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ABSTRACT

A proposed two-dimensional modified Lotka-Volterra fishery model in terms

of predator-prey aims to explore the effect of non-selective harvesting on the

predator and the prey populations. The study delves into various essential as-

pects of the dynamical system, comprising positivity, uniform boundedness and

persistence. Points of equilibrium are identified. The system’s local and global

stability are thoroughly examined and discussed. Moreover, the research ex-

plores the concept of bionomic equilibrium, a scenario where economic rent is

entirely dissipated. Extending the bioeconomic model, the study investigates a

linear optimal control problem to determine the most effective harvesting strat-

egy. Utilising Pontryagin’s maximum principle, the optimal control is charac-

terised. The findings indicate that maximum allowable effort should be exerted

whenever the net revenue per unit effort surpasses the total net marginal revenue

of predator and prey stocks. Numerical simulations, with data on the marine ar-

tisanal fishery in Ghana, are conducted to validate the theoretical discoveries.

The outcomes reveal that the fishery can support sustainable harvesting of both

predator (tuna) and prey (sardinella) populations, so far as the optimal harvest-

ing effort is set at 100,000 fishing trips annually.
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CHAPTER ONE

INTRODUCTION

Fisheries play an essential role in the economy and food security of many

countries worldwide. However, overexploitation of fish stocks has become a

major concern, leading to the depletion of fish populations and its negative ef-

fects on the ecosystem. To address this issue, mathematical models in fishery

have been proposed to study predator-prey dynamics, interactions and the im-

pact of harvesting on fish populations. This research work focuses on a predator-

prey fishery model with non-selective harvesting and investigates the effective-

ness of linear optimal controls in maintaining the fishery system’s stability.

Background to the Study

The predator-prey fishery model is mathematically formulated to examine

the relationship between two or more species in an ecosystem: the predators

and their prey. This model was developed as a way to understand the population

dynamics concerning fishing activities. The predator-prey fishery model can be

traced back to the mid-20th century when fisheries around the world were being

overexploited due to the lack of proper management and regulation. This re-

sulted in a decline in fish populations, which had serious economic, social, and

ecological consequences. To address this problem, scientists began developing

mathematical models that could help them understand the fish population dy-

namics and the effect of fishing activities on these populations. One of the most

influential models was the fishery model in terms of predator and prey, which

was initiated by A. J. Lotka and V. Volterra. The predator-prey fishery model

was centred on the equations of Lotka and Volterra, which explains predator-

prey interactions and their dynamics in terms of population growth rates. Some

scientists have extended these equations to include fishing activities as a factor

that affects the swing in the population of both the predators and the prey. The

model showed that fishing activities could have a significant impact on the pop-
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ulation sizes of both species and that the effort of fishing at an optimal level

would border on the biological characteristics of the species and the ecologi-

cal context. Since its introduction, the predator-prey fishery model has been

widely used in fisheries management and conservation. It has helped scientists

and policymakers understand fishing activities and their impact on fish popula-

tions, has served as a guide to the development of lasting fishing practices that

balance economic, social, and ecological objectives. The explosive growth of

the human population, combined with rapid technological advancements, has

unleashed an insatiable demand for resources, leading to ruthless and excessive

exploitation. As highlighted by Clark (2010), the depletion of marine fish stocks

has transcended the boundaries of easily accessible near-shore populations and

ruthlessly encroached upon remote off-shore regions. Valuable species of sig-

nificant size have fallen victim to relentless overfishing, a process aptly coined

as ”fishing down the food web” by Pauly et al. (1998) Alarming statistics by

the Food and Agriculture Organization of the United Nations (FAO) paint pic-

tures of grim. Their analysis of assessed fish stocks reveals a distressing down-

ward trend, with the share of stocks maintained at biologically sustainable levels

dwindling from 90% in 1974 to a meagre 68.6% by 2003. This leaves a stagger-

ing 31.4% of fish stocks teetering on the brink of collapse, victims of overfishing

and the biological havoc it wreaks. Shockingly, a mere 10.5% of the assessed

fish stocks in 2013 were classified as underfished, while a disheartening 58.1%

were mercilessly exploited to their full extent (FAO, 2016). The concerns voiced

by Mullon, Freon, and Curry (2005) are undeniably justified as their analysis of

the FAO’s world fisheries database spanning 80 years reveals a terrifying re-

ality: a staggering 366 fisheries collapsed, accounting for nearly a quarter of

all fisheries examined. These dire figures, as corroborated by the Ministry of

Fisheries and Agriculture Development (MOFAD, 2016), serve as a clarion call

to the impending catastrophe looming over our oceans. The evidence unequiv-

ocally asserts that the unsustainable depletion of fish stocks due to unchecked

2
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over-exploitation has instilled a mounting sense of fear. The urgency of the sit-

uation cannot be understated as we grapple with the remorseless annihilation of

vital marine ecosystems, threatening both the delicate balance of nature and the

livelihoods of countless communities that depend on healthy fisheries. Global

stability of a model with non-selective harvesting of two species refers to the

long-term behaviour of the populations of the two species. The model’s global

stability means that, under certain conditions, the populations of both species

will settle into a stable equilibrium point and continue to stay around this point

indefinitely. The stability of the steady-state point depends on the model’s pa-

rameters, such as the predation rate, the rate of growth of the prey, and the rate

of harvesting.

Statement of the Problem

This research addresses the need to balance economic and ecological ob-

jectives in the management of fisheries. The predator-prey model for fishery

is used to study the predator and prey populations dynamics and the impact on

fishing activities on these populations. The model also helps identify the op-

timal fishing effort levels that maximize economic benefits while ensuring the

long-term sustainability of the fishery. The research is approached by examining

different fishing strategies, such as varying fishing effort levels and their impact

on predator and prey populations. The aim is to identify the fishing strategy

that maximizes the economic benefits while minimizing the negative impact on

the ecosystem. This would require a comprehensive analysis of the biological,

ecological, and socio-economic factors that affect the fishery.

Purpose of the study

The ultimate purpose of researching a predator-prey model for fishery

with non-selective harvesting is to contribute to the conservation and sustain-

3
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ability of fishery resources. By understanding the impacts of non-selective har-

vesting and developing effective management strategies, the research aims to

promote sustainable fishing practices that maintain healthy fish stocks, preserve

biodiversity, and support the long-term livelihoods of fishing communities.

Research objectives

To attain the aim of ensuring the permanence of fishery resources, the

research aimed to determine optimal control techniques and procedures for sus-

tainable harvesting strategies. To achieve this aim, the following specific objec-

tives were considered:

• To formulate a mathematical model to optimize the strategies for harvest-

ing fishery resources.

• To ascertain the model’s points of equilibrium, local and global stability.

• To develop a linear optimal control problem with non-selective harvest-

ing.

• To analyze and derive conditions necessary for the optimality of the con-

trol problem.

• To validate the theoretical findings by performing numerically simulations

on data relating to marine artisanal fishery in Ghana.

Research Questions

• What is a predator-prey fishery model with harvesting dynamics?

• What is the optimal harvesting effort using linear control?

• How can simulations help in the application of the model to the marine

artisanal fishery in Ghana?

4
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Significance of the Study

Sustainable fisheries management is essential for maintaining ecological

balance and ensuring long-term economic viability. Overexploitation and unreg-

ulated harvesting often leads to population collapse, disrupting aquatic ecosys-

tems and threatening food security. This study provides a mathematical frame-

work to analyze and control predator-prey dynamics, ensuring sustainable har-

vesting while maintaining ecological stability. This research makes significant

contributions to mathematical ecology, fisheries management, and optimal con-

trol theory. By analyzing the global stability of the predator-prey model, the

study enhances understanding of species interaction under harvesting pressures.

The incorporation of linear optimal control allows for the development of

strategies that maximize yields while preventing species extinction and main-

taining ecosystem stability. This findings will serve as a scientific basis for reg-

ulating long-term resource sustainability. Policymakers and fisheries managers

can use the findings to develop sustainable fishing regulations and quota-based

systems that balance the economic interest with conservation efforts. Marine bi-

ologist and ecologists will again a quantitative framework to analyze population

dynamics and ecosystem-based management strategies.

Economists and fishing industry will benefit from optimized harvesting

strategies that maximize long-term fishery profits while preserving marine bio-

diversity. Additionally, academics in mathematical research will find valuable

insights for further exploitation in non-linear dynamics, stability analysis, and

modeling. Conservation organizations advocating for sustainable fishing prac-

tices will also benefit from the scientific evidence supporting better management

of marine resources.

This study contributes to knowledge, policy, and practice by enhancing

mathematical understanding of predator-prey interactions, providing scientific

guidance for sustainable fisheries management, and offering a practical decision-
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making tool for fisheries operations. Ultimately, it bridges the gap between the-

oretical Mathematics and real-world ecological applications, ensuring that fish-

eries remain productive and ecosystems remain stable for future generations.

Justification of the study

This study intends to equip essential fishing industry stakeholders—such

as government entities, fishermen, conservationists and scholars—with a scientific-

driven tool to enhance their ability to make well-informed decisions. Unlike

conventional approaches, which often rely on discrete-time models, our re-

search embraces the dynamic nature of fisheries by employing a continuous-

time framework. By monitoring stocks and related activities at any given mo-

ment, our approach unveils new and captivating perspectives that can enhance

the understanding of fisheries. This study is poised to inspire a wave of passion-

ate academics and researchers to join forces in combating the alarming decline

of fisheries not only along the vibrant coast of Ghana but also worldwide. So, a

way can be paved for effective measures that will ensure the sustainable future

of fishery resources.

Delimitation

In the realm of the predator-prey fishery relationship, this study involves

delineating the crucial elements and variables influencing the dynamics of both

predator and prey populations, along with examining how fishing activities exert

an impact on these populations. Some possible components and factors would

be considered in the scope of the research. The biological characteristics of the

predator and prey populations, such as growth rate, mortality rate, and repro-

ductive rate, are important factors that affect their population dynamics. Fishing

effort and fishing season duration are important factors that affect the population

size of both the prey and predator. The economic benefits and social impacts of
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fishing activities, such as employment, income, and food security, would be

considered.

Limitations

• The predator-prey fishery model faces uncertainty due to the intricate in-

terplay of various factors that make predicting the population dynamics

of the predator and prey populations challenging. For example, natural

disasters, climate change, and disease outbreaks can all have a significant

impact on fish populations.

• The predator-prey fishery model relies on accurate and comprehensive

data on the biological, ecological, and socio-economic factors that affect

predator and prey populations. However, data on these factors are often

limited, notably in developing countries and small-scale fisheries.

• The predator-prey fishery model is grounded on the assumption of a sim-

plified predator-prey relationship, which may not accurately reflect the

complexity of real-world ecosystems. In reality, the relationships be-

tween predators and prey are often more complex and can involve multiple

species and trophic levels.

Definition of Terms

This section defines key terms used in the study to provide clarity on the

concepts related to the predator-prey fishery model and optimal control theory.

• Bionomic Equilibrium – A state where the economic rent from harvesting

is completely dissipated due to overexploitation.

• Equilibrium Point – A state where the populations of predator and prey

remain constant over time.

7
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• Global Stability – A condition where, regardless of initial population

sizes, the system stabilizes at an equilibrium.

• Local Stability – A condition where small disturbances in population re-

turn to equilibrium over time.

• Lyapunov Function – A mathematical function used to establish the sta-

bility of equilibrium points.

• Marginal Net Revenue (MNR) – The additional revenue generated from

increasing fishing effort by one unit.

• Net Revenue Per Unit Effort (NRPUE) – A measure of economic return

per unit of fishing effort.

• Optimal Harvesting Strategy – A strategy that maximizes long-term eco-

nomic benefits while sustaining fish populations.

• Pontryagin’s Maximum Principle – An optimization technique used to

determine the best control strategy for managing fisheries.

• Predator-prey Model – A mathematical model that describes interactions

between predator and prey populations in an ecosystem.

• Routh-Hurwitz Criterion – A mathematical method for determining the

stability of a system by analyzing characteristic equations.

These definitions provide a foundational understanding of the concepts used in

this study and their relevance to the predator-prey fishery model.

Organisation of the Study

This study comprises six captivating chapters that shed light on optimal

control theory in the context of a predator-prey fishery model with non-selective

8
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harvesting. Chapter One provides an insightful overview of the research back-

ground, including the main mathematical tool utilized in our analysis. We also

outline the study’s objectives, methodology, scope, and limitations, which pave

the way for a deeper understanding of the research problem. Chapter Two

presents a literature review that delves into the previous work done on opti-

mal control fishery resource management and modelling. The literature review

serves as an excellent platform for showcasing how different researchers have

approached the challenge of sustainable renewable resources for future genera-

tions. Chapter Three explores the mathematical modelling concepts of the study.

Chapter Four investigates the model formulation and analysis that underlie our

study. In Chapter Five, the optimal control problem is examined and we take a

numerical approach to studying the given problem and present our findings and

discussions clearly and concisely. This chapter reveals the numerical insights

we have gained through our research. Finally, in Chapter Six, we wrap up our

research work by presenting an engaging summary of our findings, conclusions,

and recommendations. Our recommendations are tailored specifically for the

fisheries commission and are aimed at promoting the sustainable management

of fishery resources.

9
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CHAPTER TWO

LITERATURE REVIEW

Introduction

In this chapter, an extensive examination of pertinent literature in the field

of study will be conducted, with a specific emphasis on optimal control prob-

lems within the context of predator-prey mathematical fishery models. This

review and discussion aim to provide a thorough understanding of the subject

matter.

Optimal Control of a Predator-Prey Fishery Resource Management

(Hairston et al., 1960) findings in the context of predator-prey fishery

models highlighted the intricate dynamics between predator and prey popula-

tions and the influence of fishing activities on these dynamics. One of their key

findings was that selective fishing, particularly targeting larger individuals, can

disrupt the age structure and size distribution of fish populations. This alter-

ation in population structure can have cascading effects on the ecological bal-

ance within predator-prey systems. Furthermore, they noted that size-selective

fishing practices can impact the competitive interactions between predator and

prey species, leading to changes in overall population abundance. However, it

is important to mention that Hairston, Smith, and Slobodkin’s research study

focused primarily on simplified models and laboratory experiments, which may

not fully capture the complexities of real-world predator-prey interactions in

fisheries. Some researchers argued that the findings might not be directly ap-

plicable to natural ecosystems due to the inherent complexities and variability

present in the field. Schaefer (1954) emphasizes that in the complex biological

system of marine fish populations, numerous factors influence their dynamics.

However, among these factors, only one—predation by humans—can be signif-

10

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



icantly controlled or modified through the regulation of fishing activities. Con-

sequently, any meaningful management or control of fisheries must primarily

focus on regulating the actions of fishermen. Fishery management is funda-

mentally driven by the objective of modifying or limiting fisherman activities

to achieve desired changes in fish populations and catches, which are deemed

more favourable than the outcomes resulting from unregulated fishing opera-

tions (Schaefer, 1954). The primary aim of that study was to investigate the

economic principles related to the utilization of natural resources within the

framework of the fishing industry. The author argued that many of the issues

related to conservation, depletion, and overexploitation in fisheries were man-

ifestations of the absence of economic rent in the marine resource. Economic

rent refers to the regular income derived from a sustainable resource or the net

revenue and profit generated. Fishery resources are commonly treated as com-

mon property, which creates various challenges for every collaborator involved

in the fisheries industry.

Predator-Prey Mathematical Modelling of Fishery Resource Management

Clark and Munro (1975) illustrated that fisheries economics can be ef-

fectively analyzed using the theory of optimal control within the framework

of capital theory, providing general and comprehensible results. The authors

detected shortcomings in the Gordon-Schaefer model which is static and de-

vised a dynamic autonomous linear model. They demonstrated that the static

interpretation of the fisheries model in economics constitutes a specific instance

within the dynamic autonomous model. To broaden its applicability, they ex-

panded the model by introducing non-autonomous elements concerning price

and cost parameters and incorporating non-linearity through a non-linear ob-

jective function based on the rate of harvest as the control variable. Accord-

ing to Clark and Munro (1975), an argument was made for analyzing fisheries

11
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economics, akin to other sectors of resource economics, through the lens of

capital theory. They drew parallels between fish population or biomass and cap-

ital stock, emphasizing their potential to sustain consumption over time. Much

like traditional capital, decisions related to present consumption impact stock

levels and consequently influence future consumption possibilities. Therefore,

effective resource management entails selecting an optimal consumption pat-

tern over time, involving the determination of a stock level which is optimal

as a function of time. In their examination of the models which are linearly

autonomous, the authors pinpointed an optimal stationary steady-state guided

by a generalized modified important rule. This principle suggests that the cap-

ital stock, encompassing fish populations, should be adjusted—either increased

or declined—until the marginal utility aligns with the discount rate or interest.

In Dubey et al. (2013), a resource model which is two-dimensional was pro-

posed to investigate the crowding outcomes of a renewable resource and the

human population utilizing it. The model aimed to analyze the consequences

of crowding and the interplay between resource and population dynamics. The

researchers employed the logistic equation to represent the growth of the pop-

ulation. The modelling involved representing the intrinsic growth rate and the

carrying capacity of the population as functions that rise in tandem with the re-

source stock. This implies that the population’s carrying capacity and growth

rate are influenced by resource availability. To accommodate resource exploita-

tion, the assumption was made that the resource stock undergoes harvesting at

a rate proportionate to its size and the effort invested in the harvesting process.

This reflected the idea that resource utilization depended on both the stock’s

abundance and the human effort devoted to harvesting it. The study analyzed

and discussed the biological and bioeconomic equilibria of the system. These

equilibria represented stable states where the resource and population dynamics

reached a balance. The researchers also investigated the global stability charac-

teristics of the non-negative equilibrium point, which provided in-depth knowl-

12
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edge of the behaviour of the system in the long run. Output feedback control

techniques were utilized to evaluate the stability of this equilibrium.

The objective function employed in the study sought to maximize the dis-

counted present value of future net revenues. This objective reflected the de-

sire to optimize the utilization of the resource while considering the economic

benefits over time. The researchers utilized Pontryagin’s maximum principle, a

mathematical optimization approach, to analyze the system dynamics and derive

optimal control strategies. To validate their theoretical findings, numerical sim-

ulations were conducted. These simulations involved running the model under

various scenarios and parameter settings to observe how the system responded,

and to assess the implications of different control strategies. In a groundbreak-

ing study by Hanson and Ryan (1998), an optimal harvesting model was inves-

tigated, accounting for both price and population dynamics . The researchers

looked into how large price dynamics in a randomised Schaefer model affected

the harvest method. They included background (Wiener) and leap (Poisson)

components in prices and population size to add randomization. Interestingly,

density-independent population fluctuations were assumed, meaning that rel-

ative changes were independent of population size. The model also took the

inflationary implications of quadratic costs into account.

The optimal harvesting and discounted net revenue were found using stochas-

tic dynamic programming with realistic bioeconomic data from the Pacific hal-

ibut fishery. Even in risky or catastrophic situations, the results showed that

inflationary effects had a significant influence on the optimal net revenue. It was

discovered that the optimal amounts of harvesting effort were less susceptible

to the impacts of inflation.

Five common fishery harvesting strategies were introduced by Idels and

Wang (2008) in a related study on fishery management strategies: rotational

harvesting, constant harvesting, proportional harvesting, seasonal harvesting,

and proportional threshold harvesting. Idel and Wang overcame restrictions by

13
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creating a new fishing effort technique based on the density of fish population

dynamics in the fishery, in contrast to classic fisheries models that describe fish-

ing effort only as a function of time. Using a canonical differential equation

model (Schaefer model), they showed that the control parameter, which mea-

sures how much the size of the fish population affects fishing effort, affects both

the equilibrium values and the rate at which the population approaches equilib-

rium. They investigated the effects of several harvesting techniques using both

numerical simulations and qualitative studies.

Using a bioeconomic model of a single-species fishery, another study by

Kar and Matsuda (2008) examined the effects of marine protected areas from

both biological and economic standpoints. Using a two-dimensional model, the

study examined the effects of harvesting and protected areas on resource pop-

ulations. Using a logistic growth model with a carrying capacity proportional

to the distribution area, the model took into account variables indicating the

nature reserve and harvesting reserve sub-areas of the population’s habitat re-

gion. The goal of the study was to optimize discounted net revenue from fish

harvesting in the sub-area of the harvesting reserve while taking fishing effort

limits and population dynamics into account. The researchers obtained and ana-

lyzed steady states, and local and global equilibrium, concluding that protected

patches were effective in conserving resource populations, although complete

extinction could not be ruled out in all cases. The study also discussed the eco-

nomic and biological interpretations of the optimal equilibrium harvest policy.

The model employed in this current study incorporated linear controls to

assess their optimality. Through simulations conducted on the developed model,

intriguing and insightful results were obtained. Nevertheless, it is important

to highlight that there is a lack of predator-prey fishery models explicitly de-

signed to tackle non-selective harvesting practices in the context of the marine

artisanal fishery in Ghana. The exploration of such models is limited, high-

lighting the need for more research in this area. Furthermore, the study aimed

14
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to contribute by introducing original ideas that provide a fresh perspective on

understanding and analyzing fishery dynamics. By utilizing a linear optimal

control, this research offers a fairly novel approach to investigating the dynam-

ics of predator-prey fishery models. The simulations were conducted to shed

light on application aspects of these systems, prompting further exploration and

study in this vital field of research.

Chapter Summary

This chapter provides an extensive examination of previous research on

predator-prey fishery models, focusing on optimal control strategies. It explores

key studies, such as those by Hairston et al. (1960), Schaefer (1954), and

Clark & Munro (1975), which analyze predator-prey interactions and the role

of fishing activities in resource depletion. The chapter highlights the impact

of selective and non-selective harvesting on population dynamics, emphasizing

how overfishing can disrupt ecological balance. Additionally, the review iden-

tifies gaps in existing literature, particularly the need for models that explicitly

address non-selective harvesting in marine artisanal fisheries, with a focus on

Ghana.
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CHAPTER THREE

RESEARCH METHODS

Introduction

In this chapter, we delve into the fundamental theory and mathematical

principles that underpin the optimal control of fishery resources. We start with

a comprehensive review of pertinent definitions, ensuring a solid understand-

ing of the key terms and concepts involved. Building on this, we then proceed

to formulate an optimal control model tailored specifically for the management

of fishery resources. The formulation of this model is grounded in the tradi-

tional method of solving problems on optimization dynamics within the context

calculus of variations. Additionally, we integrate the principles of dynamic op-

timization theory, which play a crucial role in formulating and solving dynamic

control problems.

Definition and Concepts

This section provides an in-depth exploration of essential definitions and

concepts relevant to our research. Consider a set of differential equations de-

scribing an autonomous system

dX

dt
= F (X), (3.1)

X = (x1, x2, . . . , xn)
T and

F (X) =
(
f1(x1, x2, . . . , xn), . . . , fn(x1, x2, . . . , xn)

T
)
and F does not

explicitly depend on t. In our study, we consider problems governed by System

(3.1) and subject to a specific initial condition: X(t0) = X0. In the course of

our analysis, we presume the presence of a singular solution to these initial

value problems, unless expressly specified otherwise. Furthermore, we work

within the interval of [t0,∞) for the domain of existence (Nohel and Pego,
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1993).

Theorem 3.1. (Allen, 2007) If F and ∂F
∂xi

for i = 1, 2, . . . , n are assumed to

be continuous functions of x1, x2, . . . , xn on Rn, then the initial value problem

has a unique solution. X(t0) = X0, for any initial value X0 ∈ Rn, where

dX
dt

= F (X). The maximal interval of existence, [t0, T ), may be finite, T < ∞

unless the solution is bounded, although a unique solution exists.

corollary 3.2. (Allen, 2007) Assume that for each i = 1, 2, ...n, F and ∂F
∂xi

are

continuous functions of x1, x2, ..., xn on Rn. Additionally, if X1(t) and X2(t)

are two solutions that satisfy the differential system dX
dt

= F (X), then X2(t) =

X1(t− t0), given the initial conditions X1(t0) = X0 and X2(t0) = X0.

Definition 3.1. (Allen, 2007) X∗ represents a fixed solution, a steady-state so-

lution, a fixed point, or a critical point of the differential System (3.1), satisfying

the condition F (X∗) = 0.

Definition 3.2. (Allen, 2007) When a steady-state solution X∗ of System (3.1)

satisfies the condition that ∥X(t)−X∗∥ < ϵ, for all t ≥ t0, it is said to be locally

stable if, for each ϵ > 0, there exists δ > 0. This characteristic applies to every

solution X(t0) of System (3.1) with initial condition X(t0) = X0, ∥X0−X∗∥ <

δ. The steady-state solution is deemed unstable if it is not locally stable.

Definition 3.3. (Allen, 2007) If a steady-state solution X∗ is locally stable and

there exists a γ > 0 such that ∥X0 − X∗∥ < γ, then it is considered locally

asymptotically stable. This means that limt→∞∥(X(t)−X∗)∥ = 0.

Lemma 3.3 (Gronwall’s differential form). (Rudin, 1953) Let u(t) be non-

negative, differentiable function satisfying the inequality: u′(t) ≤ α(t)u(t) for

some continuous function α(t) on an interval [t0, T ].Then, u(t) ≤ u(t0)e
∫ t
t0

α(s)ds,

for t ∈ [t0, T ].

Lemma 3.4 (Gronwall’s integral form). (Rudin, 1953) Let u(t) be a continuous,non-

negative function satisfying u(t) ≤ a +
∫ t

t0
α(s)u(s)ds, for t ⩾ t0, Where
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a ⩾ 0 and alpha(t) is a continuous function.Then, u(t) ≤ aeint
t
t0
α(s)ds , for

t ⩾ t0.

Logistic Growth Model

The model assumes that the per capita growth rate b(x) will decrease as

the population size increases:

b(x) = r
(
1− x

K

)
. (3.2)

The logistic growth differential equation assumes that for population sizes greater

than a certain carrying capacity K, the rate of growth is negative, while for pop-

ulation sizes smaller than K, the rate of growth is positive. The logistic growth

differential equation is represented as

dy

dx
= rx

(
1− x

K

)
, (3.3)

where the carrying capacity is denoted by K > 0 and the intrinsic growth rate

is denoted by r > 0. There exist two equilibrium values, x = 0 and x =

K, derived from the equation. The differentiation equation that is solved by

separating the variables is as follows:

x(t) =
x0K

x0 + (K − x0)e−rt
. (3.4)

The population size converges to the carrying capacity if x(0) > 0; hence, for

non-negative beginning conditions, the steady-state x = K is globally asymp-

totically stable. This is expressed as limt→∞x(t) = K. As a result of f ′(0) =

r > 0 and f ′(K) = −r,

f ′(x) = r

(
1− 2x

K

)
. (3.5)

18

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Local Stability in First-order Systems in Two Variables

Consider the following two-dimensional system:

dx
dt

= f(x, y)

dy
dt

= g(x, y)

 . (3.6)

The equilibrium solution of the system, (x∗, y∗) satisfies f(x∗, y∗) = 0 and

g(x∗, y∗) = 0. The local stability analysis of a steady-state in a dynamic system

is found by looking at the eigenvalues of the Jacobian matrix. To carry out this

analysis, the functions of the system are denoted by f and g, which are extended

using Taylor’s formula centring on the steady-state (x∗, y∗), where µ = x − x∗

and v = y − y∗.If f and g have continuous partial second-order in an open set

containing (x∗, y∗),

dµ

dt
= f(x∗, y∗) + fx(x

∗, y∗)µ+ fy(x
∗, y∗)ν + 1

2
fxx(x

∗, y∗)µ2

+fxy(x
∗, y∗)µν + 1

2
fyy(x

∗, y∗)ν2 + . . .

dν

dt
= g(x∗, y∗) + gx(x

∗, y∗)µ+ gy(x
∗, y∗)ν + 1

2
gxx(x

∗, y∗)µ2

+gνy(x
∗, y∗)µν + 1

2
gyy(x

∗, y∗)ν2 + . . .

.


. (3.7)

where f(x∗, y∗) = 0 and g(x∗, y∗) = 0. The linearized system concerning the

steady-state (x∗, y∗) is then dZ
dt

= JZ, where the Jacobian matrix J is evaluated

at the steady-state and Z = (µ, ν)T . Therefore,

J =

fx(x, y) fy(x, y)

gx(x, y) gy(x, y)

 .
If the eigenvalues have a negative real portion, the linearized system dZ

dt
= JZ

converges to zero. Given that λ2−Tr(J)λ+det(J) is the characteristic polyno-

19

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



mial of matrix J , the eigenvalues have a negative real portion if Tr(J) < 0 and

det(J) > 0.Where Tr(J) and det(J) represents the trace and the determinant

of the Jacobian matrix (J) respectively.

Theorem 3.5. Assume that the first-order partial derivatives of f and g are con-

tinuous in an open set that contains the steady-state (x∗, y∗) of the system (3.8).

If Tr(J) < 0 and det(J) > 0, where the Jacobian matrix J is evaluated at

steady-state, then the steady-state is locally asymptotically stable. If Tr(J) > 0

or det(J) < 0, the steady-state is unstable. There are three situations when the

nonlinear system may behave differently from the linear system.

• When Det(J) = 0, at least one zero eigenvalue is present. There is no

isolation of stable states in the linearized system. If there is an isolated

steady-state in the nonlinear system—which could be a node, spiral, or

saddle—then this could also be the case.

• If Tr(J) = 0 and det(J) > 0 the eigenvalues are entirely imaginary. In a

linear system, the steady state is a centre; in a nonlinear system, it can be

a spiral or a centre.

• Tr(J)2 = 4det(J). Consequently, in the nonlinear system, the steady

state might be either a node or a spiral.

Definition 3.4. (Allen, 2007)

Let J represent the Jacobian matrix of F (X) evaluated at X∗, dX
dt

=

F (X), and X∗ represent the system’s steady-state. If the eigenvalues of the Ja-

cobian matrix J have a nonzero real portion, the steady-state X∗ is considered

hyperbolic; otherwise, it is considered nonhyperbolic.

When Tr(J) = 0 and det(J) > 0, or when det(J) = 0, the local stability

conditions are uncertain in the case of a nonhyperbolic steady-state. Matrix J

either contains zero eigenvalues or a complex conjugate eigenvalues with zero

real parts. The steady state is not hyperbolic in any scenario.
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Phase Plane Analysis of the Autonomous Systems

Let us examine the two-dimensional autonomous systems represented by

System (3.6). We presume that the functions f and g have continuous first-order

partial derivatives, which guarantees the uniqueness and existence of solutions

to initial value problems with the given scenario. In the x− y plane, each point

(x0, y0) corresponds to a single solution curve or trajectory. Since the direction

of the flow in three dimensions (t, x(t), y(t)) is independent of time t, we may

concentrate only on the solution curve (x(t), y(t)), on the x− y phase plane.

An autonomous differential equation

dx

dt
= f(x), (3.8)

can be studied by phase line diagramming, which is derived from simpli-

fying the direction fields in the t−x phase plane. Similar to this, we can further

extend the dynamics to a phase plane in the situation of two autonomous differ-

ential equations, where the direction field is represented in the x−y plane. With

t serving as the parameter, the solution trajectories (x(t), y(t)), which depict the

evolution of the system’s state variables x and y over time, can be written as

parametric equations. For every point (x, y),

dy

dx
=
g(x, y)

f(x, y)
(3.9)

provides the gradient of the trajectory in the x− y plane, and the tangent vector

(f(x, y), g(x, y))T provides the path of the solution curve, except at the steady-

state (x∗, y∗), where f(x∗, y∗) = 0 = g(x∗, y∗). Each point (x, y) has a unique

direction, indicated by the vector (f(x, y), g(x, y))T . At singular points, the

flow in the system comes to a standstill as these points represent fixed points

where the derivatives become zero.

The arrangement of vectors showing the path of the system’s evolution
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across the entire phase plane is referred to as the direction field. This direction

field is a crucial graphical depiction in sketching a family of solution trajecto-

ries, commonly known as a phase plane image. Constructing the field of direc-

tion for two autonomous equations can be a laborious task unless it is generated

with the aid of computers. An analysis of the flow path along the x and y zero

isoclines or the nullclines yields a more effective way to determine the flow path

in the system.

The zero x and y isoclines represent sets of points where either deriva-

tive becomes zero respectively concerning x or y. Along these nullclines, the

direction of flow changes, providing critical information about the system’s be-

haviour. Without generating the whole direction field, we can infer the nature of

trajectories in the phase plane by looking at the route of vectors in the path of

the x and y zero isoclines.

Definition 3.5. (Allen, 2007) The set of all points in the x − y plane satisfying

f(x, y) = 0 is the x-zero isocline or nullcline for System (3.6). Similarly, the

collection of all points satisfying g(x, y) = 0 is known as the y-zero isocline or

nullcline.

In general, a y isocline is a curve satisfying g(x, y) = c2 = constant,

while a x isocline is a curve on the x − y phase plane satisfying f(x, y) =

c1 = constant. The unique curves where the constants c1 and c2 are zero are

known as null isoclines. The tangent vector (0, g) is parallel to the y-axis on a x-

nullcline. The tangent vector (f, 0) is parallel to the x-axis on the y-nullcline.We

must confirm the flow path on the nullclines to choose the best control for the

given situation. An equilibrium exists when the x and y nullclines overlap,

indicating that the tangent vector’s course remains unchanged.
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Benedixson and Dulac Criteria

These essential two mathematical outcomes provide adequate conditions

that rule out the feasibility of periodical solutions.

Definition 3.6. (Allen, 2007) An example of a simply connected set without

any holes is the entire phase plane R2. A connected simple set D ⊂ R2 is

a set connected with the property that all simple closed curves in D may be

continuously shrunk (with D) to a point.Geometrically, a set which is simply

connected, is one without any holes.

Theorem 3.6 (Bendixson criterion). Assume D is a simply connected open sub-

set of R2. If the expression div(f, g) ≡ ∂f
∂x

+ ∂g
∂y

is not identically zero and

does not change sign in D, then there are no periodic orbits of the autonomous

system (3.8) in D.

Theorem 3.7 (Dulac criterion). Suppose D is a simply connected open sub-

set of R2 and B(x, y) is a real-valued function C ′ in D. If the interpretation,

div(Bf,Bg) = ∂(Bf)
∂x

+ ∂(Bg)
∂y

, is not identically zero and never changes sign D,

then there are no periodical solutions of the autonomous system (3.6) in D.

Dulac’s criterion serves as a simplification of Bendixson’s criterion and

involves the use of a function B, known as the Dulac function. In the unique

scenario in which B(x, y) ≡ 1. The criterion is further simplified. However,

there exists no universal approach for finding a suitable Dulac function for a de-

fined system, which poses a challenge in practical applications. When attempt-

ing to solve differential equations, finding an appropriate ”integrating factor,”

represented by the Dulac function B, can be difficult and non-trivial (Koçak and

Hale, 1991). Both Bendixson and Dulac criteria offer sufficient but not neces-

sary conditions for the absence of periodical solutions in a dynamical system.

This implies that if either of these criteria is satisfied, then periodic solutions do
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not exist. However, the non-satisfaction of these criteria does not definitively

determine the presence or absence of periodic solutions.

Routh-Hurwitz Criteria

In assessing the local asymptotic stability of steady-state points in non-

linear differential equation systems, the Routh-Hurwitz criteria are crucial tests

that provide both necessary and sufficient conditions for guaranteeing all roots

of the characteristic polynomials with real coefficients remain in the half left of

the complex phase plane.

Theorem 3.8 (Routh-Hurwitz criteria). (Allen, 2007) Let P (λ) = λn+a1λ
n−1+, . . . a(n−1)λ+

an be the polynomial function. The coefficients, ai, i = 1, 2, . . . n, are real con-

stants formed with n Hurwitz matrices using the coefficients, ai, of the charac-

teristic polynomial function,

H1 = (ai),

H2 =

a1 1

a3 a2

 ,

H3 =


a1 1 0

a3 a2 a1

a5 a4 a3

 ,

Hn =


a1 · · · 0

... . . . ...

0 · · · an

 .

detHj > 0, j = 1, 2, . . . n. Where aj = 0 , if j > n , then all of the roots of

the polynomial P (λ) are negative or have a negative real part if and only if the

determinants of all the Routh-Hurwitz matrices are positive.

corollary 3.9. Assume the coefficients of the characteristic polynomial are real.
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If all the roots for the characteristic polynomial P (λ) = λn+a1λ
n−1+, . . . a(n−1)λ+

an, are negative or have a negative real part ,then the coefficients, ai > 0 for

i = 1, 2, . . . n.

Global Stability and Lyapunov Functions

The “direct method of Lyapunov” is a crucial technique in stability

theory for differential equations. It involves constructing a Lyapunov function

with specific properties to establish the stability or asymptotic stability of an

equilibrium point within a defined region. This method is practically significant

as it allows us to obtain estimates for the basin of attraction of the steady-states.

The basin of attraction refers to a subset U in Rn that contains the equilibrium

point and possesses the property that solutions starting within U approach the

equilibrium point. By employing Lyapunov functions and the direct method,

we can rigorously analyze the stability properties of dynamic systems and gain

valuable insights into the characteristics of solutions closer to the steady states.

Definition 3.7. (Allen, 2007) Let U be an open subset of R2 containing the ori-

gin. A real-valued continuously function V , V : U → R, [(x, y) ∈ U, V (x, y) ∈

R)] is said to be positive definite on the set U if the following two conditions

hold. V (0, 0) = 0, V (x, y) > 0 for all (x, y) ∈ µ with (x, y) ̸= (0, 0). The

function is said to be negative definite if V is positive definite.

Definition 3.8. (Allen, 2007) A positive definite function V in an open neigh-

bourhood of the origin is said to be a Lyapunov function for the autonomous

differential System (3.6), if dV (x,y)
dt

⩽ 0 for all (x, y) ∈ U − (0, 0). If dV (x,y)
dt

< 0

for all (x, y) ∈ U − (0, 0), the function V is called a strict Lyapunov function.

Theorem 3.10 (Lyapunov’s stability theorem). Let (0,0) be an equilibrium of

the autonomous system (3.6) and let V be a positive definite, function in the

neighbourhood U of origin.
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• If dV (x,y)
dt

⩽ 0, for (x, y) ∈ U − (0, 0),then (0, 0) is stable.

• If dV (x,y)
dt

< 0, for (x, y) ∈ U − (0, 0),then (0, 0) is asymptotically stable.

• If dV (x,y)
dt

> 0, for (x, y) ∈ U − (0, 0),then (0, 0) is unstable.

Optimal Control Theory

According to Chiang (1992), the classical variational calculus, a conven-

tional dynamic method for optimization, relies on the differentiability of func-

tions involved, limiting its applicability to interior solutions only. In contrast, a

more modern approach, found in optimal control theory, addresses non-classical

features like corner or boundary solutions. Optimal control theory focuses on

one or more control variables as the key instruments for optimisation. The main

goal of the theory of optimal control is to identify the ideal path for the con-

trol variable E, which leads to the associated optimal control path xδ(t). This

is in contrast to the calculus of variations, which seeks to evaluate the optimal

time direction for a stable x variable. The optimal paths for xδ(t) and Eδ(t)

are typically obtained together in a single procedure. Control variables’ central

focus in the theory of optimal control significantly alters the orientation of the

optimisation problem dynamics.

The problem of optimal control is considered with n state variables and

m control variables with a payoff term ϕ. This formulation allows for a more

versatile and comprehensive approach to handling many dynamic optimization
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scenarios.

Maximize
E1,...Em

∫ T

0

f(t, x1(t), . . . , xn(t), E1(t), . . . , Em(t)) dt+ ϕ(x1(T ), . . . xn(T )),

Subject to x′1(t) = g1(t, x1(t), . . . , xn(t), E1(t), . . . , En(t)),

...

x′n(t) = gn(t, x1(t), . . . , xn(t), E1(t), . . . , Em(t)),

x1(0) = x10 , . . . , xn(0) = xn0 ,

(3.10)

Consequently, in every variable, the functions f and g are continuously differ-

entiable. The relative magnitude of m and n is unrestricted. It is all suitable for

m < n, m = n, and m > n.To have a more compact statement of the posed

optimal problem, the following is defined using a vector notation:

x =


x1
...

xn

 , E =


E1

...

Em

 , g =

g1
...

gn

 .

Subsequently, the optimal control issue can be stated as follows:

Maximize Z(E) =

∫ T

0

f(t, x(t), E(t)) dt+ ϕ(x(T )),

Subject to x′(t) = g(t, x(t), E(t)),

x(0) = x0.

(3.11)

Lebesgue integration and continuous piecewise of the control variable

E ∈ Rm is assumed, as is the state variable x ∈ Rn, where 0 denotes the start-

ing time and T denotes the terminal time. There are two possible time frames:

finite and infinite (T → ∞). Additionally, it is assumed that, for 0 ⩽ t ⩽ T ,

E ∈ Ut. Acceptable controls are those in which Ut, the control set, is stated and

may vary over time t. Finding the optimal control, Eδ(t), and the corresponding

optimal direction, xδ(t), that maximizes the objective functional while abiding
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by all constraints, including the state system x′ with its initial condition x0, is

the main goal of the control problem.

To address this optimization problem, a basic method is to find solutions

to a set of necessary conditions that both the interrelating state and the optimal

control need to meet. Distinguishing between necessary and sufficient condi-

tions of solution sets is vital.

Necassary Conditions: If Eδ(t), xδ(x) are optimal, then the following

conditions hold

Sufficient Condition: If Eδ(t), xδ(t) satisfy the following conditions, then

Eδ(t),xδ(t) are optimal

Usually, the necessary conditions are met by using an optimization tech-

nique known as Pontryagin’s maximum principle, which was put forth by Pon-

tryagin et al. (1962).

Theorem 3.11 (Pontryagin’s Maximum Principle). (Allen, 2007) If Eδ(t) and

xδ(t) are optimal for problem (3.12),then there exists a piecewise differential

adjoint function λ ∈ Rn such that

H (t, xδ(t), Eδ(t), λ(t)) ≥ H (t, xδ(t), E(t), λ(t)),

for all controls E at each time t,where the Hamiltonian

H = f(t, x(t), E(t)) + λT (t)g(t, x(t)E(t)),

and λ′(t) = −
[
∂H(t, xδ(t), Eδ(t), λ(t))

∂x(t)

]T
,

λ(T ) =

[
∂ϕ(xδ(T ))

∂x(T )

]T
.

The optimal state system dynamics is given as

x′(t) =

[
∂H(t, xδ(t), Eδ(t), λ(t))

∂λ(t)

]T
. (3.12)

where x(0) = x0. Furthermore, the optimality condition becomes, if the Hamil-
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tonian is differentiable in E(t) and Eδ(t) is in the interior.

[
∂H(t, xδ(t), Eδ(t), λ(t))

∂E(t)

]T
= 0 (zero row vector, 0 ∈ Rn).

In optimal control theory, the transversality condition is an essential component.

With the given problem, the transversality condition reduces to λ(T ) = 0 when

the payoff term ϕ(x(T )) = 0. (Chiang, 1992).

Bounded controls of the system

The development of an alternate condition is required to handle optimal

control problems with control bounds.

max

∫ T

0

f(t, x(t), E(t)) dt,

Subject to: x′(t) = g(t, x(t), E(t)),

x(0) = x0, a ≤ E ≤ b.

(3.13)

In this case, b > a with fixed, real constants a and b. These conditions are

necessary to deal with this particular situation. Building with the Hamiltonian

H(t, x, E, λ) = f(t, x, E) + λ(t)g(t, x, E). (3.14)

The necessary condition for both λ and xδ remain unchanged, specifically:

x′(t) =
∂H

∂λ
, x(0) = x0,

λ′(t) = −∂H
∂x

, λ(T ) = 0.

(3.15)

Nevertheless, if a non-linear control is used, the optimality condition

∂H

∂E
= fE(t, x, E) + λ(t)gE(t, x, E). (3.16)
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gives to the characterization of the optimal control as

Eδ =


a, if ∂H

∂E
< 0,

[a, b], if ∂H
∂E

= 0,

b, if ∂H
∂E

> 0.

(3.17)

Another characterization of the optimal control is

Eδ =


a, if ∂H

∂E
≤ 0,

(a, b), if ∂H
∂E

= 0,

b, if ∂H
∂E

≥ 0.

(3.18)

For a more comprehensive understanding, refer to the work of Kamien and

Schwartz (1991).

Linear controls

Optimal control problems exhibiting linear dependence on the control

variable commonly manifest in two distinct forms: bang-bang controls and sin-

gular controls. Now, let’s delve into the specifics of the optimal control problem:

Maximize
E

∫ T

0

f1(t, x) + E(t)f2(t, x)dt,

Subject to x′(t) = g1(t, x) + E(t)g2(t, x),

x(0) = x0,

a ⩽ E ⩽ b.

(3.19)

The integrand function f and the right-hand side of the state system in problem

(3.20) are both linear functions of the control variable E. Consequently, the

Hamiltonian is also linear in E and can be expressed as

H = [f1(t, x) + λ(t)g1(t, x)] + E(t)[f2(t, x) + λ(t)g2(t, x)].
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As expected, the necessary condition λ′(t) = −∂H
∂x

is applicable. How-

ever,the optimality condition

∂H
∂E

= f2(t, x) + λ(t)g2(t, x),

gives no information on the control.To find the characterization for the

optimal control E,a switching function is defined

ψ(t) = f2(t, x) + λ(t)g2(t, x).
E = a if ψ(t) < 0,

a < E < b if ψ(t) = 0,

E = b if ψ(t) > 0.

(3.20)

Bang-bang controls

If the condition ψ(t) = 0 cannot be sustained over a time interval but

instead occurs only at finitely many points within the given time interval, then

the control is termed bang-bang. In such instances, the control is a piecewise

constant function, switching between upper and lower bounds. These switches

coincide with the places where ψ changes signs (so that ψ = 0), hence earning

the name switching function. The specific points where this occurs are known

as switching times. Consequently, the expressions in condition (3.20) simplifies

to

Eδ(t) =


a if ψ(t) < 0,

b if ψ(t) > 0.

(3.21)

Numerically solving a bang-bang problem often involves employing the forward-

backward sweep method. However, prior to employing this method, it is imper-

ative to establish analytically the bang-bang problem, verifying that ψ = 0 over

an interval is unattainable.
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Singular controls

If ψ(t) is identically zero in some interval of time, I ⊆ [0, T ] (ψ(t) = 0

for all t ∈ I), we say Eδ is singular on that interval. A characterization of Eδ

in this interval must be attained using other information. The endpoints of this

interval are also referred to as switching times. It is important to emphasize that

if the problem involves singular control or a blend of singular and bang-bang

controls and the interior solution, the second line of expressions in condition

(3.21) cannot be dismissed.

Methods

In this study, the functions of growth employed considering the state dy-

namics of the resources were the logistic and exponential functions. The ob-

jective function aims to maximize the discounted future value of net revenues

or profits. The analysis involved both direct computation and the utilization of

computer resources. Several software tools were utilized in the analysis, in-

cluding MAPLE and MATLAB. The phase portraits were addressed using the

pplane8 interface software developed by John Polking. Simulations were con-

ducted employing the forward-backwards sweep method in MATLAB to solve

forward in time the state equations, and the adjoint equations backwards in time

(Lenhart and Workman, 2007). The updated control at each iteration employs

the formula derived for the optimality of control, and the methodology could be

extended to cover various scenarios. The codes used in the simulations were ini-

tially developed by Lenhart and Workman (2007), which were adapted to fit the

specific model examined in this research. The TRAPZ function in MATLAB

was employed to compute the performance criterion, which was the value of the

objective function.
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Chapter Summary

This chapter details the mathematical and computational techniques used

to analyze optimal control in fisheries management. It introduces fundamen-

tal definitions, including differential equations governing population dynamics

and stability conditions. The research employs logistic and exponential growth

models to describe fish population changes and applies dynamic optimization

theory to derive optimal harvesting strategies. The chapter also outlines nu-

merical methods, including the forward-backward sweep method in MATLAB,

which was used to simulate population trends and economic outcomes. Key

mathematical tools such as Lyapunov functions, the Routh-Hurwitz criterion,

and Pontryagin’s Maximum Principle are employed to ensure theoretical rigor

in model validation.
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CHAPTER FOUR

RESULTS AND DISCUSSION

Introduction

This chapter presents the findings from the mathematical analysis and nu-

merical simulations of the predator-prey fishery model with non-selective har-

vesting. It examines equilibrium points, stability conditions, and optimal har-

vesting strategies to assess their impact on predator and prey populations. Nu-

merical simulations based on Ghanaian marine artisanal fishery data validate the

theoretical results. The discussion highlights the ecological and economic im-

plications of different harvesting efforts, emphasizing strategies for sustainable

fishery management.

Model Formulation and Analysis

We give the model’s definition, formulation, and analysis in this sec-

tion. Imagine a predator-prey model where x(t) and y(t) represent the prey

and predator population densities at any given time t.The model has two au-

tonomous ordinary differential equations describing how the population densi-

ties of the two species would vary with time.

Assumptions of the model

• The only populations in the ecosystem that are thought to have an impact

on the system are the populations of predators and prey.

• The prey population experiences logistic growth, implying that its rate

of growth is proportionate to the population size and constrained by the

carrying capacity of the ecosystem.

• It is hypothesised that the prey population is the only source of food for

the predator population, and that the rate of growth of the predator popu-
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lation is proportionate to the combined densities of the prey and predator

populations.

• It is believed that the rate of predation is proportionate to the numbers of

prey and predators.

• It is assumed that the mortality rate of the predator population is propor-

tional to the size of the predator population.

• The model assumes that the total population sizes in the specified ecosys-

tem stay constant and that there is no migration, emigration, or immigra-

tion of the predator or prey populations.

• Positive initial populations are assumed for both the predator and prey.

Model formulation

The following is a modified Lotka-Volterra model:

dx

dt
= rx

(
1− x

K

)
−mxy − q1Ex,

dy

dt
= nxy − sy − q2Ey,

(4.1)

under the initial assumptions that y(0) = y0 > 0 and x(0) = x0 > 0. Positive

constants make up the parameters r, K, m, n, s and the combined harvesting

effort is given by E.

Table 1 provides a thorough explanation of the model’s parameters as well

as that of the ensuing optimal control problem.

Model Dynamics

The dynamics of the system which consist of positivity, uniform bounded-

ness, equilibrium points along with their local and global stability, and uniform

persistence are examined.
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Table 1: Description of Parameters

Parameter Description

r Rate of intrinsic growth of the population of prey

m Rate at which the predator predates the prey

K The prey population’s carrying capacity

n Rate of converting prey biomass into predator births

s Natural rate of mortality of the predator

δ Discount rate

q1, q2 Coefficients of catchability of prey and predator populations respectively

Positivity and boundedness of solutions

We shall establish a compact, positively invariant region where the model

is well-posed ecologically and mathematically. The theorem below ensures that

every solution of the system admits non-negative values given positive initial

conditions.

Theorem 4.1. Starting from the interior of the quadrant, the system’s solutions

x(t) and y(t) will stay in the first quadrant of the xy plane.

proof 4.1.1. Given x(0) = x0 > 0 and y(0) = y0 > 0, the system’s first

equation becomes

dx

x
=

[
r
(
1− x

K

)
−my − q1E

]
dt,

which when integrated yields the following:

x(t) = x0 exp

{∫ t

0

[
r

(
1− x(u)

K

)
−my(u)− q1E

]
du

}
.

Similarly, the system’s second equation provides

dy

y
= [nx− s− q2E] dt,
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which produces the following upon integration:

y(t) = y0 exp

{∫ t

0

[nx(u)− s− q2E] du

}
.

Therefore, all the system’s solutions are limited to the first quadrant and

hence non-negative.

The subsequent theorem demonstrates the uniform boundedness of the

solutions to the system:

Theorem 4.2. For 0 < η ≤ s+ q2E and µ = K
4r
(r + η − q1E)

2, the set,

Ω =
{
(x, y) ∈ R2

+ : x ≤ K, x ≤ µ
η

}
is positively invariant for every solution initiated in the first quadrant’s

interior.

proof 4.2.1. The differential equations comparison theorem is applied to the

first equation of the system,

dx
dt

= rx
(
1− x

K

)
−mxy − q1Ex ≤ rx

(
1− x

K

)
. Thus,

limt→∞ supx(t) ≤ K.

Now we define N(t) = x(t) + βy(t), where β = m
n

. Then

dN

dt
+ ηN =

dx

dt
+ β

dy

dt
+ ηx+ βηy,

= rx
(
1− x

K

)
− q1Ex+ ηx− βsy − βq2Ey + βηy,

= (r + η − q1E)x−
rx2

K
− β(s+ q2E − η)y,

≤ K

4r
(r + η − q1E)

2 − r

K

[
x− K

2r
(r + η − q1E)

]2
≤ K

r
(r + η − q1E)

2 = µ.

By Gronwall’s lemma, then

0 ≤ N(t) ≤ N(0)e−ηt
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Therefore,

lim
t→∞

supN(t) ≤ µ

η
.

Equilibrium points and stability analysis

The system’s equilibrium points are examined, and an analysis is con-

ducted to determine the stability, whether it is local or global, around the points

of equilibrium.

Finding the system’s three equilibrium positions requires solving dx
dt

=

dy
dt

= 0, and are as follows:

(i) The trivial equilibrium point, denoting the mutual extinction of species, is

expressed as P0 = (0, 0).

(ii) The axial equilibrium point, representing a predator-free scenario, is indi-

cated as P1 = (x̂, 0), where x̂ = K
r
(r − q1E) exists if E < r

q1
.

(iii) The unique interior equilibrium point depicting the coexistence of species

is denoted by P2 = (x∗, y∗),

where

r

(
1− x∗

K

)
−my∗ − q1E = 0,

nx∗ − s− q2E = 0.

Therefore, solving simultaneously, the unique positive solution is

x∗ =
s+ q2E

n
and y∗ =

Kn(r − q1E)− r(s+ q2E)

Kmn
,

exists if E < r(Kn−s)
q1Kn+q2r

, with s < Kn.

Local stability of the system

Eigenvalue analysis in the phase plane is used to determine the system’s

local stability at its equilibrium points. The definition of the Jacobian matrix of
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the system surrounding any given point P = (x, y) is as follows:

J =

r − 2rx
K

−my − q1E −mx

ny nx− s− q2E

 .
Theorem 4.3. The mutual extinction equilibrium point P0 = (0, 0) always exists

and can be classified as:

(i) Locally asymptotically stable node when E > r
q1

.

(ii) Unstable saddle when E < r
q1

.

proof 4.3.1. The result of finding the matrix J at P0 = (0, 0) is

J0 =

r − q1E 0

0 −s− q2E

 .
As the matrix is diagonal, The elements along the major diagonal are the

corresponding eigenvalues: λ1 = r − q1E and λ2 = −s − q2E. Therefore,

Condition (i) ensures that λ1 and λ2 are both negative, thereby making P0 locally

asymptotically stable. On the other hand, if Condition (ii) holds, the eigenvalues

possess opposite signs, ensuring that the trivial equilibrium point functions as a

saddle.

Theorem 4.4. The predator-free equilibrium point P1 = (x̂, 0) can be catego-

rized as:

(i) Locally asymptotically stable node when r(Kn−s)
q1Kn+q2r

< E < r
q1

.

(ii) Unstable saddle when E < min{ r(Kn−s)
q1Kn+q2r

, r
q1
}.

proof 4.4.1. At the point P1, the Jacobian becomes

J1 =

q1E − r Km
r
(q1E − r)

0 −Kn(r−q1E)−r(s+q2E)
r

.

 .
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The matrix is upper triangular, thus: λ1 = q1E−r and λ2 = −Kn(r−q1E)−r(s+q2E)
r

.

Therefore, the first condition makes both eigenvalues negative, which translates

to local asymptotic stability. Concerning the second condition, since the eigen-

values have opposite signs, P1 is a saddle.

Theorem 4.5. The coexistence equilibrium point, if it exists, is locally asymp-

totically stable.

proof 4.5.1. By virtue of the fact that the point P2 = (x∗, y∗) is the coexistence

equilibrium point, the Jacobian simplifies to

J2 =

 − r(q2E+s)
Kn

−m(q2E+s)
n

Kn(r−q1E)−r(s+q2E)
Km

0

 .
Then the trace tr(J2) = - r(q2E+s)

Kn
< 0 and the determinant det(J2) = (q2E+s)(Kn(r−q1E)−r(s+q2E))

nK
>

0 if P2 exists. Since J2 has its trace to be negative and the determinant to be

positive, P2 locally asymptotically stable.

Global stability

Through the utilization of the Bendixson-Dulac criterion and an appropri-

ate Lyapunov function, the system’s equilibrium points are proven to be asymp-

totically globally stable. For any equilibrium point P (x1, y1), introduce a posi-

tive definite function V (x, y) such that V (x, y) > 0 for every (x, y) ̸= (x1, y1)

and V (x, y) = 0 if and only if (x, y) = (x1, y1).

Theorem 4.6. When it is locally stable, the mutual extinction equilibrium point

P0 = (0, 0) is asymptotically globally stable.

proof 4.6.1. Examine a positively definite function regarding P0 = (0, 0):

V0(x, y) = x+ β0y, β0 =
m

n
.
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dV0
dt

=
dx

dt
+ β0

dy

dt
,

= rx
(
1− x

K

)
−mxy − q1Ex+mxy − β0sy − β0q2Ey,

= rx
(
1− x

K

)
− q1Ex− β0sy − β0q2Ey,

= (r − q1E)x−
rx2

K
− β0sy − β0q1Ey.

.

The derivative is negative definite under the conditions of local stability,

E > r
q1

. Therefore, by Lyapunov’s theorem on stability, P0 is asymptotically

globally stable.

Theorem 4.7. Whenever x̂ < s+q2E
n

, the predator-free equilibrium point P1 =

(x̂, 0) is globally asymptotically stable.

proof 4.7.1. Let a positive definite function about P1 = (x̂, 0):

V1(x, y) =
[
x− x̂− x̂ ln

x

x̂

]
+ β2y,

where β2 = m
n

.
dV1
dt

=

[
1− x̂

x

]
dx

dt
+ β2

dy

dt
,

= (x− x̂)
[
r
(
1− x

K

)
−my − q1E

]
+ β2nxy − β2sy − β2q2Ey,

= (x− x̂)

[
r
(
1− x

K

)
−my − r

(
1− x̂

K

)]
+ β2nxy − β2sy − β2q2Ey,

= − r

K
(x− x̂)2 −mxy +mx̂y + β2nxy − β2sy − β2q2Ey,

= − r

K
(x− x̂)2 + (mx̂− β2s− β2q2E)y,

≤ − r

K
(x− x̂)2.

The derivative is negative definite. Therefore, according to Lyapunov’s stability

theorem, P1 is globally asymptotically stable.
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Theorem 4.8. The coexistence equilibrium point P2 = (x∗, y∗) is globally

asymptotically stable whenever it exists.

proof 4.8.1. Let

f(x, y) = rx
(
1− x

K

)
−mxy − q1Ex,

g(x, y) = nxy − sy − q2Ey,

ϕ(x, y) =
1

xy
> 0,

∆(x, y) =
∂

∂x
(ϕf) +

∂

∂y
(ϕg),

=
∂

∂x

[
r

y

(
1− x

K

)
−m− q1E

y

]
+

∂

∂y

[
n− s

x
− q2E

x

]
,

= − r

yK
.

According to the Bendixson-Dulac criterion, the system lacks limit cycles since

∆(x, y) does not change sign within the first quadrant. Hence P2 is globally

asymptotically stable.

Numerical Results

This section will present the numerical results obtained from our math-

ematical model for fishery management.The model is designed to analyze the

dynamics of fish population growth,harvesting strategies, and economic sus-

tainability. Numerical simulations will be conducted to explore:

(i) Popuation dynamics – Evaluating how different harvesting rates affect fish

population sustainability over time.

(ii) Optimal harvesting strategy – Identifying the best fishing effort that max-

imizes long-term yield while preventing over-exploitation.
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(iii) Economic optimization – Examining the impact of discounting future

profits on harvesting decision.

Parameter values for the model

The biological and economic parameter values shown in Table 2 are used

in the study.

Table 2: Biological and Economic Parameter Values

Parameter Value Units Source

r 1.42 year−1 (Ibrahim, 2021)

m 3.8× 10−5 (days × Tonnes)−1 (Demir, 2023)

K 1, 000, 000 Tonnes (Ibrahim, 2021)

n 3.4× 10−7 (days × Tonnes)−1 (Demir, 2023)

s 0.001 year−1 Assumed

δ 0.10 year−1 Assumed

q1 1.8× 10−6 Trip−1year−1 (Ibrahim, 2021)

q2 1.5× 10−6 Trip−1year−1 Assumed

p1 1000 $Tonnes−1 Assumed

p2 2000 $Tonnes−1 Assumed

c 400 $Trip−1year−1 Assumed
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The state equations slope fields and solution curves are graphed to em-

phasize the equilibrium and stability characteristics of the model. To facilitate

analysis, the parameter values are scaled to a thousand (or thousandths) units.

Since the data relate to the marine artisanal fishery in Ghana, the prey can be

considered as the round sardinella and the predator as the tuna (comprising the

bigeye, yellowfin and skipjack).

Figure 1: Phase-plane Portrait for the Mutual Extinction Equilibrium Point
P0 = (0, 0) with E = 800, 000
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Figure 2: Phase-plane Portrait for the Predator-free Equilibrium Point
P1 = (366200, 0) with E = 500, 000

The equilibrium point P0 is globally asymptotically stable when the har-

vesting effort exceeds the biotechnical productivity of only sardinella species

(refer to Figure 1).The equilibrium point p1 is globally asymptotically stable

when the harvesting effort is greater than the biotechnical productivity of the

sardinella (refer to Figure 2). Additionally, the coexistence equilibrium point

P2 is globally asymptotically stable whenever it exists (refer to Figure 3).

Persistence of the system

In ecology, persistence is the long term survival of a species given any

initial population density.

Theorem 4.9. The system is uniformly persistent provided the following suffi-

cient condition holds: E < min{ r
q1
, r(Kn−s)
q1Kn+q2r

}.

proof 4.9.1. Consider the average Lyapunov function ψ(x, y) = xayb, here a
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Figure 3: Phase-plane Portrait for the Coexistence Equilibrium Point
P2 = (444120, 16040) with E = 100, 000

and b are arbitrary constants which are positive. It is clear that ψ(x, y) > 0 for

every (x, y) in the interior of the first quadrant and ψ(x, y) = 0 on the boundary

of the quadrant. Now, let ψ′(x, y) = d
dt
ψ(x, y). Then,

Λ(x, y) =
ψ′(x, y)

ψ(x, y)
=
a

x

dx

dt
+
b

y

dy

dt
,

= a
[
r
(
1− x

K

)
−my − q1E

]
+ b [nx− s− q2E] ,

Λ(E0) = a [r − q1E] + b [−s− q2E] ,

Λ(E1) =
b

r
[nrK − rs− q1nEK − q2rE] .

Clearly, Λ(E0) > 0 whenever E < r
q1

with a large value of the constant a.

Similarly E < r(Kn−s)
q1Kn+q2r

ensures that Λ(E1) > 0.
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Bionomic Equilibrium

The biological model’s integration of economic parameters, as indicated

in the system, results in the development of the bioeconomic model. Bioeco-

nomic equilibrium is reached when the total sustainable revenue from harvests

is equal to the total effort cost incurred during the harvesting process. In other

words, this indicates an instance in which the total economic rent from the har-

vesting activity is completely dissipated. The sustainable net revenue can be

written as follows, assuming that p1 represents the price per unit harvest of the

sardinella species, p2 represents the price per unit harvest of the tuna species,

and c represents the harvesting cost per unit effort:

π(x, y, E) = (p1q1x+ p2q2y − c)E,

provided that c < p1q1x+ p2q2y.

The bionomic equilibrium can be determined by finding a solution to

dx
dt

= dy
dt

= π = 0.

This implies solving the homogeneous system of equations:

r
(
1− x

K

)
−my − q1E = 0. (4.2)

nx− s− q2E = 0. (4.3)

p1q1x+ p2q2y − c = 0. (4.4)

From Equation (4.2)

E =
1

q1

(
r
(
1− x

K

)
−my

)
. (4.5)
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And from Equation (4.3)

E =
1

q2
(nx− s), (4.6)

Equating (4.5) to (4.6) and simplifying,

1

q1

(
r
(
1− x

K

)
−my

)
− 1

q2
(nx− s) = 0. (4.7)

From Equation (4.4)

y =
c− p1q1x

p2q2
. (4.8)

Substituting (4.8) into (4.7) gives

Ax2 +Bx+ C = 0, (4.9)

where,

A = q1p1p2(q2r + q1Kn),

B = q1p2(q1p1Ks− q2cr −Knc− q2p1Kr), and

C = q1q2p2Kcr − q1p2Kcs−Knc.

Equation (4.9) offers a positive unique solution x∞ provided that C < 0.

Thus, the unique bionomic equilibrium point is given by

p∞ = (x∞, y∞, E∞), (4.10)

where,

x∞ =
−B +

√
B2 − 4AC

2A
. (4.11)

y∞ =
c− p1q1x∞

p2q2
. (4.12)

E∞ =
1

q1

[
r
(
1− x∞

K

)
−my∞

]
, (4.13)
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or

E∞ =
1

q2
[nx− s]. (4.14)

It is crucial to observe that the bioeconomic harvesting effortE∞ declines as the

rate of predation m increase, since ∂E∞
∂m

= −y∞
q1
< 0.

Linear Optimal Control

In this section, we examine the best control strategy for the system, sub-

ject to certain constraints. The objective is to maximize a profit function that

depends on the system’s control and state. Since both species are prone to har-

vesting, the issue of the optimal control problem is to maximize the current

value of the net revenue or profit.

Linear optimal control problem

The goal is to maximize the economic benefits of harvesting while en-

suring the ecological sustainability of both species. Therefore, the analysis is

centred on the coexistence equilibrium point where both species persist and are

permanent. Taking the harvesting effort as a time-dependent control variable

E = E(t), the optimal control problem is written to maximize the current value

of the net profits from the harvests:

max J(E) =
∫ T

0

e−δt(p1q1Ex+ p2q2Ey − cE)dt,

subject to
dx

dt
= rx

(
1− x

K

)
−mxy − q1Ex,

dy

dt
= nxy − sy − q2Ey,

(4.15)

considering initial conditions x(0) = x0 , y(0) = y0 and the harvesting effort

constraint, 0 ≤ E ≤ Emax.

The discount factor e−δt ensure that the integral converges properly when

optimizing over an infinite or finite time horizon.The discount factor serves to
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appropriately discount future payoffs,making the optimization problem realistic

and aligned with economic and ecological principles.The exponent in the dis-

count factor is negative because it represent a decline in the present value of

future payoffs over time.

The discount rate is δ, the terminal time is T , and the highest permissi-

ble harvesting effort is Emax in the optimal control problem (5.1). The control

E linearly affects the state system and objective functional. Additionally, the

unboundedness among the state system solutions has been proven (refer to The-

orem 4.2).

Existence of optimal controls

The goal is to maximize future net revenue discounted present value,

hence the optimal control Eδ is sought after in such a way that;

J(Eδ) = sup{J(E) : E ∈ U},

where the control set is Lebesgue measurable and is defined by

U = {E(t) : 0 ≤ E(t) ≤ Emax, t ∈ [0, T ]} As previously mentioned, in-

vestigating and confirming the problem’s necessary and sufficient conditions is

a prerequisite for solving an optimal control problem. Consequently,conditions

sufficient for the existence of an optimal control are satisfied since the control is

linear in the objective functional and state system.

Pontryagin’s maximum principle is used to determine the necessary con-

ditions for the optimal control and the related states. For Problem (5.1), the

current value Hamiltonian is given by

H = p1q1Ex+p2q2Ey−cE+λ1
[
rx

(
1− x

k

)
−mxy − q1Ex

]
+λ2 [nxy − sy − q2Ey] .

(4.16)

Having established the existence of an optimal control Eδ(t), correspond-

ing to the state variables x(t) and y(t) exist adjoint variables λ1(t) and λ2(t)
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satisfying the following system:

λ′1 = δλ1 −
∂H

∂x

= (δ − r +
2rx

K
+my + q1E)λ1 − nyλ2 − p1q1E,

λ′2 = δλ2 −
∂H

∂y

= (δ − nx+ s+ q2E)λ2 +mxλ1 − p2q2E,

(4.17)

with transversality conditions λ1(T ) = 0 and λ2(T ) = 0. The Hamiltonian

maximizes the optimal control Eδ and since the control is linear in the Hamil-

tonian, the possibility of singulars is unable to be ruled out. The condition of

optimality is defined by

∂H

∂E
= p1q1x+ p2q2y − c− q1xλ1 − q2yλ2. (4.18)

and the characterisation of optimal control is


Eδ = 0 if ∂H

∂E
< 0,

Eδ = Esingular(t) if ∂H
∂E

= 0,

Eδ = Emax if ∂H
∂E

> 0.

(4.19)

Thus, the optimal control can assume the lower and upper bounds of the control

according as the optimality condition is negative or positive, giving rise to the

bang-bang controls. On the other hand, the singular optimal control occurs when

the optimality condition is identically zero, which implies

0 < Esingular(t) < Emax.

To investigate the singular control, we presume that there is a time interval

such that ∂H
∂E

= 0.

Further, employing Systems (4.1) and (5.3) we compute,

d
dt

(
∂H
∂E

)
and set it to zero, which simplifies to
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d

dt

(
∂H

∂E

)
=

1

K
(−2rq1x(λ1 + p1)− (q2λ1m− q2np2 − nq1λ2 +mp1q1)y

+Krxq1(rλ1 − rp1)(1−
x

K
)−mxy − q1Ex)

− (q2λ1m− q2np2 − nq1λ2 +mp1q1)x+Kyq2(δλ2 + p2s)

(−Eq2 + nx− s)− rq1x−Kxδλ1q1E(q2ym− δq1)

− λ1(r(1−
x

K
)− rx

K
−my − q1E − λ2my)−Ky(δλ2 − p2q2E

− p2q2 + λ1mx)− λ2(−Eq2 + nx+ s) + (xnq1 − q2δ) = 0.

It is obvious that explicitly the control does not occur in the preceding equation,

hence the second derivative with respect to time of the function of optimality is

computed and set to zero. This simplifies to,

d2

dt2

(
∂H

∂E

)
= α(t)E(t) + β(t) = 0. (4.20)

Therefore, the expressions for α(t) and β(t) are given as

α(t) =
1

k2
((λ1 − p1)nmyq1 + q2x

2(−λ1m+ np2)− q1(λ2n−mp1)

+ q2n(p2 − λ2my
2)− q21(λ2n−mp1)− 2Eq2(−mp1 + np2)

− 2p1m(r − 1

2
s) + 2nλ2q1(δ +

1

2
r)− q22E(−λ1m+ np2) + 2λ1m(δ

− 1

2
s)− p2n(r − 2s)y + q1x(Ep1q1(δ − r)− δ2λ1 + r2p1)

+K2yq2(Ep2q2(δ + s) + p2s
2 − δ2λ2) + rx2mq1(λ1 + 3p1)

− q2y(λ1m+ np2) + q21E(λ1 + 3p1)− (λ1 + 3p1)r

− 2Kδλ1 + 2q1r
2x3p1),
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β(t) =
1

K2
(−λ2 +mp1)q

2
1 − (mP1 + nP2)2q2q1 − q22y(−λ1m+ np2)

+ (δ − r)p1q
2
1x+ (δ + s)K2yq22p2 + (λ1 + 3p1)q

2
1Krx

2E

+
1

k2
(λ1 − p1)q1nym+ q2x

2(−λ1m+ np2)− (λ2n+mp1)q1

+ (p2 − λ2)q2nmy
2 − (r +

1

2
)2p1m+ 2nλ2q1(δ +

1

2
r)

− q22λ1m(δ − 1

2
s)− p2ny(r − 2s) + q1x(−δ2λ1 + p1r

2)

+ yq22k
2(−δ2λ2 + p2s

2) + rx2q1m(λ1 + 3p1)

− q2y(λ1m+ np2) +Kq1r(−λ1 − 3p1 − 2δλ1) + 2q1r
2x3p1).

Equation (5.6) is linear in the control variable E(t) and so the singular

control solution is

Esingular(t) = −β(t)
α(t)

. provided that, α(t) ̸= 0 and 0 < −β(t)
α(t)

< Emax.

For the control to be singular and optimal, the generalised Legendre-

Clebsch condition needs to be met. Thus, α(t) = ∂
∂E

[
d2

dt2

(
∂H
∂E

)]
must be positive, since the order of singularity is one. Hence, the optimal

harvesting effort is given by

Eδ =


0 if λ1q1x+ λ2q2y > p1q1x+ p2q2y − c,

−β(t)
α(t)

if λ1q1x+ λ2q2y = p1q1x+ p2q2y − c,

Emax if λ1q1x+ λ2q2y < p1q1x+ p2q2y − c.

(4.21)

Therefore, the bang-bang controls indicate that harvesting at the maximum al-

lowable effort should only be initiated whenever the net revenue per unit ef-

fort (NRPUE) exceeds the total marginal net revenue of the sardinella and tuna

stocks (MNR). Otherwise, it is optimal to exert zero effort, which translates to

no harvesting of the stocks. The singular control is only applicable when the net

revenue per unit effort exactly equals the total net marginal revenue, as long as

the generalised Legendre-Clebsch condition is met.
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Numerical Simulations

The optimality system is numerically solved using the Forward-Backward

Sweep (Runge-Kutta) method. Singular controls are permissible only when the

optimal control function is identically zero on the interval, with α(t) > 0. The

discount rate δ = 0.10 per year, initial sardinella population x0 = 150, 000

tonnes, initial tuna population y0 = 5, 000 tonnes and terminal time T = 100

years with previously defined biological and economic parameter values.
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Figure 4: (a) Effort level, (b) Sardinella population and (c) Tuna population for
Emax = 50, 000 versus Emax = 100, 000
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In Figure 4, it is observed that when the system is subjected to two differ-

ent effort rates with a fixed predation rate, the higher effort rate corresponding

to 100,000 fishing trips results in the sardinella population settling at a higher

steady state of around 450,000 tonnes whereas the tuna population attains a

lower steady state of around 16,000 tonnes. It is interesting to note that this

harvesting regime produces an annual catch (or sustainable yield) of 80,000

tonnes of sardinella and 24,000 tonnes of tuna. Conversely, with a lower effort

rate corresponding to 50,000 fishing trips, the sardinella population settles at a

lower steady state of around 210,000 tonnes, while the tuna population settle at

a higher steady state of around 28,000 tonnes. The net revenue corresponding

to the higher effort rate is $1,638,500,000, whereas the lower effort rate yields

a net revenue of $669,600,000. This indicates that the higher the effort rate the

greater the net revenue accrued.

In Figure 5, the examination focuses on an effort rate set at 100,000 fishing

trips, while systematically varying the growth rate of the sardinella. A higher

growth rate (r = 2.84) prompts the sardinella population to stabilize at the

steady state of approximately 450,000 tonnes. Concurrently, the tuna population

experiences a surge, reaching a higher steady state.

Interestingly, a lower growth rate (r = 1.42) results in the sardinella pop-

ulation settling at the same steady state of around 450,000 tonnes, while the

tuna population exhibits restrained growth and settling at a lower steady state

of approximately 16,000 tonnes. The net revenue corresponding to the higher

growth rate totals $2,106,000,000, while that associated with the lower growth

rate is $1,638,500,000.

This analysis underscores a crucial relationship: increasing the growth

rate of the sardinella leads to an augmented availability of tuna resources for

harvest, consequently contributing to an increase in net revenue.
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Figure 5: (a) Effort level, (b) Sardinella population and (c) Tuna population for
Emax = 100, 000 and r = 1.42 versus r = 2.84

In Figure 6, the investigation focuses on a fixed effort rate of 100,000

fishing trips while systematically altering the predation rate. Under a higher

predation rate (m = 3.8× 10−5), the sardinella population initially experiences

an increase, settling at an elevated steady state of approximately 450,000 tonnes.

Concurrently, the tuna population grows but reaches a lower steady state, stabi-

lizing around 16,000 tonnes.

Conversely, when the system encounters a lower predation rate (m =

1.9 × 10−5), the sardinella population initially rises to 800,000 tonnes but set-
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Figure 6: (a) Effort level, (b) Sardinella population and (c) Tuna population for
Emax = 100, 000 and m = 1.9× 10−5 versus m = 3.8× 10−5

tles at a lower steady state of around 450,000 tonnes. Notably, the tuna pop-

ulation exhibits accelerated growth, attaining a higher steady state of approxi-

mately 32,000 tonnes. The net revenue associated with the higher predation rate

amounts to $1,638,500,000, while the lower predation rate yields a net revenue

of $1,862,5000,000.

This analysis underscores a noteworthy trend: a lower predation rate is

correlated with an increase in net revenue.
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Figure 7: (a) Effort level, (b) Sardinella population and (c) Tuna population for
Emax = 100, 000 and n = 3.4× 10−7 versus n = 6.8× 10−7

In Figure 7, the exploration centers on a consistent effort rate of 100,000

fishing trips, with a variation in the rate of converting sardinella biomass into

tuna births. When employing a higher rate (n = 6.8×10−7), the sardinella pop-

ulation stabilizes at a diminished steady state of approximately 210,000 tonnes.

Simultaneously, the tuna population experiences accelerated growth, settling at

a higher steady state of around 25,000 tonnes.

Conversely, a lower rate (n = 3.4 × 10−7) results in the sardinella pop-

ulation settling at an elevated steady state of around 450,000 tonnes, while the
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tuna population grows steadily, settling at a lower steady state of approximately

16,000 tonnes. Remarkably, the net revenue associated with n = 6.8 × 10−7

and n = 3.4×10−7 amounts to $963,660,000 and $1,638,500,000, respectively.

This intriguing observation suggests that a lower rate of converting sardinella

biomass into tuna births is associated with an increase in net revenue.

It is evident that in the simulation process, variations in the parameters

significantly influence the growth rates and steady states of both sardinella and

tuna populations within the ecosystem, consequently impacting the net revenues

accrued.

The numerical simulations encapsulate a holistic approach to the ecolog-

ical system, integrating stability, optimization, and control measures within the

constraints imposed by maximum harvesting efforts. This framework seeks to

balance ecological health and economic productivity while accounting for the

dynamic nature of sardinella-tuna coexistence in the long term.

Chapter Summary

This chapter formulates a predator-prey fishery model based on modi-

fied Lotka-Volterra equations, incorporating variables for prey (sardinella) and

predator (tuna) populations. The model assumes logistic growth for prey, pro-

portional predation rates, and mortality rates for predators. Fishing efforts are

represented as control variables impacting both species. The analysis includes

equilibrium points, stability conditions, and the derivation of optimal control

strategies. Numerical simulations validate the theoretical findings, illustrating

how different harvesting efforts affect fish populations and economic returns.

The results indicate that sustainable management requires setting an optimal

fishing effort threshold (100,000 trips annually), ensuring ecological stability

while maximizing revenue.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

This research presented a comprehensive synopsis and significant conclu-

sions were drawn, based on investigations into applications of optimal control

strategies to determine the most effective efforts of harvesting for the manage-

ment of fishery resources. The findings offer valuable insights into the sustain-

able utilization of these resources. As the study is concluded, recommendations

are extended to stakeholders involved in fisheries management. These recom-

mendations are designed to inform and guide their decision-making processes,

aiding in fishery resource conservation and responsible utilization. Furthermore,

suggestions for prospective research areas that require additional exploration

and investigation are identified by outlining research paths. These suggestions

aim to contribute to the ongoing advancement of knowledge and practices in

fisheries management and optimal resource utilization.

Summary

In this study, the primary focus was on applying linear optimal control

techniques to discern sustainable harvesting strategies in fisheries management.

A thorough review of various standard fishery models, alongside the introduc-

tion of a model tailored to the study’s objectives, formed a crucial part of the

investigation. The model underwent detailed analysis, identifying static equi-

librium points and delving into dynamic equilibrium reference points. Empha-

sizing the significance of effective renewable resource utilization, an innovative

two-dimensional model was proposed. The study aimed to address the current

low yields of fishery resources and the role played by fishermen in the process.

Considering catchability as a pivotal parameter in the standard model, the
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study acknowledged its constant assumption and established the distinctiveness

and persistence of the optimal control. The state dynamics of the model, por-

traying a relationship between the tuna and the sardinella interaction, centered

around the objectives of total net revenue extrapolated from the harvested ratio

of both tuna and sardinella biomass.In addition, both local and global stability

were examined and discussed.

To ascertain optimality, the study employed the condition of the General-

ized Legendre-Clebsch to analyze the existence of a singular route. Numerical

simulations were conducted to provide practical insights and validate theoretical

findings, bringing an application-oriented dimension to the study’s outcomes.

Therefore, the main findings of the research are as follows:

1. In the dynamic model, the optimal fishing effort rate is determined to be

Emax = 100, 000 trips annually, considering a 10% discount rate. This rate aims

to sustain the resource, requiring an initial biomass of at least 150,000 tonnes

for sardinella and 5,000 tonnes for tuna.

2. As the fishing effort rate rises, more resources are allocated to fishing

activities, leading to increased catch or yield. Consequently, with higher catch

volumes, the net revenue generated from fishing operations also increases.

3. Augmenting the growth rate of sardinella enhances the pool of avail-

able resources for harvest, thereby fostering a surge in net revenue. This occurs

because a higher growth rate translates to a larger population of sardinella, con-

sequently bolstering the potential catch and revenue from fishing activities.

4. Correlated with a decrease in predation rate is an upsurge in net rev-

enue. This relationship arises because a lower predation rate means fewer fish

are consumed by predators, allowing for a larger population of fish to be avail-

able for harvest. Consequently, this leads to higher yields and increased revenue

for fishing operations.

5. Decreasing the rate of converting sardinella biomass into tuna births

is linked with a rise in net revenue. This connection stems from the fact that
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a lower conversion rate means more sardinella biomass remains available for

harvest rather than being utilized for tuna reproduction. Consequently, this re-

sults in higher sardinella yields and, ultimately, increased revenue for fishing

operations.

Conclusions

This research delved into the effective and sustainable harvesting strate-

gies within a predator-prey fishery model incorporating optimal control. The

study encompasses a comprehensive qualitative analysis, scrutinizing the pos-

itivity and uniform boundedness of the model’s solutions. The investigation

extends to understanding the local and global behaviour of the system around

equilibrium points. The coexistence equilibrium is found to be locally and glob-

ally asymptotically stable under specific conditions, with a recognition of the

potential for mutual extinction. The phase-portrait analysis of the model across

varying harvesting rates revealed the presence of three equilibrium points. At a

harvesting rate of 800,000 trips, both sardinella and tuna faced extinction, indi-

cating an unsustainable and environmentally unfriendly fishing rate. Similarly,

a harvesting rate of 500,000 trips led to the extinction of tuna, undermining the

sustainability of this vital resource and jeopardizing the coexistence of sardinella

and tuna, both crucial for the ecosystem.

Contrastingly, the phase-portrait analysis of a fishing effort of 100,000

trips demonstrated the coexistence of sardinella and tuna, suggesting that at this

rate, the ecosystem is more sustained, preserving the resources in the long term

and fostering enhanced economic benefits.

The simulation results underscore the effectiveness of a two-species fish-

ery model in fostering the sustainability of fishery resources and preserving

ecosystem integrity. Conversely, reliance on a one-species dynamic fishery

model tends to overestimate biomass of the single species, inadvertently ex-
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acerbating the risk of overfishing rather than mitigating it. Relying solely on

single-species models in fishery management poses significant risks, as it over-

looks crucial predator-prey dynamics within ecosystems.

Persistency and permanence of the system were established through the

average Lyapunov approach. The bionomic equilibrium, integrating biological

and economic parameters, was presented and thoroughly discussed. Optimal

control characterization revealed the existence of both bang-bang and singular

controls, with the generalized Legendre-Clebsch condition offering insights into

the optimality of singular control.

Numerical simulations focused on the coexistence equilibrium, confirm-

ing theoretical findings. Varied harvesting efforts demonstrate a significant im-

pact on sardinella and tuna populations, with higher efforts resulting in lower

population levels. The introduction of a predation rate amplifies the effect,

showcasing a greater loss in population density with higher harvesting efforts.

The net revenue aligns with expectations, reflecting higher returns for increased

harvesting efforts.

Simulations involving varying harvesting efforts, varying predation rates

and growth rates of both the sardinella and the tuna revealed the destabilizing

effect of higher predation rates on sardinella populations. Interestingly, the tuna

population remains unaffected at a higher predation rate. Moreover, net revenue

is inversely related to predation rates.

In simulations employing bang-bang controls, the upper bound is con-

sistently optimal during steady states, emphasizing the non-optimality of zero

effort.

Recommendations

In pursuit of the study’s objectives, a two-species model with finite time

horizons, incorporating bounded controls, was utilized. Qualitative and quan-
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titative methods, along with numerical simulations, were employed for analy-

sis. Pontryagin’s maximum principle established necessary conditions, supple-

mented by sufficiency conditions. Various harvesting strategies were applied to

identify optimal control approaches. Given the current state of fishery resources,

decisive measures are imperative for sustainability.

1. To enhance the reliability of fishery management policies concerning

targeted fish populations, the adoption of two-species models is recommended.

These models offer a more comprehensive understanding of the ecosystem dy-

namics, allowing for more accurate and effective strategies in fisheries manage-

ment.

2. To foster long-term sustainability and effective management of sar-

dinella and tuna populations, the introduction of a licensing system is essential.

This system would grant select fishers exclusive rights to target these species,

facilitating the implementation of tailored fishing efforts. By enabling more pre-

cise monitoring and control, this approach enhances the overall management of

these resources, ensuring their continued viability.

3. Regulation of Fishing Efforts:

• Acknowledge the inherent risk of overcapacity due to open access.

• Impose a cap on fishing efforts within the fishery sector to ensure re-

source sustainability.

Future research

While the study extensively explored optimal control harvesting strategies

for fishery resources, certain aspects crucial for the sustainable harvesting of

renewable resources remain uncharted. Future research endeavours could focus

on the following areas of interest:

1. Incorporation of Delay Equations and Allee Effect: Explore models

that incorporate delay equations, shedding light on temporal dynamics in har-
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vesting strategies. Investigate the impact of the Allee effect on optimal controls,

addressing its implications for sustainable resource management.

2. Stochastic and Gompertz Models: Delve into stochastic models to cap-

ture the inherent uncertainty in fishery dynamics. Consider Gompertz models

to enhance understanding of non-linear growth patterns and their influence on

optimal harvesting strategies.

3. Three-dimensional Predator-Prey Model with age-structure for preda-

tor: Extend research to encompass a three-dimensional predator-prey model.

Incorporate the age-structure to examine intricate interactions and their impli-

cations for optimal control strategies in fisheries.

By exploring these unexplored facets, future research can contribute to

a more nuanced understanding of optimal control dynamics in the sustainable

harvesting of renewable resources.
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