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ABSTRACT

The main objective of this work is to maximize a performance functional

subjected to a controlled stochastic differential equation of mean-field type

using the stochastic maximum principle approach. The controlled mean-

field stochastic differential equation has a non smooth drift and is driven

by a one dimensional Brownian motion. We started by first showing that,

considering a corresponding sequence of mean-field stochastic differential

equations with a smooth drift coefficient, the corresponding sequence of

solutions will converge to the solution of the mean-field stochastic differ-

ential equation. We study the representation of the stochastic (Sobolev)

differential flow, via a time-space local time integration argument. Lastly,

we look at a control problem where the state process follows the dynamics

of a mean-field stochastic differential equation. Since the drift coefficient is

non smooth, we characterize the optimal control through an approximate

performance functional which is derived using the Ekeland’s variational

principle. Afterwards, we pass to the limit and prove convergence of the

stochastic maximum principle.
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CHAPTER ONE

INTRODUCTION

This work is mainly dedicated to the study of an optimal control prob-

lem subjected to a mean field stochastic differential equation with irregular

coefficients using the maximum principle. Early results in the literature

have shown solutions to optimal control problems subjected to stochastic

differential equations with smooth coefficients. However, since in our set-

ting, the coefficients of the mean field stochastic differential equations are

not smooth, we cannot use the same approach to arrive at the solution.

We aim at approaching this particular setting using a time-space local time

integration approach, hence the novelty in this work.

1.1 Background to the Study

The mean-field theory finds its origin in the field of statistical mechan-

ics, where the interest lies in studying the evolution of an interacting system

of particles. The term mean-field comes from the fact that we expect some

form of averaging in the marginal distribution of the particles as the number

of particles approaches infinity. A SDE of mean-field type is a stochastic

differential equation in which we allow the coefficients of the stochastic dif-

ferential equation to depend on some functional of the distribution of the

states.

As an illustration, let us consider the following mean-field stochastic

differential equation defined as follows:dXt = b(t,Xt,E(Φ(Xt)), ut)dt+ σ(t,Xt,E(Ψ(Xt)), ut)dBt

X(0) = X0,

(1.1)

for some functions b, σ,Φ and Ψ and a Brownian motion Bt. In the above

equation, we clearly see that the coefficients b and σ depend on the expecta-

tion of the state which makes it a SDE of mean-field type. That mean-field

1
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SDE represents the mean-square limit of the following:

dX i,n
t = b

(
t,X i,n

t ,
1

n

n∑
j=1

Φ(X i,n
t ), ut

)
dt+ σ

(
t,X i,n

t ,
1

n

n∑
j=1

Ψ(X i,n
t ), ut

)
dBi

t

as n → ∞. The prior case is one example which has been studied in An-

dersson & Djehiche (2011). The authors in Andersson & Djehiche (2011)

succeeded in characterizing an optimal control for a control problem where

the state process follows the dynamics of the MFSDE written in (1.1),

assuming that the four functions b, σ,Φ and Ψ are all differentiable in the

space variable. However, the pioneering work in mean-field theory has been

done by Lasry and Lions in Lasry & Lions (2007a) in which the authors

consider a system of interacting players and the objective is to look out for

equilibria as the number of players tends to infinity. The authors did it by

studying the optimal behavior of one player, after fixing the strategy of all

other players, however, by considering that if one player slightly modify his

strategy, it will not affect the overall outcome of the game.

In this thesis, we are also interested in the dynamics of a stochastic

differential equation of mean-field type. However, instead of having the

expectation E as our measure variable, it will be the law of the process

Xt itself, denoted by PXt . In our settings, we will impose some conditions

on the drift coefficient and later on provide some analysis with regards to

characterizing the optimal control considering the assumptions provided.

1.2 Research Objective

In this thesis, our objective is to characterize an optimal control for

a system driven by a SDE of mean-field type having an irregular drift

coefficient b. More precisely, the drift is of at most linear growth. Our goal

is to maximize the following performance functional J :

J(α) := E
[ ∫ T

0

f(s,Xx
s ,PXx

s
, αs)ds+ g(Xx

T ,PXx
T
)

]
,

2
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subjected to:

dXx
t = b(t,Xx

t ,PXx
t
, αt)dt+ dBt, Xx

0 = x, t ∈ [0, T ] (1.2)

whereBt is a Brownian motion defined on some probability space (Ω,F , {Ft}t≥0,P),

α = {αt, t ∈ [0, T ]} is a suitable control process adapted to the filtration

{Ft}t≥0, and Xx
t denotes the state of the system controlled by αt, and f

and g some given functions. Further details and definitions will be provided

along the thesis.

1.3 Significance of the Study

One straightforward example of optimal control problem is a produc-

tion planning problem which has been described in Yong & Zhou (1999),

page 52. This is established in the context of wanting to minimize the

cost of having the inventory at a certain level, at a given production rate.

Consequently, it is important to define the rate at which we want to pro-

duce a material, also because the factory has a control over the rate it

uses. The two other important processes are the demand rate, the rate

at which the material is sold and the inventory level of the material. To

formulate the control problem in this scenario, the factory wants to work

with the optimal production rate in order to spend the minimum cost for

the production of material. One logical constraint in this scenario will be

to specify the storage size for the inventory. Solving this optimal control

problem means finding the optimal production rate taking into considera-

tion the constraint. The study developed in this thesis is more theoretical

and abstract, we mostly look at the mathematical properties of the rate

itself that we refer to as the drift coefficient and we make some analysis

assuming that the drift coefficient fulfills some conditions.

1.4 Delimitation

There are several approaches to solving stochastic optimal problems,

which are but not limited to :

3
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• Dynamic programming: establishes a link between the effect of a

strategy at a specific point in time and the initial condition of the

control problem on one hand and the effect of other strategies that

are chosen due to that initial condition on the other hand,

• Stochastic maximum principle: through which we can characterize an

optimal control by providing necessary conditions for optimality.

The main aim of our work is to solve an optimal control problem via stochas-

tic maximum principle assuming that the drift coefficient of the controlled

state process is non smooth.

1.5 Limitation

Existence and uniqueness have been shown in the case where the mean-

field stochastic differential equation has a drift that is not random. The

case where the drift is random remains an open problem. However in our

case, we can assume that the drift b is of the form b(t,Xt,PXt , α(t,Xt))

where αt = α(t,Xt) is a bounded and measurable function, and therefore,

we have existence of a solution of the stochastic differential equation.

1.6 Definition of Terms

In this section, we provide definitions of some concepts that will be used

throughout this thesis. We also give some useful results that are of a great

relevance in our research objective. We will also mention the references and

sources we will mostly rely on for our definitions.

1.6.1 Concepts in Mathematical Analysis

This part is dedicated to defining useful concepts of mathematical anal-

ysis mainly real and functional analysis, which will be used in several proofs

we are going to develop throughout the thesis.

4
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Theorem 1.6.1 (Mean Value Theorem). If f is a continuous function on

a closed interval [a, b], there is at least one number c, a ≤ c ≤ b, so that:

f(b)− f(b) = f ′(c)(b− a),

on the other hand, we have, by the fundamental theorem of calculus followed

by a change of variables,

f(x+ h)− f(x) =

∫ x+h

x

f ′(u)du =

(∫ 1

0

f ′(x+ th)dt

)
· h,

Kouba (2003).

Lemma 1.6.1 (Fatou’s Lemma). Considering the measure space (Y,D, ν),

let A ∈ D. If {gn}n≥1 is sequence of positive measurable function on A,

hence,

∫
A

lim inf gndν ≤ lim inf

∫
A

gndν,

Heinonen (2005a).

Definition 1.6.1.1 (The Gateaux Differential). Considering the following

three elements, a function g : I −→ J , a value λ 6= 0 and a vector z ∈ I,

the Gateaux differential dλg in the direction λ expressed as:

dλg(z + ελ)|ε=0 = lim
ε→0

g(z + ελ)− g(z)

ε
,

Long (2009).

1.7 Organisation of the Study

In this thesis, we will develop in the second chapter an overview of well-

known results in the literature in stochastic maximum principle, mean-field

stochastic differential equations and optimal control of systems where, the

state process is a stochastic differential equation with an irregular drift co-

efficient. We will also explain how the mean-field theory came to light and

5
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how it is assimilated to the theory of stochastic analysis. The third chapter

is dedicated to study of the representation of the stochastic differential flow

using time-space local time which is important because the drift coefficient

in this thesis is not differentiable. The fourth chapter provides a thought

study on the characterization of a control optimizing a given performance

functional for a control problem, where the state is given by a mean-field

stochastic differential equation. In that chapter, we prove necessary con-

dition for optimality through the stochastic maximum principle. We will

close the thesis in the last chapter with a summary of our study, conclusions

and recommendations.

6
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

Stochastic control theory takes into account uncertainties that are

present in a given state process. One task of stochastic control theory is

to define the path that will take the state variable subjected to noise when

the control involved leads to a minimal cost spent. A control problem af-

fected by randomness in its environment is a stochastic control problem.

Stochastic control problems are usually solved or at least studied using two

well-known approaches that are common in the literature. The first one is

the dynamic programming principle. Richard Bellman in 1952 initiated the

dynamic programming principle in Bellman (1952), which was performed at

two levels. The first level establishes a link between the effect of a strategy

at a specific point in time and the initial condition of the control problem.

The second level however establishes the effect of other strategies that are

chosen due to that initial condition.

On the other hand, the second well-known approach to solving a stochas-

tic control problem is the stochastic maximum principle, which is the method

we will use to study the control problem at our hand. Indeed, the stochastic

maximum principle makes it possible to characterize an optimal control by

providing necessary and with further convexity assumptions, sufficient con-

ditions for optimality. The author in Bismut (1976) made a breakthrough

contribution which paved the way to the field of stochastic control theory

with the use of stochastic maximum principle to provide necessary condi-

tion for optimality. In Bismut (1976), the stochastic maximum principle

was applied to a control problem with a quadratic cost-function. Nev-

ertheless, with the content of the current literature, stochastic maximum

principle can be applied to control problems where the cost-function or the

performance functional need not to be quadratic.

7
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2.2 Stochastic Maximum Principle

The maximum principle in optimal control was initially formulated in

Boltyanskiy et al. (1962) where the authors develop an approach to find the

optimal path for a state process with a given constraint. The state variable

was deterministic and their approach consisted in removing the constraint

on the optimization problem using the Hamiltonian. Once the control prob-

lem is affected by noise in its dynamics, one way of assessing the study of the

control problem is by using the stochastic maximum principle. For a start,

the author in U. Haussmann (1981) applied the stochastic maximum princi-

ple to solve stochastic control problems including those which were already

solved using the Bellman dynamic programming, however, U. Haussmann

(1981) succeeded in obtaining explicit optimal feedback control using the

stochastic maximum principle.

Early results in the literature reveal the application of the stochas-

tic maximum principle to control problems where the control is chosen to

belong to a convex space. Also, for the controlled state variable, the control

parameter was only put in the drift coefficient of the stochastic differential

equation, not in the diffusion. It is the case for example in Bismut (1976),

Bismut (1978), U. G. Haussmann (1986), Kushner (1972a). An adjoint

process of first order was enough to study the stochastic control problem in

early studies. The very first author who studied a control problem where in

the controlled state variable, the control parameter was put in both the drift

coefficient and the diffusion coefficient was Peng in Peng (1990). Also in the

aforementioned work, Peng does not need the control space to be convex.

The author introduced an adjoint equation of second order to characterize

the optimal control for this type of control problem. The specific applica-

tion of the stochastic maximum principle initially formulated by Peng is

developed in the book Yong & Zhou (1999).

8
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2.3 Irregularity in the Control Problem

There are results in the literature of stochastic control theory where au-

thors study the stochastic optimal control of systems consisting of a stochas-

tic differential equations having nonsmooth coefficients. One approach used

to tackling this kind of control problems is by using a variational approach

which consists in deriving the maximum principle through a pertubation of

the optimal control. The first work which went in that direction was done

by Kushner in Kushner (1972b). In Kushner (1972b), the author derive a

maximum principle using the first order convex approximation of a set of

controls which is defined by using the variational result of Neustadt. The

drift and diffusion coefficients in Kushner (1972b) were differentiable. On

the contrary, the author in Bensoussan (1982) derive the stochastic max-

imum principle for a control problem, where the coefficients of the state

variable do not need to be differentiable everywhere. More precisely, both

drift and diffusion coefficients are Lipschitz and admits the linear growth

property. The author study the control problem using a variational ap-

proach which consist in convergence of the approximate control problem

with pertubation to the initial control problem without pertubation.

Also, going in that same direction, the author in Brahim (1988) was

able to give necessary conditions for optimality of a system driven by a

stochastic differential equation, where the drift does not need to be differ-

entiable everywhere. The author in Brahim (1988) shows stable convergence

of the maximum principle by approximating the initial control problem into

a sequence of control problems which are smooth using the approximation

developed by Frankowska in Frankowska (1984). In addition, we also have

the study in S. Bahlali & Mezerdi (2005) which extended the result in Peng

(1990) to singular control problems where in their case as well, the control

set does not need to be convex . Later on, the authors in K. Bahlali et al.

(2007) used a similar approach as in Brahim (1988) but with a diffusion

9
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coefficient which is degenerate. More authors have contributed in this di-

rection among which we can cite K. Bahlali et al. (1996) and S. Bahlali &

Chala (2005).

One important contribution where the study was done for a control

problem in which the drift coefficient of the state variable was neither dif-

ferentiable nor Lipschitz, has been tackled in Menoukeu-Pamen & Tangpi

(2021a), where a variational approach is also used, but with the difference

that the authors express the adjoint equation using time-space local time.

In the aforementioned literature, the state process under study was not

dependent on a measure variable.

2.4 Mean-Field Stochastic Differential Equation

The idea of having the dynamics depending on the probability law was

seen in the pioneering work of Lasry & Lions (2007b), in which the authors

succeed in deriving a mean-field control problem consisting of nonlinear

differential equations.

In addition, stochastic maximum principle has been used in the lit-

erature to characterize optimal controls of systems driven by stochastic

differential equations which have a dependence on the law of the state pro-

cess. It is for example the case in Carmona & Delarue (2013) where the

authors showed existence and uniqueness of solutions of a system of two

SDE, one is the forward controlled state dynamics and the second is the

adjoint equation. However, let us point out that in their case, the drift b is

differentiable in the state variable and linear in the state and the measure

variables, therefore, deriving the adjoint equation can be done in a classical

way. In this thesis, We consider a case where the drift is irregular, i.e.

we allow our drift to be measurable and to admit the linear growth prop-

erty. An attempt of characterizing an optimal control for a system having

an irregular drift was done in Menoukeu-Pamen & Tangpi (2021a) where

the authors’ idea was to explicitly write the adjoint process, but in terms

10

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



of the flow of the state process. We need to remember that they did the

work without the dependence on the measure variable. We will draw our

inspiration from their approach, however, this time, we will consider the

dependence on the law of the state process.

2.5 Chapter Summary

The objective of this part was to present well-known results in the

literature of stochastic control theory. We have seen that it initially started

by considering a control problem where the controls were taken in a convex

space, and the state dynamics had smooth drift and diffusion coefficients. It

gradually moved to the use of variational approaches to derive the stochastic

maximum principle in cases where the coefficients of the state variable are

not necessarily differentiable everywhere. But still, in those cases, there

was no dependence of the state dynamics on its law. However, we presented

cases where it is possible to apply the stochastic maximum principle with

the state driven by a mean-field stochastic differential equation. At last,

we presented a contribution where the state dynamics was a mean-field

stochastic differential having an irregular drift coefficient.

11
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CHAPTER THREE

RESEARCH METHODS

3.1 Introduction

In this chapter, we consider the following mean-field stochastic differ-

ential equation:

dXx
t = b(t,Xx

t ,PXx
t
, αt)dt+ dBt, Xx

0 = x, t ∈ [0, T ], (3.1)

where the drift coefficient b fulfills some assumptions which will be stated

at the end of this overview. In this part, we assume b to be measurable and

of at most linear growth. {Bt}t∈[0,T ] is the Brownian motion defined on the

filtered probability space (Ω,F , {Ft}t∈[0,T ],P) and is one dimensional. The

process {αt}t≥0 belongs to the space defined as follows:

D =

{
α : [0, T ]× Ω→ R, is progressive such that (3.1) has a unique strong solution

}
.

(3.2)

The mean-field stochastic differential equation (3.1) admits a strong solu-

tion depending on how the process {αt}t≥0 is defined.

3.2 Existence and Properties of a Strong Solution of the MFSDE

under Study

This part is focused on describing the setup used to lay down the prop-

erties of a stron solution of the MFSDE aforementioned. For example, we

have existence of strong solution if the process {αt}t≥0 is a Markovian con-

trol. Since a strong solution exists, we will show that the approximate se-

quence of strong solutions denoted by {Xn,x}n≥0 will converge to the strong

solution itself. We prove so by supposing that the following assumptions

holds:

12
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• the drift b can be decomposed in this form:

b(t, z, µ, a) = b1(t, z, µ) + b2(t, z, a), (3.3)

• b1 : [0, T ]× R× P1(R)→ R is defined such that:

– there exists a constant C > 0 such that for all t ∈ [0, T ], z ∈ R

and µ ∈ P1(R),

|b1(t, z, µ)| ≤ C(1 + |z|+K(µ, δ0)), (3.4)

where b1 has the following particular form of the linear growth

condition:

b1(t, z, µ) = b̂1(t, z, µ) + b̃1(t, z, µ), (3.5)

– b̂1 is bounded and measurable,

– b̃1 is of at most linear growth and differentiable in z with bounded

derivative,

– b1 is continuous in the third variable i.e. for all µ ∈ P1(R) and

all ε > 0, ∃δ > 0 such that,

(∀ν ∈ P1(R) : K(µ, ν) < δ)⇒ |b1(t, z, µ)− b1(t, z, ν)| < ε, t ∈ [0, T ], z ∈ R,

(3.6)

• we will also assume that b1 is Lipschitz continuous in the measure

variable uniformly in the other variables which means that we can

find a constant C > 0 such that:

|b1(t, z, µ)− b1(t, z, ν)| ≤ CK(µ, ν). (3.7)

• We assume b2 : [0, T ] × R × Ω → R to be adapted such that and

fulfilling the following conditions:

13
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–

∣∣∣∣ ∂∂z b2(t, z, ω)

∣∣∣∣+|b2(t, z, ω)| ≤ L(ω) for all (t, z, ω) ∈ [0, T ]×R×Ω

with Le := E[eĈ|L(ω)|2 ] <∞, where we have Ĉ = 48T, where the

value of Ĉ is given according to Lemma 3.1 in Menoukeu-Pamen

& Tangpi (2019).

– we assume Malliavin differentiability of b2(t, z, ·) for every (t, z) ∈

[0, T ]×R and we can find a process L̂(t, ω) such that the Malli-

avin derivative of b2 denoted byDtb2(s, z, ω) satisfies |Dtb2(s, z, ω)| ≤

L̂(s, t, ω) P⊗ dt a.s. for all (t, z) ∈ [0, T ]× R,

– Lp := sup0≤s≤T E
[
(
∫ T

0
|L̂(s, t, ω)|2dt)4

]
< ∞ and we can find

constants C, β > 0, such that E[|Dt′b2(s, z, ω)−Dtb2(s, z, ω)|4] ≤

C|t′ − t|β,

• the drift b is of at most linear growth i.e. there exists a random

variable C(ω) > 0 and a constant C1 > 0 such that for all t ∈

[0, T ], z ∈ R, and µ ∈ P1(R),

|b(t, z, µ, ω)| ≤ C1(C(ω) + |z|+K(µ, δ0)), (3.8)

where we have,

Le := E[eC̃|C(ω)|2 ] <∞, (3.9)

with C̃ = 48T, where the value of C̃ is given according to Lemma 3.1

in Menoukeu-Pamen & Tangpi (2019). Also, the Kantorovich metric

K is defined as :

K(µ, ν) := sup
h∈Lip1(R)

∣∣∣∣ ∫
R
h(y)(µ− ν)(dy)

∣∣∣∣, µ, ν ∈ P1(R),

and,

P1(R) =

{
µ

∣∣∣∣µ probability measure on (R,B(R)) with

∫
R
|y|dµ(y) <∞

}
.
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we must also take note of the following notation:

E
(∫ T

0

b(t,Xt, µt, αt)dBt

)
= e

∫ T
0 b(t,Xt,µt,αt)dBt− 1

2

∫ T
0 b(t,Xt,µt,αt)2dt (3.10)

3.3 Compactness of the approximating sequence Xn,x
t in L2

Considering the same filtered probability space (Ω,F , {Ft}t,P), as-

sume that b satisfies the decomposition:

b(t, z, µ, α) = b̂1(t, z, µ) + b̃1(t, z, µ) + b2(t, z, α),

such that,

• b̂1 : [0, T ]× R× P1(R)→ R is bounded and adapted,

• b̃1 : [0, T ]×R×P1(R)→ R is differentiable in the space variable with

bounded derivative,

• b2 is bounded measurable and continuously differentiable with bounded

first derivative.

For a given sequence,

bn(t, z, µ, α) = b1,n(t, z, µ) + b2(t, z, α), (3.11)

such that,

b1,n : [0, T ]× R× P1(R)→ R, n ≥ 1 admits the decomposition,

b1,n = b̂1,n + b̃1, (3.12)

where b̂1,n are smooth coefficients converging almost everywhere to b̂1, we

show that the sequence of corresponding strong solutions (Xn,x
t )n≥1 of the
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MFSDEs:

dXn,x
t = bn(t,Xn,x

t ,PXn,x
t
, αt)dt+ dBt, 0 ≤ t ≤ T, Xn,x

0 = x ∈ R, n ≥ 1

(3.13)

has the property of relative compactness in L2(P,R) for each 0 ≤ t ≤ T .

Before stating our result, let us define what a Malliavin derivative is. In

this direction, we first give a definition of a symmetric real function.

Definition 3.3.0.1 (Symmetric real function). A real function g : [0, T ]n →

R is called symmetric if:

g(tη1 , · · · , g(tηn) = g(t1, · · · , tn),

for all permutations η = (η1, · · · , ηn) of (1, · · · , n), Di Nunno et al. (2009).

Definition 3.3.0.2 (Malliavin derivative). Let F ∈ L2(P) be FT−measurable

with chaos expansion

F =
∞∑
n=0

In(fn),

where fn ∈ L̃2([0, T ]n), n = 1, 2, · · · and

In(fn) = n!

∫ T

0

∫ tn

0

· · ·
∫ t3

0

∫ t2

0

fn(t1, · · · , tn)dWt1 · · · dWtn ,

with L̃2([0, T ]n) ⊂ L2([0, T ]n) being the space of symmetric square inte-

grable Borel real functions on [0, T ]n.

(1) We say that F ∈ D1,2 if:

||F ||2D1,2
:=

∞∑
n=1

nn!||fn||2L2([0,T ]n) <∞.

(2) If F ∈ D1,2 we define the Malliavin derivative DtF of F at time t

as the expansion:

DtF =
∞∑
n=1

nIn−1(fn(·, t)), t ∈ [0, T ],
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where In−1(fn(·, t)) is the (n−1)-fold iterated integral of fn(t1, t2, · · · , tn−1, t)

with respect to the first to n− 1 variables t1, t2, · · · , tn−1 and tn = t left as

parameter. Di Nunno et al. (2009).

Our compactness argument is based on the following result:

Lemma 3.3.1. For T > 0 small enough, we can find a constant CT,Lp

depending on T and Lp such that the strong solution Xn,x
t of the stochastic

differential equation (3.13) fulfills the following property:

E[|Dt′X
n,x
s −DtX

n,x
s |2] ≤ CT,Lp|t′−t|ᾱ, for 0 ≤ t′ ≤ t ≤ s ≤ T and some ᾱ > 0.

The following also holds:

E[|DtX
n,x
s |2] ≤ CT,Lp , for a constant CT,Lp > 0.

The proof of Lemma 3.3.1 relies on the following results which are provided

with proofs:

Lemma 3.3.2. Let b : [0, T ]×R×P1(R)×Ω→ R be a function of at most

linear growth, i.e., for some random variable C(ω) > 0, and a constant

C1 > 0,

|b(t, y, µ, ω)| ≤ C1(C(ω) + |y|+K(µ, δ0)),

all x ∈ R and t ∈ [0, T ] with T sufficiently small, then for any compact

subset K ⊂ R,

sup
x∈K

E
[
E
(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

)2]
<∞, (3.14)

sup
x∈K

E
[
E
(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

)4]
<∞, (3.15)

the second Lemma is the following:
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Lemma 3.3.3. Let f : [0, T ]×R×P1(R)→ R, be a bounded measurable

function, then for every t ∈ [0, T ], λ ∈ R and compact subset K ∈ R, we

have:

sup
x∈K

E
[
eλ

∫ t
0

∫
R f(s,y,µ)LB

x
(ds,dy)

]
<∞, (3.16)

where LB
x
(ds, dy) denotes the integration with respect to local time of the

Brownian motion Bx
t = Bt + x in both time and space.

Proof of Lemma 3.3.2. Indeed, after splitting the Doléans-Dade exponen-

tial, and applying the Cauchy-Schwarz inequality, we get:

E
[
E
(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

)2]
= E

[
e
∫ T
0 2b(u,Bxu,PXxu ,αu)dBu−

∫ T
0 b(u,Bxu,PXxu ,αu)2du

]
= E

[
e
∫ T
0 2b(u,Bxu,PXxu ,αu)dBu−4

∫ T
0 b(u,Bxu,PXxu ,αu)2du+3

∫ T
0 b(u,Bxu,PXxu ,αu)2du

]
≤ E

[
e
∫ T
0 4b(u,Bxu,PXxu ,αu)dBu−8

∫ T
0 b(u,Bxu,PXxu ,αu)2du

] 1
2

E
[
e6

∫ T
0 b(u,Bxu,PXxu ,αu)2du

] 1
2

= E
[
E
(∫ T

0

4b(u,Bx
u,PXx

u
, αu)dBu

)] 1
2

E
[
e6

∫ T
0 b(u,Bxu,PXxu ,αu)2du

] 1
2

= E
[
e6

∫ T
0 b(u,Bxu,PXxu ,αu)2du

] 1
2

,

the last line holds true because:

E
[
E
(∫ T

0

4b(u,Bx
u,PXx

u
, αu)dBu

)]
= 1,
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we have,

K(PXx
t
, δ0) = sup

h∈Lip1

∣∣∣∣ ∫
R
h(y)(PXx

t
− δ0)(dy)

∣∣∣∣
= sup

h∈Lip1

∣∣∣∣ ∫
R
h(y)PXx

t
(dy)−

∫
R
h(y)δ0(dy)

∣∣∣∣
= sup

h∈Lip1

∣∣∣∣ ∫
R
h(y)PXx

t
(dy)−

∫
R
h(0)PXx

t
(dy)

∣∣∣∣
= sup

h∈Lip1

∣∣∣∣ ∫
R
h(y)PXx

t
(dy)−

∫
R
h(0)PXx

t
(dy)

∣∣∣∣
= sup

h∈Lip1

∣∣∣∣ ∫
R
(h(y)− h(0))PXx

t
(dy)

∣∣∣∣
≤ sup

h∈Lip1

∫
R
|h(y)− h(0)|PXx

t
(dy)

≤
∫
R
|y|PXx

t
(dy) = E[|Xx

t |],

now, let us evaluate E[|Xx
t |],

E[|Xx
t |] = E

[∣∣∣∣x+

∫ t

0

b(u,Xx
u ,PXx

u
, αu)du+Bt

∣∣∣∣]
≤ |x|+ E

[∫ t

0

|b(u,Xx
u ,PXx

u
, αu)|du+ |Bt|

]
≤ |x|+

∫ t

0

(
E[C1(C(ω) + |Xx

u |+K(Xx
u , δ0)

)
du+ E[|Bt|]

≤ |x|+
∫ t

0

(
E[C1(C(ω) + |Xx

u |+ E[|Xx
u |]
)
du+ E[|Bt|]

= |x|+
∫ t

0

(
E[C1(C(ω)] + 2E[|Xx

u |]
)
du+ E[|Bt|]

= |x|+
∫ t

0

(
E[C1(C(ω)] + 2E[|Xx

u |]
)
du+

√
2t

π

≤ |x|+
∫ t

0

(
E[C1(C(ω)] + 2E[|Xx

u |]
)
du+

√
2T

π

= |x|+ C1E[C(ω)]t+ 2

∫ t

0

E[|Xx
u |]du+

√
2T

π
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≤ |x|+ C1E[C(ω)]T + 2

∫ t

0

E[|Xx
u |]du+

√
2T

π

≤ |x|+ C1E[e|C(ω)|]T + 2

∫ t

0

E[|Xx
u |]du+

√
2T

π

≤ |x|+ C1E[e|C(ω)|2 ]
1
2T + 2

∫ t

0

E[|Xx
u |]du+

√
2T

π

after applying the Grönwall’s inequality, we get:

E[|Xx
t |] ≤ e2C1T

(
|x|+

√
2T

π
+ C1TE[e|C(ω)|2 ]

1
2

)
,

we will use this estimate of E[|Xx
t |] to prove the estimate (3.14) of the

lemma. So,

|b(t, Bx
t ,PXx

t
, αt)|

≤ C1(C(ω) + |Bx
t |+K(PXx

t
, δ0))

≤ C1(C(ω) + |Bx
t |+ E[|Xx

t |])

= C1(C(ω) + |Bt|+ |x|+ E[|Xx
t |])

≤ C1

{
C(ω) + |x|+ |Bt|+ e2C1T

(
|x|+

√
2T

π
+ C1TE[e|C(ω)|2 ]

1
2

)}
= C1

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2T

π
+ C1Te

2C1TE[e|C(ω)|2 ]
1
2

}
,

let E[e|C(ω)|2 ]
1
2 be bounded by a certain constant we denote C2, then we

have,

|b(t, Bx
t ,PXx

t
, αt)|

≤ C1

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2T

π
+ C1Te

2C1TE[e|C(ω)|2 ]
1
2

}
≤ C1

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2T

π
+ C1Te

2C1TC2

}
= C1

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2

π
T

1
2 + C1Te

2C1TC2

}
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we now add the following extra term:

C1Te
2C1T ,

and we get,

|b(t, Bx
t ,PXx

t
, αt)|

≤ C1

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2

π
T

1
2 + C1Te

2C1TC2 + C1Te
2C1T

}
≤ C1

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2

π
T

1
2 + (C1C2 + C1)Te2C1T

}
≤ C1

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2

π
T

1
2 + (C1C2 + C1)Te2C1T

}
+ C1C2

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2

π
T

1
2 + (C1C2 + C1)Te2C1T

}

the last line before the last comes from the fact that we just added the

following extra term:

C1C2

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2

π
T

1
2 + (C1C2 + C1)Te2C1T

}
,

we now get,

|b(t, Bx
t ,PXx

t
, αt)|

≤ (C1 + C1C2)

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2

π
T

1
2 + (C1C2 + C1)Te2C1T

}
≤ (C1 + C1C2)

{
C(ω) + |x|

(
1 + e2C1T+2C1C2T

)
+ |Bt|+ e2C1T+2C1C2T

√
2

π
T

1
2

+ (C1C2 + C1)Te2C1T+2C1C2T

}
,

let us now update the value of C1 by C1(C2 + 1), we get,

|b(t, Bx
t ,PXx

t
, αt)| ≤ C1

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2

π
T

1
2 + C1Te

2C1T

}
,
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let us now assume that T ≤ 1, therefore,

|b(t, Bx
t ,PXx

t
, αt)| ≤ C1

{
C(ω) + |x|

(
1 + e2C1T

)
+ |Bt|+ e2C1T

√
2

π
+ C1Te

2C1T

}
≤ C1

(
e2C1T

√
2

π
+ C1Te

2C1T

)(
C(ω) + |x|+ |Bt|+ 1

)
= C4,T

(
C(ω) + |x|+ |Bt|+ 1

)
,

with C4,T = C1

(
e2C1T

√
2
π

+ C1Te
2C1T

)
. The last inequality holds true

because: 

1− 1

C1

(
e2C1T

√
2
π

+ C1Te2C1T

) ≥ 0

1− 1 + e2C1T

C1

(
e2C1T

√
2
π

+ C1Te2C1T

) ≥ 0,

and it is true for any value of C1T . Our estimate for |b(t, Bx
t ,PXx

t
, αt)| will

be,

|b(t, Bx
t ,PXx

t
, αt)| ≤ C4,T (C(ω) + |x|+ |Bt|+ 1), (3.17)

where C4,T = C1

(
e2C1T

√
2
π
+C1Te

2C1T

)
, with this estimate of |b(t, Bx

t ,PXx
t
, αt)|,

we can now find an estimate of E
[
e6

∫ T
0 b(u,Bxu,PXxu ,αu)2du

]
, we will use the ap-

proach seen in Menoukeu-Pamen & Tangpi (2019) at page 9 and what

follows will be an adaptation of their proof to our settings,

E
[
e6

∫ T
0 b(u,Bxu,PXxu ,αu)2du

]
= E

[
e
∫ T
0 6C2

4,T (C(ω)+|x|+|Bu|+1)2du

]
≤ E

[
e
∫ T
0 18C2

4,T (C(ω)2+(1+|x|)2+|Bu|2)du

]

where the last expression comes from using the inequality:

(d1 + d2 + · · ·+ dn)2 ≤ n(d2
1 + d2

2 + · · ·+ d2
n),
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so,

E
[
e6

∫ T
0 b(u,Bxu,PXxu ,αu)2du

]
≤ e18C2

4,T (1+|x|)2TE
[
e
∫ T
0 18C2

4,TC(ω)2due
∫ T
0 18C2

4,T |Bu|
2du

]
= e18C2

4,T (1+|x|)2TE
[
e18C2

4,TC(ω)2T e
∫ T
0 18C2

4,T |Bu|
2du

]
≤ e18C2

4,T (1+|x|)2TE
[
e18C2

4,TC(ω)2T e18C2
4,TT (supt∈[0,T ] |Bt|2)

]
,

next, we apply the Cauchy-Schwarz inequality to get:

E
[
e6

∫ T
0 b(u,Bxu,PXxu ,αu)2du

]
≤ e18C2

4,T (1+|x|)2TE
[
e36C2

4,T |C(ω)|2T
] 1

2

× E
[
e36C2

4,TT (supt∈[0,T ] |Bt|2)

] 1
2

,

let us first estimate E
[
e36C2

4,TT (supt∈[0,T ] |Bt|2)

]
, we will apply the Taylor ex-

pansion of the exponential function ex. Therefore, we have:

E
[
e36C2

4,TT (supt∈[0,T ] |Bt|2)

]
= E

[
1 +

∞∑
q=1

(36C2
4,T (supt∈[0,T ] |Bt|2)T )q

q!

]
,

= E
[
1 +

∞∑
q=1

(36C2
4,TT )q

q!
( sup
t∈[0,T ]

|Bt|2)q
]
,

=

(
1 +

∞∑
q=1

(36C2
4,TT )q

q!
E[( sup

t∈[0,T ]

|Bt|2)q]

)
,

≤
(

1 +
∞∑
q=1

(36C2
4,TT )q

q!
E[ sup

t∈[0,T ]

|Bt|2q]
)
,

before going forward, we need to estimate E[supt∈[0,T ] |Bt|2q] using the Doob’s

maximal inequality,

E[ sup
t∈[0,T ]

|Bt|2q] ≤
(

2q

2q − 1

)2q

E[|BT |2q]

=

(
2q

2q − 1

)2q

× T q(2q)!

2qq!
,
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we substitute back the expression of E[supt∈[0,T ] |Bt|2q] into the inequality

with E
[
e
∫ T
0 36C2

4,T |Bu|
2du

]
to have,

E
[
e
∫ T
0 36C2

4,T |Bu|
2du

]
≤
(

1 +
∞∑
q=1

(36C2
4,TT )q

q!
E[ sup

t∈[0,T ]

|Bt|2q]
)

≤
(

1 +
∞∑
q=1

(36C2
4,TT )q

q!

(
2q

2q − 1

)2q

× T q(2q)!

2qq!

)

=

(
1 +

∞∑
q=1

aq

)
,

where, aq =
(36C2

4,TT )q

q!

(
2q

2q − 1

)2q

× T q(2q)!

2qq!
,

we will now check the convergence of aq using the ratio test,

ratio test for aq:

M = lim
q→∞

∣∣∣∣aq+1

aq

∣∣∣∣ = lim
q→∞

∣∣∣∣∣∣∣∣∣
(36C2

4,TT )q+1

(q + 1)!

(
2q + 2

2q + 1

)2q+2

× T q+1(2q + 2)!

2q+1(q + 1)!

(36C2
4,TT )q

q!

(
2q

2q − 1

)2q

× T q(2q)!

2qq!

∣∣∣∣∣∣∣∣∣
= lim

q→∞

∣∣∣∣∣∣∣∣∣
36C2

4,TT

q + 1
×
(

2q + 2

2q + 1

)2q+2

× T (2q + 2)(2q + 1)

2(q + 1)(
2q

2q − 1

)2q

∣∣∣∣∣∣∣∣∣
= lim

q→∞

∣∣∣∣∣∣∣∣∣
36C2

4,TT
2(2q + 2)(2q + 1)

2(q + 1)2
×
(

2q + 2

2q + 1

)2q+2

(
2q

2q − 1

)2q

∣∣∣∣∣∣∣∣∣
= lim

q→∞

∣∣∣∣∣∣∣∣∣
36C2

4,TT
2 × 4q2

2q2
× (2q)2q+2

(2q)2q+2

(2q)2q

(2q)2q

∣∣∣∣∣∣∣∣∣ = 72C2
4,TT

2,
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the ratio test states that for the series aq to converge, we need to have

M ≤ 1, which means 72C2
4,TT

2 ≤ 1,

72C2
4,TT

2 ≤ 1⇒ 72

(
C1

(
e2C1T

√
2

π
+ C1Te

2C1T

))2

T 2 ≤ 1

⇒ 72

(
C1T

(
e2C1T

√
2

π
+ C1Te

2C1T

))2

≤ 1

⇒ − 1√
72
≤ C1T

(
e2C1T

√
2

π
+ C1Te

2C1T

)
≤ 1√

72

⇒ − 1

6
√

2
≤ C1T

(
e2C1T

√
2

π
+ C1Te

2C1T

)
≤ 1

6
√

2
,

since the left part of the previous inequality is always true, we can remove

it and deal only with the right part,

C1T

(
e2C1T

√
2

π
+ C1Te

2C1T

)
≤ 1

6
√

2
,

⇒ p

(
e2p

√
2

π
+ pe2p

)
− 1

6
√

2
≤ 0, where p = C1T ,

⇒ p ≤ 0.105605,

this means,

p ≤ 0.105605,

⇒ C1T ≤ 0.105605,

⇒ T ≤ 0.105605

C1

,

we have,

T ≤ 0.105605

C1

, (3.18)

therefore, we can conclude that the series aq will converge if the condition

(3.18) is satisfied.
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Let us scroll back to what we wrote previously, indeed we had:

E
[
e
∫ T
0 36C2

4,T |Bu|
2du

]
≤
(

1 +
∞∑
q=1

aq

)
,

since we have shown that the series aq converges provided that the condition

on T is fulfilled, we can say:

E
[
e
∫ T
0 36C2

4,T |Bu|
2du

]
<∞, (3.19)

we also had,

E
[
e6

∫ T
0 b(u,Bxu,PXxu ,αu)2du

]
≤ e18C2

4,T (1+|x|)2TE
[
e36C2

4,T |C(ω)|2T
] 1

2

× E
[
e36C2

4,TT (supt∈[0,T ]) |Bt|2
] 1

2

≤ Ĉe18C2
4,T (1+|x|)2TE

[
e36C2

4,T |C(ω)|2T
] 1

2

,

the term E
[
e18C2

4,T |C(ω)|2T
]

looks like our Le defined in (3.9), therefore is

finite. We can write next,

E
[
e
∫ T
0 b(u,Bxu,PXxu ,αu)2du

]
≤ Ĉe18C2

T (1+|x|)2T , with Ĉ changing to a new Ĉ,

since E
[
E
(∫ T

0
b(u, x+Bu,PXx

u
, αu)dBu

)2]
≤ E

[
e6

∫ T
0 b(u,Bxu,PXxu ,αu)2du

] 1
2

(you

can see it shown at the beginning of the proof of Lemma 3.3.2), we can

therefore conclude that for any compact subset K ⊂ R and for T which is

sufficiently small, the following holds:

sup
x∈K

E
[
E
(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

)2]
<∞.

The next part consists in proving that:

sup
x∈K

E
[
E
(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

)4]
<∞, (3.20)

the proof follows the same approach as in the case in the case of
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supx∈K E
[
E
(∫ T

0
b(u,Bx

u,PXx
u
, αu)dBu

)2]
<∞. In this direction, we have:

E
[
E
(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

)4]
= E

[
e4

∫ T
0 b(u,Bxu,PXxu ,αu)dBu−2

∫ T
0 b(u,Bxu,PXxu ,αu)2du

]
= E

[
e4

∫ T
0 b(u,Bxu,PXxu ,αu)dBu−16

∫ T
0 b(u,Bxu,PXxu ,αu)2du+14

∫ T
0 b(u,Bxu,PXxu ,αu)2du

]
≤ E

[
e8

∫ T
0 b(u,Bxu,PXxu ,αu)dBu−32

∫ T
0 b(u,Bxu,PXxu ,αu)2du

] 1
2

E
[
e28

∫ T
0 b(u,Bxu,PXxu ,αu)2du

] 1
2

= E
[
E
(∫ T

0

8b(u,Bx
u,PXx

u
, αu)dBu

)] 1
2

E
[
e28

∫ T
0 b(u,Bxu,PXxu ,αu)2du

] 1
2

= E
[
e28

∫ T
0 b(u,Bxu,PXxu ,αu)2du

] 1
2

,

so using the same approach as in the proof of the estimate (3.14), one

can arrive at the step where showing that E
[
e28

∫ T
0 b(u,Bxu,PXxu ,αu)2du

]
is finite

means finding the range where the following applies:

p

(
e2p

√
2

π
+ pe2p

)
− 1

4
√

21
≤ 0, where p = C1T

which is true when p = C1T ≤ 0.0569487, which means we should have:

T ≤ 0.0569487

C1

. (3.21)

Therefore, we can conclude that supx∈K E
[
E
(∫ T

0
b(u,Bx

u,PXx
u
, αu)dBu

)4]
is finite if the condition (3.21) is satisfied which ends our proof.

Let us state next a strong theorem which has been derived in Eisen-

baum (2000) which will play a key role in the proof of Lemma 3.3.3.

Theorem 3.3.1. Let f be a measurable function from [0, T ] × R × P1(R)

into R. For a given measure µ, let us define fµ : R× [0, T ]→ R such that
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fµ(s, x) = f(s, x, µ). We define the norm || · || by:

||fµ|| = 2

(∫ 1

0

∫
R
(fµ)2e−

x2

2r
dxdr√

2πr

) 1
2

+

∫ 1

0

∫
R
|xfµ(r, x)|e−

x2

2r
dxdr√

2πr
,

consider the set H of functions fµ such that ||fµ|| <∞. Then,

∫ t

0

∫
R
fµ(r, y)LB

x

(dr, dy) =

∫ t

0

fµ(r, Bx
r )dBr +

∫ T

T−t
fµ(T − r, B̂x

r )dWr −
∫ T

T−r
fµ(T − r, B̂x

r )
B̂r

T − r
dr,

(3.22)

where, B̂t := BT−t, 0 ≤ t ≤ T is the time-reversed Brownian motion, and

Wt := B̂t−BT +
∫ t

0
B̂r
T−rdr is a Brownian motion with respect to the filtration

of B̂, Eisenbaum (2000).

Next, we recall the Tanaka’s formula:

Definition 3.3.0.3 (Tanaka’s formula). In stochastic calculus, the Tanaka’s

formula states that:

|Bt| =
∫ t

0

sgn(Bs)dBs + Lt, (3.23)

where Bt is a Brownian motion defined under a suitable filtered probability

space, sgn denotes the signum function:

sgn(x) =


+1, x > 0,

0, x = 0,

−1, x < 0,

Proof of Lemma 3.3.3. Using the decomposition (3.22), we have,

E
[
eλ

∫ t
0

∫
R f

µ(s,y)LB
x

(ds,dy)

]
= E

[
eλ

∫ t
0 f

µ(s,Bxs )dBs+λ
∫ T
T−t f

µ(T−s,B̂xs )dWs−λ
∫ T
T−t f

µ(T−s,B̂xs ) B̂s
T−sds

]
,

= E[eλ
∫ t
0 f

µ(s,Bxs )dBseλ
∫ T
T−t f

µ(T−s,B̂xs )dWse−λ
∫ T
T−t f

µ(T−s,B̂xs ) B̂s
T−sds],
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after using Cauchy-Schwarz inequality two times, we get:

E
[
eλ

∫ t
0

∫
R f

µ(s,y)LB
x

(ds,dy)

]
≤ E

[
e2λ

∫ t
0 f

µ(s,Bxs )dBs
] 1

2 E
[
e2λ

∫ T
T−t f

µ(T−s,B̂xs )dWse−2λ
∫ T
T−t f

µ(T−s,B̂xs ) B̂s
T−sds

] 1
2

≤ E
[
e2λ

∫ t
0 f

µ(s,Bxs )dBs
] 1

2 E
[
e4λ

∫ T
T−t f

µ(T−s,B̂xs )dWs

] 1
4 E
[
e−4λ

∫ T
T−t f

µ(T−s,B̂xs ) B̂s
T−sds

] 1
4

,

= I × II × III,

where Wt = BT−t − BT +
∫ t

0

BT−s
T−s ds, is a Brownian motion. Let us next

show that I and II are finite. First, we use the Taylor series expansion of

the exponential function:

E
[
e2λ

∫ t
0
fµ(s,Bxs )dBs

] 1
2

= E

[ ∞∑
q=0

(
2λ
∫ t
0
fµ(s,Bxs )dBs

)q
q!

] 1
2

=

( ∞∑
q=0

E
[(

2λ
∫ t
0
fµ(s,Bxs )dBs

)q]
q!

) 1
2

=

( ∞∑
q=0

(2λ)qE
[( ∫ t

0
fµ(s,Bxs )dBs

)q]
q!

) 1
2

,

next, we use the Burkholder-Davis-Gundy on the expectation term with

the best possible estimates and we get :

E
[
e2λ

∫ t
0 f

µ(s,Bxs )dBs
] 1

2
=

( ∞∑
q=0

(2λ)qE
[( ∫ t

0
fµ(s, Bx

s )dBs

)q]
q!

) 1
2

≤
( ∞∑

q=0

(2λ)q2qq
q
2E
[( ∫ t

0
(fµ)2(s, Bx

s )ds
) q

2
]

q!

) 1
2

,

since fµ is a bounded function, we can write:

E
[
e2λ

∫ t
0
fµ(s,Bxs )dBs

] 1
2 ≤

( ∞∑
q=0

(2λ)qCqq
q
2C

q
2

( ∫ t
0
ds
) q

2

q!

) 1
2

≤
( ∞∑
q=1

Cqq
q
2

q!

) 1
2

=

( ∞∑
q=0

aq

) 1
2

.
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The ratio test implies:

M =
aq+1

aq
=

Cq+1(q + 1)
q+1
2

(q + 1)!

Cqq
q
2

q!

=

Cq+1(q + 1)
q
2 (q + 1)

1
2

(q + 1)!

Cqq
q
2

q!

=

Cq+1(q + 1)
q
2 (q + 1)

1
2

(q + 1)q!

Cqq
q
2

q!

=

CCq(q + 1)
q
2 (q + 1)

1
2

(q + 1)q!

Cqq
q
2

q!

=
CCq(q + 1)

q
2 (q + 1)

1
2

(q + 1)q!
× q!

Cqq
q
2

= C
(q + 1)q/2

(q + 1)
1
2 q

q
2

= C

(
q + 1

q

) q
2 1

(q + 1)
1
2

= C

[(
1 +

1

q

)q] 1
2 1

(q + 1)
1
2

.

Thus, lim
q→∞

C

[(
1+ 1

q

)q] 1
2 1

(q + 1)
1
2

= lim
q→∞

Ce
1
2

1

(q + 1)
1
2

= 0 < 1. Since,

the series {aq}q≥0 converges, E
[
e2λ

∫ t
0 f

µ(s,Bxs )dBs
] 1

2
is finite. The same rea-

soning applies to E
[
e−4λ

∫ T
T−t f

µ(T−s,B̂xs ) B̂s
T−sds

] 1
4

. Therefore, both I and II are

finite. Let us now show that the term III = E
[
e−4λ

∫ T
T−t f

µ(T−s,B̂xs ) B̂s
T−sds

] 1
4

is also finite.
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For the term III, we have using the Taylor series expansion of the expo-

nential function:

E
[
e−4λ

∫ T
T−t f

µ(T−s,B̂xs )
B̂s
T−sds

]
= E

[ ∞∑
q=0

(
− 4λ

∫ T
T−t f

µ(T − s, B̂xs ) B̂s
T−sds

)q
q!

]

= E
[ ∞∑
q=0

(
− 4λ

∫ T
T−t 2fµ(T − s, B̂xs ) B̂s√

T−s
1

2
√
T−sds

)q
q!

]

=
∞∑
q=0

E
[(
− 4λ

∫ T
T−t 2fµ(T − s, B̂xs ) B̂s√

T−s
1

2
√
T−sds

)q]
q!

=
∞∑
q=0

(−4λ)qE
[( ∫ T

T−t 2fµ(T − s, B̂xs ) B̂s√
T−s

1
2
√
T−sds

)q]
q!

,

next, we apply the Jensen’s inequality with the measure dνs = 1
2
√
T−sds

and we get:

E
[
e−4λ

∫ T
T−t f

µ(T−s,B̂xs )
B̂s
T−sds

]

=

∞∑
q=0

(−4λ)qE
[( ∫ T

T−t 2fµ(T − s, B̂xs ) B̂s√
T−s

1
2
√
T−sds

)q]
q!

=
∞∑
q=0

(−4λ)qE
[( ∫ T

T−t 2fµ(T − s, B̂xs ) B̂s√
T−sdνs

)q]
q!

≤
∞∑
q=0

(−4λ)qCqE
[ ∫ T

T−t
(
fµ(T − s, B̂xs )

)q( B̂s√
T−s

)q
dνs

]
q!

,

since fµ is a bounded function, we update the value of C to a new C to

get:

E
[
e−4λ

∫ T
T−t f

µ(T−s,B̂xs ) B̂s
T−sds

]

≤
∞∑
q=0

(−4λ)qCqE
[ ∫ T

T−t

(
fµ(T − s, B̂x

s )
)q( B̂s√

T−s

)q
dνs

]
q!

≤
∞∑
q=0

(−4λ)qCqE
[ ∫ T

T−t

(
B̂s√
T−s

)q
dνs

]
q!

31

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



=
∞∑
q=0

(−4λ)qCq
∫ T
T−t E

[∣∣ B̂s√
T−s

∣∣q]dνs
q!

=
∞∑
q=0

(4λ)qCq
∫ T
T−t

1

(T−s)
q
2
E
[
|B̂s|q

]
dνs

q!

≤
∞∑
q=0

(4λ)qCq
∫ T
T−t

1

(T−s)
q
2
E
[
|B̂s|2q

] 1
2dνs

q!

=
∞∑
q=0

(4λ)qCq
∫ T
T−t

1

(T−s)
q
2
E
[
|BT−s|2q

] 1
2dνs

q!

=
∞∑
q=0

(4λ)qCq
( ∫ T

T−t
1

(T−s)
q
2

[ (2q)!(T−s)q
2qq!

] 1
2dνs

)
q!

=
∞∑
q=0

(4λ)qCq
( ∫ T

T−t
1

(T−s)
q
2

[(2q)!]
1
2 (T−s)

q
2

2
q
2 (q!)

1
2

dνs
)

q!

=
∞∑
q=0

(4λ)qCq [(2q)!]
1
2

2
q
2 (q!)

1
2

∫ T
T−t dνs

q!

≤
∞∑
q=0

(4λ)qCq [(2q)!]
1
2

2
q
2 (q!)

1
2

q!

≤
∞∑
q=0

(4λ)qCq [(2q)!]
1
2

q!2
q
2 (q!)

1
2

=
∞∑
q=0

(4λ)qCq
[
(2q)!

] 1
2

q!(2qq!)
1
2

=
∞∑
q=0

aq,

where aq =
(4λ)qCq

[
(2q)!

] 1
2

q!(2qq!)
1
2

, the ratio test of aq gives:

M = lim
q→∞

aq+1

aq
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M = lim
q→∞

(4λ)q+1Cq+1
(
(2(q + 1))!

) 1
2

(q + 1)!(2q+1(q + 1)!)
1
2

(4λ)qCq
[
(2q)!

] 1
2

q!(2qq!)
1
2

= lim
q→∞

(4λ)q(4λ)CqC
(
(2q + 2)(2q + 1)(2q)!

) 1
2

(q + 1)q!(2× 2q(q + 1)q!)
1
2

(4λ)qCq
[
(2q)!

] 1
2

q!(2qq!)
1
2

= lim
q→∞

(4λ)qCq
[
(2q)!

] 1
2

q!(2qq!)
1
2

×
(4λ)× C

(
(2q + 2)(2q + 1)

) 1
2

(q + 1)× (2(q + 1))
1
2

(4λ)qCq
[
(2q)!

] 1
2

q!(2qq!)
1
2

= lim
q→∞

(4λ)× C
(
(2q + 2)(2q + 1)

) 1
2

(q + 1)× (2(q + 1))
1
2

= lim
q→∞

(4λ)× C(2q + 2)
1
2 (2q + 1)

1
2

(q + 1)× (2q + 2)
1
2

= lim
q→∞

(4λ)× C(2q + 1)
1
2

q + 1

= lim
q→∞

(4λ)× C(2q + 1)
1
2

(q + 1)
1
2 (q + 1)

1
2

= lim
q→∞

(4λ)× C
(q + 1)

1
2

×
(

2q + 1

q + 1

) 1
2

= 0 < 1.

Since the ratio is less than 1, the series {aq}q≥0 converges, therefore

the term E
[
e−4λ

∫ T
T−t f

µ(T−s,B̂xs ) B̂s
T−sds

]
is finite. Since it is finite, the term

III = E
[
e−4λ

∫ T
T−t f

µ(T−s,B̂xs ) B̂s
T−sds

] 1
4

is also finite. Hence, the three terms I,

II and III are finite. We can then conclude that,

sup
x∈K

E
[
eλ

∫ t
0

∫
R f(s,y,µ)LB

x
(ds,dy)

]
<∞.

This is where the proof ends.
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Proof of Lemma 3.3.1. First, we derive the explicit representation for the

following expression Dt′X
n,x
s −DtX

n,x
s . We know that:

dXn,x
t = bn(t,Xn,x

t ,PXn,x
t
, αt)dt+ dBt,

⇒Xn,x
t = x+Bt +

∫ t

0

bn(u,Xn,x
u ,PXn,x

u
, αu)du,

we also have:

Xn,x
s = x+Bs +

∫ s

0

bn(u,Xn,x
u ,PXn,xu

, αu)du

= x+Bs +

∫ t

0

bn(u,Xn,x
u ,PXn,xu

, αu)du+

∫ s

t

bn(u,Xn,x
u ,PXn,xu

, αu)du

= x+Bs +

∫ t

0

bn(u,Xn,x
u ,PXun,x, αu)du+

∫ s

t

(b1,n(u,Xn,x
u ,PXn,xu

) + b2(u,Xn,x
u , αu))du,

now, let us take the Malliavin derivative of Xn,x
s , we get:

DtX
n,x
s

= Dt

[
x+Bs +

∫ t

0

bn(r,Xn,x
r ,PXn,xr

, αr)dr +

∫ s

t

(b1,n(r,Xn,x
r ,PXn,xr

) + b2(r,Xn,x
r , αr))dr

]
= Dtx+DtBs +Dt

[ ∫ t

0

bn(r,Xn,x
r ,PXn,xr

, αt)dr

]
+Dt

[ ∫ s

t

b1,n(r,Xn,x
r ,PXn,xr

)dr

]
+Dt

[ ∫ s

t

b2(r,Xn,x
r , αr)dr

]
= 1{t≤s} +

∫ s

t

Dt[b1,n(r,Xn,x
r ,PXn,xr

)]dr +

∫ s

t

Dt[b2(r,Xn,x
r , αr)]dr

= 1 +

∫ s

t

b′1,n(r,Xn,x
r ,PXn,xr

)DtX
n,x
r dr +

∫ s

t

[b′2(r,Xn,x
r , αr)DtX

n,x
r +Dtb2(r,Xn,x

r , αr)]dr

= 1 +

∫ s

t

b′1,n(r,Xn,x
r ,PXn,xr

)DtX
n,x
r dr +

∫ s

t

b′2(r,Xn,x
r , αr)DtX

n,x
r dr +

∫ s

t

Dtb2(r,Xn,x
r , αr)dr

= 1 +

∫ s

t

(b′1,n(r,Xn,x
r ,PXn,xr

) + b′2(r,Xn,x
r , αr))DtX

n,x
r dr +

∫ s

t

Dtb2(r,Xn,x
r , αr)dr

= 1 +

∫ s

t

b′n(r,Xn,x
r ,PXn,xr

, αr)DtX
n,x
r dr +

∫ s

t

Dtb2(r,Xn,x
r , αr)dr,

where b′2 and b′1,n are the derivatives of b2 and b1,n with respect to the

second variable which appears after we apply the chain rule. We get:

DtX
n,x
s = 1 +

∫ s

t

b′n(u,Xn,x
u ,PXn,x

u
, αu)DtX

n,x
u du+

∫ s

t

Dtb2(u,Xn,x
u , αu)du.

(3.24)

We obtain a linear ODE of order 1 in DtX
n,x
s , with variable coefficient.
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Therefore, one can show that the solution to the above equation can be

explicitly written as follows :

DtX
n,x
s = e

∫ s
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr

(
1+

∫ s

t

e
−

∫ u
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDtb2(u,Xn,x
u , αu)du

)
.

Now, let us first derive the explicit representation for the following

expression Dt′X
n,x
s −DtX

n,x
s :

Dt′X
n,x
s −DtX

n,x
s

= e
∫ s
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr
(

1 +

∫ s

t′
e
−

∫ u
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDt′b2(u,Xn,x
u , αu)du

)
− e

∫ s
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr
(

1 +

∫ s

t
e
−

∫ u
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDtb2(u,Xn
u , αu)du

)
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= e
∫ s
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr
(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)
+ e

∫ s
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr
∫ s

t′
e
−

∫ u
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDt′b2(u,Xn,x
u , αu)du

− e
∫ s
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr
∫ s

t
e
−

∫ u
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDtb2(u,Xn,x
u , αu)du

= e
∫ s
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr
(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)
+

∫ s

t′
e
∫ s
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dre
−

∫ u
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDt′b2(u,Xn,x
u , αu)du

−
∫ s

t
e
∫ s
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dre
−

∫ u
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDtb2(u,Xn,x
u , αu)du

= e
∫ s
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr
(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)
+

∫ s

t′
e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDt′b2(u,Xn,x
u , αu)du

−
∫ s

t
e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDtb2(u,Xn,x
u , αu)du,

= e
∫ s
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr
(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)
+

∫ t

t′
e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,ω)dr
Dt′b2(u,Xn,x

u , αu)du

+

∫ s

t
e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDt′b2(u,Xn,x
u , αu)du

−
∫ s

t
e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDtb2(u,Xn,x
u , αu)du

= e
∫ s
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr
(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)
+

∫ t

t′
e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDt′b2(u,Xn,x
u , αu)du

+

∫ s

t
e−

∫ u
s b
′
n(r,Xn,x

r ,αr)dr(Dt′b2(u,Xn,x
u , αu)−Dtb2(u,Xn,x

u , αu))du,

therefore, the explicit representation of Dt′X
n,x
s −DtX

n,x
s is:

Dt′X
n,x
s −DtX

n,x
s = e

∫ s
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr
(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)
+

∫ t

t′
e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDt′b2(u,Xn,x
u , αu)du

+

∫ s

t
e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr(Dt′b2(u,Xn,x
u , αu)−Dtb2(u,Xn,x

u , αu))du.
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Now, let:

Dt′X
n,x
s −DtX

n,x
s = I1 + I2 + I3,

where, I1 = e
∫ s
t b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr

(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)
,

I2 =

∫ t

t′
e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDt′b2(u,Xn,x
u , αu)du,

I3 =

∫ s

t

e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr(Dt′b2(u,Xn,x
u , αu)−Dtb2(u,Xn,x

u , αu))du,

our goal is to find the following compactness criteria:

E[|Dt′X
n,x
s −DtX

n,x
s |2] ≤ C|t′−t|m, for 0 ≤ t′ ≤ t ≤ s ≤ T and m ∈

(
1

2
,
β

2

)
.

Hence, we have:

E[|Dt′X
n,x
s −DtX

n,x
s |2] = E[|I1 + I2 + I3|2]

≤ 3E[|I1|2 + |I2|2 + |I3|2]

= 3E[|I1|2] + 3E[|I2|2] + 3E[|I3|2],

we used the following inequality to get the prior expression:

(a1 + a2 + · · ·+ an)2 ≤ n(a2
1 + a2

2 + · · ·+ a2
n).

First step: we compute E[|I1|2]:

E[|I1|2]

= E
[∣∣∣∣e∫ st b′n(r,Xn,x

r ,P
X
n,x
r

,αr)dr

(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)∣∣∣∣2]
= E

[
e
∫ s
t 2b′n(r,Xn,x

r ,P
X
n,x
r

,αr)dr

(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)2]
= E

[
e
∫ s
t 2
(
b′1,n(r,Xn,x

r ,P
X
n,x
r

)+b2(r,Xn,x
r ,αr)

)
dr

(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)2]
= E

[
e
∫ s
t 2b′1,n(r,Xn,x

r ,P
X
n,x
r

)dr
e
∫ s
t 2b2(r,Xn,x

r ,αr)dr

(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)2]
,
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we get after applying the Cauchy-Schwarz inequality:

E[|I1|2]

= E
[
e
∫ s
t 2b′1,n(r,Xn,x

r ,P
X
n,x
r

)dr
e
∫ s
t 2b2(r,Xn,x

r ,αr)dr

(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)2]
≤ E

[
e
∫ s
t 4b′1,n(r,Xn,x

r ,P
X
n,x
r

)dr
e
∫ s
t 4b2(r,Xn,x

r ,αr)dr

] 1
2

E
[(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)4] 1
2

,

after applying once again the Cauchy-Schwarz inequality on the first term,

we get:

E[|I1|2]

≤ E
[
e
∫ s
t 4b′1,n(r,Xn,x

r ,P
X
n,x
r

)dr
e
∫ s
t 4b2(r,Xn,x

r ,αr)dr

] 1
2

E
[(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)4] 1
2

≤ E
[
e
∫ s
t 8b′1,n(r,Xn,x

r ,P
X
n,x
r

)dr

] 1
4

E
[
e
∫ s
t 8b′2(r,Xn,x

r ,αr)dr

] 1
4

E
[(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)4] 1
2

since the space derivative of b2 is bounded by a random variable with finite

exponential moment, we can write:

E[|I1|2] ≤ CE
[
e
∫ s
t 8b′1,n(r,Xn,x

r ,P
X
n,x
r

)dr

] 1
4

E
[(
e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1

)4] 1
2

,

we next apply the mean value theorem to e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1, the

mean value theorem states that,

g(y + h)− g(y) =

∫ y+h

y

g′(u)du,

=

(∫ 1

0

g′(y + θh)dθ

)
· h,

if we consider the function g(y) = ey with y = 0 and h =
∫ t
t′
b′n(r,Xn,x

r ,PXn,x
r
, αr)dr,

e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − 1 = e
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr − e0,

=

(∫ 1

0

e
θ
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drdθ

)
·
(∫ t

t′
b′n(r,Xn,x

r ,PXn,x
r
, αr)dr

)
,
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after substituting that right hand side into the expression of E[|I1|2], we

get,

E[|I1|2]

. CE
[
e
∫ s
t
8b′1,n(r,X

n,x
r ,PXn,xr

)dr

] 1
4

E
[(
e
∫ t
t′ b
′
n(r,X

n,x
r ,PXn,xr

,αr)dr − 1

)4] 1
2

,

= E
[
e
∫ s
t
8b′1,n(r,X

n,x
r ,PXn,xr

)dr

] 1
4

E
[(∫ 1

0

eθ
∫ t
t′ b
′
n(r,X

n,x
r ,PXn,xr

,αr)drdθ

)4

·
(∫ t

t′
b′n(r,Xn,x

r ,PXn,xr
, αr)dr

)4 ] 1
2

,

we apply once again the Cauchy-Schwarz inequality to obtain:

E[|I1|2]

. E
[
e
∫ s
t 8b′1,n(r,Xn,x

r ,P
X
n,x
r

)dr

] 1
4

E
[(∫ 1

0

e
θ
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drdθ

)8 ] 1
4

E
[(∫ t

t′
b′n(r,Xn,x

r ,PXn,x
r
, αr)dr

)8 ] 1
4

= Jn1 · Jn2 · Jn3 ,

now, we have E[|I1|2] ≤ CJn1 · Jn2 · Jn3 , let us evaluate Jn1 ,

Jn1 = E
[
e
∫ s
t 8b′1,n(r,Xn,x

r ,P
X
n,x
r

)dr

] 1
4

= E
[
e
∫ s
t

∫
R 8b̂′1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ s
t 8b̃′1(r,Xn,x

r ,P
X
n,x
r

)dr

] 1
4

,

afterwards, we apply the Girsanov transform with a change of trajectory

and we get:

Jn1 ≤ E
[
e
∫ s
t

∫
R 8b̂′1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ s
t 8b̃′1(r,Xn,x

r ,P
X
n,x
r

)dr

] 1
4

= E
[
e
∫ s
t

∫
R 8b̂′1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)+
∫ s
t 8b̃′1(r,Bxr ,PXn,xr )drE

(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)] 1
4

,
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we separate the previous expression using Cauchy-Schwarz inequality to

get:

Jn1

≤ E
[
e
∫ s
t

∫
R 8b̂′1,n(r,z,PXn,xr

)LB
x
(dr,dz)+

∫ s
t
8b̃′1(r,B

x
r ,PXn,xr

)drE
(∫ T

0

bn(r,Bxr ,PXn,xr
, αr)dBr

)] 1
4

= E
[
e
∫ s
t

∫
R 16b̂′1,n(r,z,PXn,xr

)LB
x
(dr,dz)+

∫ s
t
16b̃′1(r,B

x
r ,PXn,xr

)dr

] 1
8

E
[
E
(∫ T

0

bn(r,Bxr ,PXn,xr
, αr)dBr

)2] 1
8

another Cauchy-Schwarz inequality yields:

Jn1

≤ E
[
e
∫ s
t

∫
R 32b̂′1,n(r,z,PXn,xr

)LB
x
(dr,dz)

] 1
16

E
[
e
∫ s
t
32b̃′1(r,B

x
r ,PXn,xr

)dr

] 1
16

E
[
E
(∫ T

0

bn(r,Bxr ,PXn,xr
, αr)dBr

)2] 1
8

<∞,

Jn1 is finite because the first term is finite due to Lemma 3.3.3 since b̂1 is

bounded, the second term as well is finite because of the assumption on b̃1

which says that it has bounded space derivative, and the last term is finite

due to Lemma 3.3.2. We continue with Jn2 :

Jn2 = E
[(∫ 1

0

e
θ
∫ t
t′ b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drdθ

)8 ] 1
4

= E
[(∫ 1

0

e
θ
∫ t
t′ b
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr+θ
∫ t
t′ b
′
2(r,Xn,x

r ,αr)drdθ

)8 ] 1
4

next, we apply Cauchy-Schwarz inequality two times and we get:

Jn2 = E
[(∫ 1

0

e
θ
∫ t
t′ b
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr+θ
∫ t
t′ b
′
2(r,Xn,x

r ,αr)drdθ

)8 ] 1
4

≤ E
[(∫ 1

0

e
2θ

∫ t
t′ b
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr
dθ

)4(∫ 1

0

e2θ
∫ t
t′ b
′
2(r,Xn,x

r ,αr)drdθ

)4] 1
4

≤ E
[(∫ 1

0

e
2θ

∫ t
t′ b
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr
dθ

)8] 1
8

E
[(∫ 1

0

e2θ
∫ t
t′ b
′
2(r,Xn,x

r ,αr)drdθ

)8] 1
8
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next, we apply the Minkowski inequality to get:

Jn2 ≤ E
[(∫ 1

0

e
2θ

∫ t
t′ b
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr
dθ

)8] 1
8

E
[(∫ 1

0

e2θ
∫ t
t′ b
′
2(r,Xn,x

r ,αr)drdθ

)8] 1
8

≤
(∫ 1

0

E
[
e

16θ
∫ t
t′ b
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr] 1
8dθ

)(∫ 1

0

E
[
e16θ

∫ t
t′ b
′
2(r,Xn,x

r ,αr)dr

] 1
8

dθ

)
,

we now use the fact that b′2 is bounded by a random variable with expo-

nential moment and we write:

Jn2 ≤ C

(∫ 1

0

E
[
e

16θ
∫ t
t′ b
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr] 1
8dθ

)
.

Let us now evaluate E
[
e

16θ
∫ t
t′ b
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr]
, we have applying the

Girsanov transform with a change of trajectory:

E
[
e

16θ
∫ t
t′ b
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr]
= E

[
e

16θ
∫ t
t′ b
′
1,n(r,Bxr ,PXn,xr )drE

(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)]
≤ E

[
e

32θ
∫ t
t′ b
′
1,n(r,Bxr ,PXn,xr )dr

] 1
2

E
[
E
(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)2] 1
2

,

we then apply the Cauchy-Schwarz inequality two times and we get:

E
[
e

16θ
∫ t
t′ b
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr]
≤ E

[
e

32θ
∫ t
t′ b̂
′
1,n(r,Bxr ,PXn,xr )dr+32θ

∫ t
t′ b̃
′
1(r,Bxr ,PXn,xr )dr

] 1
2

E
[
E
(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)2] 1
2

≤ E
[
e

64θ
∫ t
t′
∫
R b̂
′
1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)

] 1
4

E
[
e

64θ
∫ t
t′ b̃
′
1(r,Bxr ,PXn,xr )dr

] 1
4

E
[
E
(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)2] 1
2

<∞.
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Therefore, using the same reasoning as in the proof of Jn1 , we can assert

that Jn2 is finite. We continue with Jn3 :

Jn3 = E
[(∫ t

t′
b′n(r,Xn,x

r ,PXn,x
r
, αr)dr

)8 ] 1
4

= E
[(∫ t

t′
b′1,n(r,Xn,x

r ,PXn,x
r

)dr +

∫ t

t′
b′2(r,Xn,x

r , αr)dr

)8 ] 1
4

,

≤ E

[
27

(∣∣∣∣∫ t

t′
b′1,n(r,Xn,x

r ,PXn,x
r

)dr

∣∣∣∣8 +

∣∣∣∣∫ t

t′
b′2(r,Xn,x

r , αr)dr

∣∣∣∣8
)] 1

4

,

≤ 27E

[∣∣∣∣∫ t

t′
b′1,n(r,Xn,x

r ,PXn,x
r

)dr

∣∣∣∣8
] 1

4

+ 27E

[∣∣∣∣∫ t

t′
b′2(r,Xn,x

r , αr)dr

∣∣∣∣8
] 1

4

,

let us now evaluate E
[∣∣∣∫ tt′ b′2(r,Xn,x

r , αr)dr
∣∣∣8] 1

8

, we have using the Minkowski

inequality:

E

[∣∣∣∣∫ t

t′
b′2(r,Xn,x

r , αr)dr

∣∣∣∣8
] 1

8

≤
∫ t

t′
E[|b′2(r,Xn,x

r , αr)|8]
1
8dr

≤
∫ t

t′
E[4!e|b

′
2(r,Xn,x

r ,αr)|2 ]
1
8dr

≤ C|t− t′|

let us now evaluate E
[∣∣∣∫ tt′ b′1,n(r,Xn,x

r ,PXn,x
r

)dr
∣∣∣8] 1

8

. In the following, we

will apply the Girsanov transform for a change of trajectory and use the
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Minkowski inequality and the Cauchy-Schwarz inequality to separate terms,

E

[∣∣∣∣∫ t

t′
b′1,n(r,Xn,x

r ,PXn,x
r

)dr

∣∣∣∣8
] 1

8

= E

[∣∣∣∣∫ t

t′
b̂′1,n(r,Xn,x

r ,PXn,x
r

)dr +

∫ t

t′
b̃′1(r,Xn,x

r ,PXn,x
r

)dr

∣∣∣∣8
] 1

8

≤ E

[
27

∣∣∣∣∫ t

t′
b̂′1,n(r,Xn,x

r ,PXn,x
r

)dr

∣∣∣∣8 + 27

∣∣∣∣∫ t

t′
b̃′1,n(r,Xn,x

r ,PXn,x
r

)dr

∣∣∣∣8
] 1

8

≤ CE

[∣∣∣∣∫ t

t′
b̂′1,n(r,Xn,x

r ,PXn,x
r

)dr

∣∣∣∣8
] 1

8

+ CE

[∣∣∣∣∫ t

t′
b̃′1(r,Xn,x

r ,PXn,x
r

)dr

∣∣∣∣8
] 1

8

≤ CE

[∣∣∣∣∫ t

t′
b̂′1,n(r,Xn,x

r ,PXn,x
r

)dr

∣∣∣∣8
] 1

8

+ C||b̃′1||∞|t− t′|

≤ CE

[
E
(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

) ∣∣∣∣∫ t

t′
b̂′1,n(r, Bx

r ,PXn,x
r

)dr

∣∣∣∣8
] 1

8

+ C||b̃′1||∞|t− t′|

≤ CE

[
E
(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)2
] 1

16

E
[ ∣∣∣∣∫ t

t′
b̂′1,n(r, Bx

r ,PXn,x
r

)dr

∣∣∣∣16 ] 1
16

+ C||b̃′1||∞|t− t′|

≤ CE
[ ∣∣∣∣∫ t

t′
b̂′1,n(r, Bx

r ,PXn,x
r

)dr

∣∣∣∣16 ] 1
16

+ C||b̃′1||∞|t− t′|

= CE
[ ∣∣∣∣∫ t

t′

∫
R
b̂′1,n(r, z,PXn,x

r
)LB

x

(dr, dz)

∣∣∣∣16 ] 1
16

+ C||b̃′1||∞|t− t′|,
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let us continue with E
[ ∣∣∣∫ tt′ ∫R b̂′1,n(r, z,PXn,x

r
)LB

x
(dr, dz)

∣∣∣16
] 1

16

, using the

decomposition in (3.22), the expression becomes:

E

[∣∣∣∣∫ t

t′

∫
R
b̂1,n(r, z,PXn,xr

)LB
x

(dr, dz)

∣∣∣∣16
] 1

16

= E
[∣∣∣∣ ∫ t

t′
b̂1,n(r,Bxr ,PXn,xr

)dBr +

∫ T−t′

T−t
b̂1,n(T − r, B̂xr ,PXn,xr

)dWr

−
∫ T−t′

T−t
b̂1,n(T − r, B̂xr ,PXn,xr

)
B̂r
T − r

dr

∣∣∣∣16] 1
16

≤ CE
[ ∣∣∣∣∫ t

t′
b̂1,n(r,Bxr ,PXn,xr

)dBr

∣∣∣∣16 +

∣∣∣∣∣
∫ T−t′

T−t
b̂1,n(T − r, B̂xr ,PXn,xr

)dWr

∣∣∣∣∣
16

+

∣∣∣∣∣
∫ T−t′

T−t
b̂1,n(T − r, B̂xr ,PXn,xr

)
B̂r
T − r

dr

∣∣∣∣∣
16 ] 1

16

,

≤ CE
[ ∣∣∣∣ sup

0≤t≤T

∫ t

t′
b̂1,n(r,Bxr ,PXn,xr

)dBr

∣∣∣∣16 +

∣∣∣∣∣ sup
0≤t≤T

∫ T−t′

T−t
b̂1,n(T − r, B̂xr ,PXn,xr

)dWr

∣∣∣∣∣
16

+

∣∣∣∣∣
∫ T−t′

T−t
b̂1,n(T − r, B̂xr ,PXn,xr

)
B̂r
T − r

dr

∣∣∣∣∣
16 ] 1

16

,

after applying the Burkholder-Davis-Gundy inequality on the martingale

terms, we get,

E

[∣∣∣∣∫ t

t′

∫
R
b̂1,n(r, z,PXn,x

r
)LB

x

(dr, dz)

∣∣∣∣16
] 1

16

≤ CE
[(∫ t

t′

∣∣∣b̂1,n(r, Bx
r ,PXn,x

r
)
∣∣∣2 dr)8

+

(∫ T−t′

T−t

∣∣∣b̂1,n(T − r, B̂x
r ,PXn,x

r
)
∣∣∣2 dr)8

+

∣∣∣∣∣
∫ T−t′

T−t
b̂1,n(T − r, B̂x

r ,PXn,x
r

)
B̂r

T − r
dr

∣∣∣∣∣
16 ] 1

16

,

≤ CE

[(∫ t

t′

∣∣∣b̂1,n(r, Bx
r ,PXn,x

r
)
∣∣∣2 dr)8

] 1
16

+ CE

(∫ T−t′

T−t

∣∣∣b̂1,n(T − r, B̂x
r ,PXn,x

r
)
∣∣∣2 dr)8

 1
16

+ CE

∣∣∣∣∣
∫ T−t′

T−t
b̂1,n(T − r, B̂x

r ,PXn,x
r

)
B̂r

T − r
dr

∣∣∣∣∣
16
 1

16

,

since b̂1,n is uniformly bounded, we have,

E

[∣∣∣∣∫ t

t′

∫
R
b̂1,n(r, z,PXn,xr

)LB
x

(dr, dz)

∣∣∣∣16
] 1

16

≤ C|t− t′| 12 ||b̂1,n||∞ + C||b̂1,n||∞E

∣∣∣∣∣
∫ T−t′

T−t

BT−r
T − r

dr

∣∣∣∣∣
16
 1

16

,
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let us evaluate separately E
[∣∣∣∫ T−t′T−t

BT−r
T−r dr

∣∣∣16
] 1

16

,

E

∣∣∣∣∣
∫ T−t′

T−t

BT−r

T − r
dr

∣∣∣∣∣
16
 1

16

=

∫
Ω

∣∣∣∣∣
∫ T−t′

T−t

BT−r

T − r
dr

∣∣∣∣∣
16

dP

 1
16

,

=

∫
Ω

∣∣∣∣∣
∫ T−t′

T−t

1√
T − r

BT−r√
T − r

dr

∣∣∣∣∣
16

dP

 1
16

,

=

∫ ∞
−∞

∣∣∣∣∣
∫ T−t′

T−t

1√
T − r

zdr

∣∣∣∣∣
16

1√
2π
e−

z2

2 dz

 1
16

,

=

∣∣∣∣∣
∫ T−t′

T−t

1√
T − r

dr

∣∣∣∣∣
16 ∫ ∞

−∞
|z|16 1√

2π
e−

z2

2 dz

 1
16

,

≤ C

∣∣∣∣∣
∫ T−t′

T−t

1√
T − r

dr

∣∣∣∣∣ ,
= C|t′

1
2 − t

1
2 |,

≤ C|t′ − t|
1
2 ,

the last inequality coming from the following version of the triangular in-

equality:

|v
1
p − w

1
p | ≤ 2|v − w|

1
p , for any real number v, w > 0 and for any p > 1.

Therefore, we have:

E

[∣∣∣∣∫ t

t′

∫
R
b̂1,n(r, z,PXn,x

r
)LB

x

(dr, dz)

∣∣∣∣16
] 1

16

≤ C|t− t′|
1
2 ||b̂1,n||∞ + C||b̂1,n||∞E

∣∣∣∣∣
∫ T−t′

T−t

BT−r

T − r
dr

∣∣∣∣∣
16
 1

16

≤ C|t− t′|
1
2 ||b̂1,n||∞ + C|t− t′|

1
2 ||b̂1,n||∞,

≤ C|t− t′|
1
2 ||b̂1,n||∞,
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thus, we can find a constant C such that:

E

[∣∣∣∣∫ t

t′

∫
R
b̂1,n(r, z,PXn,x

r
)LB

x

(dr, dz)

∣∣∣∣16
] 1

16

≤ C|t− t′|
1
2 ,

since we had,

Jn3 ≤ 27E

[∣∣∣∣∫ t

t′
b′1,n(r,Xn,x

r ,PXn,x
r

)dr

∣∣∣∣8
] 1

4

+ 27E

[∣∣∣∣∫ t

t′
b′2(r,Xn,x

r , αr)dr

∣∣∣∣8
] 1

4

,

≤ CE
[ ∣∣∣∣∫ t

t′

∫
R
b̂′1,n(r, z,PXn,x

r
)LB

x

(dr, dz)

∣∣∣∣16 ] 1
8

+ C||b̃′1||2∞|t− t′|2 + C|t− t′|2,

≤ C|t− t′|||b̂1,n||2∞ + C||b̃′1||2∞|t− t′|2 + C|t− t′|2

≤ C|t− t′|,

after obtaining all these estimates, let us return back to E[|I1|2], we had:

E[|I1|2] ≤ CJn1 · Jn2 · Jn3 ,

≤ C|t− t′|,

Second step: we compute E[|I2|2]:

E[|I2|2] = E

[(∫ t

t′
e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDt′b2(u,Xn,x
u , αu)du

)2
]
,

after applying the Cauchy-Schwarz inequality several times, we get,

E[|I2|2]

= E

[(∫ t

t′
e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drDt′b2(u,Xn,x
u , αu)du

)2
]

≤ E
[(∫ t

t′
(Dt′b2(u,Xn,x

u , αu))
2du

)
·
(∫ t

t′
e
−2

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drdu

)]
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≤ E
[(∫ t

t′
(Dt′b2(u,Xn,x

u , αu))
2du

)2 ] 1
2

· E
[(∫ t

t′
e
−4

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drdu

)] 1
2

≤ E

[(∫ t

t′
|M̃2(u, t′, ω)|2du

)4
] 1

4

E
[(∫ t

t′
e
−4

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)drdu

)] 1
2

≤ CLpE
[(∫ t

t′
e
−8

∫ u
s b
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr
du

)] 1
4

E
[(∫ t

t′
e−8

∫ u
s b
′
2(r,Xn,x

r ,αr)drdu

)] 1
4

≤ CLpE
[(∫ t

t′
e
−16

∫ u
s b̂
′
1,n(r,Xn,x

r ,P
X
n,x
r

)dr
du

)] 1
8

E
[(∫ t

t′
e
−16

∫ u
s b̃
′
1(r,Xn,x

r ,P
X
n,x
r

)dr
du

)] 1
8

×
(∫ t

t′
E
[
e−8

∫ u
s b
′
2(r,Xn,x

r ,αr)dr
]
du

) 1
4

we now apply the Girsanov transform to get:

E[|I2|2]

≤ CLpE
[(∫ t

t′
e
−16

∫ u
s b̂
′
1,n(r,Bxr ,PXn,xr )dr

du

)
E
(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)] 1
8

× E
[(∫ t

t′
e
−16

∫ u
s b̃
′
1(r,Xn,x

r ,P
X
n,x
r

)dr
du

)] 1
8

×
(∫ t

t′
E
[
e−8

∫ u
s b
′
2(r,Xn,x

r ,αr)dr
]
du

) 1
4

≤ CLpE
[(∫ t

t′
e
−16

∫ u
s b̂
′
1,n(r,Bxr ,PXn,xr )dr

du

)
E
(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)] 1
8

× |t− t′|
1
8 × |t− t′|

1
4

≤ CLpE
[(∫ t

t′
e
−16

∫ u
s

∫
R b̂1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)
du

)2 ] 1
16

× E
[
E
(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)2 ] 1
16

|t− t′|
1
8 × |t− t′|

1
4

≤ CLp

(∫ t

t′
E
[
e
−32

∫ u
s

∫
R b̂1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)] 1
2du

) 1
8

|t− t′|
1
8 × |t− t′|

1
4 ,

≤ CLp|t− t′|
1
2 ,

by Lemma 3.3.2, we have E
[
E
(∫ T

0
bn(r, Bx

r ,PXn,x
r
, αr)dBr

)2
]

which is fi-

nite, and also, we used the following assumption:

Lp := sup0≤t′≤T E
[(∫ T

0
|L̂(u, t′, ω)|2du

)4
]
<∞,
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third step: we compute E[|I3|2]:

E[|I3|2] = E

[(∫ s

t

e
−

∫ u
s b
′
n(r,Xn,x

r ,P
X
n,x
r

,αr)dr(Dt′b2(u,Xn,x
u , αu)−Dtb2(u,Xn,x

u , αu))du

)2
]
,

after applying Cauchy-Schwarz inequality, we get,

E[|I3|2] ≤ E
[(∫ s

t

e−
∫ u
s

2b′n(r,X
n,x
r ,PXn,xr

,αr)drdu

)(∫ s

t

|Dt′b2(u,Xn,x
u , αu)−Dtb2(u,Xn,x

u , αu)|2du
)]

,

we next apply the Cauchy-Schwarz inequality and the Minkowski inequality

to get,

E[|I3|2]

≤ E
[(∫ s

t

e−
∫ u
s

2b′n(r,X
n,x
r ,PXn,xr

,αr)drdu

)(∫ s

t

|Dt′b2(u,Xn,x
u , αu)−Dtb2(u,Xn,x

u , αu)|2du
)]

≤ E
[(∫ s

t

e−
∫ u
s

2b′n(r,X
n,x
r ,PXn,xr

,αr)drdu

)2 ] 1
2

E
[(∫ s

t

|Dt′b2(u,Xn,x
u , αu)−Dtb2(u,Xn,x

u , αu)|2du
)2 ] 1

2

≤
(∫ s

t

E
[
e−

∫ u
s

4b′n(r,X
n,x
r ,PXn,xr

,αr)dr
] 1

2 du

)
E
[(∫ s

t

|Dt′b2(u,Xn,x
u , αu)−Dtb2(u,Xn,x

u , αu)|2du
)2 ] 1

2

≤
(∫ s

t

E
[
e−

∫ u
s

16b̂′1,n(r,X
n,x
r ,PXn,xr

)dr] 1
8E
[
e−

∫ u
s

16b̃′1(r,X
n,x
r ,PXn,xr

)dr] 1
8E
[
e−

∫ u
s

8b′2(r,X
n,x
r ,PXn,xr

,αr)dr
] 1

4 du

)
×
(∫ s

t

E
[
|Dt′b2(u,Xn,x

u , αu)−Dtb2(u,Xn,x
u , αu)|4

] 1
2 du

)
≤ C

(∫ s

t

E
[
e−

∫ u
s

16b̂′1,n(r,X
n,x
r ,PXn,xr

)dr] 1
8 du

)
× |s− t||t− t′|

β
2

≤ C
(∫ s

t

E
[
e−

∫ u
s

∫
R 32b̂′1,n(r,z,PXn,xr

)LB
x
(dr,dz)] 1

16E
[
E

(∫ T

0

bn(r,Bxr ,PXn,xr
, αr)dBr

)2 ] 1
16

du

)
× |s− t||t− t′|

β
2

≤ C|s− t|2|t− t′|
β
2 .

Therefore,

E[|I3|2] ≤ C|s− t|2|t− t′|
β
2 .

After putting everything together, we get the compactness argument as

follows,

E[|Dt′X
n,x
s −DtX

n,x
s |2] ≤ 3E[|I1|2] + 3E[|I2|2] + 3E[|I3|2],

≤ 3|t− t′|+ 3CLp |t− t′|
1
2 + 3CT 2|t− t′|

β
2 ,

≤ CT,Lp |t− t′|m,
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where we can find a constant CT,Lp depending on T and Lp, with m =

min

(
1

2
,
β

2

)
. Consequently, the first part of Lemma 3.3.1 is proved. For

the second part, let us notice that taking t′ > s yields Dt′X
n,x
s = 0, which

means:

sup
0≤t≤T

E[|DtX
n,x
s |2] ≤ CT,Lp ,

and this is the end of the proof.

3.4 Weak convergence of Xn,x
t to E[Xx

t |Ft] in L2

This step consists in proving that the aforementioned sequence (Xn,x
t )n≥0

weakly converges to E[Xx
t |Ft] in the space L2 for each 0 ≤ t ≤ T . Therefore,

we state the following lemma:

Lemma 3.4.1. Assume Le < ∞ and Ω is considered to be the canonical

space. We consider a sequence b1,n : [0, T ]× R→ R, n ≥ 1 as expressed in

(3.12), and we denote by (Xn,x
t )n≥1 the corresponding strong solutions to

the MFSDE (3.13). Hence, for each 0 ≤ t ≤ T with T sufficiently small, for

each function κ : R→ R of polynomial growth, the sequence (κ(Xn,x
t ))n≥1

is uniformly bounded in L2 and weakly converges to E[κ(Xx
t )|Ft] in this

space.

Proof of Lemma 3.4.1. As done in Lemma 2.5 in Menoukeu-Pamen & Tangpi

(2019), let us first show that (κ(Xn,x
t ))n≥1 is uniformly bounded in L2.

sup
n≥1

E[|κ(Xn,x
t )|2] = E

[
E
(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)
|κ(Bx

t )|2
]
,

after applying Cauchy-Schwarz inequality, we get,

sup
n≥1

E[|κ(Xn
t )|2] ≤ E

[
E
(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)2
] 1

2

E
[
|κ(Bx

t )|4
] 1

2 ,

≤

(
sup
x∈K

E

[
E
(∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)2
]) 1

2

E
[
|κ(Bx

t )|4
] 1

2 ,
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after applying Lemma 3.3.2, we have,

sup
n≥1

E[|κ(Xn,x
t )|2] ≤ CE

[
|κ(Bx

t )|4
] 1

2 ,

let us now evaluate E [|κ(Bx
t )|4] ,

E
[
|κ(Bx

t )|4
]

=
1√
2πt

∫
R
|κ(x+ z)|4e−

|z|2
2t dz,

since κ is of polynomial growth and also using the following inequality,

(v + w)q ≤ 2q−1(vq + wq),

we have,

E
[
|κ(Bx

t )|4
]

=
1√
2πt

∫
R
|κ(x+ z)|4e−

|z|2
2t dz,

≤ 1√
2πt

∫
R
C(1 + |x+ z|4)e−

|z|2
2t dz,

≤ C√
2πt

∫
R
(1 + |x|4 + |z|4)e−

|z|2
2t dz,

=
C√
2πt

∫
R
(1 + |z|4)e−

|z|2
2t dz +

C√
2πt

∫
R
|x|4e−

|z|2
2t dz,

given the following bound:

(1 + |z|p)e−
|z|2
2s < Cpe

− |z|2

2p+1s ,

we get,

E
[
|κ(Bx

t )|4
]
<

C√
2πt

∫
R
e−
|z|2

25t dz +
C√
2πt

∫
R
|x|4e−

|z|2
2t dz,

<∞,

therefore,

sup
n≥1

E[|κ(Xn,x
t )|2] ≤ CE

[
|κ(x+Bt)|4

] 1
2 ,

<∞,
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after establishing the boundedness of (κ(Xn,x
t ))n≥1, let us now show that the

sequence (κ(Xn,x
t ))n≥1 converges weakly to E[κ(Xx

t )|Ft], in L2. The space,

{
E
(∫ T

0

ϕ̇udBu

)
: ϕ ∈ C1

b ([0, T ],R)

}
(3.25)

spans L2(Ω,P). ϕ̇ is the derivative of ϕ with respect to time, C1
b ([0, T ],R)

is the space of continuous bounded functions that are differentiable on

[0, T ] and with values in R. Consequently, we show the weak conver-

gence of (κ(Xn,x
t ))≥1 to E[Xx

t |Ft] by proving convergence in expectation

of
(
κ(Xn,x

t )E
(∫ T

0
ϕ̇udBu

))
n≥1

to E [κ(Xx
t )|Ft] E

(∫ T
0
ϕ̇udBu

)
. Since Ω is a

Wiener space, the Cameron-Martin theorem states that for every κ mea-

surable,

E
[
κ(Xx

t )E
(∫ T

0

ϕ̇udBu

)]
=

∫
Ω

κ(Xx
t (ω + ϕ))dP(ω), (3.26)

let ϕ ∈ C1
b ([0, T ],R), the process X̃n,x defined by X̃n,x(ω) := Xn,x(ω + ϕ)

is solution to the stochastic differential equation,

dX̃n,x
t = (b1,n(t, X̃n,x

t ,PXn,x
t

) + b̃2(t, X̃n,x
t , αt) + ϕ̇t)dt+ dBt, (3.27)

for every n ≥ 1, where b̃2(t, z, α(ω)) = b2(t, z, α(ω + ϕ)). To see where the

state dynamics for X̃n,x
t comes from, let Γ ∈ L2(Ω,P), make use 3.26 and

the fact that Xn,x is solution of the stochastic differential equation 3.13 to

obtain:

E[X̃n,x
t Γ(ω)]

= E[Xn,x
t (ω + ϕ)Γ(ω)] = E

[
Xn,x
t (ω)Γ(ω − ϕ)E

(∫ T

0

ϕ̇udBu

)]

= E

[(
x+

∫ t

0

(
b1,n(u,Xn,x

u ,PXn,xu
) + b2(u,Xn,x

u , αu)
)
du+Bt(ω)

)
Γ(ω − ϕ)E

(∫ T

0

ϕ̇udBu

)]

= E
[(
x+

∫ t

0

(
b1,n(u,Xn,x

u (ω + ϕ),PXn,xu
) + b2(u,Xn,x

u (ω + ϕ), αu(ω + ϕ)
)
du+Bt(ω + ϕ)

)
Γ(ω)

]
= E

[(
x+

∫ t

0

(
b1,n(u,Xn,x

u (ω + ϕ),PXn,xu
) + b2(u,Xn,x

u (ω + ϕ), αu(ω + ϕ)
)
du+Bt(ω) + ϕ

)
Γ(ω)

]
= E

[(
x+

∫ t

0

(
b1,n(u,Xn,x

u (ω + ϕ),PXn,xu
) + b2(u,Xn,x

u (ω + ϕ), αu(ω + ϕ) + ϕ̇u
)
du+Bt(ω)

)
Γ(ω)

]
,
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where the last equality holds true to the fact that Bt(ω + ϕ) = Bt(ω) +

ϕ, since B is by definition the canonical process. Consequently, the last

equality shows that X̃n,x(ω) := Xn,x(ω + ϕ) satisfies the dynamics 3.27

P− a.s.. Now, let us get back to showing that
(
κ(Xn,x

t )E
(∫ T

0
ϕ̇udBu

))
n≥1

converges to E [κ(Xt)|Ft] E
(∫ T

0
ϕ̇udBu

)
in expectation. We denote,



b̃n(t, X̃n,x
t ,PXn,x

t
, αt) = bn(t, X̃n,x

t ,PXn,x
t
, αt(ω + ϕ))

= b1,n(t, X̃n,x
t ,PXn,x

t
) + b2(t, X̃n,x

t , αt(ω + ϕ))

= b1,n(t, X̃n,x
t ,PXn,x

t
) + b̃2(t, X̃n,x

t , αt),

b̃(t, X̃t,PXx
t
, αt) = b(t, X̃x

t ,PXx
t
, αt(ω + ϕ))

= b1(t, X̃x
t ,PXx

t
) + b2(t, X̃x

t , αt(ω + ϕ))

= b1(t, X̃x
t , µt) + b̃2(t, X̃x

t , αt),

(3.28)

we have,

E

[
κ(Xn,x

t )E

(∫ T

0

ϕ̇rdBr

)
− E [κ(Xx

t )|Ft] E

(∫ T

0

ϕ̇rdBr

)]

= E

[
κ(Xn,x

t )E

(∫ T

0

ϕ̇rdBr

)]
− E

[
κ(Xx

t )E

(∫ T

0

ϕ̇rdBr

)]

= E

[
(κ(Xn,x

t )− κ(Xx
t ))E

(∫ T

0

ϕ̇rdBr

)]
= E

[
κ(X̃n,x

t )− κ(X̃x
t )
]

= E

[
κ(Bxt )E

(∫ T

0

(
b̃n(r,Bxr ,PXn,xr

, αr) + ϕ̇r
)
dBr

)
− κ(Bxt )E

(∫ T

0

(
b̃(r,Bxr ,PXxr , αr) + ϕ̇r

)
dBr

)]

= E

[
κ(Bxt )

(
E

(∫ T

0

(
b̃n(r,Bxr ,PXn,xr

, αr) + ϕ̇r
)
dBr

)
− E

(∫ T

0

(
b̃(r,Bxr ,PXxr , αr) + ϕ̇r

)
dBr

))]
,

applying the inequality |ev − ew| ≤ |ev + ew||v − w|, we get,

E

[
κ(Xn,x

t )E

(∫ T

0

ϕ̇rdBr

)
− E [κ(Xx

t )|Ft] E

(∫ T

0

ϕ̇rdBr

)]

≤ E

[
|κ(Bxt )|

∣∣∣∣∣E
(∫ T

0

(
b̃n(r,Bxr ,PXn,xr

, αr) + ϕ̇r
)
dBr

)
− E

(∫ T

0

(
b̃(r,Bxr ,PXxr , αr) + ϕ̇r

)
dBr

)∣∣∣∣∣
]
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≤ E
[
|κ(Bxt )|

∣∣∣∣∣E
(∫ T

0

(
b̃n(r,Bxr ,PXn,xr

, αr) + ϕ̇r
)
dBr

)
+ E

(∫ T

0

(
b̃(r,Bxr ,PXxr , αr) + ϕ̇r

)
dBr

)∣∣∣∣∣
×
∣∣∣∣ ∫ T

0

(
b̃n(r,Bxr ,PXn,xr

, αr) + ϕ̇r
)
dBr −

1

2

∫ T

0

(b̃n(r,Bxr ,PXn,xr
, αr) + ϕ̇r)

2dr

−
∫ T

0

(
b̃(r,Bxr ,PXxr , αr) + ϕ̇r

)
dBr +

1

2

∫ T

0

(b̃(r,Bxr ,PXxr , αr) + ϕ̇r)
2dr

∣∣∣∣],
below we separate the two Doléans-Dade exponentials from the remaining

terms using the Cauchy-Schwarz inequality and we apply Lemma 3.3.2:

E

[
κ(Xn,x

t )E

(∫ T

0

ϕ̇rdBr

)
− E [κ(Xx

t )|Ft] E

(∫ T

0

ϕ̇rdBr

)]

≤ E
[
|κ(Bxt )|2

∣∣∣∣ ∫ T

0

b̃n(r,Bxr ,PXn,xr
, αr)− b̃(r,Bxr ,PXxr , αr)dBr

− 1

2

∫ T

0

(b̃n(r,Bxr ,PXn,xr
, αr) + ϕ̇r)

2 − (b̃(r,Bxr ,PXxr , αr) + ϕ̇r)
2dr

∣∣∣∣2] 1
2

× E
[ ∣∣∣∣∣E

(∫ T

0

(
b̃n(r,Bxr ,PXn,xr

, αr) + ϕ̇r
)
dBr

)
+ E

(∫ T

0

(
b̃(r,Bxr ,PXxr , αr) + ϕ̇r

)
dBr

)∣∣∣∣∣
2 ] 1

2

≤ E[|κ(Bxt )|4]
1
4

× E
[∣∣∣∣ ∫ T

0

(
b̃n(r,Bxr ,PXn,xr

, αr)− b̃(r,Bxr ,PXxr , αr)
)
dBr −

1

2

∫ T

0

(
(b̃n(r,Bxr ,PXn,xr

, αr) + ϕ̇r)
2

− (b̃(r,Bxr ,PXxr , αr) + ϕ̇r)
2
)
dr

∣∣∣∣4] 1
4

× E
[∣∣∣∣E

(∫ T

0

(
b̃n(r,Bxr ,PXn,xr

, αr) + ϕ̇r
)
dBr

)

+ E
(∫ T

0

(
b̃(r,Bxr ,PXxr , αr) + ϕ̇r

)
dBr

)∣∣∣∣2] 1
2

= J1 × Jn2 × Jn3 ,

we have shown before that E[|κ(Bx
r )|4] is finite, therefore J1 < ∞. Next,

we continue with Jn3 ,

Jn3

= E

∣∣∣∣∣E
(∫ T

0

(
b̃n(r,Bxr ,PXn,xr

, αr) + ϕ̇r
)
dBr

)
+ E

(∫ T

0

(
b̃(r,Bxr ,PXxr , αr) + ϕ̇r

)
dBr

)∣∣∣∣∣
2
 1

2

≤

2E

E (∫ T

0

(
b̃n(r,Bxr ,PXn,xr

, αr) + ϕ̇r
)
dBr

)2
+ 2E

E (∫ T

0

(
b̃(r,Bxr ,PXxr , αr) + ϕ̇r

)
dBr

)2
 1

2

≤ CE

E (∫ T

0

(
b̃n(r,Bxr ,PXn,xr

, αr) + ϕ̇r
)
dBr

)2
 1

2

+ CE

E (∫ T

0

(
b̃(r,Bxr ,PXxr , αr) + ϕ̇r

)
dBr

)2
 1

2

<∞.
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The last line holds true due to Lemma 3.3.2. Indeed, Jn3 is bounded

uniformly in n. Let us continue with Jn2 , we have:

Jn2

= E
[∣∣∣∣ ∫ T

0

(
b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)

)
dBr

− 1

2

∫ T

0

(
(b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r)

2 − (b̃(r, Bx
r ,PXx

r
, αr) + ϕ̇r)

2
)
dr

∣∣∣∣4] 1
4

≤ CE
[∣∣∣∣ ∫ T

0

(
b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)

)
dBr

∣∣∣∣4
+

∣∣∣∣ ∫ T

0

(
(b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r)

2 − (b̃(r, Bx
r ,PXx

r
, αr) + ϕ̇r)

2
)
dr

∣∣∣∣4] 1
4

≤ CE
[∣∣∣∣ ∫ T

0

(
b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)

)
dBr

∣∣∣∣4] 1
4

+ CE
[∣∣∣∣ ∫ T

0

(
(b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r)

2 − (b̃(r, Bx
r ,PXx

r
, αr) + ϕ̇r)

2
)
dr

∣∣∣∣4] 1
4

,

let us now evaluate E
[∣∣∣∣ ∫ T0 (b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)

)
dBr

∣∣∣∣4] 1
4

,

we have:

E
[∣∣∣∣ ∫ T

0

(
b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)

)
dBr

∣∣∣∣4] 1
4

≤ E
[∣∣∣∣ sup

0≤t≤T

∫ t

0

(
b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)

)
dBr

∣∣∣∣4] 1
4

,

after applying Burkholder-Davis-Gundy inequality, we get,

E
[∣∣∣∣ ∫ T

0

(
b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)

)
dBr

∣∣∣∣4] 1
4

≤ E
[∣∣∣∣ sup

0≤t≤T

∫ t

0

(
b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)

)
dBr

∣∣∣∣4] 1
4

,

≤ CE
[(∫ T

0

|b̃n(r, Bx
r ,PXn,x

r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)|2dr

)2] 1
4

,
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after applying the Minkowski inequality to the expression above, we get,

E
[∣∣∣∣ ∫ T

0

(
b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)

)
dBr

∣∣∣∣4] 1
4

≤
(∫ T

0

(∫
αr

|b̃n(r, Bx
r ,PXx

r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)|4dP

) 1
2

dr

) 1
2

=

(∫ T

0

E
[
|b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)|4

] 1
2
dr

) 1
2

,

we continue as follows,

E
[
|b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)|4

] 1
4

= E
[
|b1,n(r, Bx

r ,PXn,x
r

) + b̃2(r, Bx
r , αr)− b1(r, Bx

r ,PXx
r
)− b̃2(r, Bx

r , αr)|4
] 1

4

≤ CE
[
|b1,n(r, Bx

r ,PXn,x
r

)− b1,n(r, Bx
r ,PXx

r
)|4

+ |b1,n(r, Bx
r ,PXx

r
, αr)− b1(r, Bx

r ,PXx
r
, αr)|4

] 1
4

≤ CK(PXn,x
r
,PXx

r
) + E[|b1,n(r, Bx

r ,PXx
r
)− b1(r, Bx

r ,PXx
r
)|4]

1
4

= CK(PXn,x
r
,PXx

r
) +

(∫
R
|b1,n(r, z,PXx

r
)− b1(r, z,PXx

r
)|4 1√

2πr
e−

(z−x)2
2r dz

) 1
4

= CK(PXn,x
r
,PXx

r
) +

(∫
R
|b1,n(r, z,PXx

r
)− b1(r, z, µr)|4

1√
2πr

e−
z2

4r e−
(z−2x)2

4r e
x2

2r dz

) 1
4

≤ CK(PXn,x
r
,PXx

r
) + e

x2

8r

(∫
R
|b1,n(r, z,PXx

r
)− b1(r, z,PXx

r
)|4 1√

2πr
e−

z2

4r dz

) 1
4

,

the last inequality follows from the following inequality,

e−
(z−x)2

2r = e−
z2

4r e−
(z−2x)2

4r e
x2

2r ,

≤ e−
z2

4r e
x2

2r .

Therefore, we obtain:

E
[
|b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)|4

] 1
4

≤ CK(PXn,x
r
,PXx

r
) + e

x2

8r

(∫
R
|b1,n(r, z,PXx

r
)− b1(r, z,PXx

r
)|4 1√

2πr
e−

z2

4r dz

) 1
4

,

the second term will converge by dominated convergence as n grows large.

55

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



We are left with showing that K(PXn,x
r
,PXx

r
) will converge to 0 as n grows

large. By definition, we have:

K(PXn,xr
,PXxr ) ≤ E[|Xn,x

r −Xx
r |]

= E
[
|Bxr |

∣∣∣∣E
(∫ T

0

bn(u,Bxu,PXn,xu
, αu)dBu

)
− E

(∫ T

0

b(u,Bxu,PXxu , αu)dBu

)∣∣∣∣]

≤ E
[
|Bxr |2

] 1
2E
[∣∣∣∣E

(∫ T

0

bn(u,Bxu,PXn,xu
, αu)dBu

)
− E

(∫ T

0

b(u,Bxu,PXxu , αu)dBu

)∣∣∣∣2] 1
2

,

(3.29)

since E
[
|Bx

r |2
] 1

2 is finite, convergence follows by application of Lemma 3.5.5.

We continue by evaluating the second term of Jn2 which is,

E
[∣∣∣∣ ∫ T0 ((b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r)

2 − (b̃(r, Bx
r ,PXx

r
, αr) + ϕ̇r)

2
)
dr

∣∣∣∣4] 1
4

, we

also apply the Minkowski inequality to get,

E
[∣∣∣∣ ∫ T

0

(
(b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r)

2 − (b̃(r, Bx
r ,PXx

r
, αr) + ϕ̇r)

2
)
dr

∣∣∣∣4] 1
4

≤
∫ T

0

E
[∣∣(b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r)

2 − (b̃(r, Bx
r ,PXx

r
, αr) + ϕ̇r)

2
∣∣4] 1

4dr

=

∫ T

0

E
[∣∣(b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r)

2 − (b̃(r, Bx
r ,PXx

r
, αr) + ϕ̇r)

2
∣∣4] 1

4dr

≤
∫ T

0

E
[∣∣(b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r)− (b̃(r, Bx

r ,PXx
r
, αr) + ϕ̇r)

∣∣8] 1
8

× E
[∣∣(b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r) + (b̃(r, Bx

r ,PXx
r
αr) + ϕ̇r)

∣∣8] 1
8dr,

where the last inequality holds by using the following identity:

v2 − w2 = (v − w)(v + w),

since the estimate (3.34) in Lemma 3.5.2 states that:

sup
x∈K

E

[
sup
t∈[0,T ]

|b(t,Xx
t ,PXx

t
, αt)|p

]
<∞,
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we have:

E
[∣∣(b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r) + (b̃(r, Bx

r ,PXx
r
αr) + ϕ̇r)

∣∣8] <∞,
we can continue as follows:

E
[∣∣∣∣ ∫ T

0

(
(b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r)

2 − (b̃(r, Bx
r ,PXx

r
, ω) + ϕ̇r)

2
)
dr

∣∣∣∣4] 1
4

≤ C

∫ T

0

E
[∣∣(b̃n(r, Bx

r ,PXn,x
r
, αr) + ϕ̇r)− (b̃(r, Bx

r ,PXx
r
, αr) + ϕ̇r)

∣∣8] 1
8dr

≤ C

∫ T

0

E
[∣∣b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)

∣∣8] 1
8dr

≤ C

∫ T

0

(
E
[∣∣b1,n(r, Bx

r ,PXn,x
r

)− b1(r, Bx
r ,PXx

r
) + b̃2(r, Bx

r , αr)− b̃2(r, Bx
r , αr)

∣∣8] 1
8
)
dr

= C

∫ T

0

E
[∣∣b1,n(r, Bx

r ,PXn,x
r

)− b1(r, Bx
r ,PXx

r
)
∣∣8] 1

8dr

= C

∫ T

0

E
[∣∣b1,n(r, Bx

r ,PXn,x
r

)− b1,n(r, Bx
r ,PXx

r
) + b1,n(r, Bx

r ,PXx
r
)− b1(r, Bx

r ,PXx
r
)
∣∣8] 1

8dr

≤ C

∫ T

0

(
E
[∣∣b1,n(r, Bx

r ,PXn,x
r

)− b1,n(r, Bx
r ,PXx

r
)
∣∣8] 1

8 + E
[∣∣b1,n(r, Bx

r ,PXx
r
)

− b1(r, Bx
r ,PXx

r
)
∣∣8] 1

8
)
dr

≤ C

∫ T

0

K(PXn,x
r
,PXx

r
) + e

x2

16r

(∫
R
|b1,n(r, z,PXx

r
)− b1(r, z,PXx

r
)|8 1√

2πr
e−

z2

4r dz

) 1
8

dr

combining the results for Jn2 , we get,

Jn2 ≤ C
{∫ T

0

[
K(PXn,x

r
,PXx

r
) + e

x2

8r

(∫
R
|b1,n(r, z,PXx

r
)− b1(r, z,PXx

r
)|4 1√

2πr
e−

x2

4r dz

) 1
4
]2

dr

} 1
2

+ C

∫ T

0
K(PXn,x

r
,PXx

r
) + e

x2

16r

(∫
R
|b̃1,n(r, z,PXx

r
)− b̃1(r, z,PXx

r
)|8 1√

2πr
e−

z2

4r dz

) 1
8

dr,

as n→∞, we have Jn2 → 0 by dominated convergence and by convergence

of K(PXn,x
r
,PXx

r
) towards 0 as n tends to∞, which has shown when proving

the convergence of E
[
|b̃n(r, Bx

r ,PXn,x
r
, αr)− b̃(r, Bx

r ,PXx
r
, αr)|4

] 1
4
. As n →

∞, we have J1 finite, Jn3 finite and Jn2 → 0.

Thus, E
[
κ(Xn,x

t )E
(∫ T

0
ϕ̇rdBr

)
− E [κ(Xx

t )|Ft] E
(∫ T

0
ϕ̇rdBr

)]
tends to 0 as

n→∞. Proving therefore the weak convergence of κ(Xn,x
t ) to E[κ(Xx

t )|Ft].
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This is where we end our proof.

Before going to the final part, let us state and prove the following proposi-

tion:

Proposition 3.4.0.1. For any t such that 0 ≤ t ≤ T with T sufficiently

small, and z ∈ R, we have strong convergence of the sequence (Xn,x
t )n≥1 of

strong solutions of the stochastic differential equation (3.13) to E[Xx
t |Ft] =

Xx
t in L2(Ω,P;R).

Proof of Proposition 3.4.0.1. The starting point of our argument is to no-

tice that by the compactness argument in Lemma 3.3.1, for each t such that

0 ≤ t ≤ T , we can find a subsequence (Xnk,x
t )k≥1 that converges strongly

to E[Xx
t |Ft] in L2(Ω,P). We can notice from Lemma 3.4.1 that we get by

considering κ(z) = z, z ∈ R that (Xn,x
t )n≥1 weakly converges in L2(Ω,P) to

E[Xx
t |Ft]. Consequently, by the uniqueness of the limit, we can find a sub-

sequence (nk)k≥1 such that we have (Xnk,x
t )k≥1 which strongly converges to

E[Xx
t |Ft] in L2(Ω,P). Thus, the strong convergence holds not only for the

subsequence, but for the entire sequence by the uniqueness of the limit.

3.5 Representation of the Stochastic Differential Flow by Time-

Space Local Time

It has been shown in the literature that, under some conditions fulfilled

by the coefficients of a stochastic differential equation, there exist a flow

process, derivative of the solutions of the stochastic differential equation,

however it is a derivative in the sense of distribution. Bouleau & Hirsch

(1988) proved the existence of the stochastic differential flow when the drift

and the diffusion of the SDE are Lipschitz and have the linear growth prop-

erty. Menoukeu-Pamen & Tangpi (2019) investigated the representation of

the flow for the solutions of an SDE having a random drift coefficient. The

existence and representation of the flow this time for a mean-field stochas-

tic differential equation has been studied in Bauer et al. (2018), where the
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authors consider their drift coefficient to be at most linear growth and con-

tinuous in the measure variable. Our goal is to investigate the representa-

tion of the flow for solutions of a MFSDE having a random drift coefficient.

Following this direction, let us state the following theorems:

Theorem 3.5.1. Assume that the drift b can be decomposed as in (3.3)

and b1 is uniformly Lipschitz continuous in the measure variable (3.7). The

first variation process (in the Sobolev sense) of the strong unique solution

(Xx
t )0≤t≤T of the MFSDE (3.32) admits dt⊗dP almost surely the represen-

tation,

Gα0,t :=e−
∫ t
0

∫
R b1(r,z,PXxr )LX

x
(dr,dz)+

∫ t
0 b
′
2(r,Xx

r ,αr)dr (3.30)

+

∫ t

0

e−
∫ t
s

∫
R b1(r,z,PXxr )LX

x
(dr,dz)+

∫ t
s b
′
2(r,Xx

r ,αr)drĒ[∂µbn(s, X̄x
s ,PXx

s
, ᾱs;X

x
s )Ḡᾱr,s]ds.

for every x ∈ R, 0 ≤ s ≤ t ≤ T, where −
∫ t

0

∫
R b1(r, z,PXx

r
)LX

x
(dr, dz)

represents the integration w.r.t the time-space local time of X.

Theorem 3.5.2. Assume that the drift b can be decomposed as in (3.3)

and b1 is Lipschitz continuous uniformly in the measure variable (3.7). We

consider (Xx
t )0≤t≤T as the strong unique solution of the MFSDE (3.32).

Thus, we can find a constant C > 0 sastisfying the following:

E[|Xx
t −Xz

t′ |2] ≤ C(|t− t′|+ |x− z|2),

∀t, t′ ∈ [0, T ] and x, z ∈ K with K a compact subset of R.

Before developing the proof of Theorem 3.5.1, let us state and prove

the following lemmas and propositions.

Lemma 3.5.1. Assume that the drift b can be decomposed as in (3.3) and

b1 can also be decomposed as in (3.5). Consider (Xx
t )t∈[0,T ], the unique

strong solution of the MFSDE (3.32). In addition, we take {bn}n≥0 as the

approximating sequence of b as expressed in (3.45). Also, (Xn,x
t )n≥0 is the
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corresponding strong solution of the MFSDE (3.46). Consequently,

sup
n≥0

sup
0≤t≤T

sup
x∈K

E
[
e
−β

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)

]
<∞, (3.31)

for every compact subset K in R and β ∈ R.

Proof of Lemma 3.5.1. We have,

sup
n≥0

sup
0≤t≤T

sup
x∈K

E
[
e
−β

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)

]
= sup

n≥0
sup

0≤t≤T
sup
x∈K

E
[
e
−β

∫ t
s

∫
R b̂1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)
e
∫ t
s b̃
′
1(r,z,P

X
n,x
r

)dr

]
,

from the assumptions made in (3.5), we know that b̃′1 is a bounded quantity.

We are left with,

sup
n≥0

sup
0≤t≤T

sup
x∈K

E
[
e
−β

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)

]
≤ sup

n≥0
sup

0≤t≤T
sup
x∈K

CE
[
e
−β

∫ t
s

∫
R b̂1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)

]
,

since b̂1 is bounded and measurable, Lemma 3.3.3 applies uniformly in n.

Hence,

sup
n≥0

sup
0≤t≤T

sup
x∈K

E
[
e
−β

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)

]
<∞,

which proves the lemma.

Lemma 3.5.2. Let us consider a measurable function b : [0, T ] × R ×

P1(R) × Ω → R fulfilling the property of linear growth (3.8). In addition,

let (Ω,F , {Ft}t≥0,P, B,X) be a weak solution of the MFSDE:

dXx
t = b(t,Xx

t ,PXx
t
, αt)dt+ dBt, Xx

0 = x, t ∈ [0, T ]. (3.32)

60

© University of Cape Coast     https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Thus, we can find a constant C satisfying the following:

|b(t,Xx
t ,PXx

t
, αt)| ≤ C

(
1 + C(ω) + |x|+ sup

u∈[0,T ]

|Bu|

)
, (3.33)

therefore, for any compact set K ⊂ R, and 1 ≤ p < ∞, we can find an ε

where the following estimates hold:

sup
x∈K

E

[
sup
t∈[0,T ]

|b(t,Xx
t ,PXx

t
, αt)|p

]
<∞, (3.34)

sup
x∈K

sup
t∈[0,T ]

E [|Xx
t |p] <∞, (3.35)

Proof of Lemma 3.5.2. we have seen from the proof of Lemma 3.3.2 that:

K(PXx
t
, δ0) ≤ E[|Xx

t |],

now, let us evaluate E[|Xx
t |],

E[|Xx
t |] = E

[∣∣∣∣x+

∫ t

0

b(u,Xx
u ,PXx

u
, αu)du+Bt

∣∣∣∣]
≤ |x|+ E

[∫ t

0

|b(u,Xx
u ,PXx

u
, αu)|du+ |Bt|

]
= |x|+

∫ t

0

E[|b(u,Xx
u ,PXx

u
, αu)|]du+ E [|Bt|]

≤ |x|+
∫ t

0

(
E[C1(C(ω) + |Xx

u |+ E[|Xx
u |])]

)
du+ E[|Bt|]

≤ |x|+ E[|Bt|] + C1TE[C(ω)] + 2C1

∫ t

0

E[|Xx
u |]du

≤ |x|+ E[|Bt|] + C1TE[|C(ω)|2]
1
2 + 2C1

∫ t

0

E[|Xx
u |]du

≤ |x|+ E[|Bt|] + C1TE[e|C(ω)|2 ]
1
2 +

∫ t

0

2C1E[|Xx
u |]du

≤ |x|+ C2,T + 2C1

∫ t

0

E[|Xx
u |]du,

where C2,T is a constant depending on T . The inequality written above

holds true since E[|Bt|] and E[e|C(ω)|2 ] are finite quantities. Using the
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Grönwall’s inequality, we have a constant C3,T depending on T such that,

E[|Xx
t |] ≤ C3,T (1 + |x|) ,

consequently, we have,

|b(t,Xx
t ,PXx

t
, αt)| ≤ C1(C(ω) + |Xx

t |+K(PXx
t
, δ0)),

≤ C1(C(ω) + |Xx
t |+ E[|Xx

t |]),

≤ C4,T (C(ω) + |Xx
t |+ 1 + |x|),

next, we are going to use the estimate of |b(t,Xx
t ,PXx

t
, αt)| to estimate Xx

t

as follows:

|Xx
t | =

∣∣∣∣x+

∫ t

0

b(u,Xx
u ,PXx

u
, αu)du+Bt

∣∣∣∣
≤ |x|+

∫ t

0

|b(u,Xx
u ,PXx

u
, αu)|du+ |Bt|

≤ |x|+
∫ t

0

C4,T (C(ω) + |Xx
u |+ 1 + |x|)du+ |Bt|,

we get after applying the Grönwall’s ineqauality:

|Xx
t | ≤ C5,T (1 + |x|+ |Bt|+ C(ω)),

thus,

|b(t,Xx
t ,PXx

t
, αt)| ≤ C4,T (C(ω) + 1 + |x|+ |Bt|),

≤ C4,T

(
C(ω) + 1 + |x|+ sup

u∈[0,T ]

|Bu|

)
,

where C4,T has been updated by a new constant that we also call C4,T .

Therefore, with this estimate of |b(t,Xx
t ,PXx

t
, αt)|, we can clearly see that

the estimates (3.34) and (3.35) hold true, therefore proving the lemma.
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Lemma 3.5.3. Let us consider (Xn,x
t )0≤t≤T,n≥1, the strong unique solutions

of the following MFSDE,

dXn,x
t = bn(t,Xn,x

t ,PXn,x
t
, αt)dt+ dBt, Xn,x

0 = x ∈ R, (3.36)

thus, for some constant C,

sup
n≥1

sup
0≤t≤T

ess sup
x∈K

E[|∂xXn,x
t |2p] ≤ C, (3.37)

for any compact set K ∈ R and p ≥ 2.

Proof of Lemma 3.5.3. Let us first note that if we consider for a second

that b is differentiable in the second argument, by taking the derivative

w.r.t. the initial condition x in the MFSDE (3.32), ∂xX
x
t has the following

expression,

∂xX
x
t = 1 +

∫ t

0

b′(s,Xx
s ,PXx

s
, αs)∂xX

x
t + ∂xb(s, z,PXx

s
, αs)|z=Xx

s
ds, (3.38)

where b′ is seen as the derivative of b w.r.t. the second variable. The

solution to the above differential equation has the following representation,

∂xX
x
t = e

∫ t
0 b
′(s,Xx

s ,PXxs ,αs)ds +

∫ t

0

e
∫ t
u b
′(r,Xx

r ,PXxr ,αr)dr∂xb(u, z,PXx
u
, αu)|z=Xx

u
du,

(3.39)

however, since b1 is not differentiable in the second variable, we will have

this representation instead,

∂xX
x
t = e−

∫ t
0

∫
R b1(r,z,PXxr )LX

x
(dr,dz)+

∫ t
0 b
′
2(r,Xx

r ,αr)dr

+

∫ t

0

e−
∫ t
u

∫
R b1(r,z,PXxr )LX

x
(dr,dz)+

∫ t
u b
′
2(r,Xx

r ,αr)dr∂xb(u, z,PXx
u
, αu)|z=Xx

u
du,
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thus, we have,

E[|∂xXn,x
t |2p]

1
2p

= E
[∣∣∣∣e− ∫ t

0

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
0 b
′
2(r,Xn,x

r ,αr)dr

+

∫ t

0

e
−

∫ t
u

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
u b
′
2(r,Xn,x

r ,αr)dr∂xbn(u, z,PXn,x
u
, αu)|z=Xn,x

u
du

∣∣∣∣2p] 1
2p

≤ CpE
[∣∣∣∣e− ∫ t

0

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
0 b
′
2(r,Xn,x

r ,αr)dr

∣∣∣∣2p] 1
2p

+ CpE
[∣∣∣∣ ∫ t

0

e
−

∫ t
u

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
u b
′
2(r,Xn,x

r ,αr)dr∂xb1,n(u, z,PXn,x
u

)|z=Xn,x
u
du

∣∣∣∣2p] 1
2p

≤ CpE
[∣∣∣∣e− ∫ t

0

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
0 b
′
2(r,Xn,x

r ,αr)dr

∣∣∣∣2p] 1
2p

+ Cp

∫ t

0

E
[∣∣∣∣e− ∫ t

u

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
u b
′
2(r,Xn,x

r ,αr)dr∂xb1,n(u, z,PXn,x
u

)|z=Xn,x
u

∣∣∣∣2p] 1
2p

du

≤ CpE
[
e
−4p

∫ t
0

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+4p
∫ t
0 b
′
2(r,Xn,x

r ,αr)dr

] 1
4p

+ Cp

∫ t

0

E
[
e
−4p

∫ t
u

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+4p
∫ t
s b
′
2(r,Xn,x

r ,αr)dr

] 1
4p

× E[|∂xb1,n(u, z,PXn,x
u

)|z=Xn,x
u
|4p]

1
4pdu

. sup
0≤s≤T

E
[
e
−4p

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+4p
∫ t
s b
′
2(r,Xn,x

r ,αr)dr

] 1
4p
{

1

+

∫ t

0

E[|∂xb1,n(u, z,PXn,x
u

)|z=Xn,x
u
|4p]

1
4pdu

}
,

next, we first separate the term E
[
e
−4p

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+4p
∫ t
s b
′
2(r,Xn,x

r ,αr)dr

] 1
4p

using the Minkowski inequality and we apply the Girsanov transform with

a change of trajectory,

E
[
e
−4p

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+4p
∫ t
s b
′
2(r,Xn,x

r ,αr)dr

] 1
4p

≤ E
[
e
−8p

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)

] 1
8p

E
[
e8p

∫ t
s b
′
2(r,Xn,x

r ,αr)dr

] 1
8p
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= E
[
e
−8p

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)E
(∫ T

0

bn(u,Bx
u,PXn,x

u
, αr)dBu

)] 1
8p

× E
[
e8p

∫ t
s b
′
2(r,Xn,x

r ,αr)dr

] 1
8p

,

≤ E
[
e
−16p

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)

] 1
16p

E
[
E
(∫ T

0

bn(u,Bx
u,PXn,x

u
, αr)dBu

)2 ] 1
16p

× E
[
e8p

∫ t
s b
′
2(r,Xn,x

r ,αr)dr

] 1
8p

= T n1 × T n2 × T n3 (3.40)

<∞

the last line holds true because T n1 is finite uniformly in n and x due to

Lemma 3.5.1 , T n2 is finite due to Lemma 3.3.2, and lastly T n3 is also finite

because the space derivative of b2 is bounded by a random variable with

finite exponential moments.

E[|∂xXn
t |2p]

1
2p now gives,

E[|∂xXn,x
t |2p]

1
2p

≤ Cp

{
1 +

∫ t

0

E[|∂xb1,n(u, z,PXn,x
u

)|z=Xn,x
u
|4p]

1
4pdu

}
= Cp

{
1 +

∫ t

0

E
[∣∣∣∣ lim

x◦→x

b1,n(u,Xn,x
u ,PXn,x

u
)− b1,n(u,Xn,x

u ,P
Xn,x◦
u

)

x− x◦

∣∣∣∣4p] 1
4p

du

}
= Cp

{
1 + lim inf

x◦→x

1

|x− x◦|

∫ t

0

E[|b1,n(u,Xn,x
u ,PXn,x

u
)− b1,n(u,Xn,x

u ,P
Xn,x◦
u

)|4p]
1
4pdu

}
,

using the Lipshitz property of the map µ 7→ b1(t, z, µ), and the Minkowski

inequality, we get,

E[|∂xXn,x
t |2p]

1
2p ≤ Cp

(
1 + lim inf

x◦→x

1

|x− x◦|

∫ t

0

K(PXn,x
u
,P

Xn,x◦
u

)du

)
,

if we denote H̄(K), the closed convex hull of K, which is also compact

since K is. Let us find an estimate for K(PXn,x
u
,P

Xn,x◦
u

) for any arbitrary x

and x◦ in H̄(K),
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K(PXn,x
u
,P

Xn,x◦
u

)

= sup
h∈Lip1(R)

∣∣∣∣ ∫
R
h(y)(PXn,x

u
− P

Xn,x◦
u

)(dy)

∣∣∣∣,
≤ E

[
|Xn,x

u −Xn,x◦

u |
]
,

≤ |x− x◦|+ E
[∣∣∣∣ ∫ u

0

b1,n(r,Xn,x
r ,PXn,x

r
)− b1,n(r,Xn,x◦

r ,P
Xn,x◦
r

)dr

∣∣∣∣]
+ E

[∣∣∣∣ ∫ u

0

b2(r,Xn,x
r , αr)− b2(r,Xn,x◦

r , αr)dr

∣∣∣∣],
after applying the mean value theorem to the previous expression, we get,

E[|Xn,x
u −Xn,x◦

u |]

≤ |x− x◦|+ E
[∣∣∣∣ ∫ u

0

(∫ 1

0

(
b′1,n(r,Xn,x+λ(x◦−x)

r ,P
X
n,x+λ(x◦−x)
u

)∂xX
n,x+λ(x◦−x)
r

+ ∂xb1,n(r, z,P
X
n,x+λ(x◦−x)
r

)|
z=X

n,x+λ(x0−x)
r

)
dλ

)
(x− x◦)dr

∣∣∣∣]
+ C

∫ u

0

E[|Xn,x
r −Xn,x◦

r |]dr

≤ |x− x◦|+ |x− x◦|E
[ ∫ 1

0

∣∣∣∣ ∫ u

0

(
b′1,n(r,Xn,x+λ(x◦−x)

r ,P
X
n,x+λ(x◦−x)
r

)∂xX
n,x+λ(x◦−x)
r

+ ∂xb1,n(r, z,P
X
n,x+λ(x◦−x)
r

)|
z=X

n,x+λ(x◦−x)
r

)
dr

∣∣∣∣dλ]+ C

∫ u

0

E[|Xn,x
r −Xn,x◦

r |]dr

≤ |x− x◦|+ |x− x◦|
∫ 1

0

E
[∣∣∣∣ ∫ u

0

(
b′1,n(r,Xn,x+λ(x◦−x)

r ,P
X
n,x+λ(x0−x)
r

)∂xX
n,x+λ(x◦−x)
r

+ ∂xb1,n(r, z,P
X
n,x+λ(x◦−x)
r

)|
z=X

n,x+λ(x◦−x)
r

)
dr

∣∣∣∣]dλ+ C

∫ u

0

E[|Xn,x
r −Xn,x◦

r |]dr

= |x− x◦|+ |x− x◦|
∫ 1

0

E
[∣∣∣∣∂xXn,x+λ(x◦−x)

u − (1− λ)

−
∫ u

0

b′2(r,Xn,x+λ(x◦−x)
r , αr)∂xX

n,x+λ(x◦−x)
r dr

∣∣∣∣]dλ+ C

∫ u

0

E[|Xn,x
r −Xn,x◦

r |]dr

≤ |x− x◦|+ |x− x◦|
∫ 1

0

(
(1− λ) + E

[∣∣∂xXn,x+λ(x◦−x)
u

∣∣]
+ E

[∣∣∣∣ ∫ u

0

b′2(r,Xn,x+λ(x◦−x)
r , αr)∂xX

n,x+λ(x◦−x)
r dr

∣∣∣∣])dλ+ C

∫ u

0

E[|Xn,x
r −Xn,x◦

r |]dr
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≤ |x− x◦|+ |x− x◦|
∫ 1

0

(
(1− λ) + E

[∣∣∂xXn,x+λ(x◦−x)
u

∣∣]
+

∫ u

0

E
[∣∣b′2(r,Xn,x+λ(x◦−x)

r , αr)∂xX
n,x+λ(x◦−x)
r

∣∣]dr)dλ+ C

∫ u

0

E[|Xn,x
r −Xn,x◦

r |]dr

here we now apply the Cauchy-Schwarz inequality to get:

E[|Xn,x
u −Xn,x◦

u |]

≤ |x− x◦|+ |x− x◦|
∫ 1

0

(
(1− λ) + E

[∣∣∂xXn,x+λ(x◦−x)
u

∣∣]
+

∫ u

0

E
[∣∣b′2(r,Xn,x+λ(x◦−x)

r , αr)|2]
1
2E
[∣∣∂xXn,x+λ(x◦−x)

r

∣∣2] 1
2dr

)
dλ

+ C

∫ u

0

E[|Xn,x
r −Xn,x◦

r |]dr

applying the Grönwall’s inequality yields:

E[|Xn,x
u −Xn,x◦

u |]

≤ C

{
|x− x◦|+ |x− x◦|

∫ 1

0

(
(1− λ) + E

[∣∣∂xXn,x+λ(x◦−x)
u

∣∣2] 1
2

+

∫ u

0

E
[∣∣b′2(r,Xn,x+λ(x◦−x)

r , αr)|2]
1
2E
[∣∣∂xXn,x+λ(x◦−x)

r

∣∣2] 1
2dr

)
dλ

}

since the space derivative of b2 is bounded, we can write:

E[|Xn,x
u −Xn,x◦

u |]

≤ C|x− x◦|
{

1 +

∫ 1

0

(
E
[∣∣∂xXn,x+λ(x◦−x)

u

∣∣2] 1
2 +

∫ u

0

E
[∣∣∂xXn,x+λ(x◦−x)

r

∣∣2] 1
2dr

)
dλ

}
≤ C|x− x◦|

{
1 + ess sup

x∈H̄(K)

E
[∣∣∂xXn,x

u

∣∣2] 1
2

}
= C

{
|x− x◦|+ |x− x◦| ess sup

x∈H̄(K)

E
[∣∣∂xXn,x

u

∣∣2] 1
2

}
.

Therefore, we have:

K(PXn,x
u
,P

Xn,x◦
u

) ≤ C

(
|x− x◦|+ |x− x◦| ess sup

x∈H̄(K)

E[|∂xXn,x
u |2]

1
2

)
, (3.41)
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combining all results gotten so far, everything shows that we can find a

constant C independent on n ≥ 1, t ∈ [0, T ] and x ∈ H̄(K) such that,

ess sup
x∈H̄(K)

E[|∂xXn,x
t |2p]

1
2p ≤ C

(
1 +

∫ t

0

ess sup
x∈H̄(K)

E[|∂xXn,x
u |2]

1
2du

)
≤ C

(
1 +

∫ t

0

ess sup
x∈H̄(K)

E[|∂xXn,x
u |2p]

1
2pdu

)
, (3.42)

remember from the computations that we can always find a constant de-

pending on n such that,

E[|∂xXn,x
t |2p]

1
2p ≤ Cn

(
1 + lim inf

x◦→x

1

|x− x◦|

∫ t

0

K(PXn,x
u
,P

Xn,x◦
u

)du

)
,

and from (3.43), we can say that,

E[|∂xXn,x
t |2p]

1
2p ≤ Cn

(
1 + lim inf

x◦→x

1

|x− x◦|

∫ t

0

K(PXn,x
u
,P

Xn,x◦
u

)du

)
≤ Cn

(
1 + lim inf

x◦→x

1

|x− x◦|

∫ t

0

E[|Xn,x
u −Xn,x◦

u |]du
)

≤ Cn

(
1 + lim inf

x◦→x

1

|x− x◦|

∫ t

0

E[|Xn,x
u −Xn,x◦

u |2]
1
2du

)
< C2,n (coming from (3.43)).

Consequently, the map t 7→ ess supx∈H̄(K) E[|∂xXn,x
t |2p]

1
2p is integrable

over [0, T ]. We can then apply the lemma 5 in Jones (1964) to obtain,

ess sup
x∈K

E[|∂xXn,x
t |2p]

1
2p ≤ ess sup

x∈H̄(K)

E[|∂xXn,x
t |2p]

1
2p ≤ C + C2

∫ t

0

eC(t−s)ds <∞,

which proves the lemma.

Lemma 3.5.4. Assume that the drift b can be decomposed as in (3.3) and

b1, uniformly Lipschitz continuous in the measure variable (3.7). Consider

(Xx
t )0≤t≤T , the strong unique solution of the MFSDE (3.32). Hence, we can

find a constant C such that,

E[|Xx
t −X

y
t |2]

1
2 ≤ C|x− y|, (3.43)
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for all t ∈ [0, T ] and x, y ∈ K.

Proof of Lemma 3.5.4.

E[|Xn,x
t −Xn,y

t |2]
1
2

. E
[∣∣∣∣x− y +

∫ t

0

(
bn(u,Xn,x

u ,PXn,x
u
, αu)− bn(u,Xn,y

u ,PXn,y
u
, αu)

)
du

∣∣∣∣2] 1
2

,

. |x− y|+ E
[∣∣∣∣ ∫ t

0

(
bn(u,Xn,x

u ,PXn,x
u
, αu)− bn(u,Xn,y

u ,PXn,y
u
, αu)

)
du

∣∣∣∣2] 1
2

,

now, we use the mean value theorem for the map x 7→ b1(u,Xn,x
u ,PXn,x

u
)

and we get,

E[|Xn,x
t −Xn,y

t |2]
1
2

. |x− y|+ E
[∣∣∣∣ ∫ t

0

(
b1,n(u,Xn,x

u ,PXn,x
u

)− b1,n(u,Xn,y
u ,PXn,y

u
)
)
du

∣∣∣∣2] 1
2

+ E
[∣∣∣∣ ∫ t

0

(
b2(u,Xn,x

u , αu)− b2(u,Xn,y
u , αu)

)
du

∣∣∣∣2] 1
2

= |x− y|+ E
[∣∣∣∣ ∫ t

0

(∫ 1

0

∂

∂y

[
b1,n(u,Xn,y+θ(x−y)

u ,P
X
n,y+θ(x−y)
u

)
]
dθ

)
(x− y)du

∣∣∣∣2] 1
2

+ E
[∣∣∣∣ ∫ t

0

(
b2(u,Xn,x

u , αu)− b2(u,Xn,y
u , αu)

)
du

∣∣∣∣2] 1
2

we apply the Minkowski inequality to have:

E[|Xn,x
t −Xn,y

t |2]
1
2

. |x− y|+ |x− y|E
[∣∣∣∣ ∫ t

0

(∫ 1

0

(
b′1,n(u,Xn,y+θ(x−y)

u ,P
X
n,y+θ(x−y)
u

)∂yX
n,y+θ(x−y)
u

+ ∂yb1,n(u,Xn,y+θ(x−y)
u ,P

X
n,y+θ(x−y)
u

)
)
dθ

)
du

∣∣∣∣2] 1
2

+

∫ t

0

E
[∣∣b2(u,Xn,x

u , αu)− b2(u,Xn,y
u , αu)

∣∣2] 1
2du,

we use the Fubini’s theorem to switch the integrals,
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E[|Xn,x
t −Xn,y

t |2]
1
2

. |x− y|+ |x− y|E
[∣∣∣∣ ∫ 1

0

∫ t

0

(
b′1,n(u,Xn,y+θ(x−y)

u ,P
X
n,y+θ(x−y)
u

)∂yX
n,y+θ(x−y)
u

+ ∂yb1,n(u,Xn,y+θ(x−y)
u ,P

X
n,y+θ(x−y)
u

)
)
dudθ

∣∣∣∣2] 1
2

+

∫ t

0

E
[∣∣Xn,x

u −Xn,y
u

∣∣2] 1
2du

= |x− y|+ |x− y|E
[∣∣∣∣ ∫ 1

0

(
∂yX

n,y+θ(x−y)
t − (1− θ)

−
∫ t

0

b′2(r,Xn,y+θ(x−y)
r , αr)∂yX

n,y+θ(x−y)
r dr

)
dθ

∣∣∣∣2] 1
2

+

∫ t

0

E
[∣∣Xn,x

u −Xn,y
u

∣∣2] 1
2du

. |x− y|+ |x− y|
{
E
[∣∣∣∣ ∫ 1

0

(
∂yX

n,y+θ(x−y)
t − (1− θ)

)
dθ

∣∣∣∣2] 1
2

+ E
[∣∣∣∣ ∫ 1

0

(∫ t

0

b′2(r,Xn,y+θ(x−y)
r , αr)∂yX

n,y+θ(x−y)
r dr

)
dθ

∣∣∣∣2] 1
2
}

+

∫ t

0

E
[∣∣Xn,x

u −Xn,y
u

∣∣2] 1
2du

. |x− y|+ |x− y|
(∫ 1

0

E[|∂yXn,y+θ(x−y)
t |2]

1
2dθ

+

∫ 1

0

∫ t

0

E[|b′2(r,Xn,y+θ(x−y)
r , αr)∂yX

n,y+θ(x−y)
r |2]

1
2drdθ

)
+

∫ t

0

E
[∣∣Xn,x

u −Xn,y
u

∣∣2] 1
2du,

we next separate the expectation inside the double integral:

E[|Xn,x
t −Xn,y

t |2]
1
2

. |x− y|+ |x− y|
(∫ 1

0

E[|∂yXn,y+θ(x−y)
t |2]

1
2dθ

+

∫ 1

0

∫ t

0

E[|b′2(r,Xn,y+θ(x−y)
r , αr)|4]

1
4E[|∂yXn,y+θ(x−y)

r |4]
1
4drdθ

)
+

∫ t

0

E
[∣∣Xn,x

u −Xn,y
u

∣∣2] 1
2du

we continue with the Grönwall’s inequality:

E[|Xn,x
t −Xn,y

t |2]
1
2

. |x− y|+ |x− y|
(∫ 1

0

E[|∂yXn,y+θ(x−y)
t |2]

1
2 dθ

+

∫ 1

0

∫ t

0

E[|b′2(r,Xn,y+θ(x−y)
r , αr)|4]

1
4E[|∂yXn,y+θ(x−y)

r |4]
1
4 drdθ

)
,
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since the stochastic differential flow is integrable with finite 2p − th order

moment, we can write

E[|Xn,x
t −Xn,y

t |2]
1
2 . |x− y|,

which proves the lemma.

Proposition 3.5.0.1. Assume that the drift b can be decomposed as in

(3.3) such that its b1 component admits a first differentiable with bounded

derivative component and a second bounded component as written in (3.5).

Consider (Xx
t )t∈[0,T ], the strong solution of the MFSDE (3.32) with V ⊂ R

be a bounded and open subset. Hence,

x 7→ b(t, z,PXx
t
, αt) ∈ W 1,p(V ). (3.44)

Proof of Proposition 3.5.0.1. Consider (bn)n≥1, the sequence approximat-

ing the drift b as defined in the following:

bn(t, z, µ, α) = b̂1,n(t, z, µ) + b̃1(t, z, µ) + b2(t, z, α),with n ≥ 1, (3.45)

such that b̂1,n ∈ L∞([0, T ], C1,L
b (R,P1(R))), with

supn≥1 ||b̂1,n||∞ ≤ C < ∞, || · ||∞ denoting the supremum norm on all

arguments, such that we have b̂1,n that converges to b̂1 in every µ pointwise

and almost everywhere in (t, z) w.r.t. the Lebesgue measure. C1,L
b (R,P1(R)

denotes the space containing elements that are functions g : R × P1(R)

verifying the existence of a constant C such that the following properties

are satisfied:

(i) (z 7→ g(z, ν)) ∈ C1,1
b,C(R)for all ν ∈ P1(R) and,

(ii) (ν 7→ g(z, ν)) ∈ LipC(P1(R),R) for all z ∈ R.
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(Xn,x
t )t∈[0,T ],n≥1 the corresponding sequence strong solutions of the follow-

ing,

dXn,x
t = bn(t,Xn,x

t ,PXn,x
t
, αt)dt+ dBt, Xn,x

0 = x ∈ R, (3.46)

let us first prove that the sequence {bn}n≥1 is weakly relatively compact in

W 1,p(V ). Based on the proof of Lemma 3.5.2 and Lemma 3.5.3, we can say

that:

sup
n≥1

∥∥bn(t, z,PXn,x
t
, αt)

∥∥
W 1,p(V )

<∞,

therefore, we have boundedness of the sequence {bn}n≥1 in W 1,p(V ) and

consequently the sequence is weakly relatively compact based on Theorem

10.44 in Leoni (2009). Thus, there exists at least a sub-sequence {nk}k≥1

and v ∈ W 1,p(V ) such that we have the sub-sequence bnk converging weakly

to v as k goes to infinity. Consider an arbitrary test-function ϕ ∈ C∞0 (V )

and ϕ′ its first derivative assuming ϕ is well-defined. Let,

〈bn, ϕ〉 :=

∫
V

bn(t, z,PXn,x
t
, αt)ϕ(x)dx, (3.47)

we have,

〈bn − b, ϕ′〉 =

∫
V

(bn(t, z,PXn,x
t
, αt)− b(t, z,PXx

t
, αt))ϕ

′(x)dx,

≤ sup
x∈V̄
|b1,n(t, z,PXn,x

t
)− b1(t, z,PXx

t
)|
∫
V

ϕ′(x)dx,

≤ sup
x∈V̄
|b1,n(t, z,PXn,x

t
)− b1(t, z,PXx

t
)|
(∫

V

ϕ′(x)pdx

) 1
p
(∫

V

dx

) 1
q

,

= sup
x∈V̄
|b1,n(t, z,PXn,x

t
)− b1(t, z,PXx

t
)| ‖ϕ′‖Lp(V ) |V |

1
q ,

<∞, based on Lemma 3.5.2,

where V̄ represents the closure of V . We have shown in chapter 3 that

there exists a sub-sequence {Xnk,x}k≥1 that strongly converges to Xx
t in
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L2. Consequently, we have,

|bn(t, z,PXn,x
t
, αt)− b(t, z,PXx

t
, αt)|

= |b1,n(t, z,PXn,x
t

) + b2(t, z, αt)− b1(t, z,PXx
t
)− b2(t, z, αt)|

≤ |b1,n(t, z,PXn,x
t

)− b1(t, z,PXx
t
)|,

≤ |b1,n(t, z,PXn,x
t

)− b1,n(t, z,PXx
t
)|+ |b1,n(t, z,PXx

t
)− b1(t, z,PXx

t
)|,

= |b1,n(t, z,PXn,x
t

)− b1,n(t, z,PXx
t
)|+ |b1,n(t, z,PXx

t
, αt)− b1(t, z,PXx

t
, αt)|,

≤ CK(PXn,x
t
,PXx

t
) + |b1,n(t, z,PXx

t
)− b1(t, z,PXx

t
)|,

the convergence of K(PXn,x
t
,PXx

t
) has been shown in (3.29) and b1,n con-

verges to b1 pointwise in every µ, therefore we can see that

|bn(t, z,PXn,x
t
, αt)− b(t, z,PXx

t
, αt)| −→ 0 as n→∞. Hence,

lim
k→∞
〈bnk − b, ϕ′〉 = 0,

⇒ lim
k→∞
〈bnk , ϕ′〉 − 〈b, ϕ′〉 = 0,

⇒ 〈b, ϕ′〉 = lim
k→∞
〈bnk , ϕ′〉,

since the function ϕ has compact support and vanishes at infinity, we have,

〈b, ϕ′〉 = lim
k→∞
〈bnk , ϕ′〉 = − lim

k→∞
〈b′nk , ϕ〉 = −〈v′, ϕ〉,

where b′nk is the first variation process of bnk and v′, the first variation

process of v.

Lemma 3.5.5. Assume that the drift b can be decomposed as in (3.3) .

Consider the strong solution of the MFSDE (3.32) denoted by (Xx
t )t∈[0,T ].

Furthermore, we take {bn}n≥1 as the sequence approximating the drift b as

expressed in (3.45). Also, (Xn,x
t )n≥1 is the corresponding strong solution of

the MFSDE (3.46). Consequently,

sup
x∈K

E
[∣∣∣∣E

(∫ T

0

bn(u,Bxu,PXn,xu
, αu)dBu

)
− E

(∫ T

0

b(u,Bxu,PXxu , αu)dBu

)∣∣∣∣2] 1
2

,

(3.48)
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tends to 0 as n tends to ∞, for any compact subset K of R.

Lemma 3.5.6. Assume that the drift b can be decomposed as in (3.3). Con-

sider the strong unique solution of the MFSDE (3.32) denoted by (Xx
t )t∈[0,T ].

In addition, we take {bn}n≥1 as the approximating sequence of b as ex-

pressed in (3.45). Also, (Xn,x
t )n≥1 is the corresponding strong solution of

the MFSDE (3.46). Consequently,

sup
x∈K

E
[∣∣∣∣e− ∫ t

s

∫
R b1,n(u,z,P

X
n,x
u

)LB
x

(du,dz) − e−
∫ t
s

∫
R b1(u,z,PXxu )LB

x
(du,dz)

∣∣∣∣p] 1
p

, (3.49)

tends to 0 as n tends to ∞, for any compact subset K of R.

Proof of Lemma 3.5.5. using the inequality |ev− ew| ≤ |ev + ew||v−w|, we

get,

E
[∣∣∣∣E (∫ T

0
bn(u,Bx

u,PXn,x
u
, αu)dBu

)
− E

(∫ T

0
b(u,Bx

u ,PXx
u
, αu)dBu

) ∣∣∣∣2] 1
2

= E
[∣∣∣∣e∫ T0 bn(u,Bxu,PXn,xu ,αu)dBu−

1

2

∫ T
0 bn(u,Bxu,PXn,xu ,αu)2du

− e
∫ T
0 b(u,Bxu,PXxu ,αu)dBu−

1

2

∫ T
0 b(u,Bxu,PXxu ,αu)2du

∣∣∣∣2] 1
2

≤ E
[∣∣∣∣ ∫ T

0

(
bn(u,Bx

u,PXn,x
u
, αu)− b(u,Bx

u ,PXx
u
, αu)

)
dBu

− 1

2

∫ T

0

(
bn(u,Bx

u,PXn,x
u
, αu)2 − b(u,Bx

u,PXx
u
, αu)2

)
du

∣∣∣∣2
×
(
E
(∫ T

0
bn(u,Bx

u,PXn,x
u
, αu)dBu

)
+ E

(∫ T

0
b(u,Bx

u ,PXx
u
, αu)dBu

))2] 1
2

. E
[(
E
(∫ T

0
bn(u,Bx

u ,PXn,x
u
, αu)dBu

)
+ E

(∫ T

0
b(u,Bx

u,PXx
u
, αu)dBu

))2

×
∣∣∣∣ ∫ T

0

(
bn(u,Bx

u,PXn,x
u
, αu)− b(u,Bx

u ,PXx
u
, αu)

)
dBu

∣∣∣∣2] 1
2

+ E
[(
E
(∫ T

0
bn(u,Bx

u ,PXn,x
u
, αu)dBu

)
+ E

(∫ T

0
b(u,Bx

u,PXx
u
, αu)dBu

))2

×
∣∣∣∣ ∫ T

0

(
bn(u,Bx

u,PXn,x
u
, αu)2 − b(u,Bx

u,PXx
u
, αu)2

)
du

∣∣∣∣2] 1
2

,

we apply the Cauchy-Schwarz inequality to get,
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E
[∣∣∣∣E (∫ T

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
− E

(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

) ∣∣∣∣2] 1
2

≤ CE
[(
E
(∫ T

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
+ E

(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

))4] 1
4

× E
[∣∣∣∣ ∫ T

0

(
bn(u,Bx

u,PXn,x
u
, αu)− b(u,Bx

u,PXx
u
, αu)

)
dBu

∣∣∣∣4] 1
4

+ CE
[(
E
(∫ T

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
+ E

(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

))4] 1
4

× E
[∣∣∣∣ ∫ T

0

(
bn(u,Bx

u,PXn,x
u
, αu)

2 − b(u,Bx
u,PXx

u
, αu)

2
)
du

∣∣∣∣4] 1
4

,

we get after applying the estimate (3.15) of Lemma 3.3.2:

E
[∣∣∣∣E (∫ T

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
− E

(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

) ∣∣∣∣2] 1
2

≤ CE
[∣∣∣∣ ∫ T

0

(
bn(u,Bx

u,PXn,x
u
, αu)− b(u,Bx

u,PXx
u
, αu)

)
dBu

∣∣∣∣4] 1
4

+ CE
[∣∣∣∣ ∫ T

0

(
bn(u,Bx

u,PXn,x
u
, αu)

2 − b(u,Bx
u,PXx

u
, αu)

2
)
du

∣∣∣∣4] 1
4

,

next, we apply Burkholder-Davis-Gundy inequality,

E
[∣∣∣∣E (∫ T

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
− E

(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

) ∣∣∣∣2] 1
2

≤ CE
[∣∣∣∣ ∫ T

0

|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|2du

∣∣∣∣2] 1
4

+ CE
[∣∣∣∣ ∫ T

0

(
bn(u,Bx

u,PXn,x
u
, αu)

2 − b(u,Bx
u,PXx

u
, αu)

2
)
du

∣∣∣∣4] 1
4

,

we now apply the Minkowski inequality,

E
[∣∣∣∣E (∫ T

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
− E

(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

) ∣∣∣∣2] 1
2

≤ C

(∫ T

0

E[|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|4]

1
2du

) 1
2

+ CE
[∣∣∣∣ ∫ T

0

(bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu))(bn(u,Bx

u,PXn,x
u
, αu)
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+ b(u,Bx
u,PXx

u
, αu))du

∣∣∣∣4] 1
4

≤ C

(∫ T

0

E[|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|4]

1
2du

) 1
2

+ CE
[∣∣∣∣ ∫ T

0

|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|(|bn(u,Bx

u,PXn,x
u
, αu)|

+ |b(u,Bx
u,PXx

u
, αu)|)du

∣∣∣∣4] 1
4

,

≤ C

(∫ T

0

E[|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|4]

1
2du

) 1
2

+ C

∫ T

0

E[|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|4(|bn(u,Bx

u,PXn,x
u
, αu)|4

+ |b(u,Bx
u,PXx

u
, αu)|4)]

1
4du,

≤ C

(∫ T

0

E[|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|4]

1
2du

) 1
2

+ C

∫ T

0

E[|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|8]

1
8E[|bn(u,Bx

u,PXn,x
u
, αu)|8

+ |b(u,Bx
u,PXx

u
, αu)|8]

1
8du,

using the estimate for the drift b in Lemma 3.5.2, we obtain,

E
[∣∣∣∣E (∫ T

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
− E

(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

) ∣∣∣∣2] 1
2

.

(∫ T

0

E[|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|4]

1
2du

) 1
2

+

∫ T

0

E[|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|8]

1
8du,

.

(∫ T

0

E[|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|8]

1
4du

) 1
2

+

∫ T

0

E[|bn(u,Bx
u,PXn

u
, αu)− b(u,Bx

u,PXx
u
, αu)|8]

1
8du,

.

(∫ T

0

E[|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|8]

1
4du

) 1
2

,

next, using the triangle inequality and the assumption according to which

b1 has the Lipschitz continuity property in the measure variable (3.7), we
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have,

E[|bn(u,Bx
u,PXn,x

u
, αu)− b(u,Bx

u,PXx
u
, αu)|8]

1
8

= E[|b1,n(u,Bx
u,PXn,x

u
) + b2(u,Bx

u, αu)− b1(u,Bx
u,PXx

u
)− b2(u,Bx

u, αu)|8]
1
8

≤ CE[|b1,n(u,Bx
u,PXn,x

u
)− b1,n(u,Bx

u,PXx
u
)|8]

1
8 + E[|b1,n(u,Bx

u,PXx
u
)

− b1(u,Bx
u,PXx

u
)|8]

1
8 ,

≤ CK(PXn,x
u
,PXx

u
) + E[|b1,n(u,Bx

u,PXx
u
)− b1(u,Bx

u,PXx
u
)|8]

1
8 ,

≤ CE[|Xn,x
u −Xu|] + E[|b1,n(u,Bx

u,PXx
u
)− b1(u,Bx

u,PXx
u
)|8]

1
8 ,

we now apply the Girsanov theorem to the first term,

E[|Xn,x
u −Xx

u |]

= E
[
|Bx

t |
(
E
(∫ t

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
− E

(∫ t

0

b(u,Bx
u,PXx

u
, αu)dBu

))]
≤ E[|Bx

t |2]
1
2E
[(
E
(∫ t

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
− E

(∫ t

0

b(u,Bx
u,PXx

u
, αu)dBu

))2] 1
2

≤ CE
[(
E
(∫ t

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
− E

(∫ t

0

b(u,Bx
u,PXx

u
, αu)dBu

))2] 1
2

,

we obtain next,

E
[∣∣∣∣E (∫ T

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
− E

(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

) ∣∣∣∣2] 1
2

≤ C

(∫ T

0

E
[(
E
(∫ t

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
− E

(∫ t

0

b(u,Bx
u,PXx

u
, αu)dBu

))2]
+ E[|bn(u,Bx

u,PXx
u
, αu)− b(u,Bx

u,PXx
u
, αu)|8]

1
4du

) 1
2

,

so, after squaring both size,

E
[∣∣∣∣E (∫ T

0
bn(u,Bx

u,PXn,x
u
, αu)dBu

)
− E

(∫ T

0
b(u,Bx

u,PXx
u
, αu)dBu

) ∣∣∣∣2]
≤ C

∫ T

0
E
[(
E
(∫ t

0
bn(u,Bx

u,PXn,x
u
, αu)dBu

)
− E

(∫ t

0
b(u,Bx

u,PXx
u
, αu)dBu

))2]
+ E[|bn(u,Bx

u,PXx
u
, αu)− b(u,Bx

u,PXx
u
, αu)|8]

1
4du,
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after applying the Grönwall’s inequality, we get,

E
[∣∣∣∣E (∫ T

0

bn(u,Bx
u,PXn,x

u
, αu)dBu

)
− E

(∫ T

0

b(u,Bx
u,PXx

u
, αu)dBu

) ∣∣∣∣2]
≤ C

∫ T

0

E[|bn(u,Bx
u,PXx

u
, αu)− b(u,Bx

u,PXx
u
, αu)|8]

1
4du,

let us now evaluate E[|bn(u,Bx
u,PXx

u
, αu)− b(u,Bx

u,PXx
u
, αu)|8]

1
4 ,

E[|bn(u,Bx
u,PXx

u
, αu)− b(u,Bx

u,PXx
u
, αu)|8]

1
4

=

(∫ ∞
−∞
|bn(u, z,PXx

u
, αu)− b(u, z,PXx

u
, αu)|8

1√
2πu

e−
(z−x)2

2u dz

) 1
4

=

(∫ ∞
−∞
|b1,n(u, z,PXx

u
) + b2(u, z, αu)− b1(u, z,PXx

u
)− b2(u, z, αu)|8

1√
2πu

e−
(z−x)2

2u dz

) 1
4

=

(∫ ∞
−∞
|b1,n(u, z,PXx

u
)− b1(u, z,PXx

u
)|8 1√

2πu
e−

z2

4u e−
(z−2x)2

4u e
x2

2udz

) 1
4

≤
(∫ ∞

−∞
|b1,n(u, z,PXx

u
)− b1(u, z,PXx

u
)|8 1√

2πu
e−

z2

4u e
x2

2udz

) 1
4

= e
x2

8u

(∫ ∞
−∞
|b1,n(u, z,PXx

u
)− b1(u, z,PXx

u
)|8 1√

2πu
e−

z2

4udz

) 1
4

,

from Lemma 3.5.4, we see that the map x 7→ PXx
t

is a continuous map.

Consequently, the image of the compact set K under that continuous map

is also a compact set. Let us denote that image set K ′. Therefore,

sup
x∈K
|b1,n(u, z,PXx

u
)− b1(u, z,PXx

u
)| = sup

µ∈K′
|b1,n(u, z, µ)− b1(u, z, µ)| → 0 as n→∞,

so, E
[∣∣∣∣E (∫ T0 bn(u,Bx

u,PXn,x
u
, αu)dBu

)
− E

(∫ T
0
b(u,Bx

u,PXx
u
, αu)dBu

) ∣∣∣∣2] 1
2

tends to 0 as n tends to ∞.

Proof of Lemma 3.5.6. using the inequality |ev−ew| ≤ |ev+ew||v−w|, and

similar arguments as in previous proofs, we get:
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E
[∣∣∣∣e− ∫ t

s

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz) − e−
∫ t
s

∫
R b1(r,z,PXxr )LB

x
(dr,dz)

∣∣∣∣p] 1
p

≤ E
[∣∣∣∣ ∫ t

s

∫
R
b1,n(r, z,PXn,x

r
)LB

x

(dr, dz)−
∫ t

s

∫
R
b1(r, z,PXx

r
)LB

x

(dr, dz)

∣∣∣∣p
×
(
e
−

∫ t
s

∫
R b1,n(r,z,P

X
n,x
u

)LB
x

(dr,dz)
+ e−

∫ t
s

∫
R b1(r,z,PXxr )LB

x
(dr,dz)

)p] 1
p

≤ E
[∣∣∣∣ ∫ t

s

∫
R
b1,n(r, z,PXn,x

r
)LB

x

(dr, dz)−
∫ t

s

∫
R
b1(r, z,PXx

r
)LB

x

(dr, dz)

∣∣∣∣2p] 1
2p

× E
[(
e
−

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)
+ e−

∫ t
s

∫
R b1(r,z,PXxr )LB

x
(dr,dz)

)2p] 1
2p

≤ CE
[∣∣∣∣ ∫ t

s

∫
R
b1,n(r, z,PXn,x

r
)LB

x

(dr, dz)−
∫ t

s

∫
R
b1(r, z,PXx

r
)LB

x

(dr, dz)

∣∣∣∣2p] 1
2p

×
(
E
[
e
−2p

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)

] 1
2p

+ E
[
e−2p

∫ t
s

∫
R b1(r,z,PXxr )LB

x
(dr,dz)

] 1
2p
)
,

we apply Lemma 3.3.3 to get next,

E
[∣∣∣∣e− ∫ t

s

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz) − e−
∫ t
s

∫
R b1(r,z,PXxr )LB

x
(dr,dz)

∣∣∣∣p] 1
p

≤ CE
[∣∣∣∣ ∫ t

s

∫
R
b1,n(r, z,PXn,x

r
)LB

x

(dr, dz)−
∫ t

s

∫
R
b1(r, z,PXx

r
)LB

x

(dr, dz)

∣∣∣∣2p] 1
2p

,

= CE
[∣∣∣∣ ∫ t

s

∫
R

(
b1,n(r, z,PXn,x

r
)− b1(r, z,PXx

r
)
)
LB

x

(dr, dz)

∣∣∣∣2p] 1
2p

,

Now, let B̂t = BT−t and the Brownian motion Wt, being the corresponding

Brownian motion adapted to the natural filtration of B̂t. Using the identity

in (3.22), we have,

E
[∣∣∣∣ ∫ t

s

∫
R

(
b1,n(r, z,PXn,x

r
)− b1(r, z,PXx

r
)
)
LB

x

(dr, dz)

∣∣∣∣2p] 1
2p

= E
[∣∣∣∣ ∫ t

s

(
b1,n(r, Bx

r ,PXn,x
r

)− b1(r, Bx
r ,PXx

r
)
)
dBr

+

∫ T−s

T−t

(
b1,n(T − r, B̂x

r ,PXn,x
r

)− b1(T − r, B̂x
r ,PXx

r
)
)
dWr

−
∫ T−s

T−t
(b1,n(r, Bx

r ,PXn,x
r

)− b1(r, Bx
r ,PXx

r
))

B̂r

T − r
dr

∣∣∣∣2p] 1
2p
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. E
[∣∣∣∣ ∫ t

s

(
b1,n(r, Bx

r ,PXn,x
r

)− b1(r, Bx
r ,PXx

r
)
)
dBr

∣∣∣∣2p] 1
2p

+ E
[ ∫ T−s

T−t

(
b1,n(T − r, B̂x

r ,PXn,x
r

)− b1(T − r, B̂x
r ,PXx

r
)
)
dWr

∣∣∣∣2p] 1
2p

+ E
[∣∣∣∣ ∫ T−s

T−t
(b1,n(r, Bx

r ,PXn,x
r

)− b1(r, Bx
r ,PXx

r
))

B̂r

T − r
dr

∣∣∣∣2p] 1
2p

,

after applying the Burholder-Davis-Gundy inequality, the Minkowski in-

equality and the Cauchy-Schwarz inequality, we get,

E
[∣∣∣∣ ∫ t

s

∫
R

(
b1,n(r, z,PXn,x

r
)− b1(r, z,PXx

r
)
)
LB

x

(dr, dz)

∣∣∣∣2p] 1
2p

. E
[∣∣∣∣ ∫ t

s

|b1,n(r, Bx
r ,PXn,x

r
)− b1(r, Bx

r ,PXx
r
)|2dr

∣∣∣∣p] 1
2p

+ E
[∣∣∣∣ ∫ T−s

T−t
|b1,n(T − r, B̂x

r ,PXn,x
r

)− b1(T − r, B̂x
r ,PXx

r
|2dr

∣∣∣∣p] 1
2p

+ E
[∣∣∣∣ ∫ T−s

T−t
(b1,n(r, Bx

r ,PXn,x
r

)− b1(r, Bx
r ,PXx

r
))

B̂r√
T − r

dr√
T − r

∣∣∣∣2p] 1
2p

.

(∫ t

s

E[|b1,n(r, Bx
r ,PXn,x

r
)− b1(r, Bx

r ,PXx
r
)|2p]

1
pdr

) 1
2

+

(∫ T−s

T−t
E[|b1,n(T − r, B̂x

r ,PXn,x
r

)− b1(T − r, B̂x
r ,PXx

r
|2p]

1
pdr

) 1
2

+

(∫ T−s

T−t
E
[
|b1,n(r, Bx

r ,PXn,x
r

)− b1(r, Bx
r ,PXx

r
)|2p
∣∣∣∣ BT−r√
T − r

∣∣∣∣2p] 1
2p dr√

T − r

)
.

(∫ t

s

E[|b1,n(r, Bx
r ,PXn,x

r
)− b1(r, Bx

r ,PXx
r
)|2p]

1
pdr

) 1
2

+

(∫ T−s

T−t
E[|b1,n(T − r, B̂x

r ,PXn,x
r

)− b1(T − r, B̂x
r ,PXx

r
|2p]

1
pdr

) 1
2

+

(∫ T−s

T−t
E
[
|b1,n(r, Bx

r ,PXn,x
r

)− b1(r, Bx
r ,PXx

r
)|4p
] 1

4p
dr√
T − r

)
. E

[∣∣∣∣ ∫ t

s

|b1,n(r, Bx
r ,PXn,x

r
)− b1(r, Bx

r ,PXx
r
)|2dr

∣∣∣∣p] 1
2p

+ E
[∣∣∣∣ ∫ T−s

T−t
|b1,n(T − r, B̂x

r ,PXn,x
r

)− b1(T − r, B̂x
r ,PXx

r
|2dr

∣∣∣∣p] 1
2p

+

∫ T−s

T−t
E
[
|b1,n(r, Bx

r ,PXn,x
r

)− b1(r, Bx
r ,PXx

r
)|4p
] 1

4p
dr√
T − r
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.

∣∣∣∣ ∫ t

s

E[|b1,n(r, Bx
r ,PXn,x

r
)− b1(r, Bx

r ,PXx
r
)|2p]

1
pdr

∣∣∣∣ 12
+

∣∣∣∣ ∫ T−s

T−t
E[|b1,n(T − r, B̂x

r ,PXn,x
r

)− b1(T − r, B̂x
r ,PXx

r
)|2p]

1
pdr

∣∣∣∣ 12
+

∫ T−s

T−t
E[|b1,n(r, Bx

r ,PXn,x
r

)− b1(r, Bx
r ,PXx

r
)|4p]

1
4p

dr√
T − r

,

= A1
n + A2

n + A3
n,

the last challenge is now to show that E[|b1,n(r, Bx
r ,PXn,x

r
)−b1(r, Bx

r ,PXx
r
)|4p]

1
4p

converges to 0 as n grows large.

E[|b1,n(r, Bx
r ,PXn,x

r
)− b1(r, Bx

r ,PXx
r
)|4p]

1
4p

= E[|b1,n(r, Bx
r ,PXn,x

r
)− b1,n(r, Bx

r ,PXx
r
) + b1,n(r, Bx

r ,PXx
r
)− b1(r, Bx

r ,PXx
r
)|4p]

1
4p

≤ CE[|b1,n(r, Bx
r ,PXn,x

r
)− b1,n(r, Bx

r ,PXx
r
)|4p]

1
4p + CE[|b1,n(r, Bx

r ,PXx
r
)

− b1(r, Bx
r ,PXx

r
)|4p]

1
4p ,

we now evaluate each term, the last term becomes,

E[|b1,n(r, Bx
r ,PXx

r
)− b1(r, Bx

r ,PXx
r
)|4p]

1
4p

≤ e
x2

8rp

(∫ ∞
−∞
|b1,n(r, z,PXx

r
)− b1(r, z,PXx

r
)|4p 1√

2πr
e−

z2

4r dz

) 1
4p

,

which tends to 0 as n becomes large. The first term becomes,

E[|b1,n(r, Bx
r ,PXn,x

r
)− b1,n(r, Bx

r ,PXx
r
)|4p]

1
4p

≤ CK(PXn,x
r
,PXx

r
)

≤ CE[|Xn,x
r −Xx

r |]

= CE
[
|Bx

r |
∣∣∣∣E (∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)
− E

(∫ T

0

b(r, Bx
r ,PXx

r
, αr)dBr

) ∣∣∣∣]
≤ CE[|Bx

r |2]
1
2E
[∣∣∣∣E (∫ T

0

bn(r, Bx
r ,PXn,x

r
, αr)dBr

)
− E

(∫ T

0

b(r, Bx
r ,PXx

r
, αr)dBr

) ∣∣∣∣2] 1
2

,

from Lemma 3.5.5 and the fact that E[|Bx
r |2]

1
2 is finite, we see that,

E[|b1,n(r, Bx
r ,PXn,x

r
) − b1(r, Bx

r ,PXx
r
)|4p]

1
4p converges to 0 as n tends to ∞.
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Also, it means that K(PXn,x
r
,PXx

r
) tends to 0 as n grows large, therefore,

PXn,x
r

converges PXx
r

as n tends to ∞. Consequently, the second term will

be 0 as n becomes∞. Combining everything together, we just showed that

A3
n tends to 0 as n grows large. We can use the same exact approach to

show that both A1
n and A2

n converges to 0 as n tends to ∞. Hence,

sup
x∈K

E
[∣∣∣∣e− ∫ t

s

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz) − e−
∫ t
s

∫
R b1(r,z,PXxr )LB

x
(dr,dz)

∣∣∣∣p] 1
p

tends to 0 as n tends to ∞, which proves the lemma.

Proof of Theorem 3.5.1. Let us consider the sequence (bn)n≥1 approximat-

ing the drift b as shown in (3.45), and (Xn,x
t )n≥0, the corresponding strong

unique solutions of the MFSDE (4.1). We know from Bauer et al. (2018)

that this solution is Sobolev differentiable and can be written explicitly as:

Gn,α0,t := e
−

∫ t
0

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
0 b
′
2(r,Xn,x

r ,αr)dr (3.50)

+

∫ t

0

e
−

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
s b
′
2(r,Xn,x

r ,αr)drĒ[∂µbn(s, X̄n,x
s ,PXn,x

s
, ᾱs;X

n,x
s )Ḡn,ᾱr,s ]ds.

We show that the representation in the theorem hold by showing that

(Gn)n≥0 converges weakly in L2(V × Ω) to G. Since L2(V × Ω) is spanned

by the space

{
v ⊗ E

(∫ T

0

ϕ̇rdBr

)
, ϕ ∈ C1

b (R), v ∈ C∞0 (V )
}
,

We need to show that

∫
V

v(x)E
[
(Gn − G)E

(∫ T

0

ϕ̇rdBr

)]
dx −→ 0 as n→∞, (3.51)

We have
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∫
V

v(x)E
[
(Gn − G)E

(∫ T

0

ϕ̇rdBr

)]
dx

=

∫
V

v(x)E
[(
e
−

∫ t
0

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
0 b
′
2(r,Xn,x

r ,αr)dr

+

∫ t

0

e
−

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
s b
′
2(r,Xn,x

r ,αr)drĒ[∂µbn(s, X̄n,x
s ,PXn,x

s
, ᾱs;X

n,x
s )Ḡn,ᾱr,s ]ds

− e−
∫ t
0

∫
R b1(r,z,PXxr )LX

x
(dr,dz)+

∫ t
0 b
′
2(r,Xx

r ,αr)dr

−
∫ t

0

e−
∫ t
s

∫
R b1(r,z,PXxr )LX

x
(dr,dz)+

∫ t
s b
′
2(r,Xx

r ,αr)drĒ[∂µb(s, X̄
x
s ,PXx

s
, ᾱs;X

x
s )Ḡᾱr,s]ds

)
E
(∫ T

0

ϕ̇rdBr

)]
dx

=

∫
V

v(x)E
[(
e
−

∫ t
0

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
0 b
′
2(r,Xn,x

r ,αr)dr

+

∫ t

0

e
−

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LX
n,x

(dr,dz)+
∫ t
s b
′
2(r,Xn,x

r ,αr)drĒ[∂µbn(s, X̄n,x
s ,PXn,x

s
, ᾱs; y)Ḡn,ᾱr,s ]|y=Xn,x

s
ds

− e−
∫ t
0

∫
R b1(r,z,PXxr )LX

x
(dr,dz)+

∫ t
0 b
′
2(r,Xx

r ,αr)dr

−
∫ t

0

e−
∫ t
s

∫
R b1(r,z,PXxr )LX

x
(dr,dz)+

∫ t
s b
′
2(r,Xx

r ,αr)drĒ[∂µb(s, X̄
x
s ,PXx

s
, ᾱs; y)Ḡᾱr,s]|y=Xx

s
ds

)
× E

(∫ T

0

ϕ̇rdBr

)]
dx,
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Let X̃n,x(t, ω) = Xn,x(t, ω+ϕ), α̃(ω) = α(ω+ϕ) and applying the Cameron-

Martin-Girsanov transform to obtain,

∫
V

v(x)E
[
(Gn − G)E

(∫ T

0

ϕ̇rdBr

)]
dx

=

∫
V

v(x)E
[(
e
−

∫ t
0

∫
R b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz)+
∫ t
0 b
′
2(r,X̃n,x

r ,α̃r)dr

+

∫ t

0

e
−

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz)+
∫ t
s b
′
2(r,X̃n,x

r ,α̃r)dr

× Ē[∂µbn(s, X̄n,x
s ,PXn,x

s
, ᾱs; y)Ḡn,ᾱr,s ]|y=X̃n,x

s
ds− e−

∫ t
0

∫
R b1(r,z,PXxr )LX̃

x
(dr,dz)+

∫ t
0 b
′
2(r,X̃x

r ,α̃r)dr

−
∫ t

0

e−
∫ t
s

∫
R b1(r,z,PXxr )LX̃

x
(dr,dz)+

∫ t
s b
′
2(r,X̃x

r ,α̃r)drĒ[∂µb(s, X̄
x
s ,PXx

s
, ᾱs; y)Ḡᾱr,s]|y=X̃x

s
ds

)]
dx,

=

∫
V

v(x)E
[(
e
−

∫ t
0

∫
R b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz)+
∫ t
0 b
′
2(r,X̃n,x

r ,α̃r)dr

− e−
∫ t
0

∫
R b1(r,z,PXxr )LX̃

x
(dr,dz)+

∫ t
0 b̃
′
2(r,X̃x

r ,α̃r)dr

)]
dx

+

∫
V

v(x)

∫ t

0

E
[
e
−

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz)+
∫ t
s b
′
2(r,X̃x

r ,α̃r)dr

× Ē[∂µbn(s, X̄n,x
s ,PXn,x

s
, ᾱs; y)Ḡn,ᾱr,s ]|y=X̃n,x

s

− e−
∫ t
s

∫
R b1(r,z,PXxr )LX̃

x
r (dr,dz)+

∫ t
s b
′
2(r,X̃x

r ,α̃r)drĒ[∂µb(s, X̄
x
s ,PXx

s
, ᾱs; y)Ḡᾱr,s]|y=X̃x

s

]
dsdx

=

∫
V

v(x)Rn
1 dx+

∫
V

v(x)Rn
2 dx.

Let us check the convergence of Rn
1 , we have:

Rn
1 = E

[
e
−

∫ t
0

∫
R b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz)+
∫ t
0 b
′
2(r,X̃n,x

r ,α̃r)dr

− e−
∫ t
0

∫
R b1(r,z,PXxr )LX̃

x
(dr,dz)+

∫ t
0 b
′
2(r,X̃x

r ,α̃r)dr
]

≤ E
[
e
−

∫ t
0

∫
R 2b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz)

] 1
2

E
[∣∣∣e∫ t0 b′2(r,X̃n,x

r ,α̃r)dr − e
∫ t
0 b
′
2(r,X̃x

r ,α̃r)dr
∣∣∣2] 1

2

+ E
[
e
∫ t
0 2b′2(r,X̃x

r ,α̃r)dr
] 1

2E
[∣∣∣e− ∫ t

0

∫
R b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz) − e−
∫ t
0

∫
R b1(r,z,PXxr )LX̃

x
(dr,dz)

∣∣∣2] 1
2

= Rn
11 ×Rn

12 +Rn
13 ×Rn

14. (3.52)
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Using the Girsanov transform and the Cauch-Schwarz inequality, Lemmas

3.3.2 and 3.5.1, we get

Rn
11 =E

[
e
−

∫ t
0

∫
R 2b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz)

] 1
2

≤E
[
E
(∫ T

0

(
bn(r, Bx

r ,PXn,x
r
, α̃r) + ϕ̇r

)
dBr

)2] 1
4

E
[
e
−

∫ t
0

∫
R 4b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)

] 1
4

<∞

Rn
13 is finite due to the boundedness of the space derivative of b2. Next,

we prove the convergence of Rn
14. We do so by first defining the following

terms:

Zn
1 := e

−
∫ t
0

∫
R b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz)
, Z1 := e−

∫ t
0

∫
R b1(r,z,PXxr )LX̃

x
(dr,dz).

Again, we show convergence of Zn
1 to Z1 by first showing weak convergence

in L2 and then showing convergence of the second moment n the Euclidiant

norm.

As before, we show weak the convergence by showing the following result:

∣∣∣E[E(∫ 1

0

ϕ̇rdBr

)
(Zn

1 − Z1)
]∣∣∣→ 0 as n→∞.

So we have after applying the Cameron-Martin Girsanov theorem,

∣∣∣E[E(∫ 1

0

ϕ̇1,rdBr

)
(Zn

1 − Z1)
]∣∣∣

=
∣∣∣E[E(∫ 1

0

ϕ̇1,rdBr

)(
e
−

∫ t
0

∫
R b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz) − e−
∫ t
0

∫
R b1(r,z,PXxr )LX̃

x
(dr,dz)

)]∣∣∣
=
∣∣∣E[e− ∫ t

0

∫
R b1,n(r,z,P

X
n,x
r

)LX̂
n,x

(dr,dz) − e−
∫ t
0

∫
R b1(r,z,PXxr )LX̂

x
(dr,dz)

]∣∣∣
=
∣∣∣E[e− ∫ t

0

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)E
(∫ T

0

(
bn(s, Bx

s ,PXn,x
s
, α̂s) + ϕ̇s + ϕ̇1,s

)
dBs

)
− e−

∫ t
0

∫
R b1(r,z,PXxr )LB

x
(dr,dz)E

(∫ T

0

(
b(s, Bx

s ,PXx
s
, α̂s) + ϕ̇s + ϕ̇1,s

)
dBs

)]∣∣∣
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where X̂x(ω) = Xx(ω + ϕ+ ϕ1), α̂(ω) = α(ω + ϕ+ ϕ1). Let us define:

Ên(x) :=E
(∫ T

0

(
bn(s, Bx

s ,PXn,x
s
, α̂s) + ϕ̇s + ϕ̇1,s

)
dBs

)
,

Ẽn(x) :=E
(∫ T

0

(
bn(s, Bx

s ,PXn,x
s
, α̃s) + ϕ̇s

)
dBs

)
Ê(x) :=E

(∫ T

0

(
b(s, Bx

s ,PXx
s
, α̂s) + ϕ̇s + ϕ̇1,s

)
dBs

)
,

Ẽ(x) :=E
(∫ T

0

(
b(s, Bx

s ,PXx
s
, α̃s)

)
dBs

)
.

Hence:

∣∣∣E[E(∫ 1

0

ϕ̇1,rdBr

)
(Zn

1 − Z1)
]∣∣∣

≤E
[
e
−

∫ t
0

∫
R 2b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)
] 1

2E
[∣∣Ên(x)− Ê(x)

∣∣2] 1
2

+ E
[
Ê(x)2

] 1
2E
[∣∣∣e− ∫ t

0

∫
R b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz) − e−
∫ t
0

∫
R b1(r,z,PXxr )LB

x
(dr,dz)

∣∣∣2] 1
2
,

The convergence of E
[
e
−

∫ t
0

∫
R 2b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)
] 1

2E
[∣∣Ên(x)−Ê(x)

∣∣2] 1
2 holds

by Lemma 3.5.1 and the first claim of Lemma 3.5.5. The second term con-

verges by Lemma 3.3.2 and the second claim of Lemma 3.5.5. Next, we

show the convergence in the Euclidiant norm. More precisely, we prove

that ∣∣E[|Zn
1 |2
]
− E

[
|Z1|2

]∣∣→ 0 as n→∞.

Adding and substracting e
−

∫ t
0

∫
R 2b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)Ẽ(x) and using the

Cauchy-Schwarz inequality gives

∣∣E[|Zn
1 |2
]
− E

[
|Z1|2

]∣∣
=
∣∣E[e− ∫ t

0

∫
R 2b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz)]− E
[
e−

∫ t
0

∫
R 2b1(r,z,PXxr )LX̃

x
(dr,dz)

]∣∣
=
∣∣E[e− ∫ t

0

∫
R 2b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)Ẽn(x)− e−
∫ t
0

∫
R 2b1(r,z,PXxr )LB

x
(dr,dz)Ẽ(x)

]∣∣
≤
∣∣E[e− ∫ t

0

∫
R 4b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz)] 1
2E
[∣∣Ẽn(x)− Ẽ(x)

∣∣2] 1
2

+ E
[
Ẽ(x)2

] 1
2E
[∣∣e− ∫ t

0

∫
R 2b1,n(r,z,P

X
n,x
r

)LB
x

(dr,dz) − e−
∫ t
0

∫
R 2b1(r,z,PXxr )LB

x
(dr,dz)

∣∣2] 1
2
∣∣.

Convergence follows using the similar arguments as before. Therefore, Rn
14
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converges to 0 as n goes to ∞. The convergence of Rn
12 follows from dom-

inated convergence. Consequently, Rn
1 converges as n grows large. Let us

now study the convergence of Rn
2 . Recall that

Rn
2

=

∫ t

0

E
[(
e
−

∫ t
s

∫
R b1,n(r,z,P

X
n,x
r

)LX̃
n,x

(dr,dz)+
∫ t
s b
′
2(r,X̃n,x

r ,α̃r)drĒ[∂µbn(s, X̄n,x
s ,PXn,x

s
, ᾱs; y)Ḡn,ᾱr,s ]|y=X̃n,x

s

− e−
∫ t
s

∫
R b1(r,z,PXxr )LX̃

x
r (dr,dz)+

∫ t
s b
′
2(r,X̃x

r ,α̃r)duĒ[∂µb(s, X̄
x
s ,PXx

s
, ᾱs; y)Ḡᾱr,s]|y=X̃x

s

)]
ds.

Let us again take note of the following notation:

ēs(b1, X
x) :=e−

∫ t
s

∫
R b1(r,z,PXxr )LX

x
(dr,dz), ēs(b2, X

x) := e
∫ t
s b
′
2(r,Xx

r ,α̃r)dr

Ē[∂µb̃Ḡᾱr,s] :=Ē[∂µb(s, X̄
x
s ,PXx

s
, ᾱs; y)Ḡᾱr,s]|y=X̃x

s
,

Ē[∂µb̃
n
s Ḡn,ᾱr,s ] := Ē[∂µbn(s, X̄n,x

s ,PXn,x
s
, ᾱs; y)Ḡn,ᾱr,s ]|y=X̃n,x

s

Adding and substracting both ēs(b1, X̃
x)ēs(b2, X̃

n,x)Ē[∂µb̃
n
s Ḡn,ᾱr,s ] and

ēs(b̃2, X̃
x)ēs(b1, X̃

x)Ē[∂µb̃
n
s Ḡn,ᾱr,s ] gives

Rn
2 =

∫ t

0

E[ēs(b1,n, X̃
n,x)ēs(b̃2, X̃

n,x)Ē[∂µb̃
n
s Ḡn,ᾱr,s ]− ēs(b1, X̃

x)ēs(b2, X
x)Ē[∂µb̃Ḡᾱr,s]]ds

=

∫ t

0

(
E
[(
ēs(b1,n, X̃

n,x)− ēs(b1, X̃
x)
)
ēs(b̃2, X̃

n,x)Ē[∂µb̃
n
s Ḡn,ᾱr,s ]

]
+ E

[(
ēs(b2, X̃

n,x)− ēs(b2, X̃
x)
)
ēs(b1, X̃

x)Ē[∂µb̃
n
s Ḡn,ᾱr,s ]

]
+ E

[(
Ē[∂µb̃

n
s Ḡn,ᾱr,s ]− Ē[∂µb̃Ḡᾱr,s]

)
ēs(b̃2, X̃

x)ēs(b1, X̃
x)
])

ds =

∫ t

0

(
Rn

21 +Rn
22 +Rn

23

)
ds

let us evaluate each term:

Rn
21 = E

[(
ēs(b1,n, X̃

n,x)− ēs(b1, X̃
x)
)
ēs(b2, X̃

n,x)Ē[∂µb̃
n
s Ḡn,ᾱr,s ]

]
≤ E

[∣∣ēs(b1,n, X̃
n,x)− ēs(b1, X̃

x)
∣∣2]

1
2E
[∣∣ēs(b2, X̃

n,x)
∣∣4] 1

4E
[∣∣Ē[∂µb̃

n
s Ḡn,ᾱr,s ]

∣∣4] 1
4

E
[∣∣ēs(b2, X̃

n,x)
∣∣4] 1

4 and E
[∣∣Ē[∂µb̃

n
s Ḡn,ᾱr,s ]

∣∣4] 1
4 are finite thanks to the bound-

edness of b′2 and ∂µb̃
n and Lemma 3.37. Convergence of E

[∣∣ēs(b1,n, X̃
n,x)−
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ēs(b1, X̃
x)
∣∣2]

1
2 follows using the same argument as in Rn

14 whereas onver-

gence of Rn
22 follows from dominated convergence and Lemma 4.3.1. We

continue with Rn
23. Using the previous argiuments, we have

Rn
23 =E

[(
Ē[∂µb̃

n
s Ḡn,ᾱr,s − ∂µb̃Ḡᾱr,s]

)
ēs(b2, X̃

x)ēs(b1, X̃
x)
]

≤E
[
Ē[|∂µb̃ns Ḡn,ᾱr,s − ∂µb̃Ḡᾱr,s|2]

] 1
2E
[
ēs(b2, X̃

x)4
] 1

4E
[
ēs(b1, X̃

x)4
] 1

4

≤E
[
Ē[|∂µb̃ns Ḡn,ᾱr,s − ∂µb̃Ḡᾱr,s|2]

] 1
2E
[
ēs(b̃2, X̃

x)4
] 1

4E
[
ēs(b1, B

x)8
] 1

8

× E
[
E
(∫ T

0

(
b(s, Bx

u,PXx
u
, α̃u) + ϕ̇u

)
dBu

)2] 1
8

≤CE
[
Ē[|∂µb̃ns Ḡn,ᾱr,s − ∂µb̃Ḡᾱr,s|2]

] 1
2 .

Convergence of E
[
Ē[|∂µb̃ns Ḡn,ᾱr,s − ∂µb̃Ḡᾱr,s|2]

] 1
2 can be proved using the same

approach shown in (4.14). Therefore, Rn
2 converges to 0 as n tends to ∞.

The proof is completed.

Proof of Theorem 3.5.2. Let us consider s, t ∈ [0, T ], and two arbitrary

element of K, x and z. {Xn,x}n≥0 denotes the approximating sequence of

solutions as presented in (3.46). Using the same approach as in the proof

of Lemma 3.5.4, we can find that:

E[|Xn,x
t −Xn,z

t |2]
1
2 . |x− z|,

as well, based on the proof of the estimate (3.37) of Lemma 3.5.3. Also, we

have:

E[|Xn,x
t −Xn,x

t′ |
2]

1
2 = E

[∣∣∣∣ ∫ t

t′
bn(r,Xn,x

r ,PXn,x
r
, αr)dr +Bt −Bt′

∣∣∣∣2] 1
2

,

. E
[∣∣∣∣ ∫ t

t′
bn(r,Xn,x

r ,PXn,x
r
, αr)dr

∣∣∣∣2 + |Bt −Bt′ |2
] 1

2

,

. E
[∣∣∣∣ ∫ t

t′
bn(r,Xn,x

r ,PXn,x
r
, αr)dr

∣∣∣∣2] 1
2

+ E[|Bt −Bt′|2]
1
2 ,
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we apply the Minkowski inequality to get:

E[|Xn,x
t −Xn,x

t′ |
2]

1
2 .

∫ t

t′
E[|bn(r,Xn,x

r ,PXn,x
r
, αr)|2]

1
2dr + E[(Bt −Bt′)

2]
1
2 ,

.
∫ t

t′
E[|bn(r,Xn,x

r ,PXn,x
r
, αr)|2]

1
2dr + E[(Bt −Bt′)

2]
1
2 ,

≤ C|t− t′|
1
2 ,

where C is greater than 0 and is a constant depending on T . The previous

inequality holds true due to the estimate (3.34) of Lemma 3.5.2. We obtain

afterwards:

E[|Xn,x
t −Xn,z

t′ |
2] = E[|Xn,x

t −Xn,z
t +Xn,z

t −X
n,z
t′ |

2],

≤ E[|Xn,x
t −Xn,z

t |2] + E[|Xn,z
t −X

n,z
t′ |

2],

≤ C
(
|x− z|2 + |t− t′|

)
,

knowing that Xn,x converges to Xx in L2 for at least a subsequence, we can

use the Fatou’s Lemma in Lemma 1.6.1 to obtain the desired result.

3.6 Chapter Summary

In this chapter, we demonstrated that the strong solution of the MFSDE

under study holds some properties among which the reresentation of a

stochastic differential flow. Since in our case the controlled MFSDE has

a non-smooth drift and is driven by a one-dimensional Brownian motion,

we studied the representation of the stochastic (Sobolev) differential flow,

via a time-space local time integration argument and we will use that rep-

resentation to solve an optimal control problem where the state constraint

is a MFSDE.
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

In this chapter, we finally study and characterize an optimal control

for a MFSDE in which the measure variable is the law of the state process

denoted by PXx
t
. After stating the assumptions we will use for the control

problem, we will describe how an optimal control could be characterized for

the system by studying necessary conditions for the existence of an optimal

control.

4.2 Research Framework

We aim at optimizing the following performance functional:

J(α) := E
[ ∫ T

0

f(s,Xx
s ,PXx

s
, αs)ds+ g(Xx

T ,PXx
T
)

]
,

subjected to:

dXx
t = b(t,Xx

t ,PXx
t
, αt)dt+ dBt, Xx

0 = x, t ∈ [0, T ], (4.1)

where,

• Bt is a Brownian motion defined on some probability space (Ω,F , {Ft}t≥0,P),

• {αt}t≥0 is a suitable control process adapted to the filtration Ft and

takes values in a closed convex control space E ∈ R, and all con-

trols taken such that ”(4.1) is uniquely solvable” constitute the set of

admissible controls D,

• Xx
t denotes the state of the system controlled by αt,

• For all (t, z, µ, α) ∈ [0, T ]× R× P1(R)× E,

– f and g are continuously differentiable with bounded first deriva-

tives,
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– there exists a constant C such that for all (t, z, µ, α),

|f(t, z, µ, α)|+ |g(z, µ)| ≤ C(1 + |z|+K(µ, δ0)), (4.2)

– we denote by ∂zf and ∂zg, the first derivative of f and g respec-

tively with respect to the space variable,

• PXx
t
∈ P1(R) where,

P1(R) =

{
ν

∣∣∣∣ν probability measure on (R,B(R)) with
∫
R |z|dν(z) <

∞
}
,

• The drift b can be decomposed in this form:

b(t, z, µ, α) = b1(t, z, µ) + b2(t, z, α), (4.3)

where,

– b1 : [0, T ]× R× P1(R)→ R with b1 bounded and adapted,

– b2 : [0, T ]×R×E → R is bounded and differentiable in its second

and third variable with bounded derivatives,

• the map µ 7→ b1(t, z, µ) is Lipschitz continuous in the measure variable

uniformly in t ∈ [0, T ] and z ∈ R, i.e. for all t ∈ [0, T ], z ∈ R, and

µ, ν ∈ P1(R), there exists a constant C such that:

|b1(t, z, µ)− b1(t, z, ν)| ≤ CK(µ, ν), (4.4)

problem 4.2.1. Find α∗ ∈ A such that

V (x) = sup
α∈A

J(α) = J(α∗). (4.5)
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The Hamiltonian H associated to the above control problem is defined as

follows:

H(t, z, p, µ, α) = f(t, z, µ, α) + b(t, z, µ, α)p. (4.6)

4.3 Stochastic Maximum Principle

The stochastic maximum principle is stated in the following theorem:

Theorem 4.3.1 (A necessary maximum principle). Suppose that the drift

b is given as in (4.3). Let (α̂, Xx,α̂) be an optimal pair of the system (4.1)

and (4.5). Then there exists an adapted process (adjoint process) P̂ such

that:

1. The following maximum principle holds

∂αH(t,Xx,α̂
t , P̂t,PXx,α̂

t
, α̂t) · (γ − α̂t) ≥ 0, P⊗ dt− a.s. for all γ ∈ A.

(4.7)

2. Let Gα̂ be the well defined first variation process (in the Sobolev sense)

of Xx,α̂ given by

Gα̂s,t =e
−

∫ t
s

∫
R b1(u,z,P

X
x,α̂
u

)LX
x,α̂

(du,dz)+
∫ t
s ∂zb2(u,Xx,α̂

u ,α̂u)du

+

∫ t

s

e
−

∫ t
r

∫
R b1(u,z,P

X
x,α̂
u

)LX
x,α̂

(du,dz)+
∫ t
r ∂zb2(u,Xx,α̂

u ,α̂u)du
(4.8)

× Ẽ[∂µb(r, X̃
x, ˜̂α
r ,PXx,α̂

r
, ˜̂αr;X

x, ˜̂α
r )G̃ ˜̂α

s,r]dr. (4.9)

Then

P̂t =E
[
Gα̂t,T∂zg(Xx,α̂

T ,PXx,α̂
T

)+Ẽ[∂µg(X̃x, ˜̂α
T ,PXx,α̂

T
;Xx,α̂

T )G̃ ˜̂α
t,T ]

+

∫ T

t

{
Gα̂t,s∂zf(s,Xx,α̂

s ,PXx,α̂
s
, α̂s) + Ẽ[∂µf(s, X̃x, ˜̂α

s ,PXx,α̂
s
, ˜̂αs;X

x,α̂
s )G̃ ˜̂α

t,s]
}

ds
∣∣∣Ft].

(4.10)
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This whole chapter is entirely setup for the proof of Theorem 4.3.1.

We consider E ⊂ R, a closed convex subset of R. A control is said to be

admissible if it satisfies the following condition:

D :=

{
α : [0, T ]× Ω→ E, progressive (4.1) is uniquely solvable and sup

0≤t≤T
E[|αt|4] < A,

}
(4.11)

where A is a constant such that A > 0. In addition, we define the sequence

of smooth functions bn expressed as follows:

bn(t,Xn,x,α
t ,PXn,x,α

t
, αt) = b1,n(t,Xn,x,α

t ,PXn,x,α
t

) + b2(t,Xn,x,α
t , αt),

where b1,n : [0, T ] × R × P1(R) → R are infinitely differentiable functions

having a support that is compact and converging almost everywhere to b1.

b1,n can be a bounded sequence since b1 is assumed to be bounded. The

assumptions on bn results in it being Lipschitz continuous, therefore making

the sequence well-posed. We define in the same way the performance and

the value function denoted by Jn and Qn respectively, as follows:

Jn(α) := E
[ ∫ T

0

f(u,Xn,x,α
u ,PXn,x,α

u
, αu)du+ g(Xn,x,α

T ,PXn,x,α
T

)

]
, Qn = sup

α∈D
Jn(α),

and,

dXn,x,α
t = bn(t,Xn,x,α

t ,PXn,x,α
t

, αt)dt+ dBt, t ∈ [0, T ], Xn,x,α
0 = x.

In addition, the distance between two controls α1 and α2 will be ex-

pressed as:

τ(α1, α2) = sup
0≤t≤T

E
[
|α1
t − α2

t |4
] 1

4 .

The proof of Theorem 4.3.1 will consist in deriving an approximate

control problem using the Ekeland variational principle and proving that

the optimal control for the initial problem with Qn is also ”ε−optimal” for
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the approximate control problem. Next, we will pass to the limit to show

some form of convergence for the maximum principle. The whole proof will

be demonstrated through the use of some technical lemmas.

Lemma 4.3.1. The following bounds hold true:

for every α1, α2 ∈ D, we have:

1.

E
[∣∣Xn,x,α1

t −Xx,α2

t

∣∣2] 1
2

≤ C
{
τ(α1, α2) +

(∫ t

0

e−
x2

8u

(2πu)
1
8

(∫
R

∣∣b1,n(u, z,P
Xx,α

2
u

)− b1(u, z,P
Xx,α

2
u

)
∣∣8e− z24u dz) 1

4

du

) 1
2
}
.

2. for every sequence {αn}n≥0 in D converging to α ∈ D in the norm

sup0≤t≤T E[| · |4]
1
4 , we have:

sup
0≤t≤T

E
[∣∣Xk,x,αn

t −Xk,x,α
t

∣∣2] 1
2 converges to 0 as n grows to ∞, for a given k.

Proof of Lemma 4.3.1. We start with the proof of 1. in the lemma. We

have,

Xn,x,α1

t −Xx,α2

t

=

∫ t

0

(
bn(u,Xn,x,α1

u ,P
Xn,x,α1
u

, α1
u)− b(u,Xx,α2

u ,P
Xx,α2
u

, α2
u)
)
du,

=

∫ t

0

(
b1,n(u,Xn,x,α1

u ,P
Xn,x,α1
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

) + b2(u,Xn,x,α1

u , α1
u)

− b2(u,Xx,α2

u , α2
u)
)
du,

after adding and substracting the following three terms: b1,n(u,Xn,x,α1

u ,P
Xx,α2
u

),
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b1,n(u,Xx,α2

u ,P
Xx,α2
u

), and b2(u,Xx,α2

u , α1
u) and then applying the mean value

theorem, we obtain:

Xn,x,α1

t −Xx,α2

t

=

∫ t

0

(
b1,n(u,Xn,x,α1

u ,P
Xn,x,α1
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

) + b2(u,Xn,x,α1

u , α1
u)

− b2(u,Xx,α2

u , α2
u)
)
du,

=

∫ t

0

(
b1,n(u,Xn,x,α1

u ,P
Xn,x,α1
u

)− b1,n(u,Xn,x,α1

u ,P
Xx,α2
u

)
)
du

+

∫ t

0

(
b1,n(u,Xn,x,α1

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
)
du

+

∫ t

0

(
b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1,n(u,Xx,α2

u ,P
Xx,α2
u

)
)
du

+

∫ t

0

(
b2(u,Xn,x,α1

u , α1
u)− b2(u,Xx,α2

u , α2
u)
)
du
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=

∫ t

0

(
b1,n(u,Xn,x,α1

u ,P
Xn,x,α1
u

)− b1,n(u,Xn,x,α1

u ,P
Xx,α2
u

)
)
du

+

∫ t

0

(∫ 1

0

b′1,n(u,Xx,α2

u + θ(Xn,x,α1

u −Xx,α2

u ),P
Xx,α2
u

)dθ

)
(Xn,x,α1

u −Xx,α2

u )du

+

∫ t

0

(
b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
)
du

+

∫ t

0

(
b2(u,Xn,x,α1

u , α1
u)− b2(u,Xx,α2

u , α1
u)
)
du

+

∫ t

0

(
b2(u,Xx,α2

u , α1
u)− b2(u,Xx,α2

u , α2
u)
)
du

=

∫ t

0

(
b1,n(u,Xn,x,α1

u ,P
Xn,x,α1
u

)− b1,n(u,Xn,x,α1

u ,P
Xx,α2
u

)
)
du

+

∫ t

0

(∫ 1

0

b′1,n(u,Xx,α2

u + θ(Xn,x,α1

u −Xx,α2

u ),P
Xx,α2
u

)dθ

)
(Xn,x,α1

u −Xx,α2

u )du

+

∫ t

0

(
b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
)
du

+

∫ t

0

(∫ 1

0

b′2(u,Xx,α2

u + θ(Xn,x,α1

u −Xx,α2

u ), α1
u)dθ

)
(Xn,x,α1

u −Xx,α2

u )du

+

∫ t

0

(
b2(u,Xx,α2

u , α1
u)− b2(u,Xx,α2

u , α2
u)
)
du,

=

∫ t

0

(
b1,n(u,Xn,x,α1

u ,P
Xn,x,α1
u

)− b1,n(u,Xn,x,α1

u ,P
Xx,α2
u

)
)
du

+

∫ t

0

(∫ 1

0

(
b′1,n(u,Xx,α2

u + θ(Xn,x,α1

u −Xx,α2

u ),P
Xx,α2
u

)

+ b′2(u,Xx,α2

u + θ(Xn,x,α1

u −Xx,α2

u ), α1
u)
)
dθ

)
× (Xn,x,α1

u −Xx,α2

u )du

+

∫ t

0

(
b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
)
du

+

∫ t

0

(
b2(u,Xx,α2

u , α1
u)− b2(u,Xx,α2

u , α2
u)
)
du,

therefore Xn,x,α1

t −Xx,α2

t admits the representation:

Xn,x,α1

t −Xx,α2

t

=

∫ t

0

e

∫ t
s

∫ 1
0

(
b′1,n(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),P
X
x,α2
u

)+b′2(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),α1
u)
)
dθdu

×
(
b1,n(s,Xn,x,α1

s ,P
Xn,x,α1
s

)− b1,n(s,Xn,x,α1

s ,P
Xx,α2
s

) + b1,n(s,Xx,α2

s ,P
Xx,α2
s

)

− b1(s,Xx,α2

s ,P
Xx,α2
s

) + b2(s,Xx,α2

s , α1
s)− b2(s,Xx,α2

s , α2
s)

)
ds
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squaring and applying the expectation to the power
1

2
on both sides and

the Cauchy-Schwarz inequality yields:

E
[∣∣Xn,x,α1

t −Xx,α2

t

∣∣2] 1
2

. E
[∣∣∣∣ ∫ t

0

e

∫ t
s

∫ 1
0 2
(
b′1,n(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),P
X
x,α2
u

)+b′2(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),α1
u)
)
dθdu

ds

∣∣∣∣2] 1
4

×
{
E
[∣∣∣∣ ∫ t

0

∣∣b1,n(u,Xn,x,α1

u ,P
Xn,x,α1
u

)− b1,n(u,Xn,x,α1

u ,P
Xx,α2
u

)
∣∣2du∣∣∣∣2] 1

4

+ E
[∣∣∣∣ ∫ t

0

∣∣b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
∣∣2du∣∣∣∣2] 1

4

+ E
[∣∣∣∣ ∫ t

0

∣∣b2(u,Xx,α2

u , α1
u)− b2(u,Xx,α2

u , α2
u)
∣∣2du∣∣∣∣2] 1

4
}
.

The next step is to show that

E
[∣∣∣∣ ∫ t0 e∫ ts ∫ 1

0 2
(
b′1,n(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),P
X
x,α2
u

)+b′2(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),α1
u)
)
dθdu

ds

∣∣∣∣2] 1
4

is finite. So we have after applying the Jensen inequality:

E
[∣∣∣∣ ∫ t

0
e

∫ t
s

∫ 1
0 2
(
b′1,n(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),P
X
x,α2
u

)+b′2(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),α1
u)
)
dθdu

ds

∣∣∣∣2] 1
4

≤ E
[∣∣∣∣ ∫ t

0

∫ 1

0
e

∫ t
s 2
(
b′1,n(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),P
X
x,α2
u

)+b′2(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),α1
u)
)
du
dθds

∣∣∣∣2] 1
4

we next apply the Minkowski inequality to have:

E
[∣∣∣∣ ∫ t

0

e

∫ t
s

∫ 1
0
2
(
b′1,n(u,X

x,α2

u +θ(Xn,x,α
1

u −Xx,α
2

u ),P
X
x,α2
u

)+b′2(u,X
x,α2

u +θ(Xn,x,α
1

u −Xx,α
2

u ),α1
u)
)
dθdu

ds

∣∣∣∣2] 1
4

≤
(∫ t

0

∫ 1

0

E
[
e

∫ t
s
4
(
b′1,n(u,X

x,α2

u +θ(Xn,x,α
1

u −Xx,α
2

u ),P
X
x,α2
u

)+b′2(u,X
x,α2

u +θ(Xn,x,α
1

u −Xx,α
2

u ),α1
u)
)
du
] 1

2

dθds

) 1
2

.

Next, we evaluate

E
[
e

∫ t
s 4
(
b′1,n(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),P
X
x,α2
u

)+b′2(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),α1
u)
)
du
]
. We

first apply the Girsanov transform but before, let us introduce the following

process {bθn,t}t∈[0,T ] where bθn,u can be found as follows:
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Xx,α2

u + θ(Xn,x,α1

u −Xx,α2

u )

= x+Bu +

∫ u

0

b(r,Xx,α2

r ,P
Xx,α2
r

, α2
r)dr + θ

(∫ u

0

(
bn(r,Xn,x,α1

r ,PXn,x,α1 , α
1
r)

− b(r,Xx,α2

u ,P
Xx,α2
u

, α2
r)
)
dr

)
= x+Bu +

∫ u

0

(
θbn(r,Xn,x,α1

r ,PXn,x,α1 , α
1
r) + (1− θ)b(r,Xx,α2

r ,P
Xx,α2
r

, α2
r)
)
dr

= x+Bu +

∫ u

0

bθn,rdr.

So we have:

Xx,α2

u + θ(Xn,x,α1

u −Xx,α2

u )

= x+Bu +

∫ u

0

b(r,Xx,α2

r ,P
Xx,α2
r

, α2
r)dr + θ

(∫ u

0

(
bn(r,Xn,x,α1

r ,PXn,x,α1 , α
1
r)

− b(r,Xx,α2

u ,P
Xx,α2
u

, α2
r)
)
dr

)
= x+Bu +

∫ u

0

(
θbn(r,Xn,x,α1

r ,PXn,x,α1 , α
1
r) + (1− θ)b(r,Xx,α2

r ,P
Xx,α2
r

, α2
r)
)
dr

= x+Bu +

∫ u

0

bθn,rdr.

which is finite due to the assumption on b′2, Lemma 3.5.1 and the bound-

edness of bθn,u. We go back to estimating E
[∣∣Xn,x,α1

t −Xx,α2

t

∣∣2] 1
2

. Applying

the Minkowski’s inequality gives:

E
[∣∣Xn,x,α1

t −Xx,α2

t

∣∣2] 1
2

.

(∫ t

0

E
[∣∣b1,n(u,Xn,x,α1

u ,P
Xn,x,α1
u

)− b1,n(u,Xn,x,α1

u ,P
Xx,α2
u

)
∣∣4] 1

2du

) 1
2

+

(∫ t

0

E
[∣∣b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
∣∣4] 1

2du

) 1
2

+

(∫ t

0

E
[∣∣b2(u,Xx,α2

u , α1
u)− b2(u,Xx,α2

u , α2
u)
∣∣4] 1

2du

) 1
2

,
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using the Lipschitz continuity of b2, and the Lipschitz continuity of b1,n in

the measure variable, we obtain:

E
[∣∣Xn,x,α1

t −Xx,α2

t

∣∣2] 1
2

.

(∫ t

0

E
[∣∣b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
∣∣4] 1

2du

) 1
2

+

(∫ t

0

K(P
Xn,x,α1
u

,P
Xx,α2
u

)2du

) 1
2

+

(∫ t

0

E
[∣∣α1

u − α2
u

∣∣4] 1
2du

) 1
2

.

(∫ t

0

E
[∣∣b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
∣∣4] 1

2du

) 1
2

+

(∫ t

0

E
[
|Xn,x,α1

u −Xx,α2

u |
]2
du

) 1
2

+

(∫ t

0

E
[∣∣α1

u − α2
u

∣∣4] 1
2du

) 1
2

.

(∫ t

0

E
[∣∣b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
∣∣4] 1

2du

) 1
2

+

(∫ t

0

E
[
|Xn,x,α1

u −Xx,α2

u |2
]
du

) 1
2

+

(∫ t

0

E
[∣∣α1

u − α2
u

∣∣4] 1
2du

) 1
2

,

now let us apply the Grönwall’s inequality after squaring both sides of the

inequality and we obtain:

E
[∣∣Xn,x,α1

t −Xx,α2

t

∣∣2]
.
∫ t

0

E
[∣∣α1

u − α2
u

∣∣4] 1
2du+

∫ t

0

E
[∣∣b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
∣∣4] 1

2du,

. τ(α1, α2)2 +

∫ t

0

E
[∣∣b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
∣∣4] 1

2du

next, we apply the Girsanov transform on E
[∣∣b1,n(u,Xx,α2

u ,P
Xx,α2
u

)−b1(u,Xx,α2

u ,P
Xx,α2
u

)
∣∣4],

and we get,

E
[∣∣b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
∣∣4]

= E
[
E
(∫ T

0

b(r,Xx,α2

r ,P
Xx,α2
r

, α2
r)dBr

)∣∣b1,n(u,Bx
u,PXx,α2

u
)− b1(u,Bx

u,PXx,α2
u

)
∣∣4]

≤ E
[
E
(∫ T

0

b(r,Xx,α2

r ,P
Xx,α2
r

, α2
r)dBr

)2] 1
2

E
[∣∣b1,n(u,Bx

u,PXx,α2
u

)− b1(u,Bx
u,PXx,α2

u
)
∣∣8] 1

2

,
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since b is bounded, we do:

E
[∣∣b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
∣∣8]

≤ CE
[∣∣b1,n(u,Bx

u,PXx,α2
u

)− b1(u,Bx
u,PXx,α2

u
)
∣∣8] 1

2

= C

(∫
R

1√
2πu

∣∣b1,n(u, z,P
Xx,α2
u

)− b1(u, z,P
Xx,α2
u

)
∣∣8e− (z−x)2

2u dz

) 1
2

,

since we also have:

e−
(z−x)2

2u = e−
z2

4u e−
(z−2x)2

4u e−
x2

2u ≤ e−
z2

4u e−
x2

2u ,

we get,

E
[∣∣b1,n(u,Xx,α2

u ,P
Xx,α2
u

)− b1(u,Xx,α2

u ,P
Xx,α2
u

)
∣∣4]

≤ C

(∫
R

1√
2πu

∣∣b1,n(u, z,P
Xx,α2
u

)− b1(u, z,P
Xx,α2
u

)
∣∣8e− z24u e−x22udz) 1

2

= C
e−

x2

4u

(2πu)
1
4

(∫
R

∣∣b1,n(u, z,P
Xx,α2
u

)− b1(u, z,P
Xx,α2
u

)
∣∣8e− z24udz) 1

2

,

Combining all results, we obtain at the end:

E
[∣∣Xn,x,α1

t −Xx,α2

t

∣∣2]
≤ C

{
τ(α1, α2)2 +

∫ t

0

e−
x2

8u

(2πu)
1
8

(∫
R

∣∣b1,n(u, z,P
Xx,α2
u

)− b1(u, z,P
Xx,α2
u

)
∣∣8e− z24udz) 1

4

du

}
.

which proves the inequality (1.) of Lemma 4.3.1. We continue with the

inequality (2.) of the lemma. We have:
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Xk,x,αn

t −Xk,x,α
t

=

∫ t

0

(
b1,k(u,X

k,x,αn

u ,P
Xk,x,αn
u

)− b1,k(u,X
k,x,α
u ,PXk,x,α

u
) + b2(u,Xk,x,αn

u , αnu)

− b2(u,Xk,x,α
u , αu)

)
du

=

∫ t

0

(
b1,k(u,X

k,x,αn

u ,P
Xk,x,αn
u

)− b1,k(u,X
k,x,αn

u ,PXk,x,α
u

)
)
du

+

∫ t

0

(
b2(u,Xk,x,α

u , αnu)− b2(u,Xk,x,α
u , αu)

)
du

+

∫ t

0

(
b1,k(u,X

k,x,αn

u ,PXk,x,α
u

)− b1,k(u,X
k,x,α
u ,PXk,x,α

u
)
)
du

+

∫ t

0

(
b2(u,Xk,x,αn

u , αnu)− b2(u,Xk,x,α
u , αnu)

)
du

=

∫ t

0

(
b1,k(u,X

k,x,αn

u ,P
Xk,x,αn
u

)− b1,k(u,X
k,x,αn

u ,PXk,x,α
u

)
)
du

+

∫ t

0

(∫ 1

0

(
b′1,k(u,X

k,x,αn

u + θ(Xk,x,αn

u −Xk,x,α
u ),PXk,x,α

u
)dθ

)
(Xk,x,αn

u −Xk,x,α
u )du

+

∫ t

0

(∫ 1

0

(
b′2(u,Xk,x,αn

u + θ(Xk,x,αn

u −Xk,x,α
u ), αnu)dθ

)
(Xk,x,αn

u −Xk,x,α
u )du

+

∫ t

0

(
b2(u,Xk,x,α

u , αnu)− b2(u,Xk,x,α
u , αu)

)
du,

=

∫ t

0

(
b1,k(u,X

k,x,αn

u ,P
Xk,x,αn
u

)− b1,k(u,X
k,x,αn

u ,PXk,x,α
u

)
)
du

+

∫ t

0

(∫ 1

0

(
b′1,k(u,X

k,x,αn

u + θ(Xk,x,αn

u −Xk,x,α
u ),PXk,x,α

u
)

+ b′2(u,Xk,x,αn

u + θ(Xk,x,αn

u −Xk,x,α
u ), αnu)

)
dθ

)
× (Xk,x,αn

u −Xk,x,α
u )du

+

∫ t

0

(
b2(u,Xk,x,α

u , αnu)− b2(u,Xk,x,α
u , αu)

)
du,

therefore Xk,x,αn

t −Xk,x,α
t admits the representation:

Xk,x,αn

t −Xk,x,α
t

=

∫ t

0
e

∫ t
s

∫ 1
0

(
b′1,k(u,Xk,x,α

u +θ(Xk,x,αn

u −Xk,x,α
u ),P

X
k,x,α
u

)+b′2(u,Xk,x,αn

u +θ(Xk,x,αn

u −Xk,x,α
u ),αnu)

)
dθdu

×
(
b1,k(s,X

k,x,αn

s ,P
Xk,x,αn
s

)− b1,k(s,Xk,x,αn

s ,P
Xk,x,α
s

) + b2(s,Xk,x,α
s , αns )− b2(s,Xk,x,α

s , αs)

)
ds
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squaring and applying the expectation to the power
1

2
on both sides and

the Cauchy-Schwarz inequality yields:

E
[∣∣Xk,x,αn

t −Xk,x,α
t

∣∣2] 1
2

. E
[∣∣∣∣ ∫ t

0

e
∫ t
s

∫ 1
0
2
(
b′1,k(u,X

k,x,α
u +θ(Xk,x,α

n

u −Xk,x,αu ),P
X
k,x,α
u

)+b′2(u,X
k,x,αn

u +θ(Xk,x,α
n

u −Xk,x,αu ),αnu)
)
dθdu

ds

∣∣∣∣2] 1
4

×
{
E
[∣∣∣∣ ∫ t

0

∣∣b1,k(u,Xk,x,αn

u ,P
Xk,x,α

n
u

)− b1,k(u,Xk,x,αn

u ,PXk,x,αu
)
∣∣2du∣∣∣∣2] 1

4

+ E
[∣∣∣∣ ∫ t

0

∣∣b2(u,Xk,x,α
u , αnu)− b2(u,Xk,x,α

u , αu)
∣∣2du∣∣∣∣2] 1

4
}
.

One can show that

E
[∣∣∣∣ ∫ t0 e∫ ts ∫ 1

0
2
(
b′1,k(u,X

k,x,α
u +θ(Xk,x,α

n

u −Xk,x,αu ),P
X
k,x,α
u

)+b′2(u,X
k,x,αn

u +θ(Xk,x,α
n

u −Xk,x,αu ),αnu)
)
dθdu

ds

∣∣∣∣2] 1
4

is finite using the same approach as we did when showing that

E
[∣∣∣∣ ∫ t0 e∫ ts ∫ 1

0 2
(
b′1,n(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),P
X
x,α2
u

)+b′2(u,Xx,α2

u +θ(Xn,x,α1

u −Xx,α2

u ),α1
u)
)
dθdu

ds

∣∣∣∣2] 1
4

is finite. So, using the Minkowski inequality, the Lipschitz continuity of b1,k

in the measure variable and the Lipschitz continuity of b2, we get:

E
[∣∣Xk,x,αn

t −Xk,x,α
t

∣∣2] 1
2

. E
[∣∣∣∣ ∫ t

0

∣∣b1,k(u,X
k,x,αn

u ,P
Xk,x,αn
u

)− b1,k(u,X
k,x,αn

u ,PXk,x,α
u

)
∣∣2du∣∣∣∣2] 1

4

+ E
[∣∣∣∣ ∫ t

0

∣∣b2(u,Xk,x,α
u , αnu)− b2(u,Xk,x,α

u , αu)
∣∣2du∣∣∣∣2] 1

4

.

(∫ t

0

E
[∣∣b1,k(u,X

k,x,αn

u ,P
Xk,x,αn
u

)− b1,k(u,X
k,x,αn

u ,PXk,x,α
u

)
∣∣4] 1

2du

) 1
2

+

(∫ t

0

E
[∣∣b2(u,Xk,x,α

u , αnu)− b2(u,Xk,x,α
u , αu)

∣∣4] 1
2du

) 1
2

,

.

(∫ t

0

K(P
Xk,x,αn
u

,PXk,x,α
u

)2du

) 1
2

+

(∫ t

0

E
[∣∣αnu − αu∣∣4] 1

2du

) 1
2

.

(∫ t

0

E
[∣∣Xk,x,αn

u −Xk,x,α
u

∣∣]2du) 1
2

+

(∫ t

0

E
[∣∣αnu − αu∣∣4] 1

2du

) 1
2

.

(∫ t

0

E
[∣∣Xk,x,αn

u −Xk,x,α
u

∣∣2]du) 1
2

+

(∫ t

0

E
[∣∣αnu − αu∣∣4] 1

2du

) 1
2
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after squaring both size and applying the Grönwall’s inequality, we get:

E
[∣∣Xk,x,αn

t −Xk,x,α
t

∣∣2] . ∫ t

0

E
[∣∣αnu − αu∣∣4] 1

2du,

=

∫ t

0

(
E
[∣∣αnu − αu∣∣4] 1

4
)2
du,

. τ(αn, α)2,

since every sequence {αn}n≥0 in D converges to α ∈ D in the norm

sup0≤t≤T E[| · |4]
1
4 , we have:

lim
n→∞

sup
0≤t≤T

E
[∣∣Xk,x,αn

t −Xk,x,α
t

∣∣2] 1
2

= 0, for a given k,

which proves the lemma.

Lemma 4.3.2. We consider a sequence {αn}n≥0 in D converging to α ∈ D

in the norm sup0≤t≤T E[|·|4]
1
4 for every p ≥ 1. Hence, we assert the following:

1. lim
n→∞

∣∣Jk(αn)−Jk(α)
∣∣ = 0, for any given k ∈ N, and also, the function

Jk is continuous.

2.
∣∣Jn(α)− J(α)

∣∣ ≤ εn, such that lim
n→∞

εn = 0.

Proof of Lemma 4.3.2. We start with expression (1.) of the lemma. We

have:

∣∣Jk(αn)− Jk(α)
∣∣

=

∣∣∣∣E[ ∫ T

0
f(u,Xk,x,αn

u ,P
Xk,x,αn
u

, αnu)du+ g(Xk,x,αn

T ,P
Xn,x,αn

T
)

−
∫ T

0
f(u,Xk,x,α

u ,P
Xk,x,α
u

, αu)du− g(Xk,x,α
T ,P

Xk,x,α
T

)

]∣∣∣∣,
≤ E

[ ∫ T

0

∣∣f(u,Xk,x,αn

u ,P
Xk,x,αn
u

, αnu)− f(u,Xk,x,α
u ,P

Xk,x,α
u

, αu)
∣∣du+

∣∣g(Xk,x,αn

T ,P
Xk,x,αn

T
)

− g(Xk,x,α
T ,P

Xk,x,α
T

)
∣∣],
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using the Lipschitz continuity of f and g, we obtain,

∣∣Jk(αn)− Jk(α)
∣∣

≤ E
[ ∫ T

0

(∣∣Xk,x,αn

u −Xk,x,α
u

∣∣+ |αnu − αu|+K(P
Xk,x,αn
u

,PXk,x,α
u

)
)
du+

∣∣Xk,x,αn

T −Xk,x,α
T

∣∣
+K(P

Xn,x,αn

T
,PXk,x,α

T
)

]
≤
∫ T

0

(
E
[∣∣Xk,x,αn

u −Xk,x,α
u

∣∣]+ E[|αnu − αu|] +K(P
Xk,x,αn
u

,PXk,x,α
u

)
)
du

+ E
[∣∣Xk,x,αn

T −Xk,x,α
T

∣∣]+K
(
P
Xk,x,αn

T
,PXk,x,α

T

)
,

≤
∫ T

0

(
2E
[∣∣Xk,x,αn

u −Xk,x,α
u

∣∣]+ E[|αnu − αu|]
)
du+ 2E

[∣∣Xk,x,αn

T −Xk,x,α
T

∣∣],
≤
∫ T

0

(
2E
[∣∣Xk,x,αn

u −Xk,x,α
u

∣∣2] 1
2 + E[|αnu − αu|4]

1
4

)
du+ 2E

[∣∣Xk,x,αn

T −Xk,x,α
T

∣∣2] 1
2 ,

≤ C

(
τ(αn, α) + sup

0≤t≤T
E[
∣∣Xk,x,αn

t −Xk,x,α
t

∣∣2] 1
2

)

the results follows by expression (2.) of Lemma 4.3.1 and the convergence

of {αn}n≥0 to α. We now prove expression (2.) of Lemma 4.3.2. Using the

same approach as in the previous proof, we have:

∣∣Jn(α)− J(α)
∣∣

≤
∣∣∣∣E[ ∫ T

0

f(u,Xn,x,α
u ,PXn,x,α

u
, αu)du+ g(Xn,x,α

T ,PXn,x,α
T

)

+

∫ T

0

f(u,Xx,α
u ,PXx,α

u
, αu)du+ g(Xx,α

T ,PXx,α
T

)

]∣∣∣∣
≤
∫ T

0

2E
[∣∣Xn,x,α

u −Xx,α
u

∣∣2] 1
2du+ 2E

[∣∣Xn,x,α
T −Xx,α

T

∣∣2] 1
2

≤ C sup
0≤t≤T

E
[∣∣Xn,x,α

t −Xx,α
t

∣∣2] 1
2

≤ C

{
sup

0≤t≤T

e−
x2

8t

(2πt)
1
8

(∫
R

∣∣b1,n(t, z,PXx,α
t

)− b1(t, z,PXx,α
t

)
∣∣4e− z24t dz) 1

4
}
,

using expression (1.) of Lemma 4.3.1, we have:

∣∣Jn(α)− J(α)
∣∣ ≤ εn such that we have lim

n→∞
εn = 0.
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which proves the lemma.

Lemma 4.3.3. Let {αn}n≥0 be a sequence in A converging to α ∈ A.

Denote by Gα and Gn,αn the first variation process associated to Xx,α and

Xn,x,αn , respectively. Then for every 0 ≤ s ≤ t ≤ T

1. E
[∣∣Gαt,s − Gn,αnt,s

∣∣2] 1
2 converges to 0 as n tends to ∞,

2. E
[∣∣Pt − P n

t

∣∣] converges to 0 as n tends to ∞, where

Pt =E
[
Gαt,T∂zg(Xx,α

T ,PXx,α
T

)+Ẽ[∂µg(X̃x,α̃
T ,PXx,α

T
;Xx,α

T )G̃α̃t,T ]

+

∫ T

t

{
Gαt,s∂zf(s,Xx,α

s ,PXx,α
s
, αs)

+ Ẽ[∂µf(s, X̃x,α̃
s ,PXx,α

s
, α̃s;X

x,α
s )G̃α̃t,s]

}
ds
∣∣∣Ft],

and P n is defined similarly with (Xn,αn ,Gn,αn , αn) instead of (Xα,Gα, α).

Proof of Lemma 4.3.3. We start with the proof of expression (1) of the

lemma. Using the notation b1(u, z,PXx,α
u

) = b1,u, b2(u,Xx,α
u , αu) = b2,u,

b1,n(u, z,P
Xn,x,αn
u

) = bn1,u, b2(u,Xn,x,αn

u , αnu) = bn2,u, and ∂µbu(r, X̃
x,α̃
u ,PXx,α

u
, α̃u;X

x,α
u ) =

∂µb̃u. Using triangular inequality, we have:

E
[∣∣Gαs,t − Gn,αns,t

∣∣2] 1
2

= E
[∣∣∣e− ∫ t

s

∫
R b1,uL

Xx,α (du,dz)+
∫ t
s ∂zb2,udu +

∫ t

s

e−
∫ t
r

∫
R b1,uL

Xx,α (du,dz)+
∫ t
r ∂zb2,uduẼ[∂µb̃G̃α̃s,r]dr

− e−
∫ t
s

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)+
∫ t
s ∂zb

n
2,udu −

∫ t

s

e−
∫ t
r

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)+
∫ t
r ∂zb

n
2,uduẼ[∂µb̃

n
r G̃α̃

n

s,r ]dr
∣∣∣2] 1

2

≤ E
[∣∣∣e− ∫ t

s

∫
R b1,uL

Xx,α (du,dz)+
∫ t
s ∂zb2,udu − e−

∫ t
s

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)+
∫ t
s ∂zb

n
2,udu

∣∣∣2] 1
2

+ E
[∣∣∣ ∫ t

s

{
e−

∫ t
r

∫
R b1,uL

Xx,α (du,dz)+
∫ t
r ∂zb2,uduẼ[∂µb̃rG̃α̃s,r]

− e−
∫ t
r

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)+
∫ t
r ∂zb

n
2,uduẼ[∂µb̃

n
r G̃α̃

n

s,r ]
}

dr
∣∣∣2] 1

2
= I1,n + I2,n
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Repeated use of Cauchy-Schwartz inequality give

I1,n ≤4E
[
e8

∫ t
s ∂zb2,udu

] 1
8E
[∣∣∣e− ∫ t

s

∫
R b1,uL

Xx,α (du,dz) − e−
∫ t
s

∫
R b

n
1L

Xn,x,α
n

(du,dz)
∣∣∣2] 1

4

×
(
E
[
e−4

∫ t
s

∫
R b1,uL

Xx,α (du,dz)
] 1

8
+ E

[
e−4

∫ t
s

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)
] 1

8
)

+ 4E
[
e−8

∫ t
s

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)
] 1

8E
[∣∣∣e∫ ts ∂zb2,udu − e

∫ t
s ∂zb

n
2,udu

∣∣∣2] 1
4

×
(
E
[
e4

∫ t
s ∂zb2,udu

] 1
8

+ E
[
e4

∫ t
s ∂zb

n
2,udu

] 1
8
)

=I11,n × I12,n(I13,n + I14,n) + I15,n × I16,n(I17,n + I18,n) (4.12)

We can show as in Lemma 3.5.1 that I11,n, I13,n× I14,n, I15,n, I17,n× I18,n are

uniformly bounded. I16,n converges for at least a subsequence since ∂zb2 is

continuous and bounded. The convergence of I12,n can be shown similarly
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to the proof of convergence of Rn
14 expressed in (3.52).

I2,n

.
∫ t

s

E
[∣∣∣e− ∫ t

r

∫
R b1,uL

Xx,α (du,dz)+
∫ t
r ∂zb2,uduẼ[∂µb̃rG̃α̃s,r]− e−

∫ t
r

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)+
∫ t
r ∂zb

n
2,udu

× Ẽ[∂µb̃
nG̃α̃ns,r ]

∣∣∣2] 1
2
dr

.
∫ t

s

E
[∣∣∣e∫ tr ∂zbn2,uduẼ[∂µb̃

n
r G̃n,α̃

n

s,r ]
(
e−

∫ t
r

∫
R b1,uL

Xx,α (du,dz) − e−
∫ t
r

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)
)

+ e−
∫ t
r

∫
R b1,uL

Xx,α (du,dz)Ẽ[∂µb̃
n
r G̃n,α̃

n

s,r ]
(
e
∫ t
r ∂zb2,udu − e

∫ t
r ∂zb

n
2,udu

)
− e−

∫ t
r

∫
R b1,uL

Xx,α (du,dz)+
∫ t
r ∂zb2,udu

(
Ẽ[∂µb̃

n
r G̃n,α̃

n

s,r ]− Ẽ[∂µb̃rG̃α̃s,r]
)∣∣∣2] 1

2
dr

.
∫ t

s

{
E
[
Ẽ[|∂µb̃nr G̃n,α̃

n

s,r |4]e4
∫ t
r ∂zb

n
2,udu

(
e−2

∫ t
r

∫
R b1,uL

Xx,α (du,dz) + e−2
∫ t
r

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)
)] 1

4

×E
[∣∣e− ∫ t

r

∫
R b1,uL

Xx,α (du,dz) − e−
∫ t
r

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)
∣∣2] 1

4

+E
[
Ẽ[|∂µb̃nr G̃n,α̃

n

s,r |4]e−4
∫ t
r

∫
R b1,uL

Xx,α (du,dz)
(
e2

∫ t
r ∂zb2,udu + e2

∫ t
r ∂zb

n
2,udu

)] 1
4

×E
[∣∣e∫ tr ∂zb2,udu − e

∫ t
r ∂zb

n
2,udu

∣∣2] 1
4

+E
[
e−4

∫ t
r

∫
R b1,uL

Xx,α (du,dz)+4
∫ t
r ∂zb2,uduẼ[|∂µb̃nr G̃n,α̃

n

s,r |2 + |∂µb̃rG̃α̃s,r|2]
] 1

4

× E
[
Ẽ[|∂µb̃nr G̃n,α̃

n

s,r − ∂µb̃rG̃α̃s,r|2]
] 1

4

}
dr

.
∫ t

s

{
E
[
Ẽ[|∂µb̃nr G̃n,α̃

n

s,r |16]
] 1

16E
[(
e−8

∫ t
r

∫
R b1,uL

Xx,α (du,dz) + e−8
∫ t
r

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)
)] 1

8

×E
[
e16

∫ t
r ∂zb

n
2,udu

] 1
16 × E

[∣∣e− ∫ t
r

∫
R b1,uL

Xx,α (du,dz) − e−
∫ t
r

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)
∣∣2] 1

4

+E
[
Ẽ[|∂µb̃nr G̃n,α̃

n

s,r |16]
] 1

16E
[
e−16

∫ t
r

∫
R b1,uL

Xx,α (du,dz)
] 1

16E
[(
e8

∫ t
r ∂zb2,udu + e8

∫ t
r ∂zb

n
2,udu

)] 1
8

×E
[∣∣e∫ tr ∂zb2,udu − e

∫ t
r ∂zb

n
2,udu

∣∣2] 1
4

+ E
[
Ẽ[|∂µb̃nr G̃n,α̃

n

s,r − ∂µb̃rG̃α̃s,r|2]
] 1

4

×E
[
e−8

∫ t
r

∫
R b1,uL

Xx,α (du,dz)
] 1

8E
[
e8

∫ t
r ∂zb2,udu

(
Ẽ[|∂µb̃nr G̃n,α̃

n

s,r |4 + |∂µb̃rG̃α̃s,r|4]
)] 1

8
}

dr

.
∫ t

s

{
I21,n × I22,n × I23,n × I24,n + I21,n × I25,n × I26,n × I27,n + I28,n × I210,n × I211,n

}
dr.

Boundedness of I22,n, I25,n, and I210,n follows by Lemma 3.5.1 after applying

the Girsanov’s transform. Boundedness of I23,n, I26,n, and I211,n hold true

by assumption on the boundedness of ∂zb2, ∂µb and the integrability of the

first variation process. We can see that I21,n is finite using the integrability
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of the first variation process shown in Lemma 3.5.3. Hence, we obtain:

E
[∣∣Gαs,t − Gn,αns,t

∣∣2] 1
2

.E
[∣∣∣e− ∫ t

s

∫
R b1,uL

Xx,α (du,dz) − e−
∫ t
s

∫
R b

n
1L

Xn,x,α
n

(du,dz)
∣∣∣2] 1

4
+ E

[∣∣∣e∫ ts ∂zb2,udu − e
∫ t
s ∂zb

n
2,udu

∣∣∣2] 1
4

+

∫ t

s

{
E
[∣∣∣e− ∫ t

s

∫
R b1,uL

Xx,α (du,dz) − e−
∫ t
s

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)
∣∣∣2] 1

4

+ E
[∣∣e∫ tr ∂zb2,udu − e

∫ t
r ∂zb

n
2,udu

∣∣2] 1
4 + E

[
Ẽ[|∂µb̃nr G̃n,α̃

n

s,r − ∂µb̃rG̃α̃s,r|2]
] 1

4
}

dr.

(4.13)

Let us consider the expression Ẽ[|∂µb̃nt G̃
n,α̃n

s,t − ∂µb̃tG̃α̃s,t|2]

Ẽ[|∂µb̃nt G̃
n,α̃n

s,t − ∂µb̃tG̃α̃s,t|2]

.Ẽ
[∣∣∣∂µb̃te− ∫ t

s

∫
R b̃1,uL

X̃x,α̃ (du,dz)+
∫ t
s ∂z b̃2,udu − ∂µb̃nt e−

∫ t
s

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)+
∫ t
s ∂z b̃

n
2,udu

∣∣∣2]
+ Ẽ

[∣∣∣ ∫ t

s

{
∂µb̃te

−
∫ t
r

∫
R b̃1,uL

X̃x,α̃ (du,dz)+
∫ t
r ∂z b̃2,uduẼ[∂µb̃rG̃α̃s,r]

− ∂µb̃nt e−
∫ t
r

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)+
∫ t
r ∂z b̃

n
2,uduẼ[∂µb̃

n
r G̃α̃

n

s,r ]
}

dr
∣∣∣2] = J1,n + J2,n.

We have

J1,n =Ẽ
[∣∣∣∂µb̃te− ∫ t

s

∫
R b̃1,uL

X̃x,α̃ (du,dz)+
∫ t
s ∂z b̃2,udu − ∂µb̃nt e−

∫ t
s

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)+
∫ t
s ∂z b̃

n
2,udu

∣∣∣2]
≤4Ẽ

[
(∂µb̃t)

8e8
∫ t
s ∂z b̃2,udu

] 1
8 Ẽ
[∣∣∣e− ∫ t

s

∫
R b̃1,uL

X̃x,α̃ (du,dz) − e−
∫ t
s

∫
R b̃

n
1L

X̃n,x,α̃
n

(du,dz)
∣∣∣2] 1

4

×
(
Ẽ
[
e−4

∫ t
s

∫
R b̃1,uL

X̃x,α̃ (du,dz)
] 1

8
+ Ẽ

[
e−4

∫ t
s

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)
] 1

8
)

+ 4Ẽ
[
e−8

∫ t
s

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)
] 1

8 Ẽ
[∣∣∣∂µb̃te∫ ts ∂z b̃2,udu − ∂µb̃nt e

∫ t
s ∂z b̃

n
2,udu

∣∣∣2] 1
4

×
(
Ẽ
[
(∂µb̃t)

4e4
∫ t
s ∂z b̃2,udu

] 1
8

+ Ẽ
[
(∂µb̃

n
t )4e4

∫ t
s ∂z b̃

n
2,udu

] 1
8
)

=J11,n × J12,n(J13,n + J14,n) + J15,n × J16,n(J17,n + J18,n).
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Convergence of J1,n holds similarly by applying the same arguments as

with the convergence of I1,n.

J2,n

= Ẽ
[∣∣∣ ∫ t

s

{
∂µb̃te

−
∫ t
r

∫
R b̃1,uL

X̃x,α̃ (du,dz)+
∫ t
r ∂z b̃2,uduẼ[∂µb̃rG̃α̃s,r]

− ∂µb̃nt e−
∫ t
r

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)+
∫ t
r ∂z b̃

n
2,uduẼ[∂µb̃

n
r G̃α̃

n

s,r ]
}

dr
∣∣∣2]

.
∫ t

s

Ẽ
[∣∣∣∂µb̃nt e∫ tr ∂z b̃n2,uduẼ[∂µb̃

n
r G̃n,α̃

n

s,r ]
(
e−

∫ t
r

∫
R b̃1,uL

Xx,α (du,dz) − e−
∫ t
r

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)
)

+ e−
∫ t
r

∫
R b̃1,uL

X̃x,α̃ (du,dz)Ẽ[∂µb̃
n
r G̃n,α̃

n

s,r ]
(
∂µb̃te

∫ t
r ∂z b̃2,udu − ∂µb̃nt e

∫ t
r ∂z b̃

n
2,udu

)
− ∂µb̃te−

∫ t
r

∫
R b̃1,uL

X̃x,α̃ (du,dz)+
∫ t
r ∂z b̃2,udu

(
Ẽ[∂µb̃

n
r G̃n,α̃

n

s,r ]− Ẽ[∂µb̃rG̃α̃s,r]
)∣∣∣2]dr

.
∫ t

s

{
|Ẽ[∂µb̃

n
r G̃n,α̃

n

s,r ]|2Ẽ
[∣∣∣∂µb̃nt e∫ tr ∂z b̃n2,udu

(
e−

∫ t
r

∫
R b̃1,uL

Xx,α (du,dz) − e−
∫ t
r

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)
)∣∣∣2]

+ |Ẽ[∂µb̃
n
r G̃n,α̃

n

s,r ]|2Ẽ
[∣∣∣e− ∫ t

r

∫
R b̃1,uL

X̃x,α̃ (du,dz)
(
∂µb̃te

∫ t
r ∂z b̃2,udu − ∂µb̃nt e

∫ t
r ∂z b̃

n
2,udu

)∣∣∣2]
+ |Ẽ[∂µb̃

n
r G̃n,α̃

n

s,r − ∂µb̃rG̃α̃s,r]|2Ẽ
[
(∂µb̃t)

2e−2
∫ t
r

∫
R b̃1,uL

X̃x,α̃ (du,dz)+2
∫ t
r ∂z b̃2,udu

]}
dr
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.
∫ t

s

{
|Ẽ[∂µb̃

n
r G̃n,α̃

n

s,r ]|2Ẽ
[
(∂µb̃

n
t )8e8

∫ t
r ∂z b̃

n
2,udu

] 1
4 Ẽ
[
e−4

∫ t
r

∫
R b̃1,uL

Xx,α (du,dz)

+ e−4
∫ t
r

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)
] 1

4 Ẽ
[∣∣∣e− ∫ t

r

∫
R b̃1,uL

Xx,α (du,dz) − e−
∫ t
r

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)
∣∣∣2] 1

2

+ |Ẽ[∂µb̃
n
r G̃n,α̃

n

s,r ]|2Ẽ
[
e−8

∫ t
r

∫
R b̃1,uL

X̃x,α̃ (du,dz)
] 1

4 Ẽ
[
(∂µb̃t)

4e4
∫ t
r ∂z b̃2,udu

+ (∂µb̃
n
t )4e4

∫ t
r ∂z b̃

n
2,udu

] 1
4 Ẽ
[∣∣∂µb̃te∫ tr ∂z b̃2,udu − ∂µb̃nt e

∫ t
r ∂z b̃

n
2,udu

∣∣2] 1
2

+ Ẽ[|∂µb̃nr G̃n,α̃
n

s,r − ∂µb̃rG̃α̃s,r|2]Ẽ
[
(∂µb̃t)

2e−2
∫ t
r

∫
R b̃1,uL

X̃x,α̃ (du,dz)+2
∫ t
r ∂z b̃2,udu

]}
dr.

Using similarly arguments as in I2,n and applying Gronwall’s lemma, we

obtain

Ẽ[|∂µb̃nt G̃
n,α̃n

s,t − ∂µb̃tG̃α̃s,t|2]

.Ẽ
[∣∣∣e− ∫ t

s

∫
R b̃1,uL

X̃x,α̃ (du,dz) − e−
∫ t
s

∫
R b̃

n
1L

X̃n,x,α̃
n

(du,dz)
∣∣∣2] 1

4
+ Ẽ

[∣∣∣∂µb̃te∫ ts ∂z b̃2,udu

− ∂µb̃nt e
∫ t
s ∂z b̃

n
2,udu

∣∣∣2] 1
4

+

∫ t

s

{
Ẽ
[∣∣∣e− ∫ t

r

∫
R b̃1,uL

Xx,α (du,dz) − e−
∫ t
r

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)
∣∣∣2] 1

2

+ Ẽ
[∣∣∂µb̃te∫ tr ∂z b̃2,udu − ∂µb̃nt e

∫ t
r ∂z b̃

n
2,udu

∣∣2] 1
2 + Ẽ[|∂µb̃nr G̃n,α̃

n

s,r − ∂µb̃rG̃α̃s,r|2]
}

dr

.Ẽ
[∣∣∣e− ∫ t

s

∫
R b̃1,uL

X̃x,α̃ (du,dz) − e−
∫ t
s

∫
R b̃

n
1L

X̃n,x,α̃
n

(du,dz)
∣∣∣2] 1

4
+ Ẽ

[∣∣∣∂µb̃te∫ ts ∂z b̃2,udu

− ∂µb̃nt e
∫ t
s ∂z b̃

n
2,udu

∣∣∣2] 1
4

+

∫ t

s

{
Ẽ
[∣∣∣e− ∫ t

r

∫
R b̃1,uL

Xx,α (du,dz) − e−
∫ t
r

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)
∣∣∣2] 1

2

+ Ẽ
[∣∣∂µb̃te∫ tr ∂z b̃2,udu − ∂µb̃nt e

∫ t
r ∂z b̃

n
2,udu

∣∣2] 1
2

}
dr (4.14)
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Substituting (4.14) into (4.13) gives

E
[∣∣Gαs,t − Gn,αns,t

∣∣2] 1
2

. E
[∣∣∣e− ∫ t

s

∫
R b1,uL

Xx,α (du,dz) − e−
∫ t
s

∫
R b

n
1L

Xn,x,α
n

(du,dz)
∣∣∣2] 1

4
+ E

[∣∣∣e∫ ts ∂zb2,udu − e
∫ t
s ∂zb

n
2,udu

∣∣∣2] 1
4

+

∫ t

s

{
E
[∣∣∣e− ∫ t

s

∫
R b1,uL

Xx,α (du,dz) − e−
∫ t
s

∫
R b

n
1,uL

Xn,x,α
n

(du,dz)
∣∣∣2] 1

4

+ E
[∣∣e∫ tr ∂zb2,udu − e

∫ t
r ∂zb

n
2,udu

∣∣2] 1
4
}

dr

+

∫ t

s

{
E
[
Ẽ
[∣∣∣e− ∫ t

r

∫
R b̃1,uL

X̃x,α̃ (du,dz) − e−
∫ t
r

∫
R b̃

n
1L

X̃n,x,α̃
n

(du,dz)
∣∣∣2] 1

4
] 1

4

+ E
[
Ẽ
[∣∣∣∂µb̃re∫ tr ∂z b̃2,udu − ∂µb̃nr e

∫ t
r ∂z b̃

n
2,udu

∣∣∣2] 1
4
] 1

4
}

dr

+

∫ t

s

∫ r

s

{
E
[
Ẽ
[∣∣∣e− ∫ r

v

∫
R b̃1,uL

Xx,α (du,dz) − e−
∫ r
v

∫
R b̃

n
1,uL

X̃n,x,α̃
n

(du,dz)
∣∣∣2] 1

2
] 1

4

+ E
[
Ẽ
[∣∣∂µb̃re∫ rv ∂z b̃2,udu − ∂µb̃nr e

∫ r
v ∂z b̃

n
2,udu

∣∣2] 1
2

] 1
4
}

dvdr

=I12,n + I16,n +

∫ t

s

{I24,n + I27,n + I281,n + I282,n}dr +

∫ t

s

∫ r

s

{I283,n + I284,n}dvdr

Convergence of I24,n, I12,n and I283,n holds by using the same arguments

used in showing the convergence of Rn
14 . Convergence of I16,n, I27,n, I282,n

and I284,n follows by dominated convergence since ∂zb
n
2 and ∂µb̃r are con-

tinuous and bounded by assumption which concludes the convergence of

I214,n, proving the convergence of E
[∣∣Gαs,t − Gn,αns,t

∣∣2] 1
2 .

Let us now prove (2):

E
[∣∣Pt − P n

t

∣∣]
=E
{∣∣∣∣E[Gαt,T∂zgT + Ẽ[∂µg̃T G̃α̃t,T ] +

∫ T

t

(
Gαt,s∂zfs + Ẽ[∂µf̃sG̃α̃t,s]

)
ds

∣∣∣∣Ft]
− E

[
Gn,α

n

t,T ∂zg
n
T + Ẽ[∂µg̃

n
T G̃

n,α̃n

t,T ] +

∫ T

t

(
Gn,α

n

t,s ∂zf
n
s + Ẽ[∂µf̃

n
s G̃

n,α̃n

t,T ]
)
ds

∣∣∣∣Ft]∣∣∣∣}
≤E
[∣∣Gαt,T∂zgT − Gn,αnt,T ∂zg

n
T

∣∣]+ E
[∣∣Ẽ[∂µg̃T G̃α̃t,T − ∂µg̃nT G̃

n,α̃n

t,T ]
∣∣]

+

∫ T

t

E
[∣∣Gαt,s∂zfs − Gn,αnt,s ∂zf

n
s

∣∣]ds+

∫ T

t

E
[∣∣Ẽ[∂µf̃sG̃α̃t,T − ∂µf̃ns G̃

n,α̃n

t,T ]
∣∣]ds.
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Adding and substracting ∂zgTGn,α
n

t,T and ∂zfsGn,α
n

t,s and using the Cauchy-

Schwarz inequality gives

E
[∣∣Pt − P n

t

∣∣]
. E

[∣∣∂zgT ∣∣2] 1
2

E
[∣∣Gαt,T − Gn,αnt,T

∣∣2] 1
2

+ E
[∣∣Gn,αnt,T

∣∣2] 1
2

E
[∣∣∂zgT − ∂zgnT ∣∣2] 1

2

+ E[Ẽ[(∂µg̃
n
T )2|G̃n,α̃

n

t,T − G̃α̃t,T |]
1
2 ] + E[Ẽ[|G̃α̃t,T |2]

1
2 Ẽ[|∂µg̃nT − ∂µg̃T |2]

1
2 ]

+

∫ T

t

E
[∣∣∂zfs∣∣2] 1

2E
[∣∣Gαt,s − Gn,αnt,s

∣∣2] 1
2
ds+

∫ T

t

E
[∣∣Gn,αnt,s

∣∣2] 1
2

E
[∣∣∂zfs − ∂zfns ∣∣2] 1

2

ds

+

∫ T

t

{E[Ẽ[|∂µf̃ns |2]
1
2 Ẽ[|G̃n,α̃ns,r − G̃α̃s,r|2]

1
2 ] + E[Ẽ[|G̃α̃s,r|2]

1
2 Ẽ[|∂µfns − ∂µfs|2]

1
2 ]}ds.

Convergence follows from Lipschitz continuity and boundedness of ∂zg, ∂µg, ∂zf

and ∂µf , the integrability of the first variation process, and the convergence

result presented in Lemma 4.3.1. Hence, we have proven the second claim

of Lemma 4.3.3.

The next part develops the proof of Theorem 4.3.1. But before, let us

state the Ekeland’s variational principle:

Theorem 4.3.2 (Ekeland’s Variational Principle). Consider a complete

metric space (W,d) and L : W → R ∪ {+∞}, a function bounded from

below which is lower semi-continuous and not equal to +∞. Given ε > 0,

and a ∈ W such that:

L(a) ≤ inf
W
L+ ε,

so, we can find some point e ∈ W such that for every δ > 0:

1.L(e) ≤ L(a),

2.d(a, e) ≤ δ,

3.∀m 6= e, L(m) > L(e)− ε

δ
d(e,m),

Ekeland (1979).

Let us now prove Theorem 4.3.1:
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Proof of Theorem 4.3.1. Fix n ≥ 1 and let α̂ be an optimal control. Using

Lemma 4.3.2, we have:

Jk(α
n)− Jk(α) ≤ C

(
τ(αn, α) + sup

0≤t≤T
E
[∣∣Xk,x,αn

t −Xk,x,α
t

∣∣2] 1
2

)
,

and thus the function Jk is continuous on the metric space (A, τ) and there

exists εn such that

Jn(α̂)− J(α̂) ≥ −εn, and J(α)− Jn(α) ≥ −εn for all α ∈ A. (4.15)

Therefore, adding the 2 terms in (4.15) gives

Jn(α̂)− J(α̂) + J(α)− Jn(α) ≥ −2εn.

Then maximizing both sides of the inequality over admissible controls α

gives

Jn(α̂) ≥ sup
α∈A

Jn(α)− 2εn.

Using Theorem 4.3.2 with the following correspondence: a = α̂,W =

A, L = Jn, e = α̂n,m = u(such that u 6= α̂n), ε = 2εn and δ = (2εn)
1
2 ,

there exists an admissible control e = α̂n such that τ(α̂n, α̂) ≤ (2εn)
1
2 , and

we have:

(1)τ(α̂n, α̂) ≤ (2εn)
1
2

(2)Jn(α̂n) ≥ Jn(α̂)

(3)Jn(α) ≤ Jn(α̂n) +
2εn

(2εn)
1
2

τ(α̂n, α) for all α ∈ A

Thus

Jn(α̂n) ≥ Jn(α)− 2εn

(2εn)
1
2

τ(α̂n, α) = Jn(α)− (2εn)
1
2 τ(α̂n, α).

so that if we define J εn(α) := Jn(α) − (2εn)
1
2 τ(α̂n, α), it follows that α̂n

is optimal for the control problem with the performance functional given
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by J εn(α). Let us consider γ, an arbitrary admissible control and ε a fixed

constant. Since A is a convex set, we have that for λ := γ−α̂n, α̂n+ελ ∈ A.

Therefore, the smoothness of bn implies the Gâteau differentiability of Jn

and its Gâteau derivative in the direction of η is given by

d

dε
Jn(α̂n + ελ)|ε=0 =E

[ ∫ T

0

{
∂zf(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu)Snu

+ Ẽ[∂µf(u, X̃n,x, ˜̂αn

u ,P
Xn,x, ˜̂αn
u

, ˜̂αnu;Xn,x,α̂n

u )S̃nu ]

+ ∂αf(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu)λu

}
du+ ∂zg(Xn,x,α̂n

T ,P
Xn,x,α̂n

T
)SnT

+Ẽ[∂µg(X̃n,x, ˜̂αn

T ,P
Xn,x,α̂n

T
;Xn,x,α̂n

T )S̃nT ]
]

where Sn is the solution to the following SDE:

dSnt =
(
∂zbn(t,Xn,x,α̂n

t ,P
Xn,x,α̂n

t
, α̂nt )Snt + Ẽ[∂µb(t, X̃

n,x, ˜̂αn

t ,P
Xn,x,α̂n

t
, ˜̂αnt ;Xn,x,α̂n

t )S̃nt ]

+ ∂αbn(t,Xn,x,α̂n

t ,P
Xn,x,α̂n

t
, α̂nt )λt

)
dt, Sn0 = 0. (4.16)

Reverse triangular inequality yields:

d

dε
τ(α̂n + ελ, α)|λ=0

= lim
ε→0

τ(α̂n + ελ, α)− τ(α̂n, α)

ε
≥ − sup

0≤t≤T
E[|λt|4]

1
4 .
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It follows from its definition and the above that J εn is Gâteau differentiable

and

d

dε
J εn(α̂n + ελ)|ε=0 =

d

dε
Jn(α̂n + ελ)|ε=0 − (2εn)

1
2

d

dε
τ(α̂n, α̂n + ελ)|ε=0

≤E
[ ∫ T

0

{
∂zf(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu)Snu (4.17)

+ Ẽ[∂µf(u, X̃n,x, ˜̂αn

u ,P
Xn,x,α̂n
u

, ˜̂αnu;Xn,x,α̂n

u )S̃nu ]

+ ∂αf(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu)λu

}
du+ ∂zg(Xn,x,α̂n

T ,P
Xn,x,α̂n

T
)SnT

+Ẽ[∂µg(X̃n,x, ˜̂αn

T ,P
Xn,x,α̂n

T
;Xn,x,α̂n

T )S̃nT ]
]

+ (2εn)
1
2 sup

0≤t≤T
E[|λt|4]

1
4

≤E
[ ∫ T

0

{
∂zf(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu)Snu (4.18)

+ Ẽ[∂µf(u, X̃n,x, ˜̂αn

u ,P
Xn,x,α̂n
u

, α̃n,x,α̂
n

u ;Xn,x,α̂n

u )S̃nu ]

+ ∂αf(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu)λu

}
du+ ∂zg(Xn,x,α̂n

T ,P
Xn,x,α̂n

T
)SnT

+Ẽ[∂µg(X̃n,x, ˜̂αn

T ,P
Xn,x,α̂n

T
;Xn,x,α̂n

t )S̃nT ]
]

+ CM(2εn)
1
2 ,

(4.19)

where CM is a constant depending on the value of M the upper bound in

(4.11). Since we are working with smooth functions, the couple (P̂ n
t , Q̂

n
t ) is

solution of the following backward stochastic differential equation:

dP n
t =−

(
∂zHn(t,Xn,x,α̂n

t ,P
Xn,x,α̂n

t
, α̂nt , P

n
t , Q

n
t )

+ Ẽ[∂µHn(t, X̃n,x,α̂n

t ,P
Xn,x,α̂n

t
, ˜̂αnt , P̃

n
t , Q̃

n
t ;Xn,x,α̂n

t )]
)

dt+Qn
t dBt,

P n
T =∂zg(Xn,x,α̂n

T ,P
Xn,x,α̂n

T
) + Ẽ[∂µg(X̃n,x, ˜̂αn

T ,P
Xn,x,α̂n

T
;Xn,x,α̂n

T )],

where

Hn(t, z, p, µ, α) = f(t, z, µ, α) + bn(t, z, µ, α)p.
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Using the Itô’s product rule and the Fubini’s theorem (see for example

Buckdahn et al. (2017); Carmona & Delarue (2018)), we have

E[P n
T S

n
T ] =E

[ ∫ T

0

Snu

(
− ∂zf(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu) (4.20)

− Ẽ[∂µf(u, X̃n,x, ˜̂αn

u ,P
Xn,x,α̂n
u

, ˜̂αnu;Xn,x,α̂n

u )]
)

du
]

+ E
[ ∫ T

0

P n
u ∂αbn(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu)λudu
]
. (4.21)

Rearranging, using Fubini’s theorem and (4.20), we obtain

d

dε
J εn(α̂n + ελ)|ε=0

≤E
[ ∫ T

0

{
∂zf(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu)Snu + Ẽ[∂µf(u, X̃n,x, ˜̂αn

u ,P
Xn,x,α̂n
u

, ˜̂αnu;Xn,x,α̂n

u )S̃nu ]

+ ∂αf(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu)λu

}
du
]

+ E
[
P n
T S

n
T

]
+ CA(2εn)

1
2 ,

=E
[ ∫ T

0

(
∂αf(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu)λu + P n
u ∂αbn(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu)λu

)
du
]

+ CA(2εn)
1
2 ,

=E
[ ∫ T

0

∂αHn(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu, P
n
u )λudu

]
+ CA(2εn)

1
2 .

Therefore

0 ≤ d

dε
J εn(α̂n + ελ)|ε=0 ≤ E

[ ∫ T

0

∂αHn(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu, P
n
u )λudu

]
+ CA(2εn)

1
2 ,

The expression can be reduced to

(
∂αf(u,Xn,x,α̂n

u ,P
Xn,x,α̂n
u

, α̂nu) + ∂αb2(u,Xn,x,α̂n

u , α̂nu)P̂ n
u

)
· (γ − α̂nu) ≥ 0, P⊗ dt− a.s.

We know from Lemma 4.3.1 and Lemma 4.3.3 that for every 0 ≤ u ≤ T,

Xn,x,α̂n

u (resp. P n
u ) converges to Xx,α̂

u (resp. Pu) P−a.s. as n→∞, with α̂n

also converging to α̂. Passing to the limit yields:

(
∂αf(u,Xx,α̂

u ,PXx,α̂
u
, α̂u) + ∂αb2(u,Xx,α̂

u , α̂u)P̂u
)
· (γ − α̂u) ≥ 0, P⊗ dt− a.s.
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The result follows.

4.4 Chapter Summary

The main aim of this chapter was to derive the stochastic maximum

principle for an optimal control problem consisting in maximizing a cost

functional subjected to a MFSDE driven by a one dimensional Brownian

motion and having anon-smooth drift. The proof consists in approximating

the original control problem into an approximate one using the Ekeland’s

variational principle and later on show convergence of the maximum prin-

ciple.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

In this chapter, we summarize the work that has been developed in

the thesis. We will provide an overview of what has been done associated

with conclusions, and recommendations for future research work going in

the same direction.

5.1 Overview

The main objective of this thesis was to solve an optimal control prob-

lem where the state process is a mean-field stochastic differential equation

with an irregular drift coefficient. With a mean-field stochastic differential

equation having a drift that is non smooth and depending on the measure

variable, we show convergence of an approximate sequence of solutions to

the solution of the original mean-field stochastic differential equation, which

is known to exist and to be unique depending on how we choose the random

argument α to be. The control problem is therefore defined with a perfor-

mance functional and a state dynamics which is the mean-field stochastic

differential equation that was studied earlier.

5.2 Summary

This thesis evolves mainly around providing necessary conditions for

optimality of a system driven by a stochastic differential equation of mean-

field type. This works provides a detailed analysis on the properties of the

solutions of the mean-field stochastic differential equation. The first prop-

erty was developed in the third chapter where we have shown compactness

of the approximating sequence of solutions and convergence of the sequence

to the solution.

The second property of the solution was detailed in the fourth chapter

in which we prove that the solution of the stochastic differential equation of

mean-field type admits a Sobolev differentiable flow and the first variation
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process can be expressed in terms of time-space local time. Proving the rep-

resentation of the stochastic differential flow of the solution is done through

the proof of some technical lemma involving convergence and estimates.

In the last chapter, we derive the stochastic maximum principle us-

ing a variational approach as it has been done in the literature with works

going in the same direction. However, one difference is that the adjoint pro-

cess is indeed of first order, but is expressed explicitly using the stochastic

differential flow property of the solution that was explained in the fourth

chapter.

5.3 Conclusions

The stochastic maximum principle appears to be an excellent method

if the objective is to solve a control problem using a probabilistic approach.

This approach is developed on an original framework with a contribution to

the literature of stochastic control theory. The contribution being the devel-

opment of an approach for the optimization of systems driven a stochastic

differential equation of mean-field type, and in addition with a drift coef-

ficient that is neither differentiable nor Lipschitz. The drift coefficient is

assumed to be measurable and of at most linear growth. One key aspect of

the work is the use of the idea of weak differentiability in the initial condi-

tion in order to bypass the difficulty created by the non differentiability of

the drift coefficient.

5.4 Recommendations

One important recommendation is related to the solution of the mean-

field stochastic differential equation under study. In this work, it is im-

portant to choose the control αt for which the state process has a unique

solution. As mentioned earlier, if one takes αt = α(t,Xt), where α is a

bounded and measurable function, then the state has a unique solution.

However if {αt}t≥0 is simply an {Ft}t≥0−adapted process, then existence
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and uniqueness of solution of such SDE is still open. It will also be inter-

esting to apply to apply our results to some concrete example and solve the

problem by some numerical methods.
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