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ABSTRACT 

Maize is a staple food in Sub-Saharan Africa, and tillage is widely 

used to boost its yield, though it affects soil and the environment both 

positively and negatively. To support farmers and policymakers, a data-driven 

approach using UAV technology was introduced. 

This study was conducted for two seasons in a randomized complete 

block design with four treatments (Harrowing only, Ploughing only, 

Ploughing and Harrowing, and No-tillage). The results showed that No-tillage 

had the lowest growth parameters, while Ploughing and Harrowing recorded 

the highest in terms of LAI (1.50–1.75), stem diameter (20–22.5 mm), plant 

height (165–175 cm), and yield (7.20–10.93 t/ha biomass, 4.619–5.67 t/ha 

grain yield). Despite its lower yields, No-tillage showed the highest yield 

improvement (+1.11 t/ha). UAVs imagery with Yolov8-small achieved high 

germination rate detection (mAP50: 0.89–0.95) and accurate plant height 

estimation (RMSE < 7 cm, R²: 0.98–0.99). For LAI estimation, UAV 

technology coupled with Huber regression model achieved R² scores of 0.80–

0.94 and RMSE as low as 0.14, and coupled with Gradient Boosting Machines 

reached R² of 0.87 and RMSE of 0.281 t/ha at the vegetative stage for Yield 

prediction. Ploughing and Harrowing is recommended for short-term tillage, 

while No-tillage is better for the long term. UAV imagery with machine 

learning reliably monitors maize and predicts yield. Future research should 

explore the long-term effects of No-tillage, UAV-based stem girth estimation, 

and the cost-benefit of UAV adoption in small-scale farming. 

Keywords: Tillage, UAV technology, maize, yield prediction, maize 
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CHAPTER ONE 

INTRODUCTION 

Background to the Study 

Maize (Zea mays) is an important crop in many parts of the world, 

including Africa where it is grown by smallholder farmers due to its high 

nutritional value, multi-usage purpose, and resilience to harsh environmental 

conditions (Liu et al., 2021). Maize is also used as a forage crop for livestock 

(Shiferaw et al., 2011). In recent decades, the global production of maize has 

witnessed substantial growth due to increasing demand, technological 

progress, improved yields, and expansion of cultivation areas (Erenstein et al., 

2022). This is largely due to the utilisation of key agricultural practices 

associated with land preparation and maintenance such as tillage. Tillage is a 

key crop cultivation practice and has shown to have influenced soil properties 

and crop performance (Alam et al., 2014; Angon et al., 2023a). Tillage refers 

to the use of mechanical methods to modify the surface layer of soil with the 

aim of bringing favourable alterations in its physical, chemical, and biological 

characteristics for the purpose of creating optimal conditions for seed 

germination, promote the growth of plant seedlings, and enhance overall plant 

growth and development(Angon et al., 2023a). These mechanical methods 

have gradually replaced traditional manual tillage practices among farmers in 

the Sub-Sahara Africa region and offer higher efficiency and productivity 

(Mohammed et al., 2023). Such operations involve the use of machines and 

equipment ranging from power tillers to tractors with attached tillage 

implements (Müller et al., 2011) for cultivating the soil. Recent studies have 

shown that not only structural properties of the soil can be modified but the 
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whole systems in it including nutrient availability, firmness and porosity while 

influencing further how resilient the soil is to weather adversity such as water 

and wind erosion (Nafi et al., 2021; Sokolowski et al., 2020; D. Zhang et al., 

2022).  

Tillage practices such as ploughing, harrowing, and no-tillage each 

present a balance of benefits and challenges that influence soil health, crop 

productivity, and sustainability. While ploughing improves aeration, 

incorporates organic matter, and effectively buries weed seeds, it also disrupts 

soil structure, increases erosion risks, and accelerates moisture loss(Roger-

Estrade et al., 2010). Harrowing, whether used alone or in combination with 

ploughing, refines the seedbed and helps distribute crop residues, yet 

excessive tillage can lead to soil compaction and higher labour and fuel costs 

(Finch et al., 2002). Thus, some studies recommended the No-tillage, as it 

preserves soil integrity, reduces erosion, and enhances moisture retention, but 

the accumulation of surface residues can still promote weed growth and 

requires special equipment for planting (Gellatly & Dennis, 2011). Striking a 

balance between these methods requires considering soil type, crop needs, and 

long-term sustainability, ensuring that soil remains productive while 

minimizing environmental degradation. 

Monitoring the effects of tillage on maize growth performance is 

crucial to ensure its productivity. The monitoring of crop growth could be 

done through manual data collection or remote sensing data collection 

methods or both.  

Remote sensing with Unmanned Aerial Vehicles (UAVs) has emerged 

as a powerful tool in data collection in various fields. Utilising UAVs in 
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agriculture offers numerous advantages over traditional monitoring and 

manual data collection methods. These aerial platforms provide a bird's-eye 

view of agricultural fields, capturing high-resolution images and collecting 

valuable spatial data with unprecedented efficiency (Tsouros et al., 2019).  

By employing advanced sensors and imaging systems, UAVs can 

acquire information related to crop health, growth patterns, nutrient 

deficiencies, pest infestations, and irrigation needs, among other vital 

parameters and insights (Zhao et al., 2019). Further, its use has enhanced 

decision-making using sophisticated image analysis techniques to provide 

actionable insights for farmers. By pinpointing problem areas or differences in 

crop performance, farmers can make well-informed choices about irrigation, 

fertilization, and pest management, enabling them to use resources efficiently 

while reducing environmental impacts (Zhang et al., 2022). 

Problem statement 

While Tillage practices have shown several advantages to crop growth 

by providing adequate soil conditions to crop roots, they also have been linked 

to soil disturbance that increases its vulnerabilities to soil erosion, carbon 

emission into the atmosphere, and soil compaction (Busari et al., 2015). The 

selection of the tillage implement is complex and challenging as each tillage 

implement causes unique soil disruption, and its effects on crops depend on 

specific factors like weather, crop type, and site characteristics (Sun et al., 

2024; Wasaya et al., 2019a). 

Accurately estimating and monitoring crop/maize growth parameters 

are critical for optimizing agricultural practices and maximizing crop yield. 

Traditional methods of assessing crop growth and performance are often 
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labour-intensive, time-consuming, and prone to human error (Meer & Jong, 

2001; Wiegand et al., 1991). As a result, in recent times, there have been 

efforts to utilize UAVs to capture images and have them analysed to monitor 

the detection and growth of crops. However, there have been some challenges. 

For instance, the detection of seedlings at the early-stage growth stage is quite 

challenging due to the Ground Sampling Distance which sometimes makes the 

resolution of UAV images constrained to small size images while having 

multiple small objects in them (Hao et al., 2022; Velumani et al., 2021). Some 

have proposed using deep learning techniques for object detection as a 

promising option but this has rarely been explored especially under small-

scale level typically of farmholdings in sub-Saharan Africa with low 

computing power (Albahar, 2023; Dhillon & Moncur, 2023). As Deep 

Learning (DL) is known to have a high computational resource demand, 

several DL models have opted to trade off some accuracy for portability, 

making those lite models to be fast and edge devices friendly. Existing free 

access datasets such as Microsoft Common Objects in Context (COCO)(Lin et 

al., 2014) or ImageNet (Deng et al., 2009) on which popular Object detection 

models are trained are not complete for all agriculture use cases (Lu & Young, 

2020), making it challenging to find pre-trained models for transfer learning, 

thus decreasing training performance and overall accuracy.  

Moreso, yield prediction is an important component of agricultural 

planning. Traditional yield sampling methods involve manually selecting 

random samples. This technique depends on historical yield data and visual 

assessments, which are then extrapolated to estimate overall yield. However, 

this approach fails to consider field heterogeneity, leading to inaccurate 
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sample collection and biased predictions. Yield prediction highly relies on the 

availability, quantity and quality of collected data, and thus remains unreliable 

under manually collected data (Elbasi et al., 2023). With the advent of 

Unmanned Aerial Vehicles (UAVs) and advanced remote sensing 

technologies, there is a significant opportunity to revolutionize agricultural 

monitoring and management. Despite these technological advancements, there 

remains a gap in comprehensive research that leverages UAVs to predict end-

of-season maize yield and estimate growth parameters using a low-cost RGB 

camera under a small-scale farm holding. 

Aim and Specific Objectives 

Aim 

The study aimed at assessing the performance of maize growth and yield 

under different tillage systems using UAV technology.  

Specific objectives 

The specific objectives of this research are as follows: 

1. To manually measure the effect of different tillage types (no-tillage, 

ploughing and harrowing, ploughing only and harrowing only) on the 

growth and yield of maize. 

2. To detect and count maize seedlings using UAV imagery and deep 

learning models (YOLOv8, Faster R-CNN MobileNetv3). 

3. To estimate maize growth parameters such as germination rate, plant 

height, leaf area index, days to 50 percent flowering using UAV remote 

sensing technique. 

4. To predict the end-of-season yield of maize using UAV-derived data. 

Research questions 

This research answers the following questions: 
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1. What is the effect of tillage on the growth and yield of maize? 

2. How efficient is the UAV imagery in estimating maize growth parameters? 

3. How accurate is the UAV technology in estimating the end-of-the-season 

yield of maize? 

Hypothesis 

- Tillage practices influence the maize growth and yield parameters 

- The UAV technology is effective in monitoring the maize growth 

parameters and predict the end-of-season yield 

Significance of the study 

This study will highlight the effects of conservative and conventional 

tillage on the maize and thus help farmers and policy makers to take more 

guided actions towards agriculture practices. 

Additionally, the finding of this study could contribute to knowledge 

regarding the use of UAV technology to estimate growth and predict the yield 

of maize crop. Subsequently it stands to arouse interest in the use of the UAV 

technology in low-income and small-scale farming characteristic of agriculture 

in the Sub-Saharan Africa. 

Organisation of the thesis 

This thesis is organized into five chapters. The first chapter is the 

Introduction which includes the background of the study, the problem 

statement, and the objectives. Chapter two reviews the main topics relevant to 

the maize, tillage practices, and UAV technology. The third chapter outlines 

the materials and methods employed in the study. Chapter four presents the 

results and provides a detailed discussion of the findings. The final chapter 

concludes the study by summarizing the key findings and providing 

recommendations for future research. 
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CHAPTER TWO 

LITERATURE REVIEW 

Maize phenology and botany 

Maize originated in Central America and was subsequently introduced to 

different continents mainly Europe, Africa and Asia the endeavours of traders 

and explorers, with its ancestor (Zea Mexicana) from which it was 

domesticated (Sauer, 2008). Zea, a genus within the grass family (Graminae or 

Poaceae), includes maize, a monoecious plant. Similar to other grasses, maize 

leaves are structured with a sheath that encircles the stem and an elongated 

blade extending outward to capture sunlight efficiently. 

 The leaf blade of maize is long, narrow, and tapers towards the tip with a 

wavy structure. It is supported throughout its length by a prominent midrib 

(Hochholdinger, 2009). The stem of a maize plant is a tall central stalk that 

supports all parts of the plant. Its only branches are those bearing the 

reproductive structures. The stem enables maize to grow to impressive heights, 

reaching up to 12 feet (4 meters) depending on the variety. Unlike many other 

grasses, the interior of the maize stem is solid in both the nodal and internodal 

regions (Al-Zube et al., 2018; Cutler & Cutler, 1948). 

Maize develops a complex root system comprising distinct embryonic and 

postembryonic root types formed at different developmental stages. Initially, 

the early seedling root system is dominated by embryonically preformed roots. 

As the plant matures, an extensive shoot-borne root system defines the adult 

root structure. Additionally, maize has a fibrous root system that penetrates 

deeply into the soil, providing stability to the plant while efficiently absorbing 

water and nutrients (Hochholdinger et al., 2018).  
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Maize plants possess three distinct types of roots: - Seminal roots, which 

originate from the radicle and persist for an extended period, forming the 

initial root system; - Adventitious roots, which emerge from the lower stem 

nodes below ground level and constitute the primary active root system of the 

plant; and - Brace or prop roots, which develop from the lower two stem 

nodes, providing additional support and stability to the plant (Sparks, 2023). 

The root system of maize, classified as a grass, is fibrous rather than a tap root. 

The maize root system comprises roots formed during embryogenesis and 

postembryonic development. The embryonic root system includes a primary 

root, which originates at the basal pole of the embryo, and a varying number 

of seminal roots. The postembryonic root system consists of shoot-borne roots, 

which develop at successive shoot nodes, and lateral roots, which emerge from 

the pericycle of all root types (Hochholdinger, 2004). 

The maize root system has a unique architecture which ensures the effective 

absorption of water and nutrients while providing stability. The development 

of the maize root system is governed by an internal genetic mechanism, 

influenced by interactions with the rhizosphere, and shaped by its ability to 

adapt to changing environmental conditions (Hochholdinger, 2009). 

Maize plants are monoecious, meaning they possess both male and female 

reproductive organs on a single plant. The male reproductive organs, or 

stamens, are located in the tassels at the top of the plant and release pollen 

when mature (Kellogg, 2015; Weatherwax, 1916). The female reproductive 

organs, or pistils, are located in the ears of the maize plant. The process of sex 

determination in maize involves various factors including genes, and 
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hormones like jasmonic acid, brassinosteroid, and gibberellin (Guerrero-

Méndez & Abraham-Juárez, 2023). 

During germination, the primary root tip of maize pushes through the 

surrounding tissues that compose the coleorhiza at the proximal end of the 

emerging primary root. The growth, distribution, and coordination of the root 

system within the soil are influenced by factors such as weather conditions, 

soil properties, fertilizers, and pest activity (Chen et al., 2022; Șimon et al., 

2023). 

The male flowers of maize, located in the tassel, produce pollen essential for 

pollination. The tassel originates from the plant's growing point, with the 

innermost leaf at this point being the final leaf formed after tasselling. 

Pollination occurs when pollen from the tassel reaches the silks of the female 

flowers, initiating kernel development (Li et al., 2023). Maize is 

predominantly cross-pollinated, with self-pollination accounting for less than 

5%. Following pollination, the female flowers develop into kernels 

(Weatherwax, 1916). The reproductive phase begins with the silking stage, 

where female flowers or cobs form 2–3 days after tasselling. By day seven 

post-silking, the cobs, husks, and shanks are fully developed. 

After fertilization, the soft dough or milky stage begins, marked by the initial 

grain development. At this stage, the grains are soft, and the silks and husks 

remain partially green. Physiological maturity is reached approximately 30 

days after silking when the plant achieves maximum dry weight. At this stage, 

a black layer forms at the tip of each kernel, signalling the cessation of starch 

accumulation (Adu et al., 2014). Grain maturity, occurring 4–6 weeks after 

fertilization, leads to the hard dough stage where the leaves and stems wither, 
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silks dry and become brittle, and the cobs begin to droop, signalling the 

readiness for harvest (Adu et al., 2014).  

The Ecological Requirements of Maize 

Soil requirements of maize  

Maize prefers loose soils that offer proper aeration and drainage while 

maintaining sufficient amounts of water close to the roots making too heavy or 

too sandy and poorly drained soils are not suitable (Fang & Su, 2019). Maize 

cultivation thrives best in loamy, clay loam, or silty loam soils, which are 

considered highly suitable. Sandy loam and silty clay soils are moderately 

suitable, while clay soils are marginally suitable for maize growth. Optimal 

soil texture for healthy maize production typically falls within 10% to 30% 

clay content (Du Plessis, 2003).  

The plant thrives at pH levels above 5.51, with an optimal range between 5.8 

and 6.81. A pH close to 5 can lead to a reduction in yield of up to 35%. It can 

grow in soils with pH from 4 to 8 (Edmeades et al., 2017; Negese et al., 2022). 

Corn is slightly sensitive to increased salinity levels1. It has low to moderate 

tolerance of soil salinity (Amer, 2010). The ideal soil for maize is 

characterized by significant depth, a favourable structure, efficient internal 

drainage, optimal moisture levels, and a sufficient balance of plant nutrients 

(Fang & Su, 2019). Proper seedbed preparation is crucial for maize 

cultivation, as it significantly impacts germination, crop emergence, 

establishment, and overall growth, ultimately leading to higher yields. Farmers 

are encouraged to adopt a balanced approach to soil preparation, minimizing 

excessive tillage to avoid damaging soil structure and preventing soil 

compaction (Bahadur & Shrestha, 2014). 
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Rainfall 

Maize requires approximately 5 to 7 tons of water per hectare during the dry 

season as over the entire growing season, water requirements range from 6 to 

9 tons per hectare. During months with high temperatures and little or no 

rainfall, well-established maize plants may need up to 60 mm of water per 

week (Bhat et al., 2017; Du Plessis, 2003). 

Maize grows best in regions with an annual rainfall of 600–1000 mm³, though 

it can tolerate a minimum seasonal rainfall of 200 mm. However, cultivating 

maize as a purely rainfed crop can be risky in areas with an average annual 

rainfall of 400 mm. Even in regions receiving 600 mm of rainfall, 

supplemental irrigation is often required to achieve high yields (Bagula et al., 

2022). 

Maize growth ideally requires an annual rainfall of 250 mm to 5000 mm 

(Tripathi et al., 2011). For every millilitres of water used, approximately 10 to 

16 kg of maize grain is produced. To achieve a grain yield of 3152 kg ha⁻¹, 

between 350 mm to 450 mm of rainfall is needed per year. Under optimal 

moisture conditions, each maize plant will use about 250 litres of water by the 

time it reaches maturity (Du Plessis, 2003). 

Temperature 

Maize is sensitive to the growing conditions such as temperature which 

ultimately influence its performance (Wu et al., 2024). During the day, the 

optimal temperature for maize ranges from 25 to 33°C, with 25–30°C being 

ideal for proper growth and development. At night, the suitable temperature is 

between 17 and 23°C, and maize can thrive as long as the night temperature 

does not drop below 15.6°C (Edmeades et al., 2017; Waqas et al., 2021). Soil 

inner temperature ranging from 26° to 30°C is optimum for both germination 
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and seedling growth. Maize crop reaches higher germination at 25–28°C 

(Waqas et al., 2021). Maize can grow within a temperature range of 9° to 

46°C, with an optimal temperature of around 34°C. When average daily 

temperatures drop below 20°C, the crop's growth duration extends by 10–20 

days for every 0.5°C decrease, depending on the variety.  

However, maize tends to grow poorly in cold regions with temperatures below 

5°C and in areas where temperatures exceed 40°C (Wu et al., 2024). These 

extreme temperatures can ultimately cause the plant's death. Maize grows 

within latitudes ranging from 58°N to 40°S and can thrive at altitudes from sea 

level up to approximately 3000 meters (Jaidka et al., 2020; Ragasa et al., 

2013). 

Nutrient requirements 

Maize requires a variety of soil nutrients for optimal growth, with nitrogen, 

phosphorus, and potassium being the most important. At maturity, a maize 

plant takes up 8.7 g of nitrogen(N), 5.1 g of phosphorus(P), and 4.0 g of 

potassium(K). For every ton of maize grain harvested, approximately 15 to 18 

kg of nitrogen, 2.5 to 3 kg of phosphorus, and 3 to 4 kg of potassium are 

depleted from the soil (Du Plessis, 2003). Electrical conductivity (EC) levels 

below 1.7 dS m⁻¹ do not affect yield, but values between 2.5 dS m⁻¹ and 10 dS 

m⁻¹ can lead to yield losses ranging from 10% to 100% (Amer, 2010). A 

cation exchange capacity (CEC) greater than 24 cmol (+) kg⁻¹ is highly 

suitable for maize cultivation, while a CEC between 16 and 24 cmol (+) kg⁻¹ is 

moderately suitable. A CEC of less than 16 cmol (+) kg⁻¹ is considered 

marginally suitable for growing maize (Amer, 2010). Base saturation levels 

greater than 50% are considered highly suitable for maize cultivation. Levels 
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between 20% and 35% are moderately suitable, while base saturation below 

20% is deemed marginally suitable (Alessana et al., 2015). Organic carbon 

content greater than 2% is highly suitable for maize cultivation. Levels 

between 1.2% and 2% are moderately suitable, 0.8% to 1.2% are marginally 

suitable, and values below 0.8% are considered unsuitable (Goswami et al., 

2022; Lugato & Jones, 2015). Available phosphorus levels greater than 22 mg 

per kg are highly suitable for maize cultivation, while levels between 7 and 13 

mg per kg are moderately suitable, and 3 to 7 mg per kg are barely suitable. 

For total nitrogen, levels greater than 0.15% are highly suitable, between 

0.08% and 0.10% are moderately suitable, and 0.04% to 0.08% are slightly 

suitable (Ochieng et al., 2021).  

Soil tillage 

Soil tillage refers to the physical, chemical, or biological alteration of the soil 

to improve conditions for germination, seedling establishment, and crop 

growth (Ref). It is defined as any process that physically loosens the soil 

through various cultivation methods, whether done manually or mechanically 

(Angon et al., 2023; Mehra et al., 2018). The choice of a tillage practice is 

influenced by various factors, including soil characteristics like organic 

matter, texture, relief, erodibility, structure, mineralogy and rooting depth. 

Climatic conditions such as rainfall, water balance, growing season length, 

and temperature also play a role. Crop-related factors like growing duration, 

rooting characteristics, and water requirements are important considerations, 

as well as socio-economic factors such as farm size, power source availability, 

family structure, and labour availability (Mehra et al., 2018; Steponavičienė et 

al., 2024). 
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Tillage is a high energy and capital demand activity as its practices requires 

high labour specifically in low resource agriculture practiced by small 

landholders. Recurrent soil disturbance can degrade soil structure, leading to 

compaction, low organic matter levels, and increased vulnerability to erosion 

and desertification (Taye et al., 2013).  

Traditional soil management methods such as conventional tillage, often lead 

to the loss of soil, water, and nutrients, which can degrade the soil structure 

and decrease crop yields and efficiency. As a result, there’s a growing 

emphasis on conservation tillage systems (Cárceles et al., 2022). 

Conventional tillage involves soil cultivation to create a fine tilth, breaking up 

the soil through ploughing and harrowing before forming ridges. Vegetation 

may be cleared and partially decomposed or burnt to facilitate digging, 

incorporating residues into the soil (Youdeowei et al., 1986). 

Conservation tillage preserves the roughness of the field surface and leaves 

most crop residues on the surface, which helps reduce water runoff and soil 

erosion (Carretta et al., 2021). It involves using tools like cutlasses, hoes, 

pickaxes, herbicides, or mulch tillage, which leaves crop residue on the soil 

surface to promote quick germination and satisfactory yields. Conservation 

tillage and no-tillage methods are favoured for soil conservation, as 

conventional tillage can be detrimental (Iqbal et al., 2005). Conservation 

agriculture has led to increased maize yields and greater profitability by 

lowering production costs (Saldivia-Tejeda et al., 2024). 

When compared to traditional conventional tillage, conservation tillage has 

several advantages, including cost savings, protection against erosion, 

conservation of soil and water, and enhanced fertility (Arshad et al., 2023; 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

15 

 

Duchene et al., 2023). It enhances the storage of water in the soil and increases 

soil macro-porosity. Research has shown that different tillage practices can 

have varying effects on soil bulk density and hydraulic conductivity (Khan et 

al., 2017; OKORIE et al., 2022; Steponavičienė et al., 2024). 

Effective tillage systems are those that create optimal conditions for seed 

germination, plant growth, and root development. The right tillage practices 

can prevent soil degradation while maintaining crop yields and ecosystem 

stability. The best management practices involve the least amount of tillage 

necessary for crop growth, which not only saves energy but also maintains soil 

productivity (Wasaya et al., 2019). 

Importance of Tillage 

Effective tillage systems establish optimal conditions in the seedbed, such as 

appropriate moisture, temperature, and penetration resistance, which are 

essential for plant emergence, development, and unobstructed root growth 

(Blanco & Lal, 2023). Manipulating the soil can significantly alter its fertility 

status, resulting in either beneficial or detrimental effects on crop 

performance. The primary goal of tillage is to create a soil environment 

conducive to plant growth by modifying its physical properties to help plants 

achieve their full potential (Carter & McKyes, 2005). Techniques like 

ploughing are used to ensure good seedbed and root development, weed 

control, residue management, erosion reduction, and to level the soil surface 

for planting, irrigation, and incorporation of fertilizers or pesticides. However, 

subsoil compaction can reduce water and nutrient availability, thus lowering 

crop yields (Khurshid et al., 2006). 
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Tillage has shown to have a significant impact on maize growth and yield 

parameters, as well as soil properties, contributing up to 20% to crop 

production factors (Khurshid et al., 2006). Primary tillage treatments for maize 

include conventional tillage, that is ploughing and harrowing. 

Tillage effects on soil properties 

Tillage Effects on Soil Water Content and Water Use Efficiency 

Tillage effects vary across agro-ecological zones. In semi-arid regions, 

moisture conservation is crucial (El Mekkaoui et al., 2023). Abdullah (2014) 

discovered that tillage and residue management helped increase soil water 

content. Another study demonstrated that no-till soils retained the highest 

moisture, followed by minimum tillage, raised bed, and conventional tillage 

(Skaalsveen & Clarke, 2021). Tillage treatments also affect water intake and 

infiltration rates. Several researchers have highlighted the importance of 

tillage for soil moisture management (Hu, 2022). Tillage improves soil water 

content by improving its surface roughness and managing weeds during fallow 

periods, which can boost crop production in subsequent seasons by 

supplementing precipitation during the growing period (Alsamin et al., 2022). 

Studies have shown that deep tillage significantly enhances water storage and 

crop production.  

Tillage practices have significant impacts on water use efficiency (WUE). 

Research has found that tillage practices have impacts on soil environmental 

factors and thus on the crop yield too. For instance, a study found that 

subsoiling tillage combined with straw incorporation improved the soil 

moisture content, reduced soil temperature, boosted water consumption 

patterns, and enhanced the effective use of soil water (Peng et al., 2023). This 
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led to the accumulation of a higher biomass yield and overall yield, a greater 

number of ears, a higher and enhanced water use efficiency. 

Another study conducted on wheat showed that Long-term conservation 

tillage can increase yield and WUE of crops by regulating substances related 

to stress, no-tillage with straw mulching improved the soil’s physical and 

chemical properties, maintained higher soil water content, and increased dry 

matter accumulation along the growth stage ( Du et al., 2023). It led to higher 

grain yields and WUE compared to other tillage practices. This has been 

confirmed by another research by Ali et al. (2017), which reported that crop 

yield was enhanced by more than 30%, and water use efficiency (WUE) 

ranged from 0.7 to 5.7 kg/m
3
 for wheat, corn, and flax, and from 30 to 40 

kg/m
3
 for vegetables. The WUE is very sensitive to the topography, as the soil 

susceptible to erosion and rapid water loss. This study is held on the 

assumption that the tillage influences the soil properties that later have an 

effect on the growth parameters of maize through the roots. 

Tillage and Topography Interaction 

The interaction between tillage practices and topography can also influence 

water use efficiency. For example, on sloping lands, certain tillage practices 

can help reduce runoff and increase water infiltration, thereby improving 

water use efficiency. Coupled with the spatial variability in topography across 

a field it can lead to differences in water availability and use, which can be 

managed through site-specific tillage practices (Tobiašová et al., 2023).  

Tillage effects on soil porosity 

Soil porosity properties are crucial for soil physical reactions, overall root 

penetration, and water flow and vary among tillage methods (Sasal et al., 
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2006). It was found that returning the straw could enhance total soil porosity, 

while conservative tillage like minimal and no-tillage reduce soil void spaces 

but increase its capillary properties, enhancing soil water capacity and poor 

aeration (Chen et al., 2020; Głąb & Kulig, 2008). It was also observed no 

significant impact of tillage and straw methods on the soil total porosity and 

its porosity size distribution (J. Wang et al., 2024). Tangyuan et al. (2009) 

showed that soil total porosity at the 0–10 cm depth is most affected by 

conventional tillage which tend to increase soil capillary porosity.  

Tillage Effects on Soil Bulk Density 

Soil bulk density is a key soil physical property that significantly influence 

hydraulic conductivity, a crucial factor in soil compaction and agricultural 

management (Assouline, 2011). Bulk density represents the mass of soil solids 

per unit volume, where high bulk density indicates soil compaction, reducing 

pore space for water movement and root growth. It is generally influenced by 

organic matter content. Effective porosity refers to the proportion of soil 

volume available for water movement, with high porosity enhancing water 

infiltration, aeration, and nutrient transport(Tiab & Donaldson, 2004). Soil 

structure significantly affects porosity and Hydraulic conductivity and 

measures how easily water moves through the soil (Jabro, 1992).  

Studies comparing no-tillage with conventional tillage have shown mixed 

results. Some studies found greater bulk density in no-till soils at 5 to 10 cm 

depth (Osunbitan et al., 2005), while others found no differences. (Tripathi et 

al., 2005) reported increased bulk density with conventional tillage in silty 

loam soil. It has been noted the highest soil bulk density (1.52 g cm⁻³) and 

penetration resistance (1250 kPa) in no-till, and the lowest (1.41 g cm⁻³ and 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

19 

 

560 kPa) in conventional tillage, with higher soil moisture content (19.6%) in 

conventional tillage and lower (16.8%) in no-till (Rashidi & Keshavarzpour, 

2008). 

Tillage effects on the environment 

Tillage practices have significant effects on the environment, particularly 

concerning soil health and carbon emissions. A meta-analysis by Allam et al. 

(2021) highlighted the importance of environmental and agronomical factors 

in understanding how conservation tillage can impact crop yield by adopting 

environmentally friendly fertilization sources. Conservation tillage, which 

includes methods like no-tillage, strip tillage, minimal tillage, and reduced 

tillage, is shown to decrease soil CO2 emissions without reducing crop yields. 

This increases net ecosystem productivity (NEP) and has a positive effect on 

ecosystem carbon balance (Xue et al., 2024). 

Sustainable tillage practices help protect the soil from water and wind erosion 

and runoff, minimize the leaching of chemicals into water bodies, and enhance 

soil moisture retention by optimizing soil porosity (Šarauskis et al., 2018). 

Light tillage practices and no-tillage methods aim to reduce the negative 

effects on soil quality and help preserve soil organic carbon (Haddaway et al., 

2017). In contrast, intensive soil cultivation breaks down soil organic matter 

(SOM), producing CO2 and lowering soil carbon sequestration. Building SOM 

through conservation tillage, especially with crop residue return, can 

substantially reduce CO2 emissions (Xue et al., 2024). In the UK, conservation 

tillage led to an 8% higher soil carbon content compared to conventional 

tillage, equivalent to 285g SOM m
-
². The No-tillage was introduced to this 
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study as a solution to the problem raised by the conventional tillage and help 

to understand at what extent  

Tillage effects on crop yield 

The impact of tillage systems on crop yield varies among crop species and soil 

types. Murillo et al. (2004) compared traditional conventional tillage, where 

the soil was ploughed to a 30 cm depth after burning the previous crop's straw, 

with conservation tillage, where crop residues were left as mulch, and 

minimum vertical tillage (chiselling to 25 cm depth) and disc harrowing (5 cm 

depth) were conducted. Their results showed higher crop yields with 

conservation tillage. 

Extensive published data indicates that crop yields are generally higher with 

conventional tillage compared to conservation tillage. However, numerous 

studies present conflicting findings. In both scenarios, the economic aspects of 

tillage practices, such as energy and labour costs and the capital investment in 

equipment, are often not taken into account. A study by Rashidi & 

Keshavarzpour (2007) revealed that the tillage method had a significant 

impact on the number of plants per hectare and the number of rows per cob, 

with the former being the primary yield component influencing maize grain 

yield across different tillage practices. The highest plant population per 

hectare was recorded under the mouldboard plough plus two passes of disc 

harrow by two passes of disc harrow, while the lowest was observed under the 

no-tillage system. The findings indicated that tillage methods significantly 

affected maize grain yield in the descending order of - mouldboard plough 

plus two passes of disc harrow followed by - mouldboard plough combined 

with one pass of rotary tiller followed by - Two passes of disk harrow 
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followed by – A single pass of tine cultivator combined with a single pass of 

disk harrow followed by  - One pass of rotary tiller then One pass of tine 

cultivator and at the last position, the no-tillage, primarily due to differences in 

plant population per hectare. Consequently, mouldboard ploughing combined 

with disc harrowing proved to be a more effective and profitable tillage 

approach for enhancing maize grain yield, as it reduced soil compaction, 

improved seed-to-soil contact, increased soil moisture retention, and 

suppressed weed growth. Evaluating the effect of tillage on different crop 

parameters and the yield is key factor in addressing its negative impact on the 

soil and may help the farmer decide of the equipment or the tillage system to 

use. 

Remote sensing and Unmanned Aerial Vehicle Technology 

Remote sensing is a technology used to detect and measure radiation across 

various wavelengths that is reflected or emitted by distant objects or materials, 

enabling their identification and classification. It offers a powerful method for 

observing and monitoring the physical characteristics of an area from a 

substantial distance (Kumar et al., 2019). 

The concept of remote sensing can be traced back to the 16th century with 

Galileo Galilei, who used a telescope to observe celestial bodies. The modern 

form of remote sensing began with the advent of photography in the 19th 

century, where cameras attached to balloons were used for topographic 

purposes (Efremenko & Kokhanovsky, 2021). In remote sensing, special 

cameras or sensors collect images or data, typically from satellites, aircraft or 

unmanned aircraft. These digital sensors measure the electromagnetic 

radiation reflected or emitted from both sources in the atmosphere and on the 
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earth surface. Various materials reflect and absorb different wavelengths of 

electromagnetic radiation, which helps identify the type of material based on 

its spectral signature. 

For instance, vegetation strongly absorbs wavelengths of visible (red) light 

and reflects wavelengths of near-infrared light, which is invisible to human 

eyes¹. Water absorbs longer visible wavelengths (green and red) and near-

infrared radiation more than shorter visible wavelengths (blue), making water 

appear blue or blue-green (Horning, 2019). 

Despite its wide range of applications, remote sensing faces challenges such as 

the need for high-resolution data, cloud cover interference, and the 

requirement for advanced data processing techniques. However, ongoing 

research and technological advancements continue to push the boundaries of 

what remote sensing can achieve (Abdelmajeed & Juszczak, 2024). 

Unmanned Aerial Vehicles (UAVs), also known as drones, are miniature 

aircrafts that operate without a pilot on board. They can function 

autonomously or be remote-controlled. UAVs have gained significant 

attention in the last decade due to their wide range of applications and 

advancements in control, miniaturization, and computerization (Ahmed et al., 

2022; Mohsan et al., 2023). 

UAVs are equipped with payloads such as cameras, radar, and sensors for 

different applications. These payloads are supported by data systems like GPS 

trackers and wireless connectivity, allowing the components to work together 

from afar. This makes UAVs highly versatile, capable of performing tasks like 

photography. The operation of a UAV involves several components, including 

a physical model, a Ground Control Station (GCS), advanced sensors, and a 
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mean of communication between them. The flight dynamics of UAVs are an 

essential aspect of their operation (Colomina & Molina, 2014). These 

dynamics involve the forces and moments that affect the motion of the UAV, 

including lift, drag, thrust, and weight. 

One of the primary challenges in UAV technology is flight endurance, which 

is constrained by the power provided by batteries. This issue can be addressed 

through the development of various battery types, the use of hybrid systems, 

or the incorporation of internal combustion engines. Additionally, docking 

stations present a promising solution, as they can recharge or swap batteries, 

store UAVs, and even handle communication tasks (Pekias et al., 2022). 

Remote sensing applications in agriculture 

Agricultural stakeholders, including farmers, agricultural cooperatives, and 

local, national, or international authorities, must balance multiple objectives: 

maintaining economically viable operations, ensuring sufficient agricultural 

production to feed a growing population, and mitigating negative 

environmental impacts by minimizing resource depletion and contributing to 

climate change mitigation. Remote sensing, as a non-destructive method for 

spatially and temporally monitoring vegetation, emerges as an essential tool to 

support these efforts (Weiss et al., 2020). Remote sensing can aid in 

identifying new crop varieties better suited to challenging conditions (e.g., 

phenotyping), monitoring agricultural land use, forecasting within-season crop 

production, optimizing short-term production, and providing ecosystem 

services related to soil and water resources, as well as supporting animal and 

plant biodiversity (Weiss et al., 2020). 
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Application of UAV technology in crop phenotyping of maize 

Remote sensing has emerged as a transformative tool in crop phenotyping and 

breeding, offering non-destructive, spatially extensive, and temporally 

continuous monitoring of agricultural landscapes. This technology plays a 

critical role in modern agriculture by providing valuable data that supports the 

selection of superior cultivars, enhances crop management practices, and 

accelerates breeding programmes (Pinto et al., 2023). 

Traditionally, crop phenotyping involved manual measurements of plant traits, 

which were labour-intensive, time-consuming, and often subject to human 

error. Remote sensing, however, enables the automated collection of 

phenotypic data across large areas, improving the efficiency and accuracy of 

these measurements (Herr et al., 2023; Kharraz & Szabó, 2023). This method 

encompasses a range of technologies, including satellite imagery, aerial 

photography from drones (UAVs), and ground-based sensors, each providing 

different scales of observation and levels of detail. 

High-throughput field phenotyping, facilitated by remote sensing, allows 

researchers to assess numerous genotypes under realistic field conditions. 

Unlike controlled environment studies, which may not fully replicate the 

complexities of field environments, remote sensing captures data on crop 

performance in actual agricultural settings. This is crucial for understanding 

how different cultivars respond to real-world conditions, including varying 

soil types, weather patterns, and management practices (Pinto et al., 2023). 

Key to remote sensing in crop phenotyping is the use of various spectral bands 

to capture detailed information about plant health and development. 

Multispectral and hyperspectral imaging are particularly valuable, as they can 
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detect specific wavelengths of light reflected by plants, revealing information 

about their physiological status (Omia et al., 2023; Wong et al., 2023).  

Han et al. (2019) utilized a high-throughput phenotyping (HTP) platform 

mounted on an unmanned aerial vehicle (UAV) to gather RGB and 

multispectral images for a maize breeding program. Through this approach, 

they successfully measured various phenotypic traits, including plant height, 

normalized difference vegetation index (NDVI), biomass accumulation, plant 

height growth rate, lodging, and leaf colour. This approach collected more 

data on a single pass than the manual data collection. 

The integration of remote sensing data with machine learning algorithms has 

further revolutionized crop phenotyping. Machine learning models can 

analyze vast amounts of data to identify patterns and predict outcomes, 

facilitating the identification of superior genotypes. For instance, deep 

learning techniques have been employed to classify plant species, detect 

diseases, and estimate crop yields with high accuracy. These models require 

extensive training datasets, which remote sensing can provide, ensuring robust 

and reliable predictions (Sheikh et al., 2024). 

UAV estimation of plant height 

The use of Unmanned Aerial Vehicles (UAVs) for estimating plant height has 

emerged as a highly effective method in precision agriculture, offering several 

advantages over traditional ground-based measurements. UAV-based 

estimation provides rapid, high-throughput, and non-destructive means to 

monitor crop growth and development (Anthony et al., 2014; X. Han et al., 

2018).  
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The first stage of the process is the data acquisition where UAVs are equipped 

with various sensors, including RGB cameras, multispectral cameras, and 

LiDAR (Light Detection and Ranging) sensors. These sensors capture high-

resolution images and point cloud data of the crop fields from above across the 

whole field. This stage is then followed by the Image Processing that involves 

Structure from Motion (SfM) techniques to reconstruct the 3D structure from 

2D images. Structure from Motion (SfM) involves the creation of 3D models 

from 2D images captured from multiple viewpoints (Schönberger & Frahm, 

2016). SfM is particularly beneficial in agricultural applications due to its 

ability to generate detailed and accurate 3D representations of crop canopies. 

SfM software identifies common features (e.g., distinct points, patterns) in the 

overlapping images. Algorithms like SIFT (Scale-Invariant Feature 

Transform) (Lindeberg, 2012) or SURF (Speeded-Up Robust Features)(Bay et 

al., 2008) detect and match these features across the image set. By analysing 

the matched features, SfM estimates the relative positions and orientations of 

the UAV’s camera for each image. This process is known as camera pose 

estimation and is fundamental to reconstructing the 3D structure. 

The height estimation is then derived from the Digital Surface Model (DSM) 

by subtracting its value to the Digital Terrain Model as both represents the 

elevation of the crop canopy and bare ground. It is derived from the 3D point 

cloud data or photogrammetry-based models. This study implements the UAV 

imagery in plant height estimation. The topic has gain focus but its evaluation 

under different tillage treatment has not gain so much attention, specifically 

knowing that farm operations may affect growth parameters and influence the 
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performance of remote sensing methods, such as the sowing space that affect 

the LAI further impacting the accuracy of the CSM. 

Application of the UAV technology in crop yield prediction 

The simplest method to connect remote sensing with yield involves 

establishing empirical relationships between field yield data and remotely 

sensed indicators. One common approach uses the peak NDVI (Normalized 

Difference Vegetation Index) from coarse spatial resolution time series 

(approximately 5.5 km) (Becker-Reshef et al., 2010). This can be refined for 

example by incorporating cumulative temperature sums to anticipate the peak 

(Franch et al., 2015). Some studies have explored other indices, including 

phenological metrics from vegetation index time series to enhance yield 

estimates (Bolton & Friedl, 2013; Sakamoto et al., 2014). Yield quality, which 

is more genotype-dependent and harder to assess, has been less frequently 

studied (Moriondo et al., 2007; Wang et al., 2014). These methods are 

typically applied to homogeneous landscapes, such as those in the US and 

China. In more heterogeneous agricultural landscapes, like those found 

elsewhere, the diversity of crop types and management practices complicates 

yield estimation (Duveiller & Defourny, 2010). 

Theoretically, any empirical yield-satellite relationship could be replaced by 

dynamically integrating remote sensing products into a mechanistic crop 

growth model. This could facilitate near real-time forecasting and potentially 

simulate future crop growth based on seasonal weather forecasts (Weiss et al., 

2020). 

Models for predicting crop yield using remote sensing data include statistical 

models, machine learning models, process-based models, and hybrid 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

28 

 

approaches. Statistical models, like regression and time-series analysis, 

correlate yield with remote sensing-derived variables such as vegetation 

indices. Machine learning models, including Random Forests, Support Vector 

Machines, and Neural Networks, manage large datasets and capture complex, 

non-linear relationships (Joshi et al., 2023). 

Hybrid models combine statistical, machine learning, and process-based 

elements to utilize their combined strengths (Blessie et al., 2024). Data 

assimilation techniques integrate remote sensing observations with process-

based models, while coupled models merge different modelling approaches for 

improved predictions. Remote sensing data sources include satellite imagery 

(Landsat, Sentinel-2, MODIS), aerial imagery from UAVs, and ground-based 

sensors (Gao, 2021; Soccolini & Vizzari, 2023). 

Applications of these models include using NDVI for yield prediction in 

regression models, applying machine learning in precision agriculture, and 

utilizing process-based models like DSSAT and APSIM for simulating crop 

growth (Blessie et al., 2024). These models are crucial for providing accurate, 

timely insights into crop performance, and supporting sustainable and efficient 

agricultural practices through advanced remote sensing and computational 

methods. In the era of data-driven decision-making scheme, implementing the 

UAV imagery at a small-scale farming, more specifically the yield prediction 

enhances the response time of farmers and policy makers.  

Use of Deep learning approach in Agriculture and maize production 

Deep learning has made a major improvement the field of computer vision, 

particularly in object classification and detection. Object classification 

involves identifying the category of objects within an image, while object 
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detection extends this by going beyond classification by localizing target 

objects in the image (LeCun et al., 2015).  

Initially, object classification and detection relied on traditional machine 

learning techniques with handcrafted features. Algorithms such as the 

Histogram of Oriented Gradients (HOG) and Scale-Invariant Feature 

Transform (SIFT) were used extensively. However, these methods had 

limitations in handling variations in object appearance and environmental 

conditions (Routray et al., 2017). 

The breakthrough in deep learning for object classification came with the 

introduction of Convolutional Neural Networks (CNNs), particularly with the 

success of AlexNet in the ImageNet competition in 2012. CNNs automatically 

learn hierarchical features from data, making them significantly more 

powerful than traditional methods (Liu et al., 2023). 

CNNs is made of a bunch of layers, among them, the convolutional layers, 

pooling layers, and fully connected layers. These networks have shown 

remarkable success in object classification tasks. Key architectures such as 

VGGNet, ResNet, and Inception have pushed the boundaries of performance 

on benchmarks like ImageNet (Liu et al., 2023). 

For object detection, Region-based CNNs (R-CNN) were a significant 

advancement. R-CNNs generate region proposals and classify them using 

CNNs. Fast R-CNN and Faster R-CNN are its major improvements by making 

use of the region proposal network (RPN) within the CNN, enhancing both 

speed and accuracy (S. Ren et al., 2016). Different algorithms have been 

introduced since aiming at bringing efficiency and accuracy in object 

detection. 
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 YOLO (You Only Look Once) introduced a real-time object detection 

framework by framing detection as a regression problem, directly predicting 

class probabilities and bounding boxes of target objects from the full images in 

one evaluation. YOLO's architecture enables fast and efficient object 

detection, making it suitable for real-time applications(Jocher et al., 2023; 

Treven & Cordova-Esparaza, 2023). 

Similar to YOLO, The Single Shot MultiBox Detector (SSD) performs object 

detection in a single pass through the neural network. It divides the output 

space of bounding boxes into a set of default boxes with different aspect ratios 

and scales at each feature map location. SSD's efficiency and accuracy have 

made it widely used in various applications (Liu et al., 2016). 

Those deep learning models have shown great performance as their 

improvement has been sustained by advanced techniques such as Transfer 

learning, generative adversarial networks or data augmentation. 

Transfer learning is the mechanism of leveraging pre-trained models on large 

labelled datasets like ImageNet and fine-tuning them on specific tasks. This 

method has been proven to be useful in improving performance and reducing 

training time for object classification and detection (Houlsby et al., 2019). 

Data augmentation algorithms such colour jittering, flipping and random 

cropping, have been essential in enhancing the strength and generalization of 

DL models. These techniques help in artificially increasing the diversity of 

training data (Shorten & Khoshgoftaar, 2019). 

Generative Adversarial Networks (GANs) have been used to generate 

synthetic data for training object detection models. This is especially useful in 

scenarios where labelled data is scarce. GANs can create realistic images that 
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augment the training dataset, improving model performance (Goodfellow et 

al., 2020). 

Deep learning models require large amounts of labelled data for training. 

Obtaining and annotating such data can be expensive and time-consuming 

(Whang et al., 2023). Implementing deep learning training processes is 

computationally high resource demand, necessitating adequate hardware, like 

GPUs or TPUs, which may not be accessible to all practitioners. Deep learning 

models, especially deep CNNs, are often considered black boxes due to their 

complex architectures. Improving the interpretability and explainability of 

these models remains a significant challenge (Talaei Khoei et al., 2023). 

The applications of deep learning methods in crop sciences can be divided into 

three categories: classification, detection, and segmentation. For the purpose 

of this work, only the first two have been described. 

Plant Classification 

Classification is the most fundamental image understanding task and was the 

first area where deep learning models made significant breakthroughs and 

achieved large-scale applications. Numerous studies have successfully used 

various convolutional neural network (CNN) models to classify plant images. 

Frequently used models include ResNet (19 times), VGG (7 times), DenseNet 

(7 times), Inception (6 times), EfficientNet (5 times), transformer-based 

models (4 times), MobileNet (3 times), and Xception (1 time) (Chen et al., 

2023).  

In the classification process, features are gathered from plant images using 

convolutional layers and then combined in the Dence layer (Fully connected 

layers), which produces a value. The softmax function then normalizes the 
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network's output, providing probability scores for the predicted classes, with 

the final classification result determined by the highest probability. However, 

because of parameter redundancy in the FC layer, high-performing models 

like ResNet and GoogLeNet use global average pooling (GAP) instead, which 

reduces the number of parameters and improves prediction performance (Xu et 

al., 2021). 

Some studies use classifiers other than the softmax function, such as random 

forest or support vector machine (SVM). SVM is the most commonly used 

and often provides the best results (Mathur & Foody, 2008).  

Plant Detection 

Unlike image classification, target detection addresses both classification and 

positioning problems. Common models for plant image detection include 

YOLO (24 times), Faster R-CNN (6 times), CenterNet (4 times), SSD (2 

times), RetinaNet (1 time), and a transformer-based model (1 time). Detection 

models are divided into region-based and region-free categories (Chen et al., 

2023). 

Faster R-CNN, a notable region-based method, comprises four sections: 

feature extraction components, region proposal network, Region of Interest 

pooling, and classification. Feature extractors create image feature maps, often 

replaced with classic alternatives to find the best match. The region proposal 

network generates region proposals, with anchor boxes selected through 

experience, K-means clustering, or as hyperparameters (S. Ren et al., 2016). 

The RoI pooling layer collects feature maps and proposals, sending them to 

the classification layer to determine the target category, while bounding box 

regression obtains precise detection frame positions. Region-based models like 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

33 

 

Faster R-CNN achieve high detection accuracy but are complex and slow. 

Region-free methods (S. Ren et al., 2016), like YOLO, treat object detection 

as a regression problem, directly regressing class probability and position 

coordinates. YOLO divides each image into grids, assigning each grid to 

detect targets if the target’s centre falls within it, predicting bounding boxes, 

confidence scores, and conditional probabilities (Treven & Cordova-Esparaza, 

2023). 

While these algorithms approximate target positions using bounding boxes, 

they cannot precisely extract contour and shape information. Mask R-CNN 

(He et al., 2017), however, predicts accurate contour information along with 

position, providing a more detailed analysis. 
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CHAPTER THREE 

MATERIALS AND METHODS 

Study area 

Location of the study area 

This study was conducted at the Teaching and Research farm of the University 

of Cape Coast in the Central Region of Ghana as shown in Figure 1 below. 

The site is geo-located at Lat. 5°07'52.2" N and Long. 1°17'31.8" W. The site 

lies within the Coastal Savanna Agro-ecological zone of Ghana.  

 

Figure 1: Location of the study site (a) experimental area, (b) the University of 

Cape Coast research farms, (c) the Central region in Ghana. 

Climate Conditions 

The site usually experiences two rainfall seasons: a major season from March 

to July and a minor season from September to November. A long dry season 

follows, lasting from December to February. Temperatures remain relatively 
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uniform throughout the year, with a mean annual minimum of 25°C and a 

mean annual maximum of 29°C. Diurnal temperature variations are most 

pronounced in February and March, while August is the coolest month and 

March the hottest (Nkrumah et al., 2014). Relative humidity is generally high, 

ranging from 80 % to 90 % during the night and early morning, dropping to 

about 70 % in the afternoon. Humidity levels are higher during the rainy 

season compared to the dry season (Nkrumah et al., 2014). 

However, due to climate change, there have been some variations observed in 

the patterns of the seasons. 

The weather conditions for the two seasons show slight variations in 

temperature but significant differences in precipitation. In Season One, the 

minimum temperature is 22°C, while in Season Two, it is slightly higher at 

23°C. The maximum temperature remains constant at 34°C in both seasons. 

However, there is a substantial difference in total precipitation, with Season 

One receiving 220mm of rainfall, whereas Season Two experiences a 

significantly higher 1133 mm. 

General Description of Soils and Relief 

At the beginning of the experiment, a soil analysis was conducted to 

determine the physio-chemical properties of the soil. Soil samples were taken 

over the whole study area at a mean depth of 20 cm using auger and other 

standard tools. They were bulked together for soil analysis after air-drying it in 

the laboratory. Its results are presented in Table 1. 

  

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

36 

 

Table 1: Soil physio-chemical properties at the experiment site 

Soil Property 
Value 

Sand (%) 79.65 

Silt (%) 8.59 

Clay (%) 11.76 

Organic Carbon (%) 1.073 

Organic Matter (%) 1.849 

pH  5.17 

Total N (%) 0.120 

Exch. Ca
2+

 (cmol kg
-1

) 6.30 

Exch. Mg
2+

 (cmol kg
-1

) 3.10 

Exch. K
+
 (cmol kg

-1
) 0.495 

Available P (Mg kg
-1

) 55.05 

Exch. Na
+
 (cmol kg

-1
) 0.101 

ECEC (cmol kg
-1

) 2.722 

Exch. = Exchangeable 

The soils at the study site originate from Sekondian rocks, mainly consisting 

of shales, sandstones and conglomerates from the Devonian period. The area 

is located on sloping to gently undulating terrain and includes the Edina, 

Atabadzi, Benya, and Udu compound association. These soils are highly 

weathered, base-depleted, and acidic. They are primarily composed of low-

activity kaolinite clays and sesquioxide’s (Asamoah, 1973). 

The elevation above sea level varies from 15.2 to 30.5 meters. The highest 

points, reaching approximately 30 meters, are two hills located in the southern 
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part of the farm sites. Most of the poorly drained valley bottoms and flat plains 

have not been cultivated due to the waterlogged condition of the soil. 

Materials 

Planting materials 

The Abontem maize variety seeds produced by the Crops Research 

Institute of the Council for Scientific and Industrial Research (CSIR -CRI) 

were used as planting material. The Abontem, is an early-maturity maize 

variety (Abdul Rahman et al., 2022; Ofori et al., 2019). 

Tractor and Implements 

The tractor used for the tillage is a CASE III brand, model JX75T 

which is configured as a 4-wheel drive (4WD). It has a 4-cylinder engine with 

a displacement of 3908 cubic centimetres, 55 kW (75 hp) power and a rated 

speed of 1400 revolutions per minute. Its wheelbase measures 2160 mm 

(4WD), while ground clearance reaches up to 500 mm at the front axle and 

490 mm at the rear. The implements used for tillage in this study included a 

disc plough and a disk harrow, each with distinct specifications. The disc 

plough featured three discs, a weight of 550 kg, a working width of 990 mm, 

and a working depth of 250 mm. The disk harrow, on the other hand, had 16 

harrows, weighed 800 kg, and offered a broader working width of 1800 mm 

and a working depth of 200 mm, with the discs set at a 36-degree angle. 

Equipment for Field data collection 

The equipment used in the study included a Penetrometer: Eijkelkamp 

Penetrologger (Eijkelkamp Agrisearch Equipment, Giesbeek, the 

Netherlands), a specialized device for measuring soil penetration resistance, 
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which is a key indicator of soil compaction. It is a digital cone penetrometer 

that records the force required to push a standardized cone into the soil at a 

constant speed, typically down to a specific depth. This was done prior to the 

application of the treatments to the various plots and eventually, the average 

penetration resistance for the field were found to be 1.12 MPa and 1.046 MPa 

for seasons one and two respectfully.  

A vernier calliper was utilised to measure stem diameter, while a 

Ceptometer (ACCUPAR LP-80, METER Group, Inc., USA) was employed to 

measure the Leaf Area Index. Additionally, a 5 m measurement tape was used 

to measure plant height, and a precise balance was used to weigh yield 

components.  

Unmanned Aerial Vehicle technology 

Drone: UAV flights were carried out using a DJI Phantom 4 Pro (DJI, 

Shenzhen, China) equipped with a DJI FC6310S RGB camera of 5472 x 3648 

resolution, 8.8 mm focal length, and 2.41 x 2.41 μm pixel size. 

RTK: An EMLID Reach RTK was used to take the geo-coordinates of the 

Ground Control Points (GCPs) at a centimetre-level precision. It aimed at 

enhancing the accuracy of recorded coordinates during flight missions. This 

involved the use of two GPS units, with one fixed for estimating the error of 

each geographic coordinate recorded called base station, and another in 

motion to capture the coordinates of control points, called rover. These control 

points have been subsequently employed for model calibration and precision 

measurement. 

Ground Control Points: 10 GCPs were installed on the field. Each GCP had a 

square dimension of 60 cm and was painted black and white.  
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ArcGis: The ArcMap 10.5 software (Esri Inc., Redlands, California, USA) 

was used for further analysis, —specifically, Raster Calculator and Zonal 

Statistics. 

Metashape: AgiSoft PhotoScan Professional (Version 2.2.1) was used to carry 

the images procession from pictures retrieved by the UAV to output the 

Digital Surface Model and Orthomosaic photo of the surveyed area.  

Methods 

Experimental design 

The experimental was laid out in a Randomised Complete Block Design 

(RCBD) with four treatments (i.e. ploughing only, ploughing followed by 

harrowing, harrowing only, and No-tillage). There were five replicate blocks 

making a total of twenty plots as shown in Figure 4 below. Each plot 

measured 3 m x 4 m size and had a planting distance of 75 cm x 40 cm and a 

plant population of 40 plants. The alleys created within and between blocks 

measured one (1) and two (2) m respectively 

A brief description of the tillage treatments considered are as follows: 

No-tillage (NT): The soil remains undisturbed, with no mechanical 

intervention.  

Disc ploughing (P) only: A tractor-mounted disc plough was employed 

to invert and bury crop residues and weeds.  

Disc Harrowing (H) only: A tractor-mounted disc harrow was utilised 

to prepare the soil at 20 cm depth. 

Disc ploughing followed by harrowing (Ploughing and harrowing - 

PH): A tractor-mounted disc plough was used at first pass, and the 

following day a disc harrow was used to cut and turn the soil. 
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Figure 2: Experiment layout 

Cultural practices 

Weed control was performed using a combination of chemical and 

mechanical methods. At the beginning of each growing season, Paraquat 

herbicide was applied before tillage to effectively suppress weed growth and 

prepare the field. Subsequently, manual weed control using hand hoes on 

weekly basis were carried out from time to time to ensure the field remained 

clear for UAV image capturing. It was ensured that on no-till soils, very 

minimum soil disturbance was done with the hoe while weeding. 

The plant density was managed after germination by thinning out 

excess plants to retain only the healthiest individuals. This practice minimised 
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competition for nutrients, water, and light, promoting uniform growth across 

the field.  

To protect the crop from pest attacks, spraying was conducted every 

two weeks to manage armyworm infestations, ensuring the maize plants 

remained healthy throughout the growing period.  

 Manual Field data collection 

Plant height determination (cm), stem diameter (cm), and number of 

leaves 

Six plants were tagged in the middle in each plot for the data collection. The 

manual data collection was taken once a week for the two seasons. The plant 

height was determined by taking the height of the plant from the soil level to 

the highest leaf on the plant using a 5 m tape and the stem diameter was also 

taken by a vernier calliper and recorded. Fully deployed leaves were manually 

counted and recorded per plant.  

Leaf Area Index (LAI) measurement 

In each plot, an area of 1.8 m
2
 which comprised of the six selected 

plants was used to determine the LAI representative of the plot. An Accupar 

Ceptometer (ACCUPAR LP-80, METER Group, Inc., USA) was used to 

record the LAI. Each measurement was repeated three times in each plot.  

Above ground dry biomass determination 

The determination of the above-ground dry biomass of maize was 

conducted after harvesting. All six tagged plant materials, excluding the roots 

and cobs, was weighed per plot. A sample of the biomass was taken to the 

laboratory and dried in an oven at 70°C for 24 hours to expel the moisture 
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content. Once the sample was dried, the percentage of dry matter was 

calculated using the formula:  

             
          

            
          (1) 

Where:  

Dry Weight: weight of the sample after oven drying 

Fresh Weight: weight recorded in the field. 

The Maize root system architecture determination 

The root architecture of maize is a crucial determinant of its ability to acquire 

water and nutrients, thereby influencing crop productivity.  

To assess the root architecture, the maize plants were carefully 

excavated at physiological maturity stage. In the first instance, the soil 

surrounding the root system of each plant was gently loosened using water to 

minimize root damage. The entire root system was then carefully extracted 

from the soil, ensuring that the roots remained intact. Each plant was uprooted 

carefully and excess soil was removed by gently shaking the root system. The 

roots were thoroughly washed afterwards with water to remove any remaining 

soil particles. It was ensured that this was done with special care to avoid 

breaking fine roots during the process.  

Once cleaned, the root systems were prepared for imaging. The roots 

were spread out on a transparent tray filled with water to minimize 

overlapping and ensure a flat orientation for imaging. A high-resolution 

professional camera NIKON D5600 (NIKON Corporation, Japan) with a 55 

mm focal length and 300 dpi resolution was used to capture images of the root 

systems. The resolution and settings were adjusted to ensure that fine root 

structures were clearly visible. 
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The images were pre-processed to enhance contrast and remove 

background noise using ImageJ software. This step included converting 

images to grayscale, adjusting brightness and contrast, and applying filters. 

The roots system was then segmented from the background using Otsu 

thresholding techniques (Otsu, 1979). Segmented images were then converted 

into binary format, where roots appeared as white pixels against a black 

background. The root architectural traits were quantified using WinRHIZO. 

The analysis focused on measuring key parameters, including Total Root 

Length, Root Surface Area, Root Volume, Root Diameter Distribution and 

Root Branching Pattern. 

The data obtained from the root analysis software were further 

processed to assess the root architecture's relationship with the treatments.  

UAV data collection 

The design and execution of flight plans went through several stages as 

illustrated in the figure 3. Before creating the flight plans, a comprehensive 

terrain reconnaissance was done. This step aimed at evaluating the surface 

conditions that would be covered during the drone flights, identify natural 

obstacles to be avoided during flight, locating and positioning the GCPs and 

determining the drone’s starting point. The Pix4D mobile application was 

utilized due to its capability to adapt the flight plan to the specific terrain, 

thereby maintaining a consistent spatial resolution throughout the fight.  
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Figure 3: Project flowchart with UAV and manual data collection and 

processing 

UAV flight accuracy 

Table 2: UAV survey accuracy across growth stages 

Flight 

dates 
Stage GSD 

DSM 

(cm/pix) 

X 

error

(cm) 

Y 

error 

(cm) 

Z 

error 

(cm) 

Total 

error 

(cm) 

Image

(pix) 

Season One 

24/11/2023 Bare ground 0.847 1.69 2.16 2.94 1.73 4.04 0.63 

25/12/2023 Establishment 0.569 1.14 1.91 1.98 1.74 3.25 0.33 

29/01/2024 Vegetative 0.495 1.00 1.31 2.27 2.58 3.68 0.61 

05/02/2024 Tasselling 0.410 1.14 1.03 0.93 1.45 2.00 3.51 

12/02/2024 Maturity 0.568 1.14 1.61 2.11 2.20 3.45 0.40 

Season Two 

22/04/2024 Bare ground 0.603 1.20 3.65 2.29 2.38 4.31 4.92 

13/05/2024 Establishment 0.557 1.11 2.09 1.40 1.44 2.52 2.90 

03/06/2024 Vegetative 0.563 1.13 1.93 1.57 1.03 2.69 0.38 

11/06/2024 Tasselling 0.583 1.17 1.24 1.34 1.00 2.08 0.44 

18/07/2024 Maturity 0.546 1.09 1.84 1.61 1.43 2.44 2.83 
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Estimation of plant height 

First, the UAV images are imported into the Agisoft Metashape 

software, and image alignment is performed to identify overlapping areas and 

establish a sparse point cloud, which represents the scene's structure. This is 

followed by building a dense point cloud, where the software uses 

photogrammetry algorithms to reconstruct the 3D surface in high detail. 

Ground control points (GCPs) are then added at this stage for georeferencing 

and improving the model's accuracy. Next, the dense point cloud is processed 

to generate a 3D mesh, which captures the terrain's shape and features. Using 

the mesh, the DSM is created by interpolating the surface elevations, resulting 

in a geospatially accurate representation of the terrain that includes all the 

features such as vegetation, ground and objects present on the field. 

Once the DSM has been generated, the next step was to calculate the 

plant height. In this case, the height of the maize plant was determined by 

subtracting the Digital Terrain Model (DTM) of the first flight of the season, 

representing the ground surface, from the DSM of the growth stage involved 

as described in Figure 4.  
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Figure 4: UAV estimation of plant height at different growth stages (source: 

Akyeaw et al., 2023) 

Assessment of Vis 

The vegetation indices were calculated by first acquiring RGB images using a 

RGB camera. The images were georeferenced and pre-processed for cleaning 

from any distortions. The individual Red (R), Green (G), and Blue (B) bands 

were then extracted from the images and segmented using the Excess Green 

Vegetation index to separate vegetation pixels from the orthomosaic per each 

plot. Specific formulas of vegetation indices were applied, on a pixel-by-pixel 

basis. The calculated indices were then visualized and the results were 

exported for further analysis and integration with additional data.  Lóránt et 

al., (2024),  in grouping RGB vegetation indices showed that a set of 16 VIs 

was structurally unique. These vegetation indices were used in this study as 

presented in the Table 3.  
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Table 3: Assessed RGB Vegetation indices 

Index Name Formula References 

R Red band   
 

G Green band   
 

B Blue band   
 

BGI Blue-Green Ratio 
     

     
 Zarcotejada et al., 2005 

ExB Excess Blue         Mao et al., 2003 

ExG Excess Green         Woebbecke et al., 1995 

GCC 
Green Chromatic 

Coordinate 

 

       
 Richardson et al., 2007 

GLI Green Leaf Index 
                

                
 Louhaichi et al., 2001 

GR Green-Red Ratio 
 

 
 GAMON & SURFUS, 1999 

HUE Overall, Hue Index 

 

      
         

         
  

 

Escadafal et al., 1994 

MGRVI 

Modified Green 

Red Vegetation 

Index 

 

       

       
 

Bendig et al., 2015 

MVARI 

Modified Visible 

Atmospherically 

Resistant Index 

     

       
 Yang et al., 2008 

PRI 
Photochemical 

Reflectance Index 

 

 
 Gamon et al., 1997 

RCC 
Red Chromatic 

Coordinate 

 

       
 De Swaef et al., 2021 

RGBVI 
Red-Green-Blue 

Vegetation Index 

 

            

            
 

Bendig et al., 2015) 

TGI 
Triangular 

Greenness Index 

             
   

 

Hunt et al., 2013 

VEG Vegetative Index 

 
 

               
 

 

Hague et al., 2006 

vNDVI 

Visible 

Normalized 

Difference 

Vegetation Index 

 

                

                   
Costa et al., 2020 

WI Woebbecke Index 
     

     
 Woebbecke et al., 1995 
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Germination rate assessing using UAV-acquired pictures 

The remote assessment of the germination rate was done using the Deep 

Learning technology, more specifically the single-stage and the two-stage light 

weight models, namely the Faster R-CNN (Mobilenetv3) and three variants of 

the YOLOv8 (nano, small, extra-large). The steps used were as follows: 

UAV images capturing 

UAV-acquired images of the maize plots were collected weekly at 3 

consecutive times: 2 weeks after sowing, 3 weeks after sowing, and 4 weeks 

after sowing followed by a manual counting of seedlings on the ground in 

each instance. 

Table 4: Characteristics of the images capturing process and environment 

Week Week 2 Week 3 Week 4 

Flight height 20 m 20 m 20 m 

GCD 0.59cm/0.23in 0.53cm/0.20in 0.57cm/0.22in 

Plant height 7-19 cm 19.2 – 34.8 cm 33.5-61cm 

Leaves per plant 3 – 4 leaves 6 - 8 leaves 7-11 leaves 

Number of seedlings 239 397 553 

 

Object annotation for maize seedlings 

Object annotation is a crucial step in training object detection models 

like YOLOv8 and Faster R-CNN. Both models require labelled datasets to 

learn to detect objects accurately. This study considered a splitting ratio of 

6.5:2:1.5 for training, validation, and test sets, respectively, ensuring a diverse 

representation of images in each set.  

For YOLOv8, annotations were done in the YOLO format, which 

involved creating text files for each image containing the object class, 
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bounding box coordinates, and object dimensions of identified objects. 

Typically, for maize seedlings, annotations were made on maize plants in 

images, each text file contained lines specifying the class label "maize" and 

the coordinates of the bounding box around the maize plant.  

Similarly, for Faster R-CNN, annotations were done in the PASCAL 

VOC format, which includes XML files containing object class labels, 

bounding box coordinates, and image metadata. Each XML file would 

describe the objects present in the image along with their locations and 

classes. 

 

Figure 5: Bounding box sizes per dataset (a - two weeks maize, b – three 

weeks maize, c - Four weeks maize  

Model training 

The dataset was thus used to train the different models, Faster R-CNN 

with a Mobilenetv3 backbone, YOLOv8 using three (3) of its variants: 

YOLOv8 nano, YOLOv8 small and YOLOv8x, making it to be four (4) 

different model trainings. The framework used for the training the Ultralytics 

for the YOLOv8 models and PyTorch for the Faster R-CNN model. The 

parameters used during the training are presented in the Table 5 below.  
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Table 5: Training parameters of the selected models 

Parameter Value Parameter Value 

Learning 

rate(initial) 

0.01 Epochs 100 

Learning rate 

(final) 

0.01 Pretrained True 

Weight decay 0.0005 Device Cuda (training), CPU 

(inference) 

Momentum 0.937 Image size YOLOv8 (640*640), 

Faster R-CNN 

(Mobilenetv3) 

(320*320) 

Optimizer Stochastic 

Gradient Descent 

Batch size 4 

 

YOLO (You Only Look Once) and Faster R-CNN both followed 

structured training processes with notable differences. For YOLO training, 

during the forward propagation, input images were passed through the 

network, generating initial predictions for class probabilities and bounding box 

parameters. The loss function was then calculated based on the difference 

between predicted and actual values, comprising classification loss (error in 

class labels), localization loss (error in bounding box parameters), and 

confidence loss (error in predicted confidence scores that an object is present 

in a given bounding box). Gradients of the loss function with respect to model 

parameters were then computed, indicating each parameter’s contribution to 

the total loss. Model parameters were updated using optimization algorithms, 

in this case, the Stochastic Gradient Descent (SGD) during the backward 
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propagation. These steps were repeated for each image batch across multiple 

epochs until the validation set performance stabilized. 

For Faster R-CNN, the training process involved two main steps: 

region proposal, where the Region Proposal Network (RPN) generated regions 

with objectless scores, classification, and bounding box regression, where the 

classifier predicted the class and refined bounding boxes for each proposed 

region. The loss function in Faster R-CNN is a combination of classification 

loss, localization loss, and an additional objectless loss which measures the 

error in the predicted objectless scores from the RPN. The same process of 

backward propagation, parameter update, and iteration has been followed as in 

YOLO. 

Model performance evaluation 

All the models were evaluated using Precision and Recall metrics, 

Mean Average Precision and Inference Speed 

During the training and validation process, the True Positive (TP) was 

Correctly identified maize plant at an Intersection Over Union (IOU) value of 

0.7, False Positive (FP) as Bare ground soil identified as Plant, False Negative 

(FN) as a missed maize plant was extracted. These metrics were then used to 

calculate the Precision, Recall and summary of the classification.  

             
  

     
       (2) 

          
  

     
        (3) 

   ∫  
 

 
              (4) 

    
 

 
∑    

 
          (5) 

Where, 

TP: True Positive 

FP: False Positive 
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R: Recall 

P: Precision 

FN: ? 

mAP, : Mean Average Precision,  

AP: Average Precision  

 

Estimation of LAI 

The LAI was estimated by using the plant canopy coverage retrieved from the 

ExG vegetation index after binary thresholding using ArcGIS (Esri Inc., 

Redlands, California, USA). The algorithm employed for binary thresholding 

is the Otsu method, specifically developed to differentiate between the 

background and foreground in images. It achieved this by creating two distinct 

classes that minimize the variance within each class (Otsu, 1979). The plant 

canopy coverage, plant height and growth stage were used as categorical 

variables to train Support Vector Regressor and three different tree-based 

machine learning models, the Random Forest Regressor, Decision Tree and 

Gradient boosting along with Linear models: Ridge Regression, Linear 

Regression, Lars, Huber Regressor and Polynomial Regression. After training 

and testing, the RMSE, MAE and R
2
 statistics were retrieved for comparison 

at different growth stages. 
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Prediction of Yield 

The yield prediction was done by considering the crop growth stages in the 

aim of assessing how earlier the end-of-season yield can be accurately 

predicted for that purpose, the processes were split into different combinations 

of Vegetation indices (19) ( 

 

Table 3), the canopy coverage, the plants' height and Growth stage as 

categorical features.  

The first process involved the selection of models and features to be involved. 

Different models then proposed by the literature, among the most used there 

were the Neural Networks, Linear Regression, Random Forest, Support Vector 

Machines and Gradient Boosting Tree (Halder et al., 2023; van Klompenburg 

et al., 2020). Three models were then selected, the Random Forest Regressor, 

the Gradient Boosting Tree and the Decision Tree. Due to the quantity of data 

Deep learning models were judged unsuitable, and Linear Regression due to 

the feature multi-collinearity of the Vegetation indices where Variance 

Inflation Factors were all superior to 5 and close to Infinity as they were all 

calculated based on the same initial bands (RGB). After the selection of 

models, the next step before the prediction was to select relevant features. To 

better assess the contribution of all the involved features, the features were 

grouped by growth stages and the algorithm of Feature Importance was used 

to select the most important features. Per each model, the model had to run 

1023 times taking the features into a subset and the one with a higher R
2
 was 

reported. The process was then replicated 16 times considering the growth 

stages combination namely: Establishment; Vegetative; Tasselling; Maturity; 

Establishment, and Vegetative; Establishment and Tasselling; Establishment, 
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Maturity; Tasselling, Maturity; Vegetative and Tasselling; Vegetative and 

Maturity; Establishment, Vegetative and Tasselling; Establishment, Vegetative 

and Maturity; Establishment, Tasselling, and Maturity; Vegetative, Tasselling 

and Maturity; Establishment, Vegetative, Tasselling, and Maturity. This 

splitting allowed to assess how growth stages improve each other to improve 

the accuracy of the yield prediction. The process involved predicting the exact 

yield and yield interval (classification). For the classification, the interval was 

chosen using Quartiles (0.25, 0.5, 0.75, 1). Both the yield prediction 

classification and regression were done at a ratio of 0.8 - 0.2 for respectively 

the training and testing dataset combining the two growing seasons. The 

performance was evaluated using R
2
 and RMSE for regression tasks and 

Accuracy and f1-score for classification tasks. The priority has been ranked as 

follows: Performance (R2, RMSE), with/without plant height and then model 

computing requirement (in order: Decision Tree, Random Forest, Gradient 

Boosting). The number of trees used for Random Forest and Gradient 

Boosting was 100 trees (Wald et al., 2013). The Table 6 presents the 

parameters used with the 3 Machine learning models. 

Table 6: Hyperparameters used for the Random Forest, Decision Tree and 

Gradient Boosting for yield prediction (classification and regression) 

Hyperparameters Random Forest Decision Tree Gradient Boosting 

Number of estimators 100 - 100 

Min samples split 2 2 2 

Min samples leaf 1 1 1 

Max depth - - 3 

criterion Gini gini friedman_mse 

Learning rate - - 0.1 

splitter - Best - 

Max features Sqrt - - 

Min impurity decreases 0 0 0 
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Study methodology limitations 

While the UAV technology has risen the interest in the crop monitoring, its 

application is not yet sprayed to all the agriculture use cases. For instance, the 

stem girth assessment using the UAV technology has not yet gotten enough 

attention in the research community. 

Another limitation is the size of the dataset used for Machine learning models. 

While this study can assess the plant height using a 120 rows size dataset per 

growth stage (6 plants x 20 plots), the Leaf Area Index and the Yield are 

limited to plots, resizing the dataset to only 40 rows for the two seasons, 

further reducing the quality of our analysis 

Statistical Analyses 

Statistical analysis used in which ANOVA was carried out using the General 

Linear Model in MINITAB Statistical 21.2 (MINITAB LLC, US) to determine 

the effects of tillage on different maize performance parameters. The Tukey 

HSD test was used to determine significant differences among the treatment 

means at the confidence level of 95%. Linear Regression was used to assess 

the accuracy of the UAV-based approach in estimating the plant height.  

 

 

 

 

  

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

56 

 

CHAPTER FOUR 

RESULTS AND DISCUSSION 

Effects of tillage on maize growth parameters  

Effects of tillage on germination rate 

 

Figure 6: Effects of Tillage on Maize germination rate for the two seasons 

Under no-tillage, the germination rate in Season One is around 25, while in 

Season Two, it increases to approximately 30, showing a slight improvement. 

Harrowing results in a germination rate of about 30 in Season One and a 

slightly higher rate of around 32-33 in Season Two. Ploughing leads to a 

germination rate of approximately 31 in Season One, with an increase to about 

35 in Season Two, suggesting a positive impact on maize germination. The 

combination of ploughing and harrowing shows a germination rate close to 28 

in Season One and around 32 in Season Two. In general, all tillage treatments 
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exhibit higher germination rates in the second season compared to the first, 

with ploughing alone showing the most notable improvement. 

The lowest germination rate was recorded on No-tillage plots in both seasons, 

while the highest was on Ploughing only during Season Two (Figure 9). The 

harrowing only tillage showed the lowest variation through the two seasons.  

However, there was no significant difference between the treatments with 

respect to Season Two. Excepted the No-tillage, the tillage treatments 

performed well during both seasons due to the soil loosening characteristic of 

harrowing for seedbed preparation (Chisi & Peterson, 2019).  

 Winkler et al. (2022) and  Kabas et al. (2020) observed lower germination 

performances on no-tillage soils for a number of crops. Generally, soil 

compaction is associated with no-tillage and this tends to negatively affects 

germination and plant growth by reducing seed-to-soil contact, increasing 

penetration resistance, and limiting oxygen availability due to decreased soil 

porosity (Kahlon et al., 2020; Nawaz et al., 2013) making it harder for seeds to 

germinate and for seedlings to push through the relatively compacted soil. 

Effects of Tillage on Plant Height and Stem Diameter  

Figures 10 and 11 show the trend of effects of different tillage systems on 

maize plant height and stem diameter respectively over some weeks after 

sowing for the season one. Similarly, Figures 12 and 13 also show the tillage 

systems effect on maize plant height and stem diameter respectively in season 

two over the same period as the first season.  The growth rate was high at the 

establishment and early vegetative stages of the maize, especially at 4 - 5 

weeks for the stem diameter and plant height. With the No-tillage having the 
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least performance, the results showed that such conservation tillage systems 

significantly affected the growth of the plants for both seasons. 

 

 

Figure 7: Effects of different tillage systems on maize plant height for Season 

One 

 

 

Figure 8: Effects of different tillage systems on maize stem diameter growth 

rate for Season One 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

59 

 

  

Figure 9: Effects of tillage systems on maize plant height growth rate for 

Season Two 

 

 

Figure 10: Effects of tillage on maize stem diameter growth rate for Season 

Two 

The four figures (Figure 7, Figure 8, Figure 9 and Figure 10) suggest an 

almost uniform growth rate among treatments at the first four weeks of the 

growing stage during both seasons for the Plant height and Stem diameter. 

This suggest to not be related to the involved treatments as environmental 

factors such as sunlight.  
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Crops grow faster because they require full sunlight during both the vegetative 

and generative stages. This need for sunlight during growth leads to an 

increase in crop height, allowing the plants to better capture sunlight and 

maintain continuous photosynthesis. The increase in stem diameter aligns with 

the rate of height growth as the plant matures (Jamidi et al., 2018).  

In Season One, tillage had a significant effect on plant height (p = 

0.025), indicating that different tillage methods influenced plant growth. 

Ploughing and Harrowing resulted in the tallest plants, while No-tillage 

produced the shortest. Ploughing only and Harrowing only had similar plant 

heights and were grouped together, whereas No-tillage was in a separate 

group, confirming its lower effectiveness in promoting plant height. 

In Season Two, the effect of tillage on plant height was even stronger 

(p = 0.005), reinforcing that tillage enhances plant growth. Ploughing and 

Harrowing again produced the tallest plants, while ploughing only and 

Harrowing only had similar results and were grouped together. No-tillage 

remained in a separate group, producing the shortest plants. 

For stem girth in Season One, tillage also had a significant effect (p = 

0.017), meaning that soil preparation influenced stem thickness. Ploughing 

only and Ploughing and Harrowing resulted in the thickest stems and were 

grouped together. Harrowing only had moderate stem thickness and was 

sometimes grouped with them, while No-tillage had the thinnest stems and 

was in a separate group. 

In Season Two, a very strong effect was observed (p < 0.001), further 

highlighting the importance of tillage for stem development. Ploughing and 

Harrowing had the thickest stems, while Ploughing only showed similar 
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results and was grouped together with it. Harrowing only showed moderate 

stem thickness and was in a different group from Ploughing and Harrowing. 

No-tillage had the smallest stem girth and was in a separate group, confirming 

its lower effectiveness. The seasonal effect can improve the growth of crops 

under conservation tillage specifically in Season Two here and long-term use 

(Blanco-Canqui & Ruis, 2018; Phillips, 1984). 

Effects of tillage on number of leaves and leaf Area Index (LAI) 

Every week during the growth period, the number of leaves and leaf area 

index were recorded.  Figure 11 and 15 respectively show the trend over time 

of the effect of different tillage systems on   maize number of leaves 

developed in seasons one and two. Likewise, Figures 15 and 16 respectively 

show the maize leaf area index (LAI) as affected by the different tillage 

systems in seasons one and two. 

 

Figure 11: Effects of tillage on Number of leaves growth rate for Season One 
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Figure 12: Effects of tillage on Number of leaves growth rate for Season Two 

 

 

Figure 13: Effects of tillage on Leaf Area Index (LAI) growth rate for Season 

One 
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Figure 14: Effects of tillage on Leaf Area Index (LAI) growth rate for Season 

Two 

For the Season One for both number of leaves and LAI parameters, the peak 

was recorded at the 4
th

 week during the vegetative growth stage for Ploughing 

only and Ploughing and harrowing as highlighted in the four figures (Figure 

11, Figure 12, Figure 13 and Figure 14). The No-tillage has shown its peak a 

week later, same for the Harrowing only. After the peak, the number of leaves 

and LAI drastically decreased as the plants entered the Tasselling and maturity 

growth stages. It was observed that Season Two made the treatments almost 

grow at the same growth rate and pattern, with the no-tillage performing less. 

The rapid increase of Leaf area index and number of leaves during the 

establishment and vegetative stage was likely promoted by temperature and 

photoperiod (Qiao et al., 2019), since these two parameters are strongly 

dependent on the season. The seasonality made that result to be 

complementary to the study of Imani et al. (2022) that supported the tillage 

tends to have a significant effect on chlorophyll pigment and thus the leaf area 

index.  
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That explains the prolonged increase of leaf area index during Season Two. At 

the tasselling and grain-filling stage, the number of leaves and LAI started to 

decrease due to the senescence process making the leaves quite old, turning 

yellow and dying off as observed by Woo et al. (2018). 

Effects of Tillage on Days to 50% Flowering 

From the end of the vegetative stage, the plants were monitored daily to get 

the number of days to 50 percent flowering from the day of sowing.  Figure 15 

presents the days to 50 percent flowering for both seasons. While the no-

tillage took more days than the other tillage treatments during the Season One, 

the days were reduced during the Season Two but the difference was not 

significant for both seasons (p > 0.05).  

 

Figure 15: Effects of tillage on the Number of days to 50 percent flowering for 

both seasons one and two 
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Among the factors that affected the growth rate of maize are the fertility level 

of the soil and the climate conditions during the growing stage. However, 

since in this study, no fertilizer was applied, the fertility conditions involved 

can be linked to nutrient availability to plants as affected by the soil's physical 

properties influenced by the tillage method. Literature has shown that long-

term tillage has an impact on the absolute growth rate of maize and thus its 

number of days to flowering (Nayak et al., 2022).  

Effect of Tillage on Root System Architecture of maize 

The maize plants were excavated at the physiological maturity stage for the 

analysis of the root architecture.  Table 7 presents the distribution of root 

features across the four treatments. 

Table 7: Effects of tillage on maize Root System Architecture 

Root features 

No-

tillage Harrowing Ploughing 

Ploughing 

and 

Harrowing 

P-

Value 

Tuckey 

HSD 

CV 

(%) 

Maximum Number 

of Roots 22.50 22.86 23.00 21.71 0.96 1.29 20.00 

Number of Root 

Tips 142.13 159.00 147.67 135.43 0.52 12.24 20.08 

Total Root Length 

(cm) 447.28 503.99 526.50 472.80 0.51 79.22 20.66 

Maximum Width 

(cm) 19.73 21.59 16.95 16.84 0.17 0.12 24.20 

Width-to-Depth 

Ratio 0.67 0.70 0.54 0.54 0.06 0.00 22.83 

Lower Root Area 

(cm
2
) 93.79 117.89 116.73 93.80 0.25 22.95 28.44 

Average Diameter 

(cm) 0.79 0.98 0.86 0.75 0.03 0.11 18.84 

Perimeter (cm) 545.74 540.41 585.96 541.34 0.88 45.55 19.88 

Root volume (cm
3
)

 
569.91 1077.19 783.59 508.2 0.02 275.39 54.04 

Surface Area (cm
2
) 1120.62 1617.69 1438.31 1144.97 0.03 317.69 28.70 

Average Root 

Orientation deg ?? 53.43 51.89 53.00 52.96 0.70 1.54 4.58 

Shallow Angle 

Frequency 0.23 0.24 0.23 0.24 0.82 0.01 11.62 

Steep Angle 

Frequency 0.49 0.46 0.48 0.48 0.64 0.03 9.86 
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1 mm-Diameter 

Root Length (cm)  351.28 361.64 398.27 367.60 0.80 46.99 22.82 

2 mm-Diameter 

Root Length (cm)  46.80 62.51 61.48 53.18 0.07 14.68 23.41 

3 mm-Diameter 

Root Length (cm)  28.35 37.40 36.91 34.81 0.012 8.56 18.30 

4 mm-Diameter 

Root Length (cm)  20.85 42.45 29.84 17.21 0.025 12.63 63.90 

 

 From Table 7,  among all the features gathered, only the 3 mm-

diameter Root Length   and 4 mm-diameter Root Length were significantly 

different among the treatments (p<0.05). Although there was no significant 

difference in total root length, the no-tillage and harrowing were relatively 

lower than the ploughing, and the ploughing and harrowing treatments. This 

observation could be due to possible soil compaction on no-tillage and 

harrowing plots as observed by Sun et al. (2023) and (Duruoha et al., 2007). 

The same trend is followed by the Average Diameter of the roots and the 

surface area where the means were found to be significantly different at the 

diameter range of 3 mm and 4 mm. The reduction in root diameter can be 

explained by possible soil compaction that could lead to morphological 

modifications in roots (Lipiec et al., 2003; Pandey et al., 2021).  

Effects of Tillage on maize yield components. Table 8 and 9 present the 

effects of different tillage types on the yield components for seasons one and 

two respectively.  
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Table 8: Effects of tillage on the yield components for Season One 

Treatments Dry Biomass 

(t/ha) 

Grain yield 

(t/ha) 

Number of 

Ears per 

plant 

Ear length 

(cm) 

100 grains 

weight (g) 

No-tillage 3.501b 3.122b 1.23a 15.56a 25.312c 

Harrowing only 4.668ab 3.740ab 1.16a 18.96a 27.324b 

Ploughing only 6.027ab 4.881a 1.46a 18.22a 26.672b 

Ploughing and 

Harrowing 

7.209a 4.619ab 1.26a 19.44a 31.204a 

P-value 0.017 0.018 0.161 0.061 0.00 

Tuckey HSD 

(0.05) 

0.978 0.625 0.15 1.66 0.362 

CV (%) 27.29 22.79 17.65 13.78 1.95 

Standard 

deviation 

1.460 0.932 0.27 2.48 0.540 

 

Table 9: Effects of tillage on the yield components for Season Two 

Treatments Dry Biomass 

(t/ha) 

Grain 

yield (t/ha) 

Number of 

Ears per 

plant 

Ear length 

(cm) 

100 grains 

weight (g) 

No-tillage 7.456b 4.230a 1.13a 20.96a 27.274b 

Harrowing only 9.100ab 4.710a 1.10a 20.92a 26.822b 

Ploughing only 9.37ab 5.241a 1.33a 21.86a 27.842b 

Ploughing and 

Harrowing 

10.933a 5.670a 1.16a 21.76a 32.720a 

P-value 0.045 0.246 0.271 0.764 0.00 

Tuckey HSD (0.05) 1.024 0.720 0.11 1.04 0.994 

CV (%) 16.588 21.67 14.71 7.28 5.173 

Standard deviation 1.528 1.075 0.173 1.556 1.482 

 

For both seasons, the No-tillage followed by the Harrowing treatments have 

yielded less, but at the Season Two all the treatments yielded more in dry 

biomass and grain yield. The ploughing and harrowing outperformed the other 

treatments for both seasons in term of dry biomass and 100 grains weight. The 

treatments had a strong effect on the dry biomass as means were significantly 

different for both seasons at a P-values of 0.017 and 0.045 The trend 

corroborated with Al‐Kaisi et al. (2015) and Büchi et al. (2017), as well as 
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Huynh et al. (2019) who reported that conventional tillage practices produced 

more biomass than no-tillage. 

The other yield components that were measured are the grain yield retrieved 

by shelling the cobs, the ear length, the number of cobs per plant and the 

weight of 100 grains for each plot.  

The results showed the significant influence of tillage methods on 

maize grain yield across both seasons. In Season One, the Ploughing only 

treatment achieved the highest grain yield (4.881 t/ha), followed closely by the 

Ploughing and Harrowing treatment (4.619 t/ha). In contrast, the No-tillage 

treatment resulted in the lowest grain yield (3.122 t/ha), indicating that 

minimal soil disturbance limits crop productivity. The observed differences in 

grain yield among the treatments were statistically significant (P = 0.008) as 

tillage methods influenced the grain yield  (Guan et al., 2014). 

During Season Two, the Ploughing and Harrowing treatment outperformed all 

others with the highest grain yield of 5.670 t/ha, while the No-tillage treatment 

again showed the lowest yield (4.230 t/ha). However, unlike Season One, the 

grain yield differences among treatments were less pronounced, with no 

statistically significant effect (P = 0.237). Across both seasons, the trend 

suggests that Ploughing and Harrowing consistently supports higher grain 

yields compared to reduced or no-tillage methods as supported by Dakhil et al. 

(2022) and Drobitko et al. (2024). Although, the No-tillage was learnt to   

result in no soil disturbance, its crop yield increased over time.  Mondal & 

Chakraborty, (2022)  noted that no-tillage favourably changed soil structure 

and porosity that could positively influence the yield of crops.  
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The impact and effectiveness of tillage methods evolve over time and are 

largely influenced by soil-specific characteristics. The mechanisms and 

outcomes of no-tillage practices on yield are highly dependent on factors such 

as soil type, soil compaction, and other local environmental conditions 

(VandenBygaart & Liang, 2024). The tillage imposed in Season Two 

generally impacted the yield for all treatments with the least observed in the 

harrowing. The improvement can be because the moisture content, higher 

during in the Season Two than in Season one, is an important factor impacting 

the yield of maize (Niu et al., 2023). 

Further, on a fine-loamy or loamy, mixed, mesic soils, the negative 

mechanisms associated with No-Tillage required three years to diminish, 

resulting in a notable improvement in maize yield by the fourth year, 

indicating its potential for long-term benefits as reported by Lampurlanés et al. 

(2001). Conversely, a study conducted on sandy soil (Haplic Chernozem) 

revealed that significant yield differences due to No-Tillage became evident 

only after the fifth year. Earlier work by Linden et al. (2000) showed with No-

tillage, significant positive changes persist in crop performance over 13 years, 

highlighting the long-term impact of No-Tillage on such soil types. Another 

study proved that No-tillage generally needs a longer time to significantly 

influence the yield of maize in sandy soil (Duiker et al., 2006). While this 

study has not used any fertilizer, the overall yield was between 4 t/ha and 5 

t/ha and thus fall into the potential yield for the Abontem variety and this 

corroborated with studies by  Essilfie et al. (2024) and MacCarthy et al. 

(2018). For grain weight, the Ploughing and Harrowing treatments recorded 

the highest values compared to other treatments.  
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While tillage methods significantly influenced dry biomass and grain yield, 

their effect on the number of ears per plant and ear length was limited, 

suggesting that the latter parameters were dependent more on other factors 

such as genotype. A genetic study by Khatun et al. (2022) conducted on four 

traits of the maize ear suggested that heterozygous genotypes play very 

important role for phenotypic performance of ear length. 

Relationship between growth parameters and yield components 

The correlation matrix reveals important relationships between maize growth 

parameters and yield components under different tillage treatments.  

 

Figure 16: Correlation matrix between growth parameters and yield 

components of maize 

Plant height shows a strong positive correlation (0.80) with grain yield, 

indicating that taller plants tend to produce higher yields (Shettigar et al., 
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2024). Similarly, stem diameter (R=0.75) and biomass (R=0.68) also have 

significant positive correlations with grain yield, suggesting that more 

vigorous plant growth contributes to better productivity. The leaf area index 

(R=0.53) also supports higher grain yield, highlighting the importance of 

sufficient leaf surface for photosynthesis. On the other hand, days to 50% 

flowering has a negative correlation (R=-0.48) with grain yield, meaning that 

later flowering reduces productivity, reinforcing the idea that early-flowering 

varieties may be more advantageous (Alkhazaali et al., 2017). The 

relationships among growth parameters further emphasize this trend, as stem 

diameter and plant height (0.73) are strongly correlated, showing that taller 

plants often have thicker stems, which may enhance structural support and 

nutrient transport (Hengqi & Ragni, 2024). Similarly, the number of leaves 

and the leaf area index (0.84) are closely linked, reinforcing the idea that an 

increased number of leaves contributes to greater photosynthetic potential. 

Among the yield components, 100-grain weight correlates positively with ear 

length (0.55), indicating that larger ears may lead to heavier grains, while the 

number of ears per plant also shows a moderate correlation (0.48) with grain 

yield. These findings suggest that tillage treatments that promote plant height, 

stem girth, and biomass accumulation are likely to improve maize yield. 

UAV Estimation of growth parameters. 

Estimation of Germination rate 

Seedling Detection performance 

This research aimed not just to classify an UAV-acquired image as 

containing maize seedlings, but also to be able to locate those maize seedlings 

inside the plots. The Precision and Recall of UAV models were used to detect 
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the presence of maize seedlings, seedlings count and to localize them at three 

(3) different early-stage growth times. This was applied for plant recognition 

(classification), plant counting (germination rate) and localization (refilling or 

UAV spraying). All these cases required different levels of Precision and 

Recall thresholds. Thus, the Precision and Recall curve demonstrates the 

trade-off between those two metrics. The bigger the area under the curve 

(AUC) of the Precision-Recall curve, the better the model trades off between 

―False alerts‖ and ―Misses‖ (Sofaer et al., 2019). From Figure 17, a poor 

performance from the YOLOv8x (YOLOv8 – extra-large)  model  was 

observed although it had  been claimed to be the most precise among the 

YOLOv8 models (nano -YOLOv8n, small - YOLOv8s, and extra-large - 

YOLOv8x)  (Jocher et al., 2023). From the same Figure 19,  all the models 

had the lowest detection of the maize seedlings during the first week, which 

could be  likely due to the size of the maize seedlings (Figure 5) and its 

visibility at the flight height at which the UAV was capturing the images 

(Wang & Liu, 2024). The low Recall values were mainly linked to the False 

Negative thus suggesting that the Faster R-CNN using MobilenetV3 as 

backbone along with the three YOLOv8 models (nano -YOLOv8n, small - 

YOLOv8s, and extra-large -YOLOv8x) were missing some maize seedlings 

taking them as part of the bare ground soil. 
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Figure 17: Precision-Recall curves during the validation of the models on 

three weeks of the early growth stage of maize seedlings (Two weeks aged - 

left, Three weeks aged - middle, Four weeks aged - right) 

 

Figure 18: Precision - Confidence curves during the validation of the models 

on the three weeks of the early growth stage of maize seedlings (Two weeks 

aged - left, Three weeks aged - middle, Four weeks aged - right) 
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Figure 19: Recall - Confidence curves during the validation of the models on 

the three weeks of the early growth stage of maize seedlings (Two weeks aged 

- left, Three weeks aged - middle, Four weeks aged - right) 

The reliability of the YOLOv8n, the nano variant was  very low at 

Recall but high at Precision and their respective values grow with the age of 

the plants (Figure 18 and Figure 19) as opposed to the YOLOv8x, the   extra-

large variant. This suggests a very high sensitivity to the confidence threshold 

judged by the direction of their precision and recall curves.  

Table 10: Models evaluation summary across the 3 weeks of the early-stage 

growth of maize seedlings 

Growth 

stage 
Models Precision Recall mAP50 

Map50-

95 

2
nd

 Week 

YOLOv8n-nano 0.75 0.85 0.81 0.27 

YOLOv8s-small 0.83 0.88 0.89 0.32 

Faster R-CNN 

(MobileNetv3) 
0.50 0.94 0.88 0.28 

YOLOv8x – Extra 

large 
0.65 0.85 0.61 0.18 

3
rd

 Week 

YOLOv8n-nano 0.92 0.90 0.93 0.46 

YOLOv8s-small 0.87 0.97 0.94 0.48 

Faster R-CNN 

(MobileNetv3) 
0.58 0.98 0.94 0.48 

YOLOv8x – Extra 

large 
0.63 0.90 0.83 0.38 

4
th

 Week 

YOLOv8n-nano 0.92 0.86 0.93 0.46 

YOLOv8s-small 0.93 0.89 0.95 0.43 

Faster R-CNN 

(MobileNetv3) 
0.76 0.96 0.95 0.48 

YOLOv8x – Extra 

large 
0.83 0.82 0.84 0.38 
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Comparison of the sources of confusion and uncertainty across the models 

Effect of plant size and spacing on model performance 

As a plant grows, its size increases and affects its original spacing in-

between neighbourhoods, making the plant population to be denser and leaves 

touching each other. At this stage, even the manual counting of plants 

becomes challenging as segmentation becomes difficult.  

 

Figure 20: Highlights of model confusion in dense maize seedlings population 

The Faster R-CNN (MobilenetV3) outperformed other models in weed 

discrimination (Figure 20b). This may be due to its feature extraction method 

(S. Ren et al., 2016). In crowded and dense scenes, images often contain 

numerous adjacent objects with highly similar appearances. This makes it 

difficult to avoid overlap between anchor boxes of neighbouring objects, 

complicating the accurate determination of positive and negative samples 

using Intersection over Union (IoU) (Xu et al., 2022). This problem may have 

started with the dataset annotation at the initial stages of the training process. 

While bounding boxes offer an easy way of annotating objects in the image, 
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polygon annotation is more precise, and in this figure, at this growth stage of 

the maize it is more suitable than using a bounding box as it is less subject to 

plant overlap.  

Effect of weed on model performance 

Weeds often grow alongside crops and can be mistaken for crop plants. 

This can lead to inaccurate detection and classification of plants. Weeds effect 

on the model performance was found to be more pronounced in the YOLOv8x 

model, where the model failed at separating the two species of weeds as seen 

in Figure 21. The YOLOv8x model is the largest trained model of the 

YOLOv8 models and it expects to get good-resolution images where small 

objects can be seen. The COCO dataset on which the YOLOv8 model has 

been trained doesn't contain enough plant data, apart from some fruits, and is 

not balanced according to object size in the dataset, making the transfer 

learning not ineffective when it came to training in agriculture field due to the 

dataset discrepancy (Xu et al., 2023) as the new task was very different from 

the one the YOLOv8 models and Faster R-CNN model were trained on. One 

of the challenges in Deep learning applications in agriculture is the lack of 

enough labeled datasets for the training process (Arsenovic et al., 2019). 

 

Figure 21: Illustration of inaccuracies caused by the weeds 
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Although the Faster R-CNN (Mobilenetv3) used a classification 

backbone, Mobilenetv3 is known to be effective in the classification task, and 

the resemblance between weeds and plants at their early stage is still confusing 

the model. Zhao et al. (2023b) have gotten the same conclusion even though 

their research used a dataset three times bigger than the one used in this study 

at a flight height of 5m. 

Comparison of measured and UAV estimated plant growth parameters 

Measured and UAV estimated plant height 

Once per growth stage, the plant heights were measured using the 

Digital Surface Model acquired by the UAV technology and manual 

measurements. The performance of the UAV technology was statically 

assessed with the coefficient of determination (R
2
), Root Mean Squared Error 

(RMSE) and Mean Absolute Error (MAE) by way of comparing the UAV-

acquired plant heights and the manual measurements. The Linear relationship 

between the estimated value acquired by the UAV technology and the manual 

measurements on the field is showed in the Figure 22 and Figure 23 for 

Season one and Season two respectively. 
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Figure 22: Linear relation between manually measured and UAV technology 

estimated plant heights across plant growth stages of different tillage 

treatments in Season one.  
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Figure 23: Linear relation between manually measured and UAV technology 

estimated plant heights across plant growth stages of different tillage 

treatments in Season Two.  

At the vegetative and tasselling stages of the maize, an RMSE<7cm 

and an R
2
 of 0.98, 0.99, 0.97 and 0.97 respectively for the Ploughing and 

Harrowing and No-tillage at the vegetative stage, Ploughing and Harrowing 

and Harrowing only at the Tasselling and Vegetative stage were obtained for 

all the treatments during Season Two (Figure 23), and were judged acceptable 

as compared to the results reported by Shu (2023). During the Season One, the 

highest R
2
 was at 0.86 score in the Ploughing only treatment  
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The estimation of the plant heights at the maturity stage were probably 

less accurate than at the tasselling while the plant heights did not greatly 

change as maize plants stopped growing in height at the end of the vegetative 

stage. 

A study by Ji et al. (2022) showed an RMSE of around 7cm, which 

correlated with another UAV survey by Xie et al. (2021). The performance of 

the regression model at the vegetative and tasselling stage might be due to the 

LAI of the plots as they had the highest of the experiments (Figure 13 and 

Figure 14), among the factors there is the sowing space that increases the LAI  

(Akyeaw et al., 2023). Another study by Oehme et al. (2022) found the 

accuracy of plant height acquired by UAV technology to be dependent on the 

LAI and plant growth stages. Observations on the establishment stage in 

Figure 22 and Figure 23 have highlighted the poor performance of the UAV 

technology in estimating the plant height when the plants are less than 50 cm 

height. This can explain the reason behind the negative R
2
 as plants are small 

seen at the 20m flight height at the Establishment stage demonstrated by 

Akyeaw et al. (2023). 

Estimation of the Leaf Area Index (LAI) 

The estimation of the Leaf Area Index using the UAV technology were 

made using different Machine Learning models. The dataset has been divided 

into growth stages for the estimation at different growth stage, and at the end, 

an overall estimation has been made using the four growth stages collected 

data. The models' performances are shown in the table below (Table 11). The 

RMSE, R
2
 and MAE have been computed for each model at the selected 

growth stage to assess its performance. 
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Table 11: Linear and Machine Learning models performance in estimating the 

Leaf Area Index (LAI) 

Growth stages ML Models used R² RMSE MAE 

  Ridge Regression 0.54 0.04 0.03 

Establishment Linear Regression 0.55 0.04 0.03 

  Lars 0.55 0.04 0.03 

 

Linear Regression 0.54 0.20 0.17 

Vegetative Huber Regressor 0.57 0.19 0.16 

 

Lars 0.54 0.20 0.17 

  Linear Regression 0.78 0.16 0.10 

Tasselling Huber Regressor 0.80 0.15 0.09 

  Random Forest 0.76 0.17 0.12 

 

Random Forest 0.92 0.17 0.13 

Maturity 

Polynomial Regression (Degree 2) 

 0.93 0.16 0.12 

 

Gradient Boosting 0.94 0.14 0.11 

  

Polynomial Regression (degree=2) 

 0.94 0.16 0.12 

All growth 

stages 

involved Support Vector Regressor (SVR) 0.93 0.17 0.13 

  Random Forest 0.89 0.23 0.15 

 

At the early growth stage of the maize, the UAV technology has not 

been able to assess the LAI at a reasonable R
2
 (<0.55) using canopy coverage 

retrieved from the Excess Green vegetation index and Plant height retrieved 

from Digital Surface Models. At the Establishment stage, the canopy coverage 

was more involved as the plants at that stage can be segmented easily with less 

complexity linked to the leaves arrangement thus Linear models were found to 

be more suitable. The same trend was observed during the vegetative stage 

too. At the tasselling stage, the performance of the UAV estimation of the 

vegetative index increased (R
2
=0.57) and the RMSE (0.19) value found to be 

better compared to the mean LAI (1.25) at the tasselling stage for both seasons 

(Table 11). At the maturity stage, the UAV technology has shown great 

performance (R2=0.94) in assessing the LAI using Polynomial Regression and 
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Gradient Boosting. This can be due to the proven performance of Tree-based 

machine learning models in estimating the Leaf Area Index by discriminating 

the soil bare ground considering only the canopy coverage and multi-spectral 

UAV (Liu et al., 2023). When involving all the stages at the same time, the 

estimation of LAI by the UAV models has shown to be better than considering 

single stages-based processing. The reason behind this could be from the 

dataset volume, as the models learn better using well-balanced and large 

dataset (Bottou, 2015; Dong & Rekatsinas, 2019). 

UAV estimation of the number of tasseled plants 

The YOLOv8 Deep learning model was used to estimate the number of 

tasselled maize plants inside each plot at the first week of the tasselling stage 

for both seasons. Different variants of the model were applied and variant S 

(YOLOv8s – small) had the best performance and was applied for the 

experiment. The Figure 24 presents its performance on tassel detection and 

counting. 
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Figure 24: Maize tassel detection using YOLOv8 

The counting of the tasselled maize plants was very accurate in the 

Ploughing and Harrowing stage, and the YOLO model has shown a good 

performance during Season One. Different factors could be attributed to that 

observation and the difference in environmental parameters can lead some 

tassels to be covered by plant leaves when they are not fully deployed and the 

wind condition which made some of them to bend as shown in the Figure 25. 

This is further reinforced by the dynamic growth patterns of tassels throughout 

the developmental stages, as well as the notable differences in tassel 

characteristics at each stage (Du et al., 2024). This is further emphasised by 

the finding where in Figure 15 the ANOVA analysis of days to 50 percent 

flowering had significant differences among treatments. The above reason 

most likely made the detection of tassels to be challenging as it has been found 

by a study by Karami et al. (2021). 
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Figure 25: Sources of inaccuracy in Tassel detection during the Season Two 

Yield Prediction 

The features used for the yield prediction are the vegetation indices (VIs) ( 

 

Table 3), the Plant's height (Figure 22) and the Canopy coverage at different 

growth stages.  

Table 12: Machine Learning yield prediction performance for yield prediction 

  Stages E V T M E, V E,T E,M E,V,T E,V,M E,T,M T,M V,T V, M V,T,M E,V,T,M 

 

R
2
 0.792 0.864 -0.17 0.139 0.907 -0.02 0.088 0.634 0.873 0.088 0.088 0.900 0.873 0.881 0.578 

DT RMSE 0.356 0.287 0.844 0.724 0.238 0.789 0.746 0.472 0.278 0.745 0.746 0.246 0.278 0.269 0.507 

 

MAE 0.291 0.239 0.653 0.489 0.179 0.647 0.605 0.321 0.202 0.669 0.605 0.209 0.202 0.167 0.310 

  R
2
 0.462 0.791 -0.42 -0.28 0.792 0.239 0.032 0.792 0.829 -0.049 -0.34 0.809 0.754 0.807 0.792 

RF RMSE 0.573 0.357 0.932 0.882 0.356 0.681 0.768 0.356 0.323 0.799 0.905 0.341 0.388 0.343 0.356 

  MAE 0.445 0.342 0.846 0.791 0.302 0.599 0.598 0.319 0.258 0.675 0.737 0.314 0.327 0.311 0.319 

 

R
2
 0.283 0.889 -0.337 0.341 0.860 0.129 0.310 0.865 0.840 0.001 0.001 0.865 0.737 0.865 0.902 

GB RMSE 0.661 0.260 0.903 0.633 0.292 0.728 0.648 0.287 0.312 0.780 0.780 0.287 0.400 0.287 0.244 

  MAE 0.521 0.236 0.850 0.440 0.253 0.553 0.551 0.250 0.287 0.596 0.596 0.250 0.354 0.250 0.194 

E: Establishment, V: Vegetative, T: Tasselling, M: Maturity. DT: 

Decision Tree, RF: Random Forest, GB: Gradient Boosting Regressor; R
2
: 

Coefficient of determination, RMSE: Root Mean Square Error, MAE: Mean 

Absolute Error 
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Concerning the Decision Tree (DT) and Random Forest (RF) model, 

the best performances were observed at combined Establishment (E) and 

Vegetative (V) stages, achieving R² of 0.907, RMSE of 0.238, MAE of 0.179 

and R² of 0.792, RMSE of 0.356, and MAE of 0.302, respectively. In contrast, 

at the combined Tasselling (T) stages, the worst performance was observed, 

with an R² of -0.17 and -0.42, respectively, indicating poor predictive ability 

(Table 12).  

Additionally, using the Gradient Boosting Regressor (GB) model,  the 

best performance was attained at the  combined Establishment, Vegetative, 

Tasselling, and Maturity stages, it yielded  R² of 0.902, RMSE of 0.244, and 

MAE of 0.194, while at the T stage it indicated  the worst performance (R² = -

0.337, RMSE = 0.903, MAE = 0.850) (Table 12). Overall, the general trend is 

that across all models that combining data from multiple growth stages, 

particularly at the Establishment and Vegetative stages, sig-nificantly 

enhanced predictive performance, as evidenced by higher R² values and lower 

RMSE and MAE. However, at the Tasselling stage, the performance was 

consistently poor across all models, suggesting it is not a reliable stand-alone 

predictor of the yield of maize. It could be inferred that among the models, the 

Gradient Boosting Regressor tends to outperform the others, especially when 

using combined stages, demonstrating the highest R² and lowest errors in 

many cases. This result acknowledges the importance of getting the 

appropriate growth stages and models for yield pre-diction in maize 

production.  

The main objective of this study was to predict the end-of-season yield 

of maize, moreover, it wished to at least offer a certain level of confidence in 
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the outcome of the prediction in term of yield classification. If the UAV 

technology cannot predict the exact quantity of grain yield, can it, at least, 

inform the farmer if the yield will be Good (>4.75t/ha, Medium (3.5 to 

4.75t/ha) or bad (<3.5t/ha) at the end of the season? The answer to this 

question was implemented through classification variant of the tree-based ML 

models. Further, considering the four main growth stages, how earlier can the 

farmer get an accurate expected yield?  

Considering the prediction at the Establishment, Vegetative, Tasselling 

or Maturity taken individually or grouped, the results in Table 12, showed a 

gain of improvement. Studies have shown that crop growth is a dynamic 

process, and yield is influenced by cumulative effects across various 

stages emphasizing the importance of integrating data from multiple 

phenological stages to capture the complex interactions between 

environmental factors and crop development (Cao et al., 2021; Pei et al., 

2025). Gradient Boosting was found to be more suitable for yield prediction as 

compared to Random Forest, for instance, Yasaswy et al. (2022) found it 

0.987 accurate when used with historical data, same correlated by Singh & 

Bhavadharini (2023) who compared it to Random Forest, Decision Tree and 

Multiple Linear Model. This may be the reason the Gradient Boosting required 

all the growth stages features to yield better accuracy after the Vegetative 

stage. 

In time-related features, the incorporation of the near-future data has 

been proven to improve the predictive accuracy of the model (Zeng et al., 

2024), more specifically the integration of different growth stages can improve 

the model predictive accuracy of the maize yield (Y. Ren et al., 2023). For 
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instance, the Vegetative stage improves the prediction linked to Establishment 

and Vegetative, the maturity stage improving the first two stages.  

Despite the improvements brought by the Tasselling and Maturity 

stages to the overall model performance, the difference in accuracy between 

the single-stage and multiple-stage approaches remains narrow, with an R² 

variation of only 0.04 to 0.01. Although the Decision Tree achieved an R² 

score of 0.79 at the establishment growth stage, it heavily relied on plant 

height as a predictive feature. This introduced bias, as the UAV's performance 

in estimating plant height at this stage was notably low. Given these findings, 

the optimal stage for yield prediction is the Vegetative stage, as supported by 

Sunoj et al. (2023), using the Gradient Boosting Regressor. 

Table 13: Machine Learning yield prediction performance (classification) 

  

Stage

s E V T M E,V E,T E,M E,V,T 

E,V,

M 

E,T,

M T,M V,T V,M 

V,T,

M 

E,V,T

,M 

 

Acc. 0.875 1.000 0.750 0.875 0.875 0.875 0.750 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 

DT Prec. 0.938 1.000 0.917 0.938 0.938 0.781 0.838 0.938 0.938 0.775 0.938 0.938 0.938 0.938 0.938 

 

Rec. 0.875 1.000 0.750 0.875 0.875 0.875 0.750 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 

 

F1 0.887 1.000 0.771 0.887 0.887 0.821 0.715 0.887 0.887 0.819 0.887 0.887 0.887 0.887 0.887 

  Acc. 0.875 0.875 0.750 0.750 0.875 0.750 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 

RF Prec. 0.775 0.938 0.844 0.844 0.938 0.844 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 0.938 

 

Rec. 0.875 0.875 0.750 0.750 0.875 0.750 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.875 

  F1 0.819 0.887 0.738 0.738 0.887 0.738 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 0.887 

 

Acc. 0.875 0.875 0.750 0.875 1.000 0.875 0.875 1.000 0.875 0.875 0.750 1.000 0.875 1.000 1.000 

GB Prec. 0.781 0.938 0.813 0.938 1.000 0.938 0.938 1.000 0.938 0.938 0.850 1.000 0.938 1.000 1.000 

 

Rec. 0.875 0.875 0.750 0.875 1.000 0.875 0.875 1.000 0.875 0.875 0.750 1.000 0.875 1.000 1.000 

  F1 0.821 0.887 0.758 0.887 1.000 0.883 0.887 1.000 0.887 0.887 0.740 1.000 0.887 1.000 1.000 

E: Establishment, V: Vegetative, T: Tasselling, M: Maturity. DT: 

Decision Tree, RF: Random Forest, GB: Gradient Boosting Regressor; Acc.: 

Accuracy, Prec.: Precision 
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With regard to the performance of the regression task, the classification task 

aimed at giving a categorical insight about the expected yield. The categories 

were LOW: <3.5t/ha, MEDIUM: 3.5 to 4.75t/ha and GOOD: >4.75t/ha. 

The Table 13 present the performance of the yield prediction as a 

classification task of 3 Tree-based machine learning models. 

From the Table 13, the results indicate that among the individual 

stages, the Vegetative (V) stage consistently produced the highest model 

performance across all metrics, particularly for Gradient Boosting, where a 

perfect score (Accuracy, Precision, Recall, and F1 = 1.000) was achieved. This 

suggests that data from the Vegetative stage are the most predictive for end-of-

season yield classification. In contrast, the model’s performance was generally 

lower for the Tasselling (T) and Maturity (M) stages when considered 

independently. 

In examining the combinations of growth stages, the inclusion of 

Vegetative (V) data with other stages (e.g., E, V, T and M or V, T, and M) 

significantly improved model performance. Again, the Gradient Boosting 

achieved optimum performance in some combinations (e.g., V, T, M), further 

emphasizing its robustness and ability to leverage additional information from 

multiple growth stages. 

Comparatively, the Decision Tree model also exhibited strong 

performance for single stages, particularly the Vegetative stage (Precision and 

Recall = 1.000), but its performance remained constant with increasing 

complexity when combined with other growth stages. Although, in the case of 

the Random Forest, it was observed to be less effective than Gradient 

Boosting, it maintained consistent results across both individ-ual stages and 
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their combinations, highlighting the dominance of the Vegetative stage (0.875 

across all combinations). All these performances were achieved with 

Vegetation indices, Plant height and Canopy coverage. Their respective 

contribution to each prediction outcome is given in the figures 25 to 30.  

Feature importance in Decision Trees & Random Forests is determined 

by the decrease in impurity (e.g., Gini impurity or variance reduction) when a 

feature is used for splitting. In Gradient Boosting Models, it is based on how 

often a feature appears in boosting iterations and its impact on error reduction. 

Higher importance values indicate strong influence on predictions, 

while lower values suggest minimal impact. If a single feature dominates, the 

model relies heavily on it, whereas evenly distributed importance means 

multiple features contribute similarly. 

When it comes to the yield classification, the Vegetative (V) stage 

consistently yielded the highest model performance, with Decision Tree 

achieving a perfect score (Accuracy, Precision, Recall, F1 = 1.000), thus 

aligning with the finding of Marapelli et al. (2024) completed by Kumar et al. 

(2023) highlighting the yield predictive potential of the vegetative stage and 

Decision Tree model. Tasselling (T) and Maturity (M) stages performed lower 

when analysed independently. Including Vegetative data in multi-stage models 

further improved performance, with Gradient Boosting excelling in certain 

combinations (e.g., V, T, M). Decision Tree performed well for single stages 

but showed little improvement with added complexity, while Random Forest 

maintained consistent results, reinforcing the dominance of the Vegetative 

stage. 
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Relying on combinations of stages increases the cost due to additional 

drone surveys. For instance, using three or four growth stages (e.g., E,V,T,M 

for regression) requires multiple surveys, which may not significantly improve 

performance compared to using the Vegetative stage alone. While some 

combinations, such as V,T,M, achieved perfect scores with Gradient Boosting, 

the added technical cost may outweigh the marginal benefits in scenarios 

where resources are limited.  

 

Figure 26: Feature importance scores of yield prediction using Decision Tree 

(E: Establishment, V: Vegetative, T: Tasselling, M: Maturity growth stages) 

 

Figure 27: Feature importance scores of yield prediction using Random Forest 

(E: Establishment, V: Vegetative, T: Tasselling, M: Maturity growth stages) 
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Figure 28: Feature importance scores of yield prediction using Gradient 

Boosting Machines (E: Establishment, V: Vegetative, T: Tasselling, M: 

Maturity growth stages) 

 

 

Figure 29: Feature importance scores of yield class prediction using Decision 

Tree (E: Establishment, V: Vegetative, T: Tasselling, M: Maturity growth 

stages) 
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Figure 30: Feature importance scores of yield class prediction using Random 

Forest (E: Establishment, V: Vegetative, T: Tasselling, M: Maturity growth 

stages) 

 

Figure 31: Feature importance scores of yield class prediction using Gradient 

Boosting Machines (E: Establishment, V: Vegetative, T: Tasselling, M: 

Maturity growth stages) 

Figures 25 to 30 showed the dominance of the Plant height and canopy 

coverage as predictive features, with contributions ranging 0.2 to 1 in Gradient 

Boosting and Decision Tree models for both Classification and Regression. 

However, when selecting the best model, at the vegetative stage where the 

prediction was the highest, the features used were the Canopy coverage, Plant 
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height, TGI, RGVBI, RCC, HUE and Blue band, a different trend from the 

classification where the MGRVI and HUE with respective feature importance 

of 0.3 and 0.7. The Vegetation indices calculated at the vegetative stage 

dominated, probably due to their outstanding performance demonstrated with 

the prediction outcome (R
2
 = 0.88 or Accuracy=1) when using a single stage 

for prediction.  

The quality of a prediction model highly depends on the accuracy of 

the feature data and their respective correlations with the target, here the grain 

yield. Some spectral indices were highly correlated with each other but had 

weak or inconsistent relationships with grain yield. The multi-collinearity of 

features since all the Vegetation Indices were calculated based on the same 

bands (R, G, B). This phenomenon is known to affect some Machine learning 

models, such as Linear ones, more specifically when the correlation feature-

target is low, as it suggests an easy interchange between vegetation indices 

and is thus statically problematic (Shrestha, 2020).  

Plant height (PH) and canopy coverage are key factors in predicting 

maize yield using UAV-based measurements. A study found that Plant height 

alone accounted for over 60% of maize grain yield (MGY) variability in clay 

loam soils (Machado et al., 2002). Additionally, maize yield responds directly 

to canopy cover and planting density, which are influenced by leaf orientation 

and canopy structure (García-Martínez et al., 2020). In several studies, the role 

of the multispectral vegetation indices, more specifically the NDVI index was 

acknowledged in the yield prediction, where the feature importance of RGB 

VIs were actually low (<0.1) in Random Forest (Marques Ramos et al., 2020; 

Sunoj et al., 2021). However, MGRVI was found to correlate better with NDI 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



 

94 

 

and was shown to be effective in yield prediction by Fathipoor et al Fathipoor 

et al. (2019) thus justifying its selection for yield classification, alongside 

HUE and TGI VIs. Moreover, Kumar et al. (2023) demonstrated that 

incorporating the green band in yield prediction enhances model performance. 

This supports the selection of the Blue Band and RCC, which exhibit strong 

correlations with the green band (R = 0.96 and R = 0.81, respectively). 
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CHAPTER FIVE 

CONCLUSION AND RECOMMANDATIONS 

Conclusion 

This study aimed at assessing the influence of tillage on maize performance 

while using UAV technology. The study found that tillage influenced the 

growth and yield of maize. It showed that Ploughing and Harrowing had the 

best grain yield (5.65t/ha) and growth parameters contrary to No-tillage and 

Harrowing. Despite initial poor performance, No-tillage showed potential for 

long-term improvement (+1.11t/ha). 

The UAV technology was found to be performant in estimating the maize 

growth parameters. Estimating the germination rate through seedling 

detection, it was found that the YOLOv8s outperformed other models with an 

MAP of 0.32, 0.48, and 0.43 for 2, 3, and 3 WAS old maize seedlings 

respectively, followed by Faster R-CNN (Mobilenetv3). However, depending 

on the requirement in precision or recall, the Faster R-CNN (MobilenetV3) 

was found to be more suitable (Recall: 0.94, 0.98, 0.96) where misses are less 

important than wrong detections in opposition to the YOLOv8-small. 

The maize plant height estimation using UAV technology accuracy was found 

to be highly dependent on the leaf area index with more precision at the 

Vegetative and Tasselling stages with a RMSE around 10 cm and R
2
 of 0.88. 

For the estimation of the Leaf Area Index, it was found that the UAV 

technology coupled with Machine Learning failed to estimate the LAI at the 

establishment and Vegetative Growth stage, however at the Tasselling and 

Maturity stages respectively its performance increased to an R2 of 0.80 and 
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RMSE of 0.15 using Huber Regressor and an R2 of 0.94 and RMSE 0.14 

using Gradient Boosting Machines.  

Further, this study highlighted the effectiveness of UAV acquired data in yield 

prediction. UAV surveys were found suitable to classify the expected yield 

with an accuracy of 1 and F1-score of 1 using the Decision Tree model with 

BGI, MVARI, CANOPY, WI, RCC and TGI Vegetation indices. Moreover, 

when it comes to predicting the exact yield quantity, the accuracy was at 0.88 

with an RMSE of 0.281t/ha using blue band, PRI and Plant height as features, 

this result was found suitable as it involved only one UAV survey and the 

prediction time was the earliest (Vegetative growth stage) compared to the 0.9 

R2 and 0.238t/ha RMSE found using 2 drone surveys (Vegetative and 

Tasselling stages).  

Recommendations 

Further research could be done to assess the long-term effect of no-tillage on 

the growth and yield of maize and propose affordable equipment for planting 

in No-tillage systems 

Also, estimating the stem girth/diameter using the UAV technology could be 

useful. It is also recommended that future studies consider the cost-benefit 

analysis of utilizing UAV technology under small farm holding. 
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APPENDICES 

Appendix 1:ANOVA table for the effect of tillage on germination rate for 

the Season One 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 153.2 51.07 2.2 0.141 

Bloc 4 101.3 25.32 1.09 0.404 

Error 12 278.3 23.19     

Total 19 532.8       

 

Appendix 2: ANOVA table for the effect of tillage on germination rate for 

the Season Two 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 82.55 27.52 0.97 0.44 

Bloc 4 164.8 41.2 1.45 0.278 

Error 12 341.2 28.43     

Total 19 588.55       

Appendix 3: ANOVA table for the effect of tillage on plant height for the 

Season One 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 3463.5 1154.5 4.48 0.025 

 Bloc 4 541.2 135.3 0.53 0.719 

Error 12 3090.8 257.6     

Total 19 7095.4       

Appendix 4: Tukey HSD means grouping for plant heights of the Season 

One 

Treatment 
N Mean Grouping 

Ploughing and Harrowing 5 176.7 A 

Ploughing only 5 167.7 AB 

Harrowing only 5 161 AB 

No-tillage 5 140.933 B 
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Appendix 5: ANOVA table for the effect of tillage on plant height for the 

Season Two 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 2945 981.7 7.04 0.005 

Bloc 4 1292 322.9 2.32 0.117 

Error 12 1673 139.4     

Total 19 5910       

 

Appendix 6: Tukey HSD means grouping for plant heights of the Season 

Two 

Treatment 
N Mean Grouping 

Ploughing and Harrowing 5 193.5 A 

Ploughing only 5 186.767 A 

Harrowing only 5 180.4 AB 

No-tillage 5 160.987 B 

 

Appendix 7: ANOVA table for the effect of tillage on plant stem diameter 

for the Season One 

Source DF Adj SS Adj MS F-Value P-Value 

Treatment 3 79.88 26.628 5.06 0.017 

Bloc 4 71.73 17.933 3.41 0.044 

Error 12 63.16 5.264     

Total 19 214.78       

 

Appendix 8: Tukey HSD means grouping for plant stem diameter for the 

Season One 

Treatment N Mean Grouping 

Ploughing only 5 21.6925 A 

Ploughing and Harrowing 5 21.5388 A 

Harrowing only 5 18.6647 AB 

No-tillage 5 16.9516 B 
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Appendix 9: ANOVA table for the effect of tillage on plant stem diameter for 

the Season Two 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 84.89 28.297 18.41 0 

 Bloc 4 8.514 2.128 1.38 0.297 

Error 12 18.442 1.537     

Total 19 111.845       

 

Appendix 10: Tukey HSD means grouping for plant stem diameter of the 

Season Two 

Treatment N Mean Grouping 

Ploughing and Harrowing 5 23.483 A 

Ploughing only 5 22.25 AB 

Harrowing only 5 20.083 BC 

No-tillage 5 18.1 C 

 

Appendix 11: ANOVA table for the effects of tillage on the number of leaves 

for the Season One 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 2.071 0.6903 0.75 0.545 

Bloc 4 1.408 0.3521 0.38 0.818 

Error 12 11.103 0.9252     

Total 19 14.582       

 

Appendix 12: ANOVA table for the effect of tillage on the number of leaves 

of the Season Two 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 15.056 5.0185 14.12 0 

Bloc 4 4.714 1.1785 3.32 0.048 

Error 12 4.264 0.3553     

Total 19 24.033       
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Appendix 13: Tukey HSD means grouping for plant number of leaves of the 

Season Two 

Treatment N Mean Grouping 

Ploughing and Harrowing 5 13.9 A 

Ploughing only 5 13.467 A 

Harrowing only 5 13.167 A 

No-tillage 5 11.6 B 

Appendix 14: ANOVA table for the effect of tillage on the Leaf Area Index of 

the Season One 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 0.03299 0.011 0.16 0.919 

Bloc 4 0.20049 0.05012 0.74 0.582 

Error 12 0.81133 0.06761     

Total 19 1.04481       

 

Appendix 15: ANOVA table for the effect of tillage on the Leaf Area Index of 

the Season Two 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 0.4594 0.15312 4.37 0.027 

Bloc 4 0.7534 0.18835 5.37 0.01 

Error 12 0.4209 0.03508     

Total 19 1.6337       

 

Appendix 16: ANOVA table for the effect of tillage on number of days to 50 

percent flowering of the Season One 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 29.8 9.933 3.76 0.041 

Bloc 4 34.7 8.675 3.28 0.049 

Error 12 31.7 2.642     

Total 19 96.2       
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Appendix 17: ANOVA table for the effect of tillage on number of days to 50 

percent flowering of the Season Two 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 7.75 2.5833 0.75 0.545 

Bloc 4 3.7 0.925 0.27 0.893 

Error 12 41.5 3.4583     

Total 19 52.95       

 

Appendix 18: ANOVA table for the effect of tillage on Above ground dry 

biomass of the Season One 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 38.986 12.995 5.05 0.017 

Bloc 4 5.194 1.299 0.51 0.733 

Error 12 30.855 2.571     

Total 19 75.035       

 

Appendix 19: Tukey HSD means grouping for the Above ground dry biomass 

of the Season One 

Treatment N Mean Grouping 

Ploughing and Harrowing 5 7.209 A 

Ploughing only 5 6.027 AB 

Harrowing only 5 4.668 ABC 

No-tillage 5 3.501 B 

 

Appendix 20: ANOVA table for the effect of tillage on Above ground dry 

biomass of the Season Two 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 30.423 10.141 3.64 0.045 

Bloc 4 8.197 2.049 0.74 0.585 

Error 12 33.425 2.785     

Total 19 72.045       
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Appendix 21: Tukey HSD means grouping for the Above ground dry biomass 

of the Season Two 

Treatment N Mean Grouping 

Ploughing and Harrowing 5 10.933 A 

Ploughing only 5 9.37 AB 

Harrowing only 5 9.1 AB 

No-tillage 5 7.456 B 

 

Grain yield 

Appendix 22: ANOVA table for the effect of tillage on Grain yield of the 

Season One 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 9.827 3.2757 4.95 0.018 

Bloc 4 1.524 0.381 0.58 0.685 

Error 12 7.933 0.6611     

Total 19 19.285       

 

Appendix 23: ANOVA table for the effect of tillage on Grain yield of the 

Season Two 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 5.892 1.964 1.58 0.246 

Bloc 4 5.192 1.298 1.04 0.426 

Error 12 14.945 1.245     

Total 19 26.028       

 

Appendix 24: ANOVA table for the effect of tillage on the weight of 100 

grains for the Season One 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 95.79 31.93 95.76 0.00 

Bloc 4 1.121 0.2804 0.84 0.525 

Error 12 4.001 0.3334     
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Total 19 100.913       

 

Appendix 25: Tukey HSD means grouping for the weight of 100 maize grains 

for the Season One 

Treatment N Mean Grouping 

Ploughing and Harrowing 5 31.204 A 

Harrowing only 5 27.324 B 

Ploughing only 5 26.672 B 

No-tillage 5 25.312 C 

 

Appendix 26: ANOVA table for the effect of tillage on the weight of 100 

grains of the Season Two 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 112.26 37.42 19.97 0 

Bloc 4 16.52 4.131 2.2 0.13 

Error 12 22.48 1.874     

Total 19 151.27       

 

Appendix 27: Tukey HSD means grouping for the weight of 100 maize grains 

of the Season Two 

Treatment N Mean Grouping 

Ploughing and Harrowing 5 32.72 A 

Ploughing only 5 27.842 B 

No-tillage 5 27.274 B 

Harrowing only 5 26.822 B 

 

Appendix 28: ANOVA table for the effect of tillage on the Number of ears per 

plant for the Season One 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 0.2544 0.08479 2.05 0.161 

Bloc 4 0.3635 0.09088 2.2 0.131 

Error 12 0.4966 0.04138     

Total 19 1.1145       
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Appendix 29: ANOVA table for the effect of tillage on the Number of ears per 

plant for the Season Two 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 0.1606 0.05354 1.47 0.271 

Bloc 4 0.2843 0.07107 1.96 0.165 

Error 12 0.4356 0.0363     

Total 19 0.8805       

 

Appendix 30: ANOVA table for the effect of tillage on ear length of the 

Season One 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 44.95 14.982 3.23 0.061 

Bloc 4 52.75 13.187 2.84 0.072 

Error 12 55.7 4.641     

Total 19 153.39       

 

Appendix 31: ANOVA table for the effect of tillage on ear length of the 

Season Two 

Source 
DF Adj SS Adj MS F-Value P-Value 

Treatment 3 3.813 1.271 0.39 0.764 

Bloc 4 4.065 1.016 0.31 0.866 

Error 12 39.419 3.285     

Total 19 47.297       
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