||t=t|?

< Cls— ]2t — ¢'|=.

Therefore,
E[|3%] < Cls — ¢t — |2

After putting everything together, we get the compactness argument as

follows,

E[|Dy X% — DyX1"[?] < 3E[|L %] + 3E[ L) + 3E[| L[],

<3|t — 1| + 3|t — ']} +3CT2|t — 1|3,

< Cr et —t'™,
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where we can find a constant Crp» depending on 7" and LP, with m =

1
min (5, g) Consequently, the first part of Lemma 3.3.1 is proved. For
the second part, let us notice that taking t' > s yields Dy X* = 0, which

means:
sup E[|D: X" < Cr.pw,
0<t<T
and this is the end of the proof. O

3.4 Weak convergence of X;"" to E[X]|F;] in L?

This step consists in proving that the aforementioned sequence (X;""),>0
weakly converges to E[X | F;] in the space L? for each 0 < ¢ < T'. Therefore,

we state the following lemma:

Lemma 3.4.1. Assume L° < oo and (2 is considered to be the canonical
space. We consider a sequence by, : [0,7] x R -+ R, n > 1 as expressed in
(3.12), and we denote by (X;""),>1 the corresponding strong solutions to
the MFSDE (3.13). Hence, for each 0 < ¢t < T with T sufficiently small, for
each function x : R — R of polynomial growth, the sequence (k(X;"))n>1
is uniformly bounded in L? and weakly converges to E[x(X{)|F;] in this

space.

Proof of Lemma 3.4.1. As done in Lemma, 2.5 in Menoukeu-Pamen & Tangpi
(2019), let us first show that (k(X;"")),>1 is uniformly bounded in L2

T
sup B[RO = B[ ([ bt B2 Bpns 0B, ) (5P|
0

n>1

after applying Cauchy-Schwarz inequality, we get,

T 2
£ (/ by (7, Bf,IP’X;L,x,a,,)dBT)
0

T
& </ by (r, Bff,]P’Xg,w,ar)dBr)
0
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n>1

2
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after applying Lemma 3.3.2, we have,

[NIE

sup E[|s(X;"")*] < CE [|s(B7)|"]

n>1

let us now evaluate E [|x(B?)|'],

E [|s(B)|Y] = /|I£:L‘+Z _2fdz
V2rt
since k is of polynomial growth and also using the following inequality,

(v+w)? < 2‘1_1(1}‘1 + w?),

we have,

E [|s(Bf)|"] = /| v+ )t dz,

\/_

2|2
< C(1+ |z + z|YHe 2rdz,
< %/R< 2+ 2|

22
—/(1 lefdt 24e Bz,

2\2
1+ |z _2tdz+—/|x _2tdz,
- Zom |

given the following bound:

‘2 z2

z |
(1 + |z]P)e5 < e w1,

we get,

E [|x(Bf)[*] e 5 dz,

\/_

< 00,

therefore,

SL;I;E[IK(X?’I)F] < CE [|s(z + By)|*]*

< 00,
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after establishing the boundedness of (k(X;"")),>1, let us now show that the

sequence (k(X{"")),>1 converges weakly to E[x(XF)|F;], in L?. The space,

{5 (/OT gbudBu> L@ € C,}([O,T],R)} (3.25)

spans L*(Q,P). ¢ is the derivative of ¢ with respect to time, C} ([0, T],R)
is the space of continuous bounded functions that are differentiable on
[0,7] and with values in R. Consequently, we show the weak conver-
gence of (k(X;""))>1 to E[X[F|F] by proving convergence in expectation
of (K(Xt”’“”)é’ (fOTcpudBu))n21 to E [k(X7)|F] € (fo PudBy, ) . Since € is a
Wiener space, the Cameron-Martin theorem states that for every x mea-

surable,

e [wxpge ([ uan )] = [axior ope@). 620

let ¢ € CL([0,T],R), the process X™* defined by X™*(w) := X" (w + ¢)

is solution to the stochastic differential equation,

dX" = (bun(t, X{", Py ) + ba(t, X;"%, o) + ¢p)dt + d By, (3.27)

for every n > 1, where by(t, z, (w)) = by(t, 2, a(w + ¢)). To see where the
state dynamics for X** comes from, let T' € L?(Q,P), make use 3.26 and
the fact that X™ is solution of the stochastic differential equation 3.13 to

obtain:

E[X;"'T(w)]

=EX"(w+ )T (w)] =E [Xt”’i(W)F(w - )€ (/0 %dBu)

[ t
=E (1’ + / (bl,n(u, X;l,w’ IP)X;’«") + bz(u, X;7’$177 au))du + Bt(w)> F(w — < SOudB )
0

t

T+

t

(bln(u X (w+ @), Pyne) 4 ba(u, X (w + ), ozu(w—l—go) du—i—Bt w—i—go)F ]
T+ >

]

(b (1, X270+ ), Pgge) + b, X1 (0 + ), v+ ) +sou>du+Bt<w>) <w>]

(b1, (u, X" (w + @), Pyenos ) + ba(u, X[ (w + ), o (w + 9) )du + By(w) + ¢

Y

T +

I
=
c\c\h
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where the last equality holds true to the fact that B;(w + ¢) = Bi(w) +
@, since B is by definition the canonical process. Consequently, the last
equality shows that X™*(w) := X™*(w + ) satisfies the dynamics 3.27
P — a.s.. Now, let us get back to showing that <f£(Xf’x)5 <f0T gbudBu>)

n>1

converges to E [k(X})|F] € (fOT gbudBu) in expectation. We denote,

p

Bn(tv Xtmwa ]P)Xf’za at) = bn(ta XZ%I" ]P)Xt"’wv at(w + 30))
e bl,n(tv th#f’ ]P)th’z> + b2<t? th,m’ at(w # 90))

— by o (t, X7, Pxr) + bo(t, X1, ),

B L (3.28)
b(t, X, Pxyp, ar) = b(t, XT, Pxp, cu(w + )

= bl<t7 th;]PX;”) i b2<t>)2tm7 at(w + @))

- bl(t7 Xf7 ,uf) + BZ(tv thu at)7

\

we have,

T T

R(XP)E ( / sord&) —E[M(X)IF]E ( / go,,.dBT)
i T T

CE | k(XP)E ( /0 ¢TdBT> K(XE)E ( /0 ngdBT>

=E | (s(X) — 5(X])E (/0 %dBr)

E

—E

—E [n(X7) — n(X?)]

[ T i%
=E |s(B?)E (/ (by(r, BE,Pxne, o) + ch)dBr) — k(BY)E (/ (b(r, B, Pxz, ) + apr)dBT)
0 0

)

=FE |k(B?) (5 (/0 (bn(r, BE,Pxne, ;) + gbr)dBr> e (/0 (b(r, B, Px, ) + ng)dBr>>

applying the inequality | — €| < |e” + e*||v — w|, we get,

T T
R(X)E </0 <PrdBr> - E[r(X)F:] € (/0 %dBT)

T T
£ (/ (bn(r, B, Pxne, ) + gbr)dBr> - (/ (b(r, BY,Pxs, ) + <pr)dBT>|
0 0

E

<E||(BY)]
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<[ e(s0)

T T
& (/ (bu(r, BE,Pxne, o) + gbr)dBT) +& (/ (b(r, B, Pxz, ) + gbr)dBr>
0 0

X

1 /T
2/ (bn(r,Bf,]P’X:,z,ar)—|—<,br)2dr
0

below we separate the two Doléans-Dade exponentials from the remaining

T
/0 (ba(r, BE, Pxnr, ) + 1) dB,

T T
~ 1 ~
- / (b(’l“, Bf7 PX,?7047‘) + (Pr)dBr + § / (b(T, Bfa PXﬁaar) + L,Z?T)Qd?”
0 0

terms using the Cauchy-Schwarz inequality and we apply Lemma 3.3.2:

T T
K(X0)E ( /0 cprdBT) —E[k(XP)|F]E < /0 cp,,dBr>

<[P

E

e
/ bo(r, BE, Bxoe, ay) — b(r, B, Pxz, a,)dB,
0

1

T
— 5/ (bn(r, By, Pxn=, o) + gbr)z — (b(r, Bf,IP’Xg,ar) + c,b,n)er
0

2];
r V. T

& </ (bn(""v B:JP)X?”%QT) + Qbr)dBr) +& (/ (b(?“, BZJP)X;?;OW) + Qbr)dBr)
L 0 0

< E[|w(BF)|*)7

2_1

i

T
/ ((bu(r, B, Pxre,ap) + ¢)?
0

x E

T

- = 1

/ (bn(ra Bf,Pvam,Oér) 7b(T7B:7PXf’aT))dBr )
0

2
413
} XE|:
T ~
+5(/ (b(T»Bf,PXf,ar)+¢r)dBr>
0

=J; x Jg x J3,

— (b(r, BE, Px, ) + 9r)2)dr

T
€ (/ (bn(r, BY, Pxpe, ) +<,'or)dBr>
0

2]§

we have shown before that E[|x(BZ)|*] is finite, therefore J; < co. Next,

we continue with J3',

3

E[

T 2 T 2 2
< (21[«: {5 ( / (by(r, BE, Pxna, o) + @,.)da) ] +2E [5 ( / (b(r, BY,Pxs, ) + ¢,.)dB,.> ])
0 0

1
2

+CE

1
2] 2

T T
& (/ (l;n(ra va ]P)X:f"var) + @T)dBr> *E (/ (5(7'7 va ]P)X,’fvar) + Sar)dBr>
0 JO

=

1
21 2

< CE

T 2
£ (/ (bu(r, B, Pxne, ) + <pr)dBr>
0

T
& (/ (6(T7 B»fw ]P)Xfaar) + (Pr)dBr>
0

23
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The last line holds true due to Lemma 3.3.2. Indeed, J§ is bounded

uniformly in n. Let us continue with JJ', we have:

]P)Xf’za ar) - B<T7 Bf? ]P)Xf’ a’”))dBr

[

1 ~
B 5/ (r, BY, Pyrs, o) + )% — (b(r, BY, Pxr, ay) + ¢,)2)dr
/ ((bn(r, BY Pxn=,a,) + or) = (ZN)(T, By Pxe, o) + (,br)2)d7“
0
4}

T
/ ((ba(r, BE,Pxne, ) + @) = (b(r, B, Pxz, ) + ) )dr
0

NI

4]

4

7" Bx ]P)Xf‘% ar) - B(h Bf, PX?’ ar))dBT

_|_

PN

7
< C’E{ / (bn('r’, By, Pxn=, o) — b(r, Bf,IP’Xg,aT))dBT
0

i CE|

foT (z)n(ﬁ Bf’ ]IDX?’I7 aT) - i)(’l“, B;ﬂva ]P)Xf% ar))dBr

4:| i
sup / (bn(ra Bf) ]P)Xff‘wv ar) - B(’l“, Bf, IP)Xfa a’r‘))dBr
0

0<t<T

let us now evaluate E {

we have:

H / T Bm ]PX]}’I,CL’T) —E(T, Bf7]P)X‘rZ’OéT>)dBT

N

p

<o

after applying Burkholder-Davis-Gundy inequality, we get,

4:|}1
sup / (bn(r, By Pyne, o) — b(r, By Px:, a,))dB,
0

0<t<T

N

4:|

)
1
4

T 2
< CIEK/ Bu(r, BE, Pycre, ) — b(r, Bf,]PXg,aT)Pdr) } ,
0

SE[

o4
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after applying the Minkowski inequality to the expression above, we get,

T ~ 411
EH/ (bn(T,Bf,]P)X;L,Z,OéT)—b(T,Bf,]P)Xf,OéT))dBT :|
0

' b ~ 3
< </ (/ |bn(7“, BfJP)Xg,OéT) — b(r, vastaar)|4dP> d?“)
0 anr

1

T ~ 3
— </ E [\bn(r, By Pyne, ) — b(r, Bf,ng,OzT)ﬁ] ’ dr) ,
0

—
[

-

we continue as follows,

=

E |:’5n(7'7 B:> PX?’”? O‘T) = B(T, Bf’ ]P)X;’«”? Oér)’4]

NG

-k ['blan(fr? Bf’]P)Xf’m) + 62(r7 Bf’ a?") i bl(rv BfJP)Xf) - 52(r7 Bf? a?‘)|4

S C]EUbl,n<T7 Bf? ]P)X;L’z> Ak, bl,n(ra Bf) PX,{”)‘ZL

N

S |b1,n(r7 Bfa ]P)X,“:“a ar) = bl (T7 Bf) ]PDXﬁPa ar)|4}

< CK(Pyre, Pxe) + E[|byn(r, BY, Pxz) — by (r, BY, Px: )4

1 (zfz)2 %
= CK(P "‘”%P z) + / b nT,Z,IP) 2 ) N b T,Z,IP) & 4 e dZ)
e Pxe) + ([ Pualr o) = (Pl

1 _ﬁ _(2—295)2 ﬁ
= C]C(PX?:%]PX%) T (/R|b17n(7’,Z7PX$) —bl(T,Z“u,,.)rl\/ﬁe ar e r ez dz

1 22 %
e ardz |
\ 2mr )

b o
< CIC(PX?@?PX?) T (/ |b1,n<ra ZvIPXf) - bl(T,Z,ng)’4
R

the last inequality follows from the following inequality,

(271)2 .7 (2721)2 22
e 2r —= e 4dre  4r eﬁ’
22 1122
<e ez,

Therefore, we obtain:

1

4

E | Ibu(r, BY, Pxp, ar) = b(r, BY, Pxz, )|

N

(1;2 1 Z2
< CK(Pyna,Pxz) + esr / bin(r, 2, Pxe) — by (7, 2, Pxz)|* e_Mdz) ,
Pxp ) + 5 ([ a2 Pa) = il 2 Pl =

the second term will converge by dominated convergence as n grows large.
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We are left with showing that (P yn.«, Px2) will converge to 0 as n grows
large. By definition, we have:

K(Pxpe, Pxe) <E[| X" — X7]

</ bn(u, By, Pxn=, o, )dB > (/ b(u, Bf;,IP’Xg,ozu)dBu> H
E[|Bf|2] H (/ by (u, By, Pxn=, o, )dB > (/ b(u, ij,]P)X,aus,ozu)dBu>

(3.29)

= E{|Bz

1
2 2
)

since E[|Bf|?] ? is finite, convergence follows by application of Lemma 3.5.5

We continue by evaluating the second term of JJ* which is

|: fo ( T BT7Pan O“/?") + 907") (b(T,Bf,PXg,Oz,) + QbT)Q)dr
also apply the Minkowski inequality to get,

IS
|
FST
=
@

H / 7“ By, ]P’)(;W”, 047") + ‘;br)z - (B(’l“, By, ]P)Xf«”? a’”) i Sbr)z)d’r

- / E[|(bn(r, BY, Pxpr, o) + @0)? = (B(r, BY, Pxz, ) + ,)%|'] tdr
0

T
/ E[|(ba(r, B2, Pxr=, 0r) + 67)° = (0(r, BE, Pxey o) + 4,2 Fdr
0

T 5 4 1
S / EH(bn(ra BfJP)Xf’z? O‘r) + 907‘) - (b(?“, BTQ’U?PX%“?? CYT) it SOT)‘S} ’
0

X E[|(Bulr, BE Pz, o) + r) + (6(r B, Pxzar) +6,)| ],

where the last inequality holds by using the following identity:

v —w? = (v —w)(v+w),

since the estimate (3.34) in Lemma 3.5.2 states that:

supE | sup |b(t, X[, Pxz, a) P

< 00,
zeK t€[0,T]
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we have:
E[|(ba(r, B, Bxpe, ) + ) + (b(r, B Pxzay) +¢,)|] < oo,

we can continue as follows:

4:|‘11
< C/ EH(EH(T, Bfa]P)Xf’zaar) + 907”) - (5(7'7 B;:C7PX$P7057") + 907“)|8:|

0
T

EHBn(ra B:a ]P)X;WE’ aT’) - B(T’ Bf’ ]P)Xf’ ar)|8] %d’f’

T
E H / ((bn(r, BY Pyna, a,) + @T)Q — (b(r, By, Pxz,w) + @T)Q)dr
0
T

o=

dr

C

IN

=)
ool

IN
Q

(E[|b1n(r, B, Pxre) — by (r, B, Pxa) + ba(r, B, ) — bo(r, B, o,)|']
’

E[|b1,n(r, BE,Pxne) — byn(r, BY,Pxz) + bin(r, B, Px:) — bi(r, BY,Pxz)
' (E[|byn(r, BE, Pxne) — byn(r, BE, Pxz)
]

T 2
S C/ ]C(]P)X;L,ac’]P)Xﬂ:) + 6% (/ |b17n(7“, Z,IP)Xf) o bl(T, Z,]P)X;c)|8
0 R

)dr

E[|b1n(r, BE,Pxne) — by (r, BY,Pxs)| | 3dr

N
ool

Il
Q

Il
Q
c\ho\qc\%

dr

i

15 + E[|bun(r, B, Pxs)

IN
Q

00—

— by(r, B*,Px:)

)dr

ool

e_fwdz) dr

2rr

combining the results for JJ', we get,

=
N

|}

1
_22 8
e ardz | dr,

T 2 . .
Jn<C ]C]P n’z7]P) & +€87 /b n7'7 7P x —b 5 ,]P x 4 47‘d>
p<of [ k@ Bx) e ([ btz ) - ilrs Bl e s

T 2 g 5
+C/ K(PX;LI,PX¢)+6W</ ‘blm(’r’,Z,PXﬁc)*bl(T,Z,PXTap)‘g
0 R

2rr

as n — 0o, we have J3 — 0 by dominated convergence and by convergence

of K(Pyr.=,Px2) towards 0 as n tends to oo, which has shown when proving
1

the convergence of E [\Bn(r, B Pxn=, o) — b(r, Bf,]P)Xg,ar)\‘l] fAsn —

oo, we have J; finite, J3 finite and J§ — 0.

Thus, E [H(X;“”)g ( I cprdBr) — E[w(XP)|F] € ( N gbrdBr)} tends to 0 as

n — oo. Proving therefore the weak convergence of k(X;"") to E[x(X7)|F].

o7
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This is where we end our proof. O]

Before going to the final part, let us state and prove the following proposi-

tion:

Proposition 3.4.0.1. For any t such that 0 < ¢ < T with T sufficiently
small, and z € R, we have strong convergence of the sequence (X;"*),>; of
strong solutions of the stochastic differential equation (3.13) to E[X}|F] =
X7 in L(Q,P;R).

Proof of Proposition 3.4.0.1. The starting point of our argument is to no-
tice that by the compactness argument in Lemma 3.3.1, for each ¢ such that
0 <t < T, we can find a subsequence (X;"*"),>1 that converges strongly
to E[X*|F,] in L*(Q,P). We can notice from Lemma 3.4.1 that we get by
considering k(z) = z,z € R that (X;""),>; weakly converges in L*(Q,P) to
E[X[|F:]. Consequently, by the uniqueness of the limit, we can find a sub-
sequence (ny)r>1 such that we have (X;"");~; which strongly converges to
E[X7|F] in L?*(Q,P). Thus, the strong convergence holds not only for the

subsequence, but for the entire sequence by the uniqueness of the limit. [

3.5 Representation of the Stochastic Differential Flow by Time-

Space Local Time

It has been shown in the literature that, under some conditions fulfilled
by the coefficients of a stochastic differential equation, there exist a flow
process, derivative of the solutions of the stochastic differential equation,
however it is a derivative in the sense of distribution. Bouleau & Hirsch
(1988) proved the existence of the stochastic differential flow when the drift
and the diffusion of the SDE are Lipschitz and have the linear growth prop-
erty. Menoukeu-Pamen & Tangpi (2019) investigated the representation of
the flow for the solutions of an SDE having a random drift coefficient. The
existence and representation of the flow this time for a mean-field stochas-

tic differential equation has been studied in Bauer et al. (2018), where the

o8
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authors consider their drift coefficient to be at most linear growth and con-
tinuous in the measure variable. Our goal is to investigate the representa-
tion of the flow for solutions of a MFSDE having a random drift coefficient.

Following this direction, let us state the following theorems:

Theorem 3.5.1. Assume that the drift b can be decomposed as in (3.3)
and by is uniformly Lipschitz continuous in the measure variable (3.7). The
first variation process (in the Sobolev sense) of the strong unique solution
(XP)o<t<r of the MFSDE (3.32) admits dt @ dP almost surely the represen-

tation,
ggz’t —e~ fot Iz bl(r,z,PX%)sz (dr,dz)—O—fOt bh (1, X ¥ o )dr (330)

S

t
+ / o= Ji Jabr(rzPxg) X7 (drd2)+ [ b (rXren)dr B9 b, (s, X2, Pys, Qs XE
0 S
for every x € R, 0 < s <t < T, where —fot Jp b1(r, 2, Px2 ) LY (dr, dz)
represents the integration w.r.t the time-space local time of X.

Theorem 3.5.2. Assume that the drift b can be decomposed as in (3.3)
and by is Lipschitz continuous uniformly in the measure variable (3.7). We
consider (X[ )o<i<r as the strong unique solution of the MFSDE (3.32).

Thus, we can find a constant C' > 0 sastisfying the following:
E[|Xy — Xg[] < C(jt — | + |z — 2],
Vi, t' € [0,T] and z,z € K with K a compact subset of R.

Before developing the proof of Theorem 3.5.1, let us state and prove

the following lemmas and propositions.

Lemma 3.5.1. Assume that the drift b can be decomposed as in (3.3) and
by can also be decomposed as in (3.5). Consider (X})cp1, the unique
strong solution of the MFSDE (3.32). In addition, we take {b,},>0 as the

approximating sequence of b as expressed in (3.45). Also, (X;"*),>0 is the
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corresponding strong solution of the MFSDE (3.46). Consequently,

t x
sup sup supE ¢ 0S5 Jabrn(rzPapa) L2 (drdz) |- 00, (3.31)

n>0 0<t<T zeK

for every compact subset K in R and § € R.
Proof of Lemma 3.5.1. We have,

sup sup supE

e—,B f; I b17n(7',Z,]P7X77‘L,Z )LBI (dr,dz)
n>0 0<t<T zeK

= sup sup suplE
n>0 0<t<T zeK

|:e—ﬁ f: Iz Bl,n(r7Z7PX7’CL,I)LBm (dr,dz) ef: b (r,z,]P’X:},z )d’l‘:|
from the assumptions made in (3.5), we know that & is a bounded quantity.

We are left with,

sup sup supE

|:e—ﬂ I3 Jabrn(rzPyna) LB (dr,dz):|
n>0 0<t<T z€K

< sup sup sup CE
n>0 0<t<T z€K

Y

[6—5 J: Jabin(rzPyna )LB® (dr,dz)}

since b; is bounded and measurable, Lemma 3.3.3 applies uniformly in n.

Hence,
t BT
— byn(r,2,P 2 ) LB (drd
sup sup supE|e ?Js febin(rzBype) LT drd) | o
n>0 0<t<T z€K
which proves the lemma. O

Lemma 3.5.2. Let us consider a measurable function b : [0,7] x R x
Pi(R) x Q — R fulfilling the property of linear growth (3.8). In addition,
let (Q, F,{Fi}i>0,P, B, X) be a weak solution of the MFSDE:

dX? = b(t, X7, Pxz,cq)dt + dB,,  X& =z, te[0,T). (3.32)
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Thus, we can find a constant C' satisfying the following;:

b(t, X7, Pxz, )| < C (1 +C(w) + || + sup |Bu|) : (3.33)

u€e(0,7)

therefore, for any compact set K C R, and 1 < p < oo, we can find an €

where the following estimates hold:

supE | sup |b(t, X7, Pxz, ;)| < oo, (3.34)
zeK te€[0,7T]
sup sup E[|X}[P] < oo, (3.35)
zeK t€[0,T]

Proof of Lemma 3.5.2. we have seen from the proof of Lemma 3.3.2 that:
now, let us evaluate E[| X},

t
E[| X[ =E [ % +/ b(u, Xy, Pxz, o )du + By
0

|

¢
<|z|+E l |b(u, Xi, Pxa, o) |du + \Bt@
0

t
= |z| +/ E[|b(u, X5, Pxz, on)|]du + E [| By]

0

¢
< |$|+/O (B[CL(C(w) + X ]| + E[X[])])du + E[| B, ]

il
< |2| +E[B,]] + C.TE[C(w)] + 2C, / E[|X2[|du
0
t

< | + B[ Bl + GTEIC@)PIE + 261 | ElX:ldu
0

t
< |z| + E[|B,]] + CiTE[el®@)P|z +/ 2C,E[| X || du
0

t
< |z| + Cor + 201/ E[| X7|]du,
0

where Cy 7 is a constant depending on 7T'. The inequality written above

holds true since E[|B;]] and E[el°@F] are finite quantities. Using the
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Gronwall’s inequality, we have a constant C3 1 depending on 7T such that,
E[XF] < Csr (1 + |2)),
consequently, we have,

|b(t7tha]P)Xf7O~/t)’ < Cl(o(w) + |Xt$| + IC(]P)vaéO))’
< Gi(C(w) + [X7] + E[|XF(D),

< Cur(Cw) + X7 + 1+ [2]),

next, we are going to use the estimate of |b(t, X7, Pxz, a;)| to estimate X7

as follows:

t
0

t
<|z|+ |b(u, X5, Pxe, o) |du + | By|
0

<flx| + /Ot Cyr(C(w) + | X7 + 1 + |z|)du + | By,
we get after applying the Gronwall’s ineqauality:
| XFT < Csp(1+ [a] + |Bi| + C(w)),
thus,
|b(¢, X5, Pxz, )| < Car(Cw) + 1+ |2| + [ Bil),

u€[0,7T]

< Cyr (C(w) + 1+ |z|+ sup |Bu]) ,

where Cyr has been updated by a new constant that we also call Cyr.
Therefore, with this estimate of [b(¢, X7, Pxz, oy)|, we can clearly see that

the estimates (3.34) and (3.35) hold true, therefore proving the lemma. [
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Lemma 3.5.3. Let us consider (X;"*)o<t<1n>1, the strong unique solutions

of the following MFSDE,
d)(zl’z = bn(t, th7x’ ]P)thz, Oét)dt + dBt, Xg’x = & R, (336)
thus, for some constant C,

] < C, (3.37)

sup sup esssup E[|0, X"
n>1 0<t<T =z€K

for any compact set K € R and p > 2.

Proof of Lemma 3.5.3. Let us first note that if we consider for a second
that b is differentiable in the second argument, by taking the derivative

w.r.t. the initial condition x in the MFSDE (3.32), 0, X7 has the following

expression,
t
Badc=1 —|—/ V(s, X5, Pxe, )0, X7 + 0:b(s, 2, Pxz, )| .=x=ds, (3.38)
0

where V' is seen as the derivative of b w.r.t. the second variable. The

solution to the above differential equation has the following representation,

t
tys o ta x
6xth — efo b (sts 7]PX§7aS)dS + / efu b (T7Xr JPX,@ 7a1")draxb(u7 Z, ]:P)X,lfa Oéu) |Z:X$du7
0

(3.39)

however, since b; is not differentiable in the second variable, we will have

this representation instead,

8:1:th — e fg fR bl(r,z,IP’ng)LXw (dr,dz)-l—fg bl (r, XZ 0 )dr

t
_rt Xz "ty T
+/ e~ Ju Jrbr(rzPxp) L (d“d'z)ﬂub2(r’X’”a”)dT8mb(u,z,ng,au)|z:ngU,
0
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thus, we have,

E[|0. X;"|*7] 2

||

t
t n,r t n,r
— [, Jgb1n(rzP n,a)LX 7 (dr,dz)+ W 05 (m X7 o) dr
+/ Lo e X7 Lo b5 r azbn<u7 Z7PXZZ’I7 Oéu)|z:ij’zdu

— 3 Ja brn(rz P yna ) LX™ (drdz)+ [y 0 (r, X0 o) dr

2p:| %

2p 5=
< C,E [ — Ja Ja brn (2P yna ) LX™T (drdz)+ [y b (r, X" o )dr } 2p
o Ju Ja bun (2 Pyne ) EX (drda)+ [ (r, X7 ) dr 2p
= CpE u ; 7 u &Cbl,n(u, Z, Pxﬁv”ﬂzzxgwdu
TN 2p ﬁ
CE|:€ f()belnTZP 7L‘L)LX (deZ‘FfOb/(TXnI )dr ‘|
p
t = [ S brn(rz B yna) LXM (dr,de)+ [ by (r, X7 o) dr 27 2
+Cp e JuJrOLn{NZ Ty, ) o 02 (1 X o belm(u Z7IP)XLL’3”)|Z:XE’”
0

1
t n,x t n, i
< G,E [6—41?]0 Jr oL (r,2.Pyen,a ) LA (dirydz)+4p [y by(r, X7 W,aT)dr}

1

t n,r n.r 4p
. / E l:e—4p i o b1n(rz P yna ) LX™ (dr,dz)+4p [] b4 (r, X" ,ar)dr:| e
p
0

1
X E[|0zb1,5(u, 2, Pxre)| . xne |4p] e du
1

t n,r + . 4p
< sup E {64;7]3 Jo b1, (r2Pyn,a ) LXT (dr,dz)+4p [ bé(r,Xﬁl,ar)dr} {1

0<s<T

t
+ E“axbm(wzasz,x>|22w|4p]5pd“},
0

—4p [t [ b1 (r2Pon,e)LX T (dr,dz)+4p [L0(r, X% a0)d
next, we first separate the termE[e PJs Je brn(rzPyne) (drdz)+4p [, by(r ar)dr

using the Minkowski inequality and we apply the Girsanov transform with

a change of trajectory,

1
E |:e—4p fst Jebin(rz,Pyn.a DL (dr,dz)+4p f: bé(r,Xf’l7a,.)dr] w

1 1

t X, 8p , 8p
<K |:6—8pfs Jz bl,n(T,ZPXZ}’:C)L (dT,dZ):| E |:€8pf3zt bl (r, X" x,ar)dr:|
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t x T 8L
—E |:€8Pfs Jr bl,n(r,z,]P’X;z,z)LB (dr,dz)g (/ bn(u, Bi, IPX;L,x, ar)dBu) :| P
0

1

¢ , 8p
« T {e8pfs bl (r, X, x,ar)dr] :

L 251
o 16 T 16
<E |:616P f: Jz bl,n('f',Z,Pvaﬁ?)LB (dT,dz):| pE |:g (/ bn (u7 Bg’ ]P)X::,% ar)dBu) :| P
0
1

8p
x E [6817 I8 bg(r,xrvz,andr} ’

— S (3.40)

< 00

the last line holds true because 77" is finite uniformly in n and = due to
Lemma 3.5.1 , T3 is finite due to Lemma 3.3.2, and lastly 73" is also finite
because the space derivative of by is bounded by a random variable with

finite exponential moments.

E[’amXﬂQp]ﬁ now gives,

E[|0,X;[*7]%
i

i Cp{l +/ E[[@mbl,n(u,z,Pxﬂ,z)‘zX371‘4p]41pdu}
0

‘ by (11, XT%, Pyne) = by (s X7, P o
:Cp{1+/E{ o xi) b xp)
0

0= xr — x°
= C’p{l + lim inf
oz |z — 2

4p ﬁ
"o}

/ [Brn X7% Prpr) — bty X0, B o)

bl

using the Lipshitz property of the map p +— by (¢, z, ), and the Minkowski

inequality, we get,

E[|0, X”I’Zv]% <& (1+11§n_1>2f \x—x°|/ (Pxe, P ynao )du)

if we denote H(K), the closed convex hull of K, which is also compact
since K is. Let us find an estimate for (P xn.=, P

and 2° in H(K),

o) for any arbitrary
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IC(PXL%“ 5 PXLL,zO )

— ap / B(y) Py — Pyne)(dy)],
heLipl(R) | JR
S E |:|ij$ - ’ :| 3

< |x—xo|+E{

/ bl,n(ry X;L7x’PX;L’m) - bLn(T, X:Ma:O’]P)Xn’ZO)dT
0 r

after applying the mean value theorem to the previous expression, we get,

|

+E|

/ bg(?", Xﬁvx’ ar) = b2<7«7 X;z,xo’ Oér)d’l“
0

BX7* -

il

< |x =T |+EH/ ( Xna:-{-)\(ac —z) IP) R 7@)8 Xn1’+)\(;v —x)

|

u
o__ o__
/ (] (7, XPHNE=D) P raony)Bp X2 A=)
O i

+a bl n(?“ Z ]P) nz+>\(z 71))| nJH—)\ (xg—x) )d)\) (,ZE — xo)dr

+ O/ E[|X™® — X™||dr
0

1
< \x—x°|+|x—x°|E[/
0

+ a bl 'I'L(T % P n ,z+A(z® 7x))| n1+>\(1 71))d7’

d/\} + C/ E[|X™* — X™||dr
0

< |z =2+ |z — 2] / EH / (B (r, XA P iaagma) ) O XA 0)
0 0 i

+ a bl TL(T Z P nz+)\(z 71))| na:+>\ 71))d7’ }d}\ + C/ EHX;’L?x . o :Idr
0
= |z — 2°| + |z — z°| / E[ 8, X = HAE=e) —(1 — ))
0
- / by (r, Xpm A=), 0,) 0, X" A=) g }M +C / E[|X7" = X (Jdr
0 0

1
< o —a®[+ o — 27 / ((1 —A) + E[|o, XA )]
0

Dd)\ + 0/ E[| X" — X™||dr
0

0
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1
< |z —2°|+ |z — 2°| / ((1 —\) + E[|o, XA )]
0

+ / E[|bh(r, Xm0, ar)afo’x“(xox)Hdr) d\+C / E[| X" — X™||dr
0 0
here we now apply the Cauchy-Schwarz inequality to get:

E[|X5 — X0
1
<o —a®| + |x — 27| / ((1 —A) + E[|g, XA 0]
0

+ [ Bl X ), a) PRE[0. X b
0

+ C/ E[|X™® — X™ ||dr
0
applying the Gronwall’s inequality yields:

B[l X - Xp

]

1 1
< C{‘]}—I’O| + |JZ—ZL’O|/ ((1 e )\) +EH8IX,Z’$+A(”"°—$)‘2F
0

*‘J/ ﬂﬂHbaoz)c?$+A@°—@,o»>F1%E[M%;¥f“+A“9—xW2}er)(ix}
0
since the space derivative of by is bounded, we can write:

B[ — Xp<

]
1 u
< cla—ri{1+ [ (Eloxzne s [ Bl )
0 0

< Clz— x°|{1 +esssupEH8xXg’x{2P}

z€H(K)
= C{\x —z°| + |z — 2° esssupIEH@xXg’””m%}.

r€H(K)

Therefore, we have:

KPxpe,Pynao) < C’(|:z: — 2°| + |z — z°| ess sup EH@;X{LL””F]é), (3.41)

z€H(K)
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combining all results gotten so far, everything shows that we can find a

constant C' independent on n > 1, ¢ € [0,7] and z € H(K) such that,
1 t 1
esssup E[|0, X[ ||z < C(l +/ ess supE[|8£X1’}7x]2]2du)
r€H(K) 0 z€H(K)

t 1
< C’<1+/ esssupEHang"”Fp]?pdu), (3.42)
0

z€H(K)

remember from the computations that we can always find a constant de-

pending on n such that,

1225 < "
E[|8, X" |?]2 _Cn(1+llgnigf e |/ (Pxpe, P ynoo )du)

and from (3.43), we can say that,

E[|0, X" |*]% < C,, <1+h§nﬁu‘%}f ]:E—x ’/ (Pxne, Py .z )du)

< <1+hm1nf ’/ [| X" — X° |]du>

T°—T ’m—x
<C, (1—|—hm1nf / [| X — ] 2du )
s | — o)

< Cy,, (coming from (3.43)).

Consequently, the map t — esssup,ecpx) E[[@fo’xPp]ﬁ is integrable

over [0, T]. We can then apply the lemma 5 in Jones (1964) to obtain,

t
esssupEH@fo’IPp]ﬁ < ess sup]EHazXf"er]% <MF 02/ e“9ds < oo,
v€K weH(K) 0

which proves the lemma. O

Lemma 3.5.4. Assume that the drift b can be decomposed as in (3.3) and
by, uniformly Lipschitz continuous in the measure variable (3.7). Consider
(X7 )o<t<r, the strong unique solution of the MFSDE (3.32). Hence, we can
find a constant C' such that,

E[| X} — X{[*]2 < Clz —yl, (3.43)
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for all t € [0, 7] and z,y € K.

Proof of Lemma 3.5.4.
BJ|X;" — X )2

2:| %
2:| %

now, we use the mean value theorem for the map z +— by (u, X", Pxn=)

t
5 E|: T—y+ / (bn(ua XS’I7PX2’”'C) au) - bn(u7 XZLL’y:]P)XS’ya au))du
0

t
5 ‘LE = y‘ - E|: / (bn(uanx,PXg‘zaau) == bn(ua Xg’y,Pngy,Ozu))du
0

and we get,

n,x n, 1
E[| X" — X2

t 2 %
0
t 2 %
‘HE[/ (bo(u, X%, o) — bo(w, XY, av,) ) du }
0
o 2}
:|x—y|+E[/ (/ —[blyn(u,Xﬁ’y”(’:y),]P’Xn,erg(zy))}d(?)(x—y)du 1
0 o 0y u
i 2 %
‘I‘E{/ (bo(u, X%, o) — bo(w, XY, o)) dus }
0

we apply the Minkowski inequality to have:

E[| X[ — X;)%)2
t 1

S |G = y|JEH / ( / (B (1, X HOETD) P oo ) By X ¥ HOEY)
0 0 ‘

1
2:|2

e 8yb17n<u7 Xg,er@(:Jc*y)’ PX37y+9(zfy) ))d@) du

D=

t
+/ ]EHb2(u7X37x7Oéu>_b2(u7X37y’au>‘2} du7
0

we use the Fubini’s theorem to switch the integrals,
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n,x n, 1
E[| X" — X[z

1 t
Sle—yl+ v —ylE H / / (0 (g XHOED Py oy ), X0 @Y)
o Jo “

1
2:|2

1
e —y|+ o —ylE H / (ayX?’““”’ — (-6

t 1
+ aybl,n<u> X;l,yw(a:fy)’p n,y+9<z7y)))dud9 + / ]EHX;‘I _ X;l,yl?} 2du
u 0

X

211 ¢ b1
} +/ E[| X" — X2Y|7] ?du
0

1 213
/ (ayxf’y”(’”‘y) (= 0)>d9 }
0
1 ¢ 274
+EH / ( / b’z(r,Xf7y+9(“’”_y),ar)ayX?y*e("’C_y)dr)dG } }
0 0

t 1
+/ E[| X2 — X™¥|*] 2 du
0

t
- / bl (r, vay+9<$—y>,ar)ayXfW(w—y)dr) df
0

5\x—y\+|x—y|{1@[

1
n, T— 1
<lo—yl+ |:c—y|( [ 0, xr eIt
0

1 gt t 1
b [ [ B0 e, ago,xpvePlaras ) + [ w{lxee - oo
0o Jo 0
we next separate the expectation inside the double integral:
E[IX — X

1
Sto sl o=l [ El0,X7 " Plias
0

1t
+ / / E[|b(r, XV, ozT)\4]iE[|8yXf’y+9(’”y)\‘*]}ldrd@)
030
t 51
+/ ]EHX;”C - Xﬁ’y\ }2du
0
we continue with the Gronwall’s inequality:

E[| X" — X"V |22
1
<lo—yl+lo— y|( | Eto, xR
0

1 t
+ / / E[|bs(r, X?’-””(Iy),ar)|4]iE[|ayXﬁ’y+9<my>4]idrd9>,
0 0
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since the stochastic differential flow is integrable with finite 2p — th order

moment, we can write
E[IX — X2 S e —yl,

which proves the lemma. O

Proposition 3.5.0.1. Assume that the drift b can be decomposed as in
(3.3) such that its by component admits a first differentiable with bounded
derivative component and a second bounded component as written in (3.5).
Consider (X7)cjo,r], the strong solution of the MFSDE (3.32) with V' C R

be a bounded and open subset. Hence,
T > b(t, 2, Pxp, a) € WHP(V). (3.44)

Proof of Proposition 3.5.0.1. Consider (b,),>1, the sequence approximat-
ing the drift b as defined in the following;:

by (t, z, 1, ) = Bl,n(t, z, 1) + Bl(t, z, 1) + ba(t, z, ), with n > 1, (3.45)

such that by ,, € L>([0,T], C; " (R, P;(R))), with

SUp,,>1 b1nlloe < C < 00, || - ||os denoting the supremum norm on all
arguments, such that we have IA)M that converges to by in every [ pointwise
and almost everywhere in (¢, z) w.r.t. the Lebesgue measure. C, " (R, P (R)
denotes the space containing elements that are functions g : R x Pi(R)
verifying the existence of a constant C' such that the following properties

are satisfied:

(i) (z—=g(z,v)) € C;’é(R)for all v € P;(R) and,

(17) (v g(z,v)) € Lipe(P1(R),R) for all z € R.
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(X{"")icpo,mn>1 the corresponding sequence strong solutions of the follow-

ing,
AX{" = by(t, X[ Pyne,ap)dt +dB,,  Xg*=z€R,  (3.46)

let us first prove that the sequence {b,},>1 is weakly relatively compact in
WhP(V). Based on the proof of Lemma 3.5.2 and Lemma 3.5.3, we can say
that:

sup”b (t, 2, Pxpe, at)”
n>1

——

therefore, we have boundedness of the sequence {b,},>1 in W(V) and
consequently the sequence is weakly relatively compact based on Theorem
10.44 in Leoni (2009). Thus, there exists at least a sub-sequence {ng }r>1
and v € WP(V) such that we have the sub-sequence b,,, converging weakly
to v as k goes to infinity. Consider an arbitrary test-function ¢ € C3°(V)

and ¢’ its first derivative assuming ¢ is well-defined. Let,

<bn7§0> = / bn(t?ZaPXf’zvat%O(x)dx? (347)
\%

we have,

(b, — b, ") = / (bn(t, 2, Pxne, ap) — b(t, 2, Pxe, ) )’ (x)da,
v

< sup |byn(t, 2, Pxra) — bi(2, 2, Pxy) |/

%

1 1
< sup by (t, 2, Pxre) — bi(t, 2, Pxs)| (/ gO'(x)pd:C) ’ (/ dx) q,
zeV i 1% 1%

1
- SHP |b1,n(t7 Z,IP)X;WC) - bl(t7 Z7PXtI)| ||¢/||LP(V) |V|q7
zeV

< 00, based on Lemma 3.5.2,

where V represents the closure of V. We have shown in chapter 3 that

there exists a sub-sequence {X"**}.~; that strongly converges to X7 in
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L?. Consequently, we have,

0 (L, 2, Pxrne, ) — b(t, 2, Pxz, o)
= [b,

n(t, z ]P’an) + ba(t, 2, 00) — bi(t, 2, Pxz) — ba(t, 2, )|

< bin(t, 2, Pxpe) = bi(t, 2, Pxz)l,
n(t, )

)

< |by,
= |b1a(t, 2, Pxre) — by u(t, 2 Pxe)| + |bin(t, 2, Pxe, 0p) — bi(t, 2, Pxz, ay)],

t,z PX" —bln(t z ]P)XZ)| + |b1n(t z PXZ) —bl(t z ]P)XZ)|

S CIC<PX:L’17PX,?> + |b1,n(t727PXf) il b1<t727PXf)|7

the convergence of IC(Pxr.«, Pxz) has been shown in (3.29) and b;,, con-

verges to by pointwise in every p, therefore we can see that

|0 (2, 2, Pxne, o) — b(t, 2, Pxz, )| — 0 as n — oo. Hence,

. _ L -

= lim (b, ¢") — (b,¢') =0,
k—oo

ST — hm(bnk,g0>
k—o0

since the function ¢ has compact support and vanishes at infinity, we have,

(b,¢') = Jim by, @) =g Jim {br>0) = — (v, ),

where b, is the first variation process of b,, and v’, the first variation

process of v. n

Lemma 3.5.5. Assume that the drift b can be decomposed as in (3.3) .
Consider the strong solution of the MFSDE (3.32) denoted by (X[)icpo,n)-
Furthermore, we take {b,},>1 as the sequence approximating the drift b as

expressed in (3.45). Also, (X;""),>1 is the corresponding strong solution of
the MFSDE (3.46). Consequently,
2] 3

(3.48)

T T
supEHE ( bn(U,qu;PX{}’waau)dBu> =& < b(U,BQT,PX,vaZu)dBu)
0 0

reK
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tends to 0 as n tends to oo, for any compact subset K of R.

Lemma 3.5.6. Assume that the drift b can be decomposed as in (3.3). Con-
sider the strong unique solution of the MESDE (3.32) denoted by (X[)icpo,77-
In addition, we take {b,},>1 as the approximating sequence of b as ex-

pressed in (3.45). Also, (X;""),>1 is the corresponding strong solution of

the MFSDE (3.46). Consequently,

=

sup ]E|: por f: Jr bl,n(u,Z,PXLL,z)LB (du,dz) o f: Jr bl(u,Z,IP’X%)LBZ (du,dz)

zeK

1 e

tends to 0 as n tends to oo, for any compact subset K of R.

Proof of Lemma 3.5.5. using the inequality |e¥ — ™| < |e¥ + ¢*||v — w|, we

1
2:|2

get,

g T
IEHE (/ b (1, Bff,IP’XLL,w,au)dBu> - & (/ b(u,Bff,]P’Xg,au)dBu>
0 0

fO by (u, BE Py . ,0y, )d By — fo by, (u,BZ P nr,au)Qdu

w»
1
2jl 5

H/ (u, By, Pxne, o) — b(u, Bff,IP’Xg,ocu))dBu

fo b(u,BE,Pxz 00 )dBu— fo (u,BE Pxg o) du

2

—2/ (b (u, B PXg,z,au) — b(u, Bu,]P’XlzL,au)Q)du
0

T T 273
X <S (/ bn(u, Bg,]P)Xg,ijéu)dBu> = & (/ b(u,Bﬁ,PXﬁ,Oéu)dBu> ) :|
0 0
r T 2
S E |:<<€ (/ bn(u, BZ:?PXL""T’ Ozu)dBu> + & (/ b(u, Bi, ng, Oéu)dBu> >
0 0
]
T T 2
—I—E[(g (/ bn(u, Bz,]P)Xg,x,au)dBu) + & (/ b(u, Bg,ng,au)dBu) )
0 0
2:| %

N

T
« / (bu(uy BE, Pxre, ) — b(w, BE, Pxs, ) dBa
0

T
X / (bn(u, BL, Py, 0)® — b(u, BE, Py, ay)?) du
0

we apply the Cauchy-Schwarz inequality to get,
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[ I

T T 2
Hé' (/ bn(u, By, Pxne, a,)dB, ) & (/ b(u, BZ”,IP’Xg,ozu)dBu) }
0 0
T 491
< CE Ké’( e e, a,)dB, ) iy (/ b(u, Blf,]P’Xg,au)dBu>> }
0

T 411
X EH / ]P)Xff’zaau) - b(uanfa]P)beau))dBu :|
0
T 471
—|—C’E{<5 (/ bn(u, By ]P’Xg,:c,ozu)dBu) +& (/ b(u, B;f,]P’Xg,au)dBu>> ]
0
|

PN,

X EH/ (u, B, Pxra, o) — b(u, BE, Pxs, 00)?) du

we get after applying the estimate (3.15) of Lemma 3.3.2:

i ap

EHE (/ by (u, Bff,IP’ngz,au)dBu) - & (/ b(u, Bff,IP’Xﬁ,au)dBu)
0 0

|

|

1
2‘|2

N

T
< C’E[ / (bn(u,Bﬁ,IP’ng,au) — b(u,Bff,IP’qu,au))dBu
0

N

T
0

next, we apply Burkholder-Davis-Gundy inequality,

i P

EHS (/ by (u, Bi,ngw,au)dBu) - & (/ b(u, Bu,}P’Xg,au)dBu)
0 0

2:|411

|

1
2:|2

T
< CEI: / |bn(u7B$7PXﬁ’I7O‘u) - b(u7Bf57IP)Xffa au)|2du
0

N

T
+ CE{ / (bu(u, B, Pyner, a0,)? — b(u, BE, Py, ov)?) du
0

we now apply the Minkowski inequality,

T T
EHE ( / ba(a, B;’j,IP’Xg,z,au)dBu) _¢ ( / b(u, Bg,ng,au)dBu)
0 0
T 1
< C(/ E[‘bn<u> Bza PXS’Ia au) - b(ua Bza PXﬁ; Oéu)‘4]2du>
0

+CE|

1
2‘|2

T
/ (ba (11, BE, Pz ) — b(u, BE, Pz, ) (ba(t, BE, Pygpor, o)
0

N|=

5
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g
+ b(u, By, Px=, o) )du ]

T
< C(/ E[|by, (1, BY, Pyne, ov,) — b(u, Bg,]PXg,au)médu)
0

NI

T
—l—C’]E{/ |bn(u, By, Pxre, o) — b(u, By, Pxa, on,)|(|bn (u, By, Pxne, o)
0

1
47 4
)

i
< ([ Bllon(us B2, Przrs) — o B B, )
0

o |b(u7 B;i?PXﬁa au)')du

N

T
+C/ E[|by (u, BE, Pxne, ay,) — b(u, BE, Pxa, o) |*(|bn(u, BE, Pxna, a,)|*
0
+ |b(u, BE, Pxz, o) )] 3 du,
T 3
< C(/ E[|b, (u, BE, Pxne, ay,) — b(u, B;f,l@xﬁ,au)ﬁ]édu)
0
g 1
+0/ E[[ba(t, BE, Ppr, ) — bty BE, Pz, ) [FSE[lbn (t, BE, Pe, )|
0

+ |b(u, BE, Pxz, cv)[f]3 du,

using the estimate for the drift b in Lemma 3.5.2, we obtain,

T T
EH5 (/ b, (u, Bff,IP’Xg,m,ozu)dBu) -& </ b(u, B;f,IP’Xg,ozu)dBu)
0 0

T
- (/ E[|b, (u, BE, Pxne, o) — b(u, Bg,]PXff,au)ﬁ]%du)
0

1
2:|2

NI

I’
+/ E[[bn(u, BY, Pxne, ) — b(u, B, Pxg, a,)¥]5 du,
0

N[

e
S (/ E[|by, (u, BE, Pxne, a,) — b(u, B;j,PXZ,%)midu)
0

T
+/ E[|b, (1, B, Pxp, ) — b(u, B, Pxe, ) [*]5du,
0

SIS

T
SJ (/ E[|bn(u7 Bzf?]P)XZZ’z?O‘U) _b(ua Bﬁ,Pxﬁ,Ozu)m}ldu) )
0

next, using the triangle inequality and the assumption according to which

by has the Lipschitz continuity property in the measure variable (3.7), we
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have,

o=

E[|bn (u, By, Pxpr, ) — b(u, By, Py, o) [f]
— E[|byn(u, B, Py ) + by(u, BE, ) — by (u, BY, Pxy) — bo(u, B, a,)[*]5
< CE[|byn(u, B, Pyp=) = bin(u, BY,Pxp) 5 + Elbyn(u, B, Pxg)

— bi(u, B, P[],
< CK(Pype, Pyz ) + ElJbya(u, BZ, Pyz) — bi(u, B2, Px;) 5,
< CE[IX" — X,[] + E[|byn(u, B, Px;) — bi(u, B, Pxy) 5.

we now apply the Girsanov theorem to the first term,

Xl
E[|B’” ( (/0 by (u, BE,Pyn.e, au)dBu) - & (/tb(u B IP’Xg,ozu)dBu> )}
e ] (e [t 52 Paseragas) - ([ 52 pag i) )
g(JEKg (/0 b (u, BE, Pxne, dB) (/0 b(u, BZ, Py, au)dB))T,

we obtain next,

T T 273
EHE (/ b, (u, Blf,IP’X;z,x,ozu)dBu) - & </ b(u, Bff,IPXg,au)dBu) }

0 0

T t t 2
b C(/ E{(f (/ bn(u,ij,]P’Xg,z,au)dBu) - & (/ b(u, Bz,ng,au)dBu)) ]

0 0 0

FE{Jba(u, B Py, ) — b(us Bz,ng,amidu) ,

[SIE

so, after squaring both size,

T T 2
EH5</ bn(u,ij,IP)Xg,z,au)dBu>—8(/ b(u,ij,]P’Xg,au)dBu> ]
0 0

T t t 2
< C/ E[(S (/ bn(u,ij,]PXg,x,au)dBu> —£ (/ b(u,ij,IPX;c,au)dBu>> ]
0 0 0

T Ean(u’ Blaj’ ]P)X57 Oéu) - b(u7 Bia P.Xﬁa au)|8]%du,
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after applying the Gronwall’s inequality, we get,

T T
]EHE' (/ bn(u,B;f,Ing,x,ozu)dBu> - & (/ b(u, Bz,ng,au)dBu)
0 0

T
S CV/ Ean(U,, Bza ]P)X;”? au) - b(u, qu? PXS’ au)|8]%du’
0

2]

let us now evaluate E[|b,(u, By, Pxz, a,,) — b(u, BY, Px=, a1,

(7

E[|b, (1, B, Pxz, a,) — b(u, B, Pxz, ay)|]7

1

> 1 (z=x)? 1

= |bn(u, 2, Pxz, o) — b(u, 2, Pxe, o) |2 e = dz
oo % . V2T

e 1 (271)2 4
b1 (1, 2, Pxe) + ba(u, 2, o) — b1(u, 2, Pxe) — ba(u, 2, o) e 2w dz
o * * vV 2mu

o 1 22 (z72ac)2 22 4
= |b1n(uaza]P)XI> _bl(u7zaPXz)|8 e e e2dz
b u Vo

00 2T

IS

x

€s 1 L2 52
b1 (u, 2, Pxa) — b1 (u, 2, Pxz)[® e duezdz
B ) u u \/_

0o 2mu

N

2 o0 1 2
:(38”(/ ’bl,n<u727PX$j) _bl(u7z7PXﬁ')|8\/%e4udZ> )

from Lemma 3.5.4, we see that the map x — Px: is a continuous map.
Consequently, the image of the compact set K under that continuous map

is also a compact set. Let us denote that image set K’. Therefore,

sup |b1,n<uazaPX§'j) - bl(U,Z,]P)ngN = Sup |b1,n(u7 za:U“) g bl(uvzauﬂ —+0asn— o0,

TeK neK’
2
so, E Hé’ ( T by (1, BE, Py, au)dBu> g ( T b(u, B, Px;, @u)dBu> 1

tends to 0 as n tends to oco. O

[SIE

Proof of Lemma 3.5.6. using the inequality |e” —e"| < |e”+e"||v —w]|, and

similar arguments as in previous proofs, we get:

78

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

D 1
E|: ¢ S bl,n(T,Z,IP’X;L@)LBI (drdz) _ e J{Jk bl(r,z,IP’X%)LBz(dr,dz) :| p
! t
S E H / / b17n(7’, Zv]P)X:L’x>LBI (dT, dZ) — / / bl(T, Zang)LBw (d’l“, dZ)
S R s R

p
% (e_ I bl,n(r,z,PXg»z)LBx (dr,dz) +e JY fobr(rzPxz)LE® (dr,dz)) } P

p

‘ t
<if| [ fontarenimens - [ fuapew.e
s R = I

2p +
t z T 2p
< E|:(€ e bl,n(T’,Z,]P}X;L,I)LB (dr,dz) +e ff 15 bl('r,z,IP’Xf)LB (dr,dz)) :|

2p:| ﬁ

2p:|21p
)

< cE|

t t
/ / b1 (T, 2, Pxna) LB (dr, d2) — / / by (r, 2, Px.) L (dr, dz)
s R s R

% (]E |:€2pf: fR bl,n(T,Z,PX;r},x)LBz (d?",dz):| 2p + E |:€_2pf5t fR bl(T‘,Z,]PXW@)LBw (dr,dz):|

¥l

we apply Lemma 3.3.3 to get next,

?

< CE|

S =

e_ fst I]R b17n(T,Z7]P’XT'r"L,w)LBz(d’!’7dZ) e e* fst f]R bl(’l”,Z,PX”:g)LBw(dT,dz)

|
t t

/ / bun(r, 2 Pyes )L (dr, dz) — / / b (1, 2 P ) L7 (dr, dz)
s R s R

2p%
I

Now, let B, = Br_; and the Brownian motion W, being the corresponding

2p:| ﬁ

t
= CEH/ /(blyn(’f’,Z7PX§@) —b1(T7Z,]P’X$))LBx(dT, dz)
s JR

Brownian motion adapted to the natural filtration of . Using the identity

in (3.22), we have,

?

t
- H / (brn(ry By o) = ba(r, By, Pz ) )d B

T—s
+/ (bl,n(T—T, Bf,PX:}ax) —bl(T—T,Bf,PX7:§>)dWT

T—t
2p:| 35

T—s é
[l B Be) = bl By B
.

T—t -
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2p:| %

T—
+E|:/ (bl’n(T—T,B;f7PX7{hI>—bl(T—T,Bf,]P)Xg))dWT

T—t

t
E H / (bun(r, By, Pypr) = bi(r, By Pxz ) ) dB,

2p:|21p
2p ﬁ
"

after applying the Burholder-Davis-Gundy inequality, the Minkowski in-

2p:| ﬁ

T—s Br
/ (bl,n(rv B;:t)]PX?Z) - 51(7"7 BTQ’CvPXf))T dr
—Tr

T—t

+E|

equality and the Cauchy-Schwarz inequality, we get,

t
EH / / (b1n(r, 2, Pxne) — bi(r, 2, Pxs)) L7 (dr, dz)
s R

1
P:|2p

T—s
/ bun(T — 1, BZ, Pxne) — by (T — 1, B, Pz

T—t

t
51{3“/ b1, (7, BY ,Pxna) — by (r, BE, Px)|*dr

+E|

p:| 2
BT dr
VT—rvVT—7

1
2

2p:| %

i
+E H / (b1n(r, BY, PX?“) — by (r, By, PXg))
T

t
3 (/ E[|b1,n(r, By, Pxpa) — by (r, Bf,IP’Xf)PP]édr)

=

T—s
+ (/ ]E[‘bl,n(T — 18 BfJPXfm) - bl(T - 7, Bfa]P)X;?Fp]pdr)

T—t
BT—?" 2p:| i dr )
T—r

JT—r

T—s
+ (/ El|b1,n(r, Bf,]P)X;z,x) — bl(’l“, B,f,]P)Xg:)lZD

T—¢

1

! 2
SJ (/ E[|b1,n(r7 B;«BJ]P)X;I“) - bl(?”, Bf,PXg)Fp]Il?dr)

=

T—s
Ty (/ E[‘bl,n(T - Bf? IPXfI) - bl(T — T4 Bfa ]P)Xf’Qp]pdr>

Tl

T-s dp7 -+ dr
+ (/ E{|bin(r, By, Pxpe) — bi(r, By, Pxe)| ] )
et T—r
1

P‘|2p

T—s
/ bun(T — 1, B2 Pyne) — by (T — 1, B, P |[2dr

T—t

t
<E H / byn(r, BZ, Psgns) — by (1, B, P ) Pdr

+E|

p:|2p

T—s 4L dr
+/ E[lbl,n<ra Bfapr’z) - bl(r7 Bf7]P)Xf>| p} 4p

T—t T—1r

80

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

1

t p)
SJ / E[|bl,n(r7 Bfu]P)X?’x) - bl(ru Bf7PXf)|2p]%dr
) T—s 1
~ ~ 1 2
+ / E[|byn(T — 7, BY ,Pxne) — by (T — 1, B, Pxe) ] dr
T—t

T=s 1 dr
+/ E“bl?n(T, B:,P ?,m) — bl(T, Bf,PX$)|4p]@—7
x VT

= AL+ A2 + A3

the last challenge is now to show that E[|by ,(r, BY,Pxn=)—b(r, BY,Px2) E

converges to 0 as n grows large.

El|by.n(r, BF, Pxpoe) — by (r, BY, Py | *]
— ]E“bl,n(ra Bf? ]P)sz) - bl,n(ra va PXf) + bl,n(rv B:a ]P)Xf) N bl <T7 Bf, ]P)X;P)rlp]ﬁ
S CE“bl,n(T? Bf7 ]P)Xf’x) — bl,n(ra B:a ]:P))('f”)|4p]ﬁ == OE“bl,n(Ta Bym7 ]P)Xf)

1
- bl(rv Bf? PX?)|4p]@7
we now evaluate each term, the last term becomes,

EHbl,n(r? va PX&) _ bl (Tv Brmw ]P)Xﬁ) |4p]ﬁ

1

22 o 1 52 4p
< eBrp (/ 1615 (7, 2, Pxa) — by (r, z,IP’Xz)|4p—e_47dz ,
L K e e F

.. 2rr

which tends to 0 as n becomes large. The first term becomes,

Fl
E[|b1,n(r7 Bfa ]P)X;'.L’x) .y bl,n(rv va PX,?”) |4p] »
< CE[|X;"* — X7]

i T
E (/ by (r, Bf,]P’Xg,z,aT)dBr) - & (/ b(r, Bf,PXf,ar)dBr) H
0 0

T T
< C]E[|Bf|2]%EH5 (/ b (7, Bf,PXg,m,ar)dBr) —£ (/ b(r, Bf,ng,ar)dBr)
0 0

- ce|15

1

273
)

from Lemma 3.5.5 and the fact that E[|B?|2]2 is finite, we see that,

T T ip1&
E{|b1,n(r, BE,Pxn=) — bi(r, Bf,Px2)| "] converges to 0 as n tends to oo.
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Also, it means that KC(Pxn=,Px.) tends to 0 as n grows large, therefore,
Pxn= converges Px. as n tends to co. Consequently, the second term will
be 0 as n becomes co. Combining everything together, we just showed that
A3 tends to 0 as n grows large. We can use the same exact approach to

show that both A! and A? converges to 0 as n tends to co. Hence,

P
sup E [ ]
TeEK

tends to 0 as n tends to oo, which proves the lemma. O

hSA

e f; fR bl,n(ﬁZyPX;?»I)LBI (drdz) e~ f: fR{ b1(T,Z,PXTL§)LBZ (dr,dz)

Proof of Theorem 3.5.1. Let us consider the sequence (by,),>1 approximat-
ing the drift b as shown in (3.45), and (X;""),>0, the corresponding strong
unique solutions of the MFSDE (4.1). We know from Bauer et al. (2018)

that this solution is Sobolev differentiable and can be written explicitly as:

t n,r i n,o
g&%a — e s bl,n(r,z,IP’X;zﬁz)LX (dr,d2)+ [y by (r, X% ar)dr (350)

t
t Xz t 3 n,r i _ —
= b 2P ne)L dr,d2)+ [F ol (r, X )d _
E / e~ o Jnbrn = Pop LT And2 by ol Xe T dr g g b (5, X102, P e, G X0)GRE]ds.
0

We show that the representation in the theorem hold by showing that
(G")n>0 converges weakly in L*(V x Q) to G. Since L*(V x Q) is spanned

by the space

{v @5(/0T¢rd3r>,so € Cy(R),v € 08°<V)},

We need to show that

/Vv(x)E[(gn - Q)S(/OT ngdBrﬂda: — 0 as n — oo, (3.51)

We have
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/V v@E[(G, - D( /0 ' prdB,) ] da

_/ v(x)]E[(e—fotfRbl,n(r,z,IP’X;z,x)LXn’z(dr,dz)+f0tbg(r,Xf‘I,ar)dr
1%

t
t xnT tay n,xr — _ —
- b1 n(r,zPyne)L dr,d v (r, X0 ar)d _
+ / ¢ e Je b B ) L A KT 0 (6 X0 B, a1y XI)GEE]ds
0

_ e Jo Jebi(rzBxp) LY (drda)+ 3 by (r. X o )dr

t . T
= [ e SR i B, X2 P, i X000 e [
0 0

i / 'U(.’L')]E [(6_ fg fR blyn(r,z,]P’X;L,z)LXn’m (dr,dz)-‘,—fot bl (r, X" o )dr
Vv

t n,xr t
— [ [ b1 (72, P e ) LXTF (dryd2)+ [ b (r, X0 0 ) on,a ~ . \An,a
+ / e s °R & X’" fs 2 L " E[@ubn(S,Xs ,]P)X;LVE,OZS,y)gzsa”y:)(;l,:
0

— e fot fIR b1 (r,z,IP’qug)LXI (dr,dz)—i—fot by (r, X E ar)dr

t
il / e~ fst fR bl('I’,Z,IP)X?@)LXI(dr,dz)—i-f: b/2(r,X;?,cur)dTI_[_‘:[aﬂb(s7 X:, PX§7 O_és; y>ggs] |y=X§”ds)
0

x & ( /OT ngdBrﬂ o,
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Let X% (t,w) = X™*(t,w+y), a(w) = a(w+yp) and applying the Cameron-

Martin-Girsanov transform to obtain,

[ soeo.-0e( [ )]

:/v(x)EKe—fgfRbl,n(r,z,PXp,x)LX"’””(dr,dz)+fgb;(r,fcﬁ@,ar)dr
14

t v, T N, r -~
+ / o S S b (P ) LXT (drda) [0 (X707 G ) dr
0

= _ — t g G o~
X E[0,bn (5, X1, Py, s ) G5 | _gnedls — e~ o JebrlnaPac) L5 (drda) - g by (r K7 o)

t . 5
B / e fst fR by (T’z’PX%)LX (dr’dz)—’—f; bé (T7Xf7dr)dr]E[aub(3; sta IP)X;”) ds? y)g_fs] |y:)~(”” ds):| dx,
0 S

_ / 'U(iL‘)E |:<€ fot Iz bl,n(T,Z,[P’Xg,m)LXn’z (dr,dz)Jrfot bl (r, X% @ )dr
1%

_ o Jo Jabr(rzPxg) X (drd2)+ fy B’Q(r,f(f,dr)dr):| dl

t I .
+/ v(x)/ ]E{e_ I3 Ja bin(rz P xne ) LX (drid2)+ [ b (r, X2 dr)dr
14 0

x E[0,bn (s, X2, Pxne, a; y>g_17}s&] |y—xme

L f: Ik bl(r,z,]P’ng)Lff‘r” (dr,dz)JrfSt b’Q(T,Xf,dr)drI_E[aub(s’ X;c’ PX?; A y)g_&

r,s] ‘y:f(g dsdz

e /V o(2)Rydz + / o(z) Ryda.

1%

Let us check the convergence of R}, we have:

R'=F {e_ Jo Sy b1 (rzPyna ) LX™F (drdz)+ [ b (r X707 G )dr

— o= I3 Ja bz Pyp) LY (ardz)+ [y bé(nfff,dr)dr}
1 1
+ TMN,T 2 Snr o~ -~ _ 279 =
< E |:€7 Io Jx 2b1yn(T,Z7IPX7’{l,l‘)LX (dr,dZ):| E Hefot by (r, X7 ar)dr ef(f by (1, X7 6 )dr } 2

1 & T
+E {efff 205 (r. X7 ’dr)dr] 21[-«:,[‘6* Ji e brn(rzBPyna) X (drd2) = [ [ bi(re Bxp) DX (dr,dz)

1

.
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Using the Girsanov transform and the Cauch-Schwarz inequality, Lemmas

3.3.2 and 3.5.1, we get

Ry, =E [6_13 Ji 261, (r,zPycn.e ) LY (dr,dz)l 2
T 211 . - 1
=5 |:5 ( / (bn(’f‘, Bfa ]P)ngf, dr) + QOT)dBT> :| E |:6 Jo Jw 4b1’"(T’Z’PXf’x)L (dr,dz) < X

0

R7, is finite due to the boundedness of the space derivative of by. Next,
we prove the convergence of RY,. We do so by first defining the following

terms:

i TN, T ~
Z{l — e fo fR bl,n(ﬁZyPX]}@)LX (dr,dz)j 7 = e~ fg fR bl(r,Z,]P’Xg)LXI(dT,dz).

1=

Again, we show convergence of Z]' to Z; by first showing weak convergence
in L? and then showing convergence of the second moment n the Euclidiant

norm.

As before, we show weak the convergence by showing the following result:

1
‘E[S(/ c,'ordBr>(Z{L _ Zl)] ‘ 50 as 1 — 0o,
0
So we have after applying the Cameron-Martin Girsanov theorem,
i 1
E 5( / gbl,rdBr) (zi - 7)),
p 0

[F 1 Sn,T cx
=E|& (/ (1'01 rdBr) (e_fot Jr b1,n(T»Z7PvaI)LX (drdz) ) fot Jz b1 (T,Z,ngg)LX (dr,dz))] ‘
- 0

| -6_ fg I bl,n(T’,Z,]P’X?,I)LX”ﬂ (drdz) o= fg I bl(T,z,IPX;C)LXz (drvdz)i| ’

_ A T
—|E[eJo fabrn(raBype) L5 ([drdz) o ( / (bu(s, B, Pxne, &) + ¢4 + sbl,s)st)
- 0

T
_ o Jo fabr(rzPxp)L? (dr,dz)g(/ (b(S,B:,]P)Xg,dS) + s + ¢175)d35>”
0
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where X%(w) = X%(w + ¢+ ¢1), &(w) = a(w + ¢ + ¢1). Let us define:
(bu(s, BE, Pxne, Gs) + @5 + @1,5)d35),

(ba(s, B Pz, ) + ,)dB.)

(b<87 B;ja ]P)Xg”a ds) + Sbs + le,s)st>a

(b(s, B, Px, as))st> .

Hence:

‘IET [5 < /0 1 @LTdBT) (zn — ZI)} ‘

S]E [e— fg fR 2b17n(T,Z,PX;l,$)LBZ (d’mdz)] %]E H(C:‘n(x) . (cj(x) |2:|

N|=

[é’( ) }5 He_ I fe bl,n(r,z,nmxp,x)LB’(dr,dz) o Iy Jabr(r,2Px) LB (dr,dz)

1
2:|2

The convergence of E [e_ Jo Jo21,n (2 Py e) L7 (drde) ] : HS )—E(z )‘2] ? holds

by Lemma 3.5.1 and the first claim of Lemma 3.5.5. The second term con-
verges by Lemma 3.3.2 and the second claim of Lemma 3.5.5. Next, we
show the convergence in the Euclidiant norm. More precisely, we prove
that

|E[|1Z}1?] —E[|Z1)*]| = 0 as n — <.

Adding and substracting e =y Ja Porn(rPype) L2 (dT’dz)c‘:’(x) and using the

Cauchy-Schwarz inequality gives

E[|Z7] - E[|Z.]]
:‘E[e— fg j]R 2b1,n(7‘,Z7PXT7‘L,l')an’z(d’l‘7dz)i| g E[ fO f]R 21 (1,2 sz)LX dr,dz) :| ‘
:‘E[e_ f(f fR 2b1,n(T,Z,]P’Xg,x)LBI(dr,dz)gn( ) e fo f]R 2%, TZPXZ)LB (dr,d2) g( )} }
<[[e et TS g[8, 0) — o))

+E [S(I)Q] %E He— fot Iz 2b1,n(r,z7]P’X;z,m)LBﬂc (drdz) - fot I8 2b1(r,z,IPXg)LBI(dr,dz) |2] 1 ‘

Convergence follows using the similar arguments as before. Therefore, R},
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converges to 0 as n goes to co. The convergence of R}, follows from dom-
inated convergence. Consequently, R} converges as n grows large. Let us

now study the convergence of R}. Recall that

n
RQ
t -
t X,z t g N, T ~ _ _ -
— b1,n(r,2,Pyn,a)L dr,dz)+ [ b5 (r, X" ,é&p)dr , _— ,
:/ EKe Jo Jabronrz P ) LE (@Ard) b n XET G R ) (5, X0% Pygne, s ) G| _gne
0

_ o= S febr(rz Py ) LXF (drdz)+ b'z(r,f(f,&r)dul_E[aub(s, X7, Pxz, as;9)Gr] |y:)~(§>} ds.
Let us again take note of the following notation:

és(bly Xx) :e_ f: fR bl (T’Z7PXg)LXI (dr7d2)7 és(b27 Xx) = efst bIQ(hX’%’dT')dT

E[aHBQSS] ::]E[a/,bb<87 Xf:: ]P)Xg» 075; y)ggs] |y:)§'gﬁ7
E[0,07G] = E[0,bn(s, X", Py, a3 )Gl | e

Adding and substracting both &, (b1, X*)&,(bs, X”ﬂ@[(‘?ﬁ?@ﬁf] and
&, (g, X®)e4(by, X“‘)E[@ﬁ?@fﬁ] gives

t
Ry = / B[, (b1, X™7) s (ba, X VE[0,57G10] — e5(b1, X ) (ba, X*)E[0,5G% ]1ds
0

t ~ ~ ~ ~ — ~ —_ —
- / (E[(&s(brms X™) — &5(b1, X)) &5 (ba, X™*)E[0.05G37]]
0
+ E [(és(b% Xn,r) - éS(bQﬂ Xz))és(bh Xm)E[gﬁLB?g_?,fH

t
E[(E[0,b2G%] — E[0,bG2.])es(b, X*)es(by, X®)])ds = / (R%, + Ry, + R3y)ds
0
let us evaluate each term:

R"l‘E[( (b1 X7) = (b1, ) (b, X0, 520751
< E[[en (0, X) = &l X4 EE[Jeu 0, X)) B[ B19,56:27| )

EHés(bg,f("“)m% and IEH]E b”g” O‘H F are finite thanks to the bound-
edness of b and 9,b" and Lemma 3.37. Convergence of E[|€s(b1,n, X)) —
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es(by, X x)‘z]% follows using the same argument as in R7, whereas onver-
gence of RY, follows from dominated convergence and Lemma 4.3.1. We

continue with Rf,. Using the previous argiuments, we have

Ry, =E[(E[0,0G/% — 0,bG2])es(ba, X™)es(by, X7)]

)
E[E[|0,5/Gr — 0,062, 12)] *E[eu(be, X*)'] ' [eu(by, X7)]
E[E[0,5°G"8 — 0,66, ) *E[eu(ba, X7)*] “E[es(b1, B)]

0| T

IS

ool

< I [g( /0 g (b(s, BE, Pxs, ) + sbu)dBu>2]

<CE[E[|,57G"& — 0,565, 2]2.

e i T e ]
Convergence of E[E[|8,b2G" — 9,bG2,|*]]® can be proved using the same
approach shown in (4.14). Therefore, R} converges to 0 as n tends to oo.

The proof is completed. 0

Proof of Theorem 3.5.2. Let us consider s,t € [0,7T], and two arbitrary
element of K, r and z. {X™"},>( denotes the approximating sequence of
solutions as presented in (3.46). Using the same approach as in the proof

of Lemma 3.5.4, we can find that:
E[ X~ X[ )2 S o — I,
as well, based on the proof of the estimate (3.37) of Lemma 3.5.3. Also, we

!

+ |Bt Bt”2:| )

have:

[NIE

E[|X;" — X;#?2 = E m , X7, Py, ap)dr + By — By

2

NI

N

bn X Pyn, oy )dr

<SE /ban"”” Pxn=, op)dr

2
]+M&—&ﬂ%
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we apply the Minkowski inequality to get:

t
B[ X7 — X3P 5 / E[|bn (r, X;%, By, )" 2dr + E[(By = By)*)?,

t/

N[

D=

t
5/ E[ba(r, X%, Pyre, o) 25 dr + E[(B: — Be)??,
t/

<Clt—t2,

where C' is greater than 0 and is a constant depending on 7". The previous
inequality holds true due to the estimate (3.34) of Lemma 3.5.2. We obtain

afterwards:

E[|X3* — X0* "] = E[LXT" — X% + X7 — Xp°f?],
< E[I X" = X7 P + EB[IX - X0,

< CO|lz — 2P+ [t = t]),

knowing that X™® converges to X® in L? for at least a subsequence, we can

use the Fatou’s Lemma in Lemma 1.6.1 to obtain the desired result. O

3.6 Chapter Summary

In this chapter, we demonstrated that the strong solution of the MFSDE
under study holds some properties among which the reresentation of a
stochastic differential flow. Since in our case the controlled MFSDE has
a non-smooth drift and is driven by a one-dimensional Brownian motion,
we studied the representation of the stochastic (Sobolev) differential flow,
via a time-space local time integration argument and we will use that rep-

resentation to solve an optimal control problem where the state constraint

is a MFSDE.
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CHAPTER FOUR

RESULTS AND DISCUSSION
4.1 Introduction

In this chapter, we finally study and characterize an optimal control
for a MFSDE in which the measure variable is the law of the state process
denoted by Pxz. After stating the assumptions we will use for the control
problem, we will describe how an optimal control could be characterized for
the system by studying necessary conditions for the existence of an optimal

control.
4.2 Research Framework

We aim at optimizing the following performance functional:
T
J() ::IE{ | #65. X5 Pz a)ds + 90X Py .
0
subjected to:
dXéB = b(ta szu]P)va at)dt it dBt? XE)E =z, t€ [O’T]7 (41)
where,

e B, is a Brownian motion defined on some probability space (2, F, {F; }+>0, P),

o {a;}i>0 is a suitable control process adapted to the filtration F; and
takes values in a closed convex control space £/ € R, and all con-
trols taken such that ”(4.1) is uniquely solvable” constitute the set of

admissible controls D,
o X7 denotes the state of the system controlled by o,
e For all (t,z,pu,a) € [0, 7] x R x P;(R) x E,

— f and g are continuously differentiable with bounded first deriva-
tives,
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— there exists a constant C' such that for all (¢, z, i, @),
£t 210 + L9z )] < OO+ 2]+ K, 60)), (42)

— we denote by 0. f and 0.¢, the first derivative of f and ¢ respec-

tively with respect to the space variable,
o Px: € Pi(R) where,
Pl (R) = {I/

oo},

e The drift b can be decomposed in this form:

v probability measure on (R, B(R)) with [, |z|dv(z) <

b(t, z, i, ) = by (t, z, ) + ba(t, 2, @), (4.3)

where,

— by : [0, 7] x R x P;(R) — R with b; bounded and adapted,

— by : [0,T]xRx E — R is bounded and differentiable in its second

and third variable with bounded derivatives,

e the map p +— by (¢, z, i) is Lipschitz continuous in the measure variable
uniformly in ¢t € [0,7] and z € R, i.e. for all ¢t € [0,T], z € R, and
i, v € Pi(R), there exists a constant C' such that:

|b1(t, 2, u) — b1 (t, 2,v)| < CK(p,v), (4.4)

problem 4.2.1. Find o* € A such that

V(z) = (slléBJ(a) = J(a"). (4.5)
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The Hamiltonian H associated to the above control problem is defined as

follows:

H(t7 2y Dy Iy Oz) = f(t, 2y My a) + b(tv 2 a)p. (4'6)

4.3 Stochastic Maximum Principle
The stochastic maximum principle is stated in the following theorem:

Theorem 4.3.1 (A necessary maximum principle). Suppose that the drift
b is given as in (4.3). Let (&, X®%) be an optimal pair of the system (4.1)
and (4.5). Then there exists an adapted process (adjoint process) P such
that:

1. The following maximum principle holds

O H(t, X B, Py, r) - (v = G4) > 0, P@ At —a.s. for ally € A.
(4.7)

2. Let G* be the well defined first variation process (in the Sobolev sense)
of X9 given by

- ff Ja b1 (u,z,]P’Xw,@)LXz’d (du,dz)-‘,—fst B.ba (u, X 2% ) du

&

s,t =
i / t o S b1 P EXT (@) [ 0ab (0, X ) (48)
x E[0,b(r, X2 Py, Gr; X5)G, ]dr. (4.9)
Then

P, =E|Gir0.9( X7, Pz +EI0u9 (X5, Pyrs X7 )G

T x ~ AN SA
n / {ggsaz (s, Xj’d,IP’X:,a,&S)+E[&Mf(s,XZ’Q,PX;ﬁ,@S;Xf’a)ggs]}dS‘Ft]
t

(4.10)
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This whole chapter is entirely setup for the proof of Theorem 4.3.1.
We consider ¥ C R, a closed convex subset of R. A control is said to be

admissible if it satisfies the following condition:

D = {a :[0,T] x Q — E, progressive (4.1) is uniquely solvable and sup E[|as|!] < A,

0<t<T
(4.11)

where A is a constant such that A > 0. In addition, we define the sequence

of smooth functions b,, expressed as follows:
bn(t7 thwﬂa ]P)th’w’a7 at) == bl,n(t’ Xtmm’aa ]P)Xf’m’a) + bQ(t7 thviﬂyﬂé’ at)?

where by, : [0,7] x R x P;(R) — R are infinitely differentiable functions
having a support that is compact and converging almost everywhere to b;.
b1, can be a bounded sequence since b; is assumed to be bounded. The
assumptions on b, results in it being Lipschitz continuous, therefore making
the sequence well-posed. We define in the same way the performance and

the value function denoted by .J,, and @), respectively, as follows:

T
Jn<06) = ]EI:/()‘ f(u7 XZL,!E,CY7 IEDXLL’Z’O‘7 au)du + g(X;%a’ PX;’I’O‘> ) Qn = Sup Jn(a)7

aeD

and,
dX;""" = by, (t, Xt"’x’o‘,]P’X;,z,a, ap)dt + dBy, t € [0,T], X;™* = x.

In addition, the distance between two controls a' and o? will be ex-

pressed as:

1
T(al,oz2) = sup EUO&% — afm i
0<t<T

The proof of Theorem 4.3.1 will consist in deriving an approximate
control problem using the Ekeland variational principle and proving that

the optimal control for the initial problem with @, is also ”e—optimal” for
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the approximate control problem. Next, we will pass to the limit to show
some form of convergence for the maximum principle. The whole proof will

be demonstrated through the use of some technical lemmas.
Lemma 4.3.1. The following bounds hold true:

for every o!, o € D, we have:

n,x,at z,a? |2 3
E[lxs™ — X% |]*
z2 1 1
< clr(ad,0?) + /t ML /|b (U 2, B o) = by (2, P, o) Fodz ) du)
o, T el n\U, 2, T, - u, z, z,a € *vaz U .
U o (2mu)s \Jr & X ' X

2. for every sequence {ay,},>0 in D converging to a € D in the norm

SUPg< <7 Ef| - |4]i , we have:

k,z,0n k(275 .
sup EHXt X “‘| ] % converges to 0 as n grows to oo, for a given k.
0<t<T

Proof of Lemma 4.5.1. We start with the proof of 1. in the lemma. We

have,
n,z,at x,02
t 1 2
n,x,o 1 T, 2
- / (bn(u7 Xu 7]P)Xn,z,al7au) = b(u7Xu ’PXI’Q%OZ'LL))du?
0 u u

t
> / (b1, XPPO P nar) = b, X0V P ) o+ ba(u, X )
0

u

- bg(u,Xﬁ’QQ,ai))du,

after adding and substracting the following three terms: by ,(u, X 37“‘1 P ea2 )
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by (1, X507 P aa2), and bo(u, X% 1) and then applying the mean value

theorem, we obtain:

1 2
n,r,x x,x
Xt” Xt’

t
= / (b (s X5 P ) = b (1, X0V P z) + b, X5 )
0

u

- bg(u,Xﬁ’QQ,ai))du,

t
nzal nmal
_ /0 (b1, X35 P ) = by, X5 B oa))du
t
+ [ (byalu, X2, Poae2) = bi(u, X B

@2 )) du

t

o (bralu, X3P 2) — bin(u, X3P, 02))du

2 2
Xi’a nga

t

+ (bQ(u,X{f’m’al,ai) — bg(u,Xf’o‘Q,ai))du

o— — S—
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by (1, X5 P nat) = bin(u, xreel P 2))du

T,
X

Il
O\¢
~
—~

+

t 1
( / b (u, X2 4+ O(Xm — X2°) P 2>d") (Xp=et — X2 du
0

T,
Y Xu‘

~+

(brn(, XZO P, 02) — by (u, X2 P, ) du

T,a
Y Xu’

+

2
xge

(ba(u, X750 oy by (u, X5 ol ))du

u

~+

(bg(U, Xff’o‘Q, ozi) — by (u, Xﬁ’O‘Q, Ozi))du

_l’_
Wc\ﬁc\c\

(Brn(us X5 P et ) = byt X5 P ya2)) s

Ty 17,0
) Xu ’

I
s~ *

+

o~
N
=

b (u, X5 4 9( Xm0 = X5 P 5)de | (XY — X5y
1n u u u u u

T,
) Xu’

+

byn(t, X2 P, 2) — by (u, X5 P

—~~

2))du

2
z,0 0
X X

(u, X5 + (X" — X7, a;)de) (Xpme — X2 du

~+

—
S
—
S

S
8
Q

2, ai) — by(u, XZ”’O‘Q, Ozi))du,

1
s>~ + +
Whﬁc\c\
=

(Bun( X3P P et ) = by n(tt, Xg™ P aa2))du

? X;’Z«yzya

b 1
(/ (B (e, X2 4 O(X 2 — X2O), P, 2)
O u

+
S—

+0b

N~

(u, X2+ 0(X ™ — X2, a;))de) x (Xt — X2 du

¢
x a2 x 012
+ /0 (b1 (u, X2 ,ngyaz) — by (u, X ,Pxﬁvaz))du

therefore X;" el X/ “* admits the representation:

nl’Oél l’a2
thv _X»

u

t
ol US| 2 2 oL 2
/t JEI (B X 4000 =X P L, o) 40 (X5 0(XS T X0 al) ) dodu
= [ e
0

1 1 2
X (blm(s,Xg’x’a P oeat) = byp(s, X ,PXZ,(Q) + by (s, X7 ,IP)X.T’Q2>
S S S

X

—by(s, X2 P, 02) 4 ba(s, XO% al) — ba(s, X2, a§)> ds
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1
squaring and applying the expectation to the power 3 on both sides and

the Cauchy-Schwarz inequality yields:

D=

£ jxeee - xe]

t K folz(b'l n(u,XfL’(’2+9(Xff’l’“1—Xff’“Q),IP’ . az)+b’2(u,X;f’a2+0(X3’z’“1—Xff’“Q),oci))dedu
SE e’ ’ X! ds

2]

2]

Bl

t
X {EH / b1, X2 ™ P ) = bty X™ P )[*du
0 u

T

N

t
z,0% x,02 2
+]E|:’/O ’bl,n(u,Xu7 7IEDX5,Q2) - bl(u?Xu7 ,P‘ij’az)‘ du
T)

2 U’ + ol 1
’ t f fo 177. (u, X3 o? +(9(X”““‘ - Xy )P z’a2)+b’2(u,Xﬁ’°‘ FO(X T — X ),ai))d@du

t
+EH/ | (s, X5, al) — by(u, X2°°, 02)|*du
0

The next step is to show that

PN

Xy ds

2]

1
2:|4
t f 2 b ( Xz,a2 GXn,z,al Xz,a2 P b XI’QQ QXn’E"al XI’O‘Q 1 i
/ s 1,n (WA +0( X, . za2)+ o (u, X0 +0(Xy, X0 ),0,) ) du
(&

is finite. So we have after applying the Jensen inequality:

H/ JE 13 201 X5 40X XTONP )b XE HO(X DT —XE57) 0l)) dodu
u S
?|
we next apply the Minkowski inequality to have:

?

= dfds

]

/‘t S 2(0 (XD 0O XN 2 ) (XD RO X 0l ) dbdu
u

z]i
X pxmeet xmet b ) Xt pa(xn e’ —x7e?) al)au] b
(// [ T e SENYYC T ]dé’ds)

Next, we evaluate

(S

2 2 1 ]
e (0 X OO X )P )+ O X »@))da} W
u . e

first apply the Girsanov transform but before, let us introduce the following

process {bf , }ieo,r] where b, can be found as follows:
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Xp 00 = Xp)

=z + B, + / b(r, X5 ]P’Xm,az,ozz)dr + 9(/ (b (r, Xf’x’al,IP)XW,al ,al)
0 " 0

— b(r, Xﬁf’o‘2 P ez, af))dr)

u

’n,.ral J;a2
=2+ B, + (an(r, X0 P aats an) + (L= 0)b(r, X2 ,PXS,Q%OZZ))dT

)
=2+ B, + / b dr.
0

So we have:

X2 L g(xmee — X3

= + Bu + / b(?“’ Xf’a27 PXx’a2 5 Od?)d?“ + 9 ( / (bn(r’ X;-Lyx,oél ’ ]P)Xn’mptl ’ 0471“)
0 " 0

5@V
) Xu’

— b(r, X2 P z,af))dr>
=2+ B, + / (05 (r, X2 Pt ) + (1= 0)b(r, X2 P, 12, 02))dr
0 s

= &+ B, / bfm,dr.
0

which is finite due to the assumption on b}, Lemma 3.5.1 and the bound-
1
2
edness of bY ,. We go back to estimating E ‘sz,m,al — th’o‘g |2] . Applying
the Minkowski’s inequality gives:

1
2

§ bXt"””’“l - x \2}
t 1 %
S ( /0 E H bl,n(“? XZL’%OLI ’ ]P)Xf}w,al ) - blm(“» ngx,al ’ ]PX;T’O‘Q ) |4] 2du>
+ 1
i (/0 {1, X0 o) = bi(u, X2 P o) ] Qd“)

1
2

t
‘ ( | Bl X2, 0 - b2<u,X$’a2,ai>\4]5du) ,
0
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using the Lipschitz continuity of by, and the Lipschitz continuity of b, in

the measure variable, we obtain:

=

2

£ jxeee - xe]

t 1
< ( / E[[brn(u, X0 P _,02) — bl(u,Xi"’z,IP’Xz,aa)ﬂQdu)
0 : :

t % ‘ %
(Ko g Bygatin) (Bl i)
0 u u 0
1

t 2
S </ E[’bl’n(u’X'[f’O‘z’PXm,aQ) e bl(quz’a 7PXx,a2>‘4:|;du>
0 u

t ! - 1 t 1 1
n (/ E[jxmeet - xoe] du> I (/ E[jal — o? ]zdu)
0 0

t
5 </ EHbl’n(U7X5’a27PXI’O‘2) - bl(/U’?Xl‘?a 7PXI,Q2)‘4i|§du)
0 e u

t 5 ¢ ) 3
+ (/ E[\Xg:wl—xgyaﬂ?]du> + (/ E[\a;—agﬁpdu) ,
0 0

now let us apply the Gronwall’s inequality after squaring both sides of the

inequality and we obtain:

< [!Xf’f’al - xg’ ﬂ
t ¢

S [ Bllek =t Pas [ Bl X By i X By
0 0 £

oa2) = by (1, X2 P o)1) 2 du

t
S 7(at,a?)? +/ E[|brn(u, X3, P
0

next, we apply the Girsanov transform on E [|b1,n(u, T, Pxfj’“ )—by (u, X5, ngyaz)lﬁ‘] ,

and we get,

E[|by(u, X5 P, 02) = biu, X2 P, 02)| "]

X'LL

T
=E [5 (/ b(r, X P ooz, af)dBr) ‘bLn(u, By, P vaz) = bi(u, By, PXM?)F]
O T u u

N|=

T 211
gE[f;( / b(r, vaazj]PXz’QQ,az)dBr) ] Ebbl,n(u, Bg,IPXI,Q2)—bl(u,Bg,PXz,az,)‘s] ’
0 s u u
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since b is bounded, we do:

E[[b1n(u, X5 P piz) = bi(u, X0 P 02) °]

u

[NIE

S CE |:‘b17n(u, B$7 ]P)XI’DQ) — bl(u, Bz, ]:P)Xz,a2>‘8:|

N|=

1 8 _ (- 1)2
=C bin(u, 2, P . 02) —bi(u,2,P_, . - dz |
( R\/ﬁ‘ ! Xu ) ( Xu’ )| )
since we also have:

7(2—1‘)2 g2 (z—21)2 7& 772 772
(& 2u — e 4ue 4u e 2u Se du @ Qu’

we get,

E[[b1n(u, X0% P 2) = bi(u, X0% P 2) 1]

8 _z2 _a2
bin(u, 2, P _,a2) — b1(u,2,P wz)‘ e e 2udz
/_‘ X% X%
1
€ 4u 2

2
=C bin( P_..2) —bi(u,2,P .02 Setudz | |
(m)i(/‘l Py ) ~ s Bgaffe i)

Combining all results, we obtain at the end:

N|=

E[|X7 = X7 [

1

S C{T<&l7&2)2 + /t e_giul (/ ‘bl,n(uazap w,aQ) o b1(U,Z,]P’ /J,,QQ)’SeidZ>4du}.
o (2mu)s \Jr Xu Xu

which proves the inequality (1.) of Lemma 4.3.1. We continue with the
inequality (2.) of the lemma. We have:
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Xf,ax,a" . Xf,w,a
t
— / (Do (u, XPP P yksan) = by g, XEP P ykwa) + by(u, X ™", o)
0
— by(u, XEme au))du
t
= / (b (u, X ™" Pksan) — by ge(u, Xy ™" Pk ) ) du
0
t
+/ (bg(u,Xf’x’a,aZ) —bQ(U,Xf’z’a,ozu))du
t
+ / (b (1, X" Pyhna) — byp(t, Xi™®, Pynoa))du
0
t
—l—/ (bg(U, Dol ) — bg(u,Xf’x’a,aZ))du
t
:/ (bl’k(u kaan ka,x,an) - bLk(U/,X{j’z’an,PX’le,z,a))du
+ / ( u, X0 4 g( Xt ij’w),PX,;,w,a)w) (XFma® _ xhooygy,
0 0

b/ u Xk z,a™ + 0<Xk T, 00 lef,x,a)’ &Z>d9> (XZ?LQH B X’llf,x,a)du

u

+ b (u, X5 4 9(XP5" — X5, a;}))de) X (Xgo" = X P du
t
+/ (ba(u, Xkme ony bg(u,Xff’”"’a,ozu))du,
0
therefore X" — X admits the representation:

th:,x,oz _ th,x,a

n
= [ b o ) o

X <b17k(s, Xf’””’o‘n,IP’Xf,x,an) — by i (s, Xf’x’o‘n,PXf,z,a) + ba(s, Xf’x’o‘, al’) — ba(s, Xf’“’o‘, a3)> ds
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1
squaring and applying the expectation to the power 3 on both sides and

the Cauchy-Schwarz inequality yields:

n 2
]E|:|th,'r,a _ th,:c,a 2:|

-

t n n n 297
/ I 2 (0 X o (e X B o), X (e X ) ) ) dodu ds‘ ]

1
2:|4

sﬂ

t
: {E H / |1 (1, XE20" P wan ) — by gy XED P )| P du
O u k

T

t
+E H / |ba (u, X5 Q) — by(u, XE22 a,)|Pdu
0

One can show that

Al

2
fredido (bi,k<u,x,’:v”va+9<x,’;’z’“"—Xli“wxg,z,a>+b;<u,X§’z’a"+o<x,5’f’“”—X,’:'Iﬂ),az))d@d“dS‘ }

1

is finite using the same approach as we did when showing that

?

is finite. So, using the Minkowski inequality, the Lipschitz continuity of by j

1 2 1 2
. f JE2(0h XE o X  —XE )P o )b (u X (X X ),a;))dedud
x% g
Be

1
2:|4

in the measure variable and the Lipschitz continuity of by, we get:

(NI

E |:‘Xf,$,an . ch,ac,a|2:|

<E|
e

N

21

t
k,x,a k,z,a™ 2
/ |01k (1, X" P ykman) = byg(u, XEP Pyiea)| du

1

'

/\b2 ,XEme qmy by, XB0, )P du

£ ( / E[]by (1, X5 ™" P yr.an ) —bl,k(u,vaxva",Pxﬁ,m,a)\4]5du)2
0
: }
+(/ E[[ba(u, X5, am) — by(u X“’a,au)ﬁédu) ,
0
t 1 t o1 1
< (/ IC(IP’XS,z,an,IP’Xﬁ,m,a)Qdu) - (/ E[|of — o ] 2du
0 0
t . § 3 t o1 1
< (/ E[|Xboe" _ xhoa]] du) +(/ E[ja” — au| pdu)
0 0
t 9 % t 441 %
< ([ el - xteplan) ([ Eflar - ) a)
0 0
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after squaring both size and applying the Gronwall’s inequality, we get:
2 ! 4794
E }th‘ﬁc,an . th‘,:c,a’ :| 5/ EHQZ . O-/u| ]Zdu,
0

= [ @lloz - aul

S (" a),

N

)2du,

since every sequence {a, }n>o in D converges to o € D in the norm

SUPg<¢<T E[| - |4]%, we have:

1

2
. k n k 2 .
lim sup E }Xt T2 X TS =0, for a given k,
n—oo 0<t<T

which proves the lemma. O]
Lemma 4.3.2. We consider a sequence {ay, }n>o in D converging to a € D
in the norm supy<, <7 E[|- 1% for every p > 1. Hence, we assert the following:
1. lim |Jy(a™) — Ji()| = 0, for any given k € N, and also, the function
n—oo
Jy. is continuous.

2. |Ju(@) — J()| < €, such that lim €, = 0.

n—0o0

Proof of Lemma 4.3.2. We start with expression (1.) of the lemma. We

have:
|Jk(a”) - Jk(a)‘
™ . k
. 7'1:?&71
e ‘E[/O' f(u’ Xuzx,a ’]P)Xb,z,an,a:j)du _'_g(XT ,]}DX;@,QH)

T
— /0 f(u, Xkoo Pk, ay,)du — g(Xfw’x’a,PX?I,a)] ',

T
<E[ / | F(u, XD P kwan, o) — f (1, XET P ko, )| du + |g(X5"° ,IPX;@,M)
0 u u

k
— g(XT7x7a7 ]P)Xéﬁ:ﬂ,z,a){] 3
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using the Lipschitz continuity of f and g, we obtain,

PACHEAGYH

< E{ /0 ) (|xEme” — XEme| 4ol — o) + K(Pyrmon, Pynea))du + | X750 — X550
K(E e Py

< /O d (E[|xE2e" — X5 ] + Ellagt — aul] + K(Byghman, P yroa))du
+E[| X7 — Xp%|] + K(Pyeon, Pyraa),

< /OT E[|XF=" — XE|] + Elloy — aull)du + 2E[| X35 — X5™9(],

< /OT (2E[| XEoe" — ij@vaﬁ% +Ef|a” — o |Y]7)du + 2E[| XE™" — x| z

< C(T(a”,oz) + sup E[le’m’an — th’x’amé)

0<t<T

the results follows by expression (2.) of Lemma 4.3.1 and the convergence
of {a, }n>0 to a. We now prove expression (2.) of Lemma 4.3.2. Using the

same approach as in the previous proof, we have:

| Jn(@) — J ()|
T
a ‘E{/ £, X308, Pypa, ) du + g(X™%, Pypoe)
0
T
+/ Jlu, X0 Pyo, o, )du + g(X%i’a,]P’X;,a)] ’
0
A 211 b il
< [ mllxeme = xzof bau + 2B ]| x5 x5 )}
0

< C sup E[|X;""° —Xf’o‘m%

0<t<T

e_é 4 22 i
< CX sup / |b1,n(t,z,Pth,a) - bl(t,z,]P’Xf,aﬂ e itdz :
R

0<t<T (27rt)%

using expression (1.) of Lemma 4.3.1, we have:

| Ju(a) = J(@)| < €, such that we have lim e, = 0.

n—o0
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which proves the lemma. O]

Lemma 4.3.3. Let {a,}n>0 be a sequence in A converging to a € A.
Denote by G* and G™*" the first variation process associated to X and
Xmme" respectively. Then for every 0 < s <t < T

941
1. EHQ?; -G ‘2} 2 converges to 0 as n tends to oo,

2. EHPt = Pth converges to 0 as n tends to oo, where

P, =E [gffTazg(X;“, Pz )+E[0,9( X3, Pxza; X7)Gy]
T
+/ {ggsazf(s,Xf’a,ng,a,as)
t

+ E[B,f (s, X2, Pyze, Gy X5)GE] }ds ft} ,

and P" is defined similarly with (X™" g™ a™) instead of (X%, G%, ).

Proof of Lemma 4.3.3. We start with the proof of expression (1) of the

lemma. Using the notation by (u, 2, Pxz.a) = b1y, ba(u, X%, o) = bay,

n < 5 ~
bl,n (U, 2o IP)XLL’I"(X”) = lelﬂ“ b2(u7 X’ZZ’LO[ ) QZ) 3 bg,zu and aﬁbbu(rﬂ Xi’aa IP)X:f’ol7 (0770 X;:’a) =

auéu. Using triangular inequality, we have:

E[jgz, - 6" []*

z,0 t 0 g ~ ~ o~
=K He_ f: Jr by LX (du,dz)-f—fst 02b2 ydu + / 2 fyt Iz b1, LX (du,dz)-i-f: dsz,uduE[aubggr]dT

s
1

.

n t n
— e fst f]R byll,uanyzya (du,dz)+f: azbg,udu paic / e f; f]R byll,uan’Iya (du,dz)+f: azbg/,uduIE[a‘ugngNdn]dr
T s,r

s
1
2:|2

| e R

t T, + ~ ~ o~
+E H / {6_ fr fR by, LX (du7dz)+fr 8Zb2’uduE[8ubrggr]

n,z,an ~ ~ =~ 2 2
o Sty Y <du7dz>+f:6zb3,ud“E[aub:?g§Z]}dr] =+ Lo
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Repeated use of Cauchy-Schwartz inequality give

1 e n,z,o’
I,, <AE [esf; azbg,udu] SE[ o= L bra LXT0 (dudz) = L bpLX (du,dz)

1
2]4

1 n 1
(e iy gt i ]

1
2]4

n 1
+ 4E |:678 fst f]R bi”LXﬂ,a:,a (d’LLde)] SE He‘f‘st szQ’udu _ efst 8zb"27’7udu

y <E [64 I azbg,udu} LR [64 It azbgudu} é)

=li1n X T2 n(Bian + T1an) + Disn X Tien(T170 + T1sn) (4.12)

We can show as in Lemma 3.5.1 that I11,,, [13, X Tian, L1510, [175 X L8, are
uniformly bounded. I¢, converges for at least a subsequence since 0,b, is

continuous and bounded. The convergence of /5, can be shown similarly
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to the proof of convergence of R}, expressed in (3.52).

12771

s[E[

< E[0,5"G")

Xn,z,a"(

t T, t ~ ~ o~ t t
e I Ik b1, X7 (du,dz)+ [ azbg,uduE[aungzr] _ e Jr RULLL du,dz)+ [, 8:b% , du

2] %dr

t T, 0 s@,alt
< / IEHe‘ff8zb3,udeE[8Ml~)".C’;"’5‘n](e—ffbeLuLX‘ (dud) _ o= [ fub, DX (dude))
~ rs,r

S

R e [ L e T
9+ 1
2
} dr

t
< / {E[]@Hauggg;gn,4]e4f:azbs,udu(efzf:bel,uLX' (dude) 4 =2 f! fu DT, L
S

—@ f: f]R bl,uLXzya(duvdZ)Jrf: 0zb2 v du (E[aﬂgfgﬁ(;;‘dn] s E[aung'vgr])

-

. n =
X™TY (du,dz) ) ] 4

~Y

1
B t T,0 t n,z,an i
< ’e_ JE Jp 1w LX7% (duidz) _ = [ fo 0, LX (du,dz)|2] 1

-

\E E[\@uéﬁégf" ‘4]674 It o b1 W X7 (duydz) (62 [l 9:ba udu 4 2 ol 8zbgyudu>i| 1

- 1
<F. lef: zbyudu ef: azbgyudu’2:| 1

-

1

\E '6_4f: i b1, LX7 (du,dz)+4 [ azb2,uduﬁ[|aug;zg~gf" 24 |8u5r(3?r|2]}
x E[E[|0,b"Gm" — 9,b,62, 7] Z}dr

t i t T, t o
S [ {B[Bl05Gu o) "B [(er s b iy Tt

n
X,

1
(du,dz) ) ] 8

_ By n 1
x| szé‘,udu] % E[)e*ff JebruLXT % (udz) _ o= [} fp b LXT0 (du,dz>‘2] i

. L e L t t 5
+E ]EH@MBZ}QNZ;“&"‘IG]} wE [6—16 f: fR i [ (du,dz):| u’E [(68 fT 0zb2 ydu + 68 fr 3zb§7udu):| 8

4

X[ et @) g[8 10 (B9, 56 + 19,5,62,11) | e

\T

i t
< / {-[21,n X o9 p X Io3y X Ioupn + Io1n X L5, X Iogn X To7 + Togn X I2105 X 1211,n}d7“-
S

Boundedness of I3 ., I25 5, and I, follows by Lemma 3.5.1 after applying
the Girsanov’s transform. Boundedness of Iy3,,, I26,,, and Iz;1, hold true
by assumption on the boundedness of 0.bs, 9,0 and the integrability of the

first variation process. We can see that I, ,, is finite using the integrability
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of the first variation process shown in Lemma 3.5.3. Hence, we obtain:

E[jgs, — 6" ]

e’ 2
=L b LT (dudz) = D [T (dudz) J{ozb2udu 1 0:05 , du

SE||e | e T
+ /t{]E[ e Q]i
R [[efr 0 — f1 005, 2] 5 1 B[R0, 567" - 0,5.G2, 1] le}<i7“-

(4.13)

n
bl ) _ o JY 0,2 ()

Let us consider the expression EHE)“b"g -0 btg§t| ]

“(()ang 8ubfg | ]

SE H B, byeds Jib1al " @ud) 1L D:baadu _ g Fro= 3 S XM (dud2) )] 0:85 du
~ 12 n=t

]

t = ¢T,& t o7 ~ ~ o~
L H / {a,ubte_ Je Jr bl (dund2) 1, 8zb2’uduE[8ubrg§r]

= t 7 en,z,a™ t e 3 ~ o~y 2
— bye Jr Bl LTTT (dud) ] 0B A g pnga }dr‘ } = Jin + T

We have

b1,u LX7 (du,dz)+ [7 02bo wdu _ d, b”e IF 1uLX"“ (du,dz)+ [ 9:b  du

1
2:|4

37 :E[

]

1 ~ Sx.& + ~ cn,x,a"
SAE[ (@) bt | bral X ) _ o BT )

T T,a 1 ~ gn,z,a™ 1
X (fE [e—u; a5 (du,dz>] n E[e_‘lf: I} <du,dz>] )

NI

]

~ gn,z,&" l 7 b
oM

% ( [@ be)te 4ft0.bo, udu] [< 5 )4e4f;azi)g’udu]é>

=J11n X J120(J130 + J14n) + Ji5n X J160(J17.0 + J180)-
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Convergence of J;, holds similarly by applying the same arguments as

with the convergence of I ,,.

J2,n

t ~ TT,& t 4 ~ ~ o~
=E|| / [ B byem It bt e 0Bt G|

-~ ~ 1
Xn,T,&

_ augzze— f: Jz l;?,uL (du,dz)—&-frt 8zl~7§,udufE[aﬂi)?g~§:] }dT)Q]

-~ ~n
xn,®,&

t ~ ~ T, t 7
5 / IE Haul;?ef: 6zb5‘,udu]ﬁl[8ug?g~g;"d”] (6_ f: Jr b1, L5 (du,dz) en Sy Je b7 L (du,dz))
+e f: Jr El,uLXz’a(du,dz)E[aMB;zg"Z,rd"] (aﬂgtef: 8zl~)2,udu - aul;?@f: 8zl~)§ﬁudu)
& + ~ T, t 4 = . ~ ~ o~ 2
. %bte_ S e b1 LX T (dudz)+ [ 02b2 udu (E[aub?gg}a ] . E[aubrggr]) ‘ }d?“
t 7 7 T, t P Fn,x,a™
< / {05 Gr3 PR [|9, Byl o:Fsuce (e i ebut ™™ ud) _ o= [1 31,257 ) ﬂ
s

]

+ |E[8#B;1g~2}&n} PE H€~ f: o 51,ULXm’a(dU:dz) (%Btef: Oxbo ydu aﬂggzef: azégudu)

+ [EBBGEE" = 0,5,G% PR [0, e~ bt @ntopsa o] g,
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1

t ~ ~ + ~ T,
S [{B0.5gm PR |05 e o] 4E[e_4fr b Gt

1

~ gn,z,a™ T
Lo by, LY (du,dz)] & [

—

~ ~ =M
— [ fe b DX (dudz) = [ [ 07, LT (dugdz)

!

1

s,

+ |E[9, bG8 ]|2E[ Sf:nglyusz’&(du,dz)}4@[(augt)464f:8zl;2,udu
+ (9, bn 4 4f 0.3 }1 = H@,j?tef: 02ba ydu 8Ml3?efrt azég’udu|2] 3
+ BI0BGN — bR, PIR[(0,b) e F bl ey 2 0bn ] Ky,

Using similarly arguments as in I, and applying Gronwall’s lemma, we

obtain

E[|0,67G0" — 8,0:G2, ]

<IE[ e

_ aug?efst az E;,udu

~ S0 & ~ ~ ~n
Ji Jebra L7 (Qudz) _ o= [ [P LT (dudz)

2}‘1‘+/:{]E[e

~ ~ tg 7 ~ toin 1 ~ ~ o~ ap ~ o~
i E[‘aﬂbtefr 02b2 ydu aﬂb?e‘fr azbz,udu‘2i| , T EHaubeZf - aubrgzr|2] }d?”

1 .
2} s IE[ ~t S 9:baudu
I

=

~ - ~ ~n
[ b LX % dudz) _ = [ B X (duds)

.

- - & 5 S 91 ~ }
S [[e £ RSt _ o T | 4 [, elt o

-

7 1 t = T,0 = gn,z,a™ >
N auggefst 0:b% , du 2} s +/ {EHe— ! bl X7 (dudz) _ o= fE Sy B, L5707 (dudz) 2] 2
- 2 - = tain 1
+ EH@ubtef: O:baudu _ g el azbg,udum > }dr (4.14)
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Substituting (4.14) into (4.13) gives

E[jge, — g [*)?

3 0 275
<E Hf S JebrwLXT % (udz) o [ oYU (dudz) ] ) Hef; by udu [ 0:b8  du
~J

1
2:|4

t n
+ / {E[‘ei fst Je bW X" (dudz) _ e fst Jr b?,uan‘z’a (du,dz)

S

1
4 E[‘ef: D:badu _ fY 8zb§7udu‘2i| i }dr

- [ {=[E]

o e r .
o 0zb2 du n /. 0:b% ,du
aubref O elr 0%,

=

o= i Je bWl X5 (dudz) _ = [ EILXTOY (dude)

el 1]

t r = 5@y ~ gn,z,&™
+/ / {E[JEH@‘ Iy S braLX 7% (dudz) _ o= [T fu B2 LXTT (dud2)
S S

kL

1

gk

- < e - 11%
+ E[B[[0 byl Pt - g, el 0%t )3 ) T Lavdr
t t r
=lon + lign+ / {Loan + Loz n + L2815 + Iog2n fdr + / / {Is83.5 + Iogapn pdodr
Convergence of Isg,, [12,, and Isg3, holds by using the same arguments
used in showing the convergence of R}, . Convergence of Ii6,, 27, l2821
and Jogs, follows by dominated convergence since 0,b5 and aMBr are con-

tinuous and bounded by assumption which concludes the convergence of

. n291
I514,,, proving the convergence of E[\ggt — Gop ] 2,

Let us now prove (2):

E[|F - F]

T
:]E{ ‘E |:gtojTang + E[aﬂngféjT] + / (ggsazfs + E[a/Lfsggsts Ft:|
t

7|

|

~n T n ~ ~ o~ ~p
—E[ggﬁ” .95+ E[0,3765 ] + / (G 0.7 + E[0,f2G;7 1)ds
t
<E[|Gr0-9r — G 0-97|] + E[|E[0,90G7r — 0,379+ 1]
T T n
+/ E[|Gi0.fs — G 8Zf§Hds+/ E[|E[0./Gr — 0uf0G s 1|]ds.
t t
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Adding and substracting 0.g97G, 1 " and 8.f,6""" and using the Cauchy-

Schwarz inequality gives

E[|P - P7] 1
<E \ang}QrEDggT—g;f’T } [\g ] {\&;gT zg?vlg}

+E[E[(8,52)%165" — Gerll?] + EE[GE PP E(|0,5% — 8,7]%]2]

+/ £lo.f.P] E[lgz, - g2 ] as / {|g;“’ !} E[\azfs—azfﬁfrds

1

/ (B[O, S PIENG: — G2 P13] + EENGE, FIREN0. 7 = 0,/ ]}ds.

(ST

Convergence follows from Lipschitz continuity and boundedness of 0.g, 0,9, 0. f
and 0, f, the integrability of the first variation process, and the convergence
result presented in Lemma 4.3.1. Hence, we have proven the second claim

of Lemma 4.3.3. OJ

The next part develops the proof of Theorem 4.3.1. But before, let us

state the Ekeland’s variational principle:

Theorem 4.3.2 (Ekeland’s Variational Principle). Consider a complete
metric space (W,d) and L : W — R U {400}, a function bounded from
below which s lower semi-continuous and not equal to +00. Given € > 0,
and a € W such that:

L{a) < i‘I}VfL + ¢,

so, we can find some point e € W such that for every 6 > 0:

Ekeland (1979).

Let us now prove Theorem 4.3.1:
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Proof of Theorem 4.3.1. Fix n > 1 and let & be an optimal control. Using

Lemma 4.3.2, we have:

Je(a™) — Jp(a) < C(T(a”,a) + sup EHth’x’an — th’x’aﬁ;),

0<t<T

and thus the function Ji is continuous on the metric space (A, 7) and there

exists ¢, such that
Jn(&) — J(&) > —€,, and J(a) — Jp(a) > —¢, foralla € A, (4.15)
Therefore, adding the 2 terms in (4.15) gives
In(@) — J(&) + J(a) — Jn(a) > —2e,.

Then maximizing both sides of the inequality over admissible controls «

gives
Jn<d) > sup Jn(a) - 26n-
acA
Using Theorem 4.3.2 with the following correspondence: a = a,W =

AL = J,e = &",m = u(such that u # a"),e = 2¢, and § = (2¢,)z,

there exists an admissible control e = @ such that (", &) < (2€,)?, and

we have:
()r(@", a) < (2,)2
(2)Jn(@") = Jn(d)
by 2¢, n
(3) () < Jp(a") 2t 7(a", «) for all . € A
Thus
2e 1
(@) > J(a) — "_r(@" ) = Jy(a) — (26,)27(4", ).
(@") ()(2%)5( ) (@) = (26,)27(8", @)

so that if we define J¢(a) == J,(a) — (26,)27(6", @), it follows that 4"

is optimal for the control problem with the performance functional given

113

Digitized by Sam Jonah Library



© University of Cape Coast https://ir.ucc.edu.gh/xmlui

by J¢(«). Let us consider 7, an arbitrary admissible control and € a fixed
constant. Since A is a convex set, we have that for A := v—a", &"+e) € A.
Therefore, the smoothness of b, implies the Gateau differentiability of .J,

and its Gateau derivative in the direction of 7 is given by

d ’ o
—Ja(&" + )]0 :E[ / {az Fu, X220 P i, A1) ST
0

+ B[O, f (u, X258 P

G Xma) S

Xn,z,écn )
U

O f (1, X" P, N, b+ D.g(X Pnan ) S

E[0,g(X7" ", Bypnans X34 S|
where S™ is the solution to the following SDE:

dsr = (azbn(t, XPoE P an AT)ST 4 B[O,b(t, X Py, &0 X1V S0)

Xy

+ Bubult, X{l’fﬁdﬁpxﬁz,&n,@y)&) dt, n Q. (4.16)

Reverse triangular inequality yields:

T(&" + e\, a) — 7(a™, ) Y - E[Mtﬁ]i.

d
—7(0" + e\ )
e—0 € 0<t<T

de

Ix=0 —
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It follows from its definition and the above that J; is Gateau differentiable

and

d

|e:0

d An 1 d AN Am
lezo :&Jn(a +€N)| o — (Qen)ng(a LA+ €N)

T
gE[ / {8Zf(u,X3’x’&n,PX3,z,dn,dﬁ)Sﬁ (4.17)
0
+ [0, f (u, X2 P nan, Gy X120 ) ST

+ Oaf (u, Xp™¥" , Pynaan, dZ))\u}du +0.9(X7 " Pynran ) ST

on,x,&" n,z,&"\ &n 1 1
VB0, Py X2 )5 + 26t sup BN

0<t<T
T A~
gE[ / {az £ e, X2 Pynaan, A1) ST (4.18)
0

+ ]E[auf(uv X;L,ac,&"’ ]P)ngan ) &Z’w,dn; Xﬁ,x,d")gg]

O f (1, XP5" P, dZ))\u}du + 0.9 (X P i) S
B[O (X P gy XP o) S]] + Car(260),

(4.19)

where C); is a constant depending on the value of M the upper bound in

(4.11). Since we are working with smooth functions, the couple (P, Q) is

solution of the following backward stochastic differential equation:

dPr = — (aan(t, XEE" oy @, PR, QF)
+ B(0, Ha(t, X7 =" Pypaan, &7, By, G Xt“w")]) dt + QrdB,,

Pl =0ug X o) + Bl (5 P X5

where

H,(t, 2,p, i, ) = f(t, 2, p, @) + bu(t, 2, 1, @)p.
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Using the It6’s product rule and the Fubini’s theorem (see for example

Buckdahn et al. (2017); Carmona & Delarue (2018)), we have

T
BIPSy) <E[ [ S1( - 0 X Pygan, ) (1.20)
0

— B[O, f (u, X2 P G X)) du

XlrLL,z,éAn 5

T
v E[ / Pgaabn(u,xgm",]PX,L,I,M,@Z)Audu]. (4.21)
0 u
Rearranging, using Fubini’s theorem and (4.20), we obtain

d
TIn(@" +ed)

T - < A &
SE[/ {aZf(uaXsw,dnaPX"azvé‘nvOACZ)SLL _i_E[auf(u,X;L,x,oz 7PXnvzv&n7dZ;X3’m7a )SZ]
0 u u

|6:0

o+ 0n f (1, X2 Py, &) A plu| +E|PRSE] + Ca(26)3,
T
B [/ (‘9af(u, X o Pynwan, ) A+ PoOabn(u, Xp ™" P ynoan, éazw)d”]
0 u u
+ CA(2€n)%7

T

—E| / OuH (1, X5 By om0, P Null] + Cia(26,) .
0

Therefore

n,x,&"m , dZ> Pg))\udu + CA<2€n)%7

d = -
0< d—J;(dn + €>\)|6:0 S El:/ Oy Ll Py
€ 0

The expression can be reduced to
(o f (10, XD P wan, A7) 4 Db (u, X®9" JGR)PT) - (v — 67) > 0, P® dt — a.s.

We know from Lemma 4.3.1 and Lemma 4.3.3 that for every 0 < u < T
Xm@8" (resp. PU) converges to X»% (resp. P,) P—a.s. as n — oo, with 4"

also converging to &. Passing to the limit yields:

(Oaf (u, X% Py, ) + Oaba(, X5, d0) P) - (7 — éu) > 0, P dt — a.s.
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The result follows. O

4.4 Chapter Summary

The main aim of this chapter was to derive the stochastic maximum
principle for an optimal control problem consisting in maximizing a cost
functional subjected to a MFSDE driven by a one dimensional Brownian
motion and having anon-smooth drift. The proof consists in approximating
the original control problem into an approximate one using the Ekeland’s
variational principle and later on show convergence of the maximum prin-

ciple.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

In this chapter, we summarize the work that has been developed in
the thesis. We will provide an overview of what has been done associated
with conclusions, and recommendations for future research work going in

the same direction.
5.1 Overview

The main objective of this thesis was to solve an optimal control prob-
lem where the state process is a mean-field stochastic differential equation
with an irregular drift coefficient. With a mean-field stochastic differential
equation having a drift that is non smooth and depending on the measure
variable, we show convergence of an approximate sequence of solutions to
the solution of the original mean-field stochastic differential equation, which
is known to exist and to be unique depending on how we choose the random
argument « to be. The control problem is therefore defined with a perfor-
mance functional and a state dynamics which is the mean-field stochastic

differential equation that was studied earlier.
5.2 Summary

This thesis evolves mainly around providing necessary conditions for
optimality of a system driven by a stochastic differential equation of mean-
field type. This works provides a detailed analysis on the properties of the
solutions of the mean-field stochastic differential equation. The first prop-
erty was developed in the third chapter where we have shown compactness
of the approximating sequence of solutions and convergence of the sequence

to the solution.

The second property of the solution was detailed in the fourth chapter
in which we prove that the solution of the stochastic differential equation of

mean-field type admits a Sobolev differentiable flow and the first variation
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process can be expressed in terms of time-space local time. Proving the rep-
resentation of the stochastic differential low of the solution is done through

the proof of some technical lemma involving convergence and estimates.

In the last chapter, we derive the stochastic maximum principle us-
ing a variational approach as it has been done in the literature with works
going in the same direction. However, one difference is that the adjoint pro-
cess is indeed of first order, but is expressed explicitly using the stochastic
differential flow property of the solution that was explained in the fourth

chapter.
5.3 Conclusions

The stochastic maximum principle appears to be an excellent method
if the objective is to solve a control problem using a probabilistic approach.
This approach is developed on an original framework with a contribution to
the literature of stochastic control theory. The contribution being the devel-
opment of an approach for the optimization of systems driven a stochastic
differential equation of mean-field type, and in addition with a drift coef-
ficient that is neither differentiable nor Lipschitz. The drift coefficient is
assumed to be measurable and of at most linear growth. One key aspect of
the work is the use of the idea of weak differentiability in the initial condi-
tion in order to bypass the difficulty created by the non differentiability of
the drift coefficient.

5.4 Recommendations

One important recommendation is related to the solution of the mean-
field stochastic differential equation under study. In this work, it is im-
portant to choose the control «; for which the state process has a unique
solution. As mentioned earlier, if one takes oy = «(t, X;), where a is a
bounded and measurable function, then the state has a unique solution.

However if {oy}i>0 is simply an {F;};>o—adapted process, then existence
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and uniqueness of solution of such SDE is still open. It will also be inter-
esting to apply to apply our results to some concrete example and solve the

problem by some numerical methods.
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