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ABSTRACT 

This study investigated the optical spectroscopic properties of honey 

produced in Ghana's agro-ecological zones using Raman, Laser-Induced 

Fluorescence (LIF), and UV-Vis Transmission spectroscopic techniques. 

Various Multivariate Data Analysis (MDA) methods were applied to the 

spectroscopic data. UV-Vis Transmission and LIF spectroscopy identified 

phytochemical compounds, while Raman spectroscopy identified the sugar 

composition in the honey. The optical measurements revealed that honey types 

originating from the different agro-ecological zones did not necessarily possess 

the same spectral properties. The multivariate analysis revealed distinct 

groupings among the honey samples, where each group shared common 

constituents and exhibited unique qualities. These groupings were not 

determined by the agro-ecological zones, but rather by the spectral similarity 

relating to the specific properties and composition of the honey samples. 

Further, correlations were established between the LIF spectral parameters and 

physicochemical properties, including colour and 5-hydroxymethylfurfural 

(HMF) content, allowing for the prediction of honey freshness with high 

accuracy. The research also found specific excitation sources and sample 

pretreatment that effectively controlled fluorescence interference in the Raman 

spectral measurement of honey. Overall, the various analysis employed in this 

study has contributed to a better understanding of the optical spectroscopic 

properties of honey from the agro-ecological zones and their help for 

determining its phytochemical constituents and sugar composition. The study 

also offers potential applications for authentication, freshness prediction, and 

quality control that can be implemented for the honey industry in Ghana. 
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CHAPTER ONE 

INTRODUCTION 

There is significant interest in the use of Optical Spectroscopy (OS) 

techniques for biological sample analysis due to the non-destructive nature, high 

analytical efficiency, relatively low cost, and potential to be translated into 

portable devices. A biological sample like honey is a popular natural food 

produced by bees, which varies in composition based on factors such as 

botanical source, geographic location, harvesting methods, etc. These factors 

sometimes affect the type and quality of honey.  In Ghana, a region in tropical 

Africa with rich biodiversity, honey holds a special place in dietary and 

medicinal practices. The diverse flora of the region imparts distinct 

characteristics to the honey produced, making it an interesting subject for study. 

Even though, previous research has explored various analytical techniques to 

study honey, the potential of OS, which is based on light-matter interaction, 

remains relatively unexploited in the context analysing honey from Ghana. This 

study aims to use OS to analyse honey from various Agro-Ecological Zones 

(AEZ) in Ghana to reveal the uniqueness and qualities of these honey and 

potentially enhance the value of this essential natural product in the region. 

Background to the Study 

There is growing interest in applying light and light-based technologies to 

solve everyday problems. These technologies are present in large-scale devices 

such as satellites and simple ones such as phones and watches. Nowadays, 

almost every field of study employs light-based technology. Hence, whether it 

is archeological investigation, space exploration, environmental monitoring, 
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clinical or medical diagnosis, cosmetic therapy or agricultural innovations, 

light-based technologies remain paramount (Chen & Segev, 2021; Forbes, 

2015). 

Applying light-based technology to study samples requires employing one 

or multiple optical techniques. These techniques, including reflection, 

refraction, scattering, polarisation, and transmission, can determine a sample's 

constituents, characteristics, and other properties to help draw qualitative and 

quantitative conclusions about the sample or its environment. The qualitative or 

quantitative study of these phenomena due to light energy and its interaction 

with matter is called spectroscopy (Demtröder, 1982; Svanberg, 2004). 

Spectroscopy, therefore, enables the charting of light energy's interaction with 

matter. Light energy herein refers to the various forms of Electromagnetic (EM) 

radiation (i.e., Gamma rays to Radio waves). At the same time, matter generally 

includes the subjects of investigation, such as solids, liquid/gels, gas or plasma 

and, in this case, honey. Light-matter interaction using radiations chosen within 

the optical window of the electromagnetic spectrum, specifically Ultraviolet, 

Visible and Near-Infrared (UV-Vis-NIR), is termed optical spectroscopy 

(Balas, 2009; Rossman, 2014; Svanberg, 2004). 

Optical spectroscopy is becoming preferable for several reasons. Firstly, 

light energies in the optical domain are non-ionising compared to their 

counterparts, such as gamma-rays and x-rays (Balas, 2009). These 

characteristics make OS techniques a relatively safer option. Secondly, the setup 

requirement for optical spectroscopy is rapidly evolving to miniature 

instrumentation deployed as handheld devices (Petersen et al., 2013). Most of 

these instruments nowadays are relatively low cost, with commonly available 
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components, some of which are also salvageable from other appliances and 

devices or even 3D printed (Lu et al., 2020; Manefjord et al., 2022; Owusu et 

al., 2016; Sigernes et al., 2018). Thirdly, the OS techniques can rapidly provide 

data as single data points, an array of data points forming a line spectrum or a 

stack of line arrays forming matrices as seen in images. These various data 

forms, even as large datasets, can be used in Machine Learning, Deep Learning 

and Artificial Intelligence (AI) applications (Bishop & Nasrabadi, 2006; Zhou 

et al., 2019). Fourthly, light-based methods can provide multi-component 

information from samples just by a single measurement compared to most 

chemical-based processes, which determine one component at a time 

(Demtröder, 1982; Svanberg, 2004). In this vein, light-based techniques that 

apply optical spectroscopy are fast becoming a method of choice also in the 

agro-food industry, honey in particular (Naila et al., 2018; Noviyanto et al., 

2015). 

Honey is a well-known valuable food product for health, nutrition, 

economic and religious purposes (Bogdanov, 2015). Honey's nutritional 

constituents comprise sugars (70-95%), water (up to 25% or less) and hundreds 

of other vitamins, phytochemicals and substances (Codex Alimentarius, 2001; 

Crittenden, 2011). Honey is used in many situations as a natural sweetener in 

foods, providing vital nutrients to the body (Corvucci et al., 2015; Oddo et al., 

1995; Ulloa et al., 2013). It also has other benefits in pharmaceutics, wound 

healing therapeutics and cosmetic products (Alvarez-Suarez et al., 2010; 

Bogdanov et al., 2008; Corvucci et al., 2015; Mahmoodi-Khaledi et al., 2017; 

Oddo et al., 1995; Ruoff et al., 2005; Tahir et al., 2019).  
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The efficacy of honey fits for specific purposes depends on the 

geographic, botanical and entomological origin of the honey (Corvucci et al., 

2015; Mahmoodi-Khaledi et al., 2017; Oroian & Ropciuc, 2018; Pierna et al., 

2011; Ulloa et al., 2013). Other factors, such as age, storage conditions and 

harvesting season, also impact the quality of honey and its constituents 

(Akpabli-Tsigbe, 2015; Bogdanov et al., 1999). Therefore, every honey may 

appear to have unique properties at any time, which can vary from place to 

place. Consequently, employing low-cost but rapid techniques to help study 

honey from any jurisdiction is indispensable. A thorough study of honey can 

help their valorisation and ensure continuous monitoring to maintain high-

quality standards in the industry. Additionally, it could mitigate some of the 

sophisticated fraudulent schemes culpable of tarnishing the reputation and 

integrity of the local honey industry. 

Light-based techniques, especially optical spectroscopy, have helped 

evaluate honey constituents, established quality features and detected fraudulent 

schemes in the honey industry. Recent reports describe some OS techniques 

currently applied for honey analysis (Naila et al., 2018; Pita-Calvo et al., 2017). 

Some methods include Fourier Transform Infra-Red (FTIR), Raman, 

Fluorescence, Diffuse Reflectance, Polarisation, and Absorbance spectroscopy. 

Admittedly, each spectroscopic technique has the kind of information they 

provide about a sample and, thus, could have specific applications in honey 

analysis. 

Among the various spectroscopic techniques, FTIR is the most 

extensively used technique for studying molecular constituents of honey 

(Cozzolino et al., 2011; Tahir et al., 2017; Vlaeva et al., 2017). Similar to FTIR, 
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Raman spectroscopy is another standard OS technique used for studies on 

honey. Raman spectroscopy gives information about honey's sugar 

composition, which is complementary to FTIR. Fluorescence spectroscopy is 

another commonly used OST to provide information about the numerous 

intrinsic fluorophores in honey (Lakowicz, 2006). Absorbance and 

Transmission spectroscopy gives similar information as fluorescence does, 

albeit over a broader range of the EM spectrum, by providing spectral signatures 

or fingerprints unique for every sample representing honey's general 

biochemical composition. 

Recently, elemental analysis using Laser-Induced Breakdown 

Spectroscopy (LIBS) is also becoming common (Bilge et al., 2016; Peng et al., 

2020; Stefas et al., 2020, 2021, 2022). All these OSTs could play an integral 

role in analysing honey produced in Ghana to help improve the current state of 

the honey industry. 

Statement of the Problem  

Ghana ranks 125 in the world in the export of honey, generating an 

income of about $1000 while ranking 118 for import at the expense of about 

$113,000 more than ten times the amount exported (Workman, 2020). Given 

Ghana’s rich floral diversity, immense benefits could be raked in by the honey 

industry if locally-produced honey is well-studied for its unique properties and 

functions. So far, studies on honey from Ghana have explored botanical and 

geographical identification using Melissopalynology (Besah-Adanu et al., 

2019; Letsyo & Ameka, 2019). Some studies have also used High-Performance 

Liquid Chromatography (HPLC) and other chemical analysis methods to 

investigate molecular constituents of honey for quality assessment (Bentum et 
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al., 2022; Letsyo et al., 2017). Other studies have also reported measurement of 

various physicochemical parameters such as diastase, pH, acidity, and colour 

(Adadi & Obeng, 2017; Adjaloo et al., 2017; Akpabli-Tsigbe, 2015; Ankrah, 

1998; Bentum et al., 2022; Combey et al., 2021; Klutse et al., 2021; Letsyo et 

al., 2017; Letsyo & Ameka, 2019; Yeboah-Gyan & Marfo, 2015). However, the 

methods employed in these studies are laborious, time-consuming, relatively 

expensive, destructive to the sample and sometimes hazardous to the researcher. 

Optical spectroscopic techniques have been shown to overcome many 

of the shortfalls associated with conventional methods (Naila et al., 2018). For 

instance, infra-red and Raman spectroscopy have been used to obtain 

information about the reducing sugars in honey (Batsoulis et al., 2005; Šugar & 

Bouř, 2016). Likewise, fluorescence, absorption, reflectance and transmission 

spectroscopy have provided nutritional information of honey (Almaleeh et al., 

2017; Frausto-Reyes et al., 2017; Parri et al., 2020; Ruoff et al., 2005). 

Physicochemical parameters of honey for quality analysis, such as pH, HMF, 

etc., can be related to the spectral bands obtained from these optical techniques 

(Anjos et al., 2018; Escuredo et al., 2021; Mashhadi et al., 2020; Mehryar et al., 

2013; Tahir et al., 2017). 

However, not much has been studied on honey's specific qualities from 

Ghana's AEZ employing OS techniques. Considering the simplicity, safety, 

rapidity, and cost-effectiveness, among other benefits, using optical 

spectroscopy to study honey produced in Ghana is needed to help complement 

existing methods to improve its status on the local and global market. 
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Purpose of the Study 

This study aims to quantitatively and qualitatively explore the OS 

properties of honey produced in Ghana's AEZ using three OS techniques to 

better understand the properties of honey for value addition. The optical 

spectroscopy techniques will help provide knowledge about some underlying 

biochemical and physicochemical properties of honey. This study is being 

conducted to obtain baseline OS data of honey produced in Ghana, which will 

help regulatory bodies and guide future studies. It will offer a way to compare 

honey from Ghana to those from other parts of the world. 

Research Objectives 

The aim of the study will be achieved with the following research 

objectives: 

1. To measure the optical spectra of raw honey from agro-ecological zones 

using Laser Induced Fluorescence (LIF) spectroscopy, Ultra Violet – 

Visible (UV-Vis) Transmission Spectroscopy and Raman spectroscopy. 

2. To use Multivariate Data Analysis techniques; Principal Component 

Analysis, Cluster analysis, to analyse the measured optical spectra of the 

honey samples. 

3. To measure some physicochemical properties and conditions of the 

honey samples and compare with their spectral properties as an alternate 

technique for quality analysis. The conditions include ageing, water 

dilution, heating, and sugar caramel adulteration. The physicochemical 

parameters include colour, moisture Brix, and 5-Hydroxymethylfufural 

(HMF). 
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4. To measure the effectiveness of the excitation source, sample 

preparation method, substrate type and sample container in Raman 

spectral measurement of honey samples. 

Significance of the Study 

Studies on the specific qualities of honey from Ghana have not 

employed optical spectroscopic techniques. This research would show how the 

various optical spectroscopic techniques could help project the properties of 

local honey from Ghana for their valorisation. It would offer rapid, non-

destructive and cost-effective alternatives for proper labelling and promotion of 

appropriate usage of honey. Regulatory bodies and research institutes such as 

Food and Drugs Authority (FDA), the Centre for Scientific and Industrial 

Research (CSIR) and the Ghana Standards Authority (GSA) would find the 

spectroscopic techniques helpful in monitoring honey quality and curbing 

fraudulent activities on honey in the markets. Additionally, for the first time, the 

study highlights the optical properties of honey from AEZ of Ghana, potentially 

providing baseline data on local honey for future studies. 

Delimitation 

The study focused mainly on three spectroscopic techniques; UV-Vis 

Transmission spectroscopy, Laser-Induced Fluorescence spectroscopy and 

Raman spectroscopy out of the numerous spectroscopic techniques. Also, of the 

several applications of each of the optical spectroscopic techniques to honey, 

this study focused on using these techniques to determine the molecular 

constituents of honey produced in Ghana and relating them to selected 
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physicochemical parameters (Brix, HMF, Moisture, Colour) and conditions 

(Ageing, Water dilution, heating, and Sugar Caramel Adulteration). 

Limitations 

The study was limited to available optical spectroscopic instruments. 

Also, the study was capable of performing only a few physicochemical 

measurements due to the low volume of honey obtained from the various 

apiaries.  

Organisation of Study 

This study is structured into five chapters. Chapter one gives an 

overview of the use of light-based technologies in the study of honey and the 

need to employ the same for the study of honey produced in Ghana with the 

stated objectives. Chapter two is the review of related literature on optical 

spectroscopy techniques and the sampled honey. The basis of the various 

spectroscopic phenomena and methods employed for analysis is also reviewed 

in chapter two. Chapter three details the experimental methods employed in 

studying the honey sampled and the data analysis techniques used. In chapter 

four, the results obtained from all the measurements are reported and discussed 

by linking them to the literature. Finally, chapter five summarises critical 

findings, the conclusions and recommendations for future work. 
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction 

This chapter describes in detail the major themes of the study, which are 

honey, optical spectroscopy and multivariate data analysis. Previous studies on 

using various optical spectroscopy techniques in the study of honey are 

discussed to highlight the gaps that this study attempts to resolve. 

Honey 

Honey is a very well-known high value sweet natural food produced by 

honey bees. The internationally accepted definition for honey is provided by 

Codex Alimentations (2001), which states that "honey is a natural sweet 

substance produced by honey bees (Apis mellifera and Melliponini), from the 

nectars of plant flowers and honeydew” (Codex Alimentarius, 2001). Generally, 

honey bees are known to produce honey from the nectar and secretions of plants 

(blossom or floral honey) or from excretions of some insects (honeydew honey). 

These nectars and secretions are transformed in the guts of the bees and then 

stored in honeycombs in the hives to ripen for their consumption at a later time. 

The floral honey are very common (El Sohaimy et al., 2015). Blended 

or compound Honey is obtained from a mixture of blossom/floral and 

honeydew. Floral Honey is further classified into monofloral (or unifloral) 

honey and multifloral (or polyfloral) honey. Monofloral or unifloral honey has 

pollen from majorly one type of plant vegetation (usually > 45 %). Some 

examples are Sunflower, Manuka, Astragalus, etc. Multifloral or polyfloral 

honey has mixture of different proportions of pollen from several different 
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plants. Unifloral honey are rare in tropical areas because of the large number of 

floral sources bees are capable of visiting for a small geographical area during 

the flowering period of plants. Therefore, precisely identifying the 

discrimination points between multifloral and unifloral honey can take time and 

effort. However, microscopy analysis can be used to determine the pollen 

content of honey and the proportions of their blends to assist with indicating 

their botanical origin (Agashe & Caulton, 2019). Also, specific 

physicochemical properties and molecular analysis can be used to confirm the 

results of the microscopy analysis (Letsyo & Ameka, 2019; Ruoff et al., 2005). 

Composition and Importance of Bee Honey 

Bee honey compositions depend primarily on its floral/botanical origin 

(Soria et al., 2004). These honey constituents are predominantly informed by 

the plant’s sources from which bees forage. The major component of honey, 

which is sugar (70 to 85%) and water (15 to 25%), is obtained from the nectars 

fed on by the bees (Alvarez-Suarez et al., 2010). Honey is, therefore, made of 

mainly carbohydrates. It contains more than 22 different types of both complex 

and simple sugars such as sucrose, fructose, and glucose are more abundant. 

Moisture (or water) is the second-highest content in honey. Moisture regulates 

spoilage and protects against granulation. Honey can be preserved longer when 

moisture content is low thus limiting microbiological activity (Bogdanov, 

2009).  

In addition to water and sugar, honey contains several other food 

substances in minor quantities (Bogdanov, 2015; Tahir et al., 2019). These food 

substances include protein, organic acids, amino acids, vitamins, minerals, ash, 
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enzymes, and phenolic compounds (Bogdanov et al., 2008; Parri et al., 2020; 

Pyrzynska & Biesaga, 2009). These food substances are predominant in the 

nectars of flowering plants. Hence, because the process bees employ in making 

honey is natural, the integrity of these food substances is maintained and made 

available in an almost unaltered state to function to the fullest when eaten. These 

plant-based food substances are vital roles for good health. Therefore, honey 

can exhibit many properties; antitumor, antioxidant, and anti-inflammatory. 

Other properties include antimicrobial, parasiticidal, anticoagulant, antidiabetic, 

and lipid-lowering properties (Carter et al., 2016; Hegazi et al., 2021; Leyva-

Jimenez et al., 2019; Mahmoodi-Khaledi et al., 2017). The proportions of sugar, 

water, and other food substances are affected by the floral type and geographical 

location (El Sohaimy et al., 2015). The presence and levels of various phenolic 

compounds serve as indicators of the type and quality of honey, as phenolic 

acids and flavonoids are natural chemical markers associated with specific floral 

origins (Pyrzynska & Biesaga, 2009). 

Assessment of Honey 

Honey is assessed to determine its authenticity, quality, and functional 

properties. The entomological, botanical, and geographical origins are usually 

interesting for honey authentication. Melissopalynology is commonly for 

determining the geographical and botanical origin of Honey (Corvucci et al., 

2015; Oddo et al., 1995; Ponnuchamy et al., 2014). For quality assessment, 

physicochemical parameters are judged against standards set by the 

international honey commission and other regions and governmental regulatory 

bodies (Bogdanov, 2009). Physicochemical parameters usually measured in 

honey are moisture, electrical conductivity, ash content, free acidity, 
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hydroxymethyl furfural, diastase activity, apparent reducing sugars, sugars 

(glucose, sucrose, fructose, etc.), insoluble matter, invertase activity, proline 

and specific rotation (Mahmoodi-Khaledi et al., 2017; Oddo et al., 1995; El 

Sohaimy et al., 2015). For functional properties, honey is tested for its biological 

activities, such as antibacterial, antioxidant, antitumor, anti-inflammatory, and 

antiviral capabilities (Bogdanov, 2015; Leyva-Jimenez et al., 2019).  

The molecular and elemental composition of honey also can be studied 

to help with its authentication, quality and functional assessment. Different 

types of analytical techniques such as isotopic, Atomic Absorption 

Spectroscopy (AAS), Neutron Activation Analysis (NAA), Inductively 

Coupled Plasma Atomic/Optical Emission Mass Spectroscopy (ICP-AES, ICP-

OES, ICPMS), etc., are some of the conventional methods used for the 

elemental analysis of honey. Whiles chromatographic and several other 

chemical-based methods are utilised for the molecular assessment of Honey 

(Aghamirlou et al., 2015; Arida et al., 2012). High-Performance Liquid 

Chromatography (HPLC) and Gas Chromatography/Mass Spectrometry 

(GC/MS) are the most widely used methods to assess the molecular composition 

of honey, which can also be used to assist authentication and quality analysis 

(Arida et al., 2012). The HPLC and GC/MS techniques are exact 

methodologies; they are the gold standard in determining honey’s molecular 

composition. Unfortunately, HPLC and GC/MS techniques are generally time-

consuming, complex, and labour-intensive or require specialised personnel to 

interpret the results. In addition, the HPLC, as mentioned earlier, and GC/MS 

analytical techniques require a lot of sample pre-treatment. However, demand 

for honey has surged globally, making honey a big business in the agro-food 
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industry (García, 2018; Wu et al., 2015). This situation leads to challenges for 

the honey industry to deliver good quality honey products. Hence, scientists and 

regulatory bodies continue their quest for novel, simplified, highly responsive, 

and cost-effective techniques to analyse the molecular composition of honey. 

According to Naila et al. (2018), there is a heightened interest in Light-based 

methods for the molecular analysis of Honey (Naila et al., 2018). Light-based 

methods are very safe and common. Nonetheless, most developing countries 

have yet to use optical spectroscopy for its practical applications (Figure 1). 

 

Figure 1: Global trends in the biophotonics market growth rate as an example 

for light-based technologies (Mordor Intelligence, 2022) 

 

Honey Production and Assessment in Ghana 

Honey is mainly obtained in Ghana in two ways: Apiary honey and 

Forest honey (Akpabli-Tsigbe, 2015; Klutse et al., 2021). The bees freely forage 

on multiple plant sources to make honey in both methods. At specific times in 

the year, honey is thought to be ripe/ mature before harvesting, usually during 

the peak of the dry season, just before the arrival of the dry harmattan wind. 

Typically, in the latter part of October and may continue until June before the 

onset of the wet season (TECA, 2022). However, some areas with plants such 
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as coconut that flower all year round can have honey throughout the year. The 

significant types of bee species from which honey is obtained in Ghana sting at 

the slightest provocation; hence, harvesting is usually conducted at night. At 

night time, the bees are known to be less active. Also, the bee smoker is used 

intensively during harvesting to dispel the bees from the hive, enable easy 

access to their combs, and daze them to forestall any attack. The post-harvest 

process involves honey extraction from honeycombs, straining the honeycombs 

to remove debris and packaging. The main extraction methods are hand-

squeezing, solar, and cold extraction methods. From one honey producer to 

another, the variations in the foraging behaviour, harvesting season, harvesting 

procedure, and post-harvest activities such as extraction, straining, and 

packaging may complicate honey authentication and influence the variation in 

the molecular composition of the honey, thus requiring regular assessment. 

However, the evaluation of Honey from Ghana still relies on conventional 

methods. (Adadi & Obeng, 2017; Akpabli-Tsigbe, 2015; Ankrah, 1998; Bentum 

et al., 2022; Klutse et al., 2021; Letsyo et al., 2017; Letsyo & Ameka, 2019; 

Yeboah-Gyan & Marfo, 2015).  While all of these studies have been towards 

assessing honey for its molecular composition authenticity, quality, or quality 

characteristics, studies have yet to focus on the optical spectroscopy analysis of 

Honey from Ghana. However, the advantages of optical spectroscopy 

techniques show they could play an integral role in studying honey, especially 

for developing countries in the tropics, like Ghana, whose ecological makeup is 

very viable for honey production. 
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Optical Spectroscopy  

Optical spectroscopy deals with radiations in the optical region of the 

EM spectrum interaction with matter. The EM spectrum comprises EM 

radiations of different energies according to Equation (1).  

𝐸𝑛𝑒𝑟𝑔𝑦, 𝐸 = ℎ𝑓 = ℎ𝑐
𝜆⁄        (1) 

Where h is Planck’s constant (6.63 x 10-34 Js), f is frequency, λ is the 

wavelength, and c is the speed of light (3.0 x 106 ms-1). The EM radiations are 

arranged in order of the magnitude of their energy to form the EM spectrum 

(Figure 2). The optical region of the EM spectrum occupies energy ranges 

between 100 nm to 0.33 mm (Rossman, 2014).  

 

Figure 2: EM (EM) spectrum of different types of radiations and their respective 

energy (Frequency, Wavelength) ranges (Vitha, 2018) 

 
The optical radiations include Ultraviolet (UV), Visible, and Infra-Red 

(IR) radiations. Radiation within the UV region is subdivided into UVA, UVB, 

and UVC, in the ranges 315 – 400 nm, 280 -315 nm, and 100 -280 nm, 

respectively. The visible range also is between 400 – 700 nm (Violet, Indigo, 

Blue, Green, Yellow, Orange, and Red). Infra-Red (IR) Radiations range from 

2.5 – 15.38 μm (4000 to 650 cm-1). It can be divided into Near Infra-Red (NIR: 
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0.8-2.5 μm), Mid Infra-Red (MIR: 125000 to 4000 cm-1), and Far Infra-Red 

(FIR: 2 cm to 1 mm). The FIR region, which falls between the Mid IR and 

microwaves, has radiation referred to as millimetre wave (MMW: 2 cm to 1 

mm) radiation, and from 1 to 0.33 mm is called submillimeter (sub-MMW or 

sub-mm: 1 to 0.33 mm) radiation. Radiation with shorter wavelengths, therefore 

higher energy, is called terahertz (THz) radiation because the frequency of these 

waves is on the order of 1012 Hz (extending from 30 THz down to about 200 

GHz) (Butcher et al., 2016; Svanberg, 2004; Vitha, 2018) 

Optical radiation interaction with matter cause changes in electron 

distribution or increases the amplitude of bond vibrations in a sample (Figure 

3). The changes in the electron distribution and bond vibrations help obtain 

molecular information about a sample (Svanberg, 2004). 

 

Figure 3: Types of EM radiations and corresponding effects on atoms and 

molecules (Banwell & McCash, 2017) 
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Optical Radiation Interaction with Matter 

When optical radiation interacts with a sample, the radiation is either 

absorbed, reflected, transmitted, or scattered depending on the specific 

attributes of the sample type. (Figure 4). Therefore, optical spectroscopy could 

be used for qualitative (what is in the sample) and quantitative (how much of it 

is present) assessments of samples.  

 

Figure 4: Various phenomena occurring during the interaction of optical 

radiation with a sample (Narang & Pubby, 2017) 

 

The general conservation of energy requires that the energy of the 

incident radiation (I) will be equal to the sum of part of the radiation that is 

reflected (R), Transmitted (T), and absorbed (A), as shown in Equation (2). 

𝐼 = 𝑅 + 𝑇 + 𝐴     (2) 

Measuring the optical radiation interactions on a sample determines the various 

optical spectroscopic techniques, such as absorbance, reflectance, 

Transmission, etc. The absorption further leads to emission and scattering 

phenomena explained by the fact that atoms and molecules exist in different 
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states with different quantised energy in any sample. However, as demonstrated 

by Boltzmann distribution, most molecules and atoms exist in the lowest 

electronic and vibrational states. The energy of the molecules is a combination 

of the electronic, rotation, and vibration energy (Equation 3) (Vitha, 2018). 

𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 = 𝐸𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 + 𝐸𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛𝑖𝑐   (3) 

Therefore, when optical radiation with energy (E) is incident on a 

sample, the energy is absorbed provided it matches with the energy difference 

(∆𝐸) between two quantum states (E1 and E2) of the molecules of the sample. 

The absorbed energy (𝐸𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒) leads to vibrational, rotational or electronic 

transition (Figure 5).  

 

Figure 5: Jablonski diagram describing the energy transition process leading to 

scattering and emission based on different types of optical radiations 

involved (Efremenko & Kokhanovsky, 2021). 

 
Absorption occurs as a transition from a lower energy level to a higher 

energy level of an atom or molecule of the sample. Measuring the concentration 

of an absorbing species in a sample is accomplished by applying the Beer-

Lambert Law (Equation 4): 
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𝐴 = 𝜀𝑐𝑙      (4) 

Where l is path length, ε is the molar extinction coefficient, and c is 

concentration of the absorbing species. 

Absorbed radiations in the Infrared cause vibrational and rotational 

transitions, whereas radiations in the UV-Visible domain cause electronic 

transitions. An absorption spectrum that depends on the energy level structure 

of an atom or molecule can be obtained by charting the absorption of the 

respective optical radiation which is wavelength dependent. The spectrum and 

absorption spectra are useful for identifying compounds.  

Typically, radiations in the UV and visible regions have the same effect 

on matter, causing electron promotion to higher energy orbitals. A sample that 

absorbs visible or UV radiation obtains an energy that temporally destabilises 

the atoms and molecules, causing a redistribution of the electrons from the 

lowest to the higher energy states. In the higher energy states, electrons are 

distributed in orbitals with the valence electrons, populated by π-electrons, 

bonding (σ) electrons, and lone pair electrons (n-orbitals). UV-Visible radiation, 

that, causes a redistribution among electrons in the valence orbitals but the 

molecule, however, remains intact except for higher energies in the UV (UV B 

and UVC) which can cause the breaking of bonds (Bakar et al., 2016; Borowicz 

et al., 2012; Sackey et al., 2015; Chen et al., 2013).  

Also, IR radiation absorbed by a sample increases the amplitude of bond 

vibrations. The bonds in molecules are in constant vibration and stretching with 

characteristic frequencies. EM radiations in the IR range of the spectrum 

coincide with these characteristic frequencies of the bonds cause further 
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stretching and bending. The fundamental frequencies of the molecules or their 

overtones can be determined to provide chemical information resulting from the 

overlap of fundamental frequencies present in the Near IR (Stuart, 2004; Vitha, 

2018). 

The shift from a higher energy level to a lower one can result in emission 

when energy is transferred to the radiation field, or it can undergo non-radiative 

decay without emitting radiation (Figure 6). The non-radiative processes 

include heating and other internal conversion mechanisms. In the case of 

molecules, the transition is referred to as fluorescence when it occurs between 

states of the same spin, and phosphorescence when the transition happens 

between states of different spins. At low concentrations, the emission intensity 

of a substance displaying fluorescence or phosphorescence is directly 

proportional to the concentration of the analyte, which aids in quantifying the 

emitting species. 

 

Figure 6: Energy transition process for Fluorescence and Raman scattering 

phenomenon (Masilamani et al., 2017) 
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Redirection of light due to its interaction with matter is called scattering. 

It may or may not occur with the transfer of energy, i.e., the scattered radiation 

has a slightly different or the same wavelength. The phenomenon of light being 

dispersed at the identical wavelength as the incoming light is known as Rayleigh 

scattering. Conversely, when light is scattered due to phonon vibrations, it is 

referred to as Brillouin scattering, which typically exhibits a spectral shift of 0.1 

to 1 cm-1 from the incident light. The light scattered due to molecules' 

vibrations or optical phonons in solids is called Raman scattering, typically 

shifted by as much as 4000 cm-1 from the incident light. The Perrin Jablonski 

diagram also allows discussion timescales associated with the different 

transition processes (Table 1). 

Table 1: Timescale for various energy transitions in the optical domain 

Transition  Timescale (s) 

Absorption Femtoseconds (10-15) 

Raman Scattering  Nanoseconds (10-9) 

Fluorescence Sub-nanoseconds to sub-microseconds (10-10 to 10-7) 

Phosphorescence Microseconds to seconds (10-6 to 100) 

Source: (Vitha, 2018) 

There are many applications of optical spectroscopy for molecular 

analysis because it is a safe and non-destructive method. Also, optical 

spectroscopy measurements require relatively inexpensive sources for their 

generation, cheaper detectors, and straightforward mathematical methods for 

analysis (Svanberg, 2004). 
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Optical Spectroscopy Analysis of Honey 

The optical spectrum-based food analysis approach provides non-

invasive, non-destructive, fast, and fully automatic methods with minimum or 

no sample preparation. This approach helps to overcome the drawbacks of 

conventional chemical processes, which are time-consuming, laborious, and 

require complex sample preparations.  

The advantages of the optical spectroscopy techniques (visible, near and 

middle infrared, fluorescent) concerning other methods are the non-invasive 

approach and relatively easy and quick data acquisition. Optical spectroscopy 

analysis has been used in many studies for geographical and botanical 

discrimination, to identify adulteration, and correlation with physicochemical 

parameters of honey such as moisture, pH, diastase, acidity, etc. (Escuredo et 

al., 2021; Leme et al., 2018; Tahir et al., 2017). Studies on honey with light have 

been recent, mainly in the last two decades. According to Cozzolino et al. 

(2011), the principal optical spectroscopy methods used for honey analysis are 

summarised in Figure 7 (Cozzolino et al., 2011). In Figure 7, Infrared 

spectroscopy methods (FT/ NIR, MIR, NIR) are the most dominant, followed 

by Raman, Fluorescence, and UV-VIS-NIR spectroscopy. This study focuses 

on UV-Vis-NIR in transmission mode, fluorescence, and Raman spectroscopy 

for assessing honey.   
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Figure 7: The major optical spectroscopy methods used for honey analysis 

according to Cozzolino et al. (2011) 

 

Optical Transmission Spectroscopy 

Optical Transmission Spectroscopy (OTS) or UV-Visible spectroscopy 

in transmission mode is one of the simplest optical spectroscopic methods 

currently being used in various studies on Honey (Bergamo et al., 2020; 

Frausto-Reyes et al., 2017; Huang et al., 2019; Li & Yang, 2012; Tsankova & 

Lekova, 2015 ; Vlaeva et al., 2017; Zhao et al., 2011 ). In Transmission 

spectroscopy, the transmittance (T) is expressed as the ratio of transmitted light 

intensity (𝐼𝑡) to the incident light 𝐼𝑜 (Equation 5). Transmission and absorption 

(A) spectroscopy give complementary information and can be used 

interchangeably (Equation 6):  

𝑇 = (
𝐼𝑡

𝐼𝑜
⁄ )      (5) 

𝐴 = 𝐿𝑜𝑔10(1
𝑇⁄ )     (6) 
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The OTS spectra provide signatures/fingerprints unique for every honey 

sample, revealing the general biochemical composition within the absorption 

range on molecules in the optical region (Table 2). 

Table 2: Molecular constituents of honey and their absorption range in the 

optical region of the EM spectrum 

Compound  Absorption (nm) 

Phenolic Compounds (Benzoic Acid) 240 – 265 

Phenolic Compounds (Gallic acid, Tryptophan, 4-

hydroxybenzoic, caffeic, vanillic, ferulic/ chlorogenic acid, 

syringic acid, p-coumaric acid) 280 – 320 

Aromatic amino acids 260 – 285 

Flavonoids Compounds (Chlorogenic acid, O-Coumaric 

acid, Quercetin) 310 – 360 

Folic Acid (Vitamins B9), Vitamin B6 330 -340 

Maillard reaction products (HMF and Furosine) 360 – 435 

Riboflavin (Vitamin B2) 400 – 510 

Carotenoids 400 – 500 

Chlorophyll  600 – 700 

Source: (Mashhadi et al., 2022; Parri et al., 2020) 

OTS method is non-destructive, relatively cheap, safe, reproducible, 

rapid, and requires little or no sample preparation. Some studies on honey have 

employed the OTS technique for geographical and botanical origin 

characterisation, cheap honey sensor development, rapid adulteration 

quantification and determination of diastase activity (Almaleeh et al., 2017; 

Bergamo et al., 2020; Ferreiro-González et al., 2018; Frausto-Reyes et al., 2017; 

Huang et al., 2019; Li & Yang, 2012; Tsankova & Lekova, 2015; Ulloa et al., 

2013; Zhao et al., 2011). 
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Fluorescence Spectroscopy 

Another commonly used optical spectroscopic method for studying 

honey is the Fluorescence Spectroscopy (FS) technique. FS technique has 

widely been used to assess botanical and geographical origin and also for the 

discrimination between genuine and adulterated Honey (Karoui et al., 2007; 

Lenhardt et al., 2014; Ruoff et al., 2005). The principal advantages of 

fluorescence spectroscopy are its rapidity and sensitivity. It is 100–1000 times 

more sensitive than other spectrophotometric techniques. 

Fluorescence occurs when a molecule in an excited state returns to a 

lower-energy electronic state by emitting a photon. The fraction of molecules 

in the excited state that returns to the ground state by fluorescence is known as 

the fluorescent quantum yield, Φf. The intensity of fluorescence emission, 𝐹𝐼, is 

proportional to the amount of radiation absorbed by the sample (𝐹𝑜 −  𝐹𝑇) and 

the fluorescence quantum yield (Φf). Therefore;  

𝐹𝐼 =  𝑘Φ𝑓(𝐹𝑜 −  𝐹𝑇)      (6) 

Φf ranges from 1 (i.e. when every molecule in an excited state undergoes 

fluorescence) to 0 (i.e. when fluorescence does not occur respectively). k is also 

the constant that accounts for the efficiency of collecting and detecting 

fluorescent emissions. 

Fluorescence spectroscopy provides information on the presence and 

proportions of fluorescent molecules in honey. The concentration fC) of the 

fluorescing species is obtained if the equation Beer’s law, 
𝐹𝑇

𝐹𝑜
= 10−𝜀𝑏𝐶, is 

solved for 𝐹𝑇 in Equation (7): 
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𝐹𝐼 = 𝑘Φ𝑓𝐹𝑜(1 − 10−𝜀𝑏𝐶)    (7) 

Thus, when εbC < 0.01 the intensity of fluorescence increases with the 

concentration of the fluorescing species, as shown in Equation (8): 

 𝐹𝐼 = 2.303𝑘Φ𝑓𝜀𝑏𝐶𝐹𝑜     (8) 

The concentrations of these fluorophores vary depending on the honey's 

geographical and floral origin (Karoui et al., 2007; Becker et al., 2003; Ruoff et 

al., 2005). Honey contains fluorophores, which are also known as endogenous 

or intrinsic fluorophores. These include various amino acids such as tyrosine, 

phenylalanine, and tryptophan, as well as proteins, polyphenols, flavonoids, 

some vitamins (A, B, and E), Maillard products like hydroxymethylfurfural, 

furosine, and advanced glycation end products, as well as chlorophyll a and 

hematoporphyrins as shown in Table 3 (Cuss & Guéguen, 2015; Becker et al., 

2003; Bong et al., 2016; Flanjak et al., 2022; Karoui et al., 2007; Parri et al., 

2020; Strelec et al., 2017; Ye et al., 2011). 
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Table 3: Fluorophores in Honey with their absorption and corresponding 

emission wavelength in the optical region of the EM spectrum 

Compound  Absorption 

(nm) 

Emission 

(nm) 

Phenolic Compounds (Benzoic Acid) 240 – 265 370 – 495 

Phenolic Compounds (Gallic acid, 

Tryptophan, 4-hydroxybenzoic, caffeic, 

vanillic, ferulic/ chlorogenic acid, syringic 

acid, p-coumaric acid) 280 – 320 390 – 470 

Aromatic amino acids 260 – 285 320 – 470 

Flavonoids Compounds (Chlorogenic acid, 

O-Coumaric acid, Quercetin) 310 – 360 370 – 470 

Folic Acid (Vitamins B9), Vitamin B6 330 -340 450 

Maillard reaction products (HMF and 

Furosine) 360 – 435 440 – 520 

Riboflavin (Vitamin B2) 400 – 510 480 – 750 

Carotenoids 400 – 500 520 – 570 

Chlorophyll  600 – 700 670 – 790 

Source (Mashhadi et al., 2022; Parri et al., 2020) 

Fluorescence spectroscopy study of honey can be achieved in the front-

face (0o) or right-angle fluorescence (90o) in the experimental configurations. 

Front-face fluorescence spectroscopy provides information on auto-fluorescent 

molecules predominantly acquired from the surface of honey. In contrast, right-

angle fluorescence spectroscopy assesses autofluorescence throughout the 

transparent or semi-transparent honey samples, offering a comprehensive 

analysis of the entire sample volume. Nevertheless, the right-angle fluorescence 

method may suffer an inner filter effect and fluorescence quenching. A recent 

study by Mashhadi et al (2022) demonstrated that using 60-degree detection 

reduces the incidence of inner filter effects, fluorescence quenching and even 

multiple scattering of the photons (Mashhadi et al., 2020, 2022). 

Again, due to the numerous fluorophores in honey, their fluorescence 

signals overlap, making it sometimes impossible to measure a single 

compound's concentration. Consequently, the fluorescence measurement of 
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honey produces intricate spectral patterns that can serve as distinct spectral 

fingerprints for each sample. These patterns arise from the presence of different 

endogenous fluorophores and their absorbing and quenching species. Through 

fluorescence analysis, it is possible to identify individual molecular species in 

honey by measuring emission spectra at specific excitation wavelengths, or 

conversely, by selecting excitation wavelengths to observe the emission spectra 

(Karoui et al., 2007). Also, the Fluorescence Excitation-Emission Matrix 

(FEEM) is another approach widely used to identify individual molecular 

species in Honey (Antônio et al., 2022; Lenhardt et al., 2015). FEEM resolves 

challenges associated with overlapping spectral profiles resulting from the 

presence of multiple fluorophores. This is achieved by presenting both 

excitation and emission spectra in three-dimensional plots, effectively 

mitigating spectral overlap issues. This data can be analysed with multivariate 

statistical methods to characterise honey samples. Mathematical methods using 

spectral deconvolution can also resolve the overlapping fluorescence spectra to 

identify individual molecular species in honey (Parri et al., 2020). 

Raman Spectroscopy 

Raman spectroscopy is another common vibrational technique used for 

studies on honey. Raman spectroscopy offers the characteristic spectral patterns, 

often referred to as "fingerprints," of the molecular constituents present in 

honey. These patterns enable the acquisition of qualitative and quantitative 

information about the honey sample (Pelletier, 2003; Šugar & Bouř, 2016). 

Over the past two decades, the utilization of Raman spectroscopy has become 

increasingly prominent in honey analysis (Batsoulis et al., 2005; Corvucci et al., 

2015; De Oliveira et al., 2002; Frausto-Reyes et al., 2017; Goodacre et al., 2002; 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



30 

 

Grazia Mignani et al., 2016a; S. Li et al., 2012; Oroian et al., 2018; Oroian & 

Ropciuc, 2018; Özbalci et al., 2013; Paradkar & Irudayaraj, 2002; Pelletier, 

2003; Pierna et al., 2011; Raduan et al., 2014, 2017; Salvador et al., 2019; Šugar 

& Bouř, 2016; Tahir et al., 2017). Analysis of the Raman spectra of honey can 

be relied on for botanical, geographical, and entomological differentiation of 

honey. Studies used Raman spectroscopy to determine botanical origins 

(Corvucci et al., 2015), geographical origins (Pierna et al., 2011), adulteration 

(Oroian et al., 2018; Paradkar & Irudayaraj, 2002), and phenolic compounds 

(Tahir et al., 2017). 

The Raman effect is observed on a molecule subjected to EM radiation. 

The EM radiation's electric field (E) induces the molecule's electric dipole 

moment (𝜇). The extent of polarisation is given by the induced dipole moment 

in Equation (9) as 

𝜇 = ∝ 𝐸        (9) 

Where α is the polarizability tensor, and the electric field is given by 𝐸 =

𝐸𝑜sin(2𝜋𝜈𝑡) hence Equation (9) becomes 

𝜇 = ∝ 𝐸𝑜sin(2𝜋𝜈𝑡)      (10) 

The polarizability term 𝛼 changes depending on if the molecule undergoes 

rotation (𝛼 = 𝛼𝑜 +  𝛾𝑠𝑖𝑛2𝜋2𝜈𝑟𝑜𝑡𝑡) or vibration ( 𝛼 = 𝛼𝑜 +  𝛽𝑠𝑖𝑛2𝜋𝜈𝑣𝑖𝑏𝑡), 

thus using the trigonometry relation, 𝑠𝑖𝑛𝐴𝑠𝑖𝑛𝐵 =
1

2
[cos(𝐴 − 𝐵) − cos (𝐴 +

𝐵)] to expand Equation (10), into  

𝜇 = 𝛼𝑜𝐸𝑜 sin(2𝜋𝜈𝑡) +
1

2
𝛽𝛼𝑜[𝑐𝑜𝑠2𝜋(𝜈 − 𝜐𝑣𝑖𝑏)𝑡 − 𝑐𝑜𝑠2𝜋(𝑣 + 𝜈𝑣𝑖𝑏)𝑡]   (11) 
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for vibrational motion, and  

𝜇 = 𝛼𝑜𝐸𝑜 sin(2𝜋𝜈𝑡) +
1

2
𝛾𝛼𝑜[𝑐𝑜𝑠2𝜋(𝜈 − 2𝜐𝑟𝑜𝑡)𝑡 − 𝑐𝑜𝑠2𝜋(𝑣 + 2𝜈𝑟𝑜𝑡)𝑡] (12) 

for rotational motion. In this case, variation occurs at twice the rotational 

frequency, 𝑣𝑟𝑜𝑡. This is because the polarizability is the same for opposite 

directions of the field. The equations show that for either vibrational or 

rotational motion, the oscillating dipole has three frequency components, 𝑣 the 

Rayleigh line, 𝜈 + 𝜈𝑣𝑖𝑏, the Anti stokes Raman line, and 𝜈 − 𝜈𝑣𝑖𝑏 is the Stokes 

Raman line (Figure 8). The Raman Effect occurs only when the polarizability 

changes (αl ≠ 0), whereas the polarizability remains unchanged for Rayleigh 

scattering (αl = 0). 

 
Figure 8: Jablonski Diagram representing Quantum Energy Transitions for 

Rayleigh and Raman Scattering (Ding et al., 2022) 

 

The Raman spectrum of a sample is obtained as peaks with different 

intensities spread over a wavelength scale. Each peak in the Raman spectrum 

corresponds to the vibrational modes of a molecule. Raman spectroscopy 
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mainly provides the vibrational modes of various sugar molecules, i.e. glucose, 

fructose, sucrose, etc., and water in Honey (Artlett & Pask, 2015; Batsoulis et 

al., 2005; Casella et al., 2013; Damto, 2019; Mabrouk et al., 2013). The 

vibrational modes of each of these sugars in honey are shown in Table 4.  

Table 4: Raman spectra bands of kinds of honey obtained using 532 nm 

laser compared with 785 nm laser and that in literature (A 

(Goodacre et al., 2002), B (Anjos et al., 2018), C (Pierna et al., 

2011) and D (Li et al., 2012)) 

Raman band (cm-1) Type of vibration Primary  

A B C D  Sugar 

430 421.5 424 425 
C-C-O and C-C-C 

bending 

Fructose 

Glucose 

460 - 449 - Skeletal Vibration 
Maltose  

Sucrose 

523 520.8 519 517 
C-C-O and C-C-C 

deformation 

Glucose 

Fructose 

631 625.7 630 629 Ring deformation 
Fructose 

Sucrose 

709 705.4 708 705 
C-O and C-C-O 

stretching, O-C-O bending 
Fructose 

825 824.7 822 824 C-OH bending Fructose 

870 866.5 865 865 C-O-C Cyclic alkyl ethers 
Fructose 

Glucose 

918 915.1 904 915 CH, COH bending 
Glucose 

Maltose 

      

983 979.1 979 981 Ring breathing  Fructose 

1074 1071.5 1064 1065 
C-O-C stretching, C-N 

vibration of proteins 

Fructose 

Glucose 

1127 1124.4 1126 1127 C-OH deformation 
Glucose 

Maltose 

1267 1265.6 1266 1264 C-O-C Cyclic alkyl ethers Fructose 

1368 1366.3 1367 1373 CH and OH bending Glucose 

1460 1459.9 1459 1461 CH2 bending 
Fructose 

Glucose 

      

2893 - 2904 - CH2 symmetric stretching  Glucose 

2940 2941.6 2941 - 
CH2 asymmetric 

stretching  
 

- - 3234 - 
OH stretching Water  

  3319  

Source: (Anjos et al., 2018; Goodacre et al., 2002; Li et al., 2012; Pierna et al., 

2011) 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



33 

 

 

 The typical Raman spectrum consists mainly of peaks with their 

intensities expressed as a function of wavenumber (cm-1), otherwise known as 

Raman shifts (cm-1). The Raman shift of a peak is equal to the vibrational 

energy of the corresponding mode. Therefore, the total intensity scattered by a 

given vibrational mode is the integrated intensity of the corresponding Raman 

peak (Le Ru & Etchegoin, 2009). The Raman intensity depends on the scattering 

cross-section, 𝜎𝑅 given as 

𝜎𝑅 =
8𝜋3(𝑛2−1)2

3𝜆4𝑁2     (12) 

Thus, the intensity of the Raman Scattering is related to the wavelength by an 

inverse fourth power making the choice of excitation for Raman spectroscopy 

critical (Kerr et al., 2015; Senior, 2009; Smith & Dent, 2004; Svanberg, 2004). 

The majority of the studies on honey involving Raman spectroscopy use 

long-wavelength excitation sources, mainly 785 nm and 1064 nm lasers (Anjos 

et al., 2018; Batsoulis et al., 2005; Chekalyuk & Hafez, 2013; Ciaccheri et al., 

2015; Corvucci et al., 2015; De Oliveira et al., 2002; Frausto-Reyes et al., 2017; 

Grazia Mignani et al., 2016b; Kerr et al., 2015; Molnar et al., 2020; Paradkar & 

Irudayaraj, 2002; Pierna et al., 2011; Salvador et al., 2019). Raman signals 

produced by long-wavelength excitation sources exhibit lower intensity, which 

is a result of the inverse fourth power relationship between wavelength and 

scattering intensity (Kerr et al., 2015; Smith & Dent, 2004). Utilizing such 

sources necessitates the use of high-powered excitation sources, cooled 

detectors, and, in certain cases, Fourier Transform (FT) configuration schemes 

to efficiently detect the low-intensity signals they produce (Bowie et al., 2000). 
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Furthermore, the instrumentation must consider the incorporation of "special" 

optical components, such as mirrors and lenses, that are specifically designed to 

operate efficiently in extended wavelength regions (Kalashnikov et al., 2016; 

Stuart, 2004). These interventions result in the enlargement of the instrument's 

physical dimensions, considerations for user safety, and a proportional rise in 

the overall cost of Raman instrumentation. Ultraviolet (UV) excitation sources 

are suitable for providing enhanced scattering because they have short 

wavelengths. Nevertheless, their practical use is limited due to the relatively 

high cost of UV excitation sources and their capability to cause sample 

degradation.  

Promising advancements are underway in the implementation of shorter 

wavelength sources, particularly a 532 nm laser, to facilitate Raman 

spectroscopic analysis of honey with enhanced precision and sensitivity. 

(Corvucci et al., 2015; Šugar & Bouř, 2016; Tahir et al., 2017). The 532 nm 

laser excitation source proves highly advantageous due to its ability to generate 

higher spectral intensity while operating at minimal power, thereby minimizing 

energy consumption. Furthermore, this excitation wavelength enables the 

utilization of standard optical components and facilitates the effective 

performance of dispersive detection schemes in the visible region (Grazia 

Mignani et al., 2016a).  

A challenge identified with Raman spectroscopy is that; biological 

samples such as honey present high susceptibility to fluorescence interference 

(Lakowicz, 2006; Lieber & Mahadevan-Jansen, 2003; Zhao et al., 2007). The 

presence of this interference effect is sufficient to overshadow relatively narrow 
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and weak Raman peaks. When fluorescence occurs, it is seen as a broad 

background that overshadows the Raman peaks. The effect of the background 

is quantitively seen in its Signal-to-Fluorescence Ratio (SFR). SFR is the 

intensity ratio of the tallest Raman peak to its baseline height. The mathematical 

expression for SFR is 

𝑆𝐹𝑅 =  
𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑅𝑎𝑚𝑎𝑛 𝑃𝑒𝑎𝑘−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑅𝑎𝑚𝑎𝑛 𝑝𝑒𝑎𝑘

 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚−𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
  (13) 

SFR of very high values are desired; otherwise, the fluorescence backgrounds 

must be removed for lower value SFR to enable good spectra.  

Reports by several researchers have provided ways for obtaining Raman 

spectra with lower SFR by exploiting the differences between the fluorescence 

and Raman mechanisms. These differences have led to the development of 

several techniques, including the energy domain, time domain, frequency 

domain, wavelength domain, and computational methods for Raman spectra 

recovery (Wei et al., 2015). The Time-domain techniques take advantage of the 

fact that fluorescence photons have a much longer lifetime (~ ns) than the 

Raman photons (~ ps to fs). Therefore, the quickly arriving Raman scattered 

light could be separated temporally from late arriving fluorescence emission of 

a sample excited by ultrafast pulses and detected by some ultrafast detection 

mechanism like Kerr gate, streak camera, Intensified Charge-Coupled Device 

(ICCD) camera, etc. (Kostamovaara et al., 2013; Matousek et al., 1999; 

Nissinen et al., 2011). Regarding the frequency-domain methods, the Raman 

and fluorescence signals can be discriminated by extracting the high-frequency 

(mostly Raman) or low-frequency (mostly fluorescence) components from the 

output of the detector, which has a lock-in mechanism.  
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The wavelength domain methods take advantage of the fact that the 

wavelength of a Raman peak closely follows the excitation source. In contrast, 

the fluorescence peak does not vary significantly with the excitation 

wavelength. Hence, the fluorescence spectra can be removed with different 

excitation wavelengths while enhancing weak Raman signals. Some standard 

wavelength domain methods include Shifted Excitation Raman Difference 

Spectroscopy (SERDS) (Martins et al., 2010; Sowoidnich & Kronfeldt, 2012), 

Wavelength Modulated Raman Spectroscopy (WMRS) (Mazilu et al., 2010) 

and Subtracted Shifted Raman Spectroscopy (SSRS) (Bell et al., 2000; Bell et 

al., 1998).  

Polarisation domain methods also take advantage of the different 

responses in Raman scattering and fluorescence emission to polarisation 

modulation. The polarisation dependence of the excitation light with polarised 

Raman bands and fluorophore with low fluorescence anisotropy enables the 

discrimination between Raman molecules from that of Fluorescence (Le Ru & 

Etchegoin, 2009; McCreery, 2005).  

In addition to experimental methods for fluorescence suppression, 

several computational methods have been widely adopted for preprocessing 

measured Raman spectra directly to remove any fluorescence background 

(Schulze et al., 2005). Several studies have reported using derivatives for 

identifying peaks and rejecting baselines (Brown et al., 2000; Griffiths et al., 

1982; Mosier-Boss et al., 1995). the derivative methods can enhance noise in a 

spectrum. Also, these methods can distort the Raman line shape and require a 

complex mathematical fitting algorithm to reconstruct the Raman spectra 
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(Brorsson et al., 2021; Osticioli et al., 2006). The Fourier transform of a 

spectrum enables signal and noise components within the spectrum to be 

observed and separated by the application of a digital filter to the Fourier 

domain spectral data. The filter ensures that only those frequency components 

contributing to the signal are retained while discarding all others (Mosier-Boss 

et al., 1995). When the frequency components of the Raman spectra and noise 

features are not well separated, the Fourier transform method can produce 

severe artefacts.  

Among the computational methods, the polynomial fitting method is 

popular and most widely used (Hu et al., 2018; Vickers et al., 2001). A setback 

to this procedure is the subjectivity in choosing the polynomial degree. This 

choice is based mainly on practical experience. However, Lieber and 

Mahadevan-Jansen (2003) proposed a modified multi-polynomial fit 

(ModPoly)-based iterative algorithm (Lieber & Mahadevan-Jansen, 2003). The 

algorithm is further improved by Zhao et al. (2007) to take care of spectra with 

high noise or less intense Raman peaks (Zhao et al., 2007). Also, Krishna et al. 

(2012) recently reported the range-independent background subtraction 

algorithm (RIA), which estimates the fluorescence background by a modified 

iterative fitting procedure (Krishna et al., 2012). RIA is reported to efficiently 

suppress the fluorescence background without any peak distortions or 

inclusions of spurious peaks in the data. Chen et al. (2014) developed the 

Savisty Golay-Successive Relaxation (RIA-SG-SR) method based their 

iteration instead on a modified Savitsky-Golay method to achieve faster 

convergence and overcome longer computation time (Chen et al., 2014). 

Further, Chen et al. (2015) developed the RIA-SG-RPR algorithm, which 
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intrinsically chooses the convergence criterion to minimise subjective human 

intervention. Huzortey et al. 2021, further developed a fully automated method 

for recovering Raman spectra (Huzortey et al., 2021). 

Other Methods 

Besides all the methods mentioned earlier, numerous other 

computational methods have been reported for fluorescence suppression. 

Principal component analysis methods (Hasegawa, 2001), Artificial Neural 

Networks (ANN) methods (Schulze et al., 2005), Maximum Entropy Methods 

(MEM) (Fischer et al., 2000), Signal Removal Methods (SRM) (Vekemans et 

al., 1995), Noise Median Method (NMM) (Friedrichs, 1995). Threshold-Based 

Classification (TBC) (Dietrich et al., 1991) and Spectral Shift Methods (SSM). 

These are but a few of the techniques reported in the literature. The use of 

Surface Enhanced Raman Spectroscopy substrates like gold (Au) and Silver 

(Ag) nanoparticles is also gaining prominence as an experimental approach for 

fluorescence suppression in Raman spectroscopy (Le Ru & Etchegoin, 2009; 

Raduan et al., 2014a, 2014b). 

Other Spectroscopic Methods for the Study of Honey 

Besides the standard spectroscopic methods used in the analysis of 

honey, newer optical spectroscopy techniques are also emerging. Laser-induced 

breakdown spectroscopy is promising for the elemental analysis of Honey 

(Bilge et al., 2016; Lastra-Mejías et al., 2020; Peng et al., 2020; Stefas et al., 

2020, 2021, 2022). Raman Optical Activity and Polarization techniques have 

also been used for honey studies (Garciá-Alvarez et al., 2002; Šugar & Bouř, 

2016).  
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Optical Spectra Data Analysis 

Spectroscopic devices generate different types of data from samples. 

These data can be in single data points, spectra or images. The data obtained for 

Transmission, Fluorescence and Raman spectroscopy in this study were in the 

form of spectra. These spectral data can be analysed using univariate or 

multivariate methods for classification, regression, clustering, and data 

compression, depending on the volume of the data and analysis objective. 

Spectral Preprocessing 

Spectral preprocessing is needed as a first step before analysing 

spectroscopic data (Rinnan et al., 2009). The preprocessing objective varies 

depending on the challenge, but mainly they are used to reduce noise, correct 

baseline and make spectra comparable or easy to evaluate. Some preprocessing 

steps applied to spectral data include smoothening, derivatives, baseline 

correction, scaling, and normalisation. More than one preprocessing procedure 

can be used at a time.  

SNV Normalisation 

Standard normal variate (SNV) is a common method for normalising 

spectral data. SNV normalisation method aims to make spectra comparable in 

intensities (Walach et al., 2018). SNV offers an effective approach for 

eliminating constant baseline effects and scaling discrepancies from spectra, 

allowing for reliable comparison. This normalisation method involves 

subtracting the mean (𝑆𝑗) of each spectrum (𝑆𝑖𝑗) and dividing it by its standard 

deviation (𝑠𝑑𝑗), thereby normalising the spectral data as shown in Equation (13). 
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 𝑆
~

𝑖𝑗 =
𝑆𝑖𝑗−𝑆𝑗

𝑠𝑑𝑗
     (13) 

Spectral Deconvolution 

 Spectral deconvolution resolves the broad spectrum into separate peaks 

using various algorithms (Schulze et al., 2005). The resolved peaks identify the 

molecular species (peak position) and concentration (Intensity). 

Univariate Spectral Data Analysis 

Univariate analysis of the spectra data involves selecting and exploring 

each variable separately. Univariate data can be described through bar graphs, 

histograms, pie charts and frequency tables. Univariate analysis helps to 

summarize data and analyse the pattern present in it.  The patterns of interest in 

univariate analysis are the measures of central tendency (mean, mode and 

median) and the measures of dispersion (range, variance, Quartiles, Standard 

deviation and coefficient of Variation). The univariate analysis further explores 

the cause and the relationship between the groups of variables determined by 

the coefficient of linear correlation. Linear correlation is used to represent the 

strength of a linear relationship between the groups of variables if the 

association between variables is substantial using a t-test for two groups or 

ANOVA for multiple groups 

Multivariate Data Analysis 

When the variables of interest are many, Multivariate Analysis (MVA) 

methods can be used to extract information from spectroscopy data. The MVA 

methods lead to clustering, classification, modelling, or prediction. Some 

examples of MVA methods are component analysis (e.g. PCA, ICA):  used to 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



41 

 

reduce the dimensionality of data, regression analysis (e.g. MLR, PLSR, PCR): 

used for determining the relationship between variables; discriminant analysis 

(PLS-DA, FDA, LDA, etc.): used to classify data into predefined classes and 

cluster analysis (K-means, HCA, Fuzzy C-means, etc.): used to group data 

based on feature similarity (Ares, 2014; Isaksson & Aastveit, 2006; Jolliffe, 

2002; Li Vigni et al., 2013; Sarle et al., 1990). Multivariate analysis also tests 

for the performance of the clustering methods using various metrics, including 

root mean squared error (rmse), root mean squared error of prediction (rmsep), 

coefficient of determination, sensitivity, selectivity, etc.  

Principal Component Analysis 

The Principal Component Analysis (PCA) is generally a first step 

towards data transformation. The application of PCA transformation in LIF 

spectra significantly diminishes the number of potential dimensions by 

extracting and prioritizing the most influential components (Li Vigni et al., 

2013). Initially, PCA determines the relationships between each input data 𝐹
~

𝑖𝑗 

by calculating the Covariance matrix 𝐺𝑗𝑗
𝑇 , as represented by Equation (14). 

Subsequently, it identifies the directions along which  𝐹
~

𝑖𝑗 exhibit dispersion, as 

outlined in Equation (15). 

𝐺𝑗𝑗
𝑇 = 𝐹

~

𝑖𝑗𝐹
~

𝑖𝑗
𝑇      (14) 

𝐸𝑗𝑗
𝑇 = 𝐹

~

𝑖𝑗𝐺𝑗𝑗
𝑇       (15) 

From Equation (14), 𝐺𝑗𝑗
𝑇  is the eigenvector matrix, and the columns of 

the matrix, 𝐸𝑗𝑗
𝑇  denote The eigenvalues, referred to as principal components, 

play a crucial role in determining the significance of different directions in the 
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data. These eigenvalues are utilized to generate the score plot, while the 

eigenvectors are utilized to construct the loadings plot. The PCA scores are 

derived from the variance across the dataset, enabling the detection of 

underlying patterns or groupings of samples within a comprehensive dataset. 

Simultaneously, the associated loadings provide insights into the spectral 

wavelengths that contribute to these patterns. The PC scores and Loadings can 

be observed together with PCA-Biplot. The biplot plots together wavelengths 

with their respective spectral scores showing their influence depending on how 

further they occur from the origin. As presented by the biplot, the samples’ 

distribution of the molecules is described qualitatively based on which quadrant 

a sample appears and semi-quantitatively based on the direction of the axis 

where a sample occurs. 

PCA provides a means for classification, Regression and clustering. 

Classification and Regression are supervised forms of analysis. While clustering 

is used for unsupervised analysis. 

K-Means Clustering Analysis 

K-means Clustering Analysis (KCA) is used to find hidden patterns in 

data based on feature similarity (Kaufman & Rousseeuw, 1990; Na et al., 2010; 

Sinaga & Yang, 2020). The procedure for KCA involves the following;  

1. Defining the number of clusters (K) in which all the spectral data, 

represented by PCA scores, are grouped. 

2.  Randomly choose one of the scores to act as the initial cluster centre for 

the number of clusters defined.  
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3. Comparing the data set scores with K number of clusters centres and 

assigning them to the most resembling centre. 

4.  After all the scores are assigned, new cluster centres are calculated by 

averaging all scores assigned to that cluster. The procedure is repeated 

until a stable solution is reached.  

Clusters are obtained based on different cluster metrics. The commonest 

is the Euclidean distance metric. It measures the Euclidean distance between the 

scores. With the squared Euclidean as a distance metric, In deciding the number 

of groups (K), different cluster evaluation criteria for the KCA are employed. 

The cluster evaluation methods used include; silhouette and Davies-Bouldin 

(Davies & Bouldin, 1979; Rousseeuw, 1987).  

The silhouette method measures the similarity (distance) between a 

score and other scores of the same cluster compared to score positions in 

different groups using Equation (16).  

𝑆𝑖 =
bi−ai

max(ai,bi)
      (16) 

Where is the silhouette value for the ith score position, is the average 

distance from the ith score to the other score position in the same cluster as I, 

and is the minimum average distance from the ith score position to score 

positions in a different cluster, minimised over clusters. The possible silhouette 

values range from –1 to +1, where a high silhouette value of+1 indicates well to 

match. The Davies-Bouldin method measures the ratio of within-cluster and 

between-cluster distances. The optimal clustering solution has the smallest 
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Davies-Bouldin index value. The Davies-Bouldin (DB) index is defined in 

Equation (17) as  

𝐷𝐵 =
1

𝑘
∑ 𝑚𝑎𝑥𝑗≠𝑖{𝐷𝑖,𝑗}𝑘

𝑖=1      (17) 

Here 𝐷𝑖,𝑗 in Equation (17) is the within-to-between cluster distance ratio for the 

ith  and jth clusters. 

 While methods exist (e.g., HPLC, Raman spectroscopy), they are not 

practical for widespread, low-cost use. Optical spectroscopy is identified as a 

promising alternative, but it has not been adequately tested on tropical honey 

varieties, such as those found in Ghana. Thus, the research gap is that while 

there are advanced methods for honey profiling, there's a need for an affordable, 

rapid method like optical spectroscopy, especially for tropical honey in Ghana. 

This gap drives the need for the current research 

Chapter Summary 

This chapter highlighted the usefulness of optical radiation, a portion of 

EM radiation, for assessing honey. Practical applications with selected optical 

spectroscopic techniques including Absorption, FTIR, Raman, Fluorescence, 

Laser induced break down spectroscopy, etc. from the literature were discussed. 

Furthermore, the chapter addressed the current state of assessment of honey in 

Ghana, associated challenges such as adulteration, quality, etc. and how the 

implementation of multivariate data analysis and optical spectroscopy 

techniques can together contribute to improving current situation were 

addressed in this chapter. 
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CHAPTER THREE 

METHODOLOGY 

Introduction 

This study used three optical spectroscopy techniques to quantitatively 

and qualitatively explore the optical spectroscopic properties of honey produced 

in Ghana's AEZ. This chapter, therefore, describes the honey samples, 

spectroscopic techniques and the analytic methods employed. Samples are 

described according to how they were obtained and labelled. Each optical 

spectroscopic technique utilised for studying the honey samples is described in 

detail about the components of the optical spectroscopic systems and the 

experimental procedure. Other non-spectroscopic methods used in the study are 

equally described. The chapter also describes how the data obtained from the 

various experiments were analysed. 

Honey Samples 

 Thirty-two (32) honey samples were used in this study. Seven (7) of the 

honey samples were harvested from apiaries in southern Ghana. Twenty-five 

(25) of the samples, collected from six AEZ of the country, were provided by 

the Conservation Biology and Entomology Department of the University of 

Cape Coast (Figure 9).  
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Figure 9: The map of the study area shows the agro-ecological zones of Ghana, 

where the honey samples were obtained. Samples are coded, as 

shown in parenthesis for each agro-ecological zone, for identification 

(FAO, 2005) 

The seven (7) harvested honey samples are shown in Figure 10. It shows 

how the honey samples from the combs were emptied into a sieve to be drained 

and removed debris before bottling and storage for various measurements. The 

samples were stored at room temperature in the laboratory. The names of the 

honey samples with the locations from which they were obtained are also shown 

in Table 5. 

 

Figure 10: Harvested honey samples (a) in the honeycomb, (b) being drained 

and (c) bottled for the study 
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Table 5: Names and locations of honey samples collected from apiaries in 

some parts of the Central Region and Accra 

Samples Place of Harvest Region Host Plant 

H1 Jukwa,  Central  Forest, Wild Flowers 

H2 3rd Ridge Central  Forest, Wild Flowers 

H3 UCC Forest Central  Forest, Wild Flowers 

H4 Somanya Greater Accra Teak Plantation 1 

H5 Somanya  Greater Accra Teak Plantation 2 

H6 Somanya  Greater Accra Mango Plantation 

H7 UCC Forest Central  Forest, Wild Flowers 

Source: Field Data (2022) 

Honey samples obtained from the Department of Conservation Biology 

and Entomology of the University of Cape Coast are shown in Figure 11 and 

described in Table 6. These samples were collected across the different AEZ of 

Ghana. Twenty-five (25) honey samples in all were provided specifically from 

these AEZ; Sudan Savanah (SS), Guinea Savanah (GS), Moist Evergreen (ME), 

Transition Zone (TR), Semi-Deciduous (SD) and Coastal Savanah (CS). 

 

Figure 11: Honey samples from different agro-ecological zones collected into 

Eppendorf tubes provided by the Conservation Biology and 

Entomology Department of the University of Cape Coast 
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Table 6: The honey samples collected from the different agro-ecological 

zones of Ghana, indicating their host plant, obtained from the 

Department of Conservation Biology and Entomology, UCC 

Samples Agro-ecological zone Host plant 

A Sudan Savana (SS1) Cashew 

C Sudan Savana (SS2) Wildflowers 

D Sudan Savana (SS3) Wildflowers  

B Semi Deciduous (SD1) Forest 

L Semi Deciduous (SD2) Unknown 

Q Semi Deciduous  (SD3) Unknown 

R Semi Deciduous (SD4) Unknown 

S Semi Deciduous (SD5) Unknown 

T Semi Deciduous (SD6) Unknown 

E Transition (TR1) Cashew 

H Transition (TR2) Cashew 

I Transition (TR3) Cashew 

J Transition (TR4) Cashew 

K Transition (TR5) Cashew 

N Transition (TR6) Unknown 

F Moist Evergreen (ME1) Forest 

G Moist Evergreen (ME2) Forest 

O Coastal Savana (CS1) Unknown 

P Coastal Savana (CS2) Unknown 

M Guinea Savana (GS1) Unknown 

U Guinea Savana (GS2) Unknown 

V Guinea Savana (GS3) Unknown 

W Guinea Savana (GS4) Unknown 

X Guinea Savana (GS5) Unknown 

Y Guinea Savana (GS6) Unknown 

Z Guinea Savana (GS7) Unknown 

 Source: Field Data (2022)  

Other Samples 

  An adulterant, sugar caramel, prepared with sugar, was used in various 

aspects of the study. Also, an HMF standard (CAS 67-47-0, lot FCB014361, 

Fluorochem, United Kingdom) was obtained and used for honey quality 

determination in some aspects of the study. 
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Sample Preparation Procedure for Raman Spectroscopy Measurements 

For Raman spectroscopy measurements using 532 nm excitation, in 

order to enhance the Raman signal, certain pre-treatments were applied to the 

highly fluorescent honey samples prior to spectral data acquisition. Three pre-

treatment methods were considered: dilution of honey with distilled water in 

equal proportions, heating of the diluted mixture, and treatment with activated 

charcoal. These methods were aimed at minimizing the fluorescence 

interference and improving the quality of the Raman signal in the honey samples 

(Frausto-Reyes et al., 2017; Molnar et al., 2020; Šugar & Bouř, 2016). Figure 

12 visually depicts the activated charcoal treatment process utilized in the 

experimental procedure (Molnar et al., 2020; Smart & Simpson, 2002; Smyth 

et al., 2001; Šugar & Bouř, 2016). 10 ml of each honey sample was mixed with 

10 ml of Distilled water. 1g of oral activated charcoal tablet was added to the 

mixture to dissolve and stirred to homogeneity. Following the preparation of the 

homogeneous mixture, it was subjected to heat treatment at 50°C for a duration 

of 20 minutes. Subsequently, the heated mixture underwent centrifugation at 

14,000 rpm for 10 minutes and was filtered using a 0.45 μm pore size PFTE 

filter. The filtrate was used for the Raman spectroscopy measurement.  
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Figure 12: Sample preparation procedure of honey with charcoal to avoid 

fluorescence contamination for Raman spectral analysis when 

using 532 nm laser excitation 

 

Instrumentation, Setups and Spectral Measurements 

Three main optical spectroscopy measurements were employed in the 

study. These included Ultraviolet–Visible (UV-Vis) Transmission, 

Fluorescence, and Raman spectroscopy measurements. Each optical 

measurement system's instrumentation and set-ups comprised an optical source, 

an optical detector and other auxiliary optical components for manipulating the 

source to obtain the desired result. 

Raman Spectral Measurements 

Raman spectral measurements were carried out at the Laser Research 

and Plasma Institute of Shahid Beheshti University, Tehran, Iran. The 

measurements were carried out with a Raman system fitted with two excitation 

sources. The Raman system is a commercial Benchtop Raman Microscope 

(Teksan IR) with dual excitations of a 532 nm and 785 nm laser detector (Figure 

13). The system’s spectrometer is optimised for detection in both the visible and 

NIR region. The system uses the backscattering (0o) configuration with a notch 
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filter placed on the path of the collection beam before the detector, i.e., 532 and 

785 nm. It runs on Tunsu software capable of performing visualisation and post-

processing tasks. The Raman spectra obtained from the honey samples using 

the 532 and 785 nm excitations were recorded with a dispersive spectrometer. 

The spectrometer was set to an integration time of 30 ms and had a resolution 

of 12 cm-1.  

 

Figure 13: Benchtop Raman Microscope used for the Raman spectra 

measurement of honey samples in this study 

The Raman spectra of honey samples were acquired directly using 785 

nm excitation; however, for the 532 nm excitation, the differently prepared 

samples (Figure 12) were measured. For the 785 nm excitation, Raman spectral 

measurement was also obtained for honey on different substrates; silicone, glass 

and back-coated mirror surface. The Raman spectra of the honey samples 
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through a plastic vial were also recorded. The honey samples' Raman spectra 

were recorded and saved in triplicates on a computer for further processing. 

UV-Vis Transmission Measurements 

The UV-Vis transmission measurements were conducted at the Laser 

and Fibre Optics Centre, Department of Physics, University of Cape Coast. The 

transmission spectra of the honey samples were measured using the setup shown 

in Figure 14. Major components of the set-up include an ultraviolet-visible-

infrared (UV-VIS-NIR) light source (DT-2-MINI-GS, Mikropack, Ocean 

Optics, Germany) and a spectrometer (USB 4000, Ocean Optics, USA). Other 

optical components include; a transparent glass disk as a sample holder, 

connecting optical fibres and a computer with installed spectra suite software 

accompanying the spectrometer. This software enables the visualisation and 

recording of spectral data. The optical source has a wavelength range of 200-

2000 nm, but the spectrometer has a detection range of 200-1100 nm. The 

sample holder was transparent within the wavelength range of the source.  

 

Figure 14: Experimental set-up for optical transmission measurement of honey 

samples 

Each honey sample was uniformly smeared as a thin layer on a UV-Vis 

Transparent glass disk for transmission measurements. For each measure, light 
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from the optical source via one of the optical fibre cables is incident on the 

smeared honey sample. A second optical fibre, positioned beneath a glass slide 

with the smeared honey sample on top, collects light that comes through the 

honey sample to the spectrometer. The spectrometer was set to record spectral 

data of the sample for 120 seconds at 300 ms integration time. Measurements 

were repeated thrice at different positions of each sample to check for 

reproducibility. All the spectral data were collected and saved for further 

processing. Background (when the light source is off) and reference spectra 

(when there is no sample on the UV – Vis Transparent glass disk) were initially 

taken and used for calculating the percentage transmission (Equation 5). 

Laser-Induced Fluorescence Measurements 

The experimental set-up used for the various laser-induced fluorescence 

measurements in this study is shown in Figure 15. The set-up comprised a 445 

nm laser for the excitation (O’like, China), a 450 (+/- 20) nm high pass edge 

filter (Edmund Optics, US), a USB 2000 spectrometer (Ocean Optics, Germany) 

and two optical fibre cables.  

 

Figure 15: Experimental set-up for Laser Induced Fluorescence measurement 

of honey samples 
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The fluorescence spectra of the honey and other samples were obtained 

using the front-face fluorescence technique. Light from the laser is delivered to 

the sample through one of the optical fibre cables, and the other collects the 

backscattered light from the sample through the high pass filter into the 

spectrometer. The spectrometer, therefore, only recorded photons with longer 

wavelengths than the excitation wavelength. The spectrometer was set to record 

spectra data of the sample for 120 seconds at 300 ms integration time, providing 

~293 spectra. All 293 spectra from each measurement were averaged to become 

a representative spectrum of that sample. The measurements were repeated 

thrice to check for reproducibility. The spectra data were collected and saved 

for post-processing and further analysis.  

The LIF set-up was used in measuring the spectra of honey samples 

under different conditions, including heating, ageing, water dilution, and sugar 

caramel adulteration. For the heating effect, two honey samples (H1 and H2) 

were selected and heated at the same temperature (40 oC) in a water bath. By 

direct heating, their fluorescence spectra were compared with the non-heated 

honey samples. Also, for sugar caramel adulteration, sugar caramel was 

prepared by heating table sugar until it darkened like honey. the caramel was 

mixed in 50%, 30%, 20% and 10% ratio with honey sample H1 and sample H6. 

The ageing study was done with honey sample H1 and sample H6. The LIF 

spectra of the two honey samples were initially measured upon harvest and 

when stored in room conditions for four months (2019), one year (2020) and 

three years (2022). Sample V was also studied to compare the effect of adding 

water to honey. Water was added in different ratios (25% and 50%) to the honey 

and compared.  
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Other Measurements and Related Experimental Instruments Used 

Other measures conducted on the honey samples during the study 

include the determination of the Brix, moisture contents, colour and 5-

Hydoxymethylfurfural.  

Brix and Moisture Content Measurements 

The Brix and Moisture contents of the honey samples were determined 

using the hand-held digital refractometer device shown in Figure 16. The device 

features a sample compartment with a cover, display screen, and three buttons; 

READ, CAL, and SCALE. A few drops were placed in the sample compartment 

and covered with a dark lid to measure the Brix and moisture of the honey 

sample. The display screen then shows the values obtained from the 

measurement by pressing the READ button. Pressing the SCAN button 

alternates the readout on the screen between Brix, Moisture and refractive index. 

Before each measurement, the device had to be calibrated by putting a drop of 

distilled water on the glass in the sample compartment and covering it with the 

lid while holding on to the CAL button. The device is well calibrated and ready 

for measurement if the refractive index reads 1.444, 0.000 for Brix and OL 

(overload) for Moisture.  To ensure accuracy, the measurements were repeated 

three times for each sample. 
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Figure 16: The Digital Refractometer used in measuring the Brix and Moisture 

levels in the Honey samples 

 

Colour Measurement 

The colour of each honey sample was measured by the 

spectrophotometric approach using a software-controlled JENWAY 7315, S/N 

– 59681 UV-Visible Spectrophotometer (Cole-Palmer, USA). The 

measurement was done by carefully dispensing into two different 10-mm quartz 

cuvettes the pure honey sample and distilled water as blank, respectively. The 

absorbance of each sample was measured at 560 nm and multiplied by a factor 

of 3.15 to compare to the sample result range in the literature (Frasco, 2018). 

HMF Content Measurements with HPLC 

High-Performance Liquid Chromatography (HPLC) was employed to 

determine the content of Hydroxymethylfurfural (HMF) in the honey samples 

at the Central Laboratory of the Kwame Nkrumah University of Science and 

Technology (KNUST). Fifteen samples were randomly selected out of the total 

number of samples for the study. The selected samples were put into zip lock 

bags and stored in the fridge at 4 °C before measurement using the QuEChERS 
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method. Firstly, the samples were homogenised, and 5g of each sample (test 

sample) was weighed and spiked with (13 C) internal standard solutions into 

falcon tubes. Afterwards, 10 mL deionised H2O, 10 mL acetonitrile and acetic 

acid (ratio 9+1) were added, centrifuged in tubes for 10 min at 300 rpm, and 5 

g QuEChERS salts (MgSO4/ NaCl (4+1; w/w)) added. The centrifuged solution 

was mixed by tapping to prevent lump formation and placed on a mechanical 

shaker for 10 min. The mixture was subjected to centrifugation at a speed of 

4000 × g for 1 minute, followed by the collection of a 5 mL aliquot acetonitrile 

supernatant and defat with 5 mL hexane. The defat supernatant was again placed 

on a mechanical shaker for 10 min, centrifuged at 4000 rpm for 1 min, and the 

upper n-hexane phase discarded. 1 mL of the acetonitrile phase was pipetted 

and evaporated to dryness under a stream of nitrogen at about 40 °C. The eluents 

were reconstituted with 75 μL methanol 425 μL H2O and Vortexed to mix the 

extract for about 5 s. A 200 uL of the supernatant is taken and injected into the 

HPLC system after centrifuging at 8500 rpm at room temperature for 10 min. 

Chromatograms from the HPLC measurement were used to determine the HMF 

of the honey samples. 

Data Analysis 

  The spectral data were saved as an Excel file for each experimental 

method. Matlab software was mainly used for all the analysis and to create 

figures for various visualisations. Data obtained were preprocessed and 

analysed using multiple multivariate and other statistical methods. 
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Spectral Preprocessing 

Three main preprocessing methods were employed in the study. These 

include spectral normalisation, deconvolution and baseline correction. 

Spectral Normalisation 

The spectral data from the Fluorescence, Transmission and Raman 

spectroscopy measurements were each normalised according to Equation (13) 

by the SNV method. The SNV normalised spectra were used as input for all the 

further analyses.  

Spectral Deconvolution 

To address the issue of overlapping bands in the fluorescence spectral 

data, spectral deconvolution was employed. This technique enabled the 

separation and fitting of the overlapping bands, thereby facilitating a more 

accurate analysis of the individual spectral components. Spectral deconvolution 

was performed using PeakFit software (version 4.12, SYSTAT Software Inc.). 

This software employs a least square minimization iteration process to ensure 

that the coefficient of determination (R2) value of the fitted spectra consistently 

exceeds 0.995 before the fitting routine is terminated. After separating the 

overlapping bands, each peak was fitted to a Gaussian function to obtain peak 

parameters, including peak intensity, Full Width at Half Maximum (FWHM), 

and centre wavelength.  

Spectral Baseline Correction 

The SDT-RIA algorithm was applied to remove background features in 

all the measured Raman spectra. The SDT-RIA initially determines the 

magnitude of the most intense Raman peak in the input spectral data using the 
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second derivative approach before continuing with a smoothening iteration 

process to estimate and remove the fluorescence background. Figures 17-19 

show the steps involved in background correction of the Raman spectra 

(simulated) and honey obtained using the 532 nm and 785 nm excitation, 

respectively.   

 

Figure 17: Raman signal recovery processes using SDT-RIA, (a) the simulated 

Raman spectra and its second derivative, (b) the most intense peak 

fitted in the second derivative spectrum, (c) how SDT-RIA 

estimates the background, and (d) how accurately the recovered 

signal compares with the original spectrum having no baseline. 
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Figure 18: Baseline correction for 532 nm excited Raman spectra of charcoal 

treated honey. (a) Experimentally measured Raman spectra of the 

honey contaminated by fluorescence baseline. (b) Second derivative 

and fitting of the of the contaminated spectra to obtain peak 

parameters for baseline correction. (c) Estimated baseline for the 

contaminated spectra based on parameters of the fitting. (d) 

Recovered spectra after the baseline is subtracted from the 

experimentally measured spectra 
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Figure 19: Baseline correction for 785 nm excited Raman spectra of charcoal 

treated honey. (a) experimentally measured Raman spectra of the 

honey contaminated by fluorescence baseline. (b) Second derivative 

and fitting of the of the contaminated spectra to obtain peak 

parameters for baseline correction. (c) Estimated baseline for the 

contaminated spectra based on parameters of the fitting. (d) 

Recovered spectra after the baseline is subtracted from the 

experimentally measured spectra 

 

Multivariate Methods 

The study incorporated various multivariate methods, with a main focus 

on principal component analysis (PCA) and K-Means clustering analysis. PCA 

was employed to identify significant patterns and reduce the dimensionality of 

the data, while K-Means clustering facilitated the grouping and classification of 

samples based on their similarities in the dataset.  
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Principal Component Analysis 

PCA was applied in the case of all three optical spectroscopy 

measurements. PCA was performed on the input data, which had been subjected 

to SNV normalisation. This analysis enabled the transformation of each 

sample's spectrum into a singular point within the principal component (PC) 

space. PCA provided each spectroscopic technique's variance, scores, and 

loading plots. The elbow method was employed to analyse the variance plot and 

determine the appropriate number of PCs required to capture the most 

prominent variations in the data. (Cangelosi & Goriely, 2007). The scores plot 

enabled the visualisation of the general distribution pattern of all the samples in 

PC space. Furthermore, the loading plot helped to give information on the 

contribution of each spectral wavelength in the observed distribution from the 

score plot patterns. For Raman and Fluorescence measurement specifically, a 

PCA biplot was employed to graphically explore the distribution of the spectral 

scores and the loadings to identify the influence of specific molecules on the 

various samples. 

K-means Clustering Analysis 

K-means Clustering Analysis (KCA) was used to find hidden patterns 

in data based on feature similarity in the PCA scores for the Raman and 

Transmission measurement. The cluster silhouette (Equation 16) and Davies-

Bouldin (Equation 17) evaluation methods were used to determine the optimal 

number of clusters (K).   
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Additional Statistical Analysis 

Apart from the implementation of PCA and KCA, various other 

statistical analyses were conducted in the study. These encompassed 

calculations such as mean, Coefficient of Variation (CV), Pearson correlation 

coefficient, R2 value, and Analysis of Variance (ANOVA). These statistical 

measures facilitated the examination of central tendencies, variabilities, 

relationships, and significant differences within the dataset. ANOVA was used 

to determine the significance of the relation between fluorescence peak spectral 

parameters (intensity, FHM, centre, wavelength) and the measured 

physicochemical parameters (Color, Brix and Moisture, HMF). Also, ANOVA 

was used to determine significant groups in honey clusters found after applying 

the K-Means Clustering on PCA analysed data from the transmission 

measurement.  

Chapter Summary 

This chapter detailed the study's samples, experimental setups, 

measurements, and how measured data were analysed. The samples comprised 

32 types of honey, an HMF standard, and caramelised sugar, clearly explaining 

how they were obtained. The experimental measurements for Raman, 

fluorescence, and UV-visible transmission, were described in detail, along with 

the setups and components used for each technique. The study's data analysis 

methods were explained in detail, including preprocessing methods for 

normalisation, baseline correction, and spectral deconvolution. The multivariate 

methods of PCA and K-means clustering, in addition to other statistical analyses 
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employed in the study, Overall, this chapter provided a comprehensive 

overview of the study's techniques and methods. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Introduction 

This chapter describes and discusses the results obtained using 

spectroscopic techniques and multivariate analysis methods. Specifically, the 

outcome of the Laser-Induced Fluorescence (LIF) measurement for different 

conditions of honey and the LIF spectra's relation with some physicochemical 

properties are discussed. Also, Raman spectroscopic technique has been used to 

observe and analyse honey's molecular composition. Additionally, the 

transmission method was used to examine the constituents of the honey for 

classification. With each spectroscopic technique, data obtained were processed 

and analysed with Multivariate methods, making it possible to divulge needed 

information for discussion and comparison to the literature. 

Laser-Induced Fluorescence Spectra  

The LIF spectra of the honey samples with 445 nm excitation are shown 

in Figure 20. Generally, the samples’ emission range was all within 450 to 720 

nm, representing broad spectra.  
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Figure 20: SNV normalised and averaged Fluorescence spectra of honey 

samples collected from the various agro-ecological zones of Ghana 

(Sudan Savana (SS), Guinea Savana (GS), Transition, zone (TS), 

Semi-Deciduous forest (SD), Moist Evergreen (ME) and Coastal 

Savana (CS)) used in the study. The number of honey samples from 

each Agro-ecological zone is stated in the legend 

 

The broad fluorescence emission observed between 450–750 nm 

indicates the presence of polyphenols in honey samples (Parri et al., 2020). The 

various polyphenols responsible for fluorescence emission within the 450 to 750 

nm range of the honey samples used in this study are similar to that in the 

literature, as summarised in Table 3. Variations in the shape of these 

fluorescence spectra can be attributed to different quantities of the polyphenols 

in each honey sample. From the LIF spectra, it can be observed that each sample 

had a slightly different spectral line shape from others, even though some had 

closer semblance by visual inspection. As observed from Figure 20, there are 

variations in the intensity of the LIF spectra of the honey samples, especially 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



67 

 

the regions between 450 nm to 550 nm and 550 nm to 750 nm. The intensity 

variations in these regions imply that quantities of honey's underlying 

constituents or fluorophores varied from one sample to another.  

Principal Component Analysis of the 445 nm Fluorescence Spectra  

 The results of the principal component analysis (PCA) on the 

fluorescence data set of all the honey samples are shown in Figure 21. The PCA 

results are described by the variance (Figure 21a), scores (Figure 21b), and 

loadings plot (Figure 21c-e). 
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Figure 21: Principal component analysis of fluorescence spectra of honey 

samples showing the variance plot (a), score plot for PC2 against 

PC1 of samples from different Agro-ecological zones with the 

respective number of samples from each agro-ecological zone 

described in the legend (b), and the loadings plot for PC1-PC3 (c-

e) 

 

Using the elbow method, the total variance in the data was found mainly 

with the first three principal components (99.4%), as shown in Figure 21a. The 

first principal component (PC1) alone accounted for almost 92.0 % of the 

variance in the data, followed by 5.8% in PC2 and 1.9 % in PC3. The remaining 

PCs accounted for no more than 0.5% variation in the data. Thus, the entire data 

set of the honey samples' fluorescence spectra can be summarised with the first 

two or three PCs for further analysis.  
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The scores are randomly scattered in the score plot (Figure 21b) 

comprising the first two PCs, with no apparent clusters observed. The random 

distribution of the data emphasises heterogeneity in the composition of all the 

samples. The loading plot, as shown for PC1, PC2 and PC3 in Figure 21(c-e), 

identified the main wavelengths responsible for the observed distributions in the 

score plot. Wavelengths with the highest coefficients in absolute terms (negative 

and positive direction) were the most critical variables. The loading results are 

therefore summarised in Table 7 by listing all significant ranges with their 

respective peak centre wavelengths at which the highest loading coefficient 

value is observed. 

Table 7: PCA Loading Ranges and Peak Centres 

Principal Components (PCs) Ranges (nm) Peak Centre (nm) 

PC1 460 – 540 

525 – 730 

500 

600 

PC2 460 – 530 

530 – 570 

570 – 760 

475, 488 

544 

650 

PC3 465 – 480 

480 – 500 

500 – 600 

600 – 690 

690 – 760 

475 

488 

535, 550 

620, 640 

730 

Source: This study 

The loadings highlighted by the various ranges of PC1, PC2, and PC3 

can be attributed to the different molecules bringing about variations in the 

honey samples. According to the table, the honey samples could be 

distinguished based on two main ranges with reference to 500 nm and 600 nm 

as central peak wavelengths bringing about variations for PC1. In contrast, PC2 

and PC3 show four and seven major peak centres, respectively, as the basis for 
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the differences in the honey samples. The major peak wavelengths for PC1, PC2 

and PC3 are shown in Table 7. 

Based on Table 7, a PCA biplot was employed to graphically explore 

the distribution of the spectral scores with the wavelengths (specific 

fluorophores) of the fluorescence spectra in the honey samples in Figure 22. In 

the biplot, the various wavelengths are plotted together with their respective 

spectral scores showing their influence depending on how further they occur 

from the origin. As presented by the biplot, the samples’ distribution of the 

molecules is described qualitatively based on which quadrant a sample appears 

and semi-quantitatively based on the direction of the axis where a sample 

occurs. The specific wavelengths with known related molecular constituents are 

shown in green. 

 

Figure 22: PCA Biplot showing PC1 and PC2 score distribution with loading 

coefficients of identified fluorophores in honey 
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In the first quadrant, for example, along the PC1 axis, Chlorophyll 

derivatives (670 – 720 nm) are the dominating constituents, followed by Beta 

carotene (570 nm) to the extreme right (positive). Samples with higher spectral 

scores in PC1, such as GS3, GS4, GS5 and GS6, show the dominance of these 

molecular constituents. On the other hand, samples such as GS7, TR1, SS1, and 

SD5, which occur in the longer wavelength towards negative PC1, are highly 

dominated mainly by O-coumaric (500 nm), a flavonoid, Quercetin (520 nm), 

Riboflavin (530 nm). 

The levels of the phenolics (like Sina pinic acid at 450 nm) obtained 

were lower because of the excitation light source (445 nm) used. Flavonoids 

and vitamins other than proteins (including Phenols) are best probed at 445 nm 

excitation (Mehretie et al., 2018; Parri et al., 2020; Ruoff et al., 2005).  

Deconvoluted Laser Induced Fluorescence Spectra  

Spectral deconvolution was used similarly to obtain semi-quantitative 

information on the various constituents in the honey samples. A deconvoluted 

SNV-normalised fluorescence spectrum of a honey sample is shown in Figure 

23a. The deconvoluted spectra revealed the presence of five prominent peaks. 

Peaks were selected based on the shoulders observed from the spectra and prior 

knowledge of possible molecular species in the literature (Parri et al., 2020). 

Significant regions were defined by the loadings in the PCA, as well as prior 

knowledge about the constituents of honey within the 450 to 750 nm 

fluorescence range. The spectral parameters, i.e., Intensity, centre wavelength, 

Full Width at Half Maximum (FWHM) and area, derived from each peak, are 
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compared among the samples and correlated with different physicochemical 

properties of the honey. 

 

Figure 23: Deconvoluted SNV normalised LIF spectra of one of the honey 

samples showing peaks of possible emissions from fluorophores, 

with an inset demarcating the peak parameters (a = Intensity, b = 

Full Width at Half Maximum, c =Centre wavelength) 

 

The five prominent peaks derived from the deconvolution given the 

label P1 (489.9 nm), P2 (510.8 nm), P3 (544.9 nm), P4 (597.2 nm), and P5 

(677.8 nm) are summarized for the entire samples in Table 8. Also, they are 

labelled with the respective biochemical compounds present as indicated.  
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Table 8: Spectral Parameters from the five bands of   the Deconvoluted LIF 

spectra of the samples 

Peak 
Spectral 

Parameters 

Range 

(Min-Max) 
Mean 

Standard 

Deviation 

Coefficient  

of Variation 

P1 

Intensity 0.39 0.88 0.60 0.13 0.21 

Wavelength 

(nm) 
485.03 492.94 489.96 1.49 0.00 

Width (nm) 11.28 16.22 13.90 1.19 0.09 

P2 

Intensity 1.09 1.89 1.52 0.18 0.12 

Wavelength 

(nm) 
506.98 514.54 511.30 1.77 0.00 

Width (nm) 20.46 24.67 22.42 0.84 0.04 

P3 

Intensity 2.13 2.62 2.43 0.13 0.05 

Wavelength 

(nm) 
541.84 552.23 547.65 2.92 0.01 

Width (nm) 31.33 36.69 34.22 1.07 0.03 

P4 

Intensity 0.86 1.79 1.26 0.22 0.18 

Wavelength 

(nm) 
592.77 608.72 601.42 3.74 0.01 

Width (nm) 35.78 48.66 42.27 3.05 0.07 

P5 

Intensity 0.03 0.43 0.22 0.10 0.43 

Wavelength 

(nm) 
655.67 680.21 671.07 4.90 0.01 

Width (nm) 24.14 52.28 38.28 6.76 0.18 

Source: This study 

Like the PCA results described in Table 7, the deconvoluted 

fluorescence spectra of the honey samples also help to observe better the 

presence of the significant biochemicals in the honey samples.  A comparison 

of the CV shows that samples did not vary much except for the intensity of the 

5th Peak. The less variation in all the peak positions (0.00 – 0.01) shows that 

honey samples had almost the same significant constituents. The peak width 

(0.03 – 0.18) remained relatively broad for all the samples, possibly due to 

numerous closely related fluorophores in the honey samples. The width of the 

5th Peak, which recorded the most variance (0.18) compared to all the other 

peaks, is the fluorescence emission from chlorophyll. This peak thus reveals 
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differences in the chlorophyll concentrations in the honey samples, which can 

be attributed to floral differences (Parri et al., 2020; Ruoff et al., 2005).  

Correlation of Deconvolved LIF Spectra with Brix, Moisture and Colour 

of Honey 

Physicochemical parameters are essential for evaluating honey 

(Mehryar et al., 2013). The correlation between the measured physicochemical 

parameters, Brix, Moisture colour and the deconvolved spectral peak intensity 

(a), width (b), position (c) and area (d) are shown in Figure 24.  

 

Figure 24: Correlation coefficient (R2) and Significance (P-value) for the 

correlation between physicochemical parameters; Brix, Moisture, 

Color, and deconvoluted LIF spectral parameters shown by a colour 

map. P1, P2, P3, P4, and P5 represent each deconvoluted peak, 

while the alphabets a, b, c and d represent each peak's intensity, 

wavelength, width and area, respectively. 

From Figure 24, Brix and moisture had a very low correlation with all 

the peak parameters, which indicates that the LIF method will be less 

informative about honey's Brix (sweetness) or moisture content. The colour 
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parameter, however, showed a significantly high correlation with most of the 

peak parameters, notably Peak 1, Peak 2 and Peak 4. These peak parameters 

could further be used in modelling to predict honey colour.  

LIF Monitoring of Honey Quality via 5-Hydroxymethylfufural (HMF) 

Honey quality determination with the LIF method is demonstrated. The 

LIF spectra of honey samples (14, i.e. A-N) selected from different years, 

including one non-honey sample (O), are shown in Figure 25. The concentration 

of the HMF, as determined by HPLC, is shown in the legend of the LIF spectra. 

The figure is colour-mapped so that samples having lower HMF show cool 

colours (blue to cyan), while those with higher HMF offer hot colours (yellow 

to red). The HPLC spectra of the honey samples from which the actual HMF 

was obtained are reported in Appendices A and B. 

 

Figure 25: Normalised LIF spectra of honey samples selected from different 

years to study their HMF. Each spectrum is colour mapped in order 

of the HMF value, as indicated in the legend 
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Visual inspection of Figure 25 reveals contrasting differences between 

honey samples. Samples having HMF with low (A - F), moderate (G - I) and 

high (J - 0) concentrations can easily be distinguished at some wavelength 

ranges of the LIF spectra. These differences were further analysed by 

correlating actual HMF concentration with the spectra parameters by 

deconvoluting their LIF spectra and finding parameters with a significant 

correlation (p-value < 0.005), as shown in Table 9.  

Table 9: The p-values obtained by correlating deconvoluted LIF spectral 

parameters with measured HMF of samples 

Sample 

Set 

HMF 

(mg/100g) 

P-value 

P1a P1b P1c P2a P2b P2c P3a P3b P3c P4a P4b P4c P5a P5b P5c 

A - N 1.5 - 313.4 0.04 0.03 0.15 0.02 0.02 0.37 0.75 0.03 0.83 0.90 0.04 0.14 0.04 0.15 0.15 

A - J 1.5 - 85.6 0.01 0.06 0.15 0.00 0.02 0.24 0.57 0.01 0.24 0.48 0.00 0.07 0.01 0.08 0.06 

A - G 1.5 - 36.9 0.00 0.07 0.11 0.00 0.00 0.16 0.59 0.01 0.67 0.54 0.01 0.09 0.00 0.08 0.06 

Source: This study 

For the different range of samples considered, samples from A-G with 

HMF of less than 40 mg/100g showed a better correlation with high 

significance. Also, among these samples (A-G) sets, the first band’s intensity, 

P1a, showed very high significance (p=0.001). A graph of the P1a values 

obtained with the LIF data correlated with actual HMF concentration shown in 

Figure 26a produced a 0.92 correlation coefficient with a linear equation given 

as HMF = -4435.700 (Normalised Fluorescence Intensity) + 89.015. As a 

validation step, a leave-one-out cross-validation (LOOCV) test applied on the 

dataset predicted each HMF value, which, when correlated against the HPLC-

measured HMF of the samples, yielded a 0.87 correlation coefficient.  
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Figure 26: Correlation between (a) deconvolved LIF Peak 1a intensity with 

HPLC measured HMF for samples with HMF concentration below 

40 mg/ kg and (b) HPLC Measured HMF with Predicted HMF by 

the Peak 1a 

 

The results from the correlation show that the HMF of the honey can be 

determined for honey with HMF up to 40 mg/ 100g, which qualifies this process 

for determining the quality of honey for temperate regions where the allowed 

limits are set to 40 mg/ 100g.  
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LIF Spectra of Harvested Honey under Different Conditions (Heating, 

Ageing, Water and Sugar Adulteration) 

LIF spectra of two freshly harvested Honey samples are shown in Figure 

27. The slight difference between the two spectra is expected because of the 

variabilities associated with honey due to geographical, entomological, seasonal 

and hive practices. Changes in the spectra of each sample after four months, one 

year and three years are shown in Figure 28.  

 

Figure 27: LIF spectra of two freshly harvested Honey samples used for ageing 

studies 
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Figure 28: LIF spectra of honey samples measured at different times from the 

harvesting period to 3 years 

 

From Figure 28, significant changes in both samples can be observed 

after the first year onwards compared to the first four months. These changes 

are red-shifted for both samples, associated with increasing molecular weights 

of the honey samples (Cuss & Guéguen, 2015; Ye et al., 2011). Bong et al. 

(2016) study identified the changing constituent as Millard reaction agents, 

which could be used as spectral markers for age determination. 

The effect of heating honey demonstrated with samples H1 and H6 is 

shown in Figure 29. For the two samples, the impact of the heating is observed 

to be quite similar for the two honey samples. Nevertheless, changes in the 

spectral line shape with heating were identical to those due to ageing, as shown 

in Figure 28. 
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Figure 29: LIF spectra of honey heated in different methods 

 

The changes in the LIF spectra of honey due to water addition are 

observed in Figure 30. The LIF spectrum obtained by measuring distilled water 

is included for comparison.  
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Figure 30: LIF spectra of fresh honey, water-diluted honey samples and distilled 

water for comparison 

 

Interestingly, these changes did not occur in the same wavelength region 

as the LIF spectra of the distilled water. Instead, the observed changes are red-

shifted, similar to that observed in the ageing honey samples (Figure 28). Again, 

sharp differences can be observed in the raw spectra of the honey irrespective 

of how much water (25% or 50%) was added. However, there is not much 

difference in the spectra for different quantities of water added. Thus, adding 

water to honey causes significant changes detectable by the fluorescence 

spectroscopic technique. Nonetheless, as observed in Figure 24, there was very 

little correlation between moisture content and the fluorescence spectra of 

honey. 
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Sugar Adulteration 

The fluorescence spectra of honey samples (H1 and H4) with the sugar 

caramel adulterant are shown in Figure 31. As observed from Figure 31, the 

honey sample H4 has a nearly identical spectrum to the adulteration (sugar 

caramel).  

 

Figure 31: Spectra of selected honey samples (H1 and H4) compared with sugar 

caramel as a suspected adulterant 

 

The results of the sugar caramel added to the honey samples in different 

concentrations (10%, 20%, and 50%) are shown in Figure 32. Generally, 

changes to the LIF spectra of the adulterated honey occurred both intensity-wise 

and wavelength-wise. This effect can be well observed better for sample H1 as 

compared to H4. 
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Figure 32: LIF spectra of two harvested Honey samples (H1 and H4) 

adulterated with 10, 20, 30 and 50% sugar caramel 

 

Interestingly the LIF spectra of the sugar-adulterated honey (Figure 32) 

show similar features to that of the ageing honey (Figure 28). The main 

observation is that as the adulteration level increases, the LIF spectra are red-

shifted, and the intensity decreases simultaneously relative to the fresh sample. 

These changes could be explained by changing molecular structure, polarity and 

other molecular characteristics that bring about spectral shifts in fluorescence 

spectra.  In Figure 32, it can be observed that though the changes due to the 

adulteration occurred in the same direction for all the samples, the rate of change 

shown by the slope (Figure 33) was different for H1 and H4. This difference in 

the slope values indicates that the honey samples are different; therefore, all 

honey samples' fluorescence spectra related to adulteration changes cannot be 

generalised. 
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Figure 33: The plot of peak intensities against the honey level of adulteration 

showing the Rate of change in spectra of honey adulterated with 

sugar caramel 

 

532 nm and 785 nm Excited Raman Spectra 

The typical Raman spectrum of a honey sample measured with 532 and 

785 nm excitation is shown in Figure 34. Both excitation sources led to Raman 

spectra with fluorescent background, a characteristic of Raman spectra 

measured with excitation sources within the visible region of the EM spectrum. 

The high fluorescence is because of the high energy of the excitation sources, 

causing electronic transitions in the honey molecules, leading to the 

fluorescence mechanism being observed more easily. Hence, 532 nm excitation 

has a high fluorescent emission such that the Raman peaks in the spectrum are 

almost entirely obscured (Figure 34a).  
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Figure 34: Raman spectra of raw honey samples acquired using different laser 

excitation sources of wavelengths (a) 532 nm and (b) 785 nm 

 

A comparison between Figure 34a (532 nm excitation) and Figure 34b 

(785 nm excitation) reveals distinct differences in the spectral characteristics of 

raw honey. Figure 34a depicts an extensive and intense fluorescence 

background without noticeable Raman peaks. In contrast, Figure 34b illustrates 

the presence of Raman peaks in the honey's spectrum alongside some trailing 

fluorescence background. The fluorescence observed during 785 nm excitation 

is minimal due to the limited capability of energy within the near-infrared (NIR) 

region to induce electronic transitions that typically result in fluorescence. 

532 nm Excited Raman Spectra of Different Pretreatments applied to 

Honey Samples   

As described in the methodology, different pretreatment methods were 

applied to the samples to reduce the fluorescence background in the Raman 
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spectra of the honey to make the spectra data more useful for further analysis. 

Figure 35 clearly shows that the raw honey spectra (a) exhibits a significant and 

intense fluorescence background, rendering the Raman peaks indiscernible. In 

contrast, the pretreated samples show a reduction in the fluorescence 

background, thereby revealing the distinct Raman peaks of the honey. 

 

Figure 35: 532 nm excited Raman spectra obtained from (a) raw honey, (b) 

water diluted honey, (c) heated honey and (d) activated charcoal-

treated honey with computed SFR values shown in the legend 

 

The legend of Figure 35 provides insights into the effectiveness of 

reducing the fluorescence background in the Raman spectra of each pretreated 

honey, as evaluated by the SFR. The charcoal treatment exhibited a higher SFR 

value of 0.1758 compared to the other two treatments: dilution with water 

(0.0284) and heating after dilution with water (0.0465). Previous studies (Smart 

& Simpson, 2002; Smyth et al., 2001; Tatarkovič et al., 2015) have reported that 

activated charcoal acts as an adsorptive quencher for organic molecules 
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responsible for fluorescence in honey. Consequently, pretreatment involving 

activated charcoal enables the adsorption and removal of these fluorescent 

organic molecules through filtering, thereby enhancing the intensity of the 

honey's Raman spectra.  

Figure 36 displays the corrected baseline of the Raman spectra obtained 

from raw and various pretreated honey samples excited using the 532 nm 

excitation. The figure clearly demonstrates that the baseline-corrected spectra 

simplifies the identification of peak positions in both the raw and pretreated 

honey samples. This enables an easy and straightforward comparison of the 

respective peak intensities between the different samples. 

 

Figure 36: Comparison of baseline preprocessed 532 nm excited Raman spectra 

of raw and pretreated honey samples 

 

 The charcoal method was better at producing Raman spectra with fewer 

false peaks, as seen within the 1500 cm to 2500 cm region. The dilution method, 

even though it had some false peaks, can be improved for honey pretreatment 

as a less stressful, cost-effective and time-saving approach. Molnar et al. (2020) 
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have demonstrated that 50:50 v/v dilution of honey with water is also effective 

for fluorescence reduction (Molnar et al., 2020). 

Comparison of the Preprocessed 532 nm and 785 nm Excited Raman 

Spectra of Honey and Molecular Assignment 

Figure 37 illustrates the preprocessed Raman spectra of honey samples 

acquired using the 532 nm and 785 nm excitation sources, covering the range 

from 300 cm-1 to 3600 cm-1. The observed spectra are consistent with the broad 

Raman spectra of honey reported in the literature (Anjos et al., 2018; De 

Oliveira et al., 2002; Tahir et al., 2017).  

 

Figure 37: Raman spectra of honey samples measured under different 

conditions: (a) Honey subjected to activated charcoal 

pretreatment, measured with a 532 nm laser excitation, and (b) 

Honey without pretreatment, measured with a 785 nm laser 

excitation 

 

The range of 300 cm-1 to 1500 cm-1is is recognised as the fingerprint 

region, while the range of 2600 cm-1 to 3600 cm-1 is referred to as the high 

wavenumber region. The 3500 cm-1 spectral band, in the high wavenumber 
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region, confirms the presence of OH molecule in the sample, which includes 

water (Artlett & Pask, 2015; Casella et al., 2013; Mabrouk et al., 2013; Pierna 

et al., 2011), because honey consists mainly of water (10 - 20 % w/w), 

carbohydrates (70 - 80% w/w) and other components (Ouchemoukh et al., 

2007). Moisture is, therefore, inherently present in honey. Still, it is supposed 

to be negligible, accounting for the extremely low intensity of the 3500 cm-1 

spectral bands in the Raman spectra obtained with the 785 nm excitation source. 

This spectral band had far more moderate intensity in the 785 nm excitation than 

the 532 nm excitation. However, this more moderate intensity is justifiable 

because the sample preparation method with the 532 nm excitation required that 

some amount of water be mixed with the honey (Šugar & Bouř, 2016), leading 

to some moisture level in the sample.  

The Raman spectral profile of the honey exhibited distinct 

characteristics depending on the laser excitation used. The Raman spectra 

obtained with 532 nm excitation displayed a higher signal-to-noise ratio, 

resulting in smoother spectra with well-defined peaks. The sample preparation, 

including the pretreatment, contributed to the reduced noise in the 532 nm 

excited Raman spectra, potentially due to the homogeneous state achieved by 

the honey during pretreatment. In contrast, the 785 nm excited Raman spectra 

showed greater resolution, revealing a higher number of spectral bands 

compared to the 532 nm excitation. Table 10 provides an overview of the 

characteristic Raman bands observed in honey for both 532 nm and 785 nm 

laser excitations, along with distinctive Raman bands reported in the literature. 

These unique Raman bands serve as molecular fingerprints based on the 

biochemical composition of the honey samples. (Goodacre et al., 2002). The 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



90 

 

table shows that kinds of honey generally have the same Raman spectral profile 

from different excitation sources and studies. Slight variations observed in the 

band positions can be attributed to factors such as variations in the botanical 

origins of the different AEZ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



91 

 

Table 10: Raman spectra bands of honey obtained using a 532 nm laser 

compared with a 785 nm laser, and that in literature (a= 

(Goodacre et al., 2002), b= (Anjos et al., 2018), c= (Pierna et al., 

2011) and d= (Li et al., 2012)) 

Excitation Wave-

length (cm-1) 

Reported Raman band of honey 

in literature (cm-1) 

Possible 

vibration 

Related 

sugars 

532 nm 785 nm A B C D   

408.4 415.8 430 421.5 424 425 

C-C-O and C-

C-C bending 

Fructose 

Glucose 

- 488.8 460 - 449 - 

Skeletal 

Vibration 

Maltose 

Sucrose 

514.1 - 523 520.8 519 517 

C-C-O and C-

C-C 

deformation 

Glucose 

Fructose 

614.8 596.4 631 625.7 630 629 

Ring 

deformation 

Fructose 

Sucrose 

708.6 702.24 709 705.4 708 705 

C-O and C-C-

O stretching, 

O-C-O 

bending 

Fructose 

818.6 816.0 825 824.7 822 824 C-OH bending Fructose 

- 879.5 870 866.5 865 865 

C-O-C Cyclic 

alkyl ethers 

Fructose 

Glucose 

915.6 - 918 915.1 904 915 

CH, COH 

bending 

Glucose 

Maltose 

- 971.2 983 979.1 979 981 Ring breathing Fructose 

1067.0 1066.0 1074 1071.5 1064 1065 

C-O-C 

stretching, C-

N vibration of 

proteins 

Fructose 

Glucose 

1116.0 1126.0 1127 1124.4 1126 1127 

C-OH 

deformation 

Glucose 

Maltose 

1247.0 1262.0 1267 1265.6 1266 1264 

C-O-C Cyclic 

alkyl ethers 

Fructose 

1344.0 

1325.0 

1368 1366.3 1367 1373 

CH and OH 

bending 

Glucose 

1405.9 

1444.0 1457.0 1460 1459.9 1459 1461 

CH2 bending Fructose 

Glucose 

2899.0 - 2893 - 2904 - 

CH2 

symmetric 

stretching 

Glucose 

2933.0 2909.0 2940 2941.6 2941 - 

CH2 

asymmetric 

stretching 

 

3224.0 - - - 3234 - OH stretching Water 

3392.0    3319  

Source: This study 

As previously stated, honey predominantly consists of carbohydrates, 

particularly glucose and fructose, which account for 70-80% of its composition 

and are discernible in the fingerprint region. These carbohydrates play a crucial 
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role in determining the physical, chemical, and nutritional properties of honey. 

Consequently, the analysis of sugar composition holds great significance in 

evaluating honey. conventional methods for evaluating the sugar content of 

local honey have involved laborious chemical analyses. (Adjaloo et al., 2017; 

Ankrah, 1998; Combey et al., 2021; Klutse et al., 2021). However, the Raman 

spectroscopic technique can be cost-effective, non-destructive and rapid. 

532 nm Excited Raman Spectra Compared for Honey Samples on Different 

Types of Substrate 

Figure 38 shows the 785 nm excited Raman spectra of honey from 

different substrates: glass, silicone and back-coated glass mirror used in the 

measurement. Comparatively, all the substrates produced similar results. The 

Silica substrate, however, introduced an unwanted peak around 520 cm-1 

(Borowicz et al., 2012). Thus, a standard glass or mirror can still be used for the 

Raman spectroscopic study of honey samples. The silica substrate can also be 

used if the 520 cm-1 regions are non-essential in the measurement.  

 

Figure 38: Comparison of Raman spectra of honey on glass, silicone, and back-

coated mirror surface substrate 
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785 nm Excited Raman Spectra Compared for Honey on a Glass Slide and 

Honey in Vial 

Figure 39 shows the Raman spectra of honey measured through a plastic 

vial compared with the raw honey measured directly as a drop on a glass slide. 

Variations in the Raman spectra are apparent for both the vial and glass slide.  

 

Figure 39: Raman spectra of the honey sample measured on a glass slide 

compared with a plastic vial 

 

There is interest in non-destructive monitoring through sample 

packaging (Adar et al., 2014; Eliasson & Matousek, 2007, Zhao et al., 2018). 

However, in this study, as seen in Figure 39, the Raman spectral measurements 

of honey conducted through their respective containers resulted in alterations of 

certain peaks in the Raman spectra, particularly in terms of their intensity. The 

discrepancy in intensity can affect the spectral analysis quantitatively since 

intensities of the peaks play a significant role in the quantification of individual 

sugar molecules present. However, the peak positions in terms of wavelength 

remained intact; hence, qualitative studies, i.e., studies that identify molecular 

species based on peak position, are possible. The study on measuring Raman 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



94 

 

spectra of honey via packaging could be further explored for different container 

types and optimized in future studies.  

Principal Components and K-means Clusters of the 785 nm Excited Raman 

Spectra 

 The fingerprint region of the 785 nm excited Raman spectra of all 

samples used is shown in Figure 40. To ensure comparability, the spectra were 

processed by subtracting the background and subsequently normalised using the 

SNV method (Huzortey et al., 2021; Rinnan et al., 2009).  

 

Figure 40: The 785 nm excited normalised Raman spectra of all the honey 

samples from the different Agro-ecological zones of Ghana. (Sudan 

Savana (SS), Guinea Savana (GS), Transition, zone (TS), Semi-

Deciduous forest (SD), Moist Evergreen (ME) and Coastal Savana 

(CS)) used in the study. The number of honey samples from each 

Agro-ecological zone is stated in the legend 

 

PCA biplot of scores and loadings after applying PCA to the honey 

samples' 785 nm excited Raman spectra are shown in Figure 41. The scores 

show that the samples are vastly distributed, indicating heterogeneity. However, 

the scores of the first two PCs, PC1 (54%) and PC2 (24%), are relatively low, 
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inferring that the samples slightly varied between each other over a broad 

continuum.  

 

Figure 41: PCA- Biplot showing scores distribution of samples in PC1 and PC2 

axis with respective loadings influencing the sample distribution 

indicated by the wavelength and associated constituent from 

literature 

 

Again, from Figure 41, the loadings have been used to show the 

influence of the honey's peak wavelengths designated for specific sugars over 

the distribution of the samples in PC space. For instance, from Figure 41, along 

the PC1 axes, the sucrose band at 606.6 cm-1 has the most decisive influence on 

the positive PC1 axes, while the glucose/maltose band at 1148.45 cm-1 also had 

the highest impact on the negative PC1 axes. Therefore, samples in the positive 

PC1 axes have an amount of sucrose and vice versa for samples in the negative 

PC1 axes. Samples with more glucose were on the positive of the PC2 axes, 
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whereas those high in fructose were closer to the origin of the negative PC2 

axes.  

K-means clustering analysis applied to the PC scores identified 

subgroups of honey samples with similar sugar constituents (Figure 42). Cluster 

evaluation to determine the best number of subgroups identified optimal clusters 

of two and three using the Silhouette (Equation 16) and Davies Bouldin 

(Equation 17) methods, respectively, as shown in Figure 42.  

 

Figure 42: The evaluated K-means clustering using (a) the Silhouette and (b) 

the Davies-Bouldin method of scores from the principal component 

analysis of the Raman spectra from the honey sample to select the 

optimal number of classes existing among the samples from 

different agro-ecological zones 

 

The analysed K-means clustering of the PCA scores and respective 

spectra are shown in Figure 43. The identified clusters projected onto Raman 

spectra of the honey samples show each cluster's scores and separate spectral 

profile. 
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Figure 43: Groups of honey identified using K-Means Clustering analysis on 

the PC scores and their related Raman spectra for K=2 (a-b) and 

K=3 (c-d) 

 

Figure 43a shows that honey samples from the different agroecological 

zones dominated by sucrose (606.60 nm) for one group and glucose (1148.45 

nm) for the other group in the case of two clusters. However, in the case of three 

clusters, as seen in Figure 43c, a third group introduced by the Davies Bouldin 

method identified honey samples dominated by fructose (1079.43 nm). The 

spectral profile of each cluster, as shown in Figures 43b and 43d, are distinct 

and can therefore be averaged to represent each group.  

Knowledge of the dominance or proportions of these sugars in honey 

samples has significant implications for nutrition, marketing, and quality 

assessment. For instance, honey with high sucrose concentration will likely 

have been degraded or adulterated (Damto, 2019). Also, much more fructose 

content honey is encouraged for diabetic patients (Bobiş et al., 2018; Erejuwa 
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et al., 2012). Hence the importance of combining PCA and K Means for easy 

and rapid screening to group honey samples from different AEZ having similar 

properties. 

UV-Vis Transmission Spectra 

The SNV normalised optical transmission spectra from the honey 

samples are shown in Figure 44. The nature of the transmitted spectra is similar 

to that reported by other authors (Almaleeh et al., 2017; Bergamo et al., 2020; 

Ferreiro-González et al., 2018; Frausto-Reyes et al., 2017; Huang et al., 2019; 

Vlaeva et al., 2017; Zhao et al., 2011).  

 

Figure 44: SNV Normalised optical transmission spectra of all honey samples 

from the six agro-ecological zones of Ghana: Sudan Savannah (SS 

= 2), Guinea Savannah (GS =7), Transition Zone (TR = 6), Semi-

Deciduous Forest (SD = 6), Moist evergreen Forest (ME = 2) and 

Coastal Savannah (CS = 2) 

 

All the samples showed differences in transmission patterns. Each 

sample blocks the deep UV portion (< 350 nm) of the light source entirely and 
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allows higher transmission in the near-infrared region (> 750 nm). Some further 

blocked varying transmission portions of the visible parts of the light source. 

The blockades in the various regions of the transmission spectra can be 

attributed to phenomena such as absorption, reflection or scattering, depending 

on the nature of the samples worth investigating further. However, the variations 

in the transmission properties for different honey samples inadvertently indicate 

the presence of other underlying molecular species. These differences may be 

due to the reported absorbing molecules within the optical window between 200 

– 650 nm, suggesting the presence of phenols, flavonoids, proteins, vitamins, 

carotenoids, and in some cases, chlorophyll derivatives (Parri et al., 2020; Ulloa 

et al., 2013).  

Principal Components and K-means Clusters of the Transmission Spectra 

Figure 45 shows the PCA results for the transmission spectra of the 

honey samples. Using the elbow method, the variance plot (Figure 45a) reveals 

that the first three Principal Components (PC): PC1, PC2, and PC3 represent 

above 99% of the variance in the data. The important wavelengths responsible 

for the spectral variations observed from the loading plot (Figure 45b) are 580 

nm for PC1, 480 nm, 650 nm for PC2, 450 nm, 565 nm, and 740 nm for PC3. 
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Figure 45: The variance and (b) the loadings plots from the principal component 

analysis of the normalised transmission spectra of the honey 

samples. The arrow in the variance plot indicates the selected 

number of components by the elbow method 

 

Figure 46 shows the optimal number of clusters applied to the selected 

PCs using K-Means Clustering Analysis (KCA). From the figure, a maximum 

Silhouette value of 0.86 (Figure 46a) and a minimum Davies-Bouldin value of 

0.38 (Figure 46b) were both obtained for four (4) clusters. 

 

Figure 46: The evaluated K-means clustering using (a) the Silhouette and (b) 

the Davies-Bouldin method of scores from the principal component 

analysis of the transmission spectra from the honey sample to select 

the optimal number of classes existing among the samples from 

different agro-ecological zones. The arrows indicate the optimal 

number of clusters, where the Silhouette value is maximized and 

the Davies-Bouldin value is minimized. 
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Figure 47 shows the re-plotted normalised spectra after using the KCA. 

Similarities and differences in the transmission spectra of the samples are more 

apparent with the re-plotting. Compared with the AEZ, each cluster included a 

representative from different AEZ except cluster 4. All the honey in cluster 4 

was from Guinea Savanna. However, other samples from Guinea Savanna were 

also found in the other clusters. That implies that the honey samples' optical 

transmission properties are not generally dependent on their AEZ. The observed 

clusters can be categorized as C-350 (Cluster 1), C-430 (Cluster 2), C-500 

(Cluster 3), and C-600 (Cluster 4) to reflect the average wavelength position 

where transmission for the majority of samples in each cluster begins.   

 

Figure 47: Optical transmission signals depicting the four classes of honey, 

based on the K-Means Clustering analysis. Cluster 1: 350 nm, 

Cluster 2: 430 nm, Cluster 3: 500 nm, and Cluster 4: 600 nm can be 

identified by the wavelength at which transmission begins to occur 

for most of the samples in each group 
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The various samples in each category and the possible molecular 

absorption species responsible for the spectra observed for honey varieties, as 

reported by Parri et al., (2020) are shown in Table 11. 

Table 11: Honey classification based on transmission spectra showing the 

potential absorption species in the four clusters: Each cluster is 

composed of the honey samples established by their sample code 

Cluster Sample 

Code  

No of 

samples 

Potential absorbing species 

C-350 SS1, SD5, 

SD6 

3 Tryptophan,4-hydroxybenzoic, caffeic, 

vanillic, ferulic/ chlorogenic acid, syringic, 

and p-coumaric acids (280 – 290 nm); 

vitamin B6, vitamin B9, and quercetin (330 

– 340 nm); 

C-430 SS1, TR1, 

ME2, TR3, 

TR4, TR5, 

SD2, GS1, 

TR6, SD3, 

SD4, GS2, 

GS7  

13 Tryptophan,4-hydroxybenzoic, caffeic, 

vanillic, ferulic/ chlorogenic acid, syringic, 

and p-coumaric acids (280 – 290 nm); 

vitamin B6, vitamin B9, and quercetin (330 

– 340 nm); vitamin B2 (430 nm); carotenoids 

(400 – 500 nm) 

C-500 SD1, ME1, 

TR2, CS1, 

CS2 

5 Tryptophan,4-hydroxybenzoic, caffeic, 

vanillic, ferulic/ chlorogenic acid, syringic, 

and p-coumaric acids (280 – 290 nm); 

vitamin B6, vitamin B9, and quercetin (330 

– 340 nm); vitamin B2 (430 nm); carotenoids 

(400 – 500 nm) 

C-600 GS3, GS4, 

GS5, GS6  

4 Tryptophan,4-hydroxybenzoic, caffeic, 

vanillic, ferulic/ chlorogenic acid, syringic, 

and p-coumaric acids (280 – 290 nm); 

vitamin B6, vitamin B9, and quercetin (330 

– 340 nm); vitamin B2 (430 nm); carotenoids 

(400 – 500 nm); Chlorophyll pigments (600 

– 700 nm) 

Source:  This study 

From Table 11, C-430 contains most samples, implying that most honey 

samples from Ghana allow light transmission in wavelengths beyond 430 nm. 

Even though C-430 and C-500 had almost the same molecular species, slight 

differences can be seen in their spectral profile from Figure 48. The difference 

between the two categories of honey could be due to their carotenoid content 
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since C-430 honey samples had comparatively higher transmission within the 

400 nm - 500 nm region than C-500 samples. The C-350 generally comprises 

only amino acids, proteins, and phenolic acids. Meanwhile, the C-600 included 

every absorbing species found in all three different categories of honey, 

including chlorophyll.  

The matrix plot of different PC1, PC2, and PC3 combinations, as shown 

in Figure 48, reveals that the observed four groups occurred along the PC1 axes. 

The plots of PC1 vs PC2 and PC1 vs PC3 and the diagonals of the histogram 

plot confirm these groupings.  

 

Figure 48: Matrix plot comparing cluster pattern for different Principal 

Component (PC) score plot combinations. The matrix plot’s 

diagonal shows each cluster’s score distribution as a histogram. 

The four groups are better separated along the first Principal 

Component (PC1) 

 

From Figure 48, the four main clusters in honey can be identified along 

the PC1 axis. Hence, the wavelength with the highest loading value in the PC1 
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loading plot found to be 580 nm previously in Figure 45b is a critical wavelength 

for identifying honey in the different clusters. ANOVA and Tukey post-hoc test 

of the transmission intensities at 580 nm for each of the classes as 0.000 reveals 

significant differences (p < 0.005) among each pair of classes. As such, the class 

a new honey sample may belong to can be suitably determined by the 

transmission intensity around 580 nm. Therefore, 580 nm can be an optical 

marker to identify the various honey classes from the agroecological zones. 

Chapter Summary 

In this chapter, the results and analysis of data obtained from diverse 

optical spectroscopic techniques employed to investigate honey samples from 

distinct AEZ in Ghana were presented and discussed. The findings shed light 

on the comprehensive characterisation of honey, highlighting the variations and 

unique features observed across different regions, providing valuable insights 

into the composition and quality of the honey samples. Thus, this section shows 

the study's findings on honey using Transmission, Fluorescence, and Raman 

spectroscopic techniques. The results obtained from other measurements, 

including HPLC (for HMF), Refractometry (for Brix and Moisture) and UV Vis 

Absorbance (for colour), were presented. The data analysis outcomes obtained 

from the spectroscopic and other measurements were discussed after 

preprocessing, multivariate, and other statistical analyses. The study used 

preprocessing methods, including normalisation, on all the spectra data from 

each spectroscopic measurement. Spectral deconvolution and baseline 

correction, were specifically applied to the fluorescence and Raman spectral 

data, respectively. The results of the multivariate analysis, including PCA, 

KCA, and statistical metrics such as coefficient of variation, correlation 
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coefficient, and ANOVA, are also reported and discussed. The study shows how 

the spectroscopic techniques and other measurements combined with the 

different methods of analysis were used to identify the molecular constituents 

of raw honey from AEZ, observe the effects of conditions such as ageing, water 

dilution, heating, and adulteration, examine the relationship with 

physicochemical parameters such as colour, moisture Brix, and HMF. Also, it 

investigated how different excitation sources, sample preparation methods, 

substrate types, and sample containers affect the Raman spectral measurement 

of honey samples. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Overview 

Honey obtained from AEZ of Ghana have not been studied, thus the 

need for research to examine honey types from these zones to gain valuable 

insights into their composition and potential applications. The optical spectra of 

honey samples from the AEZ were measured using Laser-Induced Fluorescence 

(LIF), Ultra Violet–Visible (UV-Vis) Transmission, and Raman spectroscopy. 

The measured spectra of the honey samples were analysed using Multivariate 

analysis techniques, including PCA and KCA. The physicochemical properties 

of the honey samples such as colour, moisture, Brix, and HMF, correlated with 

the deconvoluted LIF spectra. Again, the LIF technique was used to study some 

conditions affecting honey, such as ageing, heating, adulteration by water 

dilution, and sugar caramel. The study further examined the effects on the 

Raman spectra of honey obtained with different excitation sources, sample 

preparation methods, substrate types, and container samples. The results of the 

entire study are summarised with drawn conclusions, recommendations, and 

suggestions for further studies have been provided. 

Summary 

This research explored the optical spectroscopic properties of honey 

produced in Ghana's AEZ using three optical spectroscopic techniques. Thirty-

two samples were obtained from the six AEZ of Ghana and used for the studies. 

The optical spectroscopic techniques, i.e. Raman, Fluorescence and UV-Vis 

Transmission spectroscopy, mainly identified the molecular constituents of the 
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honey samples. Specifically, the UV-Vis Transmission and LIF spectroscopy 

identified the honey samples' phytochemical constituents, especially flavonoids, 

polyphenols, vitamins, carotenoids, and chlorophyll derivatives. The Raman 

spectral analysis described the sugar composition of the honey samples, 

primarily glucose, fructose and sucrose. These molecules identified were 

confirmed with literature.  

The spectra data acquired through the three spectroscopic techniques 

were subjected to multivariate statistical methods for analysis. PCA and KCA 

were employed to extract meaningful patterns and groupings within the data, 

enabling comprehensive exploration and interpretation of the spectral 

information. The PCA score plot showed a scattered distribution of the spectral 

data from all three techniques, thus, establishing the heterogeneity of honey 

samples' diverse flora and overlapping of the different AEZ. Despite the 

scattered distribution of the scores, KCA applied to the PC scores for Raman 

and UV-Vis transmission spectroscopic techniques found clusters of honey 

samples with similar characteristics. KCA combined with PCA biplot revealed 

important wavelengths (or molecular constituents) responsible for each cluster.  

Three clusters were identified for the Raman spectra analysis, which was 

dominated by sucrose at 606.60 nm for one group, glucose at 1148.45 nm for 

the second group, and fructose at 1079.43 nm for the last group. Four clusters 

were identified for the UV-Vis Transmission spectra analysis; each cluster was 

identified by the wavelength at which transmission begins to occur for most of 

the samples in each group. Thus, the four clusters are identified by an onset of 

transmission around 350 nm, 430 nm, 500 nm, and 600 nm. Using ANOVA, the 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



108 

 

intensity of the group spectra at 580 nm was significantly different for each 

cluster; therefore, 580 nm serves as a critical wavelength for identifying the 

cluster in which any honey will belong. 

The study again analysed the LIF spectra of the honey samples under 

different conditions and correlated the deconvolved spectral parameters with 

physicochemical parameters. Observations made by comparing the LIF spectra 

of honey under different conditions showed that with ageing (four months, one, 

two, three years), water dilution (25%, 50%), heating (direct, in a water bath), 

and sugar caramel adulteration (10%, 20%, 30%, 50%), the LIF spectra were 

red-shifted in all the conditions tested. However, the LIF spectra were redshifted 

and intensity reduced simultaneously for sugar caramel adulteration. The 

changes in the LIF spectra of the honey samples concerning the various 

conditions occurred at different rates depending on the sample, thus 

reemphasising the heterogeneous nature of the samples. 

 For the correlation study, the deconvolved LIF spectra parameters of 

the honey samples were highly correlated to colour much more than Brix and 

Moisture. LIF spectra correlation with 5-hydroxymethylfurfural (HMF) showed 

general differences between honey samples having low (< 40 mg/kg), mild (40 

– 80 mg/kg), and high (>80 mg/kg) HMF based on the maximum peak position. 

However, a good linear correlation was only obtained for honey with low HMF 

(R2 = 0.927) for the deconvoluted peak at 490 nm (P1a) of the LIF spectra. Thus, 

using the linear model HMF = -44435.7 (P1a) +89.015 relation between HMF 

and P1a, i.e. the freshness of honey produced in Ghana can be predicted with 

up to 92% accuracy for honey with low HMF (40 – 80 mg/kg). 
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Also, further analysis of the Raman spectra of the honey samples 

obtained with different excitation sources, sample preparation methods, 

substrate types, and container samples revealed that high Fluorescence, which 

interferes with the Raman spectral measurement of honey samples, can be 

controlled using either the 785 nm excitation source or by pretreating the honey 

samples through dilution, heating, and charcoal treatment for 532 nm laser 

excitation. The charcoal pretreatment was most effective compared to the other 

methods. Additionally, usage of the recently proposed Second derivative 

preprocessing technique made it easier to completely recover and observe the 

Raman spectra of the honey samples from their noisy backgrounds for all the 

analysis. The study further showed that Raman spectral measurement was not 

affected by glass and mirror substrate but by minimal interference around 520 

cm-1 for Silicone substrate. Measurement of the Raman spectra of the honey 

sample through a container showed reduced intensity only, not the wavelengths; 

thus, Raman spectroscopy of analysis of honey is possible, but on a qualitative 

basis.  

Conclusions 

Based on the quantitative and qualitative analysis of the various optical 

spectra, this study has revealed that the Raman, Laser-Induced Fluorescence 

(LIF), and UV-Vis Transmission optical spectroscopic techniques in 

combination with Principal component and K-means clustering multivariate 

statistical methods are instrumental in analysing honey from different AEZ in 

Ghana. Generally, the results showed that the honey samples from each AEZ 

were highly heterogeneous in composition. However, the spectral 

characteristics of the honey samples were not unique to their respective AEZ.  
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Specifically, the UV-Vis Transmission spectroscopic technique showed 

that honey from all the AEZ transmitted UV and visible light in four ways. Thus, 

four groups of honey were identified. Among the four groups, all the honey 

samples blocked the deep UV portion of the transmitted light. Some further 

blocked part of the visible portion of the electromagnetic spectrum (EM), while 

others blocked the almost entirely visible portion of the EM spectrum. The 580 

nm has been identified as a wavelength marker for discriminating the groups. 

The honey samples can therefore act as radiation filters in the UV-visible region 

of the EM spectrum which can be used in products and devices that control 

radiation, like sunscreens in cosmetics and filters in optical devices.   

With the Raman spectroscopic technique, this study has shown that 

honey samples from all the agroecological zones can be categorised into three 

groups based on the dominance of either glucose, sucrose or fructose in the 

honey. The Raman spectroscopic technique, therefore, offers an invaluable 

approach that can be used to study honey from the various AEZ to prescribe for 

their appropriate dietary needs. The study further has shown that visible 

excitation sources can avoid fluorescence interference when the honey samples 

are pretreated, of which charcoal pretreatment is the best. Again, the study has 

shown a variety of sample substrates and samples in containers from which 

honey can be studied. Honey from Ghana can therefore be studied cost-

effectively since visible sources are more available and affordable in this 

jurisdiction and other emerging economies.  

The results from Laser-Induced Fluorescence (LIF) showed that honey 

samples from the various AEZ can be monitored for ageing, water dilution, 
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heating, and sugar caramel adulteration. It was also helpful in accurately 

predicting colour and, more particularly, the 5-Hydroxymethylfufural (HMF) 

content of honey to determine its quality. 

Overall, this study has for the first time highlighted the capability of 

utilizing optical spectroscopic techniques for valorizing local honey from 

Ghana. These techniques are non-destructive, rapid, and cost-effective, making 

them a suitable alternative for helping producers label their honey properly to 

project their values and promote appropriate usage. This study has provided 

baseline data on local honey and highlighted its optical properties for future 

studies. 

Recommendations 

According to the study's outcome,  

1. Optical spectroscopy techniques are highly recommended to 

help producers distinguish honey for their different properties 

such as for cosmetic and dietary applications. 

2. Regulatory and monitoring bodies in the country, like the Food 

and Drugs Authority (FDA), Ghana Standards Authority, Centre 

for Scientific and Industrial Research (CSIR), etc., can 

incorporate in their regulatory and monitoring activities to 

ensure quality control of fraudulent practices in the honey 

industry.  

These organisations can adopt optical spectroscopic techniques 

as simple, cost-effective, and rapid alternatives for analysing 

honey.  

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



112 

 

This study can also be further expanded to 

1. Explore additional optical spectroscopic techniques to further 

investigate honey samples, such as Fourier Transform Infrared 

spectroscopy (FTIR), Laser Induced Breakdown Spectroscopy 

(LIBS), and polarisation spectroscopy. These techniques offer 

valuable insights into different aspects of honey composition, 

such as molecular vibrations, elemental analysis, etc. enabling a 

comprehensive characterization of honey samples. 

2. Consider honey from other agro-ecological zones of the Sub-

Saharan African region. 

3. Study other common adulterants. 

4. Measure more physicochemical parameters and correlate with 

the optical spectra parameters of honey produced in Ghana. 
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APPENDICES 

APPENDIX A 

CHROMATOGRAM OF HMF STANDARD AND CALIBRATION 

REPORTS 

 

Figure 49: Chromatogram of HMF Standard 
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Figure 50: Calibration curve obtained for different concentrations HMF 

standard 
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APPENDIX B 

HMF CHROMATOGRAM OF ALL SAMPLES 

 

Figure 51: Chromatogram of honey sample S1 for HMF determination 
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Figure 52: Chromatogram of honey sample S2 for HMF determination 
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Figure 53: Chromatogram of honey sample S3 for HMF determination 
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Figure 54: Chromatogram of honey sample S4 for HMF determination 
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Figure 55: Chromatogram of honey sample S5 for HMF determination 
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Figure 56: Chromatogram of honey sample S6 for HMF determination 
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Figure 57: Chromatogram of honey sample S7 for HMF determination 
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Figure 58: Chromatogram of honey sample S8 for HMF determination 
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Figure 59: Chromatogram of honey sample S9 for HMF determination 
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Figure 60: Chromatogram of honey sample S10 for HMF determination 
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Figure 61: Chromatogram of honey sample S11 for HMF determination 
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Figure 62: Chromatogram of honey sample S12 for HMF determination 
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Figure 63: Chromatogram of honey sample S13 for HMF determination 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



153 

 

 

Figure 64: Chromatogram of honey sample S14 for HMF determination 
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Figure 65: Chromatogram of honey sample S15 for HMF determination 
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