
i 
 

UNIVERSITY OF CAPE COAST 

 

 

 

 

INNOVATIVE APPLICATIONS OF HANDHELD NEAR-INFRARED 

SPECTROSCOPIC TECHNOLOGY FOR QUALITY ASSESSMENT OF 

FRUITS AND FRUIT PRODUCTS IN GHANA 

 

 

 

 

FRANCIS PADI LAMPTEY 

 

 

 

 

 

 

 

 

 

 

 

2024 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



ii 
 

 

 

 

 

 

 

 

 

 

 

©Year (2024) 

Francis Padi Lamptey 

University of Cape Coast 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



iii 
 

UNIVERSITY OF CAPE COAST 

 

 

 

INNOVATIVE APPLICATIONS OF HANDHELD NEAR-INFRARED 

SPECTROSCOPIC TECHNOLOGY FOR QUALITY ASSESSMENT OF 

FRUITS AND FRUIT PRODUCTS IN GHANA 

 

 

BY 

FRANCIS PADI LAMPTEY 

(AG/FPT/20/0004) 

 

 

 

Thesis submitted to the Department of Agricultural Engineering of the School 

of Agriculture, College of Agriculture and Natural Sciences, University of 

Cape Coast, in partial fulfilment of the requirements for the award of Doctor 

of Philosophy degree in Food and Postharvest Technology. 

 

 

 

 

 

OCTOBER, 2024

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



ii 
 

DECLARATION 

Candidate’s Declaration 

I hereby declare that this thesis is the result of my own original 

research and that no part of it has been presented for another degree in this 

university or elsewhere. 

Candidate’s Signature ……………………………    Date …………… 

Name: Francis Padi Lamptey 

 

Supervisors’ Declaration  

We hereby declare that the preparation and presentation of the thesis 

were supervised in accordance with the guidelines on supervision of thesis laid 

down by the University of Cape Coast. 

Principal Supervisor’s Signature …………………         Date …………… 

Name: Rev. Engr. Prof. Ernest Teye 

 

Co-Supervisor’s Signature ……………………            Date …………… 

Name: Prof. Ernest Ekow Abano 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



iii 
 

ABSTRACT 

Handheld near-infrared spectroscopy (NIRS) is emerging as a key technology 

for food analysis in Africa. This study explores its effectiveness, combined 

with chemometric techniques, for rapid and non-destructive evaluation of 

mango fruits and products. It focuses on developing predictive models for 

variety differentiation, classification of organic and inorganic samples, and 

assessing quality attributes such as total soluble solids (TSS) and pH. 

Additionally, it identifies ethephon residues and categorizes organic and 

inorganic pineapple juice. The study also examines the physicochemical and 

microbial changes in expired and unexpired commercial fruit juices using 

conventional laboratory methods. For mango variety identification, NIRS 

combined with multivariate algorithms achieved 97.44% accuracy. The 

synergy partial least squares model yielded r² values of 0.63 and 0.81 for TSS 

and pH predictions, with RMSEP values of 1.83 and 0.49, respectively. In 

detecting ethephon residues, the neural network model with multiplicative 

scatter correction reached 100% classification accuracy, while the partial least 

squares model demonstrated strong predictive performance (r² = 0.996, 

RMSEP = 0.068). The random forest algorithm classified organic and 

inorganic mango products with varying accuracy levels. When preprocessed 

using the second derivative, it achieved 88.76% accuracy for fresh fruit, 

77.98% for chips, and 87.53% for juice without preprocessing. The 

combination of dual NIR spectrometers effectively distinguished organic and 

inorganic pineapple juice with 100% accuracy. Furthermore, a comparative 

assessment of expired and unexpired commercial fruit juices showed notable 

declines in titratable acidity (apple juice decreased from 0.60% to 0.12%) and 

vitamin C (a 57.6% reduction in pineapple juice), alongside an increase in 

microbial load. These findings highlight the potential of handheld NIRS as a 

reliable tool for quality control, product authentication, and food safety 

assurance. Its application could improve postharvest monitoring, mitigate food 

fraud, and enhance regulatory compliance within the fruit industry. 
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CHAPTER ONE 

INTRODUCTION 

1.1 Background to the Study 

Fresh fruits are rich in water, minerals, vitamins, and fibre, all 

contributing significantly to human and animal health. Fruit consumption 

reduces the risk of various illnesses and functional decline linked with aging 

(Emelike & Akusu, 2019). These fruits can be processed into value-added 

products, including fresh fruit, puree, slices in syrup, leather, canned slices, 

chutney, juice concentrate, ready-to-drink juice, wine, jams, jellies, pickles, 

smoothies, chips, and powder (Jahurul et al., 2015; Owino & Ambuko, 2021). 

Fruit juice is widely regarded and promoted as a low-fat, often natural, 

healthful beverage. To assure quality and safety, quality evaluation and 

assurance of fruits are essential before export, during processing, and in the 

fresh market. Internal quality characteristics such as total soluble solids (TSS), 

firmness, and acidity are commonly used. However, TSS (°Brix) has been 

identified as the most important internal quality indicator. TSS, for example, is 

a critical internal quality criterion for predicting fruit maturity and harvesting 

time and analyzing and grading postharvest quality fruits. Mango fruits are 

noted to be one of the important tropical fruits grown and consumed 

worldwide and a rich source of nutrients and phytochemicals, including 

vitamin C and β- carotene.  

The deficiency of β- carotene, a precursor to the biosynthesis of 

vitamin A, is a major challenge faced by Sub-Saharan African countries. 

Therefore, mango consumption could relatively be an affordable strategy to 

supply β- carotene to alleviate vitamin A deficiency in Sub-Saharan Africa 
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(Ntsoane, Zude-Sasse, Mahajan, & Sivakumar, 2019). Consumption of Mango 

fruits and juice could promote the attainment of sustainable development goals 

2 and 3, zero hunger, and good health and well-being. However, safety 

measures such as checking the expiration dates of fruit juice are crucial. 

The chemical composition of mangoes varies depending on the 

location of cultivation, variety, and stage of ripeness (Tharanathan, Yashoda, 

& Prabha, 2006). A key factor influencing mango quality and shelf life is 

maturity at harvest, which significantly affects flavor, texture, and 

susceptibility to postharvest physiological disorders (Kader, 1997). Mangoes 

must be harvested at the appropriate maturity stage to ensure optimal fruit 

quality. Immature fruits tend to have a lower-quality flavor, are more prone to 

mechanical damage, and often do not ripen evenly. Overripe fruits, on the 

other hand, have a shorter shelf life and are more susceptible to microbial 

spoilage (Jha, Chopra, & Kingsly, 2007). 

Some popular varieties of mangoes include Keitt, Haden, Palmer, 

Parwin, Tommy Atkins, Kent, Alphonso, Benishaan, Kesar, Chausa, Dasheri, 

Langra, Malda, and local (Abu, Abbey, & Amey, 2021; Jha et al., 2013; 

Souza, Leonel, Modesto, Ferraz, & Gonçalves, 2018). These varieties are 

available in various colours, sizes, and shapes (Jha et al., 2013). Methods used 

to determine the internal quality of mangoes and varieties are destructive, 

labor-intensive, and often expensive, necessitating the development of faster, 

non-destructive alternatives (Cortés et al., 2016; Jha et al., 2013). 

Non-destructive methods such as near-infrared spectroscopy (NIRS) 

have gained traction in recent years for assessing fruit quality. NIRS is a rapid, 

non-invasive, and reliable technology successfully applied to evaluate various 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



3 
 

internal quality parameters of fruits, such as TSS and pH. This technology 

measures light absorption in the near-infrared region (700–2500 nm), 

providing valuable information about the fruit's internal composition without 

damaging the sample. It has been employed in numerous studies for quality 

assessment of pineapples, cocoa, strawberries, and mangoes, making it a 

promising tool for the food industry (Amodio, Ceglie, Chaudhry, Piazzolla, & 

Colelli, 2017; Amuah et al., 2019; Cortés et al., 2016; Teye, Anyidoho, 

Agbemafle, Sam-Amoah, & Elliott, 2020). 

Mango, a climacteric fruit, undergoes significant physiological 

changes during ripening. Artificial ripening agents like ethephon and calcium 

carbide are widely used to induce fruit ripening. However, these chemicals 

pose health risks, particularly calcium carbide, which has been linked to 

neurological disorders and seizures due to contamination with arsenic and 

phosphorus (Siddiqui & Dhua, 2010). While ethephon is considered safer 

when used within permissible limits, regulatory bodies in many African 

countries struggle to enforce proper usage standards, leading to potential food 

safety concerns (Islam, Mursalat, & Khan, 2016; Ruwali, Thakuri, Pandey, 

Mahat, & Shrestha, 2022). Traditional methods for detecting artificial ripening 

agents like ethephon are destructive and require complex laboratory setups, 

making them unsuitable for large-scale or field-based applications. NIRS 

presents a solution to this problem by providing a rapid, non-destructive 

means of predicting ethephon concentrations in fruits. Recent advancements in 

NIRS technology have led to the development of portable, battery-powered 

devices that can be used on-site for quality control and regulatory compliance 

(Mahanti & Chakraborty, 2020). 
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In addition to detecting ripening agents, NIRS has proven effective in 

authenticating organic products, which are gaining popularity due to their 

perceived health benefits and environmental sustainability (Andika & 

Bidayati, 2024). Organic farming practices avoid synthetic pesticides and 

fertilizers, contributing to higher food safety standards and promoting 

sustainability (Andika & Bidayati, 2024). Differentiating between organic and 

inorganic products, however, is often labor-intensive, expensive, and time-

consuming when using traditional methods. Portable NIR spectrometers offer 

a cost-effective and non-invasive alternative for verifying organic authenticity, 

ensuring consumer confidence in product labeling (Leitner & Vogl, 2020). 

NIRS has been successfully employed in various studies to 

differentiate organic and inorganic products across a range of fruits, like 

apples and pineapples (Amuah et al., 2019; Song, Wang, Maguire, & 

Nibouche, 2016). By analyzing the spectral data generated from the internal 

vibrations of chemical bonds, NIRS can reliably classify fruits based on their 

organic status, enhancing the integrity of organic certification processes (Song 

et al., 2016). 

Beyond fresh fruits, NIRS is also applicable to processed fruit products 

like juices (Šnurkovič, 2013). Pineapple juice, a major export product from 

countries like Ghana, is highly susceptible to adulteration due to the high 

value associated with organic labeling. Fraudulent practices such as falsely 

labeling inorganic juice as organic (Amuah et al., 2019) have become a 

significant issue, necessitating reliable authentication methods. NIRS offers a 

solution by providing a quick and non-destructive means of differentiating 
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organic and inorganic juices, ensuring consumer protection and product 

integrity. 

This study addresses the limited research on near-infrared spectroscopy 

(NIRS) for fruit quality assessment in Ghana. While several studies have 

demonstrated the effectiveness of handheld NIR spectroscopy in assessing 

fruit quality in other regions, most of these studies have focused on temperate 

fruits such as apples, grapes, and citrus (Grabska et al., 2023; Santos et al., 

2021; Vallone et al., 2019). This study comprehensively evaluates the use of 

handheld NIRS to distinguish organic and inorganic mangoes and their 

processed products. By demonstrating its feasibility for rapid, non-destructive 

classification, this research provides valuable insights for quality control and 

postharvest loss reduction in Ghana’s mango industry, filling a critical 

knowledge gap in Sub-Saharan Africa. 

1.2 Problem Statement   

Despite the increasing demand for mangoes and products, traditional 

methods to assess fruit quality remain labor-intensive, costly, and destructive, 

requiring extensive sample preparation. These methods, which involve 

measuring internal quality parameters such as total soluble solids (TSS), 

titratable acidity (TA), and pH, often result in errors due to their reliance on 

representative sampling, which may not accurately reflect the quality of the 

entire crop (Ncama, Magwaza, Mditshwa, & Tesfay, 2018). Furthermore, 

these techniques necessitate trained personnel and specialized equipment, 

making them impractical for large-scale or real-time applications (Cortés et 

al., 2016). As a result, there is a growing need for faster, non-destructive 
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techniques capable of reliably assessing fruit quality without damaging the 

samples (Arendse, Fawole, Magwaza, & Opara, 2018; Shah et al., 2021). 

One of the major challenges in mango production is ensuring optimal 

harvest time to achieve the best quality and shelf life. Immature fruits 

harvested too early may not ripen properly, while overripe fruits are more 

prone to spoilage and have a shorter shelf life. Chemical indicators like TSS 

and pH are essential for determining fruit ripeness and postharvest quality. 

However, current methods of assessing these indicators, such as chemical 

assays, are time-consuming and destructive, limiting their applicability for 

continuous or large-scale monitoring (He et al., 2022). 

Additionally, the increasing use of artificial ripening agents, such as 

ethephon and calcium carbide, introduces safety concerns. Although ethephon 

is considered safer than calcium carbide, its improper use can result in harmful 

concentrations that pose health risks to consumers. Current detection methods 

for artificial ripening agents are complex, destructive, and require specialized 

laboratory setups, making them unsuitable for large-scale field applications 

(Mahanti & Chakraborty, 2020). This situation is further exacerbated by the 

lack of stringent regulatory enforcement in many developing countries, 

leading to widespread misuse of ripening agents (Islam et al., 2016). 

Another significant challenge lies in the authentication of organic 

products. With the rising demand for organic mangoes and other fruit 

products, ensuring the integrity of organic labels has become a critical issue. 

Traditional certification processes are often time-consuming and expensive, 

relying heavily on paperwork rather than product analysis (Leitner & Vogl, 

2020; Zorn, Lippert, & Dabbert, 2009). Additionally, detecting unwanted 
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contaminants in inorganic products requires sophisticated laboratory 

equipment, which is neither readily available nor feasible for use in the food 

distribution chain (López, Arazuri, García, Mangado, & Jarén, 2013). 

In light of these challenges, portable near-infrared (NIR) spectroscopy 

presents a promising solution. NIR spectroscopy provides a fast, non-

destructive, portable, and cost-effective approach for evaluating fruit quality 

parameters (Amuah et al., 2019), detecting ripening agents (Lakade, V, 

Ramasamy, & Shetty, 2019), and authenticating organic products (Anyidoho, 

Teye, & Agbemafle, 2021). However, despite the proven utility of NIR in 

other areas of food quality assessment, there is limited research on its 

application in distinguishing between organic and inorganic mango products 

and detecting chemical ripening agents in mangoes. Moreover, using portable 

NIR devices combined with chemometric techniques to classify mangoes 

based on internal quality parameters such as TSS and pH remains 

underexplored. 

This study seeks to address these gaps by investigating the potential of 

portable NIR spectroscopy, combined with advanced chemometric models, to 

provide a reliable, non-destructive method for assessing mango quality, 

detecting artificial ripening agents, and differentiating between organic and 

inorganic mango products. By developing robust models for on-site 

applications, this research aims to contribute to the broader goal of improving 

food quality, safety, and labeling integrity in the global mango industry. 

1.3 Justification 

The application of near-infrared (NIR) spectroscopy in food quality 

assessment has gained significant traction due to its numerous advantages, 
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such as being a rapid, non-destructive, non-invasive, and environmentally 

friendly technique (Gullifa et al., 2023; Yin et al., 2019). NIR spectroscopy 

offers chemical-free analysis, making it ideal for ensuring product integrity 

while minimizing waste and environmental impact. It has been widely used to 

assess various food products, including grains (Egesel & Kahrıman, 2012), tea 

(Sun et al., 2020), honey (Cozzolino & Corbella, 2003), and coffee (Santos, 

Sarraguça, Rangel, & Lopes, 2012), with successful applications in both 

qualitative and quantitative evaluations. 

In recent years, NIR spectroscopy has been applied to distinguish 

between different fruit cultivars and assess key quality parameters such as 

total soluble solids (TSS) and acidity in fruits like mangoes and pineapples 

(Amuah et al., 2019; Schmilovitch, Mizrach, Hoffman, Egozi, & Fuchs, 2000). 

Its ability to predict internal quality parameters without damaging the sample 

makes it valuable for non-invasive food quality control (Anyidoho, Teye, 

Agbemafle, Amuah, & Boadu, 2021). This technology's fast and precise 

results significantly reduce analysis time and costs, making it suitable for real-

time and large-scale quality assessments. 

Despite the extensive use of NIR spectroscopy in the food industry, 

limited research has been conducted on its application to differentiate between 

organic and inorganic mango products or to detect chemical ripening agents 

such as ethephon. This study aims to fill that gap by employing portable NIR 

devices in combination with chemometrics to non-invasively classify organic 

and inorganic mangoes, chips, and juices and to predict the concentration of 

artificial ripening agents. By developing robust, non-destructive models, this 

research will improve food safety, product authentication, and the integrity of 
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food labeling systems. The results could offer a practical and environmentally 

sustainable alternative to destructive and labor-intensive fruit quality 

assessment methods. 

The ability of NIR spectroscopy to provide rapid, accurate, and non-

destructive analysis with minimal sample preparation justifies its use in this 

study, particularly in addressing challenges related to food safety and fraud 

detection in the fruit industry. This work can enhance consumer confidence in 

organic products and help regulatory bodies ensure compliance with food 

safety standards. 

1.4 Objectives of the Study 

1.4.1 General Objective 

The general objective of this study is to develop rapid identification, 

quantification, and quality assessment techniques for fresh and processed fruit 

products using near-infrared spectroscopy (NIRS) and wet chemistry. 

1.4.2 Specific Objectives 

In order to achieve the general objective, the following were the specific 

objectives: 

1. To non-destructively classify mango varieties and detect TSS and pH 

in intact mangoes using NIRS. 

2. To measure ethephon qualitatively and quantitatively in intact mango 

fruits. 

3. To classify organic and inorganic mangoes to detect fraud in; 

i. Intact fruits. 

ii. Dried fruits (chips). 

iii. Juice. 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



10 
 

4. To authenticate organic pineapple juice from inorganic ones. 

5. To analyse the physicochemical and microbial properties of expired 

and unexpired commercial fruit juices. 

1.5 Research Questions 

1. What quality parameters of mango fruits can be quantified using a 

handheld NIR spectrometer? 

2. Can NIRS accurately predict ethephon levels in mango fruits? 

3. Is fingerprinting organic and inorganic mango products feasible using 

portable NIRS technology? 

4. How effectively can dual NIR spectrometers distinguish between 

organic and inorganic pineapple juice? 

5. What are the physicochemical and microbial properties of expired and 

unexpired fruit juices? 

1.6 Linkages 

The five research topics in this study are interconnected through their 

reliance on NIRS for non-destructive analysis of fruit quality. Each topic 

builds on the previous, expanding the application of NIRS from fresh fruit 

assessment to processed products and food safety. The classification of 

organic and inorganic products, detection of chemical residues, and analysis of 

expired fruit products contribute to a comprehensive understanding of how 

NIRS can enhance quality control across various fruit production and 

processing stages. 

1.7 Organization of the Thesis 

This thesis consists of eight (8) chapters. Chapter one (1) highlights the 

background of the study, the main and specific objectives, and the justification 
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of the study. Chapter two (2) overviews relevant literature and theoretical 

foundations on the research subject. Chapters 3, 4, 5, 6, and 7 are dedicated to 

the research articles specific to the abovementioned objectives. The summary, 

key findings, conclusion, and recommendations are presented in Chapter 8. 
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Abstract 

The growing global demand for fresh fruits necessitates efficient, non-

destructive methods for assessing fruit quality, especially for export. 

Traditional fruit quality assessment techniques are often labor-intensive, time-

consuming, and destructive, making them unsuitable for large-scale or real-

time analysis. This study provides a comprehensive bibliometric analysis of 

near-infrared spectroscopy (NIRS) in fruit analysis to address these 

limitations. The study adhered to the PRISMA guidelines to extract peer-

reviewed papers from 2003 – 2023 from the Scopus database. Thereafter, the 

bibliometric analysis was conducted using R software's Bibliometrix package 

to evaluate global trends, key contributors, and emerging themes in the field. 

The results show that NIRS has become an essential tool for non-destructive 

quality assessment in fruits, accurately predicting attributes such as total 

acidity, soluble solids content, and internal disorders. Integrating machine 

learning and artificial intelligence models, particularly artificial neural 

networks and deep learning has further enhanced the predictive capabilities of 

NIRS. Additionally, technological innovations such as portable spectrometers 

and hyperspectral imaging have expanded the applicability of NIRS beyond 

laboratory settings to in-field assessments. The findings highlight the ongoing 

evolution of NIRS technology, its significant impact on fruit quality 

evaluation, and the potential for future advancements in this field. Future 

research should focus on improving the adaptability of NIRS to diverse fruit 

types and production environments and exploring the use of artificial 

intelligence and machine learning to further enhance data interpretation and 

predictive accuracy. Such innovations could significantly broaden the scope of 

NIRS applications, making it a critical tool for sustainable agriculture and 

global food security. 
 

 

Keywords: Bibliometric analysis; Fruit; Near-infrared spectroscopy; Non 

destructive testing; Quality 
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2.1 Introduction 

The consumer demand for fresh fruits has significantly increased in 

recent years due to the growing awareness of their consumption's health and 

nutritional benefits (Ramos, Miller, Brandão, Teixeira, & Silva, 2013). Global 

consumption levels are influenced by various factors, including agronomical 

conditions like climate and seasonality, economic aspects shaped by local 

policies such as affordability and infrastructure, and socio-cultural factors like 

food habits, education, and availability of alternatives (Liu et al., 2022). The 

quality of fruit is a critical determinant of its market value. High-quality fruit 

is associated with enhanced antioxidant properties and a rich concentration of 

bioactive compounds such as flavonoids, anthocyanins, polyphenols, and 

ascorbic acid. Therefore, giving enough attention to both the maintenance and 

assessment of fruit quality is important for ensuring high quality fruits (Wang, 

Sun, Yang, Pu, & Zhu, 2016). Traditional methods of fruit quality assessment 

(e.g., visual inspection, sensory evaluation, instrumental, and physicochemical 

analysis) are well established. However, these methods are often sample-

destructive, labor-intensive, and time-consuming, which reduces their 

effectiveness for online or in-line quality monitoring (Wang et al., 2016). 

Near-infrared spectroscopy (NIRs), which operates within the 700 to 

2500 nm range of the electromagnetic spectrum (Salam, Saad, Manap, 

Salehuddin, & Karim, 2018), primarily derives its spectral information from 

the internal vibration and absorption of O–H, C–H, N–H, and other hydrogen-

containing groups in overtone and combination bands (Teye & Amuah, 2022). 

This allows for the detection of specific quality attributes such as sugar 

content (Subedi & Walsh, 2011), acidity (Purwanto, Sari, & Budiastra, 2015), 
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moisture (Malvandi, Feng, & Kamruzzaman, 2022), and even internal defects 

in fruits (Raghavendra, Guru, & Rao, 2021). This non-invasive technology has 

revolutionized monitoring of fruit quality, providing a rapid, accurate, and 

efficient alternative to traditional methods. NIRS has found widespread 

applications across different stages of fruit production—from monitoring 

ripeness during growth (González-Caballero, Sánchez, Fernández-Novales, 

López, & Pérez-Marín, 2012), estimating maturity (Shah et al., 2020), to 

quality control during post-harvest handling and retail (Theanjumpol, Self, 

Rittiron, Pankasemsuk, & Sardsud, 2014). 

Over the past few decades, NIRS technology has evolved remarkably. 

Initially, benchtop NIR spectrometers were confined to laboratory settings. 

Today, portable and handheld NIRS devices have emerged, providing 

significant advantages, including small size, low cost, robustness, a user-

friendly interface, and portability. These advancements facilitate in-field 

assessments and enable real-time decision-making in the agricultural industry 

(Escribano, Biasi, Lerud, Slaughter, & Mitcham, 2017). As a result, farmers, 

producers, and retailers can now assess the quality of their products on-site, 

reducing post-harvest losses. Adopting portable NIRS has been particularly 

valuable in industries dealing with highly perishable fruits like pineapples, 

bananas, and mangoes (Yahia, Ornelas-Paz, & Elansari, 2011), where quality 

attributes must be monitored continuously to meet market standards.  

A key driver behind the success of NIRS in fruit quality assessment is 

the integration of chemometrics—a fusion of mathematics, statistics, and 

chemistry, which has led to significant advances in analytical data assessment 

(Molognoni et al., 2020). By applying chemometric techniques such as 
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principal component analysis (PCA), linear discriminant analysis (LDA), k-

nearest neighbors (kNN), partial least squares regression (PLSR), partial least 

square discriminant analysis (PLS-DA), support vector machine (SVM), 

researchers have been able to extract meaningful information from NIR 

spectra, building predictive models that can accurately assess fruit quality 

based on spectral signatures (Hidalgo, Fechner, Marchevsky, & Pellerano, 

2016; Mishra, Woltering, & Harchioui, 2020). The combination of NIRS and 

chemometrics has not only enhanced the accuracy of quality assessments but 

has also opened the door to more sophisticated applications such as the 

detection of adulteration (Alamar, Caramês, Poppi, & Pallone, 2020), 

classification of organic versus conventionally grown fruits (Amuah et al., 

2019), and the prediction of storage life (Beghi, Giovanelli, Malegori, 

Giovenzana, & Guidetti, 2014). 

Despite the extensive research and growing body of literature on the 

applications of NIRS in fruit quality assessment, there has been a lack of 

comprehensive studies that analyse the evolution of the technology, current 

trends, and future directions. As the field expands, understanding how NIRS 

has been applied, which fruits have been the research focus, and what gaps 

exist is crucial for driving future innovation. Bibliometric analysis is a 

quantitative method used to determine the volume and growth patterns of 

literature in a particular emerging field (Wang & Si, 2023).  

Bibliometric analysis provides a robust framework for achieving this, 

allowing researchers to quantitatively assess trends, collaborations, and the 

growth of scientific knowledge over time (Odoi-Yorke, 2024). Bibliometric 

tools have been widely used in other domains of food science to explore 
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research productivity, reveal collaboration networks, and identify emerging 

research themes. However, such an analysis focused on NIRS applications in 

fruit quality is still lacking. The review by Aleixandre-Tudó, Castelló-

Cogollos, Aleixandre, and Aleixandre-Benavent (2020) emphasizes 

spectroscopy's role as a cost-effective, efficient, and non-destructive method 

for evaluating food quality. Its application spans various food products, from 

fruits and vegetables to meat and olive oil. NIRS appears as a dominant 

technique, mainly due to its accuracy in food quality assessment without 

causing damage. The growing interest in Raman and fluorescence 

spectroscopy further highlights the field's adaptability, where different 

techniques cater to specific food safety needs, such as adulteration detection 

and authentication. Liu et al. (2023) highlight AI's significant influence on 

food safety, particularly in improving yield, quality, and traceability. 

The growing collaboration between the U.S. and China and the 

increasing contributions from institutions like the Chinese Academy of 

Sciences reflect AI's critical role in modern food safety protocols. Key AI 

applications span precision agriculture and nutrition, demonstrating its 

importance across the food chain. The potential of AI to reduce food waste 

and enhance sustainability also aligns with broader global priorities for food 

security and resource efficiency. The study on chemometrics by Aleixandre-

Tudó, Castelló-Cogollos, Aleixandre, and Aleixandre-Benavent (2022) 

highlights its importance in data-driven decision-making for food quality 

evaluation. Principal component analysis (PCA), partial least squares (PLS), 

and discriminant analysis (DA) are prominent techniques that drive 

advancements in this area. Integrating chemometrics with spectroscopy allows 
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for more accurate assessments of food products, making these tools 

indispensable for food science research. Bannor, Arthur, Oppong, and 

Oppong-Kyeremeh (2023) focus on food fraud, identifying organic foods, 

seafood, and olive oil as high-risk products. The study suggests that 

technological gaps, particularly in real-time authentication, contribute to the 

increasing global prevalence of food fraud. Addressing these gaps through 

international collaboration and enhanced regulatory frameworks could 

significantly reduce instances of fraud and increase consumer trust in food 

markets. The research by (Ma, Luo, Zhang, & Gao, 2022; Ni et al., 2023) on 

non-destructive testing technologies for fruit quality assessment highlights the 

rapid advancements in electronic nose technology, machine vision, and 

spectral detection techniques. These technologies offer non-invasive 

monitoring of key fruit quality parameters, such as sugar content and hardness, 

promoting more efficient and sustainable fruit production practices. The use of 

NIR spectroscopy, specifically in ripeness detection, aligns with the broader 

trend of adopting non-destructive techniques in the food industry, further 

enhancing production efficiency and reducing food waste. 

This paper addresses this gap by conducting a comprehensive 

bibliometric analysis of NIRS applications in fruit quality assessment. 

Through this approach, the study seeks to examine the evolution of NIRS 

technology, identify emerging trends, and provide insights into potential future 

research directions. The bibliometric analysis explores global research 

productivity, highlights key contributors, and assesses the intellectual and 

social structures underpinning the field. The findings will contribute to a 

deeper understanding of the technological progress, the remaining challenges, 
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and the opportunities for future innovation. Finally, this study aims to provide 

a roadmap for researchers and industry stakeholders to harness the full 

potential of NIRS in ensuring the quality, safety, and sustainability of fruits in 

the global market. 

2.2. Methodology 

This study employed bibliometric analysis to investigate recent trends, 

advances, and future directions of NIRS in fruit analysis. The methodology 

was designed to ensure a thorough and unbiased examination of the existing 

literature, following the Preferred Reporting Items for Systematic Reviews and 

Meta-Analyses (PRISMA) guidelines (Moher, Liberati, Tetzlaff, Altman, & 

Group, 2010; Odoi-Yorke, 2024). PRISMA is a structured approach for 

conducting and reporting systematic reviews, enhancing transparency, 

reproducibility, and quality of research synthesis in various fields (Abelha, 

Fernandes, Mesquita, Seabra, & Ferreira-Oliveira, 2020; Odoi-Yorke, 2024; 

Sohrabi et al., 2021).  

We conducted data extraction on August 13, 2024, using the Scopus 

database, which was selected for its comprehensive coverage of peer-reviewed 

literature, particularly in science, technology, engineering, and mathematics 

(Baas, Schotten, Plume, Côté, & Karimi, 2020; Le et al., 2021). Scopus was 

chosen over Web of Science due to its broader journal coverage and more 

extensive citation tracking capabilities, especially for recent publications 

(Falagas, Pitsouni, Malietzis, & Pappas, 2008; Joshi, 2016; Le et al., 2021; 

Mongeon & Paul-Hus, 2016). Although offering a wide range of sources, 

Google Scholar was not selected due to its inclusion of non-peer-reviewed 
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content and the potential for duplicate entries, which could compromise the 

reliability of our analysis (Adriaanse & Rensleigh, 2013).  

The search strategy employed a combination of terms related to NIRS 

and fruit, with the exact Boolean operators and search strings as follows: 

("near-infrared spectroscopy" OR "NIR spectroscopy" OR "NIRS") AND 

("fruit" OR "fruits"). This search strategy was designed to capture a wide 

range of relevant literature while minimizing the inclusion of irrelevant 

studies. The search period from 2003 to 2023 comprises two decades of 

research to provide a comprehensive overview of the field's evolution. As 

shown in Figure 2.1, this search initially yielded 1,632 documents. Inclusion 

criteria focused on peer-reviewed research outputs, specifically articles, 

conference papers, review papers, and book chapters. Exclusion criteria were 

implemented to remove less substantive document types such as notes, errata, 

and editorials, reducing the dataset to 1,621 papers. A further refinement to 

include only English-language publications resulted in a final dataset of 1,348 

documents, which formed the basis for our bibliometric analysis. 

The bibliometric analysis was conducted using the Bibliometrix 

package in R software, facilitated by the biblioshiny library. Bibliometrix is an 

R-based tool for comprehensive science mapping analysis (Aria & Cuccurullo, 

2017; Derviş, 2019; Wang et al., 2024). It enables researchers to perform 

quantitative analysis of scientific literature, including citation analysis, co-

citation networks, and bibliographic coupling (Agyekum, Odoi-Yorke, Abbey, 

& Ayetor, 2024; Odoi-Yorke, 2024). Bibliometrix facilitates the exploration of 

research trends, collaboration patterns, and the impact of publications across 

various scientific fields, aiding in literature reviews and research planning (Ma 
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et al., 2022; Ni et al., 2023; Odoi-Yorke, 2024). The bibliometric analysis 

performed in this study is as follows: (i) publication trends over the 20 years 

were examined to identify patterns in research output and growth of the field; 

(ii) country production and collaboration networks were mapped to understand 

the global distribution of research efforts and international partnerships; (iii) 

keyword analysis and trend topic identification were performed to discern the 

most prominent themes and emerging areas of interest within NIRS fruit 

analysis; (iv) thematic mapping and evolution were conducted to visualize the 

development of research themes over time; (v) factorial analysis was 

employed to uncover latent structures in the research landscape; (vi) co-

occurrence network analysis of keywords was utilized to reveal 

interconnections between different research topics and methodologies and (v) 

examining journals, institutions and total citations received per country. 

Furthermore, a systematic review was conducted on the top 50 most relevant 

papers. This analysis provides important insights into the current research 

areas, highlighting key findings and recommendations and suggesting possible 

future research directions. 
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Figure 2.1: Study Framework Employed for Bibliometric Analysis  

2.3. Results and Discussion 

2.3.1Summary of Bibliometric Data and Annual Article Production 

The bibliometric data in Figure 2.2 shows a significant body of 

research comprised of two decades from 2003 to 2023. During this period, the 

field experienced substantial growth, with an average annual growth rate of 

11.85%. This indicates a rapidly expanding area of study with increasing 

interest and investment. The analysis covers 1348 documents from 403 

sources, suggesting a diverse range of publications and research outlets 

contributing to this field. The many authors (3366) involved demonstrate 

widespread engagement from the scientific community, with an average of 

4.63 co-authors per document. This level of collaboration is further 

emphasized by the 19.44% rate of international co-authorship, indicating 

global interest and cross-border cooperation in advancing this area of research. 
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Remarkably, only 36 authors produced single-authored documents, 

highlighting the predominantly collaborative nature of work in this domain. 

The research appears well-established and influential, evidenced by the 

average of 28.42 citations per document. This suggests that the published 

works have significantly impacted subsequent research. The document's 

average age of 7.78 indicates a balance between newer and more established 

research, allowing for fresh perspectives and long-term studies. The extensive 

use of references (43,205) points to a thorough grounding in existing literature 

and a commitment to building upon prior knowledge. 

 

Figure 2.2: Summary of Bibliometric Data 

Figure 2.3 illustrates the annual article production from 2003 to 2023, 

showing a clear upward trend in research output over the two-decade period. 

Starting with a modest 13 articles in 2003, the field has grown substantially, 

culminating in 122 articles published in 2023. This growth trajectory implies 

increasing interest and investment in applying near-infrared spectroscopy to 

fruit analysis. The early years (2003-2010) show a steady but gradual increase, 

with article production roughly tripling from 13 to 41 annually. This initial 

phase likely represents the establishment of foundational research and 

methodologies. A notable acceleration occurred from 2011 onwards, with 
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production nearly doubling from 50 articles in 2011 to 111 in 2019. This rapid 

expansion suggests a maturation of the field, possibly driven by technological 

advancements in spectroscopy equipment, increased recognition of the 

technique's potential in fruit quality assessment, and growing demand for non-

destructive analytical methods in the food industry. The years 2019-2023 mark 

a period of sustained high productivity, with over 100 articles published 

annually. The peak of 135 articles in 2022 indicates the field's current vitality 

and relevance. The slight decrease to 122 articles in 2023 may indicate natural 

fluctuations or signal a stabilization of research output. This overall trend has 

significant implications for the fruit industry and food science. Consistent 

publication growth suggests improvements in near-infrared spectroscopy 

techniques, potentially leading to more accurate, efficient, and cost-effective 

methods for assessing fruit quality, ripeness, and composition. The volume of 

recent research also implies a diverse range of applications being explored, 

from sorting and grading fruits to monitoring nutritional content and detecting 

defects or diseases.  

Furthermore, this sustained research interest likely correlates with the 

increased adoption of near-infrared spectroscopy in commercial and industrial 

settings, potentially revolutionizing quality control processes in the fruit 

supply chain. The results also hint at this research's interdisciplinary nature, 

potentially involving collaborations between spectroscopists, food scientists, 

agronomists, and data analysts, especially as the field may incorporate 

advanced data processing techniques and machine learning to interpret 

spectral data.  
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Figure 2.3: Annual Scientific Production 

2.4. Countries' Distribution and Collaborations 

Figure 2.4 presents a comprehensive overview of country-specific 

production in near-infrared spectroscopy and fruit studies, revealing 

significant disparities in research output across different regions. China has the 

highest publications of 2,189 articles, far surpassing other countries and 

accounting for a substantial portion of the global research in this field. This 

dominance suggests China's strong emphasis on agricultural technology and 

food science research, potentially driven by its large population and the need 

for efficient food production and quality control (Sandrey & Edinger, 2009; 

Xu, Li, Qi, Tang, & Mukwereza, 2016; Zhao & Huang, 2011). Following 

China, European countries collectively show a strong presence, with Italy and 

Spain leading the continent. This indicates Europe's continued investment in 

agricultural research and technology, likely influenced by its diverse climate 

zones and rich agricultural traditions. The United States ranks fourth with 298 
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articles, highlighting its significant but comparatively smaller contribution to 

this research area.  

However, several developing and emerging economies feature 

prominently in the list, including Brazil, Thailand, and Indonesia, highlighting 

the global nature of this research and its importance to countries with 

significant agricultural sectors. The results also reveal a notable presence of 

research from Oceania, with Australia and New Zealand among the top 15 

countries. This suggests a strong focus on fruit quality and agricultural 

technology in these export-oriented economies. The distribution of research 

across continents indicates a global recognition of the importance of near-

infrared spectroscopy in fruit studies, potentially for improving crop yields, 

quality assessment, and postharvest management. However, the stark 

differences in research output between countries also point to potential 

disparities in research funding, technological capacity, and prioritization of 

this specific field. This imbalance could affect global knowledge sharing and 

technological advancement, potentially widening the gap between leading and 

lagging countries in agricultural innovation and food security measures. 

 

Figure 2.4: Country Scientific Production 
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Figure 2.5 shows a research collaboration map between countries and 

regions. This map visualization depicts international collaborations in near-

infrared spectroscopy and fruit studies, offering valuable insights into global 

research partnerships. It can be seen that the map uses colour coding to 

highlight the intensity of collaboration, with China standing out in dark blue, 

indicating its central role as a major collaborator. The network of lines 

connecting various countries represents collaborative links, with thicker lines 

suggesting stronger or more frequent collaborations. The visualization reveals 

a complex web of international cooperation, with connections across 

continents. China's prominent position highlights its significant contribution to 

and engagement in global research efforts. This aligns with China's growing 

emphasis on agricultural technology and food science research, likely driven 

by its large population and the need for advanced food production and quality 

control methods (Sandrey & Edinger, 2009; Xu et al., 2016; Zhao & Huang, 

2011). 

The map shows strong collaborative ties between China and several 

Western countries, particularly the United States, as evidenced by the thick 

line connecting these nations. This suggests a robust exchange of knowledge 

and resources between these two scientific countries, potentially leading to 

accelerated advancements in the field. European countries, represented in 

lighter blue, also actively collaborate within Europe and with global partners. 

This reflects Europe's continued investment in agricultural research and its 

openness to international scientific cooperation. It can be observed that the 

visualization highlights connections with countries in the Southern 

Hemisphere, such as Australia, New Zealand, and parts of South America. 
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This global spread of collaborations indicates the universal relevance 

of near-infrared spectroscopy in fruit studies, spanning diverse climates and 

agricultural systems worldwide. It also suggests a healthy flow of knowledge 

and expertise across hemispheres, potentially leading to more comprehensive 

and globally applicable research outcomes. The varying thicknesses of the 

connecting lines imply different levels of collaborative intensity between 

countries. Although some connections appear strong and well-established, 

others are thinner, possibly indicating emerging or less frequent 

collaborations. This pattern may signify differences in research priorities, 

funding availability, or historical scientific ties between nations. 

The implications of these collaborative patterns are significant. First, it 

suggests that research in near-infrared spectroscopy and fruit studies benefits 

from a global perspective, incorporating diverse agricultural contexts and 

challenges. This international approach will likely lead to more robust and 

widely applicable findings. Second, the strong collaborative networks centered 

around countries like China and the United States may accelerate innovation 

in this field as resources and knowledge are shared more efficiently. However, 

it also raises questions about equitable access to research findings and 

technologies for countries less prominently featured in these collaborations. 

Furthermore, this global collaboration network can potentially address 

shared challenges in fruit production, quality assessment, and postharvest 

management worldwide. It may facilitate the transfer of technology and 

methodologies from more advanced research centres to regions where such 

capabilities are still developing. Finally, this collaborative approach in near-

infrared spectroscopy and fruit studies could contribute significantly to global 
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food security, sustainable agriculture practices, and the overall advancement 

of agricultural science. 

Figure 2.5: Country Collaboration Map 

 

Figure 2.6 displays a detailed breakdown of single country publications 

(SCP) and multiple country publications (MCP) for corresponding authors in 

the field of various countries. It can be observed that China stands out as the 

dominant contributor, with 340 SCPs and 53 MCPs, far surpassing other 

nations. This highlights China's significant investment in and focus on 

agricultural technology research, likely driven by its large population and the 

critical need for advanced food production and quality control methods. The 

substantial gap between China's output and that of other countries suggests a 

potential concentration of expertise and resources in this field within China. 

European countries, particularly Spain, Italy, and France, show a 

strong presence in SCPs and MCPs, suggesting Europe's continued 

commitment to agricultural research and its openness to international 

collaboration. The United States, while ranking fourth in SCPs with 45 

publications, demonstrates a relatively high proportion of MCPs, indicating a 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



31 
 

strong inclination towards international collaboration. This trend is even more 

pronounced in countries like the Netherlands, which has more MCPs than 

SCPs, suggesting a highly collaborative research environment. 

Emerging economies such as Brazil, Thailand, and Indonesia also 

feature prominently, highlighting the global relevance of this research area and 

its importance to countries with significant agricultural sectors. The presence 

of these nations in both SCP and MCP categories indicates their growing 

domestic research capabilities and integration into global research networks. 

However, some countries show a higher propensity for international 

collaboration than their total output. For instance, South Africa and Thailand 

have a notable number of MCPs compared to their SCPs, suggesting strong 

international research ties. This pattern could indicate strategic efforts to 

leverage global expertise and resources to advance their research capabilities. 

These results have several implications. Firstly, the dominance of 

China in both SCPs and MCPs suggests that it may be setting the pace for 

global research in near-infrared spectroscopy and fruit studies. This could lead 

to China becoming a key source of innovation and methodologies in this field. 

Secondly, the varied ratios of SCPs to MCPs across countries highlight 

different national strategies in research. Countries with higher MCPs may 

benefit from knowledge transfer and shared resources, potentially accelerating 

their research progress. 

However, the disparity in publication numbers also raises questions 

about global equity in research capabilities and access to advanced 

technologies in this field. Countries with fewer publications may face 

challenges in developing and applying cutting-edge techniques in their 
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agricultural sectors. This could have implications for global food security and 

the ability of different nations to optimize their fruit production and quality 

control processes. 

Furthermore, the results suggest a healthy level of international 

collaboration in this specialized field, which is crucial for addressing global 

challenges in agriculture. Such collaborations can lead to more comprehensive 

studies that account for diverse agricultural conditions and practices 

worldwide. However, the varying levels of involvement in MCPs also indicate 

that there might be room for increased international cooperation, particularly 

for countries currently showing lower levels of collaborative output. 

 

Figure 2.6: Corresponding Author's Countries 

2.5. Analysis of Word Cloud and Trend Topics 

The word cloud in Figure 2.7 comprehensively represents the most 

relevant keywords in near-infrared spectroscopy and fruit studies. This 

visualization provides key insights into the current focus areas, methodologies, 

and applications within this specialized agricultural and food science research 

domain. It can be observed that the most prominent terms in the word cloud 

are "nir spectroscopy," "chemometrics," and "fruit quality," indicating that 
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these are central themes in the research field. Near-infrared (NIR) 

spectroscopy emerges as the primary analytical technique, likely due to its 

non-destructive nature and ability to rapidly assess various quality parameters 

of fruits (Amuah et al., 2019; Ncama, Magwaza, Mditshwa, & Tesfay, 2018). 

The prominence of "chemometrics" suggests that advanced statistical and 

mathematical methods are pivotal in analyzing the complex spectral data 

obtained from NIR measurements (Hidalgo et al., 2016; Mishra et al., 2020; 

Molognoni et al., 2020). "Fruit quality" is a key phrase emphasizing this 

technology's primary application in assessing and ensuring the quality of fruit 

products. 

Other significant terms like "soluble solids content," "firmness," and 

"maturity" point to specific quality attributes that researchers are focusing on. 

These parameters are critical in determining fruit ripeness, taste, and overall 

quality, which are essential for consumers and the fruit industry. The presence 

of "non-destructive" in the cloud highlights one of the main advantages of NIR 

spectroscopy in fruit analysis – its ability to assess fruit quality without 

damaging the sample (Amuah et al., 2019; Shah et al., 2020). 

Specific fruit types like "apple," "tomato," and "mango" are visible, 

indicating that these fruits are common subjects of study, possibly due to their 

economic importance or suitability for spectroscopic analysis. Including 

"classification" and "partial least squares regression" suggests that machine 

learning and statistical modeling techniques are frequently used to interpret 

spectral data and predict fruit quality parameters. Terms such as 

"hyperspectral imaging" and "visible/near-infrared spectroscopy" indicate that 

researchers are exploring various spectroscopic techniques beyond traditional 
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NIR methods. This implies a trend towards more sophisticated and 

comprehensive analytical approaches in fruit quality assessment. The presence 

of "principal component analysis" and "artificial neural network" further 

emphasizes the importance of advanced data analysis techniques in extracting 

meaningful information from spectral data. These methods are likely 

employed to handle spectroscopic datasets' high dimensionality and 

complexity. 

The implications of these results are significant for the field of fruit 

quality assessment and the broader agricultural industry. The focus on non-

destructive techniques suggests a move towards more efficient and cost-

effective quality control methods that can be applied throughout the supply 

chain, from harvest to retail. The emphasis on chemometrics and advanced 

statistical techniques implies a growing need for interdisciplinary expertise, 

combining spectroscopy with data science and machine learning. Furthermore, 

the various quality parameters being studied (e.g., soluble solids, firmness, 

maturity) indicate a holistic approach to fruit quality assessment, which could 

lead to more comprehensive quality standards and improved consumer 

satisfaction. Including specific fruit types suggests that research might be 

tailored to address industry-specific challenges or consumer preferences for 

particular fruits. 
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Figure 2.7: Word Cloud (50 words) 

Figure 2.8 shows the trend topics from 2003 to 2024. The figure shows 

a clear progression from more basic concepts and techniques towards 

increasingly sophisticated and specialized approaches. In the earlier years 

(2003-2010), the focus appears to be on fundamental aspects such as "sugar 

content," "modeling," "reflectance," and "non-destructive technique." These 

topics indicate that researchers were primarily concerned with establishing the 

basic methodologies and applications of near-infrared spectroscopy in fruit 

analysis. Moving into the 2010s, we can observe a shift towards more specific 

quality parameters and analytical techniques. Terms like "soluble solids 

content," "firmness," and "quality parameters" become prominent, suggesting 

a growing emphasis on comprehensive fruit quality assessment. 

The mid-2010s marked a notable transition in research focus. There is 

an increased emphasis on advanced analytical methods and data processing 

techniques. Terms such as "chemometrics," "multivariate analysis," and 
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"partial least squares" appear more frequently, indicating a growing 

sophistication in data analysis approaches. This shift likely reflects the need to 

handle the complex spectral data generated by near-infrared spectroscopy and 

extract meaningful insights from it. 

Perhaps the most striking trend is the emergence of machine learning 

and artificial intelligence-related topics in recent years (2018-2022). Terms 

like "deep learning," "machine learning," and "artificial neural network" have 

become prominent, suggesting a significant move towards leveraging 

advanced computational techniques for spectral data analysis and 

interpretation. This trend aligns with the broader adoption of AI and machine 

learning across various scientific disciplines and indicates a new frontier in 

fruit quality assessment and prediction. The persistence of terms like "near-

infrared spectroscopy," "NIR," and "fruit quality" throughout the entire period 

accentuates their fundamental importance to the field. However, the evolution 

of associated terms reflects the field's dynamic nature and responsiveness to 

technological advancements. 

The implications of these trends are multiple. Firstly, they suggest that 

near-infrared spectroscopy in fruit studies is rapidly advancing, incorporating 

cutting-edge technologies and analytical methods. This evolution is likely 

driving more accurate, efficient, and comprehensive fruit quality assessments. 

The shift towards machine learning and AI techniques implies a future where 

fruit quality prediction could become increasingly automated and precise, 

potentially revolutionizing quality control processes in the fruit industry. 

Moreover, the trend toward more sophisticated data analysis methods suggests 

a growing need for interdisciplinary expertise.  
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Researchers and practitioners may need to combine spectroscopy, 

agriculture, and data science knowledge to stay at the forefront of these 

developments. This could lead to new educational and training requirements in 

the agricultural and food science sectors. The increasing complexity of 

analytical approaches also hints at the potential for a more nuanced 

understanding of fruit quality parameters. This could lead to developing more 

refined quality standards and potentially even tailored fruit production 

techniques to meet specific quality criteria. Lastly, the persistent focus on non-

destructive techniques throughout the years underscores the importance of 

developing methods to assess fruit quality without damaging the produce. This 

continual emphasis suggests that future innovations in this field will likely 

continue to prioritize non-invasive assessment methods, which have 

significant practical and economic implications for the fruit industry. 

 

 

Figure 2.8: Trend Topics from 2003 - 2023 

2.6.Co-Occurrence Network, Thematic Map, and Thematic Evolution  

The co-occurrence network of keywords is shown in Figure 2.9. This 

provides a comprehensive overview of the interconnected themes and 
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concepts within this research field. As seen, the centre of the network has a 

dominant term, "near-infrared spectroscopy," which serves as the core 

technique around which the research revolves. Key terms such as 

"chemometrics" and "NIR spectroscopy" are closely linked to this central 

node, indicating their fundamental importance in analyzing and interpreting 

spectral data. 

The network shows several distinct clusters, each representing a 

different aspect or application of near-infrared spectroscopy in fruit studies. 

One prominent cluster, coloured in red, centres around "soluble solids 

content," highlighting the significance of this parameter in fruit quality 

assessment. This cluster's connection to terms like "partial least squares" 

suggests the common use of this statistical method in analyzing soluble solids 

data. 

Another significant cluster, shown in blue, comprises various quality-

related terms such as "fruit quality," "quality," and "apple." This grouping 

indicates a strong focus on applying near-infrared spectroscopy to assess 

overall fruit quality, with apples being a frequently studied fruit. The presence 

of terms like "non-destructive" in this cluster highlights the non-invasive 

nature of these spectroscopic techniques, a crucial advantage in fruit quality 

assessment. 

The green cluster appears to be related to specific fruit characteristics 

and analytical methods, including terms like "firmness," "acidity," and "sugar 

content." This suggests a detailed focus on individual quality parameters 

contributing to overall fruit quality and consumer acceptance. The network 

also reveals connections to advanced data analysis techniques, as evidenced by 
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terms like "artificial neural network," "machine learning," and "deep learning." 

These links indicate the growing importance of sophisticated computational 

methods in interpreting the complex spectral data obtained from near-infrared 

analysis. The presence of terms like "hyperspectral imaging" and 

"visible/near-infrared spectroscopy" suggests that researchers are exploring 

various spectroscopic techniques beyond traditional near-infrared methods, 

potentially to gain more comprehensive insights into fruit quality. 

The implications of this co-occurrence network are significant for the 

field of fruit quality assessment and the broader agricultural industry. Firstly, 

it highlights the multidisciplinary nature of this research area, combining 

spectroscopy, chemometrics, machine learning, and agricultural science. 

Integrating diverse fields suggests that future advancements may require 

collaborative efforts across disciplines. The network also implies that 

researchers focus on developing comprehensive, non-destructive methods for 

simultaneously assessing multiple quality parameters. This could lead to more 

efficient and accurate quality control processes in the fruit industry, potentially 

reducing waste and improving consumer satisfaction. The prominence of 

specific fruits like apples in the network indicates that certain fruits may serve 

as model systems for developing and refining spectroscopic techniques. 

However, the diversity of terms suggests that these methods are being 

applied to a wide range of fruits, pointing to the versatility and broad 

applicability of near-infrared spectroscopy in fruit studies. The inclusion of 

advanced data analysis techniques in the network suggests a trend toward a 

more sophisticated interpretation of spectral data. This could lead to more 
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accurate predictions of fruit quality and potentially enable the detection of 

subtle quality variations that were previously difficult to measure. 

 

Figure 2.9: Keywords Co-occurrence Network  

The thematic map of keywords, which explains the relationships 

between various research themes based on their development (density) and 

relevance (centrality), is displayed in Figure 2.10. It can be gleaned that the 

thematic map is divided into four quadrants. The basic themes quadrant 

comprises fundamental concepts and techniques that form the core of this 

research field. Terms like "chemometrics," "classification," "soluble solids 

content," and "partial least squares" are positioned here, indicating their 

widespread use and central importance. The presence of specific fruits like 

"apples," "pears," and "citrus" suggests that these are commonly studied 

subjects. The inclusion of "deep learning" in this quadrant is particularly 

interesting, as it implies that this advanced computational technique has 

become a standard tool in the field, potentially revolutionizing data analysis 

approaches. 

The motor themes quadrant represents highly developed and central 

topics likely driving the field forward. "Principal component analysis," 
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"ripeness," and "neural network" appear here, suggesting that these analytical 

methods are at the forefront of current research efforts. The presence of 

"internal quality" and "modeling" indicates a strong focus on developing 

comprehensive fruit quality assessment techniques. "Non-invasive" methods 

are also highlighted, underscoring the importance of non-destructive analysis 

in fruit studies. 

The niche themes quadrant contains highly developed but less central 

topics, representing specialized research areas. "HPLC" (High-Performance 

Liquid Chromatography) appears here, suggesting its use as a complementary 

technique to near-infrared spectroscopy. "Dry matter content," "prunus 

persica" (peach), and "index of absorbance difference" are also in this 

quadrant, indicating focused research on specific fruit characteristics or 

species. Though not central to the field, these niche areas may represent 

critical specialized applications or emerging research directions. 

The emerging or declining Themes quadrant is particularly intriguing, 

as it can indicate new trends and fading topics. "Near-infrared spectroscopy 

(NIRS)" and "near-infrared (NIR) spectroscopy" appear here, which might 

seem counterintuitive given the field's focus. However, this could suggest that 

these terms are evolving or being refined into more specific applications. 

"Feature extraction," "PLS-DA" (Partial Least Squares Discriminant 

Analysis), and "SIMCA" (Soft Independent Modeling of Class Analogy) are 

also in this quadrant, potentially indicating emerging analytical techniques 

gaining traction in the field. 

The implications of this thematic map are significant for researchers, 

practitioners, and stakeholders in the fruit industry. It suggests that while 
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traditional spectroscopic and chemometric methods remain fundamental, there 

is a clear trend toward integrating advanced computational techniques like 

deep learning and neural networks. This evolution could lead to more accurate 

and sophisticated fruit quality assessment tools. The prominence of non-

invasive techniques across different quadrants underscores the importance of 

developing methods to assess fruit quality without damaging the produce, a 

crucial factor for practical applications in the industry. The map also 

highlights the multidisciplinary nature of this field, combining spectroscopy, 

data analysis, and fruit science. This suggests that future advancements may 

require collaborative efforts across these disciplines. Specific fruits in different 

quadrants indicate that while some fruits (like apples) are extensively studied, 

there are opportunities for specialized research on other fruit types. 

Furthermore, positioning terms related to internal quality and modeling in the 

motor themes quadrant suggest a trend toward developing more 

comprehensive and predictive quality assessment methods. This could 

significantly improve fruit quality standards, reduce waste, and enhance 

consumer satisfaction. 
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Figure 2.10: Thematic Map  

Figure 2.11 presents the thematic evolution of keywords. This 

visualization provides critical insights into how the field has developed and 

where it may be heading. In the initial period (2003-2014), we see a focus on 

fundamental concepts and techniques. Keywords like "non-destructive," "dry 

matter," and "chemometrics" are prominent, indicating a primary concern with 

establishing basic methodologies for non-invasive fruit analysis. The presence 

of "partial least squares (pls)" suggests an early adoption of this statistical 

method for spectral data analysis. Interestingly, specific fruit types like 

"chestnut" appear, hinting at early applications to particular crops. 

The middle period (2015-2020) shows a significant expansion in the 

breadth and depth of research topics. "Near-infrared spectroscopy" remains 

central, but we see the emergence of more sophisticated analytical techniques 

such as "principal component analysis," "multivariate analysis," and "feature 

selection." This suggests a growing emphasis on advanced data processing 

methods to extract more meaningful information from spectral data. The 
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appearance of "vis-nir spectroscopy" indicates an expansion of the spectral 

range under study. Terms like "classification" and "quality" become more 

prominent, reflecting an increased focus on practical applications in fruit 

quality assessment. 

In the most recent period (2021-2023), we observe a further evolution 

towards more specialized and advanced concepts. "Near-infrared 

spectroscopy" continues to be central. However, it is now accompanied by 

terms like "antioxidant," "absorption spectroscopy," and "fruits and 

vegetables," suggesting a broadening of application areas and a more nuanced 

understanding of fruit composition. The appearance of "visible/near-infrared 

spectroscopy" indicates a trend toward integrating multiple spectral ranges for 

more comprehensive analysis. Notably, "dry matter content" persists across all 

periods, underlining its enduring importance in fruit quality assessment. 

The implications of this thematic evolution are significant for the field 

of fruit quality analysis and the broader agricultural industry. Firstly, it 

demonstrates a clear trend towards more sophisticated and comprehensive 

analytical approaches. The persistent presence of non-destructive methods 

throughout all periods underscores the ongoing importance of developing 

techniques to assess fruit quality without damaging the produce. This has 

crucial implications for reducing waste and improving efficiency in the fruit 

industry. 

The evolution also reflects the increasing integration of advanced data 

analysis techniques, suggesting a growing need for interdisciplinary expertise 

combining spectroscopy, chemometrics, and data science. This trend is likely 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



45 
 

to continue, potentially leading to more accurate and predictive models for 

fruit quality assessment. 

Expanding keywords related to specific fruit components (e.g., 

antioxidants) and broader categories (fruits and vegetables) implies a move 

towards more detailed and diverse applications of near-infrared spectroscopy. 

This could lead to more tailored quality assessment methods for different 

types of produce, potentially improving overall food quality and consumer 

satisfaction. 

Furthermore, the persistent and evolving nature of specific keywords 

(like chemometrics and principal component analysis) across all periods 

indicates their fundamental importance to the field. However, the emergence 

of new terms in recent years suggests that the field is still dynamic and open to 

innovation. 

 

Figure 2.11: Thematic evolution 

2.7.Journals, Institutions, and Citations 

Figure 2.12 presents the top 20 journals based on their total 

publications in the field. Acta Horticulturae has the highest number of 

publications, with 65 articles. This highlights the strong connection between 
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this technology and horticultural sciences. The prominence of journals like 

Postharvest Biology and Technology (56 articles) and Journal of Food 

Engineering (41 articles) underlines the significant application of NIRS in 

post-harvest management and food processing technologies. The Journal of 

Near Infrared Spectroscopy's high ranking (53 articles) indicates the technical 

depth and specialization of research in this area. The presence of broader 

scope journals such as Food Chemistry (44 articles) and Journal of the Science 

of Food and Agriculture (35 articles) suggests the wide-ranging implications 

of this technology across food science and agricultural research. Including 

journals focused on optics and spectroscopy, like Proceedings of SPIE and 

Infrared Physics and Technology, highlight the interdisciplinary nature of the 

field, bridging physics, engineering, and agricultural sciences. 

Notably, the figure features journals dedicated to computational and 

electronic applications in agriculture (Computers and Electronics in 

Agriculture) and analytical methods (Food Analytical Methods), indicating the 

growing importance of data analysis and automation in this field. The diversity 

of journals, ranging from those focused on sensors and measurement 

techniques to those covering broader aspects of food science and horticulture, 

reflects the multiple applications of NIRS in fruit analysis. This spread across 

various disciplines implies that the technology is advancing in terms of 

spectroscopic methods and its practical applications throughout the fruit 

production and supply chain. The presence of highly specialized journals and 

those with a broader scope suggests that research in this field is 

simultaneously deepening our understanding of the technology while 

expanding its practical applications in the food industry. 
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Figure 2.12: Top 20 Most Relevant Journals Based on Total Publications 

Figure 2.13 displays the top 20 institutions actively involved in NIRS 

applications in fruit analysis research. It can be seen that Zhejiang University 

emerges as the clear leader in this field, with a substantial 280 publications, 

more than double the output of the next highest contributor. This dominance 

suggests that Zhejiang University has established itself as a major hub for 

research in this area, likely possessing advanced facilities and a dedicated 

team of experts. Chinese institutions, including East China Jiaotong 

University, Northwest A&F University, and Jiangsu University, feature 

prominently in the top ranks, indicating China's strong focus on this 

technology in agriculture. The international nature of this research is evident, 

with institutions from South Africa (Stellenbosch University), Spain 

(University of Cordoba), Italy (Università degli Studi di Milano), Thailand 

(Kasetsart University), Australia (Central Queensland University), Hungary 

(Szent István University), and the United States (Colorado State University) 

all appearing in the list.  
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This global distribution recognises NIRS's importance in fruit analysis 

across various agricultural contexts and climates. The presence of multiple 

agricultural universities, such as China Agricultural University, Nanjing 

Agricultural University, and Huazhong Agricultural University, underlines the 

direct application and relevance of this technology to agricultural practices and 

food science. The number of publications from these institutions suggests a 

concentrated effort to advance the field, potentially driven by the need for 

improved fruit quality assessment, sorting, and monitoring techniques in the 

global fruit industry. This research focus could have significant implications 

for enhancing fruit production efficiency, quality control, and consumer 

satisfaction in the international fruit market. 

 

Figure 2.13: Top 20 Most Relevant Institutions Based on Total Publications 

Figure 2.14 shows a comprehensive view of the impact of global 

research in the field as measured by the total citations per country. China has 

9,368 citations, more than three times the citations of the next highest country. 

This dominance suggests that China is at the forefront of research and 

innovation in this area, likely driven by its large agricultural sector and 

emphasis on technological advancements in food production and quality 
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control. Following China, a group of countries including Spain (2,616 

citations), the USA (2,159), South Africa (1,965), Italy (1,753), and Australia 

(1,609) form a second tier of significant contributors, indicating a strong 

research presence in both European and non-European nations. The diversity 

of countries, spanning from Brazil to Japan and Iran to Canada, emphasizes 

the global relevance of this technology in fruit analysis. Interestingly, smaller 

countries like Romania (1,542 citations) and Ireland (1,031 citations) have a 

notably high impact relative to their size, suggesting focused research efforts 

or particularly influential studies in these nations.  

The presence of both developed and developing countries highlights 

the widespread application and importance of NIRS in various agricultural and 

economic contexts. Countries with traditionally strong agricultural sectors, 

such as Brazil, Thailand, and Turkey, feature prominently, indicating the 

practical applications of this research in enhancing fruit production and quality 

assessment. The distribution of citations across multiple continents also 

suggests a global exchange of knowledge and collaboration in this field. 

However, the significant disparity in citation counts between the top-ranked 

countries and those at the bottom points to potential gaps in research capacity 

or focus among different nations. This map implies that while NIRS in fruit 

analysis is a globally relevant topic, there are clear leaders in the field. China 

is at the helm, driving innovation and setting research agendas that have far-

reaching implications for global fruit production, quality control, and trade. 
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Figure 2.14: Total Citations per Country 

2.8. Review of the Top 50 Most Relevant Papers on NIRS in Fruit 

Analysis 

This section discusses the findings and recommendations from the top 

50 most relevant papers included in the 1048 papers used for the bibliometric 

analysis. The selected studies span various fruit types, research methodologies, 

and practical applications, providing a comprehensive overview of NIRS 

applications in fruit analysis techniques.  Some of these studies include 

Huang, Yu, Xu, and Ying (2008), who reviewed the use of NIR spectroscopy 

for on/in-line monitoring in the food and beverage industry over 30 years. The 

authors found that NIR has been successfully applied to various products like 

meat, fruits, grains, dairy, and beverages. The study highlighted the 

importance of chemometric treatment in interpreting NIR data. Dos Santos, 

Lopo, Páscoa, and Lopes (2013) assessed the applications of portable NIR 

instruments in the agro-food sector.  
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The study revealed that handheld NIR devices have been successfully 

used for multiple on-site applications, from assessing fruit quality to soil 

analysis. NIRQuest spectrometer and SCIO NIR spectrometer are displayed in 

Figure 2.15. Cortés, Blasco, Aleixos, Cubero, and Talens (2019) investigated 

using VIS-NIR spectroscopy for in-line monitoring of postharvest agro-food 

products. The authors found that while VIS-NIR shows great potential for 

real-time quality control, current research lacks real in-line applications. 

Wang, Sun, Pu, and Cheng (2017) examined NIR applications in liquid 

food analysis. It was found that NIR is effective for analyzing various liquid 

foods and detecting adulteration. Qu et al. (2015) reviewed NIRS applications 

in food safety evaluation. The study found NIRS to be a promising technique 

for food safety inspection due to its speed and ease of use. Nicolaï et al. (2014) 

reviewed non-destructive measurement of fruit and vegetable quality, 

discussing various techniques for measuring internal and external quality 

attributes. Walsh, McGlone, and Han (2020) reviewed NIRS applications in 

postharvest decision support.  

Several studies have focused on using NIR spectroscopy to assess 

various quality parameters in fruits, including soluble solids, acidity, firmness, 

and sugar content. For instance, Gómez, He, and Pereira (2006) used 

Vis/NIRS to predict soluble solids content (SSC), acidity (pH), and firmness 

in Satsuma mandarins. The authors achieved good prediction models, with the 

best model for SSC having an r² of 0.94 and RMSEP of 0.33 Brix. Saranwong, 

Sornsrivichai, and Kawano (2004) used NIR to predict the eating quality of 

ripe mangoes. Dry matter and starch content at harvest, measured by NIR, 

were good predictors of soluble solids content in ripe mangoes. Li, Huang, 
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Zhao, and Zhang (2013) used Vis/NIR spectroscopy to predict pears' SSC, pH, 

and firmness. The findings indicate that LS-SVM models outperformed PLS 

models and that using effective wavelengths improved prediction accuracy. 

Wu, He, Nie, Cao, and Bao (2010) used Vis-NIR spectroscopy to predict pH 

and SSC in grape juice. They found that UVE-SPA-MLR models 

outperformed other models in predicting these parameters. 

Golic and Walsh (2006) used NIRS to assess the internal quality of 

stone fruits. The study found good calibration models for total soluble solids 

across different varieties. Xu, Qi, Sun, Fu, and Ying (2012) investigated the 

online determination of soluble solid content in pears using Vis-NIR 

spectroscopy. The results revealed that GA-SPA-MLR on selected 

wavelengths provided good prediction accuracy. Fan, Zha, Du, and Gao 

(2009) used NIR spectroscopy to measure SSC and firmness in apples. The 

findings revealed that fruit orientation and light source influenced prediction 

results, with multi-lamp setups improving accuracy. Walsh, Golic, and 

Greensill (2004) evaluated NIRS to assess various fruits' SSC and dry matter 

content. The authors found the technology well-suited for some fruits (e.g., 

apples) and less accurate for others (e.g., papaya). Moghimi, Aghkhani, 

Sazgarnia, and Sarmad (2010) used Vis/NIR spectroscopy to predict SSC and 

pH in kiwifruit. They found good prediction models using SNV with median 

filter and first derivative preprocessing. 

Bureau et al. (2009) evaluated NIRS for predicting apricot quality 

traits. The results show a good prediction performance for soluble solids and 

titratable acidity but less accurate for other traits. Larraín, Guesalaga, and 

Agosín (2008) developed an NIR instrument to measure ripeness parameters 
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in wine grapes. The study found good Brix and pH measurement results, with 

promising results for anthocyanin concentration. McGlone, Fraser, Jordan, and 

Künnemeyer (2003) compared different NIR measurement modes for 

predicting SSC and titratable acidity in Satsuma Mandarins. The authors found 

the direct transmission mode most accurate for SSC prediction. Sun, Lin, Xu, 

and Ying (2009) evaluated the online measurement of pear SSC using 

Vis/NIR spectroscopy. It was observed that fruit moving speed had little effect 

on model performance at speeds of 0.3-0.7 m/s. Rungpichayapichet, 

Mahayothee, Nagle, Khuwijitjaru, and Müller (2016) evaluated the effect of 

harvest season on NIRS calibrations for mango quality prediction. The authors 

highlighted that combining data from multiple years greatly enhanced 

prediction accuracy. 

Other studies have applied NIRS to detect and quantify specific 

compounds in fruits and vegetables, such as carotenoids, sugars, and 

polyphenols. For example, Baranska, Schütze, and Schulz (2006) used FT-

Raman, ATR-IR, and NIR spectroscopy to quantify lycopene and β-carotene 

in tomatoes. The authors found that IR spectroscopy gave the best prediction 

quality. Xie, Ye, Liu, and Ying (2009) used NIR spectroscopy to determine 

glucose, fructose, and sucrose in bayberry juice. The study found PLS models 

good for predicting these sugar concentrations. Zhang et al. (2020) applied 

NIR hyperspectral imaging with deep learning to determine chemical 

compositions in black goji berries. It was observed that deep learning 

approaches performed well for both modeling and feature extraction. 

Baranski, Baranska, and Schulz (2005) applied NIR-FT-Raman spectroscopy 

for in situ analysis of carotenoids in living plant samples.  
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The study successfully detected carotenoid changes in various plant 

tissues. Pissard et al. (2013) employed NIRS to determine apples' vitamin C 

and total polyphenol content. The study achieved good prediction 

performance, especially for polyphenol and sugar content. Clément, Dorais, 

and Vernon (2008) measured lycopene content and other quality parameters in 

intact tomatoes via NIRS and found accurate predictions for lycopene content 

and colour variables. Janik, Cozzolino, Dambergs, Cynkar, and Gishen (2007) 

compared PLS regression and artificial neural networks for predicting 

anthocyanin concentration in red-grape homogenates. The results revealed that 

the ANN outperformed PLS, especially for new vintage samples. 

Several studies have employed advanced techniques or methodologies 

in conjunction with NIR spectroscopy, such as hyperspectral imaging, data 

fusion, and novel modeling approaches. In view of this, Magwaza et al. (2012) 

focused on NIR spectroscopy for non-destructive quality assessment of citrus 

fruits. The study found that NIR can measure both internal and external 

quality attributes of citrus fruit, reducing waste and allowing repeated 

measurements on the same fruit over time. The authors also highlighted the 

potential of emerging technologies like multispectral and hyperspectral 

imaging.  Opara and Pathare (2014) reviewed technologies for bruise 

measurement in fresh produce. It was found that advanced non-invasive 

technologies like NIR spectroscopy, hyperspectral imaging, thermal imaging, 

and MRI show promise for bruise detection. Lee et al. (2014) used NIR 

hyperspectral imaging to detect bruises on pears. They achieved 92% accuracy 

in bruise detection using waveband ratio analysis. 
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Mendoza, Lu, and Cen (2012) evaluated multi-sensor data fusion for 

predicting apple firmness and SSC. The authors revealed that sensor fusion 

improved predictions compared to individual sensors. Chen, Qiao, Xu, Feng, 

and Cai (2019) developed a fuzzy optimisation strategy for RBF LSSVR 

models in Vis-NIR analysis of pomelo fruit maturity. The results revealed that 

the strategy effectively reduces computational complexity and improves 

predictions. Nogales-Bueno, Hernández-Hierro, Rodríguez-Pulido, and 

Heredia (2014) used hyperspectral imaging to determine grapes' phenolic and 

technological maturity parameters. The authors achieved good prediction 

results for both red and white grapes. 

Malegori et al. (2017) compared a miniaturized NIR device with a 

benchtop FT-NIR spectrometer for measuring quality parameters in acerola 

fruit. The study found that the portable device performed well, especially 

when using SVM algorithms. Camps and Christen (2009) used portable NIR 

spectroscopy to determine apricot quality parameters. The authors achieved 

good results for SSC prediction, with variable results for firmness and 

titratable acidity. Marques, de Freitas, Pimentel, and Pasquini (2016) 

evaluated a handheld NIR spectrometer for quality control of 'Tommy Atkins' 

mangoes and found good prediction models for soluble solids and dry matter 

content. Chen and Opara (2013) investigated food texture measurement 

techniques. The results revealed that while sensory evaluations are useful, 

instrumental methods like NIR spectroscopy are increasingly used for rapid 

and cost-effective texture measurement. Magwaza and Opara (2015) reviewed 

methods for determining sugar content and sweetness in horticultural produce. 

It was seen that while chromatographic techniques are accurate, NIR 
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spectroscopy provides a rapid, simple, and cost-effective alternative for 

routine sugar analysis. 

Arendse, Fawole, Magwaza, and Opara (2018) reviewed non-

destructive measurement techniques for fruits with thick rinds. It was found 

that thick rinds can interfere with NIR measurements of internal quality, but 

other techniques like X-ray micro-CT and NMR show promise. Sankaran, 

Mishra, Maja, and Ehsani (2011) employed VIS-NIR spectroscopy to detect 

Huanglongbing disease in citrus trees. The findings achieved high 

classification accuracies (up to 98%) using quadratic discriminant analysis. 

Xie, Ying, Ying, Yu, and Fu (2007) applied VIS-NIR spectroscopy to detect 

transgenic tomatoes. The authors achieved 100% correct classification using 

PLSDA after derivative spectral pre-treatment. 

Fan, Zhang, Li, Huang, and Wang (2016) assessed the influence of 

spectrum measurement position on the NIR analysis of apple SSC. They found 

that a global position model with effective wavelengths gave the best 

prediction results. de Oliveira, Bureau, Renard, Pereira-Netto, and de 

Castilhos (2014) investigated the impact of fruit structure on NIR predictions 

of SSC and titratable acidity. The study found good apricot results but less 

accurate predictions for fruits with thick skins or heterogeneous structures. 

Aday and Caner (2014) used NIR spectroscopy to evaluate the effects of 

various treatments on strawberry storage life. Fu, Ying, Lu, and Xu (2007) 

compared transmission and reflectance modes of VIS/NIR spectroscopy for 

detecting brown hearts in pears. The results revealed a transmission mode 

more effective, achieving 91.2% classification accuracy. Magwaza and Tesfay 

(2015) reviewed methods for determining avocado fruit maturity. The authors 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



57 
 

highlighted emerging optical and imaging techniques promising for non-

destructive avocado maturity and quality analysis. Guo, Ni, and Kokot (2016) 

used NIRS and chemometrics to analyse and classify jujube fruit from 

different origins. They found that LS-SVM models produced the best 

quantitative prediction results. Ncama, Opara, Tesfay, Fawole, and Magwaza 

(2017) used Vis-NIR spectroscopy to quantify flavor-related parameters in 

oranges and grapefruits. They achieved good prediction models for BrimA, 

TSS:TA ratio, and TSS, demonstrating the potential of Vis/NIRS for non-

destructive flavor assessment.  

                                                           

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.15: (a) NIRQuest spectrometer (Raghavendra et al., 2021) (b) SCIO 

NIR spectrometer with the three varieties of mango fruits (Lamptey, Teye, 

Abano, & Amuah, 2023) (Published under open access) 
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2.9 Advances in NIRS in Mango Fruit Analysis 

This section comprehensively discusses the advancement in NIRS 

applications in mango fruit analysis. It categorized the papers included in the 

systematic review into the following sections: (1) mango quality assessment 

and prediction using NIRS, (2) non-destructive testing and monitoring, (3) 

spectral data analysis and model optimisation, (4) technological innovations 

and instrumentation and (5) Applications of machine learning and artificial 

intelligence.  

2.9.1 Mango Quality Assessment and Prediction using NIRS 

NIRS has proven to be a valuable tool for assessing various quality 

attributes in mangoes, providing a non-destructive and rapid approach for 

predicting key parameters like total acidity (TA), soluble solids content (SSC), 

fruit maturity, and internal physiological disorders. Across the reviewed 

studies, different regression models, pre-processing techniques, and prediction 

models have been employed, each contributing valuable insights to the field. 

For example, Munawar, Meilina, and Pawelzik (2022) demonstrated the 

potential of NIRS for predicting TA in intact mangoes, with ANN 

outperforming other models like support vector machine regression (SVMR) 

and partial least squares regression (PLSR).  

The study highlighted that using the first four principal components 

(PCs) as input to the ANN model provided optimal prediction accuracy. This 

high degree of correlation (r²cal = 0.97, r²pred = 0.89) indicates the robustness 

of ANN models, suggesting that they can better capture the non-linear 

relationships within the spectral data compared to traditional methods like 

PLSR. This is consistent with findings from Shah et al. (2020), which 
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compared PLSR and non-linear models (e.g., ANN, LSSVM) for fruit 

maturity estimation across various fruits. Shah et al. (2020) found that while 

PLSR is commonly used, non-linear models often outperform it, particularly 

for complex fruits like mangoes. Both studies underline the need for more 

advanced models to maximize the accuracy of NIRS predictions. 

On the other hand, Nordey, Davrieux, and Léchaudel (2019) 

highlighted a different challenge in predicting postharvest mango quality. The 

study found weak correlations between quality traits measured at harvest and 

those measured after ripening, except for dry matter content (DM), which 

showed a moderate correlation (r² = 0.61). Interestingly, pulp colour was 

identified as a strong indicator of fruit shelf life (r² = 0.7). These results 

suggest that although NIRS can predict some traits with moderate accuracy, 

post-ripening quality indicators are more sensitive to environmental and 

growing conditions, complicating predictions. This finding emphasizes 

distinguishing traits that can be reliably predicted at harvest and those that 

require postharvest assessment. Rungpichayapichet et al. (2017) took a novel 

approach by combining hyperspectral imaging (HSI) with NIRS to predict 

firmness, TA, and SSC in mangoes. Their study showed significant 

correlations between HSI data and mango firmness (r² = 0.81) and TA (r² = 

0.81), with a moderate correlation for SSC (r² = 0.5).  

The development of prediction maps enabled visualization of the 

spatial distribution of quality attributes within the fruit. This is particularly 

relevant for the industry, where non-destructive techniques like HSI could 

enhance grading processes by detecting quality variations across the fruit. 

Compared to the purely spectral approach of Polinar, Yaptenco, Peralta, and 
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Agravante (2019), which focused on using PLSR to predict DM and SSC in 

'Carabao' mango, the HSI method offers additional spatial information that 

could improve industrial sorting and grading capabilities. Further emphasizing 

industrial applications, Guru, Raghavendra, and Rao (2021) explored 

postharvest handling using AI-based solutions. Their work builds upon the 

foundational NIRS-based research by incorporating machine learning and 

deep learning approaches to automate the sorting and grading process. The 

comparative study between different AI methods demonstrated the promise of 

AI in improving postharvest handling efficiency, showing alignment with 

Polinar et al. (2019) in the potential for automation in the fruit supply chain. 

The importance of pre-processing methods in improving the accuracy 

of NIRS models was highlighted by both Purwanto et al. (2015) and 

Phuangsombut, Phuangsombut, and Terdwongworakul (2020). Purwanto et al. 

(2015) worked on developing calibration models for predicting both SSC and 

pH in 'Gedong Gincu' mangoes. The study found that proper pre-processing, 

such as smoothing and first derivative Savitzky-Golay filtering, significantly 

enhanced the accuracy of the models. For SSC, the best results were achieved 

using the smoothing method (r = 0.82), while for pH, first derivative filtering 

improved accuracy (r = 0.74). On the other hand, Phuangsombut et al. (2020) 

focused solely on predicting SSC in peeled and unpeeled mangoes.  

The study demonstrated that the accuracy of SSC predictions was 

higher for peeled fruit (r = 0.88) than for unpeeled fruit (r = 0.84). Applying 

an empirical approach to account for differences between the peel and flesh 

spectra further improved SSC predictions (r = 0.87), highlighting the 

importance of pre-processing in refining NIRS models for SSC prediction. 
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These findings align with Munawar, Hörsten, Mörlein, Pawelzik, and 

Wegener (2013), who found that spectral pre-processing (SNV for SSC and 

MSC for TA) improved the calibration model performance for predicting 

mango sweetness and acidity. These results demonstrate that pre-processing is 

critical in enhancing NIRS model accuracy beyond the choice of prediction 

models (PLSR, ANN, etc.). Mogollón et al. (2020) contributed valuable 

insights into detecting internal physiological disorders like jelly seed and black 

flesh using Vis-NIR spectroscopy. Although the study showed moderate 

accuracy (Logistic model accuracy of 71% after storage), it highlighted the 

challenge of differentiating between various internal disorders, suggesting that 

future research should focus on refining spectral models to better distinguish 

between these conditions. 

2.9.2. Non-Destructive Testing and Monitoring 

This section discusses studies on non-destructive techniques using NIR 

and Visible-NIR (VNIR) spectroscopy to assess mangoes' internal quality 

without damaging the fruit. These methods provide rapid and reliable 

predictions of key quality parameters, allowing producers and suppliers to 

make informed decisions, reduce postharvest losses, and improve product 

quality. The findings across several studies show how these technologies are 

applied for various purposes, from internal browning detection to quality 

determination. Some studies include Gabriëls, Mishra, Mensink, Spoelstra, 

and Woltering (2020), who demonstrated the effectiveness of VNIR 

spectroscopy, combined with Artificial Neural Networks (ANN), in detecting 

internal browning in mangoes, achieving a classification accuracy of over 

80%.  
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The ability to non-destructively differentiate between healthy and 

browned mangoes represents a significant advancement for postharvest quality 

control, where internal disorders are often difficult to detect through external 

inspection. A robust classification system like this can minimize postharvest 

losses by enabling early detection and removal of affected fruit from the 

supply chain. Similarly, Zakaria et al. (2021) used NIR and ANN models to 

detect Insidious Fruit Rot (IFR) in Harumanis mangoes, achieving an 

impressive prediction accuracy of 98.05%. This high level of accuracy 

demonstrates the potential of NIR combined with machine learning techniques 

in identifying internal fruit disorders, further supporting the findings of 

Gabriëls et al. (2020). Such early detection technologies are vital for ensuring 

the quality of exported fruits, particularly those destined for long-distance 

markets where internal disorders could go unnoticed. 

Marques et al. (2016) explored the feasibility of using handheld NIR 

spectrometers for assessing quality parameters such as soluble solids (SS), dry 

matter (DM), titratable acidity (TA), and pulp firmness (PF) in 'Tommy 

Atkins' mangoes. The study achieved high coefficients of determination for 

most parameters, with the SS model showing an r² value of 0.92, indicating 

that portable NIR devices can effectively monitor physico-chemical changes 

in fruit. This aligns with the findings of Taira et al. (2017), who also 

demonstrated that portable NIR devices help evaluate mango quality non-

destructively. 

 Developing portable devices is particularly important for field 

applications, allowing real-time decision-making in quality control and harvest 

timing. Subedi and Walsh (2011) evaluated the accuracy of visible-short 
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wavelength NIR (VIS-SWNIR) for predicting DM and total soluble solids 

(TSS) in mangoes. While the study found good performance for DM 

prediction across all ripening stages (r² > 0.75), TSS was accurately predicted 

only in ripened fruit. This outcome suggests that VIS-SWNIR may have 

limitations in distinguishing between starch and soluble sugars during the 

early stages of ripening. This finding contrasts Saranwong et al. (2004), who 

demonstrated that NIR spectroscopy could accurately predict ripe-stage eating 

quality (SSC) based on DM and starch content measured at harvest. This 

discrepancy may be attributed to differences in the spectral range or model 

calibration approaches used in the two studies. 

Integrating NIR spectroscopy with deep learning models for quality 

prediction has also shown promise. Nuanmeesri and Poomhiran (2022) 

combined image-based deep learning with NIR spectral data to classify the 

sweetness of ripe mangoes. Using enhanced spectral data, their model 

achieved a training accuracy of 99.66% and a validation accuracy of 94.20%. 

The study illustrates the potential of combining spectral data with advanced 

machine learning techniques to improve prediction accuracy. This approach 

aligns with the findings of Jha et al. (2012), who showed that NIR could 

predict TSS and pH in mangoes with reasonable accuracy, although their 

models did not achieve the same level of precision. Watanawan, Wasusri, 

Srilaong, Wongs-Aree, and Kanlayanarat (2014) examined the relationship 

between harvest maturity and NIRS values in export mangoes, focusing on 

how harvest quality correlates with NIRS readings and ripe-stage quality 

attributes. The study found that NIRS values were strongly correlated with dry 

matter content (r² = 0.96) and negatively correlated with fruit firmness (r² = 
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0.99). Moreover, the NIRS model accurately predicted TSS in ripe fruit with 

99% accuracy.  

This study demonstrates the utility of NIRS in determining optimal 

harvest maturity, particularly for export mangoes, ensuring better consistency 

in fruit quality. Rungpichayapichet et al. (2023) compared the use of NIR and 

hyperspectral imaging (HSI) to evaluate the internal quality of mangoes during 

ripening. While NIR provided better prediction accuracy for attributes like 

firmness and soluble solids, HSI was valuable for assessing spatial variation in 

fruit quality. The combination of NIR and HSI could potentially provide a 

more holistic approach to mango quality assessment, improving sorting and 

grading efficiency in industrial applications. 

2.9.3. Spectral Data Analysis and Model Optimisation  

This section discusses studies that focused on spectral data and the 

optimisation of models for predicting fruit quality, particularly using NIRS. 

Various studies have demonstrated that combining spectral pre-processing, 

advanced algorithms, and model tuning can significantly enhance the 

prediction accuracy of key quality traits in mangoes and other fruits. For 

instance, Mishra, Rutledge, Roger, Wali, and Khan (2021) examined the effect 

of chemometric pre-processing on NIR spectra. They found that pre-

processing can sometimes reduce models' predictive performance contrary to 

traditional assumptions. Partly least squares (PLS) and deep learning (DL) 

models performed better with raw absorbance than pre-processed data.  

The best results were achieved with DL models, which had a 13% 

lower root mean squared error of prediction (RMSEP) compared to PLS 

models. These findings suggest that raw spectral data contain useful scattering 
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information that could be lost through excessive pre-processing, highlighting 

the need to carefully consider pre-processing techniques in spectral data 

analysis. This contrasts with more conventional approaches where pre-

processing has been considered essential for enhancing prediction accuracy. In 

contrast, Khumaidi and Raafi’udin (2022) found that pre-processing, 

particularly spectral transformation methods such as smoothing and scatter 

correction, significantly improved classification accuracy for mango cultivars. 

Their study further showed that balancing the dataset using oversampling 

techniques like SMOTE (synthetic minority oversampling technique) led to 

higher classification accuracy in machine learning models, with Support 

Vector Machine (SVM) models achieving 100% accuracy.  

Passos and Mishra (2023) explored the application of convolutional 

neural networks (CNNs) for dry matter (DM) prediction in fresh fruit. The 

study findings demonstrated that CNNs outperformed traditional PLS and 

locally weighted PLS (LW-PLS) models, particularly when many training 

samples were used (around 500). The study highlights that CNNs, when 

properly optimized, offer a significant advantage in handling complex spectral 

data and generalizing across diverse fruit types. This result aligns with Mishra 

and Passos (2021), who also found that DL models could outperform PLS 

models when updated to account for seasonal variability, especially when 

large datasets are available. These studies collectively point to the growing 

importance of DL models in NIR spectral analysis, as they can provide robust 

and generalizable predictions with less reliance on traditional chemometric 

techniques. 
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The introduction of a model updating approach by Yang et al. (2022) 

further highlights the potential of DL models in handling variations across 

multiple seasons and sample sizes. Their model fine-tuning approach, which 

involved using limited samples to update the calibration, improved prediction 

accuracy across multiple fruit types, including mangoes. This dynamic 

updating process reduced RMSE by at least 9.2% compared to traditional 

global models or recalibration methods, demonstrating the effectiveness of 

deep learning in managing variability in spectral data collected across different 

growing conditions and seasons. 

The integration of machine learning techniques into spectral data 

analysis has also been explored by Chen et al. (2023), who employed Gaussian 

Process Regression (GPR) to improve the prediction of fruit traits. GPR 

outperformed PLSR, reducing RMSE by 14% in in-distribution tests. 

Additionally, incorporating variance into the model allowed for eliminating 

poorly predicted samples, further improving model accuracy. This approach 

presents an alternative to standard one-class classification methods, showing 

the potential of GPR for more refined spectral data analysis. Wohlers, 

McGlone, Frank, and Holmes (2023) demonstrated the value of data 

augmentation in enhancing the robustness of CNN models for NIR spectral 

analysis. By augmenting training data to mimic spectra collected from 

multiple devices, their study reduced overfitting and improved the 

generalization of the models.  

In addition to the focus on model improvement, Funsueb, 

Thanavanich, Theanjumpol, and Kittiwachana (2023) introduced a flexible 

approach to calculating Fruit Quality Indices (FQIs) by aggregating several 
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quality parameters (e.g., total soluble solids, titratable acidity, firmness, dry 

matter, etc.). The use of NIR spectroscopy combined with PLS regression 

allowed for rapid, non-destructive prediction of these indices, showing the 

broad applicability of NIR in fruit quality monitoring. Hayati, Munawar, and 

Fachruddin (2020) and Munawar, Hayati, and Fachruddin (2021) 

demonstrated the importance of enhancing NIR datasets and employing 

optimized spectral datasets to improve model performance in predicting 

quality parameters such as vitamin C and total acidity in mangoes. These 

studies highlight that even within traditional chemometrics, careful 

optimization of spectral datasets can significantly improve prediction accuracy 

and robustness, showing that data refinement remains a critical component of 

spectral analysis. 

2.9.4. Technological Innovations and Instrumentation 

The studies included in this section emphasized the transition toward 

more portable, efficient, and accurate tools for non-destructive fruit quality 

evaluation. The development of neural networks for spectroscopy has led to 

significant advancements in model accuracy and reliability. Dirks and Poole 

(2022) demonstrated that ensembling techniques combined with 

hyperparameter optimisation enhance the performance of neural networks in 

processing VNIR spectroscopy data. Using the latest data samples for 

validation further improved model robustness, making it a noteworthy 

contribution to predictive modeling in spectroscopy. This innovation opens 

possibilities for more automated configurations of machine learning models, 

ensuring higher accuracy in time-based predictions.  
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The automated configuration not only minimizes the need for manual 

intervention but also makes real-time quality control more feasible in 

agricultural processes. Cheng et al. (2019) contributed significantly by 

integrating VIS/NIR spectroscopy and ASCA analysis to assess mango drying 

processes. The study findings highlight the potential of spectral techniques to 

evaluate colour and chemical changes in mangoes under different drying 

conditions. The use of longwave NIR spectra to measure chemical alterations 

and shortwave VIS/NIR spectra to assess fruit maturity and batch effects 

highlights the versatility of these techniques. The study's findings demonstrate 

that the tunnel dryer provided a more consistent drying process than traditional 

dryers, emphasizing the importance of controlled drying environments in 

preserving mangoes' nutritional and chemical quality. This supports the 

broader use of NIR in optimizing postharvest processing methods.  

The exploration of miniaturized NIR spectrometers by Praiphui and 

Kielar (2023) demonstrates their potential for use in small-scale operations 

and portable devices. Although SCiO and Linksquare instruments showed 

promise for parameters like dry matter (DM), total soluble solids (TSS), and 

pH, other devices such as DLP NIRscan Nano underperformed. This suggests 

that while miniaturized spectrometers hold potential, further optimisation is 

needed for broader parameter evaluation. The development of such devices 

aligns with the industry's need for cost-effective, portable tools to deliver rapid 

and reliable quality assessments in real-time. Developing a microcontroller-

based portable NIR device by Izneid and Al-kharazi (2013) represents a step 

forward in creating affordable, user-friendly tools for smallholder farmers or 

industry operators. The voltage readings correlated with mango ripening 
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stages offer a simple yet effective method of assessing fruit quality, which is 

vital for postharvest monitoring.  

The ability of NIR spectroscopy to detect internal mango disorders, as 

demonstrated by Seehanam et al. (2022), provides a new avenue for improving 

postharvest management by identifying defects early. While the linear 

discriminant analysis (LDA) model achieved moderate accuracy, the artificial 

neural network (ANN) showed improved classification rates, especially in 

distinguishing black-streaked vascular tissue (BSV) from internal breakdown 

(IBD). This study emphasizes the relevance of non-linear analysis techniques, 

such as ANN, in enhancing the classification accuracy of internal disorders. 

Integrating fuzzy logic with NIR data to classify mango maturity presents an 

innovative method for handling overlapping maturity classes. Khumaidi, 

Purwanto, Sukoco, and Wijaya (2022) demonstrated that this approach 

significantly enhances the accuracy of maturity classification, particularly in 

complex datasets where traditional classification methods may fail. 

Combining fuzzy logic with machine learning techniques, such as support 

vector machines (SVM) and partial least squares (PLS), offers a robust 

framework for non-destructive quality assessment in mangoes. 

Tan and Chia (2023) provided valuable insights into the effects of pre-

processing methods on machine learning model performance in spectroscopy. 

Their work shows that artificial neural networks (ANNs) and principal 

component analysis (PCs-ANN) offer a robust, non-destructive internal 

quality prediction solution. The comparative performance of ANN and PCs-

ANN in different validation and prediction sets highlights the importance of 

pre-processing in optimizing model accuracy. The findings suggest that ANN, 
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despite its tendency to overfit, can be effectively applied to spectroscopy when 

combined with the right data pre-processing techniques. 

The ability to non-destructively determine vitamin C content using 

NIR reflectance spectroscopy, as shown by Munawar, Hayati, and Wahyuni 

(2019), further supports the growing application of NIRS in rapid fruit quality 

assessment. The high correlation between NIR readings and vitamin C levels 

demonstrates that spectroscopy can offer qualitative and quantitative 

evaluation of key nutritional components in fruits. This finding is particularly 

relevant for enhancing the nutritional value monitoring of mangoes and other 

perishable fruits in the supply chain. 

Shah et al. (2021) successfully developed a hand-held NIR device to 

classify the maturity state of mangoes with notable accuracy using K-nearest 

neighbors (KNN) algorithm. This portable device has the potential to 

revolutionize in-field maturity assessments, allowing farmers and suppliers to 

determine optimal harvest times non-destructively. With the accuracy 

achieved, such tools can reduce waste by minimizing premature or delayed 

harvesting and optimizing the supply chain from farm to market. Fourier 

transform NIR spectroscopy, as applied by (Munawar, von Hörsten, Wegener, 

Pawelzik, & Mörlein, 2016), demonstrated excellent potential for predicting 

soluble solids content (SSC), titratable acidity (TA) and ascorbic acid (AA) in 

mangoes. Using scatter-corrected spectra with multivariate calibration models 

(PLS and PCR) showed promising results, further validating the utility of NIR 

in non-destructive chemical analysis. The study adds to the growing evidence 

that NIRS, combined with chemometric techniques, is an effective method for 

rapid quality assessment in the food industry. 
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2.9.5. Applications of Machine Learning and Artificial Intelligence 

This section explores the applications of machine learning (ML) and 

artificial intelligence (AI) in conjunction with near-infrared spectroscopy 

(NIRS) for fruit classification, quality prediction, and ripening detection. The 

integration of ML techniques, including deep learning models, has shown 

significant potential in enhancing the accuracy and efficiency of these 

processes. Several studies have demonstrated the effectiveness of AI models 

in fruit recognition and quality assessment. For instance, Khanh Ninh, Doan, 

Khanh Ninh, Xuan Nguyen-Thi, and Le Thanh (2021) utilized a combination 

of NIRS and deep neural networks (DNNs) to classify different fruit types, 

achieving a high accuracy of approximately 99% for recognizing five fruit 

types, including apple, avocado, and mango. This study highlighted the 

superiority of DNN models, especially ResNet-based architectures, over 

traditional classifiers like k-nearest neighbors and support vector machines. 

Including spectral derivatives further improved the model's recognition 

accuracy by over 8%, indicating the importance of advanced feature extraction 

techniques in boosting model performance. 

Similarly, Chia and Suarin (2022) investigated the use of neural 

networks and XGBoost in quality prediction using a large dataset of NIR 

spectral data. Their findings revealed that while XGBoost achieved 

satisfactory accuracy, the Bayesian regularized neural network significantly 

outperformed it, with higher r² values and lower error margins. This suggests 

that neural networks, particularly those with regularization, are more effective 

in handling large and complex datasets in NIR spectroscopy applications, 

making them a preferred choice for predicting fruit quality parameters. 
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In addition to these models, Solihin, Zekui, Ang, Heltha, and Rizon 

(2021) introduced a visual programming approach using Orange Data Mining 

software to calibrate NIR data, demonstrating its accessibility for non-

programmers. This study emphasized the practical use of ML for NIRS data 

calibration, making sophisticated chemometric techniques more accessible to a 

broader audience, particularly in agricultural sectors where programming 

expertise may be limited. Moreover, Zeb, Qureshi, Ghafoor, and O’Sullivan 

(2022) focused on using shortwave NIR spectroscopy and the QDA classifier 

for fruit classification. The study achieved a test data accuracy of 93.02%, 

showing that fruit classification can be efficiently performed using key 

spectral features related to O-H and C-H overtones. This method has practical 

implications for developing LED-based devices for automated fruit 

classification, highlighting the potential of NIR-ML integration in commercial 

applications. 

Mishra and Passos (2021) explored transfer learning (TL) for updating 

deep learning models in spectral data processing in the context of model 

scalability. Their results indicated that TL approaches successfully adapted 

models to new scenarios, outperforming recent benchmarks. This suggests that 

TL can be crucial in making DL models more flexible and widely applicable, 

especially in dynamic environments such as agriculture, where data may 

change across seasons and geographical locations. Furthermore, Ulya, 

Chamidah, and Saifudin (2021) employed a multi-predictor local polynomial 

regression model to predict Avomango sweetness, achieving a mean absolute 

percentage error (MAPE) of 8.554%, classified as highly accurate.  
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Regarding food safety, Lakade et al. (2019) developed a novel NIR 

method for detecting artificially ripened mangoes using calcium carbide. The 

method distinguished between naturally and artificially ripened mangoes, with 

ICP-MS confirming higher arsenic levels in artificially ripened fruits. This 

rapid, non-invasive approach demonstrates how AI and NIRS can ensure food 

safety by detecting harmful substances in fruit ripening processes. 

Watanawan, Wasusri, Wongs-Aree, Srilaong, and Kanlayanarat (2012) 

evaluated the optimal maturity stage for harvesting 'Nam Dok Mai' mangoes 

using handheld NIR devices. Their results correlated NIR values with key 

quality parameters like dry matter content and total soluble solids, providing a 

non-destructive method for determining the optimal harvesting time for 

export-quality mangoes. This method underscores the utility of AI-NIR 

integration in improving postharvest decision-making and reducing fruit losses 

during export. 

2.10. Summary and Directions for Future Research 

The bibliometric analysis highlights the field's multidisciplinary 

nature, combining spectroscopy, chemometrics, agricultural science, and, 

increasingly, data science and artificial intelligence. Key research themes 

include non-destructive quality assessment, prediction of various fruit 

parameters (e.g., soluble solids content, firmness, acidity), and the application 

of advanced data analysis techniques. The evolution of research topics shows a 

clear shift from basic concepts and techniques in the early years (2003-2014) 

to more sophisticated approaches in recent years (2021-2023), including 

integrating machine learning and artificial intelligence for spectral data 
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analysis. Prominent journals in the field span horticulture, food science, and 

spectroscopy, indicating the diverse applications of NIRS in fruit analysis.  

Acta Horticulturae leads in publications, followed by journals focused 

on postharvest biology, food engineering, and near-infrared spectroscopy. This 

diverse range of journals indicates the broad impact of NIRS across various 

aspects of fruit production, quality assessment, and food science (Cen & He, 

2007; Ncama et al., 2018). Institutions from multiple countries are actively 

involved in research, with Zhejiang University leading in publications and 

other Chinese institutions and universities from countries like South Africa, 

Spain, Italy, and Australia. The review of top papers reveals successful 

applications of NIRS in predicting various quality parameters across different 

fruits.  

These studies have demonstrated the effectiveness of NIRS in 

measuring soluble solids content, acidity, firmness, and other quality attributes 

in fruits such as apples, pears, mangoes, grapes, and citrus fruits (Fan et al., 

2009; Gómez et al., 2006; Li et al., 2013; Magwaza et al., 2012). The research 

also shows the potential of portable NIRS devices for on-site analysis, which 

could revolutionize quality control processes in the fruit industry (Pérez-

Marín, Paz, Guerrero, Garrido-Varo, & Sánchez, 2010). Moreover, studies 

have explored the integration of NIRS with other technologies like 

hyperspectral imaging and data fusion techniques to enhance prediction 

accuracy and expand the range of measurable parameters (Lee et al., 2014; 

Nogales-Bueno et al., 2014). 

Advanced analytical techniques, including chemometrics, principal 

component analysis, and partial least squares regression, have been widely 
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used to interpret the complex spectral data obtained from NIRS measurements 

(Amuah et al., 2019; Mahanti & Chakraborty, 2020). More recently, there has 

been a growing trend toward applying machine learning and deep learning 

algorithms to improve prediction accuracy and handle the high-dimensional 

nature of spectral data (Ninh, Phan, Ninh, & Le Thanh, 2022; Rong, Wang, 

Ying, Zhang, & Zhang, 2020). This shift towards more sophisticated data 

analysis methods suggests a growing need for interdisciplinary expertise 

combining spectroscopy, agriculture, and data science. The research also 

highlights the importance of non-destructive measurement techniques in fruit 

analysis.  

NIRS has been shown to be effective in assessing both internal and 

external quality attributes of fruits without damaging the sample, which is 

crucial for reducing waste and allowing repeated measurements of the same 

fruit over time (Arendse et al., 2018; Shah et al., 2021). This non-destructive 

nature of NIRS makes it particularly valuable for applications throughout the 

fruit supply chain, from harvest to retail. Studies have also focused on specific 

compounds in fruits, such as carotenoids, sugars, and polyphenols (Lamptey et 

al., 2023; Martínez-Valdivieso et al., 2014; Toledo-Martín et al., 2018). NIRS 

has been successfully applied to quantify these compounds, providing valuable 

information about fruit nutritional content and maturity (Lamptey et al., 2023). 

This application of NIRS extends beyond basic quality control to more 

detailed compositional analysis, which could have significant implications for 

nutritional studies and targeted fruit breeding programs.  

The analysis also reveals a growing interest in applying NIRS for 

detecting and classifying fruit diseases, defects, and origins (Eisenstecken et 
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al., 2019; Ghooshkhaneh, Golzarian, & Mollazade, 2023; Raghavendra et al., 

2021). Several studies have demonstrated the potential of NIRS, often in 

combination with other spectroscopic techniques or imaging methods, to 

identify diseased fruits, detect internal defects, or classify fruits based on their 

geographical origin (Eisenstecken et al., 2019; Ghooshkhaneh et al., 2023; 

Raghavendra et al., 2021). This expanding application area could significantly 

impact fruit production and trade, enhancing disease management strategies 

and supporting geographical indication certifications. 

Based on these findings, several potential research directions can be 

deduced: first, there is a need for further research on integrating NIRS into 

fruit processing lines for continuous, real-time quality assessment (Grassi & 

Alamprese, 2018). This could involve developing robust calibration models to 

handle the variability introduced by moving fruits and changing environmental 

conditions. Also, future research could focus on combining NIRS with other 

non-destructive techniques like hyperspectral imaging, thermal imaging, or 

nuclear magnetic resonance to provide a more comprehensive fruit analysis 

(de Carvalho, Pereira, de Morais, de Lima, & de Almeida Teixeira, 2019; 

Varith, Hyde, Baritelle, Fellman, & Sattabongkot, 2003; Zhang et al., 2020).  

This multi-sensor approach could potentially overcome some 

limitations of individual techniques and provide a more complete picture of 

fruit quality. Furthermore, the trend towards machine learning and artificial 

intelligence in spectral data analysis will likely continue. Future research 

could explore more sophisticated algorithms, including deep learning 

architectures designed explicitly for spectral data, to improve prediction 

accuracy and handle increasingly complex datasets (Ninh et al., 2022; Rong et 
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al., 2020). While much research has focused on common fruits like apples and 

citrus, there is potential to expand NIRS applications to a broader range of 

fruits, including tropical and exotic varieties. 

Additionally, research could explore new quality parameters or 

compounds that can be measured using NIRS. Developing standardized 

protocols for NIRS measurements and data analysis could enhance 

comparability across studies and facilitate the transfer of calibration models 

between different instruments or locations. This could be a crucial step 

towards wider industrial adoption of NIRS technology.  

Further research into using NIRS for early, non-destructive detection 

of fruit diseases or internal defects could significantly impact fruit production 

and storage practices (Eisenstecken et al., 2019; Ghooshkhaneh et al., 2023; 

Raghavendra et al., 2021). This could involve developing more sensitive 

instruments or refining data analysis techniques to detect subtle spectral 

changes associated with early disease or defect development stages. 

Furthermore, exploring the use of NIRS in field conditions for assessing fruit 

quality on the tree could support precision agriculture practices (Saranwong, 

Sornsrivichai, & Kawano, 2003). This might involve developing robust, 

portable NIRS devices capable of withstanding field conditions and providing 

real-time data to inform harvesting decisions. 

Further research into miniaturizing NIRS devices and reducing their 

cost could promote widespread adoption, particularly among smaller 

producers or developing countries (Izneid & Al-kharazi, 2013). This could 

involve exploring new materials or designs for NIRS components. Research 

could also focus on how NIRS can be used throughout the fruit supply chain to 
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reduce food waste. This might involve developing prediction models for shelf 

life or optimal ripeness, allowing for better management of fruit inventories 

(Rungpichayapichet et al., 2016; Shah et al., 2021).  

Furthermore, as climate change affects fruit production (Bhattacharjee, 

Warang, Das, & Das, 2022), research could explore how NIRS can be used to 

monitor and predict changes in fruit quality due to varying environmental 

conditions. This could provide valuable data for adapting agricultural practices 

to changing climates. Research into developing consumer-friendly NIRS 

devices for assessing fruit quality at the point of purchase could empower 

consumers and drive improvements in fruit quality throughout the supply 

chain (Lee et al., 2017).  

Further research is needed to develop calibration models that account 

for biological variability in fruits, including differences due to cultivar, 

growing conditions, and season (Anderson, Walsh, Subedi, & Hayes, 2020). 

This could involve exploring new ways to incorporate this variability into 

predictive models. Finally, expanding research into NIRS for detecting food 

fraud or authenticating premium fruit products could significantly affect food 

safety and international trade (Torres, Sánchez, Vega-Castellote, & Pérez-

Marín, 2021). 

2.11. Conclusion 

Near-infrared spectroscopy (NIRS) has demonstrated significant 

potential in the non-destructive assessment of fruit quality, where it has shown 

high accuracy in predicting essential quality parameters such as total acidity, 

soluble solids content, and internal physiological disorders. Integrating 

machine learning models, particularly artificial neural networks and deep 
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learning, has further enhanced the accuracy of NIRS in predicting fruit quality 

traits, enabling more efficient and precise assessments.  

The development of portable NIRS devices and hyperspectral imaging 

have made NIRS applications more accessible for in-field use, offering real-

time quality assessments that can significantly reduce postharvest losses. This 

study has revealed the extensive research conducted in NIRS and fruit quality, 

highlighting the global interest and collaborative efforts that drive 

advancements in this area. The future of NIRS in fruit quality assessment lies 

in improving real-time capabilities, enhancing device portability, and 

expanding its application to a broader range of fruit varieties. As the 

technology continues to evolve, NIRS has the potential to significantly impact 

global fruit production, quality control, and sustainability efforts. 
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Abstract 

There are several varieties of mango fruits, and the most important quality 

indicators for determining mango maturity are pH and total soluble solids 

(TSS). The study examined the possibility of using a handheld NIR 

spectrometer (NIRS) with a wavelength range of 740 nm to 1070 nm and 

multivariate algorithms in combination with a smartphone to determine the 

varieties and maturity of mangoes. A total of 198 intact mango fruits were 

scanned with the NIR spectrometer, while a digital refractometer and pH 

meter were used to measure TSS and pH from the extracted mango juice. 

After using several preprocessing methods, multivariate classification models 

were created using support vector machine (SVM), linear discriminant 

analysis (LDA), random forest (RF), neural network (NN), and a new 

classifier (LDA-SVM) to identify the varieties. Partial least square regression 

methods, such as interval partial least square (IPLS), synergy partial least 

square (Si-PLS), and back interval partial least square (Bi-PLS), were used to 

build quantitative models for determining TSS and pH of the fruits. Among 

the identification techniques, the RAW, MC, SNV, FD, and SD plus LDA-

SVM could identify mango fruit varieties 100% accurately in the training set 

and 97.44% in the prediction set. For quantification, the best model for TSS 

and pH measurements in mango is Si-PLS, with an r2 value of 0.63, an 

RMSEP value of 1.83, an r2 value of 0.81, and an RMSEP value of 0.49, 

respectively. The study demonstrated that rapid and non-destructive 

assessment of TSS and pH could be achieved using handheld NIR coupled 

with suitable chemometric tools.  

Keywords: Mango, NIR spectrometer, Total soluble solids, pH, Varieties 
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3.1 Introduction  

Mango (Mangifera sp.) is one of the fruits that contributes the most to 

global economies. It belongs to the Anacardiaceae family's Mangifera genus. 

The mango fruit is prized for its delicious flavor, distinctive fragrance, and 

health advantages (Lawson, Lycett, Mayes, Ho, & Chin, 2020). A wide range 

of minerals and phytochemicals are present in the fruit. The fruit contains 

prebiotic dietary fibre carotenoids, vitamin C, and polyphenols. The chemical 

composition of mango pulp varies with the location of cultivation, variety, and 

stage of ripeness (Tharanathan et al., 2006). The most crucial element 

affecting fruit quality and storage life is maturity at harvest. When ripe, 

immature fruits have a lower-quality flavor and are more prone to mechanical 

damage and shriveling. Soon after harvest, overripe fruits will likely taste 

bland and become mealy and mushy. Physiological issues after harvest are 

more likely to affect crops harvested too early or late in their season (Kader, 

1997).  

According to Jha et al. (2007), fruits harvested before they are fully 

ripe do not ripen consistently and may show severe shrinkage and poor 

sweetness levels. Even ethylene or acetylene treatment cannot fully develop 

immature fruits with the right fragrance, flavor, and taste. Besides, harvested 

overripe fruits have a shorter shelf life and are more prone to infection. Some 

chemical indicators have also determined mango ripeness, including starch, 

TSS, TA, phenolic compounds, carotenoids, and DM content (Jha, Kingsly, & 

Chopra, 2006). TSS and pH are significant inner quality indicators of fruit 

ripeness and postharvest quality among mango fruit internal quality 

characteristics. For instance, when estimating fruit maturity and harvest time 
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and assessing and grading fruits, TSS is one of the most valuable internal 

quality parameters (Peng & Lu, 2008).  

Currently, destructive methods are used in the standard procedure for 

determining the internal quality criteria of fruits like mangoes. Typically, this 

approach is wasteful and labor-intensive. It results in expensive analysis costs 

and prevents the examination of the entire crop of fruits because it necessitates 

specialized equipment and sophisticated methods and requires trained workers 

to operate them (Cortés et al., 2016). In addition, a representative sample is 

frequently used to forecast all the crops, which typically results in estimation 

errors. Therefore, a quick, non-destructive prediction of TSS in mango fruits 

would be beneficial in figuring out when to harvest them for the most 

excellent consumption quality. This would be the perfect time to meet the 

growing customer demand for trustworthy, high-quality fruits. Innovative 

technologies, notably non-destructive evaluation techniques, are quickly used 

to track fruit quality modifications throughout the postharvest life. These 

quick and non-destructive techniques can provide conclusive criteria to attain 

better-quality mango products and encourage eating fruits with improved 

health benefits. The first factor affecting some of a commodity's quality 

characteristics is its genetic makeup (Faniadis, Drogoudi, & Vasilakakis, 

2010). Currently, mango cultivars are identified phenotypically. However, due 

to the impact of the environment and the dearth of distinguishing features, 

cultivar identification solely based on phenotypic traits is erroneous (Jha et al., 

2013).  

Different molecular techniques, including simple sequence repeats 

(Razak et al., 2020; Ajayi, Olawuyi, Ayodele, & Faneye, 2019), RAPD, and 
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ISSR, have been used to attempt some molecular identification of mango 

cultivars (Tu, 2019). However, these methods are destructive, and the tested 

fruit cannot be sold. Analyzing mango quality factors can alternatively be 

done using near-infrared spectroscopy. This technique offers quick and non-

destructive food safety and quality detection. It has been adopted for 

quantitative and qualitative testing in the food industry. Near-infrared 

spectroscopy is a helpful tool that is simple, fast, non-destructive, and requires 

little to no sample preparation. Some researchers have employed NIRS to 

measure some quality parameters in pineapples, cocoa, and strawberries 

(Amuah et al., 2019; Anyidoho, Teye, & Agbemafle, 2021; Anyidoho, Teye, 

Agbemafle, Amuah, & Boadu, 2021; Mancini et al., 2020). Others employed 

NIRS to determine the quality of mango fruits like total soluble solids 

(Schmilovitch, Mizrach, Hoffman, Egozi, & Fuchs, 2000), vitamin C and TA 

(Munawar et al., 2019),  and β-carotene (Rungpichayapichet et al., 2015). At 

the time of this research and to the best of our knowledge, no research has 

addressed the feasibility of using a handheld NIRS combined with 

chemometric methods to discriminate between different mango cultivars and 

predict TSS and pH without causing damage. 

3.2. Materials and Methods 

3.2.1. Mango Fruit Samples  

One hundred and ninety-eight (198) mango fruits were obtained from 

Ministry of Food and Agriculture registered farmers, Somanya, Eastern 

Region, Ghana. These fruits were harvested at different ripening stages and 

conveyed to the School of Agriculture Teaching and Research Laboratory, 

University of Cape Coast (UCC). These fruits include 34 Keitt mango fruits, 
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66 Haden fruits, and 98 indigenous fruits (local). Before measurements were 

performed, these fruits were stored for two days at 26°C (1°C).  

3.2.2. NIR Spectroscopy Measurement 

Each mango's spectrum was collected in the reflectance mode utilizing 

a portable NIRS (SCIOTM), having a spectral range of 740 nm to 1070 nm and 

a resolution of 1 nm. The centre of all the fruits was scanned thrice after being 

rotated 120 degrees. Fruits were scanned at a temperature of 26 °C and a 

relative humidity of 60%. Figure 3.1 shows the setup of the scanning 

processing using a SCIO NIR spectrometer with the three varieties of mango 

fruits. 

3.2.3. Reference Method (TSS/°Brix and pH) 

A digital refractometer (model: PAL-1, °Brix range of 0-35%; Atago, 

Tokyo, Japan) was used to calculate the total soluble solids (TSS) contents 

following the protocols described by others (Abarra, Serrano, Sabularse, 

Mendoza, & Rosario, 2018). The results of three replicate readings were 

represented as degrees Brix.  The juice from the fruits was dropped directly 

into the refractometer for the TSS measurement, and the refractometer was 

calibrated and cleaned after each measurement using distilled water. 

pH of the scanned mangoes was measured destructively with a digital pH 

meter, and the average values were noted in triplicate. 

3.3. Statistical Analysis 

3.3.1. Data Partition 

The raw dataset (from the 198 samples) was divided into two subsets 

after the proper preprocessing using Kennard stone algorithm: the calibration 

set (data from 139 samples) for model creation and the prediction set (data 
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from 59 samples) to evaluate the predictive capacity of the model built. To 

prevent bias, the calibration set was selected from 70% of the data, and the 

prediction set was selected from the remaining data of all types. 

3.4 Software Device 

Utilizing a research license obtained from the SCIO lab, recordings of 

spectral data were downloaded, along with the associated reference value 

recorded at the time of scanning, and imported into MATLAB version 9.5.0 

(Mathworks Inc., USA) using Windows 10 Basic for data. 

3.5 Spectral Data Preprocessing 

Five preprocessing strategies, comprising mean centering (MC), 

multiplicative scatter correlation (MSC), standard normal variant (SNV), first 

derivative (FD), and second derivative (SD), were utilized in comparison to 

achieving the best performance out of the model. To create precise, 

dependable, and constant calibration models, noise from the raw spectra and 

other background data were removed during preprocessing. As shown in 

Figure 3.2(a), the raw near-infrared spectra of the mango fruits provide useful 

and unwanted information. This can be due to interferences from light 

scattering from the materials, inconsistent spectra, temperature changes, or 

background sounds (Jha & Garg, 2010). As a result, it was decided to utilize 

chemometric pretreatment of the dataset to maintain the similarities and 

differences between the preliminary observations while only acquiring the 

useful features of the samples.  

To achieve this, five spectrum preprocessing techniques—MC (mean 

centering), MSC (multiplicative scatter correction), SNV (standard normal 

variant), FD (first derivative), and SD (second derivative)—were utilized in 
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MATLAB version 9.6.0, as illustrated in Figures 3.2(b)-3.2(f). Mean centering 

is a method of spectral preprocessing that involves calculating the dataset's 

mean spectrum and subtracting the mean from each spectrum. The first 

derivative preprocessing method reduces baseline effects by comparing the 

spectra of two subsequent measurement locations. The second derivative 

transformation algorithm separates overlapped peaks and improves resolution, 

removing the additive and multiplicative baseline within the spectra. The 

Savitzky-Golay technique was utilized to smooth the NIR spectra before 

applying the SD preprocessing procedure. Generally speaking, the linearity 

and corrected offset in NIR data were most enhanced using the Savitzky-

Golay smoothing SD technique. 

3.6. Principal Component Analysis (PCA) 

After the initial preprocessing treatment of the spectra data, this work 

employed principal component analysis (PCA) as an unsupervised pattern 

recognition approach to display data trends in a dimensional space as score 

plots. A common technique for lowering the size of a data matrix is PCA, 

which divides the data into basic components with understandable variables. 

The most valuable data in PCA is found in the top three principal components 

(PCs), which frequently highlight pertinent information while minimizing or 

eliminating redundant data. Typically, in descending sequence, PC1, PC2, 

PC3, PC4, PC5, etc., explain and provide pertinent information (Anyidoho et 

al., 2021). 

3.7. Identification Model 

Different multivariate characterization and quantification procedures 

were systematically explored after carefully choosing the optimum spectrum 
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pretreatment method, and choosing the appropriate type is crucial in 

subsequent analyses. Support vector machine (SVM), linear discriminant 

analysis (LDA), random forest (RF), neural network (NN), and a new 

classifier, LDA-SVM, were the multivariate systems used in this experiment 

(Alolfe, Mohamed, Youssef, Mohamed, & Kadah, 2009; Xiong & 

Cherkassky, 2005), for the identification of the problem. The outcomes of the 

LDA-SVM classifier were contrasted with those of the SVM, LDA, RF, and 

NN. With customized kernel functions, SVM learning methods can imitate 

complicated non-linear boundaries while exhibiting good performance when it 

comes to generalization. SVM has recently been instituted in chemometrics 

and has proven effective in classifying near-infrared spectra. SVM maximizes 

the inter-class geometric margin while minimizing the empirical classification 

error (Devos, Ruckebusch, Durand, Duponchel, & Huvenne, 2009). The 

typical approach for reducing the spectral dimension is linear discriminant 

analysis. It uses the samples' prior knowledge and experience during 

dimensionality reduction. Projecting spectral data from more excellent 

measurements to lesser dimensions while maximizing space within classes and 

minimizing space within classes is the main goal of LDA (Qi, Wu, Yang, Wu, 

& Fu, 2022). 

 Random Forest (RF) has drawn more interest in vis-NIR spectral 

studies in several fields. It has several benefits, including resilience to 

disturbances, the capacity to be employed regardless of whether the predictor 

variables exceed the data, facing minor overfitting, and evaluating variable 

relevance. When introducing variability to the general spectrum library, 

random forest can manage non-linear and hierarchical behaviours to anticipate 
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local samples (Nawar & Mouazen, 2019). The NN is one of the machine 

learning (ML) methods. The neural network is the most commonly utilized 

model because of the vast dataset that is now available, robust computing 

capabilities, and advanced algorithm architecture. NN is a type of supervised 

ML, and it has been established that a network with only a hidden layer but 

sufficient neurons can express an arbitrary function. Neural networks have 

strong evaluation abilities for denoting complex, non-linear relations between 

input and output features. The input layer, hidden layer, and output layer are 

the three layers that make up the architecture of a NN (Qi, Chen, Li, Cheng, & 

Li, 2019). 

3.7.1 Quantification Model 

In the process of building the models for TSS and pH of mangoes, full 

spectrum partial least square regression method and different types of partial 

least square regressions, interval partial least regression (IPLS), synergy 

partial square regression (Si-PLS), and back interval partial least square 

regression (Bi-PLS) were utilized to create subsequent models amongst the 

spectra fingerprinted data and wet chemistry data. The performance of the 

multivariate models was estimated employing the coefficient of determination 

(r2, Eq.(1)), the root mean square error of calibration (RMSEC, Eq.(2)), the 

root error of prediction (RMSEP, Eq.(3)), bias (bs, Eq.(4)), and the residual 

predictive deviation (RPD, Eq. (5)). As a good rule of judgment; a suitable 

robust model should have a high RPD, a high coefficient of determination 

value, a low root mean square error, and bias values (Liu, He, Wang, & Sun, 

2011). MATLAB was used to compute all the statistical analyses. These 

parameters were calculated using the equation other researchers used 
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(Arendse, Fawole, Magwaza, Nieuwoudt, & Opara, 2017; Liu, Sun, & 

Ouyang, 2010; Teye et al., 2023; Williams, 2014).  

r2 = 1 - 
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

∑ (𝑦𝑖−𝑦̅)2𝑛
𝑖=1

    (1) 

𝑅𝑀𝑆𝐸𝐶 = √
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

𝑛
      (2)   

𝑅𝑀𝑆𝐸𝑃 = √
∑ (𝑦𝑖−𝑦𝑖̂)2𝑛

𝑖=1

𝑛
      (3) 

Bias = 
1

𝑛
 ∑ (𝑦𝑖̂ − 𝑦𝑖)

2𝑛
𝑖=1    (4) 

RPD = 1/ (1- r2)1/2    (5) 

where n = the number of samples 

yi = the reference measurement results for sample i 

𝑦𝑖̂ = the estimated results of the model for the sample i 

and 𝑦̅ = the mean of the reference measurement results for all samples in the 

data set. 

3. 8 Results 

3.8.1 Reference Measurement and Data Partitioning  

The data set of 198 sample spectra was split into two subsets: the 

calibration set (139, used for building the model) and the prediction set (59, 

used for testing the model's applicability). All 198 samples were randomly 

picked for calibration and prediction sets to prevent selection bias. The 

calibration set was made up of three samples out of every five, while the 

prediction set was made up of the remaining samples. Table 3.1 shows the 

mean and standard deviation of the mango varieties' pH and TSS parameters. 
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3.8.2. Spectra Profile 

Attractive traits can be seen in the mango fruits' scanned spectrum 

profiles. As seen in Figure 3.2, the raw spectra (Figure 3.2a) indicated some 

specific information with little observed peaks and some noise; as a result, the 

raw spectra were preprocessed using several techniques. Figures 3.2b, 3.2c, 

and 3d indicate several peaks in the MC, MSC, and SNV around 975. While 

SD exhibited several peaks at 820, 840, 920, 940, 980, 1010, 1020, and 1040, 

FD showed peaks around 825 and 950. This is because spectral derivation is a 

great mathematical technique for removing baseline drafts and improving and 

sharpening spectral features (Hong et al., 2019). To eliminate the vertical 

offsets and linearly sloping baselines, the first and second derivatives are 

frequently computed and smoothed using SG smoothing (Jiao, Li, Chen, & 

Fei, 2020).  

The wavelength range corresponds to the H2O, ROH, ArOH (OH bond 

on the aromatic group), and NH2 functional group (N-H 3rd overtone, O-H 

2nd overtone, and N-H 2nd overtone) (Cen & He, 2007; Stuart, 2004). The 

main components of mangoes, including their water, glucose, sucrose, and 

cellulose, are associated with these groups. Total soluble solid is an organic 

molecule containing C-H, O-H, C-O, and C-C bonds that might be non-

destructively measured using NIR spectroscopy (Amuah et al., 2019). The 

mean spectrum of the scanned samples was determined to make sure the 

samples differed from one another, as seen in Figure 3.3. 

3.8.3. Principal Component Analysis   

The spectra cluster trends were found using PCA. According to the 

results, PCA performed on raw, MSC, and SNV preprocessed spectra data did 
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not provide any clear trends or separations, as shown in Figures 3.4 (a), (c), 

and (d). However, as seen in Figure 3.4(f), SD-PCA provided a separation 

with a distinct cluster trend. From the 198 samples, the top three PCs were 

PC1 (66.56%), PC2 (26.44%), and PC3 (1.40%). It demonstrates that the top 

three PCs can account for 94.40% of the variance data from the spectra 

dataset, which includes the pertinent biochemical data in the samples. Mango 

fruits with the same traits are grouped closely by employing the PCA 

approach, which extracts relevant information and eliminates unnecessary 

ones. As a result, the graphical output may be utilized to identify differences 

between the various types of mango fruits that were used. Three varieties of 

mango fruits were employed in the study, as shown in Figure 3.4(f).  

The groupings comprise a broader array of mango fruits. The graphical 

plot provides pertinent details that might be utilized to distinguish between 

Keitt, Haden, and local varieties of mangoes. Although PCA is not a 

classification method, it could visualize dimension space and reveal data 

trends (Anyidoho et al., 2021). Figure 3.5 illustrates the PC loadings with 

three principal components, which explain the cluster trend observed in the 

PCA score plot. The major peaks revealed were around 742nm, 745nm, 

788nm, 812nm, 835nm, 853nm, 878nm, 899nm, 933nm, 959nm, 982nm, 

1005nm, 1044nm, and 1068nm, for PC1, 744nm, 747nm, 787nm, 813nm, 

824nm, 843nm, 859nm, 875nm, 926nm, 945nm, 974nm, 1004nm, 1033nm, 

and 1062nm for PC 2, and 745nm, 748nm, 752nm, 767nm, 781nm, 796nm, 

815nm, 834nm, 848nm, 864nm, 884nm, 898nm, 924nm, 957nm, 980nm, 

999nm, 1034nm, and 1068nm for PC3. These wavelengths are associated with 
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the third overtones of C-H, N-H, O-H and the 3rd overtones of O–H, N–H, C–

H (Ozaki, Christy, & McClure, 2006). 

3.8.4. Performance of the Identification Models. 

The PCA was unable to effectively categorize mango fruits according 

to their varieties. Thus, a qualitative analysis was carried out using SVM, 

LDA, NN, RF, and LDA-SVM. The outcomes of several classification models 

for differentiating between mango varieties are shown in Table 3.2. There are 

advantages and disadvantages to every multivariate classification algorithm. 

Table 3.2 demonstrates how, except for the LDA model, the SD processing 

significantly improved the performance of all multivariate classification 

methods in the calibration set and prediction set. Other researchers obtained 

similar results and found that raw preprocessing performed better than MSC 

and SNV (Li, Peng, Li, Yang, & Chao, 2020).  

In the calibration set, the SVM model's best classification rate was 

91.25%, and in the prediction set, it was 92.50% at the optimum number of 3 

PCs. The optimal classification rate for NN was 87.50% for the calibration set 

and 77.50% for the prediction set. The best classification rate for RF was 

90.63% for the calibration set and 92.50% for the prediction set. However, for 

LDA, the best classification rate for the calibration set was 81.25% and 

85.00% for the prediction set. From the study results, the LDA-SVM model 

was superior to the other models. In the training set, the LDA-SVM model 

attained a classification accuracy of 100%, and the training set attained a 

classification accuracy of 97.44% for samples preprocessed with MC, SNV, 

FD, and SD.  
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3.8.5. Optical Variable Selection 

Effective variable selection is utilized to boost a model's performance 

to the highest possible level. The ideal range for pH and total soluble solids 

(TSS) using SiPLS is shown in Table 3.3. The intervals chosen for pH were 

[2,7,10,17], and for TSS, were [7,13,16] with RMSECV = 1.85355 and 

0.52015, respectively. As shown in Figure 3.6, the wavelengths chosen for 

TSS were 830–844, 910–993, and 959–972 nm in the complete spectrum 

employed (740–1050 nm). These wavelengths are associated with the third 

overtones of C-H and N-H and the second overtones of N-H and O-H. 

To determine the pH, the wavelengths selected 758–775 nm, 848–865 nm, 

901–917 nm, and 1020–1036 nm correlate to the 3rd overtones of O–H, N–H, 

and C–H, and the 2nd overtones of N–H and O–H, which are related to acidity 

in the mango sample (Ozaki et al., 2006). 

3.8.6. Comparative Performance of TSS and pH Models 

The effective variable selection performance comparison models for 

pH and TSS are displayed in Table 3.4. From the table, it was seen that 

various PLS algorithms have distinctive strengths. The performance of full 

PLS and IPLs denoted poor results comparatively. These were below 0.66 and 

0.79 for TSS and pH, respectively. This could be explained by the fact that the 

whole spectrum comprises some spectral variables that are unrelated and 

collinear. This could influence its ability to predict and stabilize the derived 

model. Even though IPLS chose the broadest spectrum that matches TSS and 

pH, fixing the full PLS's flaw, it only utilized intervals, ignoring other relevant 

spectral information.  
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To overcome this, other variable selection techniques were used; Si-

PLS and Bi-PLS algorithms were tried to give the optimum model for 

determining TSS and pH. Si-PLS for TSS and pH outperformed the other 

models with r2= 0.63 and 0.81 under the first derivative preprocessing 

technique for TSS and the second derivative preprocessing technique for pH, 

respectively. For TSS, the RPD ranges from 1.25 - 1.78, whereas for pH, the 

RPD ranges from 1.54 - 3.35. An RPD value of 2-2.5 suggests that the model 

can make coarse quantitative predictions, while values of 2.5–3 or higher 

indicate that the model can make good and excellent predictive accuracies. An 

RPD of 1.5–2 indicates that the model can distinguish between low and high 

response variables (Amodio, Ceglie, Chaudhry, Piazzolla, & Colelli, 2017). 

The bias and residual prediction deviation (RPD) for the best model for each 

predicted parameter are given in Table 3.4.  

3.9 Discussion 

This study shows significant potential for the straightforward usage of 

portable NIR technology by mango farmers to predict the TSS and pH of 

mangoes in domestic and international markets. Figures 3.7a and b present the 

correlation between the reference recommended method values and the NIR 

spectroscopic estimated values for TSS and pH in mango fruits, respectively. 

It must be noted that the final TSS of mangoes ranges from 14 to 20% (Subedi 

& Walsh, 2011), at which the fruit is ripe, sweet, and has a good flavor. The 

TSS level in mangoes is also essential for determining the best time for 

harvesting. Harvesting at the right time ensures the fruit has the right sugar 

content, flavor, and texture. Mangoes harvested too early may have low total 

soluble solids, while those harvested too late may have high total soluble 
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solids and may be overripe (Halepotara, Kanzaria, Rajatiya, Solanki, & 

Dodiya, 2019). Mangoes are considered acidic fruits, with a pH range of 3.8 to 

4.5 (Bekele, Satheesh, & Sadik, 2020).  

The pH level of mangoes can be affected by factors such as variety, 

maturity stage, and environmental conditions. A low pH level in mangoes is 

desirable as it helps to enhance their flavor and can also act as a natural 

preservative, preventing the growth of spoilage microorganisms, mainly 

bacteria (Saranraj & Geetha, 2012). The results demonstrated that NIR 

spectroscopy has the potential to forecast mango ripeness and quality 

parameters without causing damage to the fruit. The study's findings would 

enable the growers to maximize their earnings by only harvesting mangoes at 

ideal maturity. Above all, this might be used as the foundation for commodity 

pricing, quality assurance, and automatic sorting systems.  

The second derivative treatment outperformed the other preprocessing 

methods in the comparative analysis of the PCA cluster by clearly displaying a 

cluster trend, as seen in Figure 3.4f. The biochemical makeup of each mango 

fruit, which varies depending on the variety, can be used to explain the 

clustering. The contributions of the three topmost PCs were 94.40% of the 

total variation in the initial data. However, PCA is not a classification method; 

hence, it cannot provide precise identification. However, lowering 

dimensionality may conserve a lot of variation in a high-dimensional space. 

Five pattern recognition algorithms that can solve identifying issues 

were used in this study. Pattern recognition techniques such as SVM, LDA, 

RF, NN, and LDA-SVM were used to create a classification model. The LDA-

SVM model attained a classification accuracy of 100% in the training set. The 
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training set attained a classification accuracy of  97.44% for samples 

preprocessed with MC, SNV, FD, and SD. In contrast, the classification 

accuracies for the calibration set and prediction set were 91.25% and 92.50% 

for SNV (SD), 90.63% and 92.50% for RF (SD), and 87.50% and 77.50% for 

NN (SD). These results demonstrated that LDA-SVM gives the best results 

compared to SVM, LDA, RF, and NN  since it combines attractive properties 

of both SVM and LDA approaches (Alolfe et al., 2009; Xiong & Cherkassky, 

2005). 

When a handheld NIRS was connected to a mobile phone to select 

wavelength variables step-by-step effectively, Si-PLS gave the preeminent 

procedure for determining total soluble solids (TSS) and pH in mango fruit 

non-destructively. The association between the TSS and pH values predicted 

by NIR spectroscopy and the reference method's recommended values are 

displayed respectively in Figures—3.7a and 3.7b. The reference measurement 

results accounted for over 70% of the near-infrared sensor data variance, 

indicating that correlation values above 0.71 might be suitable for screening 

and other approximate calibrations (Polinar et al., 2019; Williams, 2001). 

These results compared well with those of other researchers, where the r2 for 

TSS and pH were found to range from 0.66 to 0.88 (Agulheiro‐Santos, 

Ricardo‐Rodrigues, Laranjo, Melgão, & Velázquez, 2022; Arendse et al., 

2017; Theanjumpol et al., 2012). 

However, compared to the range used (740-1070 nm), the range 

employed by these authors was wider (1064-1640 nm). This further supports 

the idea that handheld NIR might be used to assess the TSS and pH of mango 

fruit. However, other researchers also discovered a better coefficient of 
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determination (r2) between 0.93 and 0.98 for TSS and pH (Jiang et al., 2012; 

Ncama et al., 2017; Teye et al., 2015). Despite these results being relatively 

superior, the author's use of an extra costly and greater NIRS restricts their use 

for on-site discovery at the farm gate for instantaneous analysis. More 

specifically, the model's effectiveness in this research might be credited with 

the strength of Si-PLS. Si-PLS left out additional redundant data that can 

affect the model's functioning and chose several relevant wavelengths 

associated with the quality parameters of interest (TSS & pH). Following 

optimisation by the RMSEC in the SiPLS model, all feasible groupings of 2,3 

or 4 intervals were considered, and the number of intervals that yielded the 

groupings of intervals exhibiting the least RMSEC was selected (Guo et al., 

2011; Teye, 2022). Additionally, SiPLS provides the ability to look for the 

ideal interval groupings to generate the optimal model for reliable calibration. 

The synergy partial least square regression method divided the whole 

spectrum into a certain number of intervals (variable-wise). It calculated every 

possible PLS model pairing of more intervals (2, 3, and 4) to produce the best 

performance for this research (Mantanus et al., 2009; Teye, 2022). In this 

investigation, the ideal TSS and pH subintervals were 23 and 19, respectively. 

Additionally, Si-PLS was chosen above back interval partial least 

square and other variable selection algorithms. However, the back interval 

partial least square divides the data into a predetermined number of intervals, 

and PLS models are generated with each interval left out (Xiaobo, Jiewen, 

Povey, Holmes, & Hanpin, 2010). The interval that has been left out 

may impact the model's efficiency in this work. This study further establishes 
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that synergy interval selection might also be incorporated into different 

models, as done by Ouyang, Chen, Zhao, and Lin (2013).  

Table 3.1: Reference Measurements of TSS and pH 

Subset Variety Number of samples Min Max Mean Std 

TSS Keitt 34 4 14 9.13 1.90 

 Haden 66 7 13.5 11.15 1.25 

 Local 98 10 18 14.48 1.57 

pH Keitt 34 3.98 5.86 4.82 0.55 

 Haden 66 3.72 4.93 4.26 0.29 

 Local 98 3.72 6.81 5.65 0.76 

Note: TSS (Total soluble solids), Max (Maximum), Min (Minimum), and Std 

(Standard deviation) 

 

 

Figure 3.1. General set up for Scanning and the Three Mango Varieties. 
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Figure 3.2. Spectra of RAW (a), MC (b), MSC (c), SNV (d), FD (e) and SD (f) 
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Figure 3.3. Mean spectra profile of Haden, Keitt and Local fruits. 
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Figure 3.4. PCA Score Plot of Spectra Data. RAW (a), Preprocessed with MC 

(b), Preprocessed with MSC (c), Preprocessed with SNV (d), Preprocessed 

with FD (e), and Preprocessed with SD (f),  SD with PCA Technique Gave a 

Separation with Clear Cluster Trend. 
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Figure 3.5. PC Loadings with Three Principal Components 
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Table 3.2: Performance of Identification Model for Mango Varieties at 3PCs 

Note: SVM (support vector machine), LDA (linear discriminant analysis, NN (neural network), RF (random forest), MC (mean 

centering), MSC (multiplicative scatter correction), SNV (standard normal variate), FD (first derivative), and SD (second 

derivative).

Classification 

Model 

Preprocessing treatment at 3PCs  

RAW MC MSC SNV FD SD 

Train Test Train Test Train Test Train Test Train Test Train Test 

SVM 84.38 87.50 70.00 75.00 79.38 67.50 78.13 67.50 73.75 67.50 91.25 92.50 

LDA 81.25 85.00 70.00 65.00 75.00 82.50 75.63 80.00 65.63 65.00 65.63 65.00 

NN 79.38 72.50 66.25 67.50 68.13 75.00 71.25 77.50 67.50 77.50 87.50 77.50 

RF 80.00 82.50 70.00 50.00 77.50 65.00 76.25 72.50 71.88 77.50 90.63 92.50 

LDA-SVM 100.00 97.44 100.00 97.44 65.41 53.85 100.00 97.44 100.00 97.44 100.00 97.44 
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Table 3.3: Performance of SiPLS Model with some Selected Optimal 

Spectra Regions 

Items No. of 

subintervals 

PLS 

factor 

Selected 

subinterval 

RMSEC 

TSS 10 8 [1,24] 1.94421  
11 7 [4,7,8] 1.92433  
12 7 [4,6,8] 1.92644  
13 8 [1,2,5] 1.91618  
14 11 [5,9,10] 1.91304  
15 12 [6,9,10] 1.88604  
16 6 [5,6,9] 1.91459  
17 6 [5,6,8] 1.88996  
18 6 [6,7,10] 1.89257  
19 9 [6,11,13] 1.87829  
20 12 [7,9,13] 1.85864  
21 14 [1,2,3] 1.8871  
22 9 [7,13,15] 1.882  
23 10 [7,13,16] 1.85355  
24 14 [1,2,8] 1.89207  
25 12 [8,15,16] 1.86698 

pH 10 3 [1,4,6,8] 0.53529  
11 4 [1,5,6,10] 0.53572  
12 3 [2,5,9,12] 0.54233  
13 2 [5,7,9,13] 0.53746  
14 5 [2,6,10,14] 0.54301  
15 4 [2,6,11,15] 0.53856  
16 5 [2,9,11,16] 0.52945  
17 4 [2,7,9,15] 0.52199  
18 4 [2,7,10,16] 0.53489  
19 3 [2,7,10,17] 0.52015  
20 5 [2,8,10,18] 0.53516  
21 4 [2,8,11,19] 0.52475  
22 4 [2,9,12,20] 0.52506  
23 4 [2,9,12,21] 0.52849  
24 3 [2,3,9,13] 0.5359  
25 10 [2,8,17,21] 0.53257 

Note: PLS (Partial least squares), RMSEC (root mean square error of 

calibration), and TSS (Total soluble solids). 
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Figure 3.6. Optimal Selection and Combination of Spectra Region by SiPLS. 
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Table 3.4: Efficient Variable Selection Performance Comparative Models for TSS and pH 

  Model Preprocessing r2 RMSEC  Bias  r2 RMSEP Bias RPD 

TSS PLS RAW 0.5495 2.1828 0.1851 0.586 1.9915 0.2593 1.5542 

    MC 0.5615 2.1452 0.182 0.5557 2.0507 0.267 1.5002 

    MSC 0.5217 2.1829 0.1851 0.5363 2.1758 0.2833 1.4685 

    SNV 0.5083 2.271 0.1926 0.4917 2.0441 0.2661 1.4026 

    FD 0.6029 2.1218 0.18 0.6589 1.7296 0.2252 1.7122 

    SD 0.6569 1.9165 0.1626 0.6843 1.8932 0.2465 1.7798 

  IPLS RAW 0.5918 2.1122 -0.0466 0.5664 2.0415 0.0588 1.5186 

    MC 0.3908 2.3976 0.0152 0.3603 2.3526 -0.4715 1.2503 

    MSC 0.4416 2.2986 -0.0325 0.5005 2.3296 -0.0315 1.4149 

    SNV 0.573 2.1677 -0.0089 0.5727 1.9537 -0.3363 1.5298 

    FD 0.5919 2.1443 -0.0418 0.6003 1.94 -0.6165 1.5817 

    SD 0.5735 2.0857 -0.0587 0.5673 2.1567 0.2413 1.5202 

  Si-PLS RAW 0.6414 2.0082 -0.0102 0.6569 1.864 0.0468 1.7072 

    MC 0.7014 1.8535 -0.0313 0.4782 2.3383 -0.7163 1.3844 

    MSC 0.6856 1.8755 -0.0661 0.4342 2.3469 -0.1625 1.3294 

    SNV 0.6687 1.9624 0.0219 0.5842 1.9811 -0.5417 1.5508 

    FD 0.6389 2.049 0.0243 0.6682 1.8315 -0.6523 1.7360 

    SD 0.6652 1.8981 0.0066 0.6006 2.0851 0.166 1.5823 

  Bi-PLS RAW 0.6176 2.0598 0.0078 0.6703 1.8454 0.148 1.7416 

    MC 0.652 1.9762 0.0159 0.4893 2.2862 -0.6483 1.3993 

    MSC 0.6376 1.9755 0.0001 0.5384 2.1873 -0.224 1.4719 

    SNV 0.5748 2.1715 -0.0182 0.5553 2.026 -0.5287 1.4996 

    FD 0.615 2.0983 -0.0069 0.6298 1.8719 -0.5599 1.6435 

    SD 0.6128 2.0178 0.002 0.5981 2.102 0.2448 1.5774 

pH PLS RAW 0.7813 0.5361 0.0455 0.7138 0.5859 0.0763 1.8692 
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    MC 0.7422 0.5826 0.0494 0.8729 0.4094 0.0533 2.8050 

    MSC 0.7185 0.6048 0.0513 0.8352 0.463 0.0603 2.4633 

    SNV 0.6597 0.6401 0.0543 0.8891 0.4024 0.0524 3.0029 

    FD 0.7455 0.5799 0.0492 0.911 0.3462 0.0451 3.3520 

    SD 0.7877 0.5461 0.0463 0.5787 0.6245 0.0813 1.5407 

  IPLS RAW 0.7484 0.5714 -0.0013 0.7314 0.5788 0.0275 1.9295 

    MC 0.7329 0.5923 -0.014 0.7931 0.5144 -0.0025 2.1985 

    MSC 0.6486 0.6624 -0.0017 0.7231 0.5934 -0.0588 1.9004 

    SNV 0.6326 0.6601 0.006 0.775 0.607 0.0517 2.1082 

    FD 0.6811 0.6376 0.0049 0.7157 0.5873 -0.0092 1.8755 

    SD 0.745 0.5916 -0.0027 0.7448 0.5128 0.0363 1.9795 

  Si-PLS RAW 0.8074 0.5083 -0.0172 0.6853 0.6155 -0.0026 1.7826 

    MC 0.7642 0.5616 -0.0031 0.8267 0.0246 -0.0246 2.4022 

    MSC 0.745 0.581 -0.005 0.865 0.4494 -0.0456 2.7217 

    SNV 0.7323 0.5814 0.0097 0.8868 0.4648 0.0472 2.9722 

    FD 0.7652 0.5605 -0.0024 0.8121 0.5001 -0.0274 2.3069 

    SD 0.8097 0.5201 -0.0023 0.7691 0.4944 -0.0569 2.0811 

  Bi-PLS RAW 0.7716 0.5473 -0.0158 0.6936 0.605 0.0068 1.8066 

    MC 0.7391 0.5866 -0.01 0.8209 0.5048 0.0812 2.3629 

    MSC 0.6926 0.6289 0.0002 0.8377 0.4899 -0.0417 2.4822 

    SNV 0.6439 0.6548 0.001 0.8547 0.5526 0.1164 2.6234 

    FD 0.7066 0.6171 0.0026 0.8775 0.4385 0.0073 2.8571 
   SD 0.7704 0.5661 -0.0071 0.769 0.4969 -0.0508 2.0806 

Note: PLS (Partial least square), IPLS (interval partial least square), SiPLS (synergy partial least square), and BiPLS (back 

interval partial least square), MC (mean centering), MSC (multiplicative scatter correction), SNV (standard normal variate), FD 

(first derivative), and SD (second derivative).
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Figure 3.7. Scatter Plot of Reference Measured Versus Handheld NIR 

Predicted (a) TSS and (b) pH by SiPLS Model. 

 

3.10 Conclusion 

The study has demonstrated the possibility for quick, non-destructive 

evaluations of mango quality using a portable near-infrared spectroscopic 

technique. SD provided clear separation in the first three PCs and the best 

PCA cluster trend. Among the identification techniques, the raw, MC, SNV, 

FD, and SD plus LDA-SVM could be used to identify mango fruit varieties 

with 100% accuracy in the training set and 97.44% in the prediction set. 

However, the best model for TSS and pH measurements in mango is synergy 

partial least square, with an r2 value of 0.63, an RMSEP value of 1.83, an r2 

value of 0.81, and an RMSEP value of 0.49, respectively. The findings 
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indicated that Si-PLS could be employed for quick, on-site, non-destructive 

mango TSS and pH testing in developing nations. 
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Abstract 

This study investigates using near-infrared (NIR) spectroscopy combined with 

chemometrics to rapidly and non-invasively predict the concentration of 

ethephon, a ripening agent, in mangoes. Traditional methods for detecting 

ethephon are time-consuming and destructive, limiting their applicability in 

large-scale operations. By analyzing the spectral data of mangoes ripened 

naturally and those treated with different ethephon concentrations (250, 750, 

and 1000 ppm), this study aimed to develop predictive models using NIR 

spectroscopy. The mangoes were scanned with a portable NIR 

spectrophotometer, and the spectral data were processed using multiple 

preprocessing techniques, including multiplicative scatter correction (MSC) 

and standard normal variate (SNV). Principal component analysis (PCA) was 

used to group samples based on spectral differences, while classification 

models such as neural networks (NN) and random forests (RF) were applied to 

categorize the ethephon concentrations. The best-performing model was the 

neural network (NN) combined with MSC preprocessing, achieving 100% 

training and test set accuracy. Additionally, partial least squares (PLS) 

regression demonstrated excellent predictive accuracy for ethephon 

concentration when preprocessed with SNV, yielding an r² of 0.904 and 

RMSEC of 0.313 for the training set, and an r² of 0.996, RMSEP of 0.068, and 

an RPD value of 15.253 for the test set. These findings suggest that NIR 

spectroscopy offers a rapid, non-destructive, and effective method for 

monitoring the artificial ripening process in mangoes. 

Keywords: Near-infrared; chemometrics; mango; ethephon; ripening 
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4.1 Introduction 

Fruits are a vital component of human nutrition, providing essential 

nutrients such as vitamins, minerals, dietary fibre, and antioxidants that 

promote growth and overall health (Asif, 2011; Meena, Yadav, & Meena, 

2020). As part of a balanced diet, fruits should be consumed regularly. 

Climacteric fruits like mangoes (Mangifera indica) are particularly notable 

because they continue to ripen after being harvested, provided they reach the 

end of their growth phase (Meena et al., 2020; Paul, Pandey, & Srivastava, 

2012). Ripening in climacteric fruits is accompanied by physiological and 

biochemical changes, including the development of flavor, aroma, softening of 

tissues, and changes in pigmentation (Anwar, Mattoo, & Handa, 2018; Kou et 

al., 2021). This ripening process is typically marked by increased respiration 

and ethylene production (Kou & Wu, 2018; Meena et al., 2020).  

While natural ripening of climacteric fruits at room temperature is 

possible, it is often slow and can result in uneven ripening and reduced fruit 

quality (Payasi & Sanwal, 2010; Siddiqui & Dhua, 2010). Artificial ripening 

techniques are widely used in commercial fruit production to address this 

issue, with ethylene gas being the standard agent for inducing uniform 

ripening (Payasi & Sanwal, 2010). Calcium carbide and ethephon are the 

commonly used artificially ripened agents. Fruits ripened with ethephon 

display more consistent colour and longer shelf life compared to those ripened 

naturally or with calcium carbide (CaC2), a hazardous chemical agent banned 

in many countries (Adeyemi, Bawa, & Muktar, 2018; Kesse et al., 2019; 

Siddiqui & Dhua, 2010).  
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The use of CaC2 is particularly concerning due to its contamination 

with arsenic and phosphorus, which pose significant health risks (Siddiqui & 

Dhua, 2010). Despite this, CaC2 remains used in countries such as India, 

Pakistan, Bangladesh, Nepal, and Ghana (Kesse et al., 2019; Siddiqui & Dhua, 

2010). Health hazards associated with CaC2 include neurological effects, 

mood disturbances, and more severe conditions such as seizures (Adeyemi et 

al., 2018). Ethephon, another chemical ripening agent, is considered less 

harmful when used in permissible concentrations, though it can still cause skin 

and eye irritation and long-term health issues (Ruwali et al., 2022). Although 

regulatory bodies aim to safeguard food safety, many African countries still 

face challenges in establishing and enforcing specific regulations to control 

artificial fruit ripening (Islam et al., 2016).  

Traditional detection methods for ethephon involve complex and labor-

intensive chemical analyses that require specialized laboratory equipment. 

While accurate, these methods are time-consuming and destructive, making 

them impractical for large-scale or field-based applications. As a result, there 

is a growing need for rapid, non-destructive techniques that can reliably 

predict the concentration of ripening agents in fruits. Near-infrared (NIR) 

spectroscopy has gained widespread use as a non-destructive, rapid, and online 

alternative to traditional destructive methods for measuring the quality 

components of food products. The recent advancements in NIR spectroscopy 

have led to the development of battery-powered, handheld devices. Combined 

with chemometrics, NIR spectroscopy offers several advantages over 

conventional laboratory analyses, including faster analysis, non-invasive 

measurements, minimal or no sample preparation, zero chemical use, and 
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portability for on-site quality control (Mahanti & Chakraborty, 2020). NIR 

spectroscopy has been successfully utilized in mango quality assessment and 

prediction (Nordey et al., 2019; Polinar et al., 2019), food safety, and detection 

of adulteration (Lakade et al., 2019; Mahanti & Chakraborty, 2020; Teye, 

Elliott, Sam-Amoah, & Mingle, 2019). 

This study explores the feasibility of using NIR spectroscopy to 

identify and predict the concentration of ethephon used in the artificial 

ripening of mango fruits. By analyzing spectral data obtained from mango 

samples treated with different ethephon concentrations, we seek to develop 

robust predictive models that can be employed for quality control and 

regulatory compliance. The successful application of NIR spectroscopy would 

provide a valuable tool for ensuring the safety and integrity of artificially 

ripened mangoes in the marketplace. 

4.2 Methodology 

Unripe mangoes were purchased from a farmer in the Eastern region of 

Ghana. The mangoes were manually cleaned to remove all the adhering dust 

and dirt. A total of 80 mangoes were used in this study; 20 were ripened 

naturally, and the remaining were ripened artificially at different 

concentrations. The selected mango fruits Cv. Keitt was kept in the ripening 

chamber at the University of Cape Coast, School of Agriculture laboratory, 

Cape Coast, Ghana. For the preparation of 250, 750, and 1000 ppm of 

ethephon solutions, 0.64, 1.92, and 2.56 mL of ethrel (2-

Chloroethylphosphonic acid 39% aqueous solution under the brand name 

chemophon 480 SL), respectively, were dissolved in 1litre of distilled water 

(Lavanya, Rao, Edukondalu, Lakshmypathy, & Rao, 2019). Uniform sized 
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fruits were dipped in ethephon solution for 5 min and air-dried to remove 

excess moisture. Fruits were treated with different concentrations, such as 250, 

750, and 1000 ppm. All the sets were allowed to ripen artificially for 48–72 h 

at room temperature, and then the signature spectra of each mango sample 

were obtained and analysed for interpretation.  

4.2.1 NIR Spectra Acquisition  

The spectral acquisition was performed using a portable NIR 

spectrophotometer (Innospectra Co., Hsinchu, Taiwan), having a wavelength 

specific to 900– 1700 nm, as shown in Figure 4.1. The spectrometer included a 

measurement unit connected to a computer. Each fruit was scanned in such a 

way that the maximum surface of the fruit could be covered. Each fruit was 

rotated clockwise, and six scans were taken from each fruit. Then, the 

obtained NIR spectra were used for further statistical analysis. 

 

Figure 4.1. Experimental set-up 
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4.2.2 Statistical Analysis, Data Processing and Analysis 

Spectral data recordings stored on the computer are imported into 

chemometric software packages: Matlab version 9.5.0 (Mathworks Inc., USA) 

with Windows 10 Basic for all data processing. In this study, the total data set 

was divided into two groups, one for building the model and the other for 

testing the model's actual predictability. This study employed repeated cross-

validation to partition the spectral data into training (calibration) and test 

subsets. A tenfold repeated cross-validation technique was employed. The data 

was partitioned into ten groups, with nine groups serving as calibration sets 

and the remaining group as a test set. The test set was subsequently modified 

until all groups had been tested (Ramírez-Morales, Rivero, Fernández-Blanco, 

& Pazos, 2016). 

4.2.3 Chemometric Analysis  

Five pre-processing methods, mean centering (MC), multiplicative 

scatter correction (MSC), standard normal variate (SNV), first derivative (FD), 

and second derivative (SD),  were used comparatively to control external 

influences so that the outcome of the model would be based on the chemical 

fingerprint from the spectral information acquired (Teye, Elliott, et al., 2019).  

For preliminary classification, by an unsupervised technique, principal 

component analysis (PCA) was performed on the selected spectra, and score 

plots between different principal components (PCs) were plotted to see the 

formation of different groups of samples based on their varieties. After 

ascertaining the group, the final classification was carried out using supervised 

methods, partial least squares (PLS), to discriminate the analysis. After that, 

the PLS regression method was employed for the classification of the samples, 
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extracting the contributed variables, and then validating and predicting the 

results obtained (Lakade et al., 2019). The performance of the multivariate 

models was evaluated using several metrics, including the coefficient of 

determination (r²), root mean square error of prediction (RMSEP), bias (bs), 

Range Error Ratio (RER), and residual predictive deviation (RPD). For a 

model to be considered robust, it should exhibit a high RPD, a high r² value, 

and low RMSEP and bias values (Lamptey et al., 2023; Liu, He, Wang, & 

Sun, 2011). All statistical analyses were performed using MATLAB. 

4.3 Results and Discussions  

4.3.1 Spectral Analysis and Preprocessing 

The spectral absorbance values of mangoes treated with 250, 750, and 

1000 ppm ethephon and naturally ripened mangoes are shown in Figure 4.2a. 

While all the spectral curves follow a similar trend, the absorbance intensities 

vary, suggesting that the fruits contain the same internal substances but in 

different quantities (Mahanti & Chakraborty, 2020). Figure 4.2b displays the 

mean spectral absorbance of ethephon-treated mangoes at different 

concentrations and naturally ripened mangoes. The spectra are dominated by 

the second and third overtone regions of the C–H bonds associated with sugar 

solutions, showing peak absorption at 970 nm, 1200 nm, and 1450 nm  

(Guthrie, Walsh, Reid, & Liebenberg, 2005; Mahanti & Chakraborty, 2020). 

The peaks around 970 nm and 1200 nm are also linked to water absorption 

(Fan, Li, Huang, & Chen, 2017). Mango, a fleshy fruit, contains more than 

80% water, and its sugar content increases as it ripens (Léchaudel & Joas, 

2007; Padda, do Amarante, Garcia, Slaughter, & Mitcham, 2011). Ethephon 

(2-chloroethylphosphonic acid) releases ethylene, accelerating ripening 
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(Fleming, Martinez, Mallea, & Guerra, 2014). This artificial ripening process 

may cause differences in sugar accumulation, organic acid metabolism, and 

water content compared to naturally ripened fruits. The peak at 1450 nm is 

attributed to the first overtone of the O-H stretching band and a combination 

band (Omar, Atan, & MatJafri, 2012). Moreover, the peak at 1650 nm may be 

related to fruit attributes such as hardness and the first overtone of the C–H 

bonds in carotenoids (Abarra, Serrano, Sabularse, Mendoza, & Del Rosario, 

2018; Toledo-Martín et al., 2018). 

 

a. Raw      
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b. Mean 

Figure 4.2. Raw and mean Spectral profile of naturally ripened mangoes and 

artificially treated mangoes with 250, 750, and 1000 ppm ethephon.  

 

4.3.2 PCA (Principal Component Analysis) 

Principal component analysis (PCA), as an unsupervised pattern 

recognition technique, brings out useful information so that similar samples 

are grouped closer to each other. This approach enables the visualization of 

data trends in a dimensional space (Teye, Elliott, et al., 2019). In this regard, 

the graphical output could be useful in ascertaining the differences between 

the categories of different mango samples used in our study. Figure 4.3 (a-b) 

shows the PCA score plots for raw and MSC (multiplicative scatter correction) 

preprocessed spectral data, respectively. From these figures, it can be seen that 

four major groups of mango samples were used in this experiment: mangoes 

treated with 250, 750, and 1000 ppm ethephon and naturally ripened mangoes. 

In the raw spectral data PCA plot (Figure 4.3a), there was some overlap 
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between the groups, indicating that the raw spectral data alone may not 

provide perfect separation between the four categories.  

The PCA score plot for the MSC preprocessed data (Figure 4.3b) 

shows a marked improvement in the separation between mangoes treated with 

250, 750, and 1000 ppm ethephon and naturally ripened mango samples. The 

clusters for each category appear more compact and distinctly separated, 

demonstrating the effectiveness of MSC preprocessing in enhancing the 

spectral differences between the four groups. These graphical plots provide 

vital information that could be applied to differentiate within and between 

groups used in this study. The clear separation observed in the MSC 

preprocessed data suggests that NIR spectroscopy combined with PCA can 

effectively distinguish between mangoes treated with 250, 750, and 1000 ppm 

ethephon and naturally ripened mangoes. The neat separation of mangoes 

treated with 250, 750, and 1000 ppm ethephon and naturally ripened mango 

samples in the MSC preprocessed PCA plot suggests that NIR spectroscopy, 

combined with appropriate preprocessing and multivariate analysis techniques, 

has significant potential as a rapid and non-destructive method for detecting 

artificial ripening in mangoes.  
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           a. Raw      

 

b. MSC 

Figure 4.3. PCA plot of the topmost three PCs for naturally ripened mangoes 

and artificially treated mangoes with 250, 750, and 1000 ppm ethephon 

 

4.3.3 Classification Models 

The classification results (in Table 4.1) reveal that neural networks 

(NN) and random forests (RF) generally outperformed other models, 

particularly when combined with MSC preprocessing. The high accuracy 

achieved (100% for both training and test sets with MSC preprocessing for 
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NN, and 100% for training and 98.75% for test sets for RF) indicates the 

robust capability of NIR spectroscopy in distinguishing between different 

levels of ethephon treatment. The superior performance of NN and RF models 

can be attributed to their ability to capture complex, non-linear relationships in 

the spectral data (Nawar & Mouazen, 2019; Qi et al., 2019).  Even though NN 

and RF showed excellent performance, they also have the potential for 

overfitting, especially with limited sample sizes (Lamptey et al., 2023). The 

high accuracy in the training set (100% for RF across all preprocessing 

methods) compared to the generally lower test set performance suggests some 

overfitting may be present. The k-nearest neighbors (K-NN) algorithm showed 

notably high performance with MSC preprocessing (97.78% for training and 

97.50% for test sets), suggesting that this model can also be effective when 

combined with appropriate preprocessing techniques. 

4.3.4 Quantitative Prediction of Ethephon Concentration 

The Partial Least Squares (PLS) regression results demonstrate the 

potential of NIR spectroscopy for quantitative prediction of ethephon 

concentration, as illustrated in Table 4.2. The best performance was achieved 

with SNV preprocessing, yielding an r² of 0.996, RMSEP of 0.068, and RPD 

of 15.253 for the test set. These metrics indicate excellent predictive 

capability, as 8.1 or higher is considered excellent for any application (Polinar 

et al., 2019). The high RPD and RER values across different preprocessing 

techniques (particularly for SNV, MSC, and second derivative) suggest that 

the developed models are robust and can predict ethephon concentration 

across a wide range of values. MSC and SNV can eliminate additive and 

multiplicative impacts within spectra (Padhi et al., 2024). This finding is 
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consistent with other studies in identifying artificially ripened fruit using NIR 

spectroscopy, such as the work by Mahanti and Chakraborty (2020) on sapota, 

where SNV preprocessing also yielded superior results. The superior 

performance of the SVM model can be attributed to its strong self-learning 

and self-adjustment capabilities. Other researchers have also noted that SVM's 

advantage lies in incorporating the structural risk minimization principle, 

which reduces the upper boundary on expected risk compared to other 

techniques (Teye et al., 2019). 

4.4 Conclusion 

This study demonstrates the powerful potential of NIR spectroscopy 

combined with chemometric analysis as a rapid and non-destructive method 

for detecting and quantifying ethephon in artificially ripened mangoes. The 

Neural Network model, particularly when paired with MSC preprocessing, 

exhibited exceptional performance, achieving 100% accuracy in both the 

training and test sets. Furthermore, the Partial Least Squares (PLS) regression 

model, preprocessed with SNV, demonstrated outstanding predictive 

capability, with an r² of 0.996 and an RPD value of 15.253 for the test set, 

indicating its robustness for quantitative predictions. These findings contribute 

significantly to developing more efficient and reliable methods for ensuring 

food safety and authenticity in the fruit industry. 
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Table 4.1: Performance of Spectral Pre-Processing Techniques During Model Development and Cross Validation 

 

Preprocessing 

Models RAW 

 

MC 

 

MSC 

 

SNV 

 

FD 

 

SD 

 

 

Training 

set 

Test 

set 

Training 

set 

Test 

set 

Training 

set Test set 

Training 

set 

Test 

set 

Training 

set 

Test 

set 

Training 

set 

Test 

set 

K-NN 52.64 28.75 55.69 21.25 97.78 97.50 77.08 43.75 65.97 38.75 65.97 38.75 

NN 90.83 31.25 91.67 31.25 100.00 100.00 93.61 48.75 94.86 35.00 95.69 35.00 

RF 100.00 32.50 100.00 33.75 100.00 98.75 100.00 56.25 100.00 38.75 100.00 42.50 

Note: K-NN (K-nearest neighbor), NN (Neural network), RF (Random forest), MC (mean centering), MSC (multiplicative scatter 

correction), SNV (standard normal variate), FD (first derivative), and SD (second derivative). 
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Table 4.2: Prediction of Concentration of the Ethephon 

PLS 

 

Training set Testing set 

  

 

Factors r2 RMSEC SEC Bias r2 RMSEP SEP Bias RPD  RER 

raw 11 0.841 0.403 0.407 0.054 0.948 0.230 0.230 0.047 4.499 11.142 

mc 11 0.873 0.360 0.363 0.048 0.980 0.144 0.144 0.029 7.192 17.812 

msc 11 0.902 0.317 0.319 0.042 0.989 0.108 0.108 0.022 9.591 23.753 

snv 11 0.904 0.313 0.316 0.042 0.996 0.068 0.068 0.014 15.253 37.775 

fd 11 0.765 0.491 0.495 0.066 0.957 0.210 0.210 0.043 4.926 12.201 

sd 11 0.973 0.166 0.167 0.022 0.993 0.087 0.087 0.018 11.901 29.474 

Note: r2 (Coefficient of determination), PLS (Partial least squares), RMSEC (root mean square error of calibration), RMSEP (root 

mean square error of prediction), TSS (Total soluble solids), MC (mean centering), MSC (multiplicative scatter correction), SNV 

(standard normal variate), FD (first derivative), and SD (second derivative). 
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Abstract 

This research examined the distinction between organic and conventional 

mango fruits, chips, and juice using portable near-infrared (NIR) spectroscopy. 

A comprehensive analysis was conducted on a sample of 100 mangoes 

(comprising 50 organic and 50 conventional) utilising a portable NIR 

spectrometer that spans a wavelength range from 900 to 1700 nm. The 

mangoes were assessed in their entirety and their juice and chip forms. The 

spectral data underwent pre-processing through methodologies such as 

multiplicative scatter correction (MSC), standard normal variate (SNV), and 

derivatives to enhance the precision of the models. Principal component 

analysis (PCA) and various multivariate classification algorithms, including 

linear discriminant analysis (LDA), random forest (RF), k-nearest neighbors 

(KNN), and partial least squares discriminant analysis (PLSDA), were utilised 

to categorise the samples effectively. The findings indicated that the random 

forest method and specific pre-processing techniques achieved the highest 

classification accuracy for distinguishing organic and conventional mango 

products. For mango fruit and chips, it achieved 88.76% and 77.98% accuracy, 

respectively, when pre-processed using the second derivative, while for juice, 

it achieved 87.53% accuracy without pre-processing. This investigation 

demonstrates the efficacy of portable NIR spectroscopy as a dependable and 

non-invasive method for verifying organic mango products, thereby enhancing 

the integrity of food labelling and fostering consumer confidence. 

 

Keywords: Classification, Mango products, Near infrared spectroscopy, 

Organic, Pre-processing. 
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5.1. Introduction 

The global market for organic food has experienced substantial growth 

in recent years, primarily propelled by environmental sustainability 

considerations. Organic agriculture, which employs organic techniques and 

avoids synthetic pesticides, is pivotal in enhancing food security, product 

quality, and overall sustainability (Andika & Bidayati, 2024). Among the 

array of organic products, the mango (Mangifera indica L.) is recognised as 

one of the most important fruits globally, attributed to its remarkable 

nutritional and economic importance and its augmented production, trade, and 

consumption (Jahurul et al., 2015; Yahia, de Jesús Ornelas-Paz, Brecht, 

García-Solís, & Celis, 2023). 

Mango is presented in a multitude of forms, encompassing fresh fruit, 

puree, syrup-packed slices, leather, canned slices, chutney, juice concentrate, 

ready-to-drink juice, wine, jams, jellies, pickles, smoothies, chips, and powder 

(Jahurul et al., 2015; Owino & Ambuko, 2021), each of which undergoes 

consumer evaluation regarding its organic authenticity. It is imperative to 

ensure that products marketed as organic are verifiably organic to uphold 

consumer trust and adhere to regulatory compliance (Hamzaoui Essoussi & 

Zahaf, 2009; Pivato, Misani, & Tencati, 2008). 

Traditionally, the distinction between organic and conventional 

products has depended on certification methodologies, some of which can be 

time-consuming and costly (Leitner & Vogl, 2020; Zorn, Lippert, & Dabbert, 

2009). Conventional foods are also distinguished from their organic 

counterparts through the presence of undesirable contaminating substances. 

Unfortunately, the detection of these contaminants is fraught with challenges. 
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It necessitates sophisticated laboratory facilities, such as high-

performance liquid chromatography (HPLC) and gas chromatography, which 

are often inaccessible within the food distribution network or proximal to the 

point of sale and involve the destruction of the sample under examination 

(López, Arazuri, García, Mangado, & Jarén, 2013; Teye & Amuah, 2022). 

Consumers' confidence constitutes a critical facet of the food market; thus, 

developing a cost-effective analytical system appropriate for field application 

within the food sector and reliably distinguishing organic from conventional 

products would be of immense value (Song, Wang, Maguire, & Nibouche, 

2016). 

These constraints have created the necessity for more efficient, 

nondestructive, and economically viable methods for authenticating organic 

products. As a result, portable near-infrared (NIR) spectrometers have 

emerged as a viable alternative, facilitating rapid, nondestructive analysis with 

minimal or simplified sample preparation while being compact, cost-effective, 

and user-friendly (Gullifa et al., 2023; Yin et al., 2019). In contrast to the 

previously detailed methodologies, NIR spectroscopy has surfaced as an 

innovative and user-friendly technique applied across diverse domains such as 

agriculture, food and beverages, petrochemicals, and biochemistry. The 

spectral data acquired from the NIR profile predominantly arises from the 

internal vibrations and absorptions of hydrogen-containing groups, including 

O–H, C–H, N–H, and other functional groups, in overtone and combination 

bands (Lin et al., 2019; Teye & Amuah, 2022). This data can be employed for 

both qualitative and quantitative predictions by applying chemometrics.  
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This technology has been successfully implemented in various sectors 

of food analysis, including the differentiation of organic and conventional 

products such as apples, cocoa, feed, green asparagus, milk, pineapple fruits, 

pineapple juice, and rice (Amuah et al., 2019; Anyidoho, Teye, & Agbemafle, 

2021; Lamptey, Amuah, Boadu, Abano, & Teye, 2024; Liu et al., 2018; 

Sánchez, Garrido-Varo, Guerrero, & Pérez-Marín, 2013; Song et al., 2016; 

Tres, Van Der Veer, Perez-Marin, Van Ruth, & Garrido-Varo, 2012; Xiao, 

Liu, Zhang, Ma, & Ngadi, 2019). Some researchers have utilised NIR in 

various studies to assess mangoes, including determining their maturity levels 

(dos Santos Neto, de Assis, Casagrande, Júnior, & de Almeida Teixeira, 

2017), detecting internal defects (Raghavendra, Guru, & Rao, 2021), verifying 

the authenticity of specific varieties (Jha et al., 2013), measuring key quality 

parameters such as total soluble solids (TSS) and pH (Lamptey, Teye, Abano, 

& Amuah, 2023). 

In the present investigation, we explore the application of NIR 

spectroscopy to distinguish between organic and conventional mango 

products, including mango fruits, chips, and juice. The objective is to 

formulate a dependable and practical methodology for differentiating organic 

mango products from their conventional counterparts. The anticipated results 

of this investigation encompass the enhancement of methodologies for 

authenticating organic products, potentially providing advantages to both the 

food industry and consumers by safeguarding the authenticity of organic food 

items. This research addresses the difficulties encountered in authenticating 

organic produce, specifically emphasizing the necessity for expedited, more 

accessible, and non-invasive approaches. 
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5.1. Methodology 

5.2.1. Sample Collection  

In the present investigation, both organic and conventional varieties of 

mangoes were procured from farmers trained by the Ministry of Food and 

Agriculture within the Eastern region of Ghana. The selection consisted of 50 

organic mangoes alongside 50 conventional counterparts. A thorough visual 

inspection of the fruits was conducted, and only the wholesome fruits were 

deemed suitable for this study. All fruits were meticulously labelled for 

identification purposes and subsequently transported to the laboratory of the 

School of Agriculture at the University of Cape Coast. The labelled fruits 

underwent an initial scanning using a portable near-infrared (NIR) 

spectroscopy device, operating within the wavelength range of 900 nm to 1700 

nm. After scanning, each fruit was washed, peeled, deseeded, and sliced into 

chips or strips of irregular dimensions and configurations. A subset of the 

sliced mangoes was dehydrated employing a dehydrator set at a temperature of 

65°C (Kayode, Joshua, & Oyetoro, 2023), while the remaining mangoes were 

processed using an electric juicer, with the extracted juice being meticulously 

packaged in bottles (Lamptey et al., 2024). Subsequently, the mango juice and 

the dehydrated mango chips were scanned using the portable NIR device.  

5.2.2. Spectra Collection 

The handheld NIR (Innospectra Co., Hsinchu, Taiwan) spectrometer 

(NIR-M-R1) was employed in reflectance mode to obtain spectral data of the 

mangoes, chips, and juice within the 900–1700 nm wavelength range. Before 

each scanning session, the device was calibrated per the manufacturer's 

guidelines to ensure accuracy and consistency. Scanning of the whole mango 
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fruits was executed immediately following the labelling process. Each mango 

was secured in a stable holder, and the NIR spectrometer was utilised to scan 

three distinct points on the surface, thereby facilitating the acquisition of an 

average spectral reading. Following the juicing process, an analogous 

methodology was employed for the bottled mango juice, with the NIR 

spectrometer scanning through the juice's container to capture the spectral 

data. Ultimately, the dehydrated mango chips were subjected to scanning three 

times across various sections to account for potential variability in thickness or 

texture. 

5.2.3. Initial Spectra Data Processing 

In this investigation, four distinct pre-processing methodologies—

multiplicative scatter correction (MSC), standard normal variate (SNV), first 

derivative (FD), and second derivative (SD)—were employed comparatively 

to control external influences, thereby ensuring that the resultant model was 

fundamentally based on the chemical fingerprint derived from the acquired 

spectral information (Teye, Elliott, Sam-Amoah, & Mingle, 2019). MC 

computes spectra by averaging and subsequently subtracting the mean from 

each spectrum. MSC effectively eliminates unwanted scattering effects and 

compensates for non-uniform scattering. SNV is a transformational spectral 

treatment technique that removes multiplicative interferences stemming from 

scatter, particle size, and light path length. Both methodologies linearize each 

spectrum to align with an ideal spectrum. The first derivative pre-processing 

technique reduces baseline effects by comparing the spectra from two 

consecutive measurement locations. The second derivative transformation 

algorithm distinguishes overlapping peaks and enhances resolution while 
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eliminating additive and multiplicative baseline influences within the spectra. 

Please consult the following studies for additional insights regarding these pre-

processing methods (Amuah et al., 2019; Lamptey et al., 2023; Teye, Amuah, 

McGrath, & Elliott, 2019; Teye, Elliott, et al., 2019). 

5.2.4. Principal Component Analysis 

After the preliminary pre-processing of the spectral data in this 

investigation, principal component analysis (PCA) was implemented as an 

unsupervised pattern recognition technique to elucidate data trends within a 

diminished dimensional space through score plots. PCA is a prevalent 

analytical method that diminishes the dimensionality of the data matrix by 

compressing the information into principal components, encompassing 

interpretable and significant variables. In the context of this analysis, the 

initial three principal components (PCs) were selected, as they encapsulate the 

most substantial information while exhibiting minimal or no redundancy 

(Teye & Amuah, 2022). 

5.2.5. Data Partitioning 

In order to construct a more robust and generalized model, the dataset 

was segmented into two distinct subsets: a training set and a test set. This 

investigation utilised repeated cross-validation to systematically partition the 

spectral data into training (calibration) and test subsets. A ten-fold repeated 

cross-validation methodology was employed. The data was stratified into 10 

groups, with nine (9) groups functioning as calibration sets and the remaining 

group designated as the test set. The test set was subsequently modified until 

all groups had undergone testing (Ramírez-Morales, Rivero, Fernández-
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Blanco, & Pazos, 2016). This procedure was applied to the fruits, chips, and 

juice categories. 

5.2.6. Multivariate Classification Algorithms  

The present study identified organic mango fruits, chips, and juice 

from their conventional counterparts. The identification methodologies 

employed to address this challenge were comparatively analysed, including 

linear discriminant analysis (LDA), random forest (RF), K-nearest neighbors 

(KNN), and partial least squares discriminant analysis (PLSDA). RF (random 

forest) is an ensemble technique predicated on tree classifiers that grows 

multiple classification trees to yield precise discrimination. It utilises two 

metrics of variable importance and data resemblance measures for graphical 

representation, multidimensional scaling, and clustering (Anyidoho et al., 

2021). KNN (K-nearest neighbors) is a nonparametric and linear learning 

algorithm that evaluates the distance between samples from the calibration set 

and unknown samples (Thanh Noi & Kappas, 2017). The parameter K exerts a 

significant influence on the classification rate of the KNN model. LDA (linear 

discriminant analysis) constitutes a linear and parametric supervised pattern 

recognition technique to uncover a linear combination of features for linear 

classifiers (Anyidoho et al., 2021). PLS-DA (partial least squares discriminant 

analysis) represents a linear differentiation technique that combines the 

characteristics of partial least squares regression with a discriminative 

presentation (Lee, Liong, & Jemain, 2018). Figure 5.1 represents a flowchart 

of the classification process for distinguishing between organic and 

conventional mangoes. 
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Figure 5.1. Flowchart illustrating the classification process for distinguishing 

between organic and conventional mangoes. 

 

5.3. Results and Discussions  

5.3.1. Spectra Analysis 

The spectral characteristics of the mango samples examined in this 

research disclosed unique spectral fingerprints across the various forms of 

mango—namely, fresh fruits, dried chips, and juice—as depicted in the 

accompanying figures (see Figures 5.2A, B, and C). The observed variations 

may be ascribed to differences in surface texture, pigmentation, and moisture 

content among the distinct states (Keskin, Soysal, Arslan, Sekerli, & Celiktas, 

Forms of Assessment 

(Whole, Chips, Juice) 

Dimensionality Reduction (PCA) 

Spectra Data Acquisition  

(Portable NIR Spectrometer 900-1700 nm) 

Classification Models  

(LDA, RF, KNN, PLSDA) 

Performance Evaluation 

(Accuracy, Sensitivity, Specificity, Precision, F1-

score) 

Mango Dataset 

(Organic & Inorganic, 100 samples) 
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2018; Omolola, Jideani, & Kapila, 2017). Figure 5.2A depicts the spectral 

profile corresponding to the mango fruits, Figure 5.2B represents the profile 

for dried mango chips, and Figure 5.2C illustrates the spectral profile of the 

mango juice. These visual representations show that each mango product 

manifests unique spectral patterns reflecting their respective physical and 

chemical attributes.  

The average spectra of the mango fruits, chips, and juice were 

subsequently compared and are presented in Figure 5.4. Among the three 

forms analysed, the juice exhibited a more intense reflectance signal 

throughout the wavelength spectrum, particularly beyond 1400 nm. This 

signifies a pronounced water absorption band in near-infrared spectroscopy 

(Lammertyn, Peirs, De Baerdemaeker, & Nicolaı, 2000). This observation 

implies that the liquid state of the mango engages in distinctive interactions 

with near-infrared light, potentially due to its homogeneous nature and 

elevated moisture content relative to the other two forms (Londoño et al., 

2017; Nyangena, Owino, Ambuko, & Imathiu, 2019; Othman & Mbogo, 

2009).  

The chips and fruits exhibit distinct peaks within the reflectance 

spectrum in the range of 1400-1500 nm, likely related to the specific 

absorption characteristics of water corresponding to their first overtone 

(Cayuela & Weiland, 2010). The 1400 - 1500 nm wavelength range is 

associated with CH2, CH, and ROH, indicating the presence of oil content 

(Iqbal, Herodian, & Widodo, 2019). Noteworthy peaks observed around 1200 

nm and 1450 nm in the fruit samples can be attributed to the second overtone 

of C-H and the first overtone of O-H, respectively (Eldin & Akyar, 2011), 
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which indicate the presence of sugars and various carbohydrates within the 

fruit (Li et al., 2021). 

Furthermore, the absorption band identified around 970-980 nm in the 

dried mango chips reflects a diminished moisture content in these dehydrated 

products (Ishikawa, Ueno, & Fujii, 2017). Figures 5.3A, B, and C present the 

mean spectra of the organic and conventional mango fruits, chips, and juice, 

respectively. These mean spectra provide enhanced clarity regarding the 

distinctions between organic and conventional samples of each product. Figure 

5.4 compares the mean spectral profiles across all three product categories 

(fruits, chips, and juice) for organic and conventional mangoes. 
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. 

Figure 5.2. Raw Spectral Profile of Organic and Conventional Mango (A) 

Fruits (B) Chips (c) Juice 
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Figure 5.3. Mean Spectral Profile of Organic and Conventional Mango (A) 

Fruits (B) Chips (c) Juice 
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Figure 5.4. Comparison of Mean Spectra Profile of Organic and Conventional 

Mango Fruits, Chips, and Juice. 

5.3.2. Principal Component Analysis  

Principal component analysis (PCA) was performed as an 

unsupervised pattern recognition technique (Teye & Amuah, 2022) to reveal 

the inherent patterns and classifications within the spectral data of organic and 

conventional mango products. PCA score plots were developed for mango 
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fruits, chips, and juice, with each subjected to various pre-processing 

methodologies: Raw, multiplicative scatter correction (MSC), standard normal 

variate (SNV), first derivative (FD), and second derivative (SD). The PCA 

score plots corresponding to the pre-processing methodologies of mango fruits 

are illustrated in Figure 5.5 (A-E). The FD pre-processing exhibited the most 

proficient outcome in PCA, achieving a variance explanation of 95.73%, 

succeeded by MSC at 92.86%, SNV at 92.82%, and SD at 92.66%. The three 

leading principal components (PCs) for FD, as depicted in Figure 5.5 (d), 

contributed to the maximal total variance (95.73%) of the dataset concerning 

organic and conventional mango fruits. 

The PCA results for the pre-processing methodologies applied to 

mango chips are presented in Figure 5.6 (A-E). The MSC pre-processing 

outperformed the other methodologies, with SNV, FD, and SD following in 

decreasing order. As demonstrated in Figure 5.6 (B), the top three PCs for 

MSC encapsulated 91.35% of the variation within the dataset concerning 

mango chips. The PCA outcomes for mango juice regarding the pre-

processing methodologies are illustrated in Figure 5.7 (A-E). The FD pre-

processing yielded superior results to the other pre-processing techniques, 

achieving a variance explanation of 96.63%, with MSC at 91.88%, SNV at 

91.73%, and SD at 90.09% in descending order. As indicated in Figure 5.7 

(D), the top three PCs for FD pre-processing accounted for 96.63% of the 

variation within the dataset of mango juice. 
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Figure 5.5 PCA Score Plot of the First Three PCs of Organic and 

Conventional Mango Fruits Pre-Processed – a) RAW b) MSC c) SNV d) FD e) 

SD. 
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Figure 5.6. PCA Score Plot of the First Three PCs of Organic and 

Conventional Mango Chips Pre-Processed- a) RAW b) MSC c) SNV d) FD e) 

SD. 
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Figure 5.7. PCA Score Plot of the First Three PCs of Organic and 

Conventional Mango Juice Pre-Processed- a) RAW b) MSC c) SNV d) FD e) 

SD. 

 

Figure 5.8 (A). Principal Component Loadings with Three Principal 

Components for Mango Fruits 
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Figure 5.8 (A) illustrates the principal component loadings 

corresponding to three principal components, elucidating the clustering trend 

in the PCA score plot. Notably, the wavelengths at 958 nm and 1416 nm are 

associated with the presence of water in the fruit (Lu, 2001; Seki, Murakami, 

Ma, Tsuchikawa, & Inagaki, 2024), whereas the peak at 1588 nm is indicative 

of substantial absorption attributed to the N-H stretching first overtone (Lee, 

Jang, Lee, & Kim, 2019). The peak observed at 1610 nm is correlated with the 

carbohydrate content (Teena, Manickavasagan, Ravikanth, & Jayas, 2014), 

while the peak at 945 nm is likely representative of the third overtone of CH2 

stretching in sugars (Wu, He, & Feng, 2008). The peak at 1140 nm has been 

ascribed to the second overtone of C-H (Oliveira, Cruz-Tirado, Roque, 

Teófilo, & Barbin, 2020). 

 

 

Figure 5.8 (B). Principal Component Loadings with Three Principal 

Components for Mango Chips  

 

Figure 5.8 (B) summarizes the principal component (PC) loadings for 

three distinct principal components, elucidating the critical wavelengths that 

explain the clustering dynamics observed in the PCA score plot. Among these 
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wavelengths, the 909 nm peak is correlated with detecting firmness and 

glucose levels (Hu, Ma, Liu, Wu, & Ouyang, 2017; Mubarok, Sutari, & 

Hadiwijaya, 2021), whereas the 962 nm peak indicates O–H and NH2 stretch 

overtones (Wedding et al., 2011). The peak observed at 973 nm is a valuable 

indicator for estimating soluble solids content (Omar, Atan, & MatJafri, 2012). 

The peaks between 1457 and 1647 nm are associated with the structural 

constituents of protein, starch, and water (Hu et al., 2017). Finally, the spectral 

regions spanning 1585 to 1695 nm and 1006 to 1152 nm correspond to the 

molecular signatures of water, starch, and chitin (Hu et al., 2017).  

 

Figure 5.8 (C). Principal Component Loadings with Three Principal 

Components for Mango Juice  

The principal component loadings highlighting three key principal 

components related to mango juice are illustrated in Figure 5.8(C). Within 

these spectral wavelengths, 1145 nm is associated with the second overtone of 

the C-H bond, while the range from 1255 nm to 1344 nm corresponds to the 

first overtone of the C-H combination. Additionally, the wavelengths between 

1504 nm and 1523 nm are associated with the first overtone of the N-H bond 

(Eldin & Akyar, 2011). 
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5.3.3. Classification Models for Organic and Conventional Mango 

Products 

The findings pertaining to classifying organic and conventional mango 

products (including fruits, chips, and juice) are systematically presented in 

Tables 1, 2, and 3. Multivariate analytical techniques serve as instrumental 

methodologies for extracting pertinent qualitative or quantitative insights from 

complex datasets, thus rendering them exceedingly beneficial in food analysis 

(Rocha, Prado, & Blonder, 2020). Concerning mango fruits (Table 1), all four 

computational algorithms (LDA, RF, KNN, and PLSDA) attained 

classification accuracies ranging from 57.50% to 100% on the training 

datasets. Upon application to the testing datasets, the overall classification 

efficacy exhibited considerable variability, with the RF model emerging as the 

most advantageous, achieving a predictive accuracy of 88.76% when utilizing 

second derivative (SD) pre-processing.  

The KNN model demonstrated relatively stable performance in 

calibration and validation predictions, particularly when employing FD pre-

processing (88.03% for training and 86.57% for testing). Notwithstanding the 

RF model's exemplary training results (100% accuracy), it manifested 

diminished classification rates on the testing datasets under certain pre-

processing methodologies, such as MSC (73.00%). Comparable findings were 

reported by  Hidalgo et al. (2023), where the RF model exhibited outstanding 

performance on training datasets yet recorded lower classification rates on 

testing datasets. For mango fruits, sensitivity metrics varied from 53.69% to 

100%, while specificity metrics ranged from 53.69% to 100%. The RF model 

utilizing SD pre-processing demonstrated the highest sensitivity (88.90%) and 
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specificity (88.90%) on the testing dataset, thereby indicating a well-balanced 

performance in accurately identifying organic and conventional mango fruits. 

Regarding the analysis of mango chips (refer to Table 2), the 

implemented algorithms attained accuracies ranging from 65.77% to 100% 

across the training samples. The PLSDA model exhibited consistent 

performance in calibration and validation predictions, particularly when 

utilizing SD pre-processing, which yielded accuracies of 84.25% for training 

and 80.20% for testing. For the classification of mango chips, the observed 

sensitivities varied from 57.94% to 100%, while the specificities likewise 

demonstrated a range from 57.94% to 100%. 

In the analysis of mango juice (as illustrated in Table 3), the algorithms 

secured accuracies from 73.71% to 100% on the training samples. When 

evaluated on the test samples, the overall classification efficacy was typically 

superior to that of fruits and chips, with the Random Forest (RF) model 

emerging as the most effective, achieving a prediction rate of 87.53% utilizing 

RAW spectral data. The PLSDA model exhibited exceptional performance, 

particularly with FD pre-processing, recording accuracies of 89.29% for 

training and 90.21% for testing. The KNN model maintained consistent 

performance in calibration and validation predictions when employing MSC 

and SNV pre-processing techniques, achieving 90.38% for training and 

86.08% for testing. For mango juice, the sensitivities ranged from 71.39% to 

100%, with the specificities also spanning from 71.39% to 100%. Notably, the 

PLSDA model utilizing FD pre-processing demonstrated the highest 

sensitivity (90.17%) and specificity (90.17%) on the test set, reflecting a 
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robust and balanced capacity to accurately identify both organic and 

conventional mango juice. 

Sensitivity, defined as the true positive rate or recall, quantitatively 

assesses the model's proficiency in accurately identifying organic mango 

products among all actual organic samples, while specificity, or the true 

negative rate, assesses the model's ability to identify conventional mango 

products among all actual conventional samples correctly; this metric is 

considered optimal when both sensitivity and specificity attain a level of 100% 

(Lamptey et al., 2023; Rocha et al., 2020; Yegon, 2023). These metrics are 

fundamental for a comprehensive evaluation of classification models, offering 

an in-depth understanding of their efficacy in differentiating between organic 

and conventional mango products (including fruits, chips, and juice). Precision 

serves as an index within information retrieval, signifying the proportion of 

relevant items, or predicted presences, that are truly present (Liu, Berry, 

Dawson, & Pearson, 2005).  

The F1-score, representing the harmonic mean of precision and recall 

(Dalianis & Dalianis, 2018), provides a metric that harmonizes false positives 

and false negatives. Throughout the analysis of all three mango products, the 

RF model consistently exhibited the highest precision and F1-scores, 

particularly when integrated with appropriate pre-processing methodologies 

(SD for fruits, FD for chips, and RAW for juice). Nonetheless, the PLSDA 

model demonstrated competitive efficacy, especially in the classification of 

mango juice. Other researchers have similarly employed accuracy, precision, 

sensitivity, and F1-score to evaluate the performance of various classification 

models (Boadu, Teye, Lamptey, Amuah, & Sam-Amoah, 2024). 
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Table 5.1: Performance of Classification Models in Differentiating Organic Mango Fruits from Conventional Ones using 

Pre-Processing Techniques with 10-Fold Cross-Validation for both Training and Test Sets 

Note: LDA (linear discriminant analysis), RF (random forest), KNN (K-nearest neighbors), and PLSDA (partial least squares 

discriminant analysis), MSC (multiplicative scatter correction), SNV (standard normal variate), FD (first derivative), and SD 

(second derivative). 

Model Classification 

metrics 

RAW MSC SNV FD SD 

 
 TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

LDA Accuracy 57.50 53.43 79.34 75.90 79.34 75.90 69.80 68.14 68.62 69.57 

Sensitivity 57.55 53.69 79.10 75.92 79.10 75.92 69.32 68.04 68.17 69.38 

Specificity 57.55 53.69 79.10 75.92 79.10 75.92 69.32 68.04 68.17 69.38 

Precision  57.57 54.08 79.44 77.63 79.44 77.63 70.02 68.74 68.72 70.39 

F1-score 0.58 0.52 0.79 0.75 0.79 0.75 0.69 0.67 0.68 0.69 

RF Accuracy 100.00 65.62 99.92 73.00 100.00 73.71 100.00 86.57 100.00 88.76 

Sensitivity 100.00 65.12 99.92 73.15 100.00 74.08 100.00 86.61 100.00 88.90 

Specificity 100.00 65.12 99.92 73.15 100.00 74.08 100.00 86.61 100.00 88.90 

Precision  100.00 65.56 99.93 73.74 100.00 75.15 100.00 87.94 100.00 89.71 

F1-score 1.00 0.65 1.00 0.72 1.00 0.73 1.00 0.86 1.00 0.89 

KNN Accuracy 66.36 50.10 79.97 72.33 79.97 72.33 88.03 86.57 87.79 84.43 

Sensitivity 66.36 50.45 79.99 72.35 79.99 72.35 88.11 86.70 87.84 84.70 

Specificity 66.36 50.45 79.99 72.35 79.99 72.35 88.11 86.70 87.84 84.70 

Precision  66.33 50.29 79.94 72.93 79.94 72.93 88.03 87.20 87.77 85.77 

F1-score 0.66 0.50 0.80 0.72 0.80 0.72 0.88 0.86 0.88 0.84 

PLSD

A 

Accuracy 70.58 56.95 82.86 75.14 83.88 75.86 81.30 74.43 83.72 79.52 

Sensitivity 70.20 56.93 83.08 75.51 84.16 76.13 81.16 74.29 83.69 79.52 

Specificity 70.20 56.93 83.08 75.51 84.16 76.13 81.16 74.29 83.69 79.52 

Precision  70.68 57.28 83.07 77.63 84.20 78.16 81.33 75.23 83.72 80.78 

F1-score 0.70 0.56 0.83 0.75 0.84 0.75 0.81 0.74 0.84 0.79 
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Table 5.2: Performance of Classification Models in Differentiating Organic Mango Chips from Conventional Ones using 

Pre-Processing Techniques with 10-Fold Cross-Validation for both Training and Test Sets 

Note: LDA (linear discriminant analysis), RF (random forest), KNN (K-nearest neighbors), and PLSDA (partial least squares 

Discriminant analysis), MSC (multiplicative scatter correction), SNV (standard normal variate), FD (first derivative), and SD 

(second derivative). 

 

Model Classification 

Metrics 

RAW MSC SNV FD SD 

 
 TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

LDA Accuracy 75.05 73.27 65.77 66.75 65.89 66.75 76.65 77.02 77.78 78.07 

Sensitivity 75.05 73.28 65.74 66.61 65.87 66.61 76.77 77.17 77.96 78.33 

Specificity 75.05 73.28 65.74 66.61 65.87 66.61 76.77 77.17 77.96 78.33 

Precision  75.05 73.67 65.75 67.24 65.88 67.24 76.92 78.53 78.36 80.11 

F1-score 0.75 0.73 0.66 0.66 0.66 0.66 0.77 0.77 0.78 0.78 

RF Accuracy 100.00 76.43 100.00 65.12 100.00 65.64 100.00 76.93 99.94 77.98 

Sensitivity 100.00 76.28 100.00 65.17 100.00 65.67 100.00 77.06 99.94 78.06 

Specificity 100.00 76.28 100.00 65.17 100.00 65.67 100.00 77.06 99.94 78.06 

Precision  100.00 77.94 100.00 65.67 100.00 66.00 100.00 77.71 99.94 79.25 

F1-score 1.00 0.76 1.00 0.65 1.00 0.65 1.00 0.77 1.00 0.78 

KNN Accuracy 86.34 70.00 82.77 69.94 83.72 67.16 92.87 76.35 88.29 74.33 

Sensitivity 86.21 69.78 82.83 70.06 83.79 67.39 92.84 76.28 88.28 74.28 

Specificity 86.21 69.78 82.83 70.06 83.79 67.39 92.84 76.28 88.28 74.28 

Precision  86.76 70.46 82.86 70.56 83.87 68.43 92.90 76.76 88.38 74.97 

F1-score 0.86 0.70 0.83 0.70 0.84 0.67 0.93 0.76 0.88 0.74 

PLSDA Accuracy 69.34 58.27 77.54 70.47 77.60 70.47 83.42 79.59 84.25 80.20 

Sensitivity 69.19 57.94 77.57 70.44 77.63 70.44 83.33 79.61 84.22 80.22 

Specificity 69.19 57.94 77.57 70.44 77.63 70.44 83.33 79.61 84.22 80.22 

Precision  69.52 59.61 77.60 71.04 77.66 71.04 83.59 81.07 84.27 81.38 

F1-score 0.69 0.57 0.78 0.70 0.78 0.70 0.83 0.79 0.84 0.80 
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Table 5.3. Performance of Classification Models in Differentiating Organic Mango Juice from Conventional Ones using 

Pre-Processing Techniques with 10-Fold Cross-Validation for both Training and Test Sets 

Note: LDA (linear discriminant analysis), RF (random forest), KNN (K-nearest neighbors), and PLSDA (partial least squares 

discriminant analysis), MSC (multiplicative scatter correction), SNV (standard normal variate), FD (first derivative), and SD 

(second derivative). 

Model Classification 

Metrics 

RAW MSC SNV FD SD 

 
 TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

TRAINING 

SET 

TESTING 

SET 

LDA Accuracy 75.09 74.79 76.34 74.24 76.23 74.76 73.71 72.26 79.95 79.87 

Sensitivity 75.14 74.61 76.40 74.11 76.29 74.61 73.79 72.17 80.07 79.78 

Specificity 75.14 74.61 76.40 74.11 76.29 74.61 73.79 72.17 80.07 79.78 

Precision  75.41 76.46 76.67 75.53 76.58 76.13 74.30 73.47 81.51 82.36 

F1-score 0.75 0.74 0.76 0.74 0.76 0.74 0.74 0.72 0.80 0.79 

RF Accuracy 100.00 87.53 100.00 84.58 100.00 83.03 100.00 78.84 100.00 76.13 

Sensitivity 100.00 87.28 100.00 84.50 100.00 82.89 100.00 78.78 100.00 76.11 

Specificity 100.00 87.28 100.00 84.50 100.00 82.89 100.00 78.78 100.00 76.11 

Precision  100.00 88.66 100.00 85.32 100.00 83.68 100.00 79.54 100.00 76.79 

F1-score 1.00 0.87 1.00 0.84 1.00 0.83 1.00 0.79 1.00 0.76 

KNN Accuracy 86.20 80.39 90.38 86.08 90.38 86.08 86.20 77.79 82.19 71.53 

Sensitivity 86.28 80.44 90.42 86.00 90.42 86.00 86.24 77.83 82.27 71.39 

Specificity 86.28 80.44 90.42 86.00 90.42 86.00 86.24 77.83 82.27 71.39 

Precision  87.22 82.76 90.57 86.56 90.57 86.56 86.51 78.17 83.32 72.50 

F1-score 0.86 0.80 0.90 0.86 0.90 0.86 0.86 0.78 0.82 0.71 

PLSDA Accuracy 84.88 83.97 81.84 79.39 81.73 80.39 89.29 90.21 86.14 85.11 

Sensitivity 84.95 83.78 81.94 79.39 81.84 80.33 89.36 90.17 86.24 85.00 

Specificity 84.95 83.78 81.94 79.39 81.84 80.33 89.36 90.17 86.24 85.00 

Precision  85.60 85.94 83.04 80.88 83.16 82.37 90.04 91.13 87.39 87.60 

F1-score 0.85 0.84 0.82 0.79 0.82 0.80 0.89 0.90 0.86 0.85 
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5.4. Conclusion 

The study successfully demonstrated the application of portable near-

infrared spectroscopy for differentiating organic from conventional mango 

fruits, chips, and juice. By employing various pre-processing techniques and 

multivariate classification algorithms, the research identified Random Forest 

(RF) as the most effective model, particularly when paired with Second 

Derivative (SD) and First Derivative (FD) pre-processing. There is potential 

for these models to be imported into mobile phones for effective all-around 

applications. This model can be integrated into mobile phones for versatile and 

efficient applications. The findings underscore the efficacy of portable NIR 

devices in nondestructive, rapid authentication of organic products, providing 

a valuable tool for ensuring product integrity in the food industry. 
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Abstract 

The global demand for organic foods, driven by health benefits and consumer 

preferences, necessitates reliable methods for distinguishing organic products 

from their inorganic counterparts. This study investigates the application of 

dual handheld near infrared (NIR) spectroscopy devices, SCiO and Tellspec, 

combined with chemometric techniques for the nondestructive differentiation 

of organic and inorganic pineapple juices. The objective was to establish a 

rapid and robust method to differentiate organic pineapple juice from 

inorganic juice using unique spectral data from the two devices. Eighty-four 

pineapple juice samples were analysed with preprocessing techniques, 

including mean centering, multiplicative scatter correction, standard normal 

variate, first derivative, and second derivative applied to the spectral data. 

Partial least squares discriminant analysis (PLS-DA) was employed for 

classification, and variable importance in projection (VIP) was used for 

optimal wavelength selection. The results demonstrated that the Tellspec 

scanner, particularly with second derivative preprocessing, achieved high 

accuracy in differentiating organic from inorganic pineapple juice. The fusion 

of data from both SCiO (740–1070 nm) and Tellspec (900–1700 nm) scanners, 

without preprocessing, coupled with the PLS-DA model, achieved perfect 

classification accuracy, sensitivity, and specificity (100%) in both training and 

testing sets. This study highlights the potential of integrating dual handheld 

NIR spectroscopy with chemometrics to effectively and accurately classify 

organic and inorganic pineapple juices. The findings support using these 

advanced techniques for quality assurance and authentication in the food 

industry. 

 

Keywords: Consumer preferences, Juice differentiation, NIR spectroscopy, 

Nondestructive, Partial least squares discriminant analysis 
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6.1 Introduction 

Pineapple is a prominent fruit that is abundantly cultivated in Ghana. 

However, a substantial amount of it is wasted during periods of maximum 

productivity despite huge variations in quality and demand (Beausang, Hall, & 

Toma, 2017). The fruit can undergo processing to create value-added 

products, including juice, concentrates, jam, candy, wine, dried pineapple, 

canned pineapple, dehydrated products, and frozen fruits (Hamzah et al., 2021; 

Chaudhary, Kumar, Singh, Kumar, & Kumar, 2019). This helps to prevent any 

decrease in the quality or quantity of the food after it has been harvested and 

extends its shelf life (Saloni, Chauhan, & Tiwari, 2017). The US Food and 

Drug Administration requires a product to consist entirely of fruit juice to be 

classified as fruit juice (Heyman et al., 2017). The global juice industry is 

projected to produce a revenue of US$116.80 billion in 2023, and the market 

is projected to grow annually at 3.65% (Statista, 2023). 

Consumers prefer pineapple juice due to its distinctive fragrance and 

taste derived from amino acids, amines, phenolic chemicals, and furanone 

(Shaik & Chakraborty, 2022). Pineapple juice contains various minerals, 

particularly manganese, amino acids, carbohydrates, vitamins, and 

polyphenols. The drink is considered functional since it possesses health-

promoting features such as anti-inflammatory, anti-atherosclerotic, anti-aging, 

and other therapeutic capabilities (Khalid, Suleria, & Ahmed, 2016). Fruit 

juice processing involves selection, extraction, de-aeration, filtration, 

preservation, and packaging, with or without preservatives, and can be stored 

neatly in rubber bottles or other neat packaging (Adebayo, Unigbe, & Atanda, 

2014). Pineapple juice is available in various types, including single-strength, 
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concentrated, blended, and clear juices. Techniques like pasteurization, 

ultrafiltration, and freeze drying are used to improve its quality and shelf life. 

Advanced processing techniques like ultraviolet irradiation and reverse 

osmosis, sonication also help preserve antioxidant compounds, vitamins, and 

minerals (Hoque, Talukdar, Roy, Hossain, & Zzaman, 2024; Khalid et al., 

2016). Nevertheless, fruit juices are one of the primary food categories that are 

experiencing a rise in fraudulent incidents (Codex Alimentarius, 2016). 

Organic food is gaining popularity among customers due to its claimed 

health benefits and environmental sustainability compared to inorganically 

produced food (Gomiero, 2018). This is because of the abundance of 

cumulative evidence indicating that organic food exhibits reduced levels of 

pesticide residue, superior taste, healthiness, reduced risk of allergic diseases, 

and overweight and obesity (Mie et al., 2017; Puska, Kurki, Lähdesmäki, 

Siltaoja, & Luomala, 2018). Consumers are thus inclined to pay the higher 

price that organic foods demand (Amuah et al., 2019). The high cost of 

organic pineapple juice makes it susceptible to food fraud and adulteration. 

Hence, inorganic pineapple juice is falsely branded as organic to mislead 

consumers into purchasing it at inflated prices.   

The methods currently used to guarantee the integrity and quality of 

organic products are typically labor-intensive, costly, time-consuming, involve 

destructive methods, call for highly skilled workers, and are frequently 

inapplicable in nations with limited resources (Anyidoho et al., 2021). 

Chemometric analysis using a portable NIR spectrophotometer could be 

beneficial in distinguishing genuine and authentic organic pineapple juice 

from inorganic juice. This would provide a quick, nondestructive, and less 
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expensive method for differentiating organic pineapple juice from inorganic 

ones for quality assurance and control. Ehsani, Yazdanpanah, and Parastar 

(2023) employed a dual handheld NIR spectrometer, namely Tellspec (with a 

wavelength range of 900–1700 nm) and Neospectra (with a wavelength range 

of 1350–2550 nm), as a screening technique to verify the authenticity of 

orange juice.  No studies in the literature utilized classification models to 

differentiate organic pineapple juice from inorganic ones utilizing SCiO and 

Tellspec scanners at the time of this research. Other researchers have 

successfully utilized the SCiO scanner to conduct research on various food 

products, including mango (Lamptey et al., 2023), chili pepper (Essuman, 

Teye, Sam-Amoah, & Amuah, 2023), coffee (Boadu, Teye, Amuah, & Sam-

Amoah, 2022), rice (Teye & Amuah, 2022; Teye, Amuah, McGrath, & Elliott, 

2019), and palm oil (MacArthur, Teye, & Darkwa, 2020).  The Tellspec 

scanner has also been used by other researchers on food and food products 

such as cocoa (Anyidoho, Teye, & Agbemafle, 2020), lime (Jahani et al., 

2020), and pork (Lam et al., 2023). Hence, the objective of this work was to 

use two handheld NIR spectrometers and chemometric techniques to 

nondestructively identify organic pineapple juice from inorganic ones. 

6.2. Materials and Methods 

6.2.1 Pineapple Juice Preparation 

For this study, eighty-four (84) sugarloaf pineapple fruits in various 

stages of maturity (unripe, ripe, and overripe) were purchased from the 

Ministry of Food and Agriculture registered pineapple producers in the Central 

Region of Ghana. Fruits were chosen based on their consistent size and colour, 

while damaged or diseased fruits were rejected. These fruits comprised 
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organic (42 pieces) and inorganic (42 pieces) pineapples. The fruits were then 

sent to the University of Cape Coast's A. G. Carson Teaching and Research 

Laboratory. The pineapples were sorted, washed, peeled, and cut into pieces. 

The cut fruits were squeezed using an electric juicer (Kenwood Excel Juicer, 

JE850) (Santos et al., 2021). The obtained pineapple juice was meticulously 

packaged in bottles (Adebayo et al., 2014). After juicing, we obtained 42 

bottles (300ml per bottle) of pineapple juice made from organic pineapples 

and 42 bottles made from inorganic pineapples.  

6.2.2 Reference Measurement (TSS/°Brix and pH).  

The total soluble solids (TSS) contents were determined using a digital 

refractometer (model: PAL-1, ◦Brix range of 0–35%; Atago, Tokyo, Japan) 

according to established protocols (Abarra et al., 2018; Ehsani et al., 2023). 

The measurements were recorded in degrees Brix, with three replicates taken 

for each value. The fruit juice was dropped onto the prism of the refractometer 

to measure TSS. The refractometer was cleaned with distilled water after each 

measurement. The pH of the scanned pineapple juice was determined using a 

digital pH meter, and the average readings were recorded three times. 

6.2.3 Instrumentation 

This research utilized two scanners, namely SCiO (Consumer Physics, 

Tel Aviv, Israel) and Tellspec (Tellspec Inc., Toronto, Canada), to analyse the 

composition parameters of various food and food products. The scanners were 

explicitly employed for scanning juices. Figure 6.1 displays an image 

depicting the SCiO and Tellspec scanners and an illustration of the NIR 

spectrum acquisition scheme. Tellspec is a compact and mobile device that 

utilizes NIR spectroscopy, bioinformatics, learning algorithms, and a mobile 
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application to provide real-time information. This cutting-edge device uses 

advanced technology to examine food, analyse it at the molecular level, and 

provide comprehensive information regarding calories, macronutrients, 

ingredients, and chemical composition. Tellspec utilizes artificial intelligence 

algorithms and an extensive food database to operate within the 900–1700 nm 

wavelength range. The device uses photon emission to analyse the reflected 

photons and build a spectrum revealing the chemical components in the 

targeted food. The spectrum is transmitted to the cloud for analysis, and the 

findings, encompassing macronutrients, calories, and allergies, are shown on a 

smartphone. The Tellspec scan can penetrate up to a depth of 15-20 mm 

beneath the surface of the food, which is contingent upon the food's 

translucency to infrared light (Kapse, Kausley, & Rai, 2022; Tellspec, 2020).  

The SCiO is a compact NIR spectrometer that analyses food and 

transmits data on its components to a smartphone. It accurately measures the 

nutritional content of vegetables, fruits, dairy products, and meat. The sensor 

comprises a miniaturized infrared spectrometer and micro-optical technology, 

functioning within the wavelength range of 740 nm to 1070 nm. It is 

integrated with cloud-based technology. The micro-spectrometer captures and 

analyses reflected light by separating it into its constituent spectra. The 

spectrum data is sent to the cloud through the mobile application, where it 

undergoes analytical processing and is matched against a material database. 

Following cloud-based data processing, the mobile app displays the results 

(Consumer Physics, 2020). The examined spectrum unveils the chemical 

makeup, offering up-to-the-minute quality data for well-informed decision-

making (Kapse et al., 2022).  
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6.2.4 Spectra Acquisition 

Each pineapple juice sample was analysed separately utilizing the 

SCiO and Tellspec scanners (Figure 6.1). Each mango juice spectrum was 

collected in the reflectance mode using the SCiO and Tellspec devices. The 

SCiO device had a spectra range of 740nm-1070nm, while the Tellspec device 

had a 900–1700 nm range. Both devices recorded the spectra data with a 

resolution of 1nm. The scanners were linked individually to a mobile phone 

via Bluetooth, and the data was saved in the cloud, which was later 

downloaded remotely onto a computer. Both scanners were calibrated before 

the scanning process. The samples were scanned thrice, each in a 100 ml glass 

beaker, and were rotated 1200 after each scan as done by others (Lamptey et 

al., 2023; Teye, Elliott, et al., 2019). 

 

 

Figure 6.1. Schematic of the Procedure for Obtaining Spectra of Juice (from 

left, Sugarloaf Pineapple, Pineapple Juice, Dual Scanners: SCiO – up, and 

Tellspec - Down, and Spectra on a Mobile Phone after Scanning). 
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6.2.5 Software Device, Data Partitioning, and Spectra Preprocessing 

MATLAB (2021a, MathWorks Inc., Natick, MA, USA) with Windows 

10 Pro software package was used for computation, chemometric analysis, and 

generation of figures. The spectroscopic data from 84 organic and inorganic 

pineapple juice samples underwent preprocessing using appropriate 

procedures. These datasets were divided into a training set with data from 58 

samples and a testing set with data from 26 samples. The training set, 

representing 69% of the data, was then used to develop models, while the 

testing set, constituting 31% of the data, was employed to evaluate the models' 

predictive performance. The raw spectra depicted in Figures 6.2a and 6.3a 

reveal relevant and undesirable information about pineapple juice, possibly 

due to light scattering, variability in spectra reproducibility, temperature 

fluctuations, or background noise (Jha & Garg, 2010). To enhance the 

chemical information while reducing background noise and enhancing the 

signal, five preprocessing methods were applied: mean centering (MC), 

multiplicative scatter correction (MSC), standard normal variate (SNV), first 

derivative (FD), and second derivative (SD).  

Figures 6.2c-g and 6.3c-g display the spectra after preprocessing for 

the SCiO and Tellspec scanners. Mean centering (MC) is a fundamental 

preprocessing method that eliminates absolute absorbance values (absolute 

baseline) and amplifies the absorbance from each wavelength (Agelet & 

Hurburgh Jr, 2010). MSC and SNV are commonly used techniques to mitigate 

spectral aberrations caused by scattering. SNV eliminates scatter variation, 

while the second derivatives correct signal components exhibiting linear 

variations across different wavelengths (baseline slope). Before applying the 
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SD, NIR spectra underwent smoothing using the Savitzky-Golay algorithm, 

significantly improving linearity and rectifying offset in the data. Further 

details on these preprocessing strategies can be found in studies conducted by 

other researchers (Agelet & Hurburgh Jr, 2010).  

6.2.6 Partial Least-Squares Discriminant Analysis (PLS-DA) for 

Classification 

Classification methods are employed to organize samples based on 

specific criteria. PLS-DA, a supervised classification technique widely used in 

NIRs, is valuable for establishing robust connections among initial predictors. 

It aims to enhance the differentiation between clusters of observations 

(Kusumaningrum et al., 2018). PLS-DA is a multivariate approach that 

reduces the number of variables to classify samples, which is particularly 

useful when it is uncertain if group differences significantly affect overall 

sample variability (de Sousa Marques, Nicácio, Cidral, de Melo, & de Lima, 

2013). It is a variant of traditional PLS regression, generating models for both 

training and testing. The training set constructs classification models and 

determines optimal parameters, while the testing set assesses model 

effectiveness on new samples (Lee & Choung, 2011). Training and testing 

accuracy are determined by correctly identifying sample numbers (Ambrose, 

Lohumi, Lee, & Cho, 2016). Data reduction generates latent variables 

correlating effectively with response variables. The PLS-DA model is 

represented by the equation provided in the research of other authors 

(Kandpal, Lohumi, Kim, Kang, & Cho, 2016; Kusumaningrum et al., 2018); 

𝑌 = 𝑋𝐵 + 𝐸      (1) 
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where Y is a matrix of the response variables that are related to the measured 

sample categories, X is an n × p matrix of the spectral variables for each 

measured sample category (n is the number of sample objects, and p is the 

number of variables), B is the matrix regression coefficient for the spectral 

variables, and E is the matrix of residuals. To find the relationship, the X and 

Y matrices are decomposed by the latent variables such that: 

𝑋 =  𝑇𝑃𝑙𝑜𝑎𝑑
𝑇  +  𝐸     (2)  

and  

𝑌 =  𝑈𝑄𝑇  +  𝐹     (3) 

Here, T and U are the score matrices, and Pload and Q are the loading 

matrices. 

Spectral data from 84 pineapple juice samples were preprocessed and 

divided into training (58 samples, two-thirds of the total) and testing (26 

samples) subsets. Spectral data are organized with X representing spectral 

variables and Y indicating sample categories. Predicted scores near 1 denote 

organic juice, while those near 0 denote inorganic juice. A baseline of ±0.5 is 

established to assess classification performance. Scores at this baseline (0.5) 

are ambiguous, indicating uncertainty in classification as organic or inorganic 

juice. 

6.2.7 Optimal Variable Selection  

The variable selection process in this study followed other researchers' 

previous methodologies (Kusumaningrum et al., 2018). Optimal wavelength 

selection aimed to pinpoint specific wavebands containing crucial information 

while excluding undesired ones from the spectral dataset. To achieve this, we 

employed the variable importance in projection (VIP) technique on the 
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training set. We aimed to identify the most relevant variables for constructing 

a classification model distinguishing organic from inorganic pineapple juice 

using the fewest possible wavebands.  

VIP, an acronym commonly associated with multivariate models like 

PLS and PLS-DA, aids in understanding influential variables (Andersen & 

Bro, 2010). Lohumi, Lee, and Cho (2015) defined VIP as a composite metric 

quantifying a variable's contribution to characterizing two sets of data: the 

dependent (Y) and independent (X) variables.  

The VIP measure (vj) is precisely calculated as: 

𝑣𝐽 = √𝑝 ∑ [𝑆𝑆𝑎(𝑤𝑎𝑗 ‖𝑤𝑎‖2⁄ )]𝐴
𝑎=1 ∑ 𝑆𝑆𝑎

𝐴
𝑎=1⁄                       (4) 

Here, p represents the number of variables, SSa is the sum of squares 

explained by the a-th component, and ∑SSa is the total sum of squares 

explained by the dependent variable. Thus, vj weights measure each variable's 

contribution based on the variance explained by each PLS component, where 

(
𝑤𝑎𝑗

‖𝑤𝑎‖2) represents the importance of the j-th variable (Mehmood, Liland, 

Snipen, & Sæbø, 2012). The VIP value (vj) provides significant information 

about variables that contribute to describing dependent variables from 

independent ones (Andersen & Bro, 2010). Consequently, the VIP technique 

selects effective wavelengths that differentiate organic juice from inorganic 

juice. We set a threshold value of 1.25, balancing classification accuracy with 

the fewest optimal variables. Consequently, we developed the PLS-DA model 

using wavebands with VIP values exceeding this threshold (Ambrose et al., 

2016; Kandpal et al., 2016). 
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6.2.8 Evaluation of Model Performance  

The assessment of model performance was conducted by analyzing 

sensitivity, specificity, receiver operating characteristic (ROC), and area under 

curve (AUC) (Pourdarbani et al., 2020). Sensitivity refers to the percentage of 

correctly categorized samples within a certain class, whereas specificity refers 

to the percentage of samples from the other class that the model correctly 

rejects. A class model is considered perfect when it achieves both 100% 

sensitivity and 100% specificity, as stated by (de Sousa Marques et al., 2013). 

6.3. Results And Discussions 

6.3.1 Reference Measurement 

Fruit juices are beverages that are low in fat, devoid of alcohol and 

lactose, and are highly sought after by customers due to their nutritional value 

(Ephrem, Najjar, Charcosset, & Greige-Gerges, 2018). They are naturally 

abundant in bioactive chemicals that benefit health, can help reduce disease 

risk, and play a significant role in human nutrition (Ephrem et al., 2018). pH 

and TSS are essential physicochemical parameters that determine the quality 

of juice. The pH of fruit juices has a notable impact on the stability of 

bioactive components (Grobelna, Kalisz, & Kieliszek, 2019), while the Total 

Soluble Solids (TSS) is a widely employed quality control indicator in the fruit 

industry (Wojdyło, Teleszko, & Oszmiański, 2014). Table 6.1 displays the pH 

and TSS range and the mean and standard deviation of the organic and 

inorganic pineapple juice. The pH of the organic juice ranged from 3.39 to 

4.66, while the pH of the inorganic juice ranged from 3.87 – 4.32. The TSS 

content of the organic pineapple juice ranged from 12- 18.5 (0Brix), while the 

TSS content of the inorganic pineapple juice ranged from 14.1 – 19.7 (0Brix). 
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Amuah et al. (2019) recorded a similar TSS range for organic and 

inorganic pineapple fruits.   The variation in these quality indicators could be 

attributed to disparities in the maturity of the fruits used for the juice (Amuah 

et al., 2019; Pauziah, Malip, Norhayati, Tham, & Ibrahim, 2012) and the 

growing conditions under which they were cultivated (Bilalis et al., 2018; 

Subedi & Walsh, 2011; Wojdyło et al., 2014).  

6.3.2 Analysis of NIR Spectra.  

The two NIR spectrometers' raw spectra of the 84 pineapple juice 

samples are shown in Figures 6.2(a) and 6.3(a). The spectra exhibited a 

significant range of baseline shifts caused by background information, particle 

size impact, temperature fluctuation, and noise (Jha & Garg, 2010). The 

considerable band overlap in the raw spectra posed a challenge in accurately 

identifying certain bands. Therefore, chemometric preprocessing analysis was 

utilized to extract the valuable characteristics of the dataset (Kusumaningrum 

et al., 2018) and construct a dependable model while preserving the 

similarities and differences among the original observations. The 

preprocessing methods utilized were MC, MSC, SNV, FD, and SD. Of all the 

chemometric analyses used, the MSC analysis demonstrated effective 

categorization when the SCiO scanner was used, and its corresponding spectra 

can be found in Figure 6.2 (d). This resulted in distinct and easily identifiable 

clusters, as demonstrated in the average spectral profile depicted in Figure 6.2 

(b).  

Significant spectral disparities exist between organic and inorganic 

fruit juice. In Figure 6.2 (b), organic pineapple juice's spectra exhibit more 

reflectance than inorganic pineapple juice. The NIR spectra consist of wide 
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bands corresponding to overtones and combinations of vibrational modes, 

such as C-H, O-H, N-H, and S-H chemical bonds (Czarnecki, Morisawa, 

Futami, & Ozaki, 2015). Sugars and carbohydrates consist mostly of carbon-

hydrogen (C-H), oxygen-hydrogen (O-H), carbon-carbon (C-C), and carbon-

oxygen (C-O) bonds (Chen et al., 2021). The primary spectral features of 

water and sugar are represented by the O-H and C-H bands, respectively 

(Ehsani et al., 2023). The figures demonstrate prominent peaks within the 

wavelength range of 960 nm to 1050 nm, as seen in Figures 6.2(a) to 6.2(g). 

The wavelength range mentioned corresponds to the second overtone of the O-

H and N-H bonds, characteristic of H2O, ROH, ArOH (OH bond on the 

aromatic group), and NH2 functional groups (Amuah et al., 2019).  

These groups know the primary components of water, glucose, 

sucrose, and cellulose found in pineapples. After undergoing FD 

preprocessing, significant peaks were detected at wavelengths of 820nm - 

845nm and 950nm. Substantial peaks were observed at wavelengths of 820nm 

- 845nm, 930nm - 950nm, 965nm - 985nm, and 1020nm - 1035nm. The 

observed peaks correspond to the third overtone of ArOH, H2O, RNH2, ROH, 

CH, and CH2 (Ehsani et al., 2023; Lamptey et al., 2023). However, a distinct 

division was observed when the MSC preprocessing technique was employed 

among all the preprocessing methods. These results were obtained using the 

SCiO scanner. 

Nevertheless, when the Tellspec scanner was employed, significant 

peaks were detected at wavelengths of 920nm – 1020nm, 1120nm – 1220nm, 

1400nm – 1500nm, and 1610-1630nm, after undergoing preprocessing with 

MC, as depicted in Figure 6.3 (c). The primary peaks found after 
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preprocessing with Multiplicative Scatter Correction (MSC) were at 

wavelengths of 920nm – 1020nm, 1120nm - 1220nm, 1400nm – 1500nm, and 

1600nm -1650nm, as depicted in Figure 6.3 (d). The prominent peaks detected 

after applying the SNV preprocessing technique were found within the 

wavelength ranges of 920nm – 1020nm, 1120nm – 1220nm, 1400nm - 

1500nm, and 1600nm – 1680nm, as illustrated in Figure 6.3 (e). The 

significant peaks detected after applying the FD to the preprocessed data were 

found at wavelengths of 920nm – 940nm, 1110nm – 1180nm, 1300nm – 

1410nm, and 1620nm -1630nm, as illustrated in Figure 6.3 (f).  

The SD preprocessing strategy that achieved the most effective 

spectral smoothing and resulted in good classification exhibited peaks at 

specific wavelengths: 1110nm - 1125nm, 1280nm - 1320nm, 1370nm - 

1380nm, and 1620nm - 1640nm, as illustrated in Figure 6.3 (g). This resulted 

in distinct and easily identifiable clusters, as demonstrated in the average 

spectral profile depicted in Figure 6.3 (b). These bands correspond to the 

following functional groups: CH2, ArOH, H20, third overtones, CH3, CH2, CH, 

ArOH, ROH, RNH2, second overtones, and ArCH, CH3, CH2 first overtone 

(Anyidoho et al., 2021; Ehsani et al., 2023). An observable absorption band at 

approximately 1440 nm could be linked to the first overtone of starch, 

moisture, and sugars (Anyidoho et al., 2021). 
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Figure 6.2. Spectra of Pineapple Juice Based on Handheld NIR SCiO TM (740 

- 1070 nm): (a) Raw, (b) Mean, (c) MC (d) MSC, (e) SNV, (f) FD, and (g) SD.  
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Figure 6.3. Spectra of Pineapple Juice Based on Handheld NIR Tellspec 

(900–1700 nm): (a) Raw, (b) Mean, (c) MC, (d) MSC, (e) SNV, (f) FD, and (g) 

SD.  

 

6.3.3 Classification using PLS-DA Model  

The PLS-DA model was utilized, leveraging the entire wavelength 

range to formulate classification equations for unidentified samples in real-

world scenarios. This method involved supervised learning, where prior 

knowledge of class membership was employed to guide the analysis 

(Kusumaningrum et al., 2018). This study established two distinct categories, 

organic and inorganic fruit juice, for classification purposes. The complete 

dataset was partitioned into training and testing sets. Depending on the 

preprocessing method, the PLS-DA models classified the pineapple fruit juices 

with varying accuracies. In NIR spectral analysis, preprocessing is essential to 

adjust the original variables, ensuring they meet the dataset's general 

assumptions. Suitable preprocessing techniques can reduce baseline shifts and 

non-linear effects, enhancing the classification models (Kusumaningrum et al., 

2018). Consequently, we applied the PLS-DA model with different 

preprocessing methods to evaluate how each technique, algorithm, and dataset 
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influenced the classification model's accuracy. The classification accuracies 

from the PLS-DA training and testing datasets are presented in Tables 6.2, 6.3, 

and 6.4.  

The spectral profiles of the organic and inorganic pineapple juices 

were accurately categorized in all preprocessing model sets, utilizing the 

complete spectral range. The study accurately classified organic and inorganic 

pineapple juices using spectral profiles, achieving training accuracy ranging 

from 70.4% to 87.0% when scanned with the SCiO scanner and 86.0% to 

96.0% when scanned with the Tellspec scanner. The SD preprocessing set had 

the highest accuracy when scanned by both scanners, while the MC processing 

set demonstrated the lowest accuracy. Testing accuracy ranged from 69.6% to 

87.0% when analysed using the SCiO scanner and from 90.0% to 100.0% 

when analysed using the Tellspec scanner. The FD preprocessing set was most 

accurate when scanned using the SCiO scanner (Figure 6.4). 

In contrast, the SD preprocessing set achieved the highest accuracy 

when scanned using the Tellspec scanner (Figure 6.5). Samples scanned with 

the SCiO scanner and preprocessed with FD outperformed the other 

preprocessing methods, while samples scanned with the Tellspec scanner and 

preprocessed with SD showed the best performance. The unprocessed 

absorbance data performed better than those that underwent preprocessing 

techniques (Figure 6.6), demonstrating that the handheld NIR approach can 

effectively and accurately distinguish organic pineapple juice from inorganic 

ones. 

Figures 6.7, 6.8, and 6.9 show the ROC curve for the pineapple juice 

preprocessed with FD for SCiO, SD for Tellspec, and raw (no preprocessing) 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



191 
 

for the combination of both scanners, respectively. The evaluation of various 

models included sensitivity and specificity values for the training and testing 

sets and the area under the ROC curve. Sensitivity and specificity values were 

determined to optimize their sum. High specificity is often preferred in 

diagnostic models to reduce false positives (de Sousa Marques et al., 2013). 

The study utilized the SCiO scanner for PLS-DA models with first derivative 

spectra for organic and inorganic pineapple juice and the Tellspec scanner for 

PLS-DA models with second derivative spectra.  

In the case where the SCiO scanner was used, it achieved sensitivity 

and specificity values of 0.74 and 0.85 for training and testing sets, 

respectively. When the Tellspec scanner was used, it achieved sensitivity and 

specificity values of 0.92 and 1.0 for training and testing sets. Employing NIR 

spectra based on combining both scanners without preprocessing resulted in 

1.0 for training and 1.0 for testing sets. Ehsani et al. (2023) also achieved 

perfect sensitivity and specificity of 100% in both training and testing sets 

when they combined results from two spectrometers (Tellspec, 900-1700 nm, 

and Neospectra, 1350-2550 nm) in their study. The findings of the PLS-DA 

models indicate the viability of employing chemometric techniques for the 

differentiation of organic and inorganic pineapple juice. 

Table 6.1: Reference Measurement of pH and TSS 

 Subset Range Mean Std 

Organic pH 3.39 - 4.66 4.14 0.25 

TSS 12- 18.5 16.66 1.44 

Inorganic pH 3.87 – 4.32 4.08 0.11 

TSS 14.1 – 19.7 17.95 1.03 

Note: TSS (Total Soluble Solids, and Std (Standard Deviation).
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Table 6.2: Training and Testing Results of the PLS-DA Model Using Spectral Data from the Handheld NIR Spectrometer (SCIOTM) 

with Various Preprocessing Methods. 

Preprocessing 

Training set (n = 58 ) Testing set (n = 26) 

Accuracy Sensitivity Specificity  AUC Accuracy Sensitivity Specificity  AUC 

RAW 0.741 0.741 0.741 0.875 0.696 0.636 0.750 0.822 

MC 0.704 0.667 0.741 0.759 0.783 0.812 0.750 0.833 

MSC 0.815 0.741 0.889 0.47 0.826 0.909 0.750 0.864 

SNV 0.796 0.704 0.889 0.842 0.826 0.909 0.750 0.852 

FD 0.796 0.740 0.852 0.870 0.870 0.909 0.883 0.883 

SD 0.870 0.852 0.889 0.966 0.565 0.455 0.667 0.659 

Note: AUC (Area Under Curve), MC (Mean Centering), MSC (Multiplicative Scatter Correction), SNV (Standard Normal Variate), FD (First 

Derivative), and SD (Second Derivative). 
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Table 6.3: Training and Testing Results of the PLS-DA Model using Spectral Data from the Handheld NIR Spectrometer (Tellspec) 

with Various Preprocessing Methods. 

Preprocessing 

Training set (n = 58) Testing set (n = 26) 

Accuracy Sensitivity Specificity  AUC Accuracy Sensitivity Specificity  AUC 

RAW 0.940 0.920 0.960 0.998 0.900 0.800 1.000 0.995 

MC 0.860 0.880 0.840 0.963 0.950 0.900 1.000 1.000 

MSC 0.900  0.800  1.000  0.970 0.950 0.900 1.000 0.925 

SNV 0.920 0.840 1.000 0.970 0.950 0.900 1.000 0.925 

FD 0.960 0.920 1.000 0.994 0.950 0.900 1.0000 0.9400 

SD 0.960 0.920 1.000 0.997 1.000 1.000 1.000 1.000 

Note: AUC (area under curve), MC (mean centering), MSC (multiplicative scatter correction), SNV (standard normal variate), FD (first 

derivative), and SD (second derivative). 
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Table 6.4: Training and Testing Results of the PLS-DA Model using Combined Spectral Data from Handheld NIR 

Spectrometers (Tellspec and SCiOTM) for Classification. 

 

Training set (n = 58 ) Testing set (n = 26) 

Preprocessing Accuracy Sensitivity Specificity  AUC Accuracy Sensitivity Specificity  AUC 

RAW 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

MC 0.983 1.000 0.966 1.000 0.846 0.923 0.769 0.959 

MSC 0.914 0.931 0.897 0.981 0.885 0.846 0.923 0.976 

SNV 0.931 0.931 0.931 0.988 0.885 0.846 0.923 0.970 

FD 0.966 0.966 0.966 0.998 1.000 1.000 1.000 1.000 

SD 1.000 1.000 1.000 1.000 0.885 0.846 0.923 0.979 

Note: AUC (area under curve), MC (mean centering), MSC (multiplicative scatter correction), SNV (standard normal variate), FD 

(first derivative), and SD (second derivative). 
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Figure 6.4.  Classification of Organic and Inorganic Pineapple Juice Utilizing 

PLS-DA with FD Preprocessing Based on Handheld SCiO TM (740 - 1070 

nm): (a) Training and (b) Testing. 
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Figure 6.5. Classification of Organic and Inorganic Pineapple Juice Utilizing 

PLS-DA with SD Preprocessing Based on Tellspec: (a) Training (b) Testing. 
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Figure 6.6. Classification Results for Organic and Inorganic Pineapple Juice 

Utilizing PLS-DA with RAW Preprocessing Based on Combining Handheld 

Tellspec and SCiOTM: (a) Training and (b) Testing. 
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Figure 6.7. ROC Curve for Pineapple Juice with FD Preprocessing of NIR 

Spectra Based on Handheld NIR SCiO TM (740 - 1070 nm (a) Training and (b) 

Testing. 
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Figure 6.8. ROC Curve for Pineapple Juice with SD Preprocessing of NIR 

Spectra Based on Tellspec: (a) Training (b) Testing.  

 

Figure 6.9. ROC Curve for Pineapple Juice with Raw Preprocessing of NIR 

Spectra Based on the Combination of Handheld Tellspec and SCiOTM: (a) 

Training and (b) Testing. 
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6.3.4 Variable Importance Projection Model 

The VIP is a comprehensive metric quantifying a variable's 

contribution to characterizing independent and dependent datasets (Peng, Shi, 

Song, Chen, & Gao, 2014). The effectiveness of the PLS-VIP technique can 

depend on the selected cut-off value. Nevertheless, the "greater-than-one rule" 

frequently identifies relevant predictors. In this study, a threshold of 1.25 was 

applied (Wang, He, & Wang, 2015). The peaks observed in the VIP score plot 

offer valuable insights into the organic and inorganic components that 

contribute to the unique characteristics of pineapple juice. Subsequent peaks 

were selected after analyzing multiple NIR spectra. 

Upon utilizing the SCiO scanner, the peaks chosen were 804 and 964 

nm, corresponding to the second overtone O-H stretching vibrations associated 

with water and the third overtone of C-H functional group, respectively (Hao, 

Wang, & Zhang, 2021; Siedliska, Baranowski, Zubik, Mazurek, & 

Sosnowska, 2018) (Figure 6.10). Upon utilizing the Tellspec scanner, the 

peaks at the wavelengths of 971 nm, 1013 nm, 1142 nm, 1192 nm, and 1671 

nm were specifically chosen (Figure 6.11). These peaks correspond to the N-H 

and C-H regions corresponding to the second overtone. Various substances, 

including water, sugars, carbohydrates, organic acids, polyphenolic 

compounds, certain vitamins, and specific amino acids, can all contribute to 

this absorption process (Włodarska, Szulc, Khmelinskii, & Sikorska, 2019). 

The peak wavelengths of 810 nm, 827 nm, 852 nm, 868 nm, 1013 nm, 1142 

nm, and 1218 nm were chosen when combined with the SCiO and Tellspec 

scanners (Figure 6.12). This peak corresponds to the third overtone area of N-
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H, the second overtone region of N-H, the second overtone region of C-H, and 

the absorption of theaflavins (Panigrahi, Bhol, & Das, 2016; Wu et al., 2012).  

 

Figure 6.10 VIP Calculated Utilizing SCiOTM. The Line Indicates the 

Threshold Value. 

 

Figure 6.11. VIP Calculated Utilizing Tellspec. The Line Indicates the 

Threshold Value. 
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Figure 6.12. VIP Calculated Utilizing a Combination of both Tellspec and 

SCiOTM. The Line Indicates the Threshold Value. 

 

6.4. Conclusion 

This study classified organic and inorganic pineapple juice using NIR, 

a nondestructive method, and PLSDA, a multivariate analytical technique. The 

results from the Tellspec scanner performed better than those from the SCiO 

scanner. The findings of the PLS-DA models indicate the viability of 

employing chemometric techniques for the differentiation of organic and 

inorganic pineapple juice. Employing NIR spectra based on combining both 

scanners for the PLSDA models, without any preprocessing for organic and 

inorganic pineapple juice, resulted in sensitivity and specificity values of 1.0 

for the training set 1.0 and 1.0 for the testing set, respectively. The results of 

this study can pave the way for food control authorities to develop a 

nondestructive, rapid, and on-site strategy to differentiate organic juice from 

inorganic juice without generating chemical waste. NIR spectroscopy and 

chemometrics also offer significant benefits in terms of time, efficiency, and 

cost. The rapid analysis provided by NIR reduces the time required for testing, 
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increases the efficiency of quality control processes, and minimizes costs 

associated with chemical reagents and labor. 

 

Acknowledgments 

We appreciate the help provided by Gideon Kwesi Nakotey, David Yaro, 

CSIR-Food Research Institute, World Food Programme, and School of 

Agriculture, UCC. 

Conflict of Interest Statement 

The authors have declared no conflicts of interest for this article.  

Credit Authorship Contribution Statement: 

Conceptualization: FPL, CLYA, VGB; ET, Formal analysis: FPL, CLYA, ET; 

Investigation: FPL, VGB, ET; Funding acquisition: FPL, ET; Methodology: 

FPL, CLYA, EEA, VGB, ET; Writing – original draft: FPL, ET;  Data 

curation: FPL, CLYA, EEA, VGB, ET; Funding acquisition: FPL, ET; 

Resources: FPL, CLYA, VGB, ET; Supervision: CLYA, EEA, ET; Writing – 

review & editing: FPL, CLYA, EEA, VGB, ET. 

 

 

 

 

  

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



204 
 

CHAPTER SEVEN 

COMPARATIVE ANALYSIS OF EXPIRED AND UNEXPIRED 

COMMERCIAL FRUIT JUICES: PHYSICOCHEMICAL AND 

MICROBIAL PROPERTIES. 

*Francis Padi Lamptey1,2,4, *Ernest Teye1,4, Charles L. Y. Amuah3,4, Ernest 

Ekow Abano1 

1Department of Agricultural Engineering, School of Agriculture, College of 

Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, 

Ghana 

2Department of Food Science and Postharvest Technology, Cape Coast 

Technical University, P. O. Box DL 50, Cape Coast, Ghana. 

3Department of Physics, Laser and Fibre Optics Centre, School of Physical 

Sciences, College of Agriculture and Natural Sciences, University of Cape 

Coast, Cape Coast, Ghana 

4University of Cape Coast, Africa Centre of Excellence for Food Fraud and 

Safety Research; AfriFoodinTegrity Centre, Cape Coast, Ghana 

Correspondence:  ernest.teye@ucc.edu.gh/francis.lamptey@cctu.edu.gh 

Submitted: International Journal of Food Science 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library

mailto:ernest.teye@ucc.edu.gh/francis.lamptey@cctu.edu.gh


205 
 

Statement of Contribution of Joint Authorship 

Lamptey F. P.:   (Candidate) 

Conceptualised the topic, established methodology, data collection and 

analysis, preparation of tables and figures, writing and compilation of the 

original manuscript.  

Teye, E.:    (Principal Supervisor) 

Conceptualised the topic, established methodology, supervised and edited the 

manuscript and co-author of manuscript. 

Abano E. E.:    (Co-Supervisor)  

Conceptualised the topic, supervised and edited the manuscript and co-author 

of manuscript. 

Amuah C. L. Y.:    (Research Team member) 

Validation, visualization and data curation and co-author of manuscript 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



206 
 

Abstract 

Fruit juices are widely consumed for their nutritional benefits, yet they can be 

prone to quality degradation over time, especially after expiration. This study 

compares the physicochemical properties and microbial load in expired and 

unexpired commercial fruit juices from apples, grapes, and pineapples. Eight 

juice samples (four expired and four unexpired) were analysed for key 

parameters such as pH, titratable acidity (TA), total soluble solids (TSS), 

colour, and vitamin C content, as well as microbial assessments, including 

aerobic plate count (APC) and yeast/mold counts. Expired juices showed a 

significant reduction in TA (e.g., apple juice dropped from 0.60% to 0.12%), 

vitamin C (with a 57.6% decrease in pineapple juice), and colour lightness (L* 

value dropped from 10.19 to 0.81 in apple juice). Microbial analysis revealed 

a marked increase in yeast/mold counts in expired juices, with apple juice 

showing a rise from 40.00 to 97.50 CFU/mL. No pathogenic bacteria, 

including Salmonella and Staphylococcus aureus, were detected in any 

sample. These findings highlight the degradation in physicochemical 

properties and increased microbial load in expired juices, posing potential 

health risks. The study emphasizes the importance of monitoring expiration 

dates and ensuring proper storage conditions to maintain juice quality and 

consumer safety. 

Keywords: Expiration date; Food safety; Fruit juice; Microbial load; Vitamin 

C degradation 
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7.1 Introduction 

Consumers today are increasingly health-conscious, seeking beverages 

that provide excellent nutritional value and bioactive compounds, such as 

fibre, vitamins, minerals, antioxidants, probiotics, omega-3 fatty acids, and 

prebiotics (Bhardwaj, Nandal, Pal, & Jain, 2014; Giri, Sakhale, & Nirmal, 

2023). Fruit juice, an unfermented beverage derived from the edible parts of 

fresh, mature fruits, has become a staple in many households, offering a 

convenient source of essential nutrients like vitamins and minerals (Nowak, 

Gośliński, Wojtowicz, & Przygoński, 2018). 

While fruit juices are nutritious, they can also serve as a vehicle for 

foodborne illnesses. Contamination during production can occur due to factors 

such as water quality, pH, hygiene practices, raw materials, temperature, and 

environmental vectors (Feroz, 2018). Most fruit juice products are labelled 

with expiration dates, guiding consumers and food handlers on safe 

consumption periods. Consuming expired products can pose significant health 

risks (Ankiel & Samotyja, 2020), as spoilage leads to microbial growth, gas 

buildup, discolouration, and cloudiness, which compromise the safety and 

quality of the product (Feroz, 2018).  

Expired fruit juices may exhibit significant differences in 

physicochemical properties and microbial safety compared to unexpired 

counterparts, potentially posing health risks. Light, temperature, and microbial 

contamination can alter these properties, impacting juice quality and storage 

stability (Kaddumukasa, Imathiu, Mathara, & Nakavuma, 2017). The 

physicochemical properties and microbial safety of expired fruit juices may 

significantly differ from those of their unexpired counterparts, potentially 
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posing health risks to consumers. Bacterial growth in juice is influenced by 

pH, storage temperature, packaging, sugar content, preservatives, and 

production methods (Ahmed, Das, & Uddin, 2018). Processed juice undergoes 

biochemical changes during storage, necessitating proper processing, 

preservation, and chemical preservatives. Proper processing and preservation 

techniques, such as pasteurization and cold storage, are crucial for maintaining 

juice quality (Singh & Sharma, 2017). Feroz (2018) attempted to identify 

changes in orange juice after the expiration date printed on the product 

packaging. 

This study investigates the changes in commercial fruit juices (apple, 

grape, and pineapple) after expiration. By comparing the physicochemical, 

microbial, and heavy metal properties of expired and unexpired juices, we aim 

to understand the potential risks associated with consuming expired products 

and provide recommendations for consumer safety. Physicochemical 

characteristics, including pH, acidity, total soluble solids, and sugar content, 

are critical indicators of juice quality and tend to degrade over time, affecting 

taste, texture, and safety. Additionally, microbial contamination, especially 

from bacteria, yeasts, and molds, may increase in expired juices, posing a risk 

of foodborne illnesses.  

7.2 Methodology 

7.2.1 Sample Collection 

Eight commercially available fruit juice samples were obtained from 

Cape Coast, Ghana retail shops. The samples included both expired and 

unexpired products to allow for comparative analysis. The samples included 

expired and unexpired juices to enable comparative analysis, with details on 
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the number of samples and juice types shown in Table 1. Samples of the juices 

are displayed in Figure 7.1.  

The expired juice samples had exceeded their expiration date by more 

than eight months, while the unexpired samples had a remaining shelf life of at 

least eight months. All the fruit juices were pasteurized and shelf-stable, 

packaged in commercially sealed containers. After purchase, the samples were 

transported to the laboratories of the Department of Laboratory Technology, 

University of Cape Coast, and the Department of Food Science and 

Postharvest Technology, Cape Coast Technical University, for microbial and 

physicochemical analysis.  

Table 7.1: Details of Expired and Unexpired Commercial Fruit Juice 

Samples Purchased for Analysis 

Juice Type Category Number of samples 

Apple Juice Expired 2 

Unexpired 2 

Grape Juice Expired 1 

Unexpired 1 

Pineapple Juice Expired 1 

Unexpired 1 

Total  8 

 

7.2.2 Total Soluble Solids, pH, and Titratable Acidity Determination 

Total soluble solids (°Bx) were measured using a digital refractometer 

(Atago, Tokyo, Japan). The samples were thoroughly mixed and used directly 

for determination (Hamid & Hamid, 2015; Masithoh, Haff, & Kawano, 2016). 
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A pH meter was used to determine the pH of the juices. The standardized 

electrode tip of the pH meter was immersed in the solution, and the sample 

was stirred gently using a rod to give a constant pH value (Hamid & Hamid, 

2015). TA (%) was determined using methods from other researchers 

(Masithoh et al., 2016) with slight modifications. The juice samples were 

titrated with 0.1 N NaOH, using phenolphthalein as an indicator. The titration 

was performed on 2 mL of each juice sample, and TA was calculated as citric 

acid equivalent. The average values from triplicate measurements were used 

for the final calculations.  

7.2.3 Determination of Vitamin C 

Vitamin C was estimated in the samples using the spectrophotometric 

method (Khadka & Pathak, 2023). In this method, ascorbic acid was oxidised 

to dehydroascorbic acid at 370C with bromine water in an acetic acid solution 

coupled with 2,4-dinitrophenylhydrazine (DNPH). This solution produced a 

red-coloured complex with 85% H2SO4. The absorbance of that complex was 

determined at 530 nm. 

7.2.4 Determination of Colour  

Hunter Colorimeter (Make: HunterLab, Reston, Virginia) was used to 

measure the colour of the juices. The L, a, and b values were recorded as the 

mean of three replicates in which a low number of L value (0–50) indicates 

darkness and a high number (51–100) indicates lightness, positive a value 

indicates red and negative a value indicates green and positive b value 

indicates yellow and negative b value indicates blue (Das, Goud, Das, & Sahu, 

2021). 
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7.2.5 Microbial Analysis  

Aerobic plate count, Total coliform Count, Staphylococcus aureus 

count, Salmonella sp., Yeast/Molds, and fugal acidophiles were determined 

using the Standard plate count method (Chouhan, 2015). By ISO standards 

(ISO-4833, 2013), the samples were analysed for Aerobic plate count, Total 

coliform Count, Staphylococcus aureus count, Yeast and Molds in colony-

forming units (CFU) per ml using the pour plate method/technique. Culture 

media consisting of Buffered Peptone Water (Microgen), Nutrient Agar 

(Oxoid), Eosin Methylene Blue Agar (Oxoid), Mannitol Salt Agar (Oxoid), 

Salmonella/Shigella agar and Potato Dextrose agar (Oxoid) were prepared 

according to the manufacturer’s instructions. Using Buffered Peptone Water 

(Oxoid) as recovery diluent, 180ml of the buffered peptone water was 

prepared in triplicate for each sample and sterilized utilizing autoclaving along 

with all prepared media and petri dishes at 121°C, 15psi for 15 minutes. The 

sample was allowed to thaw at room temperature and adequately 

homogenized, 20g of the test sample was weighed aseptically into the 

recovery diluent (Buffered Peptone Water) and incubated in a water bath at 

37oC for 30 minutes. The test sample was serially diluted to 10-3 in sterile 

buffered peptone water. 

For Aerobic plate count, triplicate dilutions of 1ml of 10-2 samples 

were plated on Nutrient agar. Each triplicate dilutions were incubated at 

35±2°C for 48 hours to observe for aerobic plate count (CFU/ml) for each 

sample. For Total Coliform count, triplicate dilutions of 1ml of 10-1 sample 

were plated on Eosin Methylene Agar. Each triplicate dilution was incubated 
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at 35±2°C for 48 hours to observe each sample's Total Coliform count 

(CFU/ml). 

For Staphylococcus aureus count, triplicate dilutions of 1ml of 10-1 

sample were plated on Mannitol Salt Agar.  Each triplicate dilution was 

incubated at 35±2°C for 48 hours to observe each sample for Staphylococcus 

aureus count (CFU/ml).  

For Total Salmonella count, triplicate dilutions of 1ml of 10-1 sample 

were plated on Salmonella/Shigella agar. Each triplicate dilution was 

incubated at 35±2°C for 48 hours to observe each sample's Total Salmonella 

count (CFU/ml). 

For Yeast and Molds, triplicate dilutions of 1 ml of 10-1 sample were 

plated on Potato Dextrose agar supplemented with ampicillin. Each triplicate 

dilution was incubated at room temperature for 7 days to observe for yeast and 

mold counts (CFU/ml) for the sample. Fungal acidurics were assessed 

according to (Vantarakis, Affifi, Kokkinos, Tsibouxi, & Papapetropoulou, 

2011). 

Figure 7.1: Samples of Fruit Juice: A. Expired Apple Juice, B. Unexpired 

Apple Juice, C. Unexpired Grape Juice D. Expired Grape Juice E. Unexpired 

Pineapple Juice, F. Expired Pineapple Juice, G. Unexpired Apple Juice, and 

H. Expired Apple Juice 
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7.3. Results and Discussions 

This study investigated the physicochemical and microbial changes in 

commercial fruit juices (apple, grape, and pineapple) before and after 

expiration (Tables 7.2 - 7.5). The results reveal significant alterations in 

various parameters, which have important implications for juice quality, 

safety, and consumer health. 

7.3.1 Physicochemical Changes 

7.3.1.1 Titratable Acidity (TA) and pH 

Titratable acidity and pH are interrelated concepts in food analysis that 

deal with acidity. These quantities are analytically determined separately, 

providing particular insights on food quality. For example, while pH is 

essential to assess the ability of a microorganism to grow in a specific food, 

titratable acidity is a better predictor than pH of how organic acids in the food 

impact flavor (Sadler & Murphy, 2010; Tyl & Sadler, 2017). The pH values of 

all expired and unexpired juice samples ranged from 3.44 to 3.74, which is 

consistent with the typical pH range for fruit juices (Bhardwaj & Pandey, 

2011; Kaddumukasa et al., 2017). Across all juice types, a consistent decrease 

in titratable acidity was observed in expired samples. This reduction was 

particularly pronounced in apple juice (Table 7.1), where TA decreased from 

0.60 to 0.12, and in pineapple juice (Table 7.4), with a drop from 1.02 to 0.12. 

The decrease in titratable acidity in juice might be due to the chemical reaction 

between organic constituents, which increased upon prolonged storage 

(Bhardwaj & Pandey, 2011). The loss of acidity affects the flavor profile and 

may compromise the juice's natural preservative properties, potentially 

allowing for increased microbial growth. 
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7.3.1.2 Total Soluble Solids (TSS) 

The Total soluble solid values, measured in °Brix, showed variations 

between expired and unexpired samples. It remained relatively stable in apple 

juice (Sample 1) but showed significant changes in grape and pineapple juices 

(Tables 7.3 and 7.4, respectively). The decrease in TSS for grape juice (from 

14.23 to 12.70) might be attributed to the action of microorganisms present in 

the juice (Chauhan, Singh, Tyagi, & Balyan, 2002), while the slight increase 

in pineapple juice (from 12.53 to 12.80) might be due to hydrolysis of 

polysaccharides into monosaccharides and increase in concentration of juice 

due to dehydration (Bhardwaj & Pandey, 2011). These changes can affect the 

sweetness and overall sensory qualities of the juices. 

7.3.1.3 Colour Parameters (L*, a*, b*) 

 changes were evident across all samples, with alterations in lightness 

(L*) and redness/greenness (a*) values. The decrease in L* values for all 

expired sample juices suggests darkening (Das et al., 2021), which could be 

attributed to the oxidation of phenolic compounds, enzymatic browning, or 

Maillard reactions (Wibowo et al., 2015). The shift towards positive a* values 

in expired samples indicates a loss of green colour components and an 

increase in redness, potentially due to the degradation of chlorophyll and the 

formation of brown pigments (Das et al., 2021; Wibowo et al., 2015). These 

colour changes do not only affect the visual appeal of the juices but may also 

indicate chemical alterations that could impact nutritional quality. 

7.3.1.4 Vitamin C Content 

A substantial decrease in vitamin C content was observed in all expired 

samples, with reductions ranging from 35.8-57.6%. This loss of vitamin C 
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directly impacts the juices' nutritional value and antioxidant properties 

(Bhardwaj & Pandey, 2011). Ascorbic acid is sensitive to heat and is oxidised 

quickly in the presence of oxygen. Hence, it might have been destroyed during 

the storage period due to its oxidation (Bhardwaj & Pandey, 2011).  

7.3.1.5 Microbial Changes 

All expired and unexpired juice samples showed no detectable levels 

of common pathogenic bacteria such as Salmonella sp., Bacillus cereus, 

Staphylococcus aureus, and Escherichia coli (Table 7.4). Tasnim et al. (2010) 

also detected no coliform or Salmonella in industrially processed packed 

juices in Bangladesh. In contrast, Vantarakis et al. (2011) also indicated that 

fruit juice samples sold in retail markets in Greece recorded negative for 

Salmonella spp., Bacillus cereus, total coliforms, and E. coli. Kaddumukasa et 

al. (2017) also documented that lower pH generally inhibits bacterial growth. 

This absence of pathogens indicates good manufacturing practices and 

effective preservation methods the juice producers employ. All expired juice 

samples showed a marked increase in APC, indicating a general increase in 

microbial load. This growth could be due to the degradation of preservatives 

over time or changes in the juice environment (such as decreased acidity) that 

favor microbial proliferation.  

The most dramatic increases were observed in YM counts, particularly 

in apple (Sample 1) and grape juices, where counts rose from negligible levels 

to 97.50 and 90.00, respectively. This substantial growth of fungi in expired 

juices raises significant food safety concerns. Other researchers also reported 

an increased microbial population  (total plate counts and yeast and mold 

counts) during the storage of sugarcane juice (Chauhan et al., 2002). The 
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appearance of acidophilic microorganisms in expired apples (Sample 1) and 

grape juices, where none were detected in fresh samples, indicates a shift in 

the microbial ecosystem of the juices. Ampofo-Asiama and Quaye (2018) 

documented that lower pH favors the growth of acidophilic microorganisms. 

 Note: TA (Titratable acidity), TSS (Total soluble solids), APC (Aerobic plate 

count), YM (Yeast/mold counts) and CFU (Colony forming unit). 

Table 7.2.: Physicochemical Properties and Microbial Load of Expired and 

Unexpired Apple Juice Samples (Sample 1) 

Parameter(s) Authentic Expired p-value 

TA (%) 0.60±0.01 0.12±0.00 0.00 

pH 3.65±0.01 3.57±0.01 0.00 

TSS (oB) 12.53±0.06 12.50±0.10 0.64 

L 10.19±0.80 0.81±1.04 0.00 

A -2.5±2.12 5.04±2.46 0.02 

B 9.24±2.89 6.08±1.61 0.17 

Vitamin C (mg/100ml) 25.2±0.04 10.93±0.65 0.00 

APC (CFU/ml) 50.50±0.50 61.00±1.00 0.00 

YM (CFU/ml) 40.00±0.00 97.50±2.50 0.00 

Acidophiles (CFU/ml) 0.00±0.00 54.50±0.00 0.00 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



217 
 

 

 

 Note: TA (Titratable acidity), TSS (Total soluble solids), APC (Aerobic plate 

count), YM (Yeast/mold counts) and CFU (Colony forming unit). 

Table 7.3: Physicochemical Properties and Microbial Load of Expired and 

Unexpired Grape Juice Samples (Sample 2) 

Parameter(s) Authentic Expired p-value 

TA (%) 0.42±0.04 0.17±0.01 0.00 

pH 3.60±0.01 3.55±0.01 0.02 

TSS (oB) 14.23±0.06 12.70±0.10 0.00 

L 2.44±2.04 0.06±0.11 0.11 

A 4.20±2.31 4.45±0.90 0.87 

B 5.42±2.28 12.72±3.99 0.05 

Vitamin C (mg/100ml) 20.91±0.01 13.43±0.27 0.00 

APC (CFU/ml) 15.00±5.00 75.00±0.00 0.00 

YM (CFU/ml) 0.00±0.00 90.00±0.00 0.00 

Acidophiles (CFU/ml) 0.00±0.50 50.50±0.00 0.00 

 Note: TA (Titratable acidity), TSS (Total soluble solids), APC (Aerobic plate 

count), YM (Yeast/mold counts) and CFU (Colony forming unit). 

 

Table 7.4: Physicochemical Properties and Microbial Load of 

Expired and Unexpired Pineapple Juice Samples (Sample 3) 

Parameter(s) Authentic Expired p-value 

TA (%) 1.02±0.00 0.12±0.01 0.00 

pH 3.66±0.01 3.74±0.01 0.00 

TSS (oB) 12.53±0.06 12.80±0.0. 0.00 

L 3.37±0.61 2.35±0.16 0.05 

A -6.12±1.20 4.08±0.93 0.00 

B 4.28±2.55 2.55±1.31 0.35 

Vitamin C (mg/100ml) 29.22±0.00 12.40±0.07 0.00 

APC (CFU/ml) 66.50±0.50 75.00±5.005 0.04 

YM (CFU/ml) 0.00±0.00 41.00±1.00 0.00 

Acidophiles (CFU/ml) 0.00±0.00 0.00±0.00 
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Table 7.5: Physicochemical Properties and Microbial Load of Expired 

and Unexpired Apple Juice Samples (Sample 4) 

Parameter(s) Authentic Expired p-value 

TA (%) 0.55±0.01 0.44±0.00 0.000 

pH 3.63±0.01 3.44±0.01 0.000 

TSS (oB) 12.50±0.00 14.20±0.00 0.000 

L 9.99±1.70 2.61±0.61 0.002 

a -2.39±1.86 3.33±1.22 0.011 

b 5.16±1.07 4.0.00±1.21 0.281 

Vitamin C 

(mg/100ml) 

17.53±0.00 8.83±0.00 0.00 

APC (CFU/ml) 40.00±0.00 55.50±0.00 0.000 

YM (CFU/ml) 11.50±0.00 22.50±2.50 0.003 

Acidophiles 

(CFU/ml) 

0.00±0.00 0.00±0.00  

Note: TA (Titratable acidity), TSS (Total Soluble Solids), APC (Aerobic Plate 

Count), YM (Yeast/Mold Counts) and CFU (Colony Forming Unit). 
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7.4 Conclusion 

The comparative analysis of expired and unexpired commercial fruit 

juices demonstrated significant changes in physicochemical properties and 

microbial load after expiration. Expired juices exhibited reduced titratable 

acidity, vitamin C content, and alterations in colour, which impact the 

products' sensory qualities. Furthermore, the increase in microbial counts, 

particularly yeast and molds, raises concerns about the safety of consuming 

expired juices. While no pathogenic bacteria were detected, the presence of 

acidophilic microorganisms in expired samples emphasizes the risks 

associated with prolonged storage. These results underscore the need for strict 

adherence to expiration dates and proper preservation methods to maintain the 

safety and quality of fruit juices for consumers. 
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CHAPTER EIGHT 

SUMMARY, GENERAL CONCLUSIONS AND RECOMMENDATION 

8.1 Summary 

This research focused on the developing handheld near-infrared (NIR) 

spectroscopy technique for assessing the quality and integrity of mangoes 

fruits and products, as well as analyzing the effects of expiration on 

commercial fruit juices safety. Handheld NIR spectroscopy combined with 

effective selection of multivariate data modeling revealed some useful 

information. The study investigated several aspects of fruit quality, including 

variety differentiation, ripeness, ripening agents, and organic authenticity. The 

first objective was developed using NIR spectroscopy to identify different 

mango varieties and predict their maturity based on pH and total soluble solids 

(TSS). The study involved scanning 198 mangoes and applying various 

preprocessing techniques and multivariate models, achieving high accuracy in 

training and prediction sets.  

The second objective focused on detecting ethephon, a ripening agent, 

in artificially ripened mangoes. Different ethephon concentrations were 

analysed using NIR spectroscopy, with different classification models such as 

neural networks and random forests. Both models delivered a high accuracy in 

predicting the concentration levels. The third objective examined the 

distinction between organic and inorganic mangoes in three forms: raw fruits, 

chips, and juice. Random Forest models combined with specific preprocessing 

techniques accurately classified organic and inorganic products. The fourth 

objective applied dual handheld NIR spectrometers (SCiO and Tellspec) 

comparatively to differentiate organic and inorganic pineapple juice. The 
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results showed perfect classification accuracy using partial least squares 

discriminant analysis (PLS-DA) models. The fifth objective compared expired 

and unexpired fruit juices regarding physicochemical properties and microbial 

load, highlighting significant quality degradation in expired samples, including 

reduced acidity, vitamin C, and increased microbial contamination. 

8.1.1 Key Findings 

The following findings regarding the research objectives that guided 

the study were revealed concerning the first research objective. NIR 

spectroscopy in the 740–1070 nm range provided essential insights into 

determining mango fruit quality and variety. For mango variety identification, 

the LDA-SVM classifier coupled with various preprocessing techniques such 

as RAW, MC, SNV, FD, and SD achieved 100% accuracy in the training set 

and 97.44% in the prediction set. This demonstrates that the combination of 

these techniques offers excellent classification results.  

In the quantification of total soluble solids (TSS) and pH in mangoes, 

the synergy partial least square (Si-PLS) model proved the most effective, 

with an r² of 0.63 and an RMSEP of 1.83 for TSS and an r² of 0.81 and an 

RMSEP of 0.49 for pH. These findings show that handheld NIR devices 

combined with suitable chemometric tools can rapidly and non-destructively 

assess mango maturity and quality. 

The second objective was to detect ethephon, a ripening agent used in 

mangoes, using NIR spectroscopy in combination with chemometric methods. 

The neural network (NN) model and MSC preprocessing achieved 100% 

accuracy in the training and test sets for classifying ethephon concentrations. 

For quantitative detection, partial least squares (PLS) regression with SNV 
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preprocessing yielded an r² of 0.996 and an RMSEP of 0.068 in the test set, 

demonstrating a robust capability to predict ethephon concentration. These 

findings reveal that NIR spectroscopy can effectively monitor banned artificial 

ripening agents in mangoes' ripening processes. 

The third objective aimed to differentiate organic and inorganic 

mangoes in three forms (raw fruits, chips, and juices) using NIR spectroscopy 

with various preprocessing tools and classification algorithms. The random 

forest algorithm was applied for classification, yielding different accuracy 

levels across the training and test sets. The algorithm achieved 100% accuracy 

in the training set and 88.76% in the test set for mango fruits. For mango 

chips, it attained 99.94% accuracy in the training set and 77.98% in the test set 

when preprocessed using the second derivative. For mango juice, the 

algorithm reached 100% accuracy in the training set and 87.53% in the test set 

without preprocessing. The study demonstrated that portable NIR 

spectroscopy is a reliable, non-invasive method for authenticating organic 

mango products. 

The fourth objective sought to differentiate organic pineapple juice 

from its inorganic counterparts using dual handheld NIR devices (SCiO and 

Tellspec) with chemometric models such as partial least squares-discriminant 

analysis (PLS-DA). Tellspec, paired with second derivative preprocessing, 

achieved the highest classification accuracy. When the data from both devices 

were combined, perfect classification accuracy (100%) was achieved for both 

training and testing sets, with no preprocessing required. This demonstrates 

the potential for dual NIR spectroscopy devices for rapid, on-site 

differentiation of organic pineapple juices. 
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The fifth objective was to compare expired and unexpired commercial 

fruit juices (apple, grape, and pineapple). Expired juices showed a significant 

reduction in TA (e.g., apple juice dropped from 0.60% to 0.12%), vitamin C 

(with a 57.6% decrease in pineapple juice), and colour lightness (L* value 

dropped from 10.19 to 0.81 in apple juice). Microbial analysis revealed a 

marked increase in yeast/mold counts, with apple juice showing the most 

significant rise. Although no pathogenic bacteria were found, the results 

highlight the degradation in quality and potential health risks of expired juices, 

emphasizing the importance of monitoring expiration dates to maintain 

consumer safety and quality. 

8.2 Conclusion  

Findings from the first objective suggest that handheld near-infrared 

(NIR) spectroscopy combined with suitable chemometric techniques is a rapid, 

non-destructive method for identifying mango varieties and predicting their 

maturity. The use of various preprocessing methods (RAW, MC, SNV, FD, 

SD) and multivariate classification models, including support vector machine 

(SVM) and linear discriminant analysis (LDA), proved effective for 

identifying mango varieties with 100% accuracy in the training set and 

97.44% in the prediction set. It can be concluded that handheld NIR 

spectroscopy, coupled with chemometric models, presents a reliable method 

for classifying mango varieties and assessing fruit maturity, which can be 

applied for on-site, real-time quality control. 

In the second objective, the detection and quantification of ethephon 

concentrations in artificially ripened mangoes could be successfully achieved 

using handheld NIR spectroscopy combined with chemometric techniques. 
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The neural network (NN) model, particularly with MSC preprocessing, 

demonstrated 100% accuracy in training and test sets. Partial least squares 

(PLS) regression also exhibited excellent predictive performance, with an r² 

value of 0.996 in the test set. These results suggest that NIR spectroscopy, 

combined with appropriate chemometric models, can be employed as a non-

invasive, rapid method for monitoring artificial ripening processes, supporting 

food safety regulations in the fruit industry. 

In the third objective, the study demonstrated that handheld NIR 

spectroscopy can effectively distinguish between organic and inorganic mango 

fruits, chips, and juice. By using multivariate classification algorithms such as 

random forest (RF) and principal component analysis (PCA) combined with 

preprocessing methods (MSC, SNV, FD), the classification accuracies ranged 

from 65.12% to 100%. These findings validate the utility of NIR spectroscopy 

for authenticating organic mango products, providing a reliable, non-

destructive solution for ensuring the integrity of food labeling. 

In the fourth objective, organic and inorganic pineapple juices were 

differentiated using dual handheld NIR spectrometers (SCiO and Tellspec) 

combined with PLS-DA models. The fusion of spectral data from both devices 

resulted in 100% classification accuracy, sensitivity, and specificity in the 

training and testing sets. These results demonstrate the potential of combining 

NIR spectroscopy with advanced chemometric techniques for non-destructive, 

rapid differentiation of organic and inorganic pineapple juices, promoting 

quality assurance in the food industry. 

In the fifth objective, the comparative analysis of expired and 

unexpired commercial fruit juices revealed significant degradation in 
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physicochemical properties, such as decreased titratable acidity and vitamin C 

content, in expired samples. The study also recorded increased microbial load 

in expired juices, particularly yeast and mold. These findings highlight the 

need for strict adherence to expiration dates and proper storage practices to 

ensure the safety and quality of fruit juices. 

8.3 Recommendation 

Near-infrared (NIR) spectroscopy has proven to be a non-invasive 

analytical method that aids in the quality assessment and verification of fruits 

and their products. Portable NIR devices can be used on-site in farms or 

during post-harvest handling to assess the optimal harvest time, ensuring the 

fruits are harvested at peak ripeness for better quality and market value.  

It can also be integrated into processing lines for instantaneous quality 

monitoring, bypassing destructive testing. It is beneficial for routine 

evaluations in food processing facilities to confirm product authenticity, 

especially for high-standard export products.  

Training initiatives for farmers and producers in developing countries 

like Ghana on handheld NIR spectrometers can improve local food quality 

monitoring and product integrity.  

Further research on the economic feasibility of NIRS adoption among 

Ghanaian farmers and processors is recommended to assess cost implications, 

infrastructure requirements, and potential barriers. 

The food industry should focus on stricter expiration date monitoring, 

ensuring that products past their expiration date are removed from shelves to 

prevent potential health risks from expired juices. 
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