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ABSTRACT

In this work, the inverse eigenvalue problem is studied in the context of singu-

lar symmetric and Hermitian matrices, with a particular emphasis on ranks five

and six. We looked into ways to solve singular symmetric and Hermitian ma-

trices’ Inverse Eigenvalue Problem (IEP). We devised a method to reconstruct

such matrices from their eigenvalues, based on a solvability lemma. Through

innovative methodologies, we aim to provide effective solutions for determin-

ing the original matrices from their eigenvalues, shedding light on challenges

posed by singularity and higher rank. In the case of n × n matrix, the number

of independent matrix elements would reduced.
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CHAPTER ONE

INTRODUCTION

In matrix analysis most specifically symmetric and Hermitian matrices,

they are seen in science, engineering and physics in particular that inverse prob-

lems are among the most significant mathematical challenges. Several mathe-

maticians and researchers contributed to the development of the inverse eigen-

value problem (Fallat & Hogben, 2007). The inverse eigenvalue problem can

be found in several disciplines, including control theory, signal processing, and

system identification. It has numerous real-world applications in the fields of

engineering and science where it is necessary to comprehend or create systems

based on defining characteristics.

Background to the study

The inverse problem is a concept that arises in various fields of science,

engineering, and mathematics. In essence, it involves the challenge of deter-

mining the input or cause of a given observed output or result. In other words,

instead of starting with known inputs and predicting the outcomes, the inverse

problem involves working backward to deduce the inputs from the observed out-

comes. An inverse problem involves estimating the value of parameters defining

the system under study for the results of real observation. An inverse problem

uses the effect to calculate the causes. This type of problem is often encoun-

tered in situations where direct measurements of the cause or input are difficult

or impossible to obtain, but the resulting outcomes or measurements are read-

ily available. Solving the inverse problem requires making assumptions, using

models, or employing computational techniques to approximate the unknown

inputs that could have produced the given outputs.

Here are a few examples of inverse problems in different domains:

1. In medical imaging, ( X-ray, MRI, CT scans), the goal is to reconstruct the in-

ternal structures of the body from the observed measurements. This involves
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solving the inverse problem to obtain an accurate representation of the distri-

bution of tissues or substances within the body. The properties of subsurface

geological structures (e.g., oil reservoirs, fault lines) from seismic wave mea-

surements recorded on the Earth’s surface.

2. Signal Processing is another application, such as audio or speech processing,

the goal might be to retrieve the original signal (input) from the recorded

signal (output) that has undergone various distortions, noise, or filtering.

3. In statistical modeling and machine learning, parameter estimation can be

considered an inverse problem. Solving inverse problems can be challenging

due to the potential non-uniqueness and noise in the observed data.

An inverse eigenvalue problem concerns the rebuilding of a coefficient

structured matrix from prescribed spectral data (Chu & Golub, 2002).

According to Dehghan Niri, Shahzadeh Fazeli, and Heydari (2020), an inverse

eigenvalue problem concerns the reconstruction of a matrix with a special struc-

ture from prescribed spectral data. Limiting the number of different options

that are normally feasible requires that in addition to the spectrum requirement,

the matrix produced maintains a required structure if a solution is not found.

Addressing the inverse eigenvalue problem often involves constructing matri-

ces that satisfy the given eigenvalue constraints and have connections to opti-

mization and spectral theory. Rothblum (2006) explains that an inverse eigen-

value problem can also be used in mathematical modeling and parameter iden-

tification. The inverse eigenvalue problem is a mathematical problem where

the goal is to find a matrix that has given eigenvalues and possibly other spec-

tral properties (Rothblum, 2006). Specifically, given a set of eigenvalues and,

optionally, some additional constraints, the task is to determine a matrix that

possesses those eigenvalues. Solving the inverse eigenvalue problem for non-

singular symmetric matrices has occupied most research efforts (Oduro, 2014;

Deakin & Luke, 1992; Chu & Golub, 2002; Chu, 1998). The non-negative

eigenvalue problem of symmetric matrices remained the focus of several schol-

2
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ars (Marijuán, Pisonero, & Soto, 2007; Soto & Rojo, 2006; Egleston, Lenker, &

Narayan, 2004). The issue of singular symmetric matrices with varying size and

order has been practically tackled by (Baah, 2012 and Aidoo, Gyamfi, Ackora-

Prah, & Oduro, 2013), provided that linear dependence links are given.

Wu (2011) has also made clear statements regarding the prerequisites and solv-

ability of the non-negative aspect of the inverse eigenvalue problem of symmet-

ric matrices. The inverse eigenvalue problem is an important and challenging

area of research with applications in various fields, including control theory,

systems identification, and structural mechanics. Solving this problem is not al-

ways straightforward, and it heavily depends on the specific constraints imposed

and the properties of the given eigenvalues.

Some variations of the inverse eigenvalue problem include.

1. Completing a given set of eigenvalues that is given a partial set of eigenvalues,

the task is to find a matrix with those eigenvalues.

2. The symmetric inverse eigenvalue problem is the version of the problem that

restricts the search to symmetric matrices .

Solving the inverse eigenvalue problem requires advanced mathematical tech-

niques, and there may not always be a unique solution. Depending on the given

conditions and constraints, there might be multiple matrices that satisfy the re-

quirements. Researchers in this field employ various algorithms, optimization

methods, and numerical techniques to tackle the problem efficiently. Due to

the complexity of the problem and the lack of a unique solution in many cases,

the inverse eigenvalue problem remains an active area of research in applied

mathematics and engineering.

Iterative methods, sometimes referred to as iteration methods, are numeri-

cal approaches that are used to solve mathematical problems, usually when find-

ing exact answers is difficult or computationally expensive. These techniques

are iterative because they begin with a first guess and keep refining it until they

3
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arrive at a workable answer .

Typical iteration techniques include the following

1. Jacobi Method is an iteration approach used to determine the structure of

linear equations. It updates each component of the solution vector based on

the components of the previous iteration.

2. The Newton-Raphson Method is a technique for finding the roots of real-

valued functions.

3. The Gauss-Seidel Method is another method to solve systems of linear equa-

tions, but it updates each component of the solution vector using the most

recent values available in the current iteration.

4. Successive Over-Relaxation (SOR) is an extension of the Gauss-Seidel method

that incorporates relaxation factors to improve convergence speed.

5. Conjugate Gradient Method systems of linear equations, often arising from

problems in optimization and finite element analysis.

6. Richardson Iteration is a basic iterative method used to solve linear systems,

based on a simple matrix transformation.

7. Krylov Subspace Methods is a family of iterative methods that seek

approximate solutions within a subspace generated by the matrix and

initial guesses.

A concept from linear algebra related to square matrices is called an eigen-

value. Eigenvalues are special scalars dealing with linear systems of equations

(Marcus & Minc, 1988). We can use eigenvalue and eigenvector in physics and

engineering applications. Each eigenvalue has a matching ”eigenvector” that is

coupled with it. Eigenvectors are a unique collection of vectors linked to a linear

system of equations (Marcus & Minc, 1988). In the context of classification and

matrix diagonalization, along with equilibrium and vibration inquiry, eigenval-

ues and eigenvectors are also utilized. According to Voyevodin (1983),

4

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



BX = λX , (1)

when scalars λ, its matching eigenvector,X are present, λ is referred to as the

eigenvalue of B. Therefore X ∈ R ̸= 0.

Let B be n× n square matrix



b11 b12 · · · b1k

b21 b22 · · · b2k
...

... · · · ...

bk1 bk2 · · · bkk


(2)

the matching eigenvectors fulfill when the eigenvalues are λ,



b11 b12 · · · b1k

b21 b22 · · · b2k
...

... · · · ...

bk1 bk2 · · · bkk





y1

y2
...

yk


= λ



y1

y2
...

yk


(3)

it is the homogeneous method’s counterpart BY = 0, that is



b11 − λ b12 · · · b1k

b21 b22 − λ · · · b2k
...

... · · · ...

bk1 bk2 · · · bkk − λ





y1

y2
...

yk


=



0

0

...

0


(4)

There are different ways to write equation (4):

5
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(B − λI)Y = 0 (Voyevodin, 1983)

The identity matrix is represented by I in the equation above. When linear

equations have nontrivial solutions and the determinant vanishes, then the given

solution is det(B − λI).

A matrix is a collection of numbers arranged into fixed numbers of rows

and columns. A matrix is a rectangular array of numbers, symbols, or expres-

sions arranged in rows and columns. Matrices are an essential mathematical

concept used in various fields, including linear algebra, computer graphics,

physics, engineering, and many other disciplines.

Below are some forms of matrices;

A matrix with a single row is referred to as a row vector, while a matrix

with a single column is referred to as a column vector.

An identity matrix is a special square matrix in which all diagonal elements are

1 and all other elements are 0.

One unique feature of a square is that it is identical to its transpose when it is a

symmetric matrix. Moreover, if were to reflect a symmetric matrix over its main

diagonal, the matrix would remain unchanged. That is AT = A (Strang, 2012).

A square matrix where the transpose of the matrix equals its negative is called a

skew-symmetric matrix, QT = −Q (Bronshtein & Semendyayev, 2013).

The transpose of a matrix is obtained by interchanging its rows and columns.

Herstein and Winter (1988), the transpose of a matrix is obtained by interchang-

ing the rows with the columns of a given matrix.

Example, if

Q =

a b

c d

 then QT =

a c

b d


Connell (2002), transpose is a function to Rmn. QT ,Rnm is the matrix whereby

the (i j) term is the (j i) term of Q. So, row i (column j) of Q generates column j

(row i) of QT . The transpose of a matrix involves flipping its rows and columns,

6
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effectively turning its rows into columns and columns into rows. Keep in mind

that not every matrix has a transpose. Only rectangular and square matrices, un-

dertake transpose. Matrices of the same dimensions matrices can added or sub-

tracted. Matrix multiplication is a bit more complex. For two matrices X(m×p)

and Y (p×n), the resulting matrix Z(m×n) is obtained by taking the dot product

of the rows of X and the columns of Y . Matrices have numerous applications in

various fields, such as solving systems of linear equations, representing trans-

formations in computer graphics, and analyzing networks and data sets. They

provide a powerful tool-set for solving complex problems and are a fundamental

building block in linear algebra and related mathematical disciplines.

A symmetric matrix is a square matrix that is the same as its transpose.

Q = QT (Lipovetsky, 2013). In a symmetric matrix Q, for instance, the ele-

ment at the ith row and jth column is the same for all i and j as it is at the

jth row and ith column (Draper & Smith, 1998). Mathematically it can be rep-

resented as Q = QT . A symmetric matrix is always diagonalizable, meaning

it can be expressed as a product of three matrices: Q = PDP−1. Symmetric

matrices are applied in linear algebra, physics, computer science, and statistics

among others. Their symmetry simplifies calculations and makes them valuable

in solving certain types of problems efficiently. If a matrix is symmetric then

Qn is also symmetric where n is an integer. Also, if Q is symmetric then Q−1 is

also symmetric.

For singular symmetric matrices special techniques and considerations are

required. Therefore combining both conditions, a singular symmetric matrix

that is symmetric (AT = A) and singular (det(A) = O). If the determinant is

0, the matrix cannot be inverted. The presence of zero eigenvalues in matrix

A possesses additional difficulties in finding a suitable matrix B. If matrix A

has zero eigenvalues, it means the traditional inverse eigenvalue problem may

not apply directly. So you need to use an altered algorithm to deal with it. In

many different branches of mathematics and applications, such as linear alge-

bra, optimization, and physics, singular symmetric matrices are present. Singu-

7
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lar symmetric matrices can also be applied in engineering and various science

fields.

A Non-singular symmetric matrix is a square matrix that has an inverse

and is also symmetric. Due to their well-defined features and ability to fre-

quently represent significant transformations or relationships, such matrices are

of special importance in several branches of mathematics, physics, and engi-

neering.

The determinant of a square matrix is a scalar value that can be computed

from the elements of the matrix. It is a fundamental idea in linear algebra with

several geometric and algebraic applications. The determinant is commonly

written as det(B) for a square matrix B of size n× n.

Theorem 1.1. For real symmetric characteristics, the eigenvalue and polyno-

mial CA(x) have real roots.

Theorem 1.2. Eigenvectors with independent eigenvalues for actual symmetric

matrices are diagonal (Weiss, 2019).

Hermitian matrices are the complex extension of real symmetric matrices.

It can be easily proved that when two Hermitian matrices add up the results will

be Hermitian. A square matrix of the form Q = [qij]n×n, where QT = [qji]n×n

is the conjugate transpose of Q, is the definition of a Hermitian matrix. This

means that for every qij ∈ Q, there is also qji ∈ QT . Example: Matrices Q and

P shows example of complex and real Hermitian matrices respectively;

Q =


2 1 + 5i 3

1− 5i 4 2i

3 −2i 7

, P =


1 3 4

3 6 5

4 5 8



Theorem 1.3. The sum of the components of the major diagonal or( the diagonal

from the top left to the lower right), defines the trace of a n × n square matrix

8
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A.

tr(A) =
∑n

i=1 λαij ,i=j

(Sasikumar, Karthikeyan, Suganthi, & Madheswaran, 2009).

An n× n matrix Q has as its determinant (Q− λI). To obtain a polynomial or

characteristics equation, set the determinant to zero.

∆(λ) =



q11 − λ q12 · · · q1n

q21 q22 − λ · · · q21
...

...
...

qn1 qn2 · · · qnn − λ


The polynomial in λ that makes up the secular determinant as stated as follows

∆λ = (−λ)n−p1(−λ)n−1+p2(−λ)n−2+p3(−λ)n−3+· · ·+pn−1(−λ)+pn = 0

Theorem 1.4. All eigenvalues of Hermitian matrices are real.

Theorem 1.5. Hermitian Matrices possess perpendicular.

Theorem 1.6. A symmetric matrix is produced when two symmetric matrices

are added together. Proof: Assume S = A + B and A,B ∈ Symm(n). Con-

cerning the inequality trace

tr(A) + tr(B) = tr(A+B)

∑n
i=1 λµαi(Q) +

∑n
j=1 λµβj(B) =

∑n
k=1 δµk(S)

(Simovici, 2012 ; Bronshtein & Semendyayev, 2013 ; Zhang & Golub, 2001).

Theorem 1.7. The inverse is distinct. In other words, if X has inverses Y

and Z, then Y = Z. This is proven. Let us assume XY = ZX = I . In contrast,

Y = IY = (ZX)Y = Z(XY ) = ZI = Z. Moreover, if X is non-singular,

then so is X−1. (X−1)−1 = X.

9
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Theorem 1.8. If Q and M are similar n × n matrices, then they have the same

eigenvalues.

Proof: An invertible matrix P exists such that Q = P−1MP since M and

Q are similar. Based on determinant qualities, it can be inferred that

|λI −Q| = |λI − P−1MP |

= |P−1λIP − P−1MP |

= |P−1(λI −M)P |

= |P−1||λI −M ||P |

= |P−1||P ||λI −M |

= |P−1P ||λI −M |

= |λI −M |

Theorem 1.9. Let S be a symmetric matrix such that S = ST and let A be

a non-symmetric matrix such that −A = AT . Then tr(SA) = tr(AS) (Soto,

2016).

Rank is the dimension of the vector space spanned by the rows (or columns)

of the matrix. For any matrix A, the rank-nullity theorem states that the sum of

the rank of A and the nullity of A (the dimension of the null space) is equal

to the number of columns of A. Mathematically, rank(A) + nullity(A) =

columns(A). The rank of a matrix is useful in various applications, including

solving systems of linear equations, finding the inverse of a matrix, and under-

standing the number of independent equations in a system. There are several

methods, according to Johnston (2021) to compute the rank of a matrix, we use

row reduction techniques (eg., Gaussian elimination).

Rank and Solutions of Linear Systems:

The rank of a coefficient matrix in a system of linear equations is related to the

existence and uniqueness of solutions. Otherwise, there may be infinitely many

solutions or no solutions at all. The rank of matrices is essential in linear algebra

10
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and is applicable in various fields, such as engineering, physics, computer sci-

ence, and data analysis. The matrix is stable and unique at the higher ranks. As

a result, the likelihood that the inverse eigenvalue problem’s solution is unique

increases when the provided matrix has full rank. The problem becomes more

ill-posed and less unique if the matrix has a lower rank, which occurs when

some rows or columns are linearly dependent.

For a system to be stable, all eigenvalues must have negative real portions for

continuous-time systems or must be located inside the complex plane’s unite

circle for discrete-time systems.

Statement of the Problem

The current research in the area of solving inverse eigenvalue problem for

singular symmetric matrices is up to rank four. The research aims to address the

Inverse Eigenvalue and Problem (IEP) specifically for singular symmetric and

Hermitian matrices with ranks five and six. The problem involves determining

a suitable set of matrix entries that satisfy the given eigenvalue constraints, fo-

cusing on the unique challenges posed by matrices of these ranks. The goal is

to provide a solution algorithm that effectively reconstructs singular symmet-

ric and Hermitian matrices of ranks five and six based on specified eigenvalue

conditions. The proposed research seek to provide solutions and insights into

this special domain. This research will improves the understanding of matrices

properties and also lead to numerical stability and applicable in quantum me-

chanics and engineering domain.

Purpose of the study

Finding a solution to the inverse eigenvalue problem for singular sym-

metric and Hermitian matrices of ranks five and six is the goal of this research.

The research will maintain a particular specific structure that satisfies a specific

spectral property. The two main concerns that arise are theoretical ones related

to solvability and practical ones related to computation for inverse eigenvalue

11
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problems. This research focuses on the solvability of the inverse eigenvalue

problem.

Theorem 1.10. A condition that must be met for a matrix with the principal

diagonal a1, a2, · · · , an and eigenvalues, λ1, λ2, · · ·λn is

∑n
n−i ai =

∑n
i=1 λi

The next stage in the investigation is unquestionably to establish, as indicated

by Mirsky (1964), the relationship between large diagonal elements and the one

values of the general matrix. This correlation was found independently by (Sing,

1976 and Thompson, 1977).

Theorem 1.11. (Sing- Thompson theorem) Each of the two vectors d, s ∈ Rn

has entries organized in the following orders: s1 ≥ s2 ≥ · · · ≥ sn and |d1| ≥

|d2| ≥ · · · ≥ |dn|, respectively. Then, a real matrix A ∈ Rn×n exists, with main

diagonal entries (d) having a potentially distinct order and a single symmetric

value (s).

∑n
i=1 |di| ≤

∑n
i=1 si

for all i = 1, 2, · · ·n (
∑n−1

i=1 |di|)− |dn| ≤(
∑n−1

i=1 si)− sn

The primary focus has instead been on developing a method for numerically

constructing a matrix beforehand where the given spectral data are possible

Research Objectives

Aidoo et al. (2013) design strategy of constructing singular symmetric

matrices displaying up to rank four using eigenvalues. Therefore, the objectives

are:

1. Construct singular symmetric matrices of ranks five and six using the eigen-

values.

2. Generate singular Hermitian matrices of ranks five and six using the eigen-

values.

12
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Research Questions

The research questions is based on the objective stated.

1. How can singular symmetric matrices of specific ranks, particularly ranks five

and six be systematically constructed?

2. What are the procedures of generating a singular Hermitian matrix of ranks

five and six?

Significance of the Study

As far as the researcher is aware, research on solving the inverse eigen-

value problem for singular symmetric matrices is currently conducted at a rank

four level. Consequently, increasing the scope of the inverse eigenvalue prob-

lem search for singular symmetric matrices of ranks five and six will improve

knowledge in academia. The research find it applications in quantum mechanics

and engineering domain.

Delimitations

The work may have taken into consideration the inverse eigenvalue prob-

lems for non-singular symmetric matrices and skew-symmetric matrices of rank

five and six. This paper, however, focuses on the inverse eigenvalue problem for

ranks five and six singular symmetric and Hermitian matrices.

Limitations

The work on the inverse eigenvalue has been restricted to rank five and

six singular symmetric and Hermitian matrices since only three matrices were

examined.

Definition of Terms

Hermitian matrices are the complex extension of real symmetric matrices.

Rank is the dimension of a vector space spanned by the rows and columns of

13
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the matrix.

Skew-symmetric matrix, also known as an anti-symmetric matrix, is a square

matrix where the transpose of the matrix is equal to its negative (Riondato,

Garcı́a-Soriano, & Bonchi, 2017).

Symmetric matrix is a type of square that has a special property: it is equal to

its transpose. Moreover, if were to reflect a symmetric matrix over its main di-

agonal, the matrix would remain unchanged. That is AT = A.

Trace is the total of all the elements on the matrix’s major diagonal.

Transpose of a matrix is an operation that switches its rows with its columns.

Organization of the Study

We have previously talked about the first chapter. The subsequent chapters

are explicated as follows as well: In Chapter Two, some relevant material on the

IEP of Hermitian and singular symmetric matrices is reviewed. The research

approach and techniques are presented in Chapter Three. The primary findings

of the study are presented in Chapter Four. In the study, a summary, findings,

conclusions, and recommendations are found in Chapter Five.

14
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CHAPTER TWO

LITERATURE REVIEW

Introduction

The IEP of singular symmetric matrices specified ranks up to four were

discussed by the author. Acknowledging the paucity of literature on the topic,

the researcher chose to consider the many variations of the symmetric matrix in-

verse eigenvalue problem (Kandić, Reljin, et al., 2008). The researcher decided

to take into account the numerous ways that the eigenvalue problem came to

be solvable. We provide an overview of findings for general inverse eigenvalue

problems as well as nonnegative eigenvalue problems in our work. Researchers

continued to explore different approaches, numerical algorithms, and techniques

to address this problem. It offers insights into the properties of specific matrix

structures and can lead to the development of novel mathematical techniques

and algorithms for solving complex problems in real-world scenarios. It is noted

that the theoretical framework of eigenvalues is a powerful tool in linear algebra

that enable us to understand and analyze complex system and structures (Aidoo

et al., 2013). Circumstances under which Chu (1998), demonstrate how a col-

lection of inverse eigenvalue problems are recognized and categorized following

their properties.

Least Square Inverse Eigenvalue Problem (LSIEP)

The goal of LSIEP is to identify a matrix whose eigenvalue difference

from a specific set of target eigenvalues as minimal as possible. This implies

that there exist situations where an approximation, best in the least squares

sense, might be adequate. We go over how to get the least squares solution

in this part. All the topics discussed at this point can be naturally extended to

the least squares formulation. We therefore need to make clear two definitions

for a least squares approximation, depending on whether the requirement is to

be imposed explicitly. Reducing the difference between the eigenvalues is an

appropriate way to do this (LSIEP) (Chu, 1998).
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Given a set of scalars λ1, λ2, · · · , λn ∈ F , (m ≤ n), find a matrix X ∈ N of

indices with 1 ≤ σ1 < · · · ≤ σn.

F (X, σ) = 1
2

∑m
i=1 λσi

(X)− λi)
2 (5)

where the matrix X’s eigenvalues, λ(X), i = 1, · · · , n, are reduced. Note that

the cardinally of the required set of eigenvalues is m, which could be less than n.

As such, for any fixed point, LSIEP is always associated with a computational

problem. By measuring and reducing the difference between the matrices the

least square approximation can also be expressed in this manner. Determine the

set

F (X) :=
1

2
||X − P (X)||2 (6)

that reduces the function from a set of P that fulfills a specific spectral restric-

tion and a set N that defines a structure restriction.

Parameterized Inverse Eigenvalue Problem(PIEP)

In both linear algebra and control theory, there is a mathematical issue

known as the (PIEP). The objective of this task is to locate a matrix whose

eigenvalues, subject to some extra constraints imposed by parameters, match a

given set of desired eigenvalues, and maybe eigenvectors as well. Determine the

value of the parameter r such that 1, · · ·n = Q(r) given a family of matrices

Q(r) ∈ X . Remember that m might not have as many parameters in r as n

does. The formal definition of the family of matrices Q(r) in terms of r deter-

mines how the PIEP appears and is solved. Its format typically appears in factor

analysis and discrete modeling. One element common to all PIEP versions is

the usage of the parameter r as a ”control” that provides a particular, preset so-

lution to the underlying problem; examples illustrating various characteristics

are given in the next section.
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Addictive Inverse Eigenvalue Problem (AIEP)

The AIEP involves finding a matrix whose eigenvalues are the negatives of

the eigenvalues of a given matrix. Conditions for the existence and uniqueness

of solutions to AIEP are frequently explored in this field of study. Moreover, the

set N can be used pretty widely aside from this. Therefore, we can put a specific

structural restriction on the solution matrix X using the set N . Structure on N

can occasionally develop naturally because of the engineer’s design constraints.

On the other hand, Chu, Diele, and Ragni (2005) F = R and M = H(n),

N = DR(n) can be used to represent AIEP (Downing Jr & Householder, 1956).

In this regard, the separation of the boundaries valuation challenge with the M

Jacobi matrix. As an illustration

λu(x) = U”(x) + p(x)u(x) (7)

0 = u(π) = u(0).

the eigenvalue problem in a tridiagonal configuration is automatically brought

about the fundamental variation equation with homogeneous correspond

h = π
n+1

1
h2



2 −1 0

−1 2 −1

0 −1 2 · · · 0

... . . .

0 2 −1

0 −1 2


+X


u = λu

In this case, p(x)’s separation is reflected by the diagonal matrix X . In addi-

tion to this, an AIEP can be considered the discrete analog of the recognized
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inverse Strum-Liouville problem, in which it is essential to determine the po-

tential p(x) to guarantee that the system has the intended spectrum (Zhao, Hu,

& Zhang, 2011). There is an association between the collaboration problem as

stated by (Friedland, Nocedal, & Overton, 1987; Friedland, 1977) and the issue

of schooling. In the first one, given an actual symmetric matrix B with zero di-

agonal figures, create a diagonal matrix D such that the total of B +D contains

as numerous zero eigenvalues as possible. To ensure that B−D and B−D stay

positive semidefinite while D’s record is lowered, in the second case, a positive

diagonal matrix D must be created given a real symmetric positive definite ma-

trix B.

Multiplicative Inverse Eigenvalue Problem (MIEP)

An n × n square symmetric matrix B is per-multiplied by a vector Y

which includes the parameter d = {d1, d2, · · · , dn} so that Y B =
∑n

i=1 diB

where di ∈ Y , (Oliveira, 1972). Some rows become linear combination of other

rows after the multiplication. Some authors have treated the solvability of the

MIEP, for example (Hadeler, 1969; Oliveira, 1972; Shapiro, 1983). For practi-

cal applications, numerous mathematical approaches have also been developed.

If Y =

1 5

2 1

 and P =

e f

0 1

,

consequently

Y P =

1 5

2 1

 P =

e f

0 1

,

e+ 2f 5e+ f

2 1
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Consequently, the structure meets the requirements by the eigenvalues of

the matrices.

∥∥∥∥∥∥∥
λ1λ2 = 1e

λ1 + λ2 = 1 + e+ 2f

∥∥∥∥∥∥∥
We show that there is certainly a set (e, f) of real numbers that solve

MIEP given any λ ∈ R2. In this instance, the outcome is distinct. From a math-

ematical perspective, compound analysis and linear equations are related to the

multiplicative inverse eigenvalue problem. The product of a square matrix P

and a matrix Q is the identity matrix I since matrix Q is located. Numerous

disciplines, including control theory, system analysis, and numerical analysis,

all have uses for this issue. Finding the multiplicative inverse of a matrix, for

instance, is essential in control theory for resolving specific control problems

and doing stability analysis. Dumond and Baddour (2016), it can be difficult to

solve the multiplicative inverse eigenvalue problem, and it frequently calls for

complex mathematical procedures and methods. It’s crucial to remember that

not every matrix has a multiplicative inverse. Invertible or non-singular matrices

are matrices with multiplicative inverses. If and only if a matrix’s determinant is

nonzero, the matrix is invertible. The multiplicative inverse eigenvalue problem

is a key issue in linear algebra that has applications in many fields of science

and mathematics.

Partial Described Inverse Eigenvalue Problem (PDIEP)

There are times when partial eigenvalues and eigenvectors are available

during the rebuilding of a structure, rather than the entire range. With lim-

ited information available, the PDIEP entails identifying a subset of a matrix’s

eigenvalues and matching eigenvectors. Numerous applications, including con-

trol theory and fundamental dynamics, encounter this problem. To solve this

issue approaches such as system detection and methods of optimization are fre-

quently utilized, which involve building the missing eigenvalue and eigenvec-
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tors from the given data (Hald, 1976). The process of answering the partial

inverse eigenvalue problem usually entails expressing the issue analytically and

creating techniques or procedures to identify a matrix on the given subset of

elements that meets the provided constraints of (PDIEP) (Hald, 1983). Given

vectors v1, · · · , vk. ⊂F n scalars λ1, · · · , λn⊂ F where 1 ≤ k < n, determine a

matrix X ∈ N which is Xv1 = λiv
1 for i = 1, · · · , k. For example,

M
d2

dt2
+ C

d

dt
v + kv = 0. (8)

That happens in many instances in which M is a positive integer and M , C, and

K all symmetric. When variables are separated, the system inevitably results in

the quadratic -matrix issue.

Consider now the state feedback pressuring mechanism of the following pro-

vides:

u(t) = b(fT d

dt
v(t)) + gTv(t) (9)

is applied to the system, assuming vectors b, f, g ∈ Rn are constant. The λ

matrix problem with pencil is the resultant the closed-loop system.

Qλ = Mλ2 + (c− bfT )λ+ (k − bgT ). (10)

This feedback control u(t) aims to shift the unstable or unsatisfactory eigenval-

ues or substantially induce motion occurrences in the structure while keeping the

positive eigenvalues. This concept leads to the partial pole assignment challenge

that follows. The result of applying the previously described feedback control

u(t) to a dynamical system is a pole assignment. A different kind of PDIEP that

is similar to the PDIEP has the form provided with the corresponding eigenval-

ues, M , C, and K along with their corresponding eigenvalues (λ1, · · ·λn) of the

quadratic pencil

P (λ) = Mλ2 + Cλ+K (11)

Given a predetermined vector b ∈ Rn and m complex numbers, such as u1, · · · , um,

m ≤ n, find f, g ∈ Cn that equals the closed loop pencil’s spectrum.
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Q(λ) = Mλ2 + (c− bfT )λ+ (k − bgT ) (12)

has a spectrum u1 · · · , ux, λa+1,· · · ,λ2y (Chu, 1998).

Theorem 2.1. Divide the matrices representing the eigenvalue and eigenvector

of into P = [P1, P2] as λ = diag(Λ1,Λ2 · · ·Λn) where X2 ∈ Cn×(2x−y), P1 ∈

Cx × y. Λ1 ∈ Dc(x), and Λ2 ∈ Dc(2yx. Define β = [β1, · · · , βx]
y T ∈ Cx by

βj =
1

bTxj

µj − λ

λj

∏
i=1̸=j

µi − λj

λi − λj

Afterward the vector pair

f := MX1Λ1β

g := −KX1β

Multivariate Inverse Eigenvalue Problem (MVIEP)

It involves constructing a matrix with specified eigenvalues and eigenvec-

tors. A mathematical issue in control theory and linear algebra is the multi-

variate inverse eigenvalue problem. Sharma and Sen (2018), the objective of

MVIEP is to locate a matrix with a predetermined set of eigenvalues given a set

of matrices. Solving the multivariate inverse eigenvalue problem often involves

optimization techniques and algebraic methods to generate matrices that satisfy

the prescribed eigenvalue and eigenvector conditions. Formally, the multivari-

ate inverse eigenvalue problem seeks a matrix X whose eigenvalues are pre-

cisely (λ1, λ2, · · · , λk) given a set of matrices A1, A2, · · · , Ak and a set of target

eigenvalues λ1, λ2, · · · , λk. Other restrictions may be placed on X as well. In

a multivariate eigenvalue problem, actual integers λ1, · · · , λm and actual vari-

ables x ∈ Rn must be found in MVIEP to solve problems. Real scalars and a

real vector must be located so that equations. Bx = Λx

In the case when B ∈ S(n) is a block-divided positive definite matrix, i =

1, · · · ,m =,1 = ||xi|| , are satisfied
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A =



B11 B12 · · · B1m

B21 B22 · · · B2m

...
... · · · ...

Bm1 Bm2 · · · Bmm


.

There is a lateral the matrix λ.

Λ = diag{λ1I
n1 , · · · , λmI

nm}

Blocks are created by partitioning x ∈ Rn into identity matrices of size ni and

Ini .x =xT
1 , · · · , xT

m (Chu, 1998 ; Efron & Morris, 1976) using xi ∈ Rni . In

a trivial sense, the m = 1 single variate situation is just a standard symmetric

eigenvalue issue.

Multivariate Canonical analysis in statistics causes the overall issue. There

are several uses for the multivariate inverse eigenvalue problem in many differ-

ent disciplines, such as system identification, structural dynamics, and control

theory. The challenge of solving multivariate inverse eigenvalue problems is

difficult, and there may not always be a single solution. Researchers attack this

issue and seek approximations of answers using various numerical approaches

and optimization algorithms.

Structured Inverse Eigenvalue Problem (SIEP)

The structured inverse eigenvalue problem is a mathematical problem con-

nected to control theory and the science. Calculate a matrix with a certain

structure, often known as a structured matrix, whose eigenvalues match a set

of target eigenvalues. The following is an example of a generic SIEP: To obtain

∆(X) = {λ1, · · · , λn} (SIEP), find X ∈ N that is composed of specifically

structure matrices. It is important to keep in mind that the generating and solv-

ability of the problem are prerequisites for the solution of n × n symmetric

matrices (Chu & Golub, 2002).
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Inverse Eigenvalue Problem for Jacobi Matrices

The inverse eigenvalue problem for Jacobi matrices involves determining

the matrix entries when the eigenvalue are given. It’s a challenging problem with

applications in various fields, including signal processing and quantum mechan-

ics. Various methods such as moment methods and iteration algorithms are used

to tackle this problem. Asymmetric tridiagonal matrix is an accepted norm Ja-

cobi matrix. We demonstrate how to create a matrix of this kind with two sets of

eigenvalues that meet overlapping conditions, (Boley & Golub, 1987). Due to

its creation by the removal of the initial row and final column of the primary di-

agonal matrix, the lower principal subordinate matrix has order (n−1)×(n−1)

(Bronshtein & Semendyayev, 2013). The IEP of the Jacobi and Periodic Jacobi

matrices has attracted a lot of scientific concern. Consider, for instance (Andrea

& Berry, 1992 ; Xu & Jiang, 2006). One technique for creating symmetric Ja-

cobi matrices is as follows. Considering a real symmetric tridiagonal matrix of

the following kind denoted as Jacobi matrix Q.

Q =



a1 b1 · · · 0

b1 a2 · · · 0

0 · · · · · · bn−1

0 · · · bn−1 an


with bi > 0

q21i =

∏n−1
j = i(µi − λj)∏n
j=1 j ̸= 1(λj − λi)

All the eigenvalues are normalized to have norm 1, a11 is obtained from the

relation

∑n
1 λi −

∑n−1
1 µi.

The IEP for the periodic Jacobi matrix is then covered. Inverse scatter-

ing theory problems typically involve this inverse problem. Real entries can
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be found in the tridiagonal periodic Jacobi matrix. Consequently, the corre-

sponding orthonormal eigenvectors and eigenvalues are real. There are at most

2n−m−1 solutions for the periodic Jacobi matrix, where m is the number of com-

mon eigenvalues between the leading primary sub-matrix and the main matrix.

There is no unique solution for the periodic Jacobi matrix. Throughout our

discussions, we refer to Jn and Jn−1 as the principal sub-matrix and the main

matrix, respectively (Xu & Jiang, 2006).

Bronshtein and Semendyayev (2013), a real symmetric matrix of the following

type is called a periodic Jacobi matrix:

Jn

=



a1 b1 · · · · · · bn

b1 a2 b2 · · · 0

0 b2 a3 · · · bn−1

0 · · · · · · an−1 bn−1

bn 0 · · · bn−1 an


We form the following matrices from the matrix above:

J+ =

a1 (b+)t

b+ K


and

J+ =

a1 (b−)t

b− K


where K is a Jacobi matrix given by Jn−1.

The eigenvalues meet the specified linking characteristic and are unique.

Using the connection, we calculate the matrix A’s row eigenvectors (Baah, 2012

; Aidoo et al., 2013). Solving the inverse eigenvalue problem is a challenging

task and can be ill-posed in some situations, implying that significant changes in
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the solution might result from minor adjustments to the input data. Researchers

and mathematicians continue to explore different approaches, numerical algo-

rithms, and techniques to address this problem. It offers insights into the prop-

erties of specific matrix structures and can lead to the development of novel

mathematical techniques and algorithms for solving complex problems in real-

world scenarios. Finding a solution to the inverse eigenvalue problem of singu-

lar symmetric matrices has received a lot of attention from research ( Fiedler,

1974; Marijuán et al., 2007; Soto & Rojo, 2006; Egleston et al., 2004; Wu,

2011; Aidoo et al., 2013 ). Inverse eigenvalue problems of singular symmetric

matrices are the main focus of this research, and before we go into depth about

our work, we need first to describe the various approaches. In addition to the

spectra requirement, it is usually important for the matrix regenerated to keep

certain features. To reduce the amount of potentially endlessly many solutions

that are usually possible if a solution does not exist. A specific case of the IEP,

which Kolmogorov initially posed in 1937, is the nonnegative inverse eigen-

value problem. In the nonnegative inverse eigenvalue problem, provided the

collection of complex numbers that comprise the indeterminate matrix’s range,

it is necessary to determine whether any entrywise nonnegative matrices exist.

Numerous approaches have been used to resolve the extensions and associated

conditions of the principal submatrix of J . Numerous studies on the eigenvalues

of nonnegative matrices have been published since 1949. If the integers

(λ1,≥ λ2,≥ · · · ,≥, λn) are real numbers such that λ1 +
∑

iλi≤0 λ ≥ 0 as re-

ported by Suleimanova [S] and demonstrated by Perfect [5],

Radwan (1996) argue that the spectrum of a n×n symmetric non-negative

matrix is equal to n actual numbers, and the spectra of a n × n normal non-

negative matrix is equal to n complex numbers , some new sufficient require-

ments are discovered.

Soto and Rojo (2006) presented several simple necessary conditions and

demonstrated the creation of a realizing matrix.

25

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Theorem 2.2. Λ = {λ1λ2 · · ·λn} be a list of real numbers satisfying λ ≥

· · · ≥ λp ≥ 0 ≥ λn.LetSj = λj+n−j+1, j = 2, 3, · · · n
2
.

n+1
2

= min{λn+1
2
, 0} If λ1 ≥ λn −

∑
sj<0 Sj Then A ∈ δR ( by a non-negative

matrix).

Regarding this theorem, they established.

T (A) = λ1 + λn +
∑

Sj
< 0

Recall that (2) corresponds to T (A) ≥ 0 and that if Λ = {λ1λ2, · · · , λn} satis-

fies the sufficient condition (2) then,

Al = {−λ−
∑

sj<0 Sj, λ2, · · ·λn}

is a list that can be achieved, and the number −λn −
∑

j<0 Sj is the minimum

value that λi may take order that Λ must meet the realizability criteria speci-

fied by the theorem utilized, which is that Λ must be realizable. Suppose that

Λ = {λ1, λ2, · · · , λn} is partitioned as Λ = Λ1 ∪ Λ2 ∪ · · · ∪ Λn

Then according to the theorem, they have for each sub-list Λ = {λk1, λk2 · · · , λkpk}

of the partition, k = 1, 2, · · · , n the number.

T (Λk) = Tk = λk1 + λkpk +
∑

Skj
.

In their research, there is an extending of Perfect’s result, they give a new re-

liability criteria for the real Non-negative inverse eigenvalue problem, which

contain Soto’s realization criteria.

Marijuán et al. (2007) established the fact to determine the necessary con-

dition and sufficient condition for a list of real numbers, Λ = {λ1, λ2, · · · , λn}

to be the spectrum of an entrywise non-negative matrix. The study demonstrates

how to compare these conditions or sufficient conditions for the spectrum of an

entrywise non-negative matrix. According to Johnston (2021), the entrywise

non-negative matrix A = (aij)
n
ij = 1 is said to have constant row sums if all its
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rows sum up to the same constant say, λ i.e.
∑n

j=1 aij = λi = 1, 2, · · · , n.

Suleimanova 1949 cited by Marijuán et al. (2007), demonstrate or figuring

out the prerequisites for a list of real numbers entry-wise non-negative matrix

Λ = {λ0, λ1, · · · , λn}

Wu (2011), established the fact that for three unsolved non-negative in-

verse eigenvalues problem (NIEP) problems that have lain unsolved for up to

70 years, they provide solvability requirements. It will provide practical meth-

ods for determining whether an NIEP is solvable. The researcher establishes

his factors based on theorems to find unique solutions to the problem. Accord-

ing to Fielderas cited by Wu (2011) concerning the first systematic treatment

of eigenvalue of symmetric matrices. Additionally, the researcher demonstrated

how Boley and Golub (1987) can use the concept of symbolic dynamics to de-

scribe the circumstances in which a particular set is a part of the spectrum of a

primitive matrix or non-negative matrix. They also talk about the basic require-

ment of the solution inverse eigenvalue problem (IEP) and non-negative inverse

eigenvalue problem (NIEP). The researcher based his argument on the

Theorem 2.3. For a given list of complex numbers λ1, λ2, · · · , λn, if it has

closed property under complex conjugation, then the sufficient condition that

has at least one non-negative matrix A with the spectrum, {λ1, λ2 · · · , λn}.

Theorem 2.4. For a given list of complex numbers Λ = {λ1, λ2 · · ·λn}, there

must be at least one real matrix A with spectrum Λ if it has closed property un-

der complex conjugation, meaning that Λ includes an element and its complex

conjugation (Aidoo et al., 2013).

Proof. The polynomial is constructed via Aidoo et al. (2013) the closed property

of Λ under complex conjugation:

F (x) =
∏n

i=1 (x− λ1).

Aidoo et al. (2013), the above equation can be expressed as: by multiplying out,
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merging related terms, and simplifying:

F (x) = xn + a1x
n−1 + · · · + an−1x + an with the zeros in the polynomial

(1) are λ1, λ2, · · · , λn and the real numbers are a1, a2, · · · , an. Thus, the matrix

A can be formed as using a1, a2, · · · an.

A =



0 1 0 · · · 0 0

0 0 1

...
...

...

0 0 0 · · · 0 1

−an −an−1 −an−2 · · · −a2 −a1


Theorem 2.5. For rank one with a n × n singular symmetric matrix, the in-

verse eigenvalue problem is solvable given the spectrum and the row multipliers

ki, i = 1, 2, · · ·n− 1. For the proof of the theorem, see (Baah, 2012)

Theorem 2.6. For a n × n singular Hermitian matrix of rank one, the in-

verse eigenvalue problem is solvable given the spectrum and the row multipliers

ki = 1, 2, · · · , n− 1. For the proof of the theorem, see (Baah, 2012)

Theorem 2.7. For ranks two, three, and four with a n × n singular symmet-

ric matrix, the inverse eigenvalue problem is solvable given the spectrum and

the row multipliers ki, i = 1, 2, · · ·n − 1. For the proof of the theorem, see

(Aidoo et al., 2013).

Aidoo et al. (2013) investigate the conditions under which symmetric ma-

trices become singular as well as how this affects the matrix’s internal structure.

Determine the conditions in which Λ will form the spectrum of a dense n × n

singular symmetric matrix, given a list of real numbers Λ = {λ1, λ2, · · ·λn}.

For a given list Λ and dependence parameters, an algorithm to compute the ma-

trix’s members is derived based on a solvability lemma. To demonstrate the

findings of their research, computations are done for n ≤ 5 and r ≤ 4. Their
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research is also based on the following theorems below.

Theorem 2.8. Let Λ = {λ, · · · , λ}be a set of real numbers such that λ1 ≥

λ2 ≥ · · · ≥ λp ≥ 0 > λp+1 ≥ · · · ≥ λn. If there exists a partition Λ =

Λ1 ∪ Λ2 ∪ · · · ∪ Λs

with λk1 ≥ λk2 ≥ λkpk, λk1 ≥ 0 = λ1 k=1,2,· · · , s

Λ = {λk1 , λk2 · · ·λkpk}

Skj = λkj + λkpk−j+1, j=2,,· · · , [kpk
2
], and for kpk odd

Skpk
+1

2
= min{λpk+1

2
0}

Tk = λk1 + λkpk +
∑

Skj<o Skj

k=1,2,· · · s

and

L = max{−λ1p1 −
∑

ss1j
<0 : max{λk1}} 2 ≤ k ≤ s

satisfying

λ ≥ L−
∑s

Tk<0k=0
Tk

Following that, Λ can be realized by a non-negative matrix with constant row

sum. Theorem λ1λ2λ3 has been demonstrated to be sufficient for the existence

of a n× n symmetric non-negative matrix with real spectrum.

In their research, they take a 5× 5 singularly symmetric matrices of rank 4 into

consideration. According to Aidoo et al. (2013), the following quartic equation

in a11, where λ1, λ2, λ3, λ4 are the nonzero members of the spectrum, is derived

using the general polynomial equation.

Which yield the result
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1.3 2.7 8 −4 5

2.7 5.4 16 −8 10

8 16 4 6 14

−4 −8 6 7 17

5 10 14 17 12


Chapter Summary

Several types of inverse eigenvalue problems have been reviewed and ex-

plained in this chapter. The matrix’s internal structure solution provided by

(Baah, 2012; Aidoo et al., 2013). Aidoo et al. (2013)) uses an approach of

generating singular symmetric matrices from the eigenvalues.
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CHAPTER THREE

METHODOLOGY

Introduction

This chapter contains a detailed description of how to take given size and

order of matrices to generate singular symmetric and Hermitian matrices of

rank. This chapter covers the research methodology that was applied to this

investigation. The technique used by Aidoo et al. (2013) and Baah (2012) has

been altered to generate n× n singular symmetric matrices of ranks five and six

depending on the solvability lemma. Subsequently, a supplement is developed

to construct singular Hermitian matrices of ranks five and six. Initially, the ap-

proach for constructing singular symmetric and Hermitian matrices is explained

followed by an improved approach for solving the same problem.

Procedure for Constructing Singular Symmetric and Hermitian Matri-

ces

The procedure is to determine a particular size and rank of a square matrix.

This research uses 2× 2, 3× 3, and 4× 4 as the foundation for this procedure.

B=

b11 b12

b21 b22



Making matrix B simultaneously singular and symmetric is our objective. A

symmetric matrix has the same value as its transpose B = BT

If B =

b11 b12

b21 b22
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then

BT=

b11 b21

b21 b22



this indicates b12 = b21.

The singularity det(B) = 0 which implies

det(B) = b11b22 − b12b21 = 0

=⇒ b11b22 = b12b21

Given that we expressed matrix B in terms of b11, b12, b21, b22, we can see that

the row’s linear dependence is given by b12 = b21 = kb11 where k is a parameter,

and the column and row becomes scalar multiples of one another.

=⇒ b11b22 = kb11kb11

b22 = k2b11

Hence for 2× 2 singular symmetric matrix, we have

B =

 b11 kb11

kb11 k2b11

 (13)

=⇒ b11

1 k

k k2
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Since the number of scalars given by equation (3.0), n− r, for B(2,1) with rank

(r) = 1, the value of n− r = 2− 1 = 1

Assume Λ = {λ1, λ2}. Given that B2,1 is singular of rank one, λ2 = 0. We have

gotten:

Tr(B(2,1)) = λ = b11(1 + k2).

Consequently

b11 =
λ

1 + k2

Thus:

B(2,1) =
λ

1 + k2

1 k

k k2


Since b12 = b21

Consequently, for given scalars, k, B(2,1) has created and provided λ (Aidoo et

al., 2013). The 2 × 2 singular symmetric matrix of rank one is stated clearly

below. For example, if λ = 5 and k = 2, then

b2,1 =

1 2

2 4


=⇒ scalar = k

The following methods are defined by the research and produce (n×n) singular

symmetric matrices with the same size and rank as given by equation (13).

Step1: Take into account the dimensions of the symmetric square matrix’s con-

stituent pieces.

33

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Accordingly,

B =



b11 b12 · · · b1n

b21 b22 · · · b2n
...

... · · · ...

bn1 bn2 · · · bnn


= BT =



b11 b12 · · · bn1

b21 b22 · · · bn2
...

... · · · ...

b1n b2n · · · bnn



The research also takes into consideration 3× 3 singular symmetric matrix.

B =


b11 b12 b13

b21 b22 b23

b31 b32 b33



The research presume that the row dependence connections shown below are

the cause of the singular:

Ri+1 = kiRi.

Additionally, for rank 1 singular symmetric matrices with a specified row mul-

tiplier, there is only one solution to the inverse eigenvalue problem. In other

words, n− r = 3− 1 = 2, thus get the number of scalars next

b12 = b21 = k1b11

b13 = b31 = k1k2b11

b13 = b32 = k2
1k2b11.

b22 = k1b12

b23 = k1b13
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b31 = k2b11

b32 = k2b12

b33 = k2b13

=⇒ b22 = k1b12 = k1b21 = k2
1b11

b23 = k1b13 = k1b31 = k1k2b11

b33 = k2b13 = k2b31 = k2
1k

2
2b11

Now B(3,1) is the form:

B(3,1) =


b11 k1b11 k1k2b11

k1b11 k2
1b11 k2

1k2

k1k2b11 k2
1k2b11 k2

1k
2
2

 = b11


1 k1 k1k2

k1 k2
1 k2

1k2

k1k2 k2
1k2 k2

1k
2
2

 (14)

We also look at when n = 4 and r = 1.

B(4,1)=



b11 b12 b13 b14

b21 b22 b23 b24

b31 b32 b33 b32

b41 b42 b43 b44



By using the same process to determine that there is n− r = 4− 1 = 3 scalars.

Thus:
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b12 = b21 = k1b11

b13 = b31 = k2b11

b22 = k1b12

b23 = k1b13

b24 = k1b14

b31 = k2b11

b32 = k2b12

b33 = k2b13

b34 = k2b14

b41 = k3b11

b42 = k3b12

b43 = k3b13

b44 = k3b14

=⇒ b22 = k1b12 = k1b21 = k2
1b11

b23 = k1b13 = k1b31 = k1k2b11

b24 = k1b14 = k1b41 = k1k3b11

b33 = k2b13 = k2b31 = k2
2b11

b34 = k2b14 = k2b41 = k2k3b11

b44 = k3b14 = k3b41 = k2
3b11

Thus
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B(4,1)=



1 k1 k2 k3

k1 k2
1 k2

1k2 k2
1k2k3

k1k2 k2
1k2 k2

1k
2
2 k2

1k
2
2k3

k1k2k3 k2
1k2k3 k2

1k
2
2k3 k2

1k
2
2k

2
3


(15)

i = 1, 2, 3, 4, · · · , n− 1 where Ri is a non-zero scalar. The matrix’s non-zero

eigenvalue, λ can be used to generate the following:

If a matrix of rank one has the following row dependence relations,Ri+1 = kiRi,

B(n,1)=b11



b11 k1b11 k1k2b11 · · · kn−1

k1b11 k2
1b11 k2

1k2b11 · · · kn−1

k1k2a11 k2
1k2b11 k2

1k
2
2b11 · · · kn−1

...
...

...
...

k1k2b11 · · · ki−1 k2
1k2a11 k2

1k
2
2k3b11 · · · ki−1 · · · k2n− 1



Step 2: Calculate the scalars multiplication number, n− r

Step 3: Using equation (13), we employ the following formulas based on the

number of scalars:

Number

of

scalars

0

1

2

3

...

N

b11



1

1 k1

1 k1 k1k2

1 k1 k1k2 k1k2k3
...

1 k1 k1k2 k1k2k3 · · · k2k3k4 · · · kn


(16)
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elements in the matrix’s first row that correspond to the requested entry’s

first, second, third and so on. The first row’s elements in the corresponding rank

of the symmetric matrix are replaced by the data elements depending on the

number of scalars. The table below provides information:

Table 1: The List of Elements that should be substituted for Symmetric

Elements depends on the Matrix’s Size, Rank and Number of Scalars

Size of matrices Rank(r) Scalars Symmetric elements

2× 2 1 1 b11k1b11

3× 3 1 2 b11k1b11k1k2b11
...

...
...

...

n× n 1 n-1 b11k1b11k1k2b11 · · · kn−1b11

3× 3 2 1 b11k1b11b13

4× 4 2 2 b11k1b11k1k2b14

4× 4 2 2 b11k1b11b13b14
...

...
...

...

n× n r > 1 n-r b11k1b11, · · · kn−rb11 · · · a1n

Step 4a. Make use of the structure’s row reliance.

R2 = K1R1

R3 = K2R2

R4 = K3R3

R5 = K4R4

...

Rn = Kn−1Rn−1

to produce the next third and so on, up to the designated column or row number.

Once more, the number of scalars is the only factor that determines the next

stated number of rows.

Step 4b. We use rank (r) and dimension (n) to generate a singular symmetric

38

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



matrix.

Step 5. We use rank (r) and dimension (n) available to generate the singular

Hermitian matrix.

Altered Algorithm for Generating the Singular Symmetric and Hermi-

tian Matrices

We build the structure given the matrix’s eigenvalues and certain param-

eters that create the distinction between the square matrix’s size and the ranks

five and six, or n− 5 and n− 6 respectively. Which results in k1, k2, · · · kn − r,

we construct the structure.

We designed the real case

= diag(b11[1 + k2
1 + k2

1k
2
2 + k2

1k
2
2k

2
3 + · · ·+ k2

1 · · · kn−r] +
∑2

i=m+2 bij, i = j)

For complex

= diag(b11[1 + k2
1 + k2

1k
2
2 + k2

1k
2
2k

2
3 + · · ·+ k2

1 · · · kn−r] +
∑2

i=m+2 bij, i = j)

Next, the research generates the terms that come from the sum of the eigen-

values, which correspond to the elements in the main diagonal order.

λ1λii = 2, · · · , r (17)

λ2λii = 3, · · · r (18)

λ3λi, · · ·λii = 4, · · · r (19)

λ4λii = 5, · · · , r (20)

λ5λii = 6, · · · , r (21)

λ1λ2λi, · · ·λi−2λi−1λii = 3, · · · , r (22)

λ1λ3λi, · · ·λi−2λi−1λii = 4, · · · , r (23)

λ2λ3λi, · · ·λi−2λi−1λii = 4, · · · , r (24)

λ1λ2λ3λi, · · ·λ1λ2λ3λi−1, i = 5, · · · , r (25)
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λ1λ2λ4λi, · · ·λi−2λ1λ2λ4i = 5 · · · , r (26)

λ1λ3λ4λi, · · ·λi−2λ1λ2λ4i = 6 · · · , r (27)

λ1λ2λ3λ4λi, · · ·λ1λ2λ3λ4λi−2λi−1λii = 6, · · · , r (28)

Lastly, the polynomial of the matrix is found by adding the terms in the pre-

vious equation presented above , that is from (17) up to (28). This is addressed

to find a relationship between the eigenvalues and diagonal matrix elements.

This connection is then used to construct the structure with extra independent

variables, resulting in singular symmetric matrices.

Chapter Summary

This chapter outlined the steps of solving the IEP for singular symmetric

and Hermitian matrices of ranks.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

The generation of singular symmetric and Hermitian matrices is exam-

ined in this chapter. This important subject explores the characteristics and uses

of symmetric matrices that meet singularity requirements. We seek to compre-

hend and produce these specialized matrices using a range of techniques and

algorithms, illuminating their importance in a variety of mathematical and real-

world contexts.

Constructing Singular Symmetric Matrix

Using rank five as a starting point, let’s address the research topic. In the

beginning, we construct dimension, n = 6, and rank, r = 5 singular symmetric

matrix. Assume

B =



b11 b12 b13 b14 b15 b16

b21 b22 b23 b24 b25 b26

b31 b32 b33 b34 b35 b36

b41 b42 b43 b44 b45 b46

b51 b52 b53 b55 b55 b56

b61 b62 b63 b64 b65 b66


= BT =



b11 b21 b31 b41 b51 b61

b12 b22 b32 b42 b52 b62

b13 b23 b33 b43 b53 b63

b14 b24 b34 b44 b54 b64

b15 b25 b35 b45 b55 b65

b16 b26 b36 b46 b56 b66


Initially, we use row procedure to find a set of scalars.

R2 = k1R1

R3 = k2R2

...

Rn+1 = KnRn

Given n = 6 and r = 5
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=⇒ n− r = 6− 5 = 1

Next, we substitute kb11 for b12 the number of scalars equals one. After

that

R2 = KR1

The entries made are symmetric within the key diagonal, but this concludes our

row procedure. Therefore;

B(6,5) =



b11 kb11 b13 b14 b15 b16

kb11 k2b11 kb13 kb14 kb15 kb16

b13 kb13 b33 b34 b35 b36

b14 kb14 b34 b44 b45 b46

b15 kb15 b35 b45 b55 b56

b16 kb16 b36 b46 b56 b66


(29)

Secondly,

for B(6,5) in equation (29),

we have

λ1 ̸= 0,λ2 ̸= 0, λ3 ̸= 0,λ4 ̸= 0,λ4 ̸= 0 λ5 ̸= 0 and λ6 = 0.

such that

tr(B) = λ1, λ2, λ3, λ4, λ5 = b11(1 + k2) + b33 + b44 + b55 + b66

However:
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λ1 = b11[1 + k2]

λ2 = b33

λ3 = b44

λ4 = b55

λ5 = b66

Next:

λ1λ2 = b11[1 + k2]b33

λ1λ3 = b11[1 + k2]b44

λ1λ4 = b11[1 + k2]b55

λ1λ5 = b11[1 + k2]b66

λ2λ3 = b33b44

λ2λ4 = b33b55

λ2λ5 = b33b66

λ3λ4 = b44b55

λ3λ5 = b44b66

λ4λ5 = b55b66

λ1λ2λ3 = b11[1 + k2]b33b44

λ1λ2λ4 = b11[1 + k2]b33b55

λ1λ2λ5 = b11[1 + k2]b33b66

λ1λ3λ4 = b11[1 + k2]b44b55

λ1λ3λ5 = b11[1 + k2]b44b66

λ1λ4λ5 = b11[1 + k2]b55b66

λ2λ3λ4 = b33b44b55

λ2λ3λ5 = b33b44b66

λ3λ4λ5 = b44b55b66

λ1λ2λ3λ4 = b11[1 + k2]b33b44b55

λ1λ2λ3λ5 = b11[1 + k2]b33b44b66

λ1λ2λ4λ5 = b11[1 + k2]b33b55b66
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λ1λ2λ3λ4 = b11[1 + k2]b44b55b66

λ2λ3λ4λ5 = b33b44b55b66

λ1λ2λ3λ4λ5 = b11[1 + k2]b33b44b55b66

=⇒ b33b44b55b66 =
λ1λ2λ3λ4λ5

b11(1 + k2)

Now

λ1λ2λ3λ4 + λ1λ2λ3λ5 + λ1λ2λ4λ5 + λ1λ3λ4λ5 + λ2λ3λ4λ5 =

b11[1 + k2]b33b44b55 + b11[1 + k2]b33b44b66 + b11[1 + k2]b33b55b66 + b11[1 +

k2]b44b55b66 + b33b44b55b66

Which gives

λ1λ2λ3λ4+λ1λ2λ3λ5+λ1λ2λ4λ5+λ1λ3λ4λ5+λ2λ3λ4λ5 = b11[1+k2][b33b44b55+

b33b44b66 + b33b55b66 + b44b55b66] + b33b44b55b66

Also

λ1λ2λ3+λ1λ2λ4+λ1λ2λ5+λ1λ3λ4+λ1λ3λ5+λ1λ4λ5+λ2λ3λ4+λ2λ3λ5+

λ3λ4λ5

= b11[1 + k2][b33b44 + b33b55 + b33b66 + b44b55 + b44b66 + b55b66] + b33b44b55 +

b33b44b66 + b44b55b66

Furthermore,

b11[1 + k2][λ1λ2λ3 + λ1λ2λ4 + λ1λ2λ5

+λ1λ3λ4 + λ1λ3λ5 + λ1λ4λ5 + λ2λ3λ4 + λ2

λ3λ5 + λ3λ4λ5]− [λ1λ2λ3λ4

+λ1λ2λ3λ5 + λ1λ2λ4λ5 + λ2λ3λ4λ5]
+λ1λ2λ3λ4λ5

b211[1 + k2]2

(30)

b11[1+k2][b33+b44+b55+b66]+b33b44+b33b55+b33b66+b44b55+b44b66+b55b66

= λ1λ2 + λ1λ3 + λ1λ4 + λ1λ5 + λ2λ3 + λ2λ4 + λ2λ5 + λ3λ4 + λ3λ5 + λ4λ5

Substituting into (30),

we have
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b211[1 + k2]2[λ1λ2 + λ1λ3 + λ4 + λ1λ5 + λ2λ3 + λ2λ4

+λ2λ5 + λ3λ4 + λ3λ5 + λ4λ5]− b11[1 + k2][λ1λ2

λ3 + λ1λ2λ4 + λ1λ2λ5 + λ1λ3λ4

+λ1λ3λ5 + λ1λ4λ5 + λ2λ3λ4 + λ2λ3λ5 + λ3λ4λ5]
+b11[1 + k2][λ1λ2λ3λ4 + λ1λ2λ3λ5 + λ1λ2λ4λ5 + λ2λ3λ4λ5]

−λ1λ2λ3λ4λ5

b311[1 + k2]3

(31)

λ1 + λ2 + λ3 + λ4 + λ5 = b11[1 + k2] + b33 + b44 + b55 + b66

Substituting (31), that is,

b311[1 + k2]3[λ1λ2 + λ1λ3 + λ1λ4 + λ1λ5 + λ2λ3 + λ2λ4

+λ2λ5 + λ3λ4 + λ3λ5 + λ4λ5]− b211[1 + k2]2[λ1λ2

λ3 + λ1λ2λ4 + λ1λ2λ5 + λ1λ3λ4

+λ1λ3λ5 + λ1λ4λ5 + λ2λ3λ4 + λ2λ3λ5 + λ3λ4λ5]
+b11[1 + k2][λ1λ2λ3λ4 + λ1λ2λ3λ5 + λ1λ2λ4λ5 + λ2λ3λ4λ5]

−λ1λ2λ3λ4λ5

b411[1 + k2]4

Leading to

b511[1 + k2]5 − [λ1 + λ2 + λ3 + λ4λ5]b11[1 + k2]4

+[λ1λ2 + λ1λ3 + λ1λ4 + λ1λ5 + λ2λ3 + λ2λ4 + λ2λ5

+λ3λ4 + λ3λ5 + λ4λ5]b
3
11[1 + k2]3

−[λ1λ2λ3 + λ1λ2λ4 + λ1λ2λ5 + λ1λ3λ4 + λ1λ3λ5

+λ1λ4λ5 + λ2λ3λ4 + λ2λ3λ5 + λ3λ4λ5]b
2
11[1 + k2]2

+[λ1λ2λ3λ4 + λ1λ2λ3λ5 + λ1λ2λ4λ5 + λ1λ3λ4λ5 + λ2λ3λ4λ5]

b11[1 + k2]− λ1λ2λ3λ4λ5 = 0

The result of solving the quartic equation is

b11=
λ1

1 + k2
, λ2 = b44, λ3 = b55, λ4 = b66, λ5 = b77

Independent variables included:

b13, b14, b15, b16, b34, b35, b36, b45, b46, b56, b57.

tr(B) = λ1 + λ2 + λ3 + λ4 + λ5 = b11
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Example 1.0

Suppose λ1 = 5, λ2 = 2, λ3 = 3, λ4 = 4 and λ5 = 5, k = 2 b13 = 1, b14 = 2,

b15 = 3, b16 = 4, b34 = 1, b35 = 2, b36 = 3, b45 = 4, b46 = 4 and b56 = −1

It is necessary to construct a 6× 6 singular symmetric matrix of rank five. With

the knowledge at our disposal, we can now ascertain that

=⇒ b11 =
5

1 + 22
= 1

Hence

A(6, 5)



1 2 1 −2 3 4

2 4 2 −4 6 8

1 2 2 1 2 3

−2 −4 1 3 4 5

3 6 2 4 4 −1

4 8 3 5 −1 5



Let us proceed to address the research topic with a 7×7 with rank five. First, we

want to create a singular symmetric matrix with a rank of r = 5 and a dimension

of n = 7. Assume
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B=



b11 b12 b13 b14 b15 b16 b17

b21 b22 b23 b24 b25 b26 b27

b31 b32 b33 b34 b35 b36 b37

b41 b42 b43 b44 b45 b46 b47

b51 b52 b53 b55 b55 b56 b57

b61 b62 b63 b64 b65 b66 b67

b71 b72 b73 b74 b75 b76 b77


Afterwards,

BT=



b11 b21 b31 b41 b51 b61 b71

b12 b22 b32 b42 b52 b62 b72

b13 b23 b33 b43 b53 b63 b73

b14 b24 b34 b44 b54 b64 b74

b15 b25 b35 b45 b55 b65 b75

b16 b26 b36 b46 b56 b66 b76

b17 b27 b37 b47 b57 b67 b77


Row procedure is used to find the number of scalars.

R2 = k1R1

R3 = k2R2

...

Rn+1 = KnRn

Given n = 7 and r = 5

=⇒ n− r = 7− 5 = 2

Next, since the number of scalars equals 2, we should substitute b12 with kb11

b13 with k1k2b11. Then
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R2 = KR1

R3 = KR2

It completes our row operation; however, the entries are symmetric concerning

the primary diagonal. Additionally, we produce a rank five 7× 7 singular sym-

metric matrix.

B(7,5)

=



b11 k1b12 k1k2b11 b14 b15 b16 b17

k1b11 k2
1b11 k2

1k2b11 k1b14 k1b15 k1b16 k1b17

k1k2b11 k2
1k2b11 k2

1k
2
2b11 k1k2b14 k1k2b15 k1k2b16 k1k2b17

b14 k1b14 k1k2b14 b44 b45 b46 b47

b15 k1b15 k1k2b15 b45 b55 b56 b57

b16 k1b16 k1k2b16 b46 b56 b66 b67

b17 k1b17 k1k2b17 b47 b57 b67 b77



(32)

From (32), λ1 ̸= 0,λ2 ̸= 0,λ3 ̸= 0,λ4 ̸=, 0 λ5 ̸= 0,λ6 = 0, λ7 = 0

tr(B) = λ1 + λ2 + λ3 + λ4 + λ5

Using the comparable method, we are able to

b511[1 + k2]5 − [λ1 + λ2 + λ3 + λ4λ5]b11[1 + k2]4

+ [λ1λ2 + λ1λ3 + λ1λ4 + λ1λ5 + λ2λ3 + λ2λ4 + λ2λ5

+ λ3λ4 + λ3λ5 + λ4λ5]b
3
11[1 + k2]3

− [λ1λ2λ3 + λ1λ2λ4 + λ1λ2λ5 + λ1λ3λ4 + λ1λ3λ5

+ λ1λ4λ5 + λ2λ3λ4 + λ2λ3λ5 + λ3λ4λ5]b
2
11[1 + k2]2

+ [λ1λ2λ3λ4 + λ1λ2λ3λ5 + λ1λ2λ4λ5 + λ1λ3λ4λ5 + λ2λ3λ4λ5]

b11[1 + k2]− λ1λ2λ3λ4λ5 = 0

The result of solving the quartic equation is

b11=
λ1

1 + k2
1 + k2

1k
2
2

, λ2 = b44, λ3 = b55, λ4 = b66, λ5 = b77
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Independent variables included:

b14, b15, b16, b34, b35, b36, b45, b46, b56, b57 and b67.

tr(B) = λ1 + λ2 + λ3 + λ4 + λ5 = b11[1 + k2
1 + k2

1k
2
2] + b44 + b55 + b66 + b77

Example 2.0

Suppose,λ1 = 193.2,λ2 = 3,λ3 = 4,λ4 = 6,λ5 = 8 k1 = 4 k2 = 3 14 = 2,

b15 = 3, b16 = 4, b17 = 2, b45 = 7, b46 = 3, b56 = 1, b57 = 4 and b67 = 6

=⇒ b11 =
193.2

1 + 42 + 42(32)
= 1.2

We need to create a rank five, 7 × 7 singular symmetric matrix. Equipped with

the given facts, we have

1.2 4.8 14.4 2 3 4 2

4.8 19.2 57.6 8 12 16 8

14.4 57.6 172.8 24 36 48 24

2 8 24 3 7 3 5

3 12 36 7 4 1 4

4 16 48 3 1 6 −6

2 8 24 5 4 −6 8


The row procedure is used to determine the number of scalars.

R2 = k1R1

R3 = k2R2

...

Rn+1 = KnRn

Given n = 7 and r = 6

=⇒ n− r = 7− 6 = 1

Next, since there is one scalar, we can replace b12 with kb11. Let us pro-

ceed to address the research topic using a 7 × 7 with rank six. The singular
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symmetric matrix with size n = 7 and rank r = 6 is initially generated. Assume

B =



b11 b12 b13 b14 b15 b16 b17

b21 b22 b23 b24 b25 b26 b27

b31 b32 b33 b34 b35 b36 b37

b41 b42 b43 b44 b45 b46 b47

b51 b52 b53 b55 b55 b56 b57

b61 b62 b63 b64 b65 b66 b67

b71 b72 b73 b74 b75 b76 b77


Then,

BT=



b11 b21 b31 b41 b51 b61 b71

b12 b22 b32 b42 b52 b62 b72

b13 b23 b33 b43 b53 b63 b73

b14 b24 b34 b44 b54 b64 b74

b15 b25 b35 b45 b55 b65 b75

b16 b26 b36 b46 b56 b66 b76

b17 b27 b37 b47 b57 b67 b77


A 7× 7 singular symmetric matrix of rank six is also produced.

B(7,6)
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=



b11 kb11 b13 b14 b15 b16 b17

kb11 k2b11 kb13 kb14 kb15 kb16 kb17

b13 kb13 b33 b34 b35 b36 b37

b14 kb14 b34 b44 b45 b46 b47

b15 kb15 b35 b45 b55 b56 b57

b16 kb16 b36 b46 b56 b66 b67

b17 kb17 b37 b47 b57 b67 b77



(33)

From (33), we have

λ1 ̸= 0, λ2 ̸= 0, λ3 ̸= 0, λ4 ̸=, 0 λ5 ̸= 0, λ6 ̸= 0, λ7 = 0

tr(B(7,6)) = λ1 + λ2 + λ3 + λ4 + λ5 = b11[1 + k2] + b33 + b44 + b55 + b66 + b77

By following the same method as earlier, we can get the quartic polynomial

below;

b611[1 + k2]6 − [λ1 + λ2 + λ3 + λ4λ5 + λ6]b
5
11[1 + k2]5

+[λ1λ2 + λ1λ3 + λ1λ4 + λ1λ5 + λ1λ6 + λ2λ3 + λ2λ4 + λ2λ5 + λ2λ6

+λ3λ4 + λ3λ5 + λ3λ6 + λ4λ5 + λ4λ6 + λ5λ6]b
4
11[1 + k2]4

−[λ1λ2λ3 + λ1λ2λ4 + λ1λ2λ5 + λ1λ2λ6 + λ1λ3λ4 + λ1λ3λ5 + λ1λ3λ6

+λ1λ4λ5 + λ1λ4λ6 + λ2λ3λ4 + λ2λ3λ5 + λ2λ3λ6 + λ2λ4λ5 + λ2λ4λ6 + λ3λ4λ5

+λ3λ4λ6 + λ4λ5λ6]b
3
11[1 + k2]3

+[λ1λ2λ3λ4+λ1λ2λ3λ5+λ1λ2λ3λ6+λ1λ2λ4λ5+λ1λ2λ4λ6+λ1λ2λ5λ6 +λ1λ3λ4λ5

+λ1λ3λ4λ6 + λ1λ4λ5λ6 + λ2λ3λ4λ5 + λ2λ3λ4λ6 + λ3λ4λ5λ6]

b211[1+k2]2−λ1λ2λ3λ4λ5+λ1λ2λ3λ4λ6+λ2λ3λ4λ5λ6]b11[1+k2]+λ1λ2λ3λ4λ5λ6

= 0

The result of solving the quartic equation is

b11 =
λ1

1 + k2
, λ2 = b33, λ3 = b44, λ4 = b55 λ5 = b66 and λ6 = b77.
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Independent variables include;

b13,b14 ,b15,b16, b17,b34,b35,b36 b37,b45,b46, b47,b56, b57 and b67.

tr(B) = λ1+λ2+λ3+λ4+λ5+λ6 = b11[1+ k2] + b33+ b44+ b55+ b66+ b77

Example 3.0

Assuming, λ1 = 20, λ2 = 4, λ3 = 5, λ4 = 3, λ5 = 1, λ6 = 7 , k = 2 b13 = −1,

b14 = 2 ,b15 = −3, b16 = 2, b17 = 7, b34 = −2, b35 = 4, b36 = 3 b37 = 4,

b45 = 8, b46 = 1, , b47 = 5, b56 = 9, b57 = 3 and b67 = 1

b11 =
20

1 + 22
= 4

We need to create a rank six, 7 × 7 singular symmetric matrix. Equipped with

the given facts, we have



4 8 −1 2 −3 6 7

8 16 −2 4 −6 12 14

−1 −2 4 −2 4 3 4

2 4 −2 5 8 1 5

−3 −6 4 8 3 9 3

6 12 3 1 9 1 −1

7 14 4 5 3 −1 7


Let us now use a 8× 8 with rank six to address the research topic. initially, we

constructed a seven-dimensional or 7×7 singular symmetric matrix with a rank

of six.

To complete our row operation, however, the entries are symmetric concerning

the primary diagonal. In addition, we produce a 8× 8 singular.
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B(8,6)



b11 k1b12 k1k2b11 b14 b15 b16 b17 b18

k1b11 k2
1b11 k2

1k2b11 k1b14 k1b15 k1b16 k1b17 k1b18

k1k2b11 k2
1k2b11 k2

1k
2
2b11 k1k2b14 k1k2b15 k1k2b16 k1k2b17 k1k2b18

b14 k1b14 k1k2b14 b44 b45 b46 b47 b48

b15 k1b15 k1k2b15 b45 b55 b56 b57 b58

b16 k1b16 k1k2b16 b46 b56 b66 b67 b68

b17 k1b17 k1k2b17 b47 b57 b67 b77 b87

b18 k1b18 k1k2b18 b48 b58 b68 b78 b88



(34)

From (34), we have

λ1 ̸= 0,λ2 ̸= 0,λ3 ̸= 0,λ4 ̸=, 0 λ5 ̸= 0,λ6 ̸= 0, λ7 = 0,λ8 = 0

tr(B(7,6)) = λ1+λ2+λ3+λ4+λ5 = b11[1+k2
1+k2

1k
2
2]+b44+b55+b66+b77+b88

By following the same method as earlier, we can get the quartic polynomial

below;

b611[1 + k2]6 − [λ1 + λ2 + λ3 + λ4λ5 + λ6]b
5
11[1 + k2]5

+[λ1λ2 + λ1λ3 + λ1λ4 + λ1λ5 + λ1λ6 + λ2λ3 + λ2λ4 + λ2λ5 + λ2λ6

+λ3λ4 + λ3λ5 + λ3λ6 + λ4λ5 + λ4λ6 + λ5λ6]b
4
11[1 + k2]4

−[λ1λ2λ3 + λ1λ2λ4 + λ1λ2λ5 + λ1λ2λ6 + λ1λ3λ4 + λ1λ3λ5 + λ1λ3λ6

+λ1λ4λ5 + λ1λ4λ6 + λ2λ3λ4 + λ2λ3λ5 + λ2λ3λ6 + λ2λ4λ5 + λ2λ4λ6 + λ3λ4λ5

+λ3λ4λ6 + λ4λ5λ6]b
3
11[1 + k2]3

+[λ1λ2λ3λ4+λ1λ2λ3λ5+λ1λ2λ3λ6+λ1λ2λ4λ5+λ1λ2λ4λ6+λ1λ2λ5λ6 +λ1λ3λ4λ5

+λ1λ3λ4λ6 + λ1λ4λ5λ6 + λ2λ3λ4λ5 + λ2λ3λ4λ6 + λ3λ4λ5λ6]

b211[1+k2]2−λ1λ2λ3λ4λ5+λ1λ2λ3λ4λ6+λ2λ3λ4λ5λ6]b11[1+k2]+λ1λ2λ3λ4λ5λ6

= 0

Using similar procedure, we arrived at:

53

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



b11 =
λ1

1 + k2
1 + k2

1k
2
2

, λ2 = b44, λ3 = b55, λ4 = b66 λ5 = b77 and λ6 = b88.

The variables that are independent include;

b14 ,b15,b16,b17,b18,b45,b46, b47,b48,b56,b57,b58,b67,b68,b78

Example 4.0

λ1 = 3 , λ2 = 5, λ3 = 1, λ4 = 8 , λ5 = 4, λ6 = 2, k1 = 4, k2 = 3

b14 = 2 ,b15 = 1,b16 = 3,b17 = 4,b18 = 8,b45 = 7,b46 = 2, b47 = 3, b48 = 8,

b56 = 2,b57 = 3,b58 = 9,b67 = 1,b68 = 2,b78 = 1

=⇒ b11 =
3

1 + 42 + 42(3)2
=

3

161

It is necessary to construct a rank six’s 8 × 8 singular symmetric matrix. Con-

sidering the data provided, we have



3
161

12
161

36
161

2 1 3 4 8

12
161

48
161

144
161

8 4 12 16 32

36
161

144
161

432
161

24 12 36 48 96

2 8 24 5 7 2 3 8

1 4 12 7 1 2 3 9

3 12 36 2 2 8 1 2

4 16 48 3 3 1 4 1

8 32 96 8 9 2 1 2
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Extension to Singular Hermitian Matrix

Begin with 6× 6 square matrix as the size of rank five. Consequently,

B(6,5) =



b11 k−b11 b−13 b−14 b−15 b−16

kb11 k2b11 kb−13 kb−14 kb−15 kb−16

b13 k−b13 b33 b−34 b−35 b−36

b14 k−b14 b34 b44 b−45 b−46

b15 k−b15 b35 b45 b55 b−56

b16 k−b16 b36 b46 b56 b66


(35)

For (35), the eigenvalues will show the results that follow

λ1 ̸= 0,λ2 ̸= 0,λ3 ̸= 0,λ4 ̸= 0,λ5 ̸= 0, λ6 = 0 such that tr(B) = λ1 +

λ2 + λ3 + λ4 + λ5 = b11[1 + k2] + b33 + b44 + b55 + b66

Then, using a comparable procedure, the polynomial properties will be

b511[1 + k2]5 − [λ1 + λ2 + λ3 + λ4λ5]b11[1 + k2]4

+[λ1λ2 + λ1λ3 + λ1λ4 + λ1λ5 + λ2λ3 + λ2λ4 + λ2λ5

+λ3λ4 + λ3λ5 + λ4λ5]b
3
11[1 + k2]3

-[λ1λ2λ3 + λ1λ2λ4 + λ1λ2λ5 + λ1λ3λ4 + λ1λ3λ5

λ1λ4λ5 + λ2λ3λ4 + λ2λ3λ5 + λ3λ4λ5]b
2
11[1 + k2]2

+[λ1λ2λ3λ4 + λ1λ2λ3λ5 + λ1λ2λ4λ5 + λ1λ3λ4λ5 + λ2λ3λ4λ5]

b11[1 + k2]− λ1λ2λ3λ4λ5 = 0

The result of solving the quartic equation is

b11 =
λ1

1 + k2
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λ2 = b33, λ3 = b44

λ4 = b55, λ5 = b66.

Additional independent factors include;

b13.b14, b15b16, b34, b35, b36, b45, b46, b56

Example 5.0

Suppose λ1 = 2, λ2 = −1, λ3 = 5, λ4 = 3, λ5 = 8

k = i b13 = 2− i, b14 = 4, b15 = 2− 3i, b16 = 3

b34 = 1 + 3i, b35 = 6i, b36 = 2− 5i, b45 = 2− 7i, b46 = 1 + 4i b56 = 6

The solution of is

=⇒ 2

1 + 12
= 1

Therefore

A(6, 5) =



1 i 2− i 4 2 + 3i 3

−i 1 1− 2i 4i 3 + 2i 3i

2 + i 1 + 2i −1 1 + 3i −6i 2− 3i

4 −4i 1− 3i 5 2− 7i 1 + 4i

2− 3i 3− 2i 6i 2 + 7i 3 6

3 −3i 2 + 3i 1− 4i 6 8



Now for rank, 6 and dimension, 7, will result:
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B(7, 6) =



b11 k−b11 b−13 b−14 b15 b−16 b−17

kb11 k2b11 kb−13 kb−14 kb−15 k−b16 kb−17

b13 k−b13 b33 b−34 b−35 b−36 b−37

b14 k−b14 b34 b44 b−45 b−46 b−47

b15 k−b15 b35 b45 b55 b−56 b−57

b16 k−b16 b36 b46 b56 b66 b−67

b17 k−b17 b37 b47 b57 b67 b77



(36)

This is what the eigenvalues for (36) will demonstrate

λ1 ̸= 0,λ2 ̸= 0,λ3 ̸= 0,λ4 ̸= 0, λ5 ̸= 0, λ6neq0, λ7 = 0 in such a manner

that tr(B) = λ1+λ2+λ3+λ4+λ5+λ6 = b11[1+k2]+b33+b44+b55+b66+b77

Then, using a comparable procedure, the polynomial properties will be

b611[1 + k2]6 − [λ1 + λ2 + λ3 + λ4λ5 + λ6]b
5
11[1 + k2]5

+[λ1λ2 + λ1λ3 + λ1λ4 + λ1λ5 + λ1λ6 + λ2λ3 + λ2λ4 + λ2λ5 + λ2λ6

+λ3λ4 + λ3λ5 + λ3λ6 + λ4λ5 + λ4λ6 + λ5λ6]b
4
11[1 + k2]4

−[λ1λ2λ3 + λ1λ2λ4 + λ1λ2λ5 + λ1λ2λ6 + λ1λ3λ4 + λ1λ3λ5 + λ1λ3λ6

+λ1λ4λ5+λ1λ4λ6+λ2λ3λ4+λ2λ3λ5+λ2λ3λ6+λ2λ4λ5+λ2λ4λ6+λ3λ4λ5+

λ3λ4λ6 + λ4λ5λ6]b
3
11[1 + k2]3

+[λ1λ2λ3λ4 + λ1λ2λ3λ5 + λ1λ2λ3λ6 + λ1λ2λ4λ5 + λ1λ2λ4λ6 + λ1λ2λ5λ6 +

λ1λ3λ4λ5 + λ1λ3λ4λ6 + λ1λ4λ5λ6 + λ2λ3λ4λ5 + λ2λ3λ4λ6 + λ3λ4λ5λ6]

b211[1+k2]2−λ1λ2λ3λ4λ5+λ1λ2λ3λ4λ6+λ2λ3λ4λ5λ6]b11[1+k2]+λ1λ2λ3λ4λ5λ6 =

0

The result of solving the quartic equation is

b11 =
λ1

1 + k2
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λ2 = b33,λ3 = b44

λ4 = b55, λ5 = b66, λ6 = b77

Independent variables for addition consist of;

b13.b14, b15, b16, b17, b34, b35, b36, b37, b45, b46, b47, b56, b57 and b67

Example 6.0

Assume λ1 = 5, λ2 = −8, λ3 = −3,λ4 = 5, λ5 = 2,λ6 = 1

k = 2i b13 = 1− 2i, b14 = 2 + i, b15 = 3i, b16 = 4,b17 = 3

b34 = 7i, b35 = 5, b36 = 1 + 9i, b37 = 3 − 5i b45 = 2 + 3i, b46 = 6 + 5i,

b47 = 7− 4i b56 = 8− i, b57 = 3 + 8i, b67 = 1 + 4i

With the rank, six and dimension, seven we generate complex square matrix

leading to

=⇒ 5

1 + 22
= 1

Consequently

B(7,6) =



1 2i 1− 2i 2 + i −3i 4 3

−2i 4 4 + 2i −2 + 4i 6 8i 6i

1 + 2i 4− 2i 8 7i 5 1 + 9i 3− 5i

2− i −2− 4i −7i −3 2 + 3i 6 + 5i 7− 4i

3i 6 5 2− 3i 7 8− i 3 + 8i

4 −8i 1− 9i 6− 5i 8 + i 5 1 + 4i

3 −6i 3 + 5i 7 + 4i 3− 8i 1− 4i 1



The aforementioned process is then generalized for singular symmetric and Her-

mitian matrices by,
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1. For a n× n square matrix of rank five, we generalize.

2. We extend this procedure to a rank six n× n matrix.

Theorem 4.1. The n × n singular symmetric matrix of rank five can have its

inverse eigenvalue problem solved given the range of values and the number of

variables k1 = 1, 2, 3, · · · , n− 5.

It follows that given the rank of Λ5 and the range Λn = {λ1, λ2, λ3, · · · , λn} for

i = 6, 7, 8, · · · , n− 1 λi = 0 ,λ5 ̸= 0, λ4 ̸= 0,λ3 ̸= 0,λ2 ̸= 0 and λ1 ̸= 0

However, since r = 5, it follows that the number of scalars is n − 5. Conse-

quently, we swap out the column or row for

b11

[
1 k1 k1k2 k1k2k3 · · · kn−5

]
then continue the row procedure until all of the variables are utilized to create

the following rows. Ultimately, we acquire as the entries are symmetric about

the major diagonal.

B(n,5) =

b11 k1b11 k1k2b11 · · · k1k2 · · · b1n

k1b11 k2
1b11 k2

1k2a11 · · · k2
1k

2
2 · · · k1b1n

...
...

... . . . ...

k1k2 · · · kn−5b11 k2
1k2 · · · kn−5b11 k2

1k
2
2 · · · k2

n−5b11 k1k2 · · · b1n

b1(n−2) k1b1(n−2) k1k2b1(n−2) · · · b1(n−2)

b1(n−1) k1b1(n−1) k1k2b1(n−1) · · · b1(n−1)

b1n k1b1n k1k2b1n k1k2kn−5 · · · bnn


that is
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tr(B(n,5)) = λ1 + λ2 + λ3 + λ4 + λ5 =

b11

[
1+ k2

1+ k2
1k

2
2 + · · ·+ k2

1k
2× · · · k2

n−5

]
+b(n−2)(n−2) + b(n−1)(n−1) + bnn

It gives us the formula for quarts.

b511[1 + k2
1 + k2

1k
2
2 + · · ·+ k2

1k
2
2 × · · ·× k2

n−5]
5 − [

∑5
i=1 λi]b

4
11[1 + k2

1 + k2
1k

2
2 +

· · · × k2
n−5]

4 +[
∑4

i=1 λ1λi+1 +
∑3

i=1 λ2λi+2 +
∑2

i=1 λ3λi+3

+
∑1

i=1 λ4λi+ 4] b211[1+k2
1+k2

1k
2
2+· · ·+· · · k2

1k
2
2×· · ·×k2

n−5]
2−[

∑3
i=1 λ1λ2λi+2

+
∑2

i=1 λ1λ3λi+3 +
∑2

i=1 λ2λ4λi+4 +
∑2

i=1 λ2λ3λi+3 +
∑1

i=1 λ2λ4λi+4

+
∑2

i=1 λ2λ3λi+3

+
∑1

i=1 λ1λ4λi+ 4] b11[1 + k2
1 + k2

1k
2
2 + · · ·+ · · ·+ k2

1k
2
2 × · · · × k2

n−5]

+[
∑2

i=1 λ1λ2λ3λi+3 +
∑1

i=1 λ1λ2λ4λi+ 2+∑1
i=1 λ1λ3λ4λi+1]−]

∏5
i=1 λi] = 0

After resolving the quartic equation above, we get

b11 =
λ1

1 + k2
1 + k2

1k
2
2 + · · ·+ k2

1k
2
2 × · · · × k2

n−5

,

λ2 = b(n−3)(n−3)

λ3 = b(n−2)(n−2)

λ4 = b(n−1)(n−1)

λ5 = bnn

It is solved.

1. For 7 × 7 singular symmetric matrix, we obtain a single scalar, k, which ac-

counts for the independent variables,
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b13 ,b14, b15, b16, b17, b34, b35, b36, b37, b45 b46, b47, b56, b57 and b67.

Generally, we obtain n− 5 scalars for a n× n singular symmetric matrix:

b(n−1)n,b1(n−2)n,b1(n−2)(n−1),b1n,b1(n−1) and b1(n−2).

2. For a n × n singular symmetric matrix of rank six, the inverse eigenvalue

problem can be solved given the range and the number of scalars

ki, i = 1, 2, 3, · · · , n− 6.

Proof: Taking into account the range given the rank Λ6 of

λn = {λ1, λ2, λ3, · · · , λn},

it can be deduced that for i = 7, 8, 9, · · · , n − 1 λi = 0 ,λ5 ̸= 0, λ4 ̸= 0 ,

λ3 ̸= 0, λ2 ̸= 0 and λ1 ̸= 0

However, since r = 6, it follows that the number of scalars is equal to n–6

(Bronshtein & Semendyayev, 2013). Consequently, we swap out the column

or row for

B(n,6) =



b11 k1b11 k1k2b11 · · · k1k2 · · · b1n

k1b11 k2
1b11 k2

1k2b11 · · · k2
1k

2
2 · · · k1b1n

...
...

... . . . ...

k1k2 · · · k1kn−6b11 k2
1k2 · · · kn−6b11 k2

1k
2
2 · · · k2

n−6b11 k1k2 · · · b1n

b1(n−2) k1b1(n−2) k1k2b1(n−2) · · · b1(n−2)

b1(n−1) k1b1(n−1) k1k2b1(n−1) · · · b1(n−1)

b1n k1b1n k1k2b1n k1k2kn−6 · · · bnn


since

tr(B(n,6)) = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 =
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b11

[
1+ k2

1+ k2
1k

2
2 + · · ·+ k2

1k
2× · · · k2

n−6

]
+b(n−2)(n−2) + b(n−1)(n−1) + bnn

leading to quartic equation.

b611[1+k2
1+k2

1k
2
2+· · ·+k2

1k
2
2×· · ·×k2

n−6]
6 −[

∑6
i=1 λi]b

5
11[1+k2

1+k2
1k

2
2 + · · ·×

k2
n−6]

5[
∑4

i=1 λ1λi+1 +
∑3

i=1 λ2λi+2 +
∑2

i=1 λ3λi+3 +
∑1

i=1 λ4λi+4]b
2
11[1 +

k2
1+k2

1k
2
2+· · ·+· · · k2

1k
2
2×· · ·×k2

n−6]
2−[

∑3
i=1 λ1λ2λi+2+

∑2
i=1 λ1λ3λi+3+∑2

i=1 λ2λ4λi+4 +
∑2

i=1 λ2λ3λi+3 +
∑1

i=1 λ2λ4λi+4 +
∑2

i=1 λ2λ3λi+3

+
∑1

i=1 λ1λ4λi+ 4]b11[1 + k2
1 + k2

1k
2
2 + · · · + · · · + k2

1k
2
2 × · · · × k2

n−6] +

[
∑5

i=1 λ1λ2λ3λi+3+
∑4

i=1 λ1λ2λ4λi+2+
∑3

i=1 λ1λ2λ5λi+3+
∑2 λ2λ6λi+4+∑1

i=1 λ1λ3

λ4λi+1]b
2
11[1 + k2

1 + k2
1k

2
2 + · · · × k2

n−6]
2]
∏6

i=1 λi] = 0

We arrived at after resolving the quartic equation above.

b11 =
λ1

1 + k2
1 + k2

1k
2
2 + · · ·+ k2

1k
2
2 × · · · × k2

n−5

,

λ2 = b(n−4)(n−4)

λ3 = b(n−3)(n−3)

λ4 = b(n−2)(n−2)

λ5 = b(n−1)(n−1)

λ6 = bnn

It is solved.

These are the independent parameters:

1. We obtain one scalar, k, for the 7 × 7 singular symmetric matrix; thus, the

independent variables b13, b14, b15, b16, b17, b34, b35, b36, b37, b45,b46, b47,b56,

b57.
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2. We obtain two scalars, k1 and k2, for the 8 × 8 singular symmetric matrix;

these are the independent variables. b14, b15, b16, b17, b18, b34, b35, b36, b37,

b38b45,b46 b47, b48, b56, b57, b58, b67, b68, and b78.

3. The independent variables come from the one scalar, k, that we obtain for the

n× n singular symmetric matrix. These are:

b(n−1)n,b1(n−2)n,b1(n−2)(n−1),b1n,b1(n−1) and b1(n−2).

Theorem 4.2. It is possible to solve the inverse eigenvalue problem for the n×n

singular Hermitian matrix of rank five, given the range of values and the number

of variables ki, i = 1, 2, 3, · · · , n− 5.

Proof: Since the rank of Λ5 is λn = {λ1, λ2, λ3, · · · , λn}, we may consider the

range for i = 6, 7, 8, · · · , n − 1 λi = 0 ,λ5 ̸= 0, λ4 ̸= 0,λ3 ̸= 0,λ2 ̸= 0 and

λ1 ̸= 0

However, since r =5, it follows that the number of scalars is n − 5. Conse-

quently, we swap out the column or row for

b11

[
1 k1 k1k2 k1k2k3 · · · kn−5

]

then continue the row procedure until all of the variables are utilized to create

the following rows. Ultimately, we acquire as the entries are symmetric about

the major diagonal.

B(n,5) =
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b11 k−
1 b11 k−

1 k
−
2 b11 · · · k−

1 k
−
2 · · · b−1n

k1b11 k2
1b11 k2

1k
−
2 b11 · · · k2

1k
2
2 · · · k1b

−
1n

...
...

... . . . ...

k1k2 · · · kn−5b11 k2
1k2 · · · kn−5b

−
11 k2

1k
2
2 · · · k2

n−5b11 k1k2 · · · b−1n

b1(n−2) k−
1 b1(n−2) k1k2b1(n−2) · · · b−1(n−2)

b1(n−1) k−
1 b1(n−1) k1k2b1(n−1) · · · b−1(n−1)

b1n k−
1 b1n k−

1 k
−
2 b1n k−

1 k
−
2 k

−
n−5 · · · bnn


that is

tr(Bn,5) = λ1 + λ2 + λ3 + λ4 + λ5 =

b11

[
1+ k2

1+ k2
1k

2
2 + · · ·+ k2

1k
2× · · · k2

n−5

]
+b(n−2)(n−2) + b(n−1)(n−1) + bnn

It gives us the formula for quarts.

b511[1 + k2
1 + k2

1k
2
2 + · · ·+ k2

1k
2
2 × · · ·× k2

n−5]
5 − [

∑5
i=1 λi]b

4
11[1 + k2

1 + k2
1k

2
2 +

· · · × k2
n−5]

4 +[
∑4

i=1 λ1λi+1 +
∑3

i=1 λ2λi+2 +
∑2

i=1 λ3λi+3

+
∑1

i=1 λ4λi+ 4] b211[1+k2
1+k2

1k
2
2+· · ·+· · · k2

1k
2
2×· · ·×k2

n−5]
2−[

∑3
i=1 λ1λ2λi+2

+
∑2

i=1 λ1λ3λi+3 +
∑2

i=1 λ2λ4λi+4 +
∑2

i=1 λ2λ3λi+3 +
∑1

i=1 λ2λ4λi+4

+
∑2

i=1 λ2λ3λi+3

+
∑1

i=1 λ1λ4λi+ 4] b11[1 + k2
1 + k2

1k
2
2 + · · ·+ · · ·+ k2

1k
2
2 × · · · × k2

n−5]

+[
∑2

i=1 λ1λ2λ3λi+3 +
∑1

i=1 λ1λ2λ4λi+ 2+∑1
i=1 λ1λ3λ4λi+1]−]

∏5
i=1 λi] = 0

After resolving the quartic equation above, we get

b11 =
λ1

1 + k2
1 + k2

1k
2
2 + · · ·+ k2

1k
2
2 × · · · × k2

n−5

,

λ2 = b(n−3)(n−3)

λ3 = b(n−2)(n−2)

λ4 = b(n−1)(n−1)

λ5 = bnn
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It is solved.

For 7 × 7 singular Hermitian matrix, we obtain a single scalar, k, which ac-

counts for the independent variables,

b13,b14,b15,b16,b17,b34,b35 b36,b37 b45 b46 ,b47,b56,b57 and b67.

Generally, we obtain n− 5 scalars for a n× n singular Hermitian matrix:

b(n−1)n,b1(n−2)n,b1(n−2)(n−1),b1n,b1(n−1) and b1(n−2).

For a n×n singular Hermitian matrix of rank six, the inverse eigenvalue problem

can be solved given the range and the number of scalars

ki, i = 1, 2, 3, · · · , n− 6.

Proof: Considering the range, since Λ6 has a rank of λn = {λ1, λ2, λ3, · · · , λn},

it follows that

λ1 ̸= 0 λ2 ̸= 0 λ3 ̸= 0 λ4 ̸= 0 λ5 ̸= 0 λ6 ̸= 0 λi = 0 For i = 7, 8, 9, · · · , n

However, since r = 6, it follows that the number of scalars is equal to n–6.

Consequently, we swap out the column or row for

B(n,6) =



b11 k−
1 b11 k−

1 k
−
2 b11 · · · k−

1 k
−
2 · · · b−1n

k1b11 k2
1b11 k2

1k
−
2 b11 · · · k2

1k
2
2 · · · k1b

−
1n

...
...

... . . . ...

k1k2 · · · kn−6b11 k2
1k2 · · · kn−6b11 k2

1k
2
2 · · · k2

n−6b11 k1k2 · · · b−1n

b11(n−2) k−
1 b11(n−2) k−

1 k
−
2 b(n−2)n · · · b−(n−2)n

b1(n−1) k−
1 b11(n−1) k−

1 k
−
2 b11(n−1) · · · b−(n−1)n

b1n k−
1 b1n k−

1 k
−
2 b1n k−

1 k
−
2 k

−
n−6 · · · bnn


since tr(B(n,6)) = λ1 + λ2 + λ3 + λ4 + λ5 + λ6 =
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b11

[
1+ k2

1+ k2
1k

2
2 + · · ·+ k2

1k
2× · · · k2

n−6

]
+b(n−2)(n−2) + b(n−1)(n−1) + bnn

leading to quartic equation.

b6111+k2
1+k2

1k
2
2+ · · ·+k2

1k
2
2×· · ·×k2

n−6]
6 −[

∑6
i=1 λi]b

5
11[1+k2

1+k2
1k

2
2 + · · ·×

k2
n−6]

5[
∑4

i=1 λ1λi+1 +
∑3

i=1 λ2λi+2+
∑2

i=1 λ3λi+3 +
∑1

i=1 λ4λi+4]b
2
11[1+k2

1+

k2
1k

2
2 + · · · + · · · k2

1k
2
2 × · · · × k2

n−6]
2 − [

∑3
i=1 λ1λ2λi+2 +

∑2
i=1 λ1λ3λi+3 +∑2

i=1 λ2λ4λi+4 +
∑2

i=1 λ2λ3λi+3 +
∑1

i=1 λ2λ4λi+4 +
∑2

i=1 λ2λ3λi+3

+
∑1

i=1 λ1λ4λi+ 4]b11[1 + k2
1 + k2

1k
2
2 + · · · + · · · + k2

1k
2
2 × · · · × k2

n−6] +

[
∑5

i=1 λ1λ2λ3λi+3 +
∑4

i=1 λ1λ2λ4λi+2 +
∑3

i=1 λ1λ2λ5λi+3 +
∑2 λ2λ6λi+4 +∑1

i=1 λ1λ3

λ4λi+1]b
2
11[1 + k2

1 + k2
1k

2
2 + · · · × k2

n−6]
2]
∏6

i=1 λi] = 0

After resolving the quartic equation above, we arrived at

b11 =
λ1

1 + k2
1 + k2

1k
2
2 + · · ·+ k2

1k
2
2 × · · · × k2

n−5

,

λ2 = b(n−4)(n−4)

λ3 = b(n−3)(n−3)

λ4 = b(n−2)(n−2)

λ5 = b(n−1)(n−1)

λ6 = bnn

It is solved.

The independent variables are;

1. We obtain one scalar, k, for the 7 × 7 singular Hermitian matrix; thus, the

independent variables b13, b14, b15, b16, b17, b34, b35, b36, b37, b45,b46,b47 b56,

b57.
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2. For 8 × 8 singular Hermitian matrix we get two scalars that is k1 and k2,

hence the independent variables b14,b15, b16, b17,b18,b34,b35,b36,b37,b38b45,b46

b47,b48,b56,b57,b58,b67,b68, and b78 .

3. The independent variables come from the one scalar, k, that we obtain for the

n × n singular Hermitian matrix b(n−1)n, b1(n−2)n, b1(n−2)(n−1), b1n, b1(n−1)

and b1(n−2).

Theorem 4.3. If n − r variable parameters are given, the inverse eigenvalue

problem for a n × n singular symmetric and Hermitian matrix of ranks five or

six may be solved.

Proof: B(n,r) = bij , where n ≥ 2, is the case. It is evident that,

bi,j = b11


∏j=1

s=0 ks, i < j

(
∏i−1

s=0 ks)
2, i = j∏i−1

s=0Ksi > j


moreover

b11 =
λ1

1 + k2
1 + k2

1k
2
2 + · · ·+ k2

1k
2
2 · · · k2

n−r

.

and
bi,j = λ2, where i = j = n− r + 2

... =
...

bn,n = λr

λ1, λ2, · · · , λr ∈ R such that Ri = ki−1Ri−1 and Ri is the ith row of B.

Tr(B) = 1 +
∑n

s=1(
∏i−1

s=1 ks)
2
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We see that

r = 5:

b11 =
λ1

1 + k2
1 + k2

1k
2
2 + · · ·+ k2

1k
2
2 · · · k2

n−5

.

r = 6:

b11 =
λ1

1 + k2
1 + k2

1k
2
2 + · · ·+ k2

1k
2
2 · · · k2

n−6

.

Chapter Summary

The inverse eigenvalue problem relating to ranks five and six singular

symmetric and Hermitian matrices are solved in this chapter. Building Her-

mitian and singular symmetric matrices using a modified procedure to come out

with the results.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

The summary, conclusions and recommendations are looked at in this chapter.

Summary

In this study, ranks five and six singular symmetric Hermitian matrices

with an inverse eigenvalue problem are to be solved. Upon knowledge of the

matrices’ eigenvalues, the primary objective is to locate the original matrices.

Matrix features exhibiting singularity or Hermitian characteristics receive spe-

cial attention (Baah, 2012). The research extended a method for the inverse

eigenvalue problem for singular symmetric matrices to include rank four and

provided multiple examples (Aidoo et al., 2013). The lone Hermitian matrix is

another thing the researcher looks at.

Conclusions

Complex mathematical methods, which may involve advanced numerical

algorithms, are needed to solve the inverse eigenvalue problem for singular sym-

metric and Hermitian matrices of ranks five and six. The work provides com-

prehensive knowledge about these matrices and their manipulation, which opens

up new possibilities for applications in various disciplines, including quantum

physics and signal processing. More research and development of these so-

lutions may increase our ability to address complex problems in a variety of

scientific and engineering domains.

Recommendations

Regarding the study results, it is advised that the following be given care-

ful consideration.

1. Singular symmetric matrices of ranks five and six should have their inverse

eigenvalue problem handled with mathematical technology and software.
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2. Analyze the applicability of the solution to the inverse eigenvalue problem

for singular Hermitian matrix of ranks five and six in the field of physics,

especially quantum mechanics.
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Kandić, D., Reljin, B., et al. (2008). Explicit solution of the inverse eigen-

value problem of real symmetric matrices and its application to electrical

network synthesis. Mathematical Problems in Engineering, 2008.

Lipovetsky, S. (2013). Priorities in thurstone scaling and steady-state probabili-

ties in markov stochastic modeling. Journal of Modern Applied Statistical

Methods, 12(1), 12.

Marcus, M., & Minc, H. (1988). Introduction to linear algebra, 182. Dover

Publications Inc., Mineola, New York.

Marijuán, C., Pisonero, M., & Soto, R. L. (2007). A map of sufficient conditions

for the real nonnegative inverse eigenvalue problem. Linear Algebra and

Its Applications, 426(2-3), 690–705. doi: 10.1016/j.laa.2007.05.046

Mirsky, L. (1964). Inequalities and existence theorems in the theory of matrices.

Journal of Mathematical Analysis and Applications, 9(1), 99–118.

Oduro, F. T. (2014). Solution of the inverse eigenvalue problem for certain

(anti-) hermitian matrices using newton’s method. Journal of Mathemat-

ics Research, 6(2), 64-70.

Oliveira, G. (1972). Matrix inequalities and the additive inverse eigenvalue

problem. Computing, 9(2), 95–100.

Radwan, N. (1996). An inverse eigenvalue problem for symmetric and nor-

mal matrices. Linear Algebra and Its Applications, 248, 101–109. doi:

10.1016/0024-3795(95)00162-X

Riondato, M., Garcı́a-Soriano, D., & Bonchi, F. (2017). Graph summarization

with quality guarantees. Data mining and knowledge discovery, 31, 314–

349.

Rothblum, U. G. (2006). Nonnegative matrices and stochastic matrices. In

73

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Handbook of linear algebra (pp. 9–1). Chapman and Hall/CRC.

Sasikumar, S., Karthikeyan, S., Suganthi, M., & Madheswaran, M. (2009). Effi-

cient estimation algorithm for arma, exponential and other trigonometric

model with quantum constraints. IET Signal Processing, 3(1), 64–73.

Shapiro, A. (1983). Asymptotic distribution theory in the analysis of covariance

structures. South African Statistical Journal, 17(1), 33–81.

Sharma, D., & Sen, M. (2018). Inverse eigenvalue problems for acyclic matrices

whose graph is a dense centipede. Special Matrices, 6(1), 77–92.

Simovici, D. A. (2012). Linear algebra tools for data mining. World Scientific.

Sing, F.-Y. (1976). Some results on matrices with prescribed diagonal elements

and singular values. Canadian Mathematical Bulletin, 19(1), 89–92.

Soto, R. L. (2016). Nonnegative inverse elementary divisors problem. In Ap-

plied linear algebra in action. London, United Kingdom: IntechOpen

.

Soto, R. L., & Rojo, O. (2006). Applications of a Brauer theorem in the non-

negative inverse eigenvalue problem. Linear Algebra and Its Applications,

416(2-3), 844–856. doi: 10.1016/j.laa.2005.12.026

Strang, G. (2012). Linear algebra and its applications.

Thompson, R. C. (1977). Singular values, diagonal elements, and convexity.

SIAM Journal on Applied Mathematics, 32(1), 39–63.

Voyevodin, V. V. (1983). Linear algebra. Mir Publishers.

Weiss, J. (2019). A tutorial on the proper orthogonal decomposition. In Aiaa

aviation 2019 forum (p. 3333).

Wu, J.-L. (2011). On Open Problems of Nonnegative Inverse Eigenval-

ues Problem. Advances in Pure Mathematics, 01(04), 128–132. doi:

10.4236/apm.2011.14025

Xu, Y.-H., & Jiang, E.-X. (2006). An inverse eigenvalue problem for periodic

jacobi matrices. Inverse problems, 23(1), 165.

Zhang, T., & Golub, G. H. (2001). Rank-one approximation to high order

tensors. SIAM Journal on Matrix Analysis and Applications, 23(2), 534–

74

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



550.

Zhao, L., Hu, X., & Zhang, L. (2011). Inverse eigenvalue problems for bisym-

metric matrices under a central principal submatrix constraint. Linear and

Multilinear Algebra, 59(2), 117–128.

75

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library




