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ABSTRACT 

This thesis examined variance-covariance matrix approach of computing orders 

of partial correlation coefficients. The main objective of this thesis is to explore 

further if the partial correlation coefficients beyond the first order can be 

computed using the method of variance-covariance matrix approach. Statistical 

tests were performed on the datasets used for the fundamental partial correlation 

assumptions, namely linearity, normality, and the lack of outliers. In order to 

account for the effects of one or more extra random variables, the thesis 

provided a logical investigation into the linear connection between two random 

variables. To achieve this, the study determines the appropriate dataset structure 

and partitioning, as well as the key matrices that allow us to acquire the 

theoretical conclusion. Practical examples and R syntax were used to clearly 

illustrate the computation of higher order partial correlation coefficients. It was 

found that the orders of partial correlation coefficient may be achieved by 

normalizing the conditional variance-covariance matrix results. The study 

demonstrates that, if the partial correlation assumptions are met, the variance-

covariance matrix technique may compute partial correlation coefficients of any 

order. Finally, the study recommends that future researchers adopt the method 

of variance-covariance matrix technique to generate higher orders of partial 

correlation coefficients since the method is trustworthy, and comprehensible. 
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CHAPTER ONE 

INTRODUCTION 

One of the most effective ways to identify relationships and examine 

patterns in huge data sets is through multivariate analysis. If a structured study 

design is used, it is very helpful in minimizing bias. However, because of the 

method's intricacy, less experienced research enthusiasts choose to use it. As a 

result, the techniques excel at finding relationships in difficult situations, despite 

the fact that the analysis of the dataset and the design of the study are arduous 

procedures. 

Techniques that look at the simultaneous effects of several variables are 

referred to as multivariate statistics. It involves observing, outlining, and 

displaying simultaneous complicated occurrences and distributions. The 

method of looking at a lot of variables to determine the degrees of association 

while holding one or more of these variables constant is called multivariate 

partial correlation (Francois et al., 2010).  

Before understanding partial correlation analysis, we need to have a 

better understanding of correlation. The statistical link between two or more 

variables that shows how they could be connected to one another is referred to 

as correlation. It is a simple and popular technique for describing relationships 

without giving a cause and effect explanation. There is no assumption of 

causation in correlation computations, thus one variable is not necessarily 

causing the other to change, even though the variables may change in some way 

simultaneously. However, the methods for calculating correlation and 

regression using independent and dependent variables are comparable. Simple 

linear correlation evaluates the strength of the link between the variables and 
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determines whether it is positive (i.e. as one variable rises, the other rises) or 

negative (i.e. as one variable rises, the other decreases). Coefficient of 

correlation or correlation value can range from 1−  to 1+ , with 1+  signifying 

a perfect positive correlation (all data points lie exactly on a straight line with a 

positive slope in the X-Y plane.) and 1−  signifying a perfect negative correlation 

(all data points lie exactly on a straight line with a negative slope in the X-Y 

plane.). If the correlation coefficient is zero, it indicates that there is either no 

correlation, or no link at all between the variables, or that the relationship is not 

linear. It's critical to keep in mind that the absence of a linear relationship does 

not exclude the possibility that the variables are connected. If the correlation 

coefficient does not adequately describe the link between the variables, there 

may be a non-linear relationship or another kind of relationship. 

In a scenario where the interest variables are continuous, five popular 

correlation coefficients that are widely explored and accepted by researchers to 

measure association between variables includes: simple, multivariate, partial, 

multiple and canonical correlation coefficients. Simple correlation is the term 

used to quantify the relationship between two variables. It explores the simple 

correlation for all pair-wise combinations of the variables. A simple expansion 

of simple correlation to include more than two variables is multivariate 

correlation. When one or more extra factors are taken into consideration, a 

partial correlation exists between the two variables. Multiple correlation refers 

to the relationship that is examined when many variables are investigated 

together. The linear connection between two sets of multivariate variables is 

established using a multivariate statistical technique known as canonical 

correlation.  
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When the effects of a third variable are maintained constant, the answer 

to the query is provided by partial correlation. "What is the correlation 

coefficient between any two variables?" 

1.1 Background to the Study 

In many other fields of study, partial correlations regularly occur. 

Because the partial correlation coefficient expresses the relationship between 

two variables while taking additional (confounding) factors into account, it is 

employed. This renders it a very valuable statistical coefficient, especially in 

scenarios where certain factors cannot or will not be controlled experimentally. 

In multivariate contexts, partial correlations are used to investigate the 

associations between variables after other factors' impacts have been taken into 

consideration.  In probability theory and statistics, partial correlation evaluates 

the strength of the relationship between two random variables when a set of 

controlling random factors are taken into consideration. When attempting to 

discover the numerical link between the two variables of interest, the correlation 

coefficient of the two variables of interest will yield inaccurate findings if there 

is another confounding variable that is numerically connected to both of the 

factors of interest. By calculating the partial correlation coefficient and 

accounting for the confounding variable, it is possible to prevent the 

dissemination of this misleading information. The idea of partial correlation was 

developed to solve this issue. When computing the correlation between two 

continuous variables, partial correlation takes into account the influence of one 

or more additional continuous variables (commonly referred to as "control" 

variables or "covariate") that have an impact on both variables. 
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In order to identify erroneous correlations, partial correlations might be 

quite helpful. For instance, this happens when two variables, like u and v, are 

connected because both are impacted by w. The link between u and v, however, 

is lost when w is taken out of the equation. Age is one of the factors that 

frequently lead to misleading correlations, according to Pedhazur (1982). 

Because it is not always possible to evaluate persons of the same age, partial 

correlation helps researchers to determine whether age is playing a role in a false 

finding. 

If one takes away the effects of a third (or more) control variable(s) from 

the connection, partial correlation can help determine if two variables are 

linearly connected. A partial correlation coefficient is a type of Pearson 

correlation coefficient that is used to identify the connection between two 

variables while accounting for the confounding factors. We must first ascertain 

the magnitude of the zero-order (bivariate) correlation coefficient between the 

two variables before assessing a partial correlation between them.  

Understanding regression is aided by partial correlations. Three variables make 

up the simplest partial correlation: response variable, a predictor variable, and a 

control variable. 

When evaluating the linear relationship between two variables, the 

partial correlation coefficient is a statistical metric that accounts for the 

influence of one or more extra factors. It evaluates the strength of the correlation 

between two variables while also accounting for the impact of additional 

variables that might be possibly connected to both of them. Because no other 

factors are controlled and there is only one independent variable, a zero-order 

partial correlation is a term frequently used to describe a Pearson correlation. 
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The partial correlation coefficient formula has a similar component to the 

Pearson correlation coefficient formula, but it additionally accounts for the 

influence of other factors.  

The following is a representation of the formula: 

22
.

11 bcac

bcacab
cab

rr

rrr
r

−−

−
=  

where bcr  is the correlation coefficient between b and c, abr  is the correlation 

coefficient between a and b, acr  is the correlation coefficient between a and c, 

and a, b, and c are variables. The partial correlation coefficient's value falls 

between 1−  and 1+ , with 1−  denoting a perfectly negative link, 0  denoting 

no association, and 1+  denoting a perfectly positive association. A substantial 

positive partial correlation demonstrates that, while keeping the values on the 

control variable(s) constant, as the values on one variable rise, the values on 

another variable also tend to ascend. Remember that the partial correlation 

coefficient measures connection rather than causality. A high partial correlation 

coefficient indicates a substantial link between two variables after adjusting for 

the impact of other factors, rather than that one variable directly causes the 

other. 

Wang (2013) states that the relationship between X and Y is described 

by a partial correlation coefficient, which accounts for the impact of control 

variable Z. The conditional independence of the provided random variables, X, 

Y, and control random variable,  nZZZZ ,..,, 21= , may be evaluated using this. 

Once more, the linear correlation between two residuals from the linear 

regression of X with Z and the linear regression of Y with Z is measured by the 

partial correlation coefficient ( ZXY . ). The partial correlation coefficient of 
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order one is specifically provided for 1=n  (i.e. controlling for only one 

variable) is given by: 

22
.

11 YZXZ

YZXZXY
XY






−−

−
=Z  

Higher order partials are quite legitimate for analyzing product moment 

correlation coefficients and working with interval or ratio data, according to 

Wirsing (1975). Effective partial correlation needs variables with a linear 

connection and interval or ratio data that are properly distributed (Korn, 1984; 

Waliczek, 1996). A first-order correlation is a partial correlation in which only 

one variable is regulated. Multiple factors can be controlled at the same time. 

For instance, the expression 34.12r  suggests that variables 3 and 4 are being in 

control and this connection is of second order. 

The same partial correlation algorithm is applied when partialing out 

many independent variables. For instance, if a second-order partial correlation 

is manually generated; three first-order partials must first be calculated in order 

to be plugged into the calculation. The formula would look like this: 

2

.

2

.

...
.

11 cbdcad

cbdcadcab
cdab

rr

rrr
r

−−

−
=  

The simple correlation coefficient ( )
ij

 
between the two variables, iX  

and jX , is defined as follows:  

jjii

ji

XX ji 


 =                                                                           (1.1) 

where the ( ji, )th member of the data's cross-product and sum of squares matrix 

is the value ij .   
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When accounting for the additional variables, )',...,( 21 tYYYY = , the 

equation for the population partial correlation coefficient between iX  and jX
 

is provided as   

YY

Y

Y

..

.

.

JJii

ji

ji

XXXX

XX

XX



 =                                                            (1.2)    

The element Y.ji XX  is the ( ji, )th item in the variance-covariance matrix 

technique and is determined by:  

YXYYYXXX ΣΣΣΣ
1−−

                                                                          
(1.3)  

Specifically, if three variables 21 V,V and 3V are chosen at random, the 

partial correlation coefficient of order one between 1V  and 2V  regulatory for 

3V  is given by: 

2

VV

2

VV

VVVVVV

V.VV

3231

323121

321

11

))((






−−

−
=                                                       (1.4) 

where 
21VV  is the correlation coefficient of order zero between 1V  and 2V , also 

known as the simple correlation coefficient. Equation (1.4) shows that 

controlling for 3V  lowers 
321 V.VV  (i.e., makes it less positive or more high 

negative, depending on the situation) if the values 
31VV and 

32VV  have the same 

sign. Controlling for 3V  raises the value 
321 V.VV  if, on the other hand, the values 

31VV and 
32VV  have the opposite signs. The implication is that the coefficient 

of the correlation between each of 1V  and 2V , and other factors heavily 

influences the coefficient of the partial correlation between 1V  and 2V  when 

adjusting for other variables. 
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In circumstances when there are several independent variables, matrices 

can be employed to compute the results (Neter et al., 1996). We mostly used the 

matrix principles technique to perform the statistical analysis for this thesis 

since we are using the conditional covariance-covariance matrix technique to 

generate orders of partial correlation coefficients. 

1.2 Statement of the Problem 

In research projects, statistics control is frequently sought after by 

researchers. The main focus of these researchers is variance control. When 

examining the effects of several independent variables on a dependent variable, 

control is essential. One might evaluate the degree of correlation between an 

independent and dependent variable while taking note of one or more additional 

effects by using the partial correlation approach.  

Partial correlation analysis appears to assist a number of multivariate 

statistical methods. Only some aspects of the program output may reveal the 

usage of partial correlation. Due to the concept's precise mathematical nature, 

its applicability is not properly shown. Some findings are only mentioned in the 

text and have not been systematically presented in the literature because of the 

concept's mathematical complexity.  

Four distinct approaches to calculate the partial correlation coefficient 

were studied by Ogunleye et al. in 2022. These approaches include regression 

residual's approach, the traditional technique, the variance-covariance matrix 

technique, and the ordinary least square (OLS) method. Each of these 

techniques was completely explained with use-case examples and R syntax. 

With examples, the discussion of each method's applicability was conducted. 

Each method's advantages and disadvantages are thoroughly described. After 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



9 
 

running statistical tests on the given datasets, they discovered that there was no 

violation of any of the essential requirements for partial correlation, including 

normality, linearity, and the lack of outliers. With at least one variable held 

constant, the study offers the most efficient approach or methods for calculating 

partial correlation coefficients. Although the traditional method was 

recommended as being the least time-consuming, all four of the outlined 

methods may calculate the partial correlation coefficient of the first order. 

However, the variance-covariance matrix method is dropped from the four 

methods that produced the result of the partial correlation coefficient of order 

two after their practical example-based illustrations. They made it obvious that 

the variance-covariance matrix method was only suitable for handling partial 

correlation coefficients of order one. Furthermore, they emphasized that, to the 

best of their knowledge, no new methodology (variance-covariance matrix 

approach) has been developed to handle partial correlation coefficients higher 

than the first order. 

The purpose of this thesis is to look at further if the partial correlation 

coefficients beyond the first order can be computed or performed using the 

variance-covariance matrix approach. 

1.3 Objectives of the Study  

The purpose of the research is to compute orders of partial correlation 

coefficient using variance-covariance matrix approach. The specific objectives 

are:       

1. To setup variance-covariance matrix to serves as the foundation for 

calculating the orders of the partial correlation coefficient. 
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2. To compute correlation coefficient matrix from variance-covariance 

matrix. 

3. To estimate the maximum likelihood estimator of the partial correlation 

coefficient.    

4. To compute orders of the partial correlation coefficient from variance-

covariance matrix.         

1.4 Structure of Dataset       

Since the study is largely theoretical, it is necessary to use a pertinent 

dataset for the purpose of providing a concrete example. The information for 

our stat istical analysis was taken from the study "Cross-Sectional Analysis of 

Methods of Computing Partial Correlation Coefficients: A Self-Explained Note 

with R Syntax" by Ogunleye et al., (2022). Nine variables are covered by the 

secondary data, )....,,( 921 VVVV =

 

with twenty-two observations. The 

variables are  

1V ― Consumption 

2V ― Corporate Profit 

3V ― Private Wage Bill 

4V ― Investment  

5V ― Previous Year’s Capital Stock 

6V ― Gross National Product 

7V  ― Government Wage Bill 

8V ― Government Expenditure 

9V  ― Taxes  
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 The datasets are part of a package known as Applied Econometrics with 

R (AER), and they offer the original dataset utilized in our investigation, Klein's 

Model I data for the US Economy (1920–1941). It has nine variables with 

twenty two observations and is called 'KleinI' in R package software.  

 As a result of the content of this data, it is deemed appropriate to divide 

the data into two parts composing of )(' 21
VVV = , where sub-vector 

),( 21

1
VVV =  and  sub-vector ),,,,,( 98765,43

2
VVVVVVVV = . Generally, if 

V  can be partitioned into 1
V  of dimension s and 2

V  of dimension t, then the 

mean vector μ  and variance-covariance matrix V  will consequently be 

partitioned into 














=

2

1

μ

μ
μ ,   








=

2221

1211

ΣΣ

ΣΣ
Σ  

By this structure, we have the following: 

 1μ  is a 1s  mean vector of sub-vector 1
V ; 

 2μ  is a 1t  mean vector of sub-vector 2
V ; 

 11Σ  is a ss  variance-covariance matrix of the sub-vector 1
V ; 

 22Σ  is a tt   variance-covariance matrix of the sub-vector 2
V ; 

 12Σ  is a ts  covariance matrix of the sub-vectors 1
V  and 2

V ; and 

          2112 ΣΣ =  

Furthermore, it is necessary for this study that the random vector V  

partitioning be insightful. Since the link between pairs of variables is the study's 

main focus after adjusting for the impact of additional factors are taken into 

consideration, the variables must meaningfully relate to or be linear to one 

another for the study to be worthwhile. 
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1.5 Significant of the Study  

The research will give a focused and coherent explanation of the notion 

of partial correlation analysis utilizing the method of variance-covariance 

matrix approach by presenting a class of mathematical tools that are necessary 

to provide a sufficient grasp of the concepts. Our understanding of the variance-

covariance matrix technique to computing partial correlation coefficient 

ordering will be improved by the study. Future researchers will also benefit from 

the study since it will inform them of the connection between conditional 

variance-covariance matrix strategy and partial correlation coefficient. 

1.6 Delimitation of the Study 

The main focused of the thesis is to calculate higher order partial 

correlation coefficient. There are several ways for estimating partial correlation 

coefficients, including the regression residual's approach, the conventional 

(traditional) method, the variance-covariance matrix approach, the recursive 

method, ordinary least squares method, and the matrix inversion method. We 

focused on using variance-covariance matrix strategy for computing higher 

order partial correlation coefficient. 

1.7 Limitations of the Study 

The research objectives are the exclusive focus of the thesis. This study 

project has several limitations. Due to the study's reliance on a single dataset, 

some of these challenges include a lack of resources and time restrictions.  

1.8 Organisation of the Study 

There are five chapters in the thesis. The first chapter explains the issue 

statement, the background of the investigation, the goals of the study, how the 

example dataset is organized, and the significance of the research. In the second 
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chapter, pertinent literature on the subject is reviewed. The theoretical and 

empirical research of earlier authors is taken into consideration throughout the 

literature review. In Chapter Three, we explore the methodology and approach 

used to carry out the study. Data analysis and findings are presented in Chapter 

Four. Detailed analysis, discussion, and presentation of the secondary data are 

provided. The study's findings and a summary are presented in the last chapter. 

In addition to suggestions for additional research in the subject, 

recommendations are provided for effective and efficient decisions.  

1.9 Chapter Summary 

 This chapter identifies the statement of the partial correlation analysis 

problem and explains the rationale for the investigation. The chapter describes 

the data's necessary organization for the study. A representative real-world 

example that would be used as an example in the research has been provided to 

assist us computes the orders of partial correlation coefficient. 
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CHAPTER TWO 

LITERATURE REVIEW 

2.0 Introduction  

The pertinent works on partial correlation coefficient will be examined 

in this chapter. Theoretical ideas will be covered, and various empirical 

investigations on partial correlation coefficient analysis that have been 

investigated over time will be examined. 

2.1 Theoretical Study 

According to Timm and Carlson (1975), Sir Francis Galton brought the 

idea of a simple correlation into statistics in a number of studies written in the 

1880s. His ideas on correlation, however, were largely ignored until the 

publication of his book Natural Inheritance in 1889. Partial and multiple 

correlation were developed by Pearson (1896, 1898) as a result of his inspiration 

from Galton's attempt to develop an exact mathematical theory of correlation 

(Yule, 1897, 1907).  

Fieller et al. (1957), Fisher (1924), and Yule (1907) all state that a 

correlation coefficient should not be more than one ( 1+ ) or lower than one ( 1−

). On rare occasions, the coefficient will be zero ( 0 ), signifying that there is no 

correlation between the variables. Consequently, all correlation coefficients 

ought to lie within the range of 1−  and 1+ .  

According to Turney (2023), however there are differences in how 

different disciplines perceive the relationship strength (also known as impact 

size) of correlation coefficient. Some common guidelines for assessing 

correlation coefficients are shown in Table 1: 
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Table 1:  Guidelines for Interpreting Correlation Coefficient 

Correlation coefficient (r) value Strength Direction 

r is bigger than 0.5 )5.0( r  Strong Positive 

r  lies between 0.3 and 0.5 )5.03.0(  r  Moderate Positive 

r  lies between 0.0 and 0.3 )3.00.0(  r  Weak Positive 

r is 0.0 )0( =r  None None 

r  lies between 0.0 and –0.3 )3.00.0( − r  Weak Negative 

r  lies between –0.3 and –0.5 

)5.03.0( −− r  
Moderate Negative 

r is less than –0.5 )5.0( r  Strong Negative 

Source: Turney (2023) 

2.1.1 The Concept of Partial Correlation Coefficient  

Zhang et al. (2021) state that partial correlation is a technique that takes 

into consideration the impact of one or more additional continuous variables in 

order to construct a linear connection between two continuous variables. The 

degree to which two variables are linearly related is also evaluated using partial 

correlation, which also takes into consideration the influence of additional 

variables (Lonas, 2020). 

Partial correlation, according to Brown and Hendrix (2014), is a method 

for determining the relationship between two variables while accounting for the 

influence of a third variable. It is comparable to the relationship between the 

two variables' residual scores after analytical regression on the control variable. 

They made it clearly clear that several other useful statistical methods, like 

stepwise multiple regression, factor analysis, route analysis, structural equation 

modeling, and so on, conceptually relate to and depend on partial correlation as 

a major element.  
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According to Explorable.com (2010), partial correlation investigation is 

the examination of a linear connection between two different variables after one 

or more independent factors have been taken into consideration. A first order 

coefficient indicates the partial correlation between two variables, which may 

be examined by holding the third variable constant while altering the other two. 

In a comparable manner, a second order coefficient might be defined, and so 

on. The computation of this coefficient is based on the simple correlation 

coefficient. The partial correlation analysis is crucial when there are several 

variables impacting the event being studied. The ability to alter the variables 

and look at each variable's impact independently makes this especially true in 

the physical and experimental sciences. This approach is particularly helpful in 

a variety of experimental designs where several related phenomena are being 

studied.  

For the purpose of identifying the partial link between the indices, we 

examined scenarios in which one variable was kept constant while the others 

were altered, according to Morison (2007). Multivariate partial correlation 

analysis is highly useful when the system contains several variables and factors 

that affect them. This is clear from the agricultural, commercial, physical, and 

experimental sciences, where the aim is to find ways to control and assess the 

impact of different components on their own. 

2.1.2 Computational Methods of Partial Correlation Coefficient  

We examine many known approaches for computing partial correlation 

coefficients for statistical analysis. 
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Wikipedia (2022) describes three ways for computing partial correlation 

coefficient: The linear regression formula, the recursive formula, and the matrix 

inversion formula. 

Since the first approach, linear regression, is predicated on the concept 

of partial regression, it provides us with a comprehension of the calculations we 

make when we compute the partial correlation. In this scenario, we would like 

to determine the partial correlation between X and Y after correcting for the 

influence of Z. The plan is to compute X's linear regression with regard to Z 

first, and then identify the residual. We do the linear regression of Y with respect 

to Z again in order to obtain the residual. After that, we ascertain the two 

residuals' association. It is easy to estimate the sample partial correlation for a 

given set of data by solving the two related linear regression problems. The 

correlation between the sample partial correlation and the residuals is found 

using the following formula: 






 

==

=

====

= ==

=

−−

−
=

n

i iY

n

i iX

iY

n

i iX

n

i iY

n

i iY

n

i iX

n

i iX

n

i

n

i iY

n

i iXiYiX

ZXY

enen

een

eeneen

eeeen
r

1

2

.1

2

,

,1 ,

2

1 ,1

2

,

2

1 ,1

2

,

1 1 ,1 ,,,

.

)()(

ˆ

        (2.1) 

The three terms (i.e.,  ==
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i iXe , and 2
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i iYe ) that 

follow minus signs in Equation (2.1) are all equal to zero due to the fact that 

every term in Equation (2.1) reflects the total of the residuals from a regression 

using conventional least squares.  

Recursive formula approach is the second method. Solving linear 

regression problems can be computationally costly. In actuality, partial 

correlations of the three th)1n( −  order may be used to quickly create the partial 
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correlation (with nZ = ) of the 
thn  order. The regular correlation coefficient 

XY  is used to define the partial correlation  .XY  of the zeroth order. For any 

Z0Z , it is true that  
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=                                              (2.2) 

The computation has an exponential time complexity when it is 

implemented as a recursive algorithm. However, because of the feature of 

overlapping sub problems, this calculation has a complexity of )( 3n  regardless 

of whether dynamic programming is used or just storing the outcomes of the 

recursive calls. Equation (2.2), as we can see, becomes simpler when Z is a 

single variable: 

22
.

11 ZYXZ

ZYXZXY
ZXY





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−
=  

The joint precision matrix may also be used to express the partial 

correlation step of the third technique, which involves matrix inversion. let 

nXXX ,...,, 21=U  of cardinality n , be a set of random variables we consider  

.Given all other variables, we wish to know the coefficient of partial correlation 

between two variables iX  and jX  given others, that is U . Assume )( ij= , 

the (joint/full) covariance matrix, is invertible because it is positive definite. If 

( ) 1−== ij  is the definition of the precision matrix, then 

)3.2(
jjii

ij

.XX ji




 −=U  

It takes time )( 3n  to compute  , the inverse of the covariance matrix 1− , in 

order to compute the aforementioned assertion. The sample covariance matrix 
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is used to generate a sample partial correlation. Note that the extraction of all 

the partial correlations between variable pairs in U  may be accomplished with 

a single matrix inversion.  

In addition, Altman, (1991) was the one who first put up the concept of 

partial correlation in 1991. He described it as a technique for establishing a link 

between two variables while limiting the impact of one or more extra factors. In 

terms of multiple regression, the partial correlation concept is best understood. 

He continued by saying that the actual multiple regression is a more effective 

tool for examining this kind of link between three or more variables. The partial 

correlation coefficient from a multiple regression can be computed in the 

following general form: 

)4.2(
.residual2 fdt

t
r

k

k
k

+
=  

where the degrees of freedom are denoted by d.f. and kt  is the Student t statistic 

for the kth term in the linear model. 

 The partial correlation coefficient, according to Mathematics 

Encyclopedia (2012), is a measurement of the linear dependency of a pair of 

random variables from a group of random variables when the influence of the 

other components is taken into consideration. In particular, take into account the 

likelihood that the random variables n21 X,...,X,X  may jointly distribute in nR

, and let 


nn XX ,...,3;2,...,3;1 ,
 
represent the best linear proxies, based on nXX ,...,3 , 

for the variables 1X  and 2X .  Subsequent that, the coefficient of the partial 

correlation between 1X  and 2X , represented by n,...,3.2;1  is defined as the 
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ordinary correlation coefficient value between the random variables 

−= nXXY ,...,3;111   and 
−= nXXY ,...,3;222  is provided by:  

( )( ) 
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It follows from the definition that 11 ,...,3/12 − n   

According to Kriz (1973), indicated that a more comprehensive general 

formula that may be used when someone wants to controlling for more than one 

uncontrolled variables and is given as follows: 
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It is possible to obtain the partial correlation coefficient in any order from 

Equation (2.6) by laboriously calculating several correlation orders. 

An assessment of the link between two variables after accounting for the 

impact of one or more independent factors is known as partial correlation, 

according to Verma (2016). The following is the partial correlation of 1X  and

3X , adjusted for 2X : 
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The bounds of partial correlation are -1 to +1, much as the correlation 

coefficient.  The number of independent variables whose effects are controlled 

determines the order of a partial correlation. First-order partial correlation is one 

kind of partial correlation in which the impact of just one variable is regulated. 

For (n-2)th order partial correlation, the generalized formula is as follows: 
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The partial correlation coefficient is used to show the relationship 

between two variables when additional factors are taken into consideration 

(OriginLab, n.d.). This is an expression for the method of variance-covariance 

matrix when two sets of variables, X  and Y , are joined with a set of xn  random 

variables X  and yn  controlling random Y  variables:  



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


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YYYX

XYXX
 

When Y variables are taken into account, the variance-covariance matrix of X 

variables is as follows:  

YXYYXYXXXX −= −1

.Y                                                                 (2.8) 

Through normalizing the entries of the result of conditional variance-covariance 

matrix, using Equation (2.4), one can get the partial correlation coefficient as: 
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2.2 Empirical Study of Partial Correlation Coefficient 

The relationship between several physical performance measurements 

and the overall, regional, and quality muscle mass and quality in older persons 

living in the community was investigated by Monjo et al. (2023). One hundred 

ninety-five local seniors—61 men and 134 women—participated in the 

research. Grip strength, 10-meter maximum walking test (MWT), 30-second 

standing test (CS30), the vertical jump test (VJT), and timed up-and-go test 

(TUG) were used to assess physical performance. Partial correlation analysis 

revealed after adjusting for age, sex, and body mass index, that CS30 was 

substantially connected with the thickness and intensity of the quadriceps 

femoris muscle. 
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Liu et al., (2023) released their work titled "Cerebellar gray matter (GM) 

alterations predict deep brain stimulation (DBS) outcomes in Meige syndrome 

(MS)". They compared regional and lobular gray matter alterations in the 

cerebellum between 52 healthy human controls (HCs) and 47 MS patients, as 

well as between 10 DBS non-responders and 31 DBS responders, using lobule-

based and voxel-based morphometric. The Spatially Unbiased Infratentorial 

Toolbox (SUIT) was used for all volumetric investigations. Additionally, they 

conducted a partial correlation exploration to look at the connection between 

changes in clinical ratings and cerebellar GM. Studies of partial correlation 

revealed a favorable connection between GM volume of the relevant 

regions/lobules and the frequency of symptom relief following DBS surgery.  

Partial correlation analysis was used by Wang et al., (2023), to evaluate 

the unmanned driving vehicle vibration response in 3D tire-pavement 

interaction. Autonomous driving will be the main emphasis of transportation in 

the future. As unmanned driving develops, sensor monitoring and machine 

control will become increasingly crucial. The results of partial correlation 

analysis suggested that pavement roughness should be given more consideration 

in order to guarantee passenger comfort and both surface roughness and vehicle 

speed should be taken into account simultaneously to ensure cargo safety and 

road friendliness.  

According to Kim et al., (2023), the prostate-specific antigen (PSA) 

level rises following therapy, which is when biochemical recurrence (BCR) of 

prostate cancer takes place. The success of prostate cancer therapy depends on 

accurate BCR prediction. They created a model that makes use of a partial 

correlation neural network (PCNN) to forecast the BCR of prostate cancer. One 
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thousand and twenty-one prostate cancer patients who underwent radical 

prostatectomy at a tertiary facility provided information for the research. BCR 

was the result variable, and there were nine input variables. The PCNN was built 

using feature-sensitive and partial correlation analysis. The neutral network 

(NN) architecture of the partial correlation neural network (PCNN) is 

particularly created for BCR prediction. In BCR prediction, the suggested 

partial correlation neural network (PCNN) performed better than previous 

machine learning methods, with specificity, accuracy, and sensitivity values of 

85.62%, 87.16%, and 90.80%, respectively.  The elimination of pointless 

prediction components through the correlation of the input variables is what 

makes partial correlation neural networks (PCNN) function better. The results 

of the investigation indicate that partial correlation neural networks (PCNN) 

might be used in prostate treatment throughout the clinical phase. 

Correlation networks are a common method of displaying financial data 

because of their readability and simplicity. Sidorov et al., (2022) carried out a 

study that was mostly focused on comparing the asset returns from the Russian 

stock market with the partial correlation on network-based and the growth of 

the Pearson correlation network of the Russian stock market.  They selected to 

focus on data from the Russian financial markets between the years of 2012 and 

2022. However, it was discovered that the asset returns of two enterprises with 

the same cause were improperly linked. They suggested doing their 

investigation using a partial correlation to avoid this.  

As long as product moment correlation coefficients are calculated and 

interval or ratio data are employed, Conover (1971) proved that higher order 

partials are completely reliable. Furthermore, Waliczek (1996) states that partial 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



24 
 

correlations are permitted only in cases when the suitable model fits the pattern 

of interactions between the variables. A researcher should be aware of some of 

the limitations of partial correlations, as discussed by Korn (1984). He 

emphasized the requirement for a constant distribution of the data and an 

approximately linear connection between the variables. Thus, only data that are 

approximately normally distributed should be utilized with it. The multivariate 

normality assumption also seems to be sensitive to Pearson's partial correlation. 

However, if the correlations between the variables are not linear, any partial 

correlation might produce false findings. Pedhazur (1982) asserts that changing 

variables without taking into account theoretical ideas about how they interact 

with one another might sum up to a misunderstanding of facts and produce 

either false or nonsensical results. The researcher has to be completely aware of 

the dependent variable under evaluation after accounting for the impact of one 

or more independent factors. 

The work by Syazali et al., (2019) titled "Partial correlation analysis 

using multiple linear regression: Impact on business environment of interest in 

digital marketing in the era of industrial revolution 4". Due to resource 

constraints and other market considerations, Small and Medium Enterprises 

(SMEs) find it challenging to apply technology in business at the age of four. 

The marketing of a product usually relies on a number of variables, such as 

price, product quality, and brand, to convince customers to buy it. The 

researchers looked at how cost, product quality, and product brand affected 

buyers' interest in making purchases. The results show that brand and product 

pricing have the strongest partial relationships with customers' propensities to 

buy. 
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Horwitz and Rapoport (1988) employed the partial correlation analysis 

approach to describe the functional connections between various brain areas. 

Coefficients of correlation between two sets of local glucose metabolism have 

attracted a lot of attention because they can show patterns of connectivity across 

different brain areas in both humans and animals. Partial correlation 

coefficients, which contrast the regional and global metabolic rates, or 

correlations between reference rates, which partially eliminate the global 

metabolic rate to some extent, are two strategies the researchers recommend 

using to lessen the confounding effect of systematic intra-subject variability in 

glucose intake.    

Analysis of Partial correlation was used in Aloe's (2013) study to 

synthesize partial effect estimates. Semi-partial, partial, and standardized slope 

partial effect sizes were discovered for the connection. According to Aloe, 

partial correlation is especially helpful for meta-analyses when the original 

study that provided bivariate correlations were not included in the regression 

models or when it was crucial to isolate the impact of other components. Partial 

correlation has been utilized extensively.   

Ha and Sun, (2014) addressed the challenge of creating a gene co-

expression network in a study by utilizing a partial correlation matrix strategy. 

Partial correlation is also used for financial marketing tactics by Kenett et al., 

(2015). However, dependence and links between the various firms in the 

analyzed sample have been affected by employing partial correlation in the 

analysis of the dependency network approach.  

Li (2018) conducted an investigation and assessment of the prediction 

accuracy of three distinct approaches (Conditional mutual information, partial 
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correlation, and Pearson's correlation coefficient) and concluded that all 

interaction effects were considered. Because they ignore the relationships 

between primary effects and interaction effects, direct interaction screening 

(DIS) techniques like Pearson's Correlation Coefficient approach frequently 

screen interaction terms wrongly. He suggested employing the Conditional 

Mutual Information Interaction Screening (CMIIS) technique and the Partial 

Correlation Interaction Screening (PCIS) methodology as two distinct 

interaction screening approaches to accomplish this. When partial correlation 

(PC) is employed, one may assess the link between two variables while reducing 

the influence of one or more other factors. 

Chidiebere (2015) published article title "Multivariate approach to 

partial correlation analysis." Professional statisticians and users of statistical 

software have reportedly expressed concern over the partial correlation 

coefficient of one or more independent variables. He created a variance-

covariance matrix using a multivariate technique. In order to look for 

multivariate partial correlations, he separated the variance covariance matrices 

while maintaining one or more variables constant. Given the difficulties in 

analyzing and processing complex data, he used matrices to calculate 

correlation coefficients between these variables and variance covariance 

matrices to establish the strength of the relationships between the variables.  A 

normal diagonal matrix was demonstrated to be the representation of a partial 

correlation coefficient.  

Artner et al., (2022) examined the creation of partial correlation matrices 

as part of their work into partial correlation analysis. It is common practice to 

quickly describe the correlational structure of a group of variables using the 
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pairwise partial correlations because they have the advantage of being clear 

markers of conditional linear independence while yet preserving the same data 

as the Pearson correlations. For mathematical convenience, there are several 

matrix representations of pairwise partial correlations in the literature, despite 

the fact that their properties have not been thoroughly examined. The authors 

have constructed necessary and sufficient requirements for the eigenvalues of 

widely defined partial correlation matrices, so guaranteeing the validity of the 

correlation structure in this work. We will concentrate on the computational cost 

of constructing correlation structures with partial correlation matrices after these 

conditions are satisfied. Additionally, they contrast the legitimate Pearson 

correlation structure space with the legitimate partial correlation structure space. 

Given that these spaces are similar in terms of rotation and volume for all 

dimensions, it is possible to use the present methods for the creation and 

approximation of correlation matrices to produce valid partial correlation 

matrices using a straightforward formula. They then provide straightforward 

partial correlation criteria for often taken for granted sparse structures. 

Jia et al., (2021) released a paper title "Research on dynamic response 

of subsea control system based on partial correlation analysis." This article 

proposes simulation models for closed loop and closed non-loop circuits for a 

particular underwater hydraulic system. Subsequently, it utilizes a single 

element analysis to examine the external and internal factors, such as the return 

distance and water depth, in addition to the actuators, underwater accumulators, 

and pipeline damping settings. The partial correlation theory was used to 

evaluation the link between the variables influencing the underwater hydraulic 

system's control response based on simulated data from a single factor. It is 
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possible to enhance the underwater hydraulic system's responsiveness by 

knowing the relative importance of the key variables influencing the control 

response. 

Zhang et al. (2021) used ordinary correlation (OR) and partial 

correlation (PC) research to examine the link between subjective well-being 

(SWB) and ecological footprint (EF) and to gauge how people's enjoyment is 

impacted by their surroundings. Control factors include the GDP, the proportion 

of wage and salaried workers (WSW), the rate of urbanization (UR), the literacy 

rate (LR), the youth life expectancy (YLE), the political stability (PS), and voice 

accountability (VA). Ecological cropland footprints (ECL), total biocapacity 

(TBC), ecological built-up land footprints (EBL), and ecological grazing land 

footprints (EGL) all have a substantial good and bad influence on subjective 

well-being (SWB).  Subjective well-being (SWB) and the ecological carbon 

footprint (ECF) show a significant negative relationship in affluent countries. 

They concluded that a knowledge gap is closed and our understanding of 

pleasure is enhanced by using partial correlation to examine the link between 

EF and SWB. 

According to Shan et al., (2020), researchers are collecting repeated data 

more often in order to study the trajectory of measurement change across time. 

A novel therapeutic target may be identified by establishing a link between a 

recurrent measurement and another that is regarded to be a biomarker for the 

advancement of a disease. When it is related to one of the two measures, partial 

correlation with the impact of the third variable eliminated can yield a reliable 

estimate of association, in contrast to the present raw correlation for repeated 

data. They suggest utilizing linear regression models to determine residuals, 
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which show the link between each measurement and a third variable. After 

fitting a linear mixed model with the estimated residuals, the partial correlation 

for the replication data is obtained.  

The Pearson correlation coefficient or Spearman correlation coefficient, 

which show marginal correlations, are more prone to unexpected results when 

analyzing the effect of genetic interaction on yeast. Because of this, Roverato 

and Castelo (2017) substitute partial correlation for marginal correlations in 

their analysis of the level of gene co-expression. 

Jung and Chang, (2016) conducted a partial correlation research on the 

Korean stock market (KOSPI). Showing that the link between stock returns is 

generally strengthened by the market return, Pearson correlation coefficients 

that are conditional on market return are often bigger than those of partial 

correlation. Examined is the distinction between partial correlation and Pearson 

correlation.   

Vargha et al., (2012) released article with the title "Interpretation 

problems of the partial correlation with nonnormally distributed variables." 

They asserted that partial correlation is a widely used metric for assessing the 

bivariate correlation of two quantitative variables after taking into consideration 

the influence of one or more additional factors. The correlation that would result 

if the variables to be eliminated were fixed, that is, they could not change and 

have an impact on the other variables, is what is known as the partial correlation 

in statistical literature. This is how the partial correlation is typically 

conceptualized. Their study shows, both theoretically and through practical 

examples, that when the multivariate normality assumption is broken (due to 

nonlinear relationships between the variables under investigation, for example), 
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there will be a fundamental error in the conventional interpretation of the partial 

correlation coefficient. Under some conditions, the conditional correlation may 

have a very strong negative value while the partial correlation coefficient may 

have a value that is exceptionally high and close to 1. If nonlinear interactions 

are anticipated, the article recommends partialing out a certain function (often 

the square) of the variables whose effects must be avoided in order to handle 

this issue. 

It is mentioned by Marrelec et al. (2017) that partial correlation has been 

studied to enhance structural equation modeling of functional magnetic 

resonance imaging data. Functional magnetic resonance imaging (fMRI) data is 

used in effective connectivity studies to evaluate the inter-regional interactions 

between various brain regions. Structural equation modeling (SEM) is the main 

technique used to evaluate effective connectivity. In their study, they present a 

technique that does a partial correlation analysis given a number of areas. This 

method offers a data-driven approach to connection as it doesn't require prior 

understanding of the anatomical or functional relationships. Their goal was to 

demonstrate the usefulness of partial correlation analysis for effective 

connection inquiry by reanalyzing data that had previously been published by 

Bullmore, Horwitz, Honey, Brammer, Williams, and Sharma (2000). In 

particular, they show the wide range of applications for which partial correlation 

analysis may be applied. It can make recommendations for which connections 

are organizing interactions properly in a pre-processing stage and which ones 

are having minimal impact on the connectivity pattern. The efficiency of SEM 

optimization strategies may be swiftly and simply evaluated, and it can be used 
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to show which model assumptions are accurate and which ones require more 

work to better fit the data.   

It was made clear by Ogunleye et al. (2022) that the method of variance-

covariance matrix could only compute partial correlation coefficients up to 

order one. Furthermore, they emphasized that, to the best of their knowledge, 

no new methodology (variance-covariance matrix approach) has been 

developed to handle partial correlation coefficients higher than the first order. 

We are able to conclude that Ogunleye et al. had difficulties estimating partial 

correlation coefficients beyond first order because they did not partition the 

variance-covariance matrix using the appropriate approach. 

2.3 Other Methods in Relation to Partial Correlation  

As per the research conducted by Brown and Hendrix (2014), partial 

correlation is associated with and serves as the basis for other statistical 

approaches that are now gaining attention, such as causal modeling and 

structural equation modeling (SEM). Partial correlation has a long history as a 

tool for identifying the nature of causal links between observable variables, 

according to Lazarsfeld (1955), Simon (1957), and Blalock (1961, 1963). Path 

analysis and partial correlation have a conceptual and mathematical link [see 

Edwards (1979)]. Wright (1934, 1954, 1960a, 1960b) [see also Tukey (1954)] 

invented path analytic approaches in the 1930s, and they are also the basis of 

the advancements that allow structural equations modeling. It appears from this 

that the idea of partial correlation mathematics forms the foundation for 

minimizing the effects of every predictor in a stepwise regression to determine 

the additional predictive contribution of the remaining variables. Partial 

correlation approaches have several interesting applications, one of which is 
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mediation demonstration [Baron & Kenny (1986), Judd & Kenny (1981). To 

put it another way, partial correlation approaches are employed to demonstrate 

that a third variable really mediates the causal effects of one variable on another, 

and that the lack of this third variable causes the correlative relationship to 

evaporate or, at the very least, severely weaken. Therefore, one may evaluate 

causal hypotheses and provide statistical control by using partial correlation. 

2.4 Multivariate Normal Distribution 

Baba et al. (2004) reported that when random variables are concurrently 

distributed as the multivariate normal, there is compatibility between the 

conditional correlation and the partial correlation.  

According to Rencher (2001), the cornerstone for the great majority of 

multivariate operations is the multivariate normal distribution. This makes 

normal distribution knowledge valuable for the study of multivariate 

techniques. Mean, variance, and covariance are the only variables required to 

completely describe the multivariate normal distribution. Its bivariate plot 

shows linear trends. It is also important to remember that two or more variables 

in a multivariate normal distribution are independent if they are uncorrelated. 

The multivariate normal may still be a useful approximation even if the data are 

not multivariate normal, according to the central limit theorem, which claims 

that the samples mean vector is approximately multivariate normal. This is 

especially valid when drawing conclusions based on the samples mean vector. 

Although multivariate normality may not always accurately represent real data, 

it is frequently a good approximation to the underlying distribution. 

The multivariate density function is as follows:  
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2/)()'(

2

1

1

)2(

1
)( 



−−− −



= vv

p

evh  

where   is the variance-covariance matrix,   is the mean vector, and v  is the 

multivariate normal distribution variable.  

The expression )()'( 1  −− − vv  in the multivariate density function's 

exponent is well recognized as the Mahalanobis distance, which is often referred 

to as the squared generalized distance between v  to  .  

v  values are considered to be concentrated toward the mean if 2  in the 

univariate normal is small. In a similar manner, a small value of   in a 

multivariate scenario denotes multicollinearity among the variables or that in p-

space, the values of v's are concentrated around  . The term "multicollinear" 

refers to highly correlated variables, which means that their effective 

dimensionality is smaller than p . 

According to Rencher (2001) the multivariate normal random variable 

has the following properties.  

Using a multivariate normal distribution ),( pN  and a random 1p  vector 

v : 

1. If a  is a vector of constants, then the function 

ppvavavaav +++= .......' 2211  is univariate normal and the linear 

combination of the vector v  is normal. As a result, va'  is ),'( aN  if 

v  is ),( pN . Additionally, a multivariate normal distribution may be 

found in the linear combinations of Av  if A is a constant pp  matrix 

of rank, where pq  . 

2. A standardized vector  
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)()'( 1 −= − vTG  

where the Cholesky method is used to factorize TT '= . Therefore  

)()( 12
1

−= − vG  

where 2
1

  is the squared root matrix of   that is symmetric. All means, 

all variance, and all correlation are equivalent to zero in the standardized 

vector corresponding to the random variable.  

3. The square of p  independent standard normal random variables yields 

a chi-square random variable with p  degrees of freedom. As a result, if 

G  is the standard vector, then GGG j

p

j '2

1 = =  has an −2 distribution 

with p  degrees of freedom, indicated by )(2 p . If p  is ),( pN , then 

)()'( 1  −− − vv  is 
2

p . 

2.5 Chapter Summary 

The literature demonstrates that the topic of partial correlation analysis 

has been investigated for a long time. Some writers have developed the subject 

extensively, and publications have also offered applications to data analysis. A 

wide range of fields, most notably biology, medicine, economics, accounting, 

engineering, and other related fields, have embraced the usage of partial 

correlation.  

The study is apparently motivated by an assertion by Ogunleye et al., 

(2022). The purpose of the research therefore is to discover via variance-

covariance matrix technique how this difficulty may be resolved. 
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CHAPTER THREE 

RESEARCH METHODS 

3.0 Introduction 

This thesis employs multivariate application to create a variance-

covariance matrix as its statistical technique. The theory of partial correlation 

coefficients will be established and proven using the conditional variance-

covariance matrix strategy. To assess the degree of link between variables after 

holding some variable(s) constant, the effects of independent variables will be 

examined concurrently. We analysed the secondary data obtained using R 

software programme and Minitab 19 for realistic demonstrations of the theory 

of variance-covariance matrix for computing orders of partial correlation 

coefficients. 

3.1 Datasets 

The original dataset given by Ogunleye et al., (2022) was used in 

conjunction with the method of variance-covariance matrix strategy to compute 

partial correlation coefficients orders. Only five (5) of the nine (9) variables 

were used in their research, and partial correlation coefficients were computed 

using four distinct approaches.  

3.2 Organization of Multivariate data 

Let's use the notation  klv
 
to denote a specific lth  variable value that was 

seen on the kth  item. That is, klv  = measurement of the lth  variable on the kth  

item. Therefore, the following may be used to display n  measurements on p  

variables: 
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An alternate representation of the multivariate data given above would be a 

rectangular array represented by the symbol V , which has n rows and p 

columns: 























=

npnlnn

kpklkk

pl

pl

vvvv

vvvv

vvvv

vvvv











21

21

222221

111211

V                                                  (3.1) 

The data is then added to the array V , including all observations on all 

variables. Additionally, the number of measures ( n ) represents a subset of all 

possible measurements.  

3.3 Multivariate Normal Distribution  

A univariate normal density generalization to two or more variables (that 

is, 2p  dimensions) is the multivariate normal density. The squared statistical 

distance in standard deviation units between   and v  is provided by: 

)())(( 12

2





−−=







 − − vv
v

 

We have 1pv , and parameters 1p  and pp . Given below is the multivariate 

normal exponent term 

)()()'( 1  −− −
vv               − kv  

v 's joint density is determined by: 
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An independent multivariate normal distribution's joint density function is 

shown here, written as ( )ppNV I
2,~  .  

The independent multivariate normal density is often adapted to the multivariate 

normal distribution by replacing pI2  with a positive definite variance-

covariance matrix   as  

( )
( ) ( ) ( )









−−−=
−




vvv
1

2
1

2

'
2

1
exp

2

1
)( 


p

f         

3.3.1 Multivariate Parameters and Statistics 

3.3.1.1 Population Mean Vector 

It is possible to create a matrix using the means and covariances of the 

1p  random vector V . The symmetric variance-covariance matrix 

( )( )' −−= VVE  clearly indicates the p  variances jj  and the 

2/)2( −pp  unique covariances )( ljjl  . The vector of means )(VE=  also 

includes the anticipated value for each element.  

Specifically, the population mean vector is given by 
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3.3.1.2 Population Variance-Covariance Matrix 

A variance-covariance matrix ( ) is a square matrix where the off-

diagonal components represent the covariance and the diagonal members 

represent the variance. The spread of data from a dataset's mean is known as 

variance, which is a measure of dispersion, whereas covariance quantifies the 

combined variation of two variables. The variance-covariance matrix is 

represented mathematically by 

( )( )
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The population variance-covariance matrix of a random vector V is therefore 

defined as 

( )( )
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3.3.2 Mean Vector and Variance-Covariance Matrix  

Since the parameters   and   are unknown, the maximum likelihood 

estimation approach may be employed to estimate them. Equation (3.1) may be 

used to create an unbiased sample variance-covariance matrix and sample mean 

vector as follows: 
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kk vvvv
n

S                                                             (3.2)     

Given the sum of squares and sum of products matrix, the Wishart Distribution 

matrix is obtained as follows: 

')vv)(vv(
n

1k

kk
=

−−=H                                                                  (3.3) 

Equation (3.3) may be substituted into Equation (3.2) to create an unbiased 

sample variance-covariance matrix, which is provided by 

HS
1n

1

−
=                                                                                      (3.4) 

Theorem 3.1 

In a random sampling of n  observation vectors nvvv ,...,, 21  from 

),( pN , the sample mean vector 
=

=
n

k

kv
n

v
1

1
 is the maximum likelihood 

estimator of   and '))((
1ˆ

1


=

−−=
n

k

kk vvvv
n

 is the maximum likelihood 

estimator of  . 

Proof: 

The probability density function for variable kv  is defined 
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so that the likelihood function )(L  of nvvv ,...,, 21  may be easily written as 
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Taking natural log both sides and this gives 
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3.3.3 Maximum Likelihood Estimate of Mean Vector 

When 𝜇 is taken into account, equation (3.5) is differentiated and equals zero 
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Since 1−  is non-singular matrix, we have  
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 vv
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1
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The population mean vector is estimated using Equation (3.6), which is an 

unbiased maximum likelihood estimator. 
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3.3.4 Variance-Covariance Matrix Maximum Likelihood Estimate 

From Equation (3.5), we apply the concept of trace of a matrix 
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We differentiate the above equation with regard to 1−  and equate it to zero 
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 and from matrix definition of )'(ln 1−= AA
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therefore we deduced that 
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Equating to zero and re-arranging, gives 
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Equation (3.7) is the maximum likelihood estimator of the variance-covariance 

matrix ( ) and is biased estimator  . 
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Theorem 3.2 

In a random sampling of n  observation vectors nvvv ,...,, 21  from 

),( pN , the estimator 
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 is an unbiased estimator of   and 
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S  is an unbiased estimator of  . 

Proof 

We can rewrite Equation (3.3) as  
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



 

We substitute 
n

v


=)var(  and =)var( kv  into the above Equation and obtain 

( )SE
n

H
E

nHE

=








−
=

−=

1

)(

                                                                      (3.8) 

For the variance-covariance matrix ( ), Equation (3.8) provides an unbiased 

estimate. 
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3.3.5 Sample Mean Vector 

The sample mean vector is shown as follows and is defined as the 

average of the n observation vectors or the average of each of the p variables 

separately:  

 
= 


















==
n

k

p

k

v

v

v

v
n

v
1

2

1

1


 

Consequently, 1v  denotes the first variable's mean of the n observations, 
2v  the 

second variable's mean, and so on. The observation vectors should be entered 

as rows rather than columns since n  is typically bigger than p , making it easier 

to tabulate the data. It was pointed out that the first subscript, k , stands for units 

(objects), while the second subscript, l , stands for variables.  

The sample mean vector v  can also be determined from the data matrix V  by 

using matrix notation as shown below: 
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jVv '
1

1
n

p =                                                                                   (3.9)     

where 'V  is a np  matrix and j is a vector of one’s with order 1n . 

3.3.6 Sample Variance-Covariance Matrix 

The sample variance-covariance matrix )( jls=S  denotes the matrix of 

sample variances and covariances for the p  variables: 









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


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s


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

21

22221
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)(S  

While every possible pairwise sample covariance in S is off the diagonal, the 

sample variances of the p variables are on the diagonal. 

The lth  variable's sample variance is provided as: 


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−
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=
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The following is the sample covariance for the variables j and l: 



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−
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The sample variance-covariance matrix S may alternatively be described by the 

observation vectors in the following way: 


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
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−
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Matrix notation may also be used to directly extract the sample variance-

covariance matrix S from the data matrix V. To compute the variance-

covariance matrix, we centre each column of V  and write it as follows: 

JVV
n

vvvvvv

vvvvvv

vvvvvv

pnpnn

pp

pp

1

2211

2222121

1212111

−=


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




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
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
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nn
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where 𝐉 is 𝑛 × 𝑛 matrix with one’s and 𝐈 is 𝑛 × 𝑛 identity matrix. Due to the 

direct usage of the multivariate data matrix 𝐕(𝑛×𝑝) and the fact that the matrix 

𝐈 − 𝐉/n of dimension 𝑛 × 𝑛, the Expression (3.10) gives a useful representation 

of 𝐒 

3.3.7 Population Correlation Coefficient Matrix - jl  

"Population correlation," also known as "zero order correlation," is a 

statistical measure of the correlation between two variables (the independent 

and dependent variables) without accounting for the impact of other variables. 

This suggests that a Pearson correlation and a zero order correlation are 

equivalent. 

Mathematically, population correlation coefficient ( jl ) or zero order 

correlation coefficient is defined by the variances jj  and ll , and covariances 

jl  as: 
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)11.3(
)var()var(
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VV
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=





   

where 11 − jl  

Equation (3.11) provides the variance-covariance matrix of a pp   symmetric 

matrix, from which we may get the population correlation matrix as follows: 
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The variance-covariance matrix may be used to derive the correlation matrix, 

and vice versa. It is possible to write equation (3.11) as follows: 

( ) ( ) 11 −−

= lljljjjl                                                                (3.13) 

we substitute =jl , and 2
1

M== lljj  , where 2
1

M  is a special pp   

diagonal standard deviation matrix as define by: 





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2
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




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



M  

From Equation (3.13) we obtain the population correlation matrix (  ) as 

given by: 
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12
1

12
1

)()( −−= MM                                                                   (3.14) 

It is abundantly evident from Equation (3.14) that, to derive the Pearson 

correlation or population correlation matrix (  ), the variance covariance matrix 

( ) may be used.      

3.3.8 Sample Correlation Matrix 

By replacing the population variance-covariance matrix ( ) with the 

sample correlation matrix (S ) in Equation (3.14), we can get the sample 

correlation matrix from the sample variance-covariance matrix. Consequently, 

we defined our sample correlation matrix as follows:  

12
1

12
1

)()( −−= MSMR                                                                 (3.15) 

3.4 Conditional Distribution 

A conditional distribution that is obtained from the multivariate normal 

distribution must first be introduced in order to comprehend the idea of partial 

correlations.   

Suppose the multivariate normal vector ),,,( 21 pVVVV =  is 

partitioned as ( ))2()1(' VVV =  with ),,,( 21

)1(

sVVVV =
 

and 

),,,( 21

)2(

pss VVVV ++= ,  spt −= . It is also assumed that the mean vector 

and variance-covariance matrix are 














=

2

1

μ

μ
μ ,              








=

2221

1211

ΣΣ

ΣΣ
Σ

                                             

(3.16)      

where 

1μ  is a 1s  mean vector of sub-vector )1(
V ; 

2μ  is a 1t  mean vector of sub-vector )2(
V ; 
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11Σ  is a ss  variance-covariance matrix of the sub-vector )1(V ; 

22Σ  is a tt   variance-covariance matrix of the sub-vector )2(
V ; 

12Σ  is a ts  variance-covariance matrix of sub-vector )1(
V and )2(

V ; and 

21Σ  is a st  variance-covariance matrix sub-vector )2(
V and )1(

V . 

We wish to determine the distribution of cVV =)2()1(
, where ),...,( 21 spccc −=c

Theorem 3.3 

 Let V  have a non-singular multivariate normal distribution, and let )1(
V  

and  )2(
V  be as defined. If  

)2()1(

1 βVVW −=   and  
)2(

2 VW =  

then  

(i) 







=

2

1

W

W
W   is also non-singular multivariate normal; 

(ii) 1W   and 2W   are independent iff 
1

2212

−= ΣΣβ   

Proof 

We re-write the transformation as 

 

AV
V
Vβ

V

VβV
W =















 −
=







 −
= )2(

)1(

)2(

)2()1(

10

1

 

Where A  is non-singular ( 0)det( A ). 

W  is therefore a non-singular linear transformation of V . 

(iii) 1W   and 2W  are independent if ( ) 0,cov 21 =WW         

Now, 

 

( ) ( )
( ) ( )

2212

)2()2()2()1(

)2()2()1(

21

,cov,cov

,cov,cov

βΣΣ

VVβVV

VβVVWW
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For independence, 02212 =−βΣΣ . This implies that  

1

2212

−= ΣΣβ ,      (3.17) 

as stated. 

It follows that the distribution cVW =)2(

1  is the same for all values of c  and 

the marginal distribution of 1W  is exactly the same.  

From the transformation, 

( ) ( )

2

1

22121

21

)2()1(

1

μΣΣμ

βμμ

βVVW

−−=

−=

−= EE

 

Let D  denote the variance-covariance matrix 

( ) ( )
( )
( ) ( ) ( ) ( )

ββΣβΣβΣΣ

βVβVβVVVβVVV

βVVβVV

βVVW

+−−=

+−−=

−−=

−=

22122111

)2()2()2()1()1()2()1()1(

)2()1()2()1(

)2()1(

1

,cov,cov,cov,cov

,cov

DD

 

Since 
1

2212

−= ΣΣβ , denoting 
1

)( 1 WΣW =D , we have  

21

1

2212111
ΣΣΣΣΣW

−−=
                                                               (3.18) 

Hence, the distribution of 1W  is therefore  

( )21

1

2212112

1

221211 ,~ ΣΣΣΣμΣΣμW
−− −−MN                               (3.19) 

Having identified the distribution of 1W , the distribution of )1(
V  may be 

deduced.  

From 
)2()1(

1 βVVW −= ,  we have  

)2(

1

)1( βVWV +=  
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The distribution cVV =)2()1(
 is therefore the translation of Equation (3.19) 

through the vector cβ . That is, by denoting the conditional expectation of 

)2()1(
VV  by c1  , we have   

( )
( )2

1

22121

11

μcΣΣμ

cβWc

−+=

+=
−

 E
                                                             (3.20)  

By noting that ( ) ( )1

)2()1(
WVV DD = , which we denote by cΣ 11 , is the variance-

covariance matrix of the conditional vector 
)2()1(

VV  is given by: 

            
 21

1

221211.11 ΣΣΣΣ
−−=c

                                                              (3.21) 

The partial correlation coefficients between 
)1(

V  for a given components of 

)2(
V  are determined using equation (3.21). 

Hence, the distribution of 
)2()1(

VV
 
is therefore  

 ( )( )21

1

2212112

1

22121

)2((1) ,~ ΣΣΣΣμcΣΣμVV
−− −−+MN           (3.22) 

Thus, the conditional expectation is given as 

( )2

)2(1

221211 μXΣΣμμ c −+= −


        

Provides the multivariate multiple linear regression model by establishing the 

regression function of 
)2()1(

VV . In this procedure, the ts  matrix  1

2212

−= ΣΣβ  

represents the regression coefficients of )1(
V  on (2)

V . The jth  row of  β  is the 

regression coefficients of (2)
V   in the linear regression given by ( ))2()1(

VV jE  

for the jth  component of  )1(
V ,  .,,2,1 sj =    

3.5 Joint Density  

By substituting )2(1

2212

)1(
vv

−−   for )1(
w  and )2(

v  for )2(
w  into 

Equation (3.2), the density of )1(
V  and (2)

V  can be achieved. 
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As a result, the joint density of )1(
V  and )2(

V  is as follows: 
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 
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where 21

1

2212112.11  −−=                       

3.6 Conditional Density   

The conditional density of )1(
V  given that )2()2(

vV =  is the quotient of 

Equation (3.23) and the marginal density of )2(
V . The resulting conditional 

density of )1(
V  given )2(

V  is given by: 
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(3.24)

 

3.7 Maximum Likelihood Estimators                         

We take into consideration the issue of estimate ),( N  using a sample 

of n . It is established that the maximum likelihood estimate of   is given by  

H
n

1ˆ =  

where H  is given as 

( )



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
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
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                                  (3.25) 

and )'(
1 )'2()'1(

1

vvv
n

v
n
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k == 
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Theorem 3.4 

Let nvvv ,...,, 21  be sample from ),( pN , where   and   are 

partitioned as in  (3.16). We define H  by (3.25) and 


=

=
N

k

kk vv
n

vv
1

)'2()'1()2()1( )(
1

)''( . Therefore, the maximum likelihood 

estimators of  
)1( , 

)2( , 11 , 22   , and 2.11 , are given by 
)1()1(ˆ v= , 

)2()2(ˆ v= , )(
1ˆ

1111 H
n

= , )(
1ˆ

2222 H
n

=  
1

2112
ˆ −= HH , and 

( )21

1

2212112.11

1ˆ HHHH
−−=

n


 
respectively.  

 

Proof 

The maximum likelihood estimator of 
)1( and 

)2(  

The mean proof of theorem 3.1 may be used to simply establish the proof of the 

maximum likelihood estimators of 
)1(  and 

)2( . 

The maximum likelihood estimator of 11 and 22  

The maximum likelihood estimator of   is  )(
1ˆ H
n

= , as we may infer from 

Equation (3.7). Therefore, the proof easily follows that )(
1ˆ

1111 H
n

= and 

)(
1ˆ

2222 H
n

=  

The maximum likelihood estimator of   

We know that 
1

2212

−
= ΣΣβ  
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The maximum likelihood estimator of 2.11  
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

 

3.7.1 Maximum Likelihood Estimator of Partial Correlation Coefficient                       

Utilizing the maximum likelihood estimator of the variance-covariance 

matrix, one may approximate the maximum likelihood estimators of the partial 

correlation coefficients.  

Theorem 3.5 

Let Nvvv ,...,, 21  be sample N  from ),( pN . The maximum likelihood 

estimators of tsjl ,..,1. + , the partial correlations of the first s  components 

conditional on the last sp −  components, are given by 

tslltsjj

tsjl

tsjl

,...,1.,...,1.

,...,1.

,...,1.
ˆˆ

ˆ
ˆ

++

+

+ =



       slj ,....,1, =  

Where the estimator tsjl ,...,1.
ˆ

+  is known as the population partial correlation 

coefficient between jV  and lV  holding ts VV ,..,1+  constant. Also, tsjl ,...,1.
ˆ

+ is the 

thlj ),(  entry of 
2.11̂  

Proof  
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The proof of Theorem 3.5 is as easy as normalizing the results of Equation 

(3.21) to obtain the partial correlation coefficient's maximum likelihood 

estimator. 

3.7.2 Maximum likelihood Estimator of Population Partial Correlation 

The greatest likelihood estimate of the population partial correlation 

coefficient is known as the sample partial correlation coefficient. Because the 

population characteristics are unknown, sample partial correlation may be 

determined by substituting the sample variance-covariance matrix for the 

population variance-covariance matrix. 

Theorem 3.6 

Let nvvv ,...,, 21  be sample n  from ),( pN . The maximum likelihood 

estimators of tsjl ,...,1. + , the partial correlations of the first s  components 

conditional on the last sp −  components, are given by 

tslltsjj

tsjl

tsjl
aa

a
r

,...,1.,...,1.

,...,1.

,...,1.
ˆˆ

ˆ

++

+

+ =           slj ,...,1, =  

The sample partial correlation coefficient between jV  and lV  having taken 

explanation of ts VV ,...,1+  fixed, is given by the estimator tsjlr ,...,1. + ,  

Proof  

The proof of theorem 3.3 makes the proof of theorem 3.6 simple to follow, and 

it yields the sample conditional variance-covariance matrix as provided by: 

21

1

2212112.11 SSSSS
−−=                                                                     (3.26) 

where the maximum likelihood estimator of Equation (3.22) is represented by 

Equation (3.26). 

Using Equation (3.26), the outcome is 
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












==

++

++

tslltslj

tsjltsjj

aa

aa

,...,1.,...,1.

,...,1.,...,1.

2.11 ˆˆ

ˆˆ
ÂS                                                    (3.27)    

By normalizing the matrix Equation (3.27) mentioned above, the maximum 

likelihood estimator for the partial correlation coefficient may be produced as 

follows:  

tslltsjj

tsjl

tsjl
aa

a
r

,...,1.,...,1.

,...,1.

,...,1.
ˆˆ

ˆ

++

+

+ =  

3.8 Computational Procedures for Computing Sample Partial Correlation 

Using the variance-covariance matrix method, the sample partial correlation 

coefficients are calculated. The detailed steps for calculating sample partial 

correlation coefficients are as follows:  

➢ Using the sample raw dataset, we build up the sample variance-

covariance matrix. 

➢ 
The estimated sample variance-covariance matrix is partitioned 

according to the number of variables we wish to control and the number 

of variables between which we are interested in finding partial 

correlation.
 

➢ 
The partitioned sample variance-covariance matrix components or 

entries are substituted into the conditional variance-covariance matrix 

Equation (3.26).
 

The conditional sample variance-covariance matrix will produce a 

matrix comprising partial variances and partial covariances as follows:



















=

+++

+++

+++

tssstsstss

tsststs

tsststs

aaa

aaa

aaa

,...,1.,...,1.2,...,1.1

,...,1.2,...,1.22,...,1.21

,...,1.1,...,1.12,...,1.11

2.11

ˆˆˆ

ˆˆˆ

ˆˆˆ









S
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➢ The off-diagonal element of the conditional sample variance-covariance 

matrix based on the two variables between which we wish to detect 

partial correlation is then normalized, and this allows us to calculate the 

sample partial correlation coefficients.  

For example, we obtain the sample partial correlation between 1V  and 3V  

holding 42 VandV  constant as given by: 

24.3324.11

24.13
24.13

ˆˆ

ˆ

aa

a
r =  

where 24.13â  is the partial covariance element, 24.11â and 24.33â  are the partial 

variances element of 211S . 

3.9 Sample Partial Correlation Matrix 

To obtain the sample partial correlation coefficients for every column in 

a matrix, utilize the sample partial correlation matrix. In other words, the sample 

partial correlation between columns 1 and 2 of the original matrix is matched 

by rows 1 and 2 of the partial correlation matrix. Even after accounting for the 

impacts of the other columns, there is still a correlation between columns 1 and 

2 in this sample partial correlation. The diagonal components of the sample 

partial correlation matrix, which display the sample partial correlation of a 

column with itself, will always equal 1. Because there is no difference in the 

sample partial correlation between columns 1 and 2 and 2 and 1, the sample 

partial correlation matrix is symmetric. The following is a representation of a 

first-order and second-order sample partial correlation matrix:  

















==

1

1

1

1.322.31

1.233.21

2.133.12

.

rr

rr

rr

r yjlR    
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

















==

1

1

1

1

12.4313.4223.41

12.3414.3224.31

13.2414.2334.21

23.1424.1334.12

.

rrr

rrr

rrr

rrr

r yzjlR  

3.10 Testing for partial correlation coefficient 

Fisher (1924) states that when utilizing the t statistic to determine 

whether a simple correlation coefficient is equal to zero, the degrees of freedom 

for error are reduced by one for each variable that is removed, and the simple 

correlation coefficient is replaced with a partial correlation coefficient. This is 

accomplished in order to confirm that a partial correlation coefficient equals 0 

under normal circumstances. 

Hypothesis testing  

To compare it with the alternative, which maintains that a partial 

correlation is not equal to zero, we first look at testing the null hypothesis, which 

states that a partial correlation is equal to zero. This is stated as follows: 

0: .0 =UjlH   

0: .1 UjlH   

Test statistic is shown below:  

kn

jl

jl t
r

kn
rt −−

−

−−
= 22

.

. ~
1

2

U

U  

where k  denotes how many variables we are controlling or conditioning for.  

We define the critical value as follows: 

2
,2 kn

tt
−−

=  

Under the null hypothesis, the test statistic will approximately correspond to a 

t-distribution, with kn −−2  degrees of freedom. We would reject the null 
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hypothesis ( 0H ) in the event that the test statistic's absolute value surpassed the 

t-table's critical threshold, which was determined at 2
 .  

3.11 Confidence Interval for the partial correlation ( U.jl ) 

The confidence interval for partial correlation is the region where the 

partial correlation of a population is most likely to be observed. The degree of 

certainty that it is likely to fall inside that range is indicated by the confidence 

level. 

These steps were taken for the purpose to calculate the confidence interval for 

the partial correlation coefficient: 

➢ We compute the partial correlation's Fisher's transformation using the 

following formula: 















−

+
=

U

U

.

.

1

1
ln

2

1

jl

jl

jl
r

r
Z  

This Fisher transformation variable will be probably normally distributed in this 

situation for a large n . For this partial correlation, the mean is equal to the 

Fisher transformation for the population value, and the variance is equal to 

)3(1 −n  















−−

+

3

1
,

1

1
ln

2

1
~

.

.

n
NZ

jl

jl

jl

U

U




 

➢ For the Fisher transformation correlation, we determine a %100)1( −  

confidence interval. The following is an illustration of this:    

➢ 
U

U

.

.

1

1
ln

2

1

jl

jl





−

+
 

The above formula provides the boundaries aZ  and bZ  as:  
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













−
+

−
−

3
,

3

22

n

Z
Z

n

Z
Z jljl


 

where 
3

1

−n
 is the standard error, 

3

2

−
−=

n

Z
ZZ jl



  is the lower limit and  

3

2

−
+=

n

Z
ZZ jlb


 is the upper limit. 

➢ To get the required confidence interval for the partial correlation ( U.jl ), we 

transform back as follows:  












+

−

+

−

1

1
,

1

1
2

2

2

2

b

b

a

a

Z

Z

Z

Z

e

e

e

e
 

3.12 Assumptions of partial correlation coefficient 

Before choosing to study data using partial correlation, we must first 

determine whether the data we intend to research can really be investigated 

using the partial correlation approach. This is necessary because a partial 

correlation can only be utilized if the data "passes" five assumptions; otherwise, 

the data cannot provide us a trustworthy conclusion. We'll explore the following 

five assumptions: 

3.12.1 Assumption one (Dependent and independent variables) 

There should be one of each type of dependent and independent variable, 

and they both need to be measured on a continuous scale (i.e., an interval or 

ratio scale). 

3.12.2 Assumption two (controlling variables) 

Covariates, also known as control variables, are important to add since 

they merely serve to influence the correlation between the other two variables. 

A continuous scale must also be used to measure these controlling variables. 
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3.12.3 Assumption three (Linearity) 

There must be a linear relationship between at least three of the 

variables. That is, every possible pair of variables must be connected linearly. 

To do this, a scatterplot matrix may commonly be visually examined.  

3.12.4 Assumption four (Normality) 

The distribution of the variables must approximate normal. To assess the 

statistical significance of the partial correlation, we need bivariate normality for 

each pair of variables, although it might be difficult to validate this assumption. 

Consequently, a more straightforward strategy that evaluates the distribution of 

each variable is more frequently employed. The Shapiro-Wilk test for normality 

is used for this. 

3.12.5 Assumption five (No significant Outlier) 

No noticeable outliers should exist. All that constitutes an outlier in a set 

of data is a single data point that deviates from the norm. Since outliers might 

affect partial correlation, it might be difficult to interpret the data correctly when 

outliers have a significant effect on the correlation coefficient and the line of 

best fit. Therefore, it is ideal if the dataset has no outliers. We employed the 

interquartile range (IQR) strategy and the Dixon's test for confirmation to detect 

outliers. 

The validity of the findings we obtain while executing or computing a partial 

correlation coefficient depends on whether assumptions 3, 4, or 5 are not 

violated. 

3.12.6 Shapiro-Wilk Test for Normality 

To find out if a random sample nkVk ,...,2,1, =  is taken from a normal 

Gaussian probability distribution with true mean (  ) and variance (
2 ), one 
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can apply the Shapiro-Wilk goodness-of-fit test. That is, ),(~ 2N . 

Therefore, we want to investigate the following hypothesis:  

Null Hypothesis ( 0H ): The population from which the sample data is drawn is 

normally distributed. 

Alternate Hypothesis (
1H ): The sample is not drawn from a normally 

distributed population. 

We employ the Shapiro-Wilk test statistic, which is provided by, to examine the 

above hypothesis. 

( )



=

=

−










=
n

k

k

n

k

kk

vv

vc

WS

1

2

2

1

)(

.  

where )(kv  denotes the ordered sample statistics and kc  denotes the tabulated 

coefficients:  

)'(

'
),.......,,(

11

1

21

kssk

sk
ccc n

−−

−

=  

where s stands for the variance-covariance matrix for the ordered statistics and 

2

21 ),.....,,( nkkkk =  stands for the expected values of the ordered statistics, 

which are independent random variables with identical distributions that satisfy 

the standard normal 𝑁(0, 1).  

A critical value (S.W Table) is compared to the test statistic (S.W). The null 

hypothesis is accepted if the estimated S.W is larger than the S.W critical value; 

otherwise, it is rejected. Additionally, we can accept or reject the null hypothesis 

using the probability value (p-value). The null hypothesis is rejected if the p-

value is less than the significant threshold value; otherwise, it is not. 
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3.12.7 Checking for outliers 

The method of statistical outlier detection involves using statistical tests 

or approaches to locate extreme results. We applied the interquartile range 

(IQR) strategy to find outliers. The center half of our dataset is represented by 

the interquartile range. We used the IQR to create "fences" around our data, and 

any values that fell outside of those fences were considered outliers. 

Step by step procedures to detect outlier using interquartile range method 

❖ Data arranged in ascending order  

❖ Find the median, first quartile ( 1Q ), and third quartile ( 3Q ).  

❖ Determine the 13 QQIQR −= . 

❖ We determine our upper limit using the formula )*5.1(3 IQRQ + . 

❖ The lower limit is determined by the formula )*5.1(1 IQRQ − .  

In order to find outliers, or values that are outside the boundaries, we used 

fences. 

3.12.8 Dixon‘s Q Test for outliers 

To assess if a single lowest or highest value in the dataset is an outlier, 

we apply the Dixon's Q test. If more than one outlier is detected, the test must 

be run on each suspected outlier separately. Dixon tests are particularly 

beneficial for small sample sizes, typically 25n . To use Dixon's Q test, we 

first ensure that our data set is normally distributed (i.e., we compute a Shapiro-

Wilk test). If our data set still does not match the normality assumption after a 

test, we should not perform Dixon's Q Test. 

The following is a definition of Dixon's Q test for the proposed hypothesis: 

:0H The lowest or highest value is not an outlier 
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:1H The lowest or highest value is an outlier 

Dixon’s Q test procedure for finding outliers: 

Step 1: Ascending order is used to organize the data. 

Step 2: We select the value (lowest or highest) that we wish to examine for an 

outlier.  

Step 3: We compute the Q statistic using the following formula: 

➢ If sample size 73  n , we use 

1

12
10 )(

xx

xx
RQ

n −

−
=  

where: 

1x  is the smallest (suspect) value 

2x  is the second smallest value  

nx  is the largest value. 

➢ If sample size 108  n , we use 

11

12
11)(

xx

xx
RQ

n −

−
=

−

 

➢ If sample size 1311  n , we use 

11

13
21)(

xx

xx
RQ

n −

−
=

−

 

➢ If sample size 14n , we use 

12

13
22 )(

xx

xx
RQ

n −

−
=

−

 

Step 4:  We calculate the Q-table value at the specified level of significance. 

Step 5:  The null hypothesis ( 0H ) is rejected if the expected Q statistic is larger 

than the Q-table value; otherwise, the null hypothesis ( 0H ) is not rejected. If 

the null hypothesis ( 0H ) is not accepted, the accompanying data point is 

regarded as an outlier.  

3.12.9 Checking for linearity   

When two or more variables tend to change at the same pace, the 

relationship between them is said to be linear. Visual examination (graphical 

approach) was used to test the linearity assumption between pairs of variables. 
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The scatter plot method was used because it is the most efficient way of 

displaying the linearity assumption between pairs of variables. 

3.13 Chapter Summary  

We looked at the partial correlation and the theoretical basis of the 

conditional variance-covariance matrix in this chapter.  We demonstrated how 

the variance-covariance matrix will be computed from the raw datasets. 

Furthermore, we specifically provided the maximum likelihood estimator, 

which can be used to compute orders of partial correlation coefficient, as well 

as how partial correlation coefficients significantly differ from zero. The 

assumptions that must be made for partial correlation coefficients to be valid 

were also illustrated with practical examples. The results of applying the 

variance-covariance matrix technique to real datasets to figure out the partial 

correlation coefficients' ordering are presented in the next chapter, along with 

practical illustrations. 
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CHAPTER FOUR 

 RESULTS AND DISCUSSIONS 

4.0 Introduction  

There are three sections in this chapter. These comprise the dataset's 

descriptive statistics, the partial correlation coefficients' computational process, 

and the validation of the partial correlation coefficients' underlying 

assumptions. In this chapter, the fundamental assumptions that must be met in 

order to compute the orders of partial correlation coefficient are presented in 

detail. The variance-covariance matrix and the correlation coefficient matrix are 

generated using real-world data sets. Furthermore, the partitioning of variance-

covariance matrices to get the ordering of partial correlation coefficients is 

explained in detail with examples from practical applications.  

4.1 Descriptive Statistics  

Table 2: Descriptive Statistics on Klein's US Economy Model I  

               (1920-1941)   

Variable N Mean 

 SE 

Mean StDev Min. Q1 Median Q3 Max. 

1v  22 53.35 1.57 7.35 39.80 48.15 53.80 57.73 69.70 

2v  22 16.70 0.90 4.21 7.00 12.63 17.45 19.88 23.50 

3v  22 36.02 1.36 6.36 25.50 30.28 36.10 39.65 53.30 

4v  22 1.33 0.74 3.48 -6.20 -1.45 2.05 4.38 5.60 

5v  22 199.57 2.26 10.61 180.10 191.95 200.55 207.22 216.70 

6v
 

22 59.37 2.31 10.85 44.30 50.00 60.95 64.63 88.40 

7v  22 4.99 0.43 2.01 2.20 3.18 4.50 6.88 8.50 

8v
 

22 4.69 0.51 2.38 2.40 3.30 4.05 5.23 13.80 

9v  22 6.65 0.45 2.11 3.40 4.58 6.90 7.85 11.60 

Source: Field work (2023) 

Table 2 presents the sample data obtained for our computational analysis of 

partial correlation coefficient.  On a continuous scale, all variables were 

evaluated. The dependent variable, consumption ( 1v ), had a mean of 53.35 and 
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a standard deviation of 7.35, whereas the independent variable, corporate profit 

(
2v ), had a mean of 16.70 and a standard deviation of 4.21. Furthermore, we 

discovered the remaining variables that influence our study, that serve as the 

controlling variables, reported their mean, standard deviation, and other 

measures of variability. In addition, we observed that previous year's capital 

stock ( 5v ) had the highest mean value of 199.57, followed by the gross national 

product ( 6v ) which had a mean value of 59.37 and investment (
4v ) had the 

lowest mean value of 1.33. Finally, we discovered that only the investment 

variable ( 4v ) recorded negative values for the standard deviation and the lower 

quartile.  

4.2 Assumptions for Partial Correlation 

Assumptions imply that certain properties of datasets must be satisfied 

in order for statistical method outputs to be accurate.  We must first examine the 

datasets acquired by confirming the correctness of the fundamental partial 

correlation assumptions before defining any order for the partial correlation 

coefficient. It is necessary to measure the variables being examined on a 

continuous scale (i.e., ratio data or interval data). Statistical tests were 

performed on the datasets used for the fundamental partial correlation 

assumptions, namely linearity, normality, and the lack of outliers. The 

theoretical underpinnings for verifying each of these assumptions independently 

are covered in depth in the section that follows:  
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4.2.1 Dataset for Analysis 

Table: 3 Klein's US Economy Model I (1920–1941) 

 

Year 
1v  

2v  
3v  4v  

5v  6v  7v  8v  9v  

1920 39.8 12.7 28.8 2.7 180.1 44.9 2.2 2.4 3.4 

1921 41.9 12.4 25.5 -0.2 182.8 45.6 2.7 3.9 7.7 

1922 45.0 16.9 29.3 1.9 182.6 50.1 2.9 3.2 3.9 

1923 49.2 18.4 34.1 5.2 184.5 57.2 2.9 2.8 4.7 

1924 50.6 19.4 33.9 3.0 189.7 57.1 3.1 3.5 3.8 

1925 52.6 20.1 35.4 5.1 192.7 61.0 3.2 3.3 5.5 

1926 55.1 19.6 37.4 5.6 197.8 64.0 3.3 3.3 7.0 

1927 56.2 19.8 37.9 4.2 203.4 64.4 3.6 4.0 6.7 

1928 57.3 21.1 39.2 3.0 207.6 64.5 3.7 4.2 4.2 

1929 57.8 21.7 41.3 5.1 210.6 67.0 4.0 4.1 4.0 

1930 55.0 15.6 37.9 1.0 215.7 61.2 4.2 5.2 7.7 

1931 50.9 11.4 34.5 -3.4 216.7 53.4 4.8 5.9 7.5 

1932 45.6 7.0 29.0 -6.2 213.3 44.3 5.3 4.9 8.3 

1933 46.5 11.2 28.5 -5.1 207.1 45.1 5.6 3.7 5.4 

1934 48.7 12.3 30.6 -3.0 202.0 49.7 6.0 4.0 6.8 

1935 51.3 14.0 33.2 -1.3 199.0 54.4 6.1 4.4 7.2 

1936 57.7 17.6 36.8 2.1 197.7 62.7 7.4 2.9 8.3 

1937 58.7 17.3 41.0 2.0 199.8 65.0 6.7 4.3 6.7 

1938 57.5 15.3 38.2 -1.9 201.8 60.9 7.7 5.3 7.4 

1939 61.6 19.0 41.6 1.3 199.9 69.5 7.8 6.6 8.9 

1940 65.0 21.1 45.0 3.3 201.2 75.7 8.0 7.4 9.6 

1941 69.7 23.5 53.3 4.9 204.5 88.4 8.5 13.8 11.6 

Source: R Core Team (2020) 

Table 3 illustrates the original dataset that we used for our investigation, which 

is Klein's Model I data for the US Economy (1920–1941).  We learned from 

Table 3 that all of the variables are assessed on a continuous scale (i.e., on a 

ratio scale or interval scale). For the purpose of computational analysis, we 

select corporate profit ( 2v ) as the independent variable and consumption ( 1v ) 

as the dependent variable. Moreover, we include private wage bill ( 3v ), 

investment ( 4v ), previous year's capital stock ( 5v ), gross national product ( 6v

), government wage bill ( 7v ), government expenditure ( 8v ), and taxes ( 9v ) as 
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controlling variables (or covariates) to enable us compute the orders of partial 

correlation coefficients.  

4.2.2 Examining the Assumption of Normality 

The Shapiro-Wilk test is a statistical technique used for determining 

whether a continuous variable exhibits a normal distribution. We used this test 

to confirm the normality test assumption of the dataset variables.  

Table 4: Shapiro-Wilk Normality Test 

 

Variable 

Shapiro-Wilk 

Statistic  

 

P-value 

 

Remarks 

Consumption ( 1v ) 0.98453 0.971300 Not violated 

Corporate profit ( 2v ) 0.95829 0.455500 Not violated 

Private wage bill ( 3v ) 0.95412 0.380200 Not violated 

Investment ( 4v ) 0.91824 0.069910 Not violated 

Previous year’s capital stock ( 5v

) 

0.95100 0.330500 Not violated 

Gross national product ( 6v ) 0.93820 0.181700 Not violated 

Government wage bill ( 7v ) 0.91626 0.063630 Not violated 

Government expenditure ( 8v ) 0.69559 0.000001 Violated 

Taxes ( 9v ) 0.95483 0.392200 Not violated 

Source: Field work (2023) 

 

Table 4 presents the findings from the Shapiro-Wilk statistical test as 

confirmation of the normality assumption. We observe that, with the exception 

of government expenditure ( 8v ), all of the variables' p-values are greater than 

the alpha-value (i.e. 0.05). We may conclude that the normality test assumption 

is solely violated by the government expenditure ( 8v ), which will be eliminated 

from our computational analysis.  

4.2.3 Checking Assumption of Outliers  

This assumption is used to determine whether there are any outliers that 

have a significant impact on the dataset. This was accomplished by applying the 

boxplot and Dixon’s Q test for detecting outliers to determine the existence of 
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outlier(s) in the dataset. The results of the boxplot and Dixon’s test are shown 

below:  

 
Figure 1: Boxplot of Klein's US Economy Model I (1920–1941) 

Figure 1 shows that none of the other variables has an outlier, except gross 

domestic product ( 6v ). Therefore, it is important for us to find out if the reported 

outlier is significant or not. We employed Dixon’s Q test verify if the observed 

outlier is influential. 

4.2.3.1 Dixon's Test for Outliers 

We performed Dixon’s test to confirm whether Gross national product (

6v ) largest data reported as outlier by the boxplot above is actually an outlier or 

not. 

Hypothesis 

0H  The same normal population from which all data values 

are drawn. 
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1H  The largest value is an outlier. 

α = 0.05 Significance 

level 

Table 5: Dixon's r22 Ratio Test 

Variable  N     Min     x[2]     x[3]     x[N-2]     x[N-1]      Max       r22       P 

   6v         22   44.30   44.90   45.10     69.50      75.70       88.40     0.44  0.045 

Source: Field work (2023) 

 

The Dixon's r22 ratio test was reported in Table 5 for only the gross national 

product ( 6v ). We discovered that the p-value for gross national product ( 6v ), 

0.045 is less than the alpha value (0.05), implying that the largest value is an 

outlier with a substantial influence on the dataset. As a result, in order to get 

valid partial correlation coefficients, we eliminated the gross national product (

6v ) from the dataset for computational analysis. 

4.2.4 Linearity Assumption  

The scatterplot matrix representation in Figure 2 below explains the 

linearity assumption for the remaining seven (7) variables. 

 
Figure 2: A Scatterplot Matrix of Klein’s Model I Data 
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In Figure 2, the scatterplot matrix for the remaining seven variables is displayed. 

For each pair of variables, scatter plots are displayed in the matrix's panels. It 

was discovered that there are either upwards or downwards linear regression 

lines for each pair of variables. These straight line evidence point to linearity 

between the variable pairings. The twenty-one (21) distinct visualization plots 

that we critically analyzed demonstrate that the linearity assumption remains 

valid. 

4.3 Computational Analysis Section 

4.3.1 Computation of variance-covariance matrix 

We produced the sample variance-covariance matrix from the 

multivariate dataset obtained using the matrix technique since the dataset came 

from a sample. The sample variance-covariance matrix for seven variables that 

satisfy the partial correlation requirements was provided by Equation (3.11), 

which we employed: 
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For a clearer display, we setup a table with appropriate variable and row labels 

of the variance-covariance matrix shown as follows in Table 6: 

Table 6: Variance-Covariance Matrix 

        V1       V2          V3         V4         V5      V7         V9 

V1 53.98929       

V2 22.42952 17.76000      

V3 45.16571 20.44238 40.45203     

V4 10.63405 12.90857 11.44511 12.10894    

V5 33.43738 -4.15714 24.74346 -13.70608 112.60037   

V7 10.11405 0.81238 7.43978 -1.73145 8.89383   4.03361  

V9 9.00357 0.26190 6.86095 -1.20310 8.65548   3.20214 4.45786 

Source: Field work (2023) 

 

Table 6 shows the 77  sample variance-covariance matrix, which served as 

the basis for computing the orders of partial correlation coefficient.  

4.3.2 Computation of correlation matrix from variance-covariance matrix 

Using Equation (3.16), we calculate the correlation coefficient matrix or 

zero-order partial correlation matrix from the variance-covariance matrix in 

Table 6.  

12/112/1 )()( −−= MSMR  

Where 
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The following outcome was obtained by putting the special diagonal matrix (

2/1
M ) and the computed sample variance-covariance matrix (S) into Equation 

(3.16) to create the correlation matrix (R): 





























−

−

−−

−−−

−

=

= −−

1755.0386.0164.0511.0029.0580.0

755.01417.0248.0582.0096.0685.0

386.0417.01371.0367.0093.0429.0

0164.248.0371.01517.0880.0416.0

511.0582.0367.0517.01763.0996.0

029.0096.0093.0880.0763.01724.0

580.0685.0429.0416.0996.0724.01

)()( 12
1

12
1

MSMR

 

The sample correlation matrix is shown in tabular form below. To make it easier 

to see, we make a table with the proper variable and row labels: 

Table 7: Correlation Matrix 

       V1        V2      V3        V4      V5    V7      V9 

V1       1       

V2    0.724          1          

V3 0.966 0.763         1         

V4 0.416 0.880 0.517           1       

V5 0.429 -0.093 0.367 -0.371         1     

V7 0.685 0.096 0.582 -0.248 0.417    1         

V9 0.580 0.029 0.511 -0.164 0.386   0.755      1 

Source: Field work (2023) 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



74 
 

 

Table 7 provided the sample correlation matrix, also known as a zero-order 

partial correlation matrix, which by eliminating the impact of other factors, 

depicts the connection between each pairwise variable. The highest association 

was recorded between consumption ( 1v ) and private wage bill ( 3v ) of 0.966, 

followed by corporate profit ( 2v ) and investment ( 4v ) of 0.880, whilst corporate 

profit (
2v ) and taxes ( 9v ) have the lowest correlation (0.029) of any paired 

variable. 

4.4 Computing Orders of Partial Correlation Coefficient by R Software 

The scripts (codes) from the R software programme that were employed 

to calculate orders of partial correlation coefficient, together with the pertinent 

test statistics, p-values, and confidence interval, may be found in Appendix A. 

Table 8 shows the findings of the orders of partial correlation coefficients as 

follows: 

Table 8: Orders of Partial Correlation Coefficient 

 

Orders               Estimation    Statistic    P-Value      Confidence interval       

Method 

First-order    

 ( 3.12r )                -0.076781    -0.3357     0.740800    (-0.482762, 0.356363)    

Pearson 

Second-order  

( 34.12r )                 0.582622      3.0414    0.007023    (0.213444, 0.806198)      

Pearson 

Third-order    

( 345.12r )                0.584107      2.9671    0.008639    (0.215591, 0.806984)      

Pearson 

Fourth-order  

( 3457.12r )              0.714795      4.0884    0.008571    (0.419655, 0.873241)      

Pearson 

Fifth-order     

( 34579.12r )             0.825936      5.6741    0.000044    (0.620346, 0.925326)     

Pearson 

Source: Field work (2023) 
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4.5 Computing Orders of Partial Correlation Coefficient Manually 

The objective is to calculate the partial correlation coefficients between 

corporate profit (
2v ) and consumption ( 1v ) while regulatory the influence of 

one or more additional continuous variables.  

4.5.1 Calculating the Partial Correlation Coefficient of Zero Order  

Without adjusting for any variables, we arrive at the zero-order partial 

correlation coefficient between corporate profit (
2v ) and consumption ( 1v ). The 

sample variance-covariance matrix generated for 1v and 2v presented as follows: 









=

7600.174295.22

4295.229893.53
S  

We normalized the above 2x2 matrix, as shown below: 

72434.0

7600.179893.53

4295.22
12

=


=r

 

4.5.2 Computing the Partial Correlation Coefficient of First Order 

For calculating the order one partial correlation coefficient between 

corporate profit ( 2v ) and consumption ( 1v ), we just account for one variable. 

The sample variance-covariance matrix generated for consumption ( 1v ), 

corporate profit ( 2v ), and the controlling variable private wage bill ( 3v ) was 

partitioned as follows: 
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It was possible to get the partial correlation coefficient of order one by 

normalizing the above matrix, as indicated below: 

07678.0

4295.75606.3

3949.0
3.12

−=



−
=r

 

4.5.3 Computing Partial Correlation Coefficient of Order Two 

The sample variance-covariance matrix created for consumption ( 1v ), 

corporate profit ( 2v ), the controlling private age bill ( 3v ), and investment ( 4v ) 

was partitioned as follows to get second-order partial correlation:
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The above matrix, when normalized, yields the second-order partial correlation 
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4.5.4 Computing the Third Order Partial Correlation Coefficient  

We partitioned the sample variance-covariance matrix obtained for 

consumption ( 1v ), corporate profit (
2v ) and the controlling variables, private 

wage bill ( 3v ), investment (
4v ), and previous year’s capital stock ( 5v ) to 

determine the partial correlation coefficient of third order as follows: 
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Third-order partial correlation was obtained by normalizing the above matrix. 

58409.0

7069.10290.3

3281.1
345.12

=


=r

 

4.5.5 Computation of Fourth-Order Partial Correlation Coefficient  

To get the fourth-order partial correlation, the sample variance-

covariance matrix for consumption ( 1v ), corporate profit ( 2v ), and the 

controlled variables of private wage bill ( 3v ), investment ( 4v ), previous year’s 

capital stock ( 5v ), and government wage bill ( 7v ), were partitioned as follows: 
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We normalized the above matrix gives the fourth-order partial correlation 

coefficient: 

71474.0

6768.14363.1

1092.1
3457.12

=


=r

 

4.5.6 Computation of Fifth-Order Partial Correlation Coefficient  

We partition the sample variance-covariance matrix obtained for 

consumption ( 1v ), corporate profit ( 2v ) and controlling variables of private 

wage bill ( 3v ), investment ( 4v ), previous year’s capital stock ( 5v ), government 

wage bill ( 7v ), and taxes ( 9v ) as follows to find the partial correlation 

coefficient of fifth order: 
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We normalized the above matrix gives the fifth-order partial correlation 

coefficient 
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4.5.7 Computation of Partial Correlation Including 6v  

While computing the orders of partial correlation coefficients, we chose 

to utilize the gross national product ( 6v ) as a controlling variable, which 

violated the assumption of partial correlation. Table 9 shows the results of 

partial correlation coefficient orders comprising gross national product ( 6v ) as 

follows: 
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Table 9: Partial Correlation Coefficients Including 6v  

Orders                                Estimation 

First-order    ( 6.12r )              -0.55360 

Second-order ( 36.12r )           -0.39841 

Third-order   ( 346.12r )             0.38395 

Fourth-order ( 3456.12r )            0.35782 

Fifth-order    ( 34567.12r )          0.58798 

Sixth-order    ( 345679.12r )          Invalid 

        Source: Field work (2023) 

 

To obtain the sixth order partial correlation, the conditional variance-covariance 

matrix result of the partitioned variance-covariance matrix is shown in 

Appendix B as follows: 

 









−−

−
=

90000200002.080000033494.0

80000033494.044544419874.0
2.11S  

The above matrix was normalized to get the sixth-order partial correlation  

invalid

r

=

−

−
=

90000200002.044544419874.0

80000033494.0
345679.12

 

Is invalid due to the square root of a negative value 

4.5.8 Computation of Partial Correlation Including Both 6v
 
and 8v  

We opted to add both violating variables gross national product ( 6v ) and 

government expenditure ( 8v ) as controlling factors. Table 10 illustrates the 

results of the partial correlation coefficient ordering, which contain both gross 

national product ( 6v ) and government spending ( 8v ), as follows: 
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Table 10: Partial Correlation Coefficients Including 6v
 
and 8v  

 

Orders                               Estimation 

Second-order ( 68.12r )           -0.72127 

Third-order   ( 368.12r )           -0.63691 

Fourth-order ( 3468.12r )            Invalid 

        Source: Field work (2023) 

 

In order to determine the fourth order partial correlation, the conditional 

variance-covariance matrix result of the partitioned variance-covariance matrix 

is shown as follows in Appendix B: 










−

−−
=

10994052003.160000017010.0

60000017010.0000001.0
2.11S  

We normalized the above matrix gives the fourth-order partial correlation  

invalid

r

=

−

−
=

10994052003.1000001.0

60000017010.0
3468.12

 

Square root of a negative number renders the value invalid 

4.6 Testing for Partial Correlation Coefficient 

The importance of a linear link between two variables may also be 

estimated using the partial correlation coefficient, provided that all other 

impacts on the set of correlated variables have been considered. The alternative, 

that a partial correlation is not equal to zero, is contrasted with the null 

hypothesis, which states that a partial correlation is equal to zero. 

4.6.1 Testing forFirst Order-Partial Correlation Coefficient 

Hypothesis Testing 

0: 3.120 =H  

0: 3.121 H  
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Test statistic   

3357.0

)07678.0(1

1222
07678.0

2

−=

−−

−−
−=t

 

Critical values 

093.2205.0,19 == tt  

Decision and conclusion 

There is insufficient evidence to refute the null hypothesis at the significance 

level of 0.05 since the test statistic (-0.3357) is within the critical interval (

093.2 ). After adjusting for the impact of the private wage bill ( 3v ), we may 

conclude that there is no significant partial connection between consumption (

1v ) and corporate profit ( 2v ). 

4.6.2 Testing for Partial Correlation Coefficient of Second Order  

Hypothesis Testing 

0: 34.120 =H  

0: 34.121 H  

Test statistic   

0413.3

)58261.0(1

2222
58261.0

2

=

−

−−
=t

 

Critical values 

101.2205.0,18 == tt  

Decision and conclusion 

It is possible to reject the null hypothesis at a significance level of 0.05 since 

the test statistic (3.0413) is not within the critical value of ( 101.2 ). We 
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conclude that there is a significant partial connection between consumption (
1v

) and corporate profit )( 2v  after adjusting for private wage bill ( 3v ) and 

investment (
4v ). 

4.7 Confidence Interval for First-Order Partial Correlation Coefficient 

First-order partial correlation's null hypothesis was not rejected and did 

not achieve statistical significance. We show here how to generate a confidence 

range for the first-order partial correlation coefficient.  

We calculate the Fisher’s transformation partial correlation: 

07695.0

)0768.0(1

)0768.0(1
ln

2

1
12

−=










−−

−+
=Z

 

We compute the 95% confidence interval for 0.6664: 

5266.0

322

96.1
07695.0

−=

−
−−=lZ

 

3727.0

322

96.1
07695.0

=

−
+−=uZ

 

The 95% confidence interval for the first-order partial correlation coefficient (

3.12 ) may be found by back-transforming the data. 

( )
( )

( )
( ) 









+

−

+−

−−

13727.02exp

13727.02exp
,

15266.02exp

15266.02exp
 

( )3564.0,4828.0−  

After taking into consideration the effect of the private wage bill ( 3v ), we are 

95% confidence that the interval ( )3564.0,4828.0−  includes the true partial 

correlation between corporate profit ( 2v ) and consumption ( 1v ). 
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4.7.1 Confidence Interval for Second-Order Partial Correlation 

Coefficient 

The second-order partial correlation's null hypothesis was rejected, and 

it was statistically significant. We show how to compute the confidence interval 

for the partial correlation coefficient of second order.  

We calculate the Fisher’s transformation partial correlation: 

6664.0

58261.01

58261.01
ln

2

1
12

=










−

+
=Z

 

We compute the 95% confidence interval for 0.6664: 

21675.0

322

96.1
6664.0

=

−
−=lZ

 

11605.1

322

96.1
6664.0

=

−
+=uZ

 

Using back-transformation, the 95% confidence interval for the partial 

correlation coefficient of second order ( 34.12 ) is obtained:  

( )
( )

( )
( ) 









+

−

+

−

111605.12exp

111605.12exp
,

121675.02exp

121675.02exp
 

( )8062.0,2134.0  

This finding leads us to the conclusion that, after adjusting for the impacts of 

investment ( 4v ) and private wage bill ( 3v ), we are 95% certain that the interval 

( )8062.0,2134.0  includes the genuine partial correlation coefficient between 

corporate profit ( 2v ) and consumption ( 1v ).   
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4.8 Computation of Partial Correlation Matrices  

The R software package scripts utilized to produce the partial correlation 

matrix ordering are shown in appendix C. We utilize the seven variables that 

passed the partial correlation assumptions test (i.e., 1v , 
2v , 3v , 

4v , 5v , 7v , and 

9v ) to generate partial correlation  matrices between pairs of variables in v  

while regulating for the effect of the other factors (variables) in v  as follows:   

4.8.1 First-Order Partial Correlation Matrix  

We generate the first-order partial correlation matrices for consumption 

( 1v ), corporate profit ( 2v ), and private wage bill ( 3v ). As you may remember, 

order one partial correlation coefficient of 07678.03.12 −=r  was discovered. The 

findings for the other two first-order partial correlation coefficients, 

9285.02.13 =r
 
and 3537.01.23 =r , are shown in Appendix D. The results for the 

first order partial correlation matrix for 1v , 2v , and 3v  are displayed in the 

following illustration: 

















−

−

13537.09285.0

3537.010768.0

9285.00768.01

3

2

1

321

v

v

v

vvv

 

An additional 34 distinct first-order partial correlation coefficient matrices may 

be obtained by combining the seven variables that meet partial correlation 

assumptions in the same manner.  

4.8.2 Second Order Partial Correlation Matrix 

The partial correlation coefficient matrices for second-order are created 

using four variables. The results of the partial correlation coefficient matrix of 

second order for 1v , 2v , 3v , and 4v  are given as follows:  
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



















−

−

−

−

1464.0921.0658.0

464.01305.0925.0

921.0305.01583.0

658.0925.0583.01

4

3

2

1

4321

v

v

v

v

vvvv

 

The same method may be applied to produce 34 more different second-order 

partial correlation coefficient matrices.  

4.8.3 Third-Order Partial Correlation Matrix 

To get the matrices for the partial correlation coefficients for order three, 

we require five variables. The following are the results of the third-order partial 

correlation matrix for the variables 1v , 2v , 3v , 4v , and 5v
 
are as follows: 























−−

−−

−

−−

−

1289.0168.0051.0083.0

289.01486.0865.0603.0

168.0486.01291.0895.0

051.0865.0291.01584.0

083.0603.0895.0584.01

5

4

3

2

1

54321

v

v

v

v

v

vvvvv

 

The same approach may be used to generate twenty (20) more third-order partial 

correlation coefficient matrices in various combinations.  

4.8.4 Fourth-Order Partial Correlation Matrix 

Six variables are the only ones that may provide the fourth-order partial 

correlation coefficient matrices. The following is the result of the fourth-order 

partial correlation matrix for the variables 1v , 2v , 3v , 4v , 5v  and 7v  is as 

follows:   
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

























−−−−

−−−

−−

−−

−−−

1846.0639.0002.0520.0805.0

846.01659.0088.0463.0707.0

639.0659.01373.0236.0239.0

002.0088.0373.01250.0533.0

520.0463.0236.0250.01715.0

805.0707.0239.0533.0715.01

7

5

4

3

2

1

754321

v

v

v

v

v

v

vvvvvv

 

Similar matrix construction techniques may be used to produce an additional 6 

unique combinations of fourth-order partial correlation matrices.  

4.8.5 Fifth-Order Partial Correlation Matrix 

To create the fifth-order partial correlation matrix, seven variables are 

required. For the fifth-order partial correlation matrix, the result is illustrated as 

follows for 1v , 2v , 3v , 4v , 5v  , 7v , and 9v :   





























−−−−

−−−−−

−−−−

−−

−−−

−−−−

1291.0459.0054.0128.0685.0594.0

291.01852.0595.0039.0562.0792.0

459.0852.01560.0019.0614.0778.0

054.0595.0560.01376.0208.0160.0

128.0039.0019.0376.01268.0501.0

685.0562.0614.0208.0268.01826.0

594.0792.0778.0160.0501.0826.01

9

7

5

4

3

2

1

9754321

v

v

v

v

v

v

v

vvvvvvv

 

There is just one conceivable combination of the seven variables in the fifth-

order partial correlation matrix.  

4.9 Chapter Summary  

With full justifications, we have addressed both the manually and 

electronically computed methods for obtaining higher order partial correlation 

coefficients when employing the variance-covariance matrix technique. 

This chapter's main objective was to explain the theory underlying the 

conditional variance-covariance matrix approach for obtaining the orders of 

partial correlation coefficients from the illustrative dataset. Because the partial 
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correlation established satisfies the intended characteristics, the implementation 

certifies that the knowledge acquired on the subject is correct. The basic 

presumptions of the partial correlation were confirmed before constructing the 

partial correlation coefficient orders. Findings from the normalized conditional 

variance-covariance matrix were used to determine the orders of partial 

correlation coefficient. We were successful in creating the correlation matrix 

using a multivariate technique employing the given variance-covariance matrix. 

We discovered from our practical illustrations that variables that violated the 

partial correlation assumptions may still be included in the analysis for 

computing orders of partial correlation but would become invalid as the partial 

correlation coefficients orders increased. We provide practical examples that 

show how higher order partial correlation coefficients than first order partial 

correlation may be obtained using the variance-covariance matrix approach. 

Considering the impacts of several parameters, we were able to ascertain the 

significance of the partial correlation coefficient between pairs of variables and 

produce confidence ranges for it. Finally, for the various orders of partial 

correlation coefficient, we were able to construct suitable partial correlation 

matrices up to the fifth order. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

5.0 Overview 

 We give a synopsis of all results obtained from the previous chapters in 

this chapter. Finally, considering the study's findings, pertinent conclusions and 

suggestions are provided. 

5.1 Summary 

Partial correlation is used to take into consideration the impact of one or 

more extra factors when evaluating the strength of a relationship between two 

variables. Ogunleye et al., (2022) demonstrate through real-world examples that 

partial correlation coefficients above first-order partial correlation cannot be 

calculated using the variance-covariance matrix method. In order to obtain 

partial correlation coefficient orders beyond the partial correlation coefficient 

of order one from this statement problem, we would like to investigate the 

method of variance-covariance matrix approach further. As a result, there is a 

need for a research that offers partial correlation analysis computation in a more 

cohesive and application-friendly manner. The study's objectives were therefore 

to give a clear process for creating a variance-covariance matrix, which served 

as the foundation for determining the partial correlation coefficient orders, and 

then utilize the variance co-variance matrix to generate the correlation 

coefficient matrix. Following that, we also discovered the partial correlation 

coefficient's maximum likelihood estimator. Lastly, we used the variance-

covariance methodology to determine the partial correlation coefficient orders 

and offer clarity of mathematical derivation of findings with practical 

applications. 
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The study planned to apply matrix principles to compute the orders of 

partial correlation coefficients. As a consequence, we relied heavily on the 

matrix principles to conduct the partial correlation analysis for this thesis. Real 

datasets were gathered in order for the study to be completed. The investigation 

started with typical real-world data from the literature that was discovered to be 

beneficial for illustration in the study and has been sufficiently explained. The 

R package software was utilized for data analysis, and the results were validated 

manually using the method of variance-covariance approach.  

 The conventional (traditional) method, the matrix inversion method, 

ordinary least squares method (OLS), the regression residual's approach, the 

variance-covariance matrix approach, and the recursive method are some of the 

approaches for estimating partial correlation coefficients that have been 

documented in the literature. Concepts and their theoretical applications may be 

found in famous text books, and numerous ways to determining partial 

correlation coefficients have been used. The literature indicates that there has 

been much research on partial correlation analysis over a lengthy period of time. 

Several authors have written a great deal about this topic, and published articles 

have also suggested applications to data analysis. Partial correlation is 

frequently used in a wide range of professions, most notably biology, medicine, 

economics, accounting, engineering, and other related fields. We demonstrated 

the process of computing the variance-covariance matrix from unprocessed 

datasets and partitioning it to obtain the results of the conditional variance-

covariance matrix. Furthermore, we presented the maximum likelihood 

estimator, which was utilized to compute partial correlation coefficient orders. 

We discovered from our practical examples that variables that did not adhere to 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



91 
 

the partial correlation assumptions may still be included in the analysis to 

compute the partial correlation orders; however, they would become invalid 

when partial correlation coefficient orders increased. The findings from the data 

illustration indicate that the variance-covariance matrix strategy may compute 

partial correlation coefficients of any order as long as the partial correlation 

assumptions are fulfilled.  

5.2 Conclusion 

The thesis offered a rational investigation into the linear relationship 

between two random variables in order to take into consideration the influence 

of one or more additional random variables. An extensive understanding of the 

variance-covariance matrix technique to obtaining partial correlation coefficient 

orders necessitates the discovery of matrix principles techniques that create the 

requisite orders. To achieve this, the study determines the appropriate dataset 

structure and partitioning, as well as the key matrices that allow us to acquire 

the theoretical conclusion. It has been shown that normalizing the conditional 

variance-covariance matrix findings can yield the partial correlation coefficient 

ordering. Understanding partial correlation coefficients has allowed for the 

development of useful codes in the R software programme that construct partial 

correlation coefficient orders. As a result, the study proposed a more user-

friendly way for manually estimating orders of partial correlation coefficient 

utilizing the method of variance-covariance matrix approach.  

It was demonstrated how to utilize the method of variance-covariance 

matrix as a multivariate approach to construct the correlation matrix using the 

example dataset. The variance-covariance matrix method can produce higher 

order partial correlation coefficients based on our examples. This contradicts 
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the claim made by Ogunleye et al., 2022. Finally, we showed how to construct 

appropriate partial correlation matrices for various orders of partial correlation 

coefficients. 

5.3 Recommendation  

The study makes a convincing case for the theory of partial correlation 

coefficient using the variance-covariance matrix approach. It also emphasizes 

the need of having a firm understanding of the concept in order to put the right 

strategies into practice and make it user-friendly. The R codes presented in the 

research may be beneficial for obtaining orders of partial correlation coefficient. 

Furthermore, the study itself offers a logical utilization of the topic in order to 

provide interested learners with the necessary comprehension. 

As long as the partial correlation assumptions are met, the outcome 

shows that the variance-covariance matrix approach technique may compute 

partial correlation coefficients of any order. As a result, we recommend that 

future researchers adopt the method of variance-covariance matrix technique to 

generate higher orders of partial correlation coefficients since the method is 

trustworthy, and comprehensible. 
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APPENDICES 

APPENDIX A 

R CODES FOR COMPUTING ORDERS OF PARTIAL 

CORRELATION COEFFICIENT 

library(ppcor) 

# Original Data 

x1<-

c(39.8,41.9,45,49.2,50.6,52.6,55.1,56.2,57.3,57.8,55,50.9,45.6,46.5,48.7,51.3,

57.7,58.7,57.5,61.6,65,69.7) 

x2<-

c(12.7,12.4,16.9,18.4,19.4,20.1,19.6,19.8,21.1,21.7,15.6,11.4,7,11.2,12.3,14,1

7.6,17.3,15.3,19,21.1,23.5) 

x3<-

c(28.8,25.5,29.3,34.1,33.9,35.4,37.4,37.9,39.2,41.3,37.9,34.5,29,28.5,30.6,33.

2,36.8,41,38.2,41.6,45,53.3) 

x4<-c(2.7,-0.2,1.9,5.2,3,5.1,5.6,4.2,3,5.1,1,-3.4,-6.2,-5.1,-3,-1.3,2.1,2,-

1.9,1.3,3.3,4.9) 

x5<-

c(180.1,182.8,182.6,184.5,189.7,192.7,197.8,203.4,207.6,210.6,215.7,216.7,2

13.3,207.1,202,199,197.7,199.8,201.8,199.9,201.2,204.5) 

x6<-

c(44.9,45.6,50.1,57.2,57.1,61,64,64.4,64.5,67,61.2,53.4,44.3,45.1,49.7,54.4,62

.7,65,60.9,69.5,75.7,88.4) 

x7<-

c(2.2,2.7,2.9,2.9,3.1,3.2,3.3,3.6,3.7,4,4.2,4.8,5.3,5.6,6,6.1,7.4,6.7,7.7,7.8,8,8.5) 

x9<-

c(3.4,7.7,3.9,4.7,3.8,5.5,7,6.7,4.2,4,7.7,7.5,8.3,5.4,6.8,7.2,8.3,6.7,7.4,8.9,9.6,1

1.6) 

1st Order Partial Correlation 

pcor_ci.test <- 

  function (x1, x2, x3, method = c("pearson"), conf.level = 0.95) { 

    d1 <- deparse(substitute(x1)) 

    d2 <- deparse(substitute(x2)) 

    d3 <- deparse(substitute(x3)) 

    data.name <- paste0(d1, " and ", d2, "; controlling: ", d3) 

    method <- match.arg(method) 

    Method <- paste0("Partial correlation (", method, ")") 

    alternative <- "true partial correlation is not equal to 0" 

 

    x1 <- as.vector(x1) 

    x2 <- as.vector(x2) 

    x3 <- as.data.frame(x3) 

    df <- data.frame(x1, x2, x3) 

    pcor <- ppcor::pcor(df, method = method) 

    estimate <- pcor$est[1, 2] 

    p.value <- pcor$p.value[1, 2] 
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    parameter <- c(n = pcor$n, gp = pcor$gp) 

    statistic <- c(Stat = pcor$statistic[1, 2]) 

     

    fit1 <- lm(x1 ~ x3, data = df) 

    fit2 <- lm(x2 ~ x3, data = df) 

    cortest <- cor.test(resid(fit1), resid(fit2), method = method, conf.level = 

conf.level) 

    ci <- cortest$conf.int 

    ht <- list( 

      statistic = statistic, 

      parameter = parameter, 

      p.value = p.value, 

      estimate = c(partial.cor = estimate), 

      alternative = alternative, 

      method = Method, 

      data.name = data.name, 

      conf.int = ci) 

    class(ht) <- "htest" 

    ht} 

pcor_ci.test(x1, x2, x3) 

2nd Order Partial Correlation 

pcor_ci.test <- 

  function (x1, x2, x3, x4, method = c("pearson"), conf.level = 0.95) { 

    d1 <- deparse(substitute(x1)) 

    d2 <- deparse(substitute(x2)) 

    d3 <- deparse(substitute(x3)) 

    d4 <- deparse(substitute(x4)) 

    data.name <- paste0(d1, " and ", d2, "; controlling: ", d3, d4) 

    method <- match.arg(method) 

    Method <- paste0("Partial correlation (", method, ")") 

    alternative <- "true partial correlation is not equal to 0" 

    x1 <- as.vector(x1) 

    x2 <- as.vector(x2) 

    x3 <- as.data.frame(x3) 

    x4 <- as.data.frame(x4) 

    df <- data.frame(x1, x2, x3, x4) 

    pcor <- ppcor::pcor(df, method = method) 

    estimate <- pcor$est[1, 2] 

    p.value <- pcor$p.value[1, 2] 

    parameter <- c(n = pcor$n, gp = pcor$gp) 

    statistic <- c(Stat = pcor$statistic[1, 2]) 

    fit1 <- lm(x1 ~ x3+x4, data = df) 

    fit2 <- lm(x2 ~ x3+x4, data = df) 

    cortest <- cor.test(resid(fit1), resid(fit2), method = method, conf.level = 

conf.level) 

    ci <- cortest$conf.int 

    ht <- list( 

      statistic = statistic, 

      parameter = parameter, 

      p.value = p.value, 
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      estimate = c(partial.cor = estimate), 

      alternative = alternative, 

      method = Method, 

      data.name = data.name, 

      conf.int = ci) 

    class(ht) <- "htest" 

    ht} 

pcor_ci.test(x1, x2, x3, x4) 

3rd Order Partial Correlation 

pcor_ci.test <- 

  function (x1, x2, x3, x4, x5, method = c("pearson"), conf.level = 0.95) { 

    d1 <- deparse(substitute(x1)) 

    d2 <- deparse(substitute(x2)) 

    d3 <- deparse(substitute(x3)) 

    d4 <- deparse(substitute(x4)) 

    d5 <- deparse(substitute(x5)) 

    data.name <- paste0(d1, " and ", d2, "; controlling: ", d3, d4, d5) 

    method <- match.arg(method) 

    Method <- paste0("Partial correlation (", method, ")") 

    alternative <- "true partial correlation is not equal to 0" 

    x1 <- as.vector(x1) 

    x2 <- as.vector(x2) 

    x3 <- as.data.frame(x3) 

    x4 <- as.data.frame(x4) 

    x5 <- as.data.frame(x5) 

    df <- data.frame(x1, x2, x3, x4, x5) 

    pcor <- ppcor::pcor(df, method = method) 

    estimate <- pcor$est[1, 2] 

    p.value <- pcor$p.value[1, 2] 

    parameter <- c(n = pcor$n, gp = pcor$gp) 

    statistic <- c(Stat = pcor$statistic[1, 2]) 

    fit1 <- lm(x1 ~ x3+x4+x5, data = df) 

    fit2 <- lm(x2 ~ x3+x4+x5, data = df) 

    cortest <- cor.test(resid(fit1), resid(fit2), method = method, conf.level = 

conf.level) 

    ci <- cortest$conf.int 

    ht <- list( 

      statistic = statistic, 

      parameter = parameter, 

      p.value = p.value, 

      estimate = c(partial.cor = estimate), 

      alternative = alternative, 

      method = Method, 

      data.name = data.name, 

      conf.int = ci) 

    class(ht) <- "htest" 

    ht} 

pcor_ci.test(x1, x2, x3, x4, x5) 

4th Order Partial Correlation 

pcor_ci.test <- 
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  function (x1, x2, x3, x4, x5, x7, method = c("pearson"), conf.level = 0.95) { 

    d1 <- deparse(substitute(x1)) 

    d2 <- deparse(substitute(x2)) 

    d3 <- deparse(substitute(x3)) 

    d4 <- deparse(substitute(x4)) 

    d5 <- deparse(substitute(x5)) 

    d6 <- deparse(substitute(x7)) 

    data.name <- paste0(d1, " and ", d2, "; controlling: ", d3, d4, d5, d6) 

    method <- match.arg(method) 

    Method <- paste0("Partial correlation (", method, ")") 

    alternative <- "true partial correlation is not equal to 0" 

    x1 <- as.vector(x1) 

    x2 <- as.vector(x2) 

    x3 <- as.data.frame(x3) 

    x4 <- as.data.frame(x4) 

    x5 <- as.data.frame(x5) 

    x7 <- as.data.frame(x7) 

    df <- data.frame(x1, x2, x3, x4, x5, x7) 

    pcor <- ppcor::pcor(df, method = method) 

    estimate <- pcor$est[1, 2] 

    p.value <- pcor$p.value[1, 2] 

    parameter <- c(n = pcor$n, gp = pcor$gp) 

    statistic <- c(Stat = pcor$statistic[1, 2]) 

    fit1 <- lm(x1 ~ x3+x4+x5+x7, data = df) 

    fit2 <- lm(x2 ~ x3+x4+x5+x7, data = df) 

    cortest <- cor.test(resid(fit1), resid(fit2), method = method, conf.level = 

conf.level) 

    ci <- cortest$conf.int 

    ht <- list( 

      statistic = statistic, 

      parameter = parameter, 

      p.value = p.value, 

      estimate = c(partial.cor = estimate), 

      alternative = alternative, 

      method = Method, 

      data.name = data.name, 

      conf.int = ci) 

    class(ht) <- "htest" 

    ht} 

pcor_ci.test(x1, x2, x3, x4, x5, x7) 
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APPENDIX B 

COMPUTATION OF PARTIAL CORRELATION INCLUDING 

VIOLATED VARIABLES 

Computation of Sixth-Order Partial Correlation including 6v   

Variance-covariance matrix achieved for 1v , 
2v  and controlling variables 3v , 

4v , 5v , 6v , 7v , 9v  was partitioned as follows:



























=

−

−

−

−−−

−

−

4579.420214.358071.1165548.820310.186095.6

2021.303361.445431.1189383.873145.143978.7

58071.11
65548.8

45431.11
89383.8

80037.117
24180.29

24180.29
60037.112

15058.23
70608.13

75537.67
74346.24

2031.173145.115058.2370608.1310894.1244511.11

8610.643978.775537.6774346.2444511.1145203.40

2619.00036.9
8124.01141.10

46429.38
15714.4

59881.76
43738.33

9086.126341.10
4424.201657.45

26190.081238.046429.3815714.490857.1244238.20

00357.911405.1059881.7643738.3363405.1016571.45

76000.1742952.22
42952.2298929.53

S  

21

1

2212112.11 SSSSS
−−=

 










−−

−
=









−








=

90000200002.080000033494.0

80000033494.044544419874.0

97600200002.1784295233494.22

84295233494.2265348480125.53

76000.1742952.22

42952.2298929.53
2.11S

 

Computation of fourth-order partial correlation including 6v  and 8v  

The variance-covariance matrix generated for 1v , 2v , and controlling variables 

3v , 4v , 6v , 8v  was partitioned as follows: 

























=

667900.5050974.18407597.0144545.11

050974.18800368.117150584.23755368.67

407597.0150584.23108939.12445108.11

144545.11755368.67445108.11452035.40

126190.3975476.11

464286.38598810.76

908571.12634048.10

442381.20165714.45

126190.3464286.38908571.12442381.20

975476.11598810.76634048.10165714.45

760000.17429524.22

429524.22989286.53

S

21

1

2212112.11 SSSSS
−−=

 










−

−−
=









−








=

10994052003.160000017010.0

60000017010.0000001.0

96605947996.1664295257010.22

64295257010.22989287.53

760000.17429524.22

429524.22989286.53
2.11S
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APPENDIX C 

R CODES FOR COMPUTING PARTIAL CORRELATION MATRICES 

library(ppcor) 

# Original Data 

1st Order Partial Correlation Matrix 

# Run for V1, V2 and V3  

xmatrix<-cbind.data.frame(x1,x2,x3) 

data<-data.matrix(xmatrix[,c('x1','x2','x3')]) 

pcor(data) 

 

2nd Order Partial Correlation Matrix 

# Run for V1, V2, V3 and V4 

xmatrix<-cbind.data.frame(x1,x2,x3,x4) 

data<-data.matrix(xmatrix[,c('x1','x2','x3','x4')]) 

pcor(data) 

 

3rd Order Partial Correlation Matrix 

# Run for V1, V2, V3, V4 and V5 

xmatrix<-cbind.data.frame(x1,x2,x3,x4,x5) 

data<-data.matrix(xmatrix[,c('x1','x2','x3','x4','x5')]) 

pcor(data) 

 

4th order partial correlation matrix 

# Run for V1, V2, V3, V4, V5 and V7 

xmatrix<-cbind.data.frame(x1,x2,x3,x4,x5,x7) 

data<-data.matrix(xmatrix[,c('x1','x2','x3','x4','x5','x7')]) 

pcor(data) 

 

5th order partial correlation matrix 

# Run for V1, V2, V3, V4, V5, V7 and V9 

xmatrix<-cbind.data.frame(x1,x2,x3,x4,x5,x7,x9) 

data<-data.matrix(xmatrix[,c('x1','x2','x3','x4', 'x5', 'x7', 'x9')]) 

pcor(data) 
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APPENDIX D 

FIRST-ORDER PARTIAL CORRELATION COEFFICIENT 

The variance-covariance matrix generated for consumption (V1), private wage 

bill (V3), and the controlling variable corporate profit (V2) was partitioned as 

follows: 

















=

7600.174424.204295.22

4424.20

4295.22

4520.401657.45

1657.459893.53

S

 

   









=









−








=









−








=

−

9221.163485.19

3485.196626.25

5299.238172.25

8172.253267.28

4520.401657.45

1657.459893.53

4424.204295.227600.17
4424.20

4295.22

4520.401657.45

1657.459893.53 1

2.11S

 

By normalizing the matrix above, gives 

 

92847.0
9221.166626.25

3485.19
2.13 ==r

 
The variance-covariance matrix generated for corporate profit (V2) and private 

wage bill (V3), and the controlling variable consumption (V1) was partitioned 

as follows: 

















=

9893.531657.454295.22

1657.45

4295.22

4520.404424.20

4424.207600.17

S

 

   









=









−








=









−








=

−

6678.26786.1

6786.14418.8

7842.377638.18

7638.183182.9

4520.404424.20

4424.207600.17

1657.454295.229893.53
1657.45

4295.22

4520.404424.20

4424.207600.17 1

2.11S

 

Standardizing the aforementioned matrix gives: 

 

35371.0
6678.24418.8

6786.1
1.23 ==r
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APPENDIX E 

VARIANCE-COVARIANCE MATRIX (ALL VARIABLES) 

Table 11: Variance-Covariance Matrix (All variables) 

       𝑣1        𝑣2       𝑣3        𝑣4        𝑣5        𝑣6       𝑣7        𝑣8             𝑣9 

𝑣1 53.989286        

𝑣2 22.429524 17.760000       

𝑣3 45.165714 20.442381 40.452035      

𝑣4 10.634048 12.908571 11.445108 12.108939     

𝑣5 33.437381 -4.157143 24.743463 -13.706082 112.600368    

𝑣6 76.598810 38.464286 67.755368 23.150584 29.241797 117.800368   

𝑣7 10.114048 0.812381 7.439784 -1.731450 8.893831 11.454307 4.033615  

𝑣8 11.975476 3.126190 11.144545 0.407597 9.510498 18.050974 3.071710  5.667900  

𝑣9 9.003571 0.261905 6.860952 -1.203095 8.655476 11.580714 3.202143  3.780238  4.457857 

Source: Field work (2023) 
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