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ABSTRACT 

In this research work, we acknowledge and explore the relation between the alpha 

value and non-nilpotent groups, leading to the proof of a conjecture put forward in 

research by Cayley (2021). We demonstrate that if 𝐺 is non-nilpotent and 𝛼(𝐺) =
ଷ

ସ
  

then 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ, with a nontrivial centre, where 𝑛 ∈ {0, 1}. Furthermore, we 

conclude that the conjecture holds for 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ as well. We again prove, 

using both computational and theoretical techniques, that a subgroup which is non-

trivial in 𝐺 exists with both normal and characteristic properties. We finally prove 

a theorem related to the count involving subgroups, cyclic in nature, of finite groups 

𝐺 where |𝐶(𝐺)| = |𝐺| − 6. Thus, we demonstrate that if 𝐺 is one of the groups 

𝐷ଶସ, 𝐶ଵଶ, 𝐶ଽ, 𝐶ଵ, 𝐷ଵ଼, or 𝐷ଶ, then |𝐶(𝐺)| = |𝐺| − 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



iv 
 

KEY WORDS 

Alpha invariant 

Cyclic subgroup 

Dihedral group 

Group theory 

Nilpotent group 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



v 
 

ACKNOWLEDGEMENTS 

First and foremost, I am incredibly grateful to the Almighty God for giving 

me the ability and fortitude to complete my thesis. My supervisor, Professor Natalia 

Mensah, from the Department of Mathematics at the School of Physical Sciences, 

University of Cape Coast, has my sincere gratitude for her guidance and counsel 

during my thesis work, which I can only characterize as priceless and invaluable. I 

am also grateful to all the lecturers of the Department of Mathematics, particularly 

Dr. Albert Sacketey, Dr. Stephen Moore, and Professor Martin Anokye, for their 

support, warm reception, and willingness to offer guidance throughout my 

academic journey. My two beautiful children and my devoted wife, Mrs. Mercy 

Bonsu-Bandoh, deserve the greatest gratitude for supporting and putting up with 

me during the research process. 

Lastly, I would like to express my gratitude to all my friends and well-

wishers, whose support has contributed to the success of this work. May the All-

Powerful God bless everyone, I pray. 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



vi 
 

DEDICATION 

To my family 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



vii 
 

TABLE OF CONTENT 

 Page  

DECLARATION  ii 

ABSTRACT   iii 

KEY WORDS  iv 

ACKNOWLEDGEMENTS  v 

DEDICATION  vi  

LIST OF TABLES  ix  

LIST OF ABBREVIATIONS  x 

CHAPTER ONE: INTRODUCTION   

Background to the study  1 

Statement of the Problem  26 

Research objectives  26 

Significance of the study  27 

Delimitation  28 

Limitation 28 

Definition of terms  28 

Organization of the study  32 

CHAPTER TWO: LITERATURE REVIEW   

Introduction  33 

The Evolution and Advancement of Group Theory  33 

CHAPTER THREE: METHODOLOGY   

Introduction  62 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



viii 
 

Subgroup Count  62 

Characterizing non-nilpotent groups with specific alpha value 63 

Non-Trivial Center Analysis 66 

Subgroup Normality and Characteristics Analysis 68 

Normal subgroups and isomorphism classes Analysis 69 

Characterizing cyclic subgroup count 70 

Chapter Summary 72 

CHAPTER FOUR: RESULTS AND DISCUSSION  

Introduction  73 

Characterizing finite groups with specific alpha invariant value 73 

Orbit-Stabilizer Theorem and Centralizers in Direct Products 82 

Invariance of Subgroups under Conjugation and Automorphism 84 

Normal Subgroups of 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ and their Isomorphisms 88 

Characterizing Finite Groups with Specific Cyclic Subgroup Count 92 

Chapter Summary 98 

CHAPTER FIVE: SUMMARY, CONCLUSIONS AND 

                               RECOMMENDATIONS  

 

Overview  99 

Summary 99 

Conclusions 100 

Recommendations 102 

REFERENCES  104 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



ix 
 

LIST OF TABLES 

  Page  

1 Count of Cyclic Subgroups                17 

2 Small Order Groups                 18 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



x 
 

LIST OF ABBREVIATIONS 

AUT 

INN 

SYL 

GL 

Alt  

Cl  

gcd  

Ker  

SL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



xi 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



xii 
 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



1 
 

CHAPTER ONE 
 

INTRODUCTION 
 

           This chapter covers the study’s background, the problem statement, the 

purpose of the study, its scope, significance, delimitation, limitation, and 

organisation of the rest of the study. 

Background to the Study 

           Group theory is a field in mathematics that encompasses or deals with the 

properties and structure of groups. More formally, an algebraic structure is usually 

defined to be a nonempty set together with a collection of operations, typically 

binary, such as addition and multiplication, with a finite set of identities called 

axioms that these operations must satisfy. Algebraic structures include simple 

structures, group-like structures, ringlike structures (ringoids), lattice structures, 

modules, vector spaces, inner product spaces and so on. A group can be defined 

mathematically as a set that possesses a binary operation, which takes any two of 

its members and combines them to obtain another member belonging to the same 

set. Thus, a group 𝐺 consist of a nonempty set and a binary operation ∗ for which 

closure, associativity, presence of identity, and inverse are held to be true. A 

collection of groups that share some common property or structure is known as a 

family of groups. For example, the family of cyclic groups consists of all groups 

that are isomorphic to the integers modulo 𝑛, a positive integer, under the addition 

operation. Abelian groups, symmetric groups, and dihedral groups are some more 

families of groups.  
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Our focus in this research is exclusively on finite groups. A group is said to 

have an order that is equal to the count of elements if it posses a finite count of 

members. However, if the members are infinitely countable in a group, then the 

period claimed to be infinite. An elements period within a group defines the period 

of the subgroup formed by that element. This period is frequently referred to as an 

element’s period length or just order. For a group with multiplication containing an 

element a, its order is referred to as the minimum non-negative integer m for which 

am = e, with e being neutral element. In the event that such m does not exist, then 

the period of a is considered infinite. The size of the entire group 𝐺 is marked either 

𝑜𝑟𝑑(𝐺) or |𝐺|, whereas an element’s order is indicated as 𝑜𝑟𝑑(𝑎) or |𝑎|, rather 

than 𝑜𝑟𝑑(⟨𝑎⟩), where the angle brackets represent the subgroup generated by a. 

According to Ledermann (1964) the period of a group’s element need to meet the 

following requirements. 

 |𝑒| = 1. Thus, no other element has order 1 except the identity. 

 Within a group, the inverse and its element’s order are the same. Stated 

otherwise, 𝑜(𝑎) = 𝑜(𝑎ିଵ)∀𝑎 ∈ 𝐺. 

 Every element in the group has finite period and divides the period. 

Therefore, in a finite group, no member’s period is larger than the group’s 

period. 

 If 𝑜(𝑎) = 𝑘 and 𝑎 = 𝑒, then 𝑘 divide 𝑛. 

 Suppose 𝑜(𝑎) = 𝑘. Then 𝑜(𝑎) = 𝑘 for every integer 𝑛 coprime to 𝑘. 

 For each integer 𝑛, 𝑜(𝑎) is also infinite if 𝑜(𝑎) is infinite. 
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 Both For 𝑎, 𝑔 ∈ 𝐺, the orders of 𝑎 and 𝑔ିଵ𝑎𝑔 are the same. We refer to 

these two components as each other’s conjugate elements. 

 For any 𝑎, 𝑏 ∈ 𝐺, 𝑜(𝑎𝑏) = 𝑜(𝑏𝑎) holds true, meaning that the orders of 

𝑎𝑏 and 𝑏𝑎 are the same. Since 𝑎𝑏 = 𝑎(𝑏𝑎)𝑎ିଵ is the conjugate of 𝑏𝑎 and 

𝑎𝑏. 

     One of group theory’s primary objective is to categorize and understand the 

properties of different groups. This can be done by studying the group’s subgroups, 

normal subgroups, homomorphisms, automorphisms, and other algebraic 

properties. Thus, in group theory, there are several ways to classify groups based 

on different properties and characteristics. Some of the most common classification 

methods are: Classification by order, classification by structure Group, 

classification by isomorphism, classification by subgroup, classification by 

representation and so on that are used in specific contexts and applications. 

Theorem 1. A group 𝐺 posses just one identity member 𝑒 (Fraleigh, 2003). 

Theorem 2. Given a group 𝐺. A single member 𝑥ᇱexists if, given x ∈ G, 𝑥 ∗ 𝑥ᇱ =

𝑥ᇱ ∗ 𝑥 = 𝑒 (Dummit & Foote, 1991). 

A subgroup is a fundamental concept that refers to a subset of a given group 

that itself, with relation to identical binary operation as the original group, generates 

a group. We can state formally that in ⟨𝐺,∗⟩, a subgroup of 𝐺 is seen as a non-empty 

subset 𝐻 of G if it also satisfies the group axioms and thus written as 𝐻 ≤  𝐺. 

Theorem 3. Consider that 𝐻 ≤ 𝐺. For any a ∈ H, we will get 𝑎ିଵ ∈ 𝐻, since 𝐻 is 

operation-closed in G, includes 𝑒, and has an inverse element (Baumslag & 

Chandler, 1968).  
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For every group 𝐺, the trivial subgroups are 𝐺 and {𝑒}, while a proper subgroup 𝐻 

exists in 𝐺 if 𝐻 ≠ 𝐺. We again note that ⟨𝑍, +⟩ ≤ ⟨𝑄, +⟩ ≤ ⟨𝑅, +⟩ ≤ ⟨𝐶, +⟩. 

Theorem 4. Consider a group 𝐺 of finite-period with 𝑃, 𝑄 ≤ 𝐺. It holds that 𝑃 ∩

𝑄 ≤ 𝐺. For a proof, see Rotman (2006).  

Remark: If {𝑃𝛼}ఈ∈ூ represents subgroups, then likewise ∩ఈ∈ூ 𝑃ఈ. 

Theorem 5. Let 𝐻ଵ and 𝐻ଶ be nontrivial groups. Then 𝐻ଵ × 𝐻ଶ is cyclic ⟺ 𝐻ଵ and 

𝐻ଶ are finite cyclic groups with 𝑔𝑐𝑑(|𝐻ଵ|, |𝐻ଶ|)  =  1 (Anderson & Camillo, 2009).  

Theorem 6. Consider 𝐺ଵ and 𝐺ଶ as nontrivial groups. Therefore, each subgroup of 

𝐺ଵ × 𝐺ଶ is a sub-product ⟺ 𝑔 ∈ 𝐺, 𝑔 has finite order 𝑜(𝑔) and 𝑔𝑐𝑑(𝑜(𝑔ଵ), 

𝑜(𝑔ଶ))  =  1 (Anderson & Camillo, 2009). 

           We also examine the notion of a group 𝐺 centre and centralizer. These ideas 

constitute subgroups of 𝐺. In this context, the centralizer of an element 𝑎 ∈ 𝐺 

indicates the collection of elements in 𝐺 commuting with a, whereas any component 

in 𝐺 that commutes with any other member in 𝐺 is said to be the centre of the group 

𝐺. 

Theorem 7. Let a group 𝐺 be finite-ordered, 𝑍(𝐺) ≤ 𝐺. For a proof, see Fraleigh 

(2003) 

Theorem 8. Let 𝑎 ∈ 𝐺. Then 𝐶(𝑎) ≤ 𝐺. For a proof, see Isaacs (2008).  

Theorem 9. 𝑍(𝐺) =∩ୟ∈ୋ 𝐶(𝑎), 𝐶(𝑎) is the centralizer of 𝑎 in 𝐺. For a proof, see 

Gallian (2010). 

A group that may be produced by exponents of a single element, identified 

as a generator, is referred to as cyclic. Stated differently, a group is considered 

cyclic if all of its members may be acquired by performing the group operation 
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repeatedly on a single element, which can be any element in the group. 

Furthermore, if a cyclic group consist an infinite count of elements, it has infinitely 

many elements; if it include finite count of members, it has finite elements. 

According to Shanks (1993), a finite cyclic group 𝐶, also known as 𝑍 has period 

𝑛. Its generator 𝑥 satisfies 𝑥 = 𝑒, with the identity element being 𝑒. If 𝑎 ∈ 𝑆 and 

𝑆 ≤ 𝐺 then ⟨𝑎⟩ ⊆ 𝑆. Then, we can state that the minimal subgroup within 𝐺 that 

holds 𝑎 is ⟨𝑎⟩. Since the group operation is cyclic with generator 𝑖, 𝐺 =

{1, −1, 𝑖, −𝑖}  ⊆  ℂ∗ with multiplication. ⟨𝑖⟩ = {𝑖 = 1, 𝑖ଵ = 𝑖, 𝑖ଶ = −1, 𝑖ଷ =

−𝑖} = 𝐺, in actuality. Observe that since ⟨−𝑖⟩ = {(−𝑖) = 1, (−𝑖)ଵ = −𝑖, (−𝑖)ଶ =

 −1, (−𝑖)ଷ = 𝑖} = 𝐺, −𝑖 is likewise a generator for 𝐺. As a result, a cyclic group 

could have several generators. But not every member of 𝐺 has to be a generator. 

For instance, −1 is not a generator of 𝐺 as ⟨−1⟩ = {1, −1} ≠ 𝐺. The integers ℤ, on 

the other hand, form a cyclic group. ℤ  does indeed equal ⟨1⟩ since 𝑘 ∈ ⟨1⟩ and 

⟨1⟩ = ℤ since each integer 𝑘 = 𝑘・1 is a multiple of 1. Moreover, ℤ = ⟨−1⟩ since 

for any 𝑘 in ℤ, 𝑘 = (−𝑘)・(−1). ℤ, is, thus, a cyclic group under addition with 

generator 1. Examining cyclic subgroups configuration and characteristics is a 

common activity that results when studying finite groups. Each element in a finite 

group 𝐺 generates a finite cyclic subgroup, hence one can estimate the number of 

elemental transformations that are possible within the group by counting the unique 

cyclic subgroups. Fraleigh (2003), listed some families of finite groups that 

contains cyclic subgroups: 

 Abelian groups: All finite abelian groups have cyclic subgroups as their 

subgroups. 
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 Cyclic groups: These are groups with a finite order a, of the form ⟨𝑎⟩. These 

groups contain only cyclic subgroups. 

 Dihedral groups: These are groups of regular polygonal symmetries. Each 

dihedral group posses two cyclic subgroups: one being period 2 and the 

other of period 𝑛, such that the polygon’s count of sides is 𝑛. 

 P-groups: If every element has a period that is some exponent of a given 

prime integer, 𝑝, the group is referred to as a 𝑝-group. For each non-trivial 

𝑝-group, a cyclic subgroup of size 𝑝 exist. 

 Finite fields: There are only cyclic subgroups in finite fields since they are 

all cyclic groups under addition. 

 Symmetric groups: Every finite symmetric group has a cyclic subgroup of 

period 𝑛, with n being the group’s element count. 

 Alternating groups: All finite alternating groups are composed of order 3 

cyclic subgroups. 

 Quaternion groups: The quaternion group 𝑄଼ and its higher-order 

counterparts 𝑄ଵ, 𝑄ଷଶ, etc., contain cyclic subgroups of orders 2, 4, and 8. 

 Generalized quaternion groups: The generalized quaternion groups 

𝑄ଶ(𝑛 ≥ 3) contain cyclic subgroups of orders 2, 2ିଵ, and 2. 

 Semi-dihedral groups: The semi-dihedral groups 𝑆𝐷ଶ(𝑛 ≥ 3) contain 

cyclic subgroups of orders 2, 2ିଵ, and 2. 

     We note fundamental properties of cyclic groups that serve as foundational 

elements throughout our work. As these concepts are already extensively explored, 

we present their outcomes without providing new proofs. These assertions 
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concerning cyclic groups stem from the authoritative textbook “Abstract Algebra” 

authored by Dummit and Foote (2004). 

Proposition 1. Assume that 𝐺 = ⟨𝑥⟩. |𝑥| =


ௗ(,)
  is true if |𝑥| = 𝑛 < ∞ 

(Dummit & Foote, 2004).  

Proposition 2. Assume that |𝑥| = 𝑛 < ∞  and 𝐻 = ⟨𝑥⟩ are cyclic. Then, if and only 

if 𝑔𝑐𝑑(𝑎, 𝑛) = 1, 𝐻 = ⟨𝑥⟩. To be more precise, Euler’s phi-function, represented 

by φ(n), has a total of H generators (Dummit & Foote, 2004).  

Proposition 3. Let a cyclic group be 𝐻. If |𝐻| = 𝑛 < ∞, there exists distinct cyclic 

subgroup period 𝑎 in 𝐻 for each positive integer 𝑎 dividing 𝑛. Furthermore, ⟨𝑥⟩ =

 ⟨𝑥ௗ(,)⟩ for each integer 𝑚, indicating that the factors of 𝑛 and the subgroups 

of 𝐻 coincide bijectively. Hence, 𝜏(𝑛) = |𝐶(𝐻)|, with 𝜏(𝑛) representing the divisor 

count function (Dummit & Foote, 2004) 

Theorem 10. Let the group 𝐺 be finite. When a prime 𝑝 yields 𝐺 = 𝐶మ  , |𝐶(𝐺)| =

3. For a proof, see Dillstrom (2016). 

Theorem 11. Consider 𝐺 as finite-ordered. We have |𝐶(𝐺)| = 3 if 𝐺 = 𝐶, 𝐺 =

𝐶యor 𝐺 = 𝐶ଶ × 𝐶ଶ, are true. For a proof, see Dillstrom (2016) 

Theorem 12. Consider 𝐺 as finite-ordered with |𝑎| = 𝑛. In this case, ⟨𝑎⟩ consists 

of the elements {𝑎: 0 ≤ 𝑘 < 𝑛} (Dummit & Foote, 2004). 

Theorem 13. A prime order group is cyclic in nature (Baumslag & Chandler, 1968). 

Theorem 14. Let 𝑔 ∈ 𝐺. Then for ⟨𝑔⟩: 

Possibility 1: Finite cyclic subgroup. In this scenario, 𝑔 = 1 occurs for the 

smallest positive integer 𝑛, and hence: 

 𝑛 | 𝑘 if and only if 𝑔 = 1. 
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 𝑔 = 𝑔 ⟺ 𝑘 ≡ 𝑚 (𝑚𝑜𝑑 𝑛). 

 ⟨𝑔⟩  =  {1, 𝑔, 𝑔ଶ, . . . , 𝑔ିଵ} and the elements 1, 𝑔, 𝑔ଶ, . . . , 𝑔ିଵ vary. 

Possibility 2: Infinite cyclic subgroup: 

 𝑔 = 1 ⟺ 𝑘 =  0. 

 𝑔 = 𝑔 ⟺ 𝑘 = 𝑚. 

 ⟨𝑔⟩ = {. . . , 𝑔ିଷ, 𝑔ିଶ, 𝑔ିଵ, 1, 𝑔, 𝑔ଶ, 𝑔ଷ, . . . } with varying powers of 𝑔 

(Dummit & Foote, 2004).  

Theorem 15. Suppose a cyclic group 𝐺 = ⟨𝑔⟩ with period 𝑛, and 0 ≤  𝑘 ≤ 𝑛 − 1. 

𝑜(𝑔)  =



, if 𝑚 = 𝑔𝑐𝑑(𝑘, 𝑛) (Dummit & Foote, 2004).  

Theorem 16. Consider a cyclic group 𝐺 generated by 𝑔 with order 𝑛. The group 𝐺 

is generated by 𝑔 when strictly 𝑔𝑐𝑑(𝑘, 𝑛) = 1. For a proof, see Fraleigh (2003). 

Theorem 17. All of cyclic group’s subgroups are likewise cyclic (Dummit & Foote, 

2004).  

Theorem 18. Fundamental Theorem of Finite Cyclic Groups. Take 𝐺 = ⟨𝑔⟩ as a 

cyclic group of period 𝑛. 

 Assume 𝐻 ≤ 𝐺, then 𝐻 = ⟨𝑔ௗ⟩ for some 𝑑|𝑛. 

 Assume 𝐻 ≤ 𝐺 and |𝐻| = 𝑘, then 𝑘|𝑛. 

 The unique subgroup of 𝐺 of period 𝑘 is ⟨𝑔/⟩ if 𝑘|𝑛. For a proof, see 

Gallian (2010) 

     An alpha invariant as captured in this work is a measure of how ‘cyclic’ a 

group is, in the sense that it quantifies the proportion of cyclic subgroups in the 

group. The alpha invariant is a non-negative real number, more specifically, the 

alpha invariant 𝛼(𝐺) indicates ratio of 𝐺’𝑠 cyclic subgroup count to its period: 
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                                                  𝛼(𝐺) =
(ீ)

|ீ|
                                                      (1) 

with 𝐶(𝐺) as the cyclic subgroups count of 𝐺 up to isomorphism. We note that the 

alpha invariant is always a non-negative rational number such that 0 < 𝛼(𝐺) ≤  1. 

Take 𝛼(𝐺) close to or approaching 1, the more cyclic the group is. Notably, a group 

is cyclic if and only if its alpha invariant is 1. A group with a high alpha invariant 

has a relatively large number of cyclic subgroups, which means that it is more 

‘cyclic’ in structure. Conversely, a group with a low alpha invariant has relatively 

fewer cyclic subgroups, which means that it is less ‘cyclic’ in structure. The alpha 

invariant can also be used to study properties of groups, such as their order, number 

of generators, and conjugacy classes. 

Definition: 𝜑(|𝑥|) generators exist for any cyclic subgroup ⟨𝑥⟩ of 𝐺, where 𝜑 is 

the totient function of Euler. Hence, 

𝐶(𝐺) = 
1

𝜑(|𝑥|)
௫∈ீ

 

            The dihedral group comprises the symmetries associated with a regular 

polygon, incorporating rotations and reflections. Dihedral groups 𝐷 with 𝑛 ≥ 3 

are finite groups and whether 𝑛 is even or odd determines their properties. If 𝑛 is 

odd in this scenario, the 𝑍(𝐷) is just the identity, but for even 𝑛, it comprises two 

elements: the identity and 𝑟


మ . In this research we will denote the group order of 𝐷ଶ 

as 2𝑛. There are 2𝑛 symmetries in a regular polygon of side 𝑛, which include 𝑛 

rotations and 𝑛 reflections. The size of the 𝑛 rotation of a regular polygon is 𝜃 =

ଷబ


 or 𝜃 =

ଶగ


 radians. Since there are two counts of items in period 2, (𝑛 +  1) 

for 𝑛 even values and 𝑛 for odd 𝑛 values, the identity element in 𝐷ଶ has period 1. 
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Definition: Given that 𝐷ଶ denotes period 2𝑛 dihedral group and the vertices in 

clockwise direction of 𝐷 are 𝑣ଵ, 𝑣ଶ, 𝑣ଷ, . . . , 𝑣. If 𝑟 is the rotation of the 𝑛-gon by 

ଶగ


 radians and 𝑠 is the reflection across the line connecting 𝑣ଵ to the centre of the 

polygon, then: 

 𝑒, 𝑟, 𝑟ଶ, . . . , 𝑟ିଵ are all distinct and 𝑟 = 𝑒, so 𝑜(𝑟) = 𝑛. 

 𝑜(𝑠) = 2. 

 𝑠 ≠ 𝑟 for any 𝑖. 

 𝑟𝑠 ≠ 𝑟𝑠 for all 0 ≤ 𝑖, 𝑗 ≤ 𝑛 − 1 with 𝑖 ≠ 𝑗. 

Hence, 𝐷ଶ = {𝑒, 𝑟, 𝑟ଶ, . . . , 𝑟ିଵ, 𝑠, 𝑟𝑠, 𝑟ଶ𝑠, . . . , 𝑟ିଵ𝑠}. 

Theorem 19. Dihedral groups 𝐷 are non-abelian for integers 𝑛 ≥ 3. For a proof, 

see Thangarajah (n.d.) 

Theorem 20. Take 𝑛 ∈ 𝑁 with 𝑛 ≥ 3. 𝐷, dihedral group, has a period 2𝑛, and 

with presentation: 𝐷 = ⟨𝑎, 𝑏 | 𝑎 = 𝑏ଶ = 𝑒, 𝑎𝑏 = 𝑏𝑎ିଵ⟩ We use 𝑍(𝐷) to refer to 

the centre of 𝐷. Following this: 

𝑍(𝐷) = ൞

{}           ௦ ௗௗ

൜, 

మൠ         ௦ ௩

  

For a proof, see Clark (1971).  

Theorem 21. The count of all 𝑛 divisors, including the endpoints 1 and 𝑛, is 

denoted 𝜏(𝑛), where 𝛼(𝐶𝑛) =
ఛ()


  (Cayley, 2021).  

In 𝐷ଶ, the identity element 𝑒 and each rotation 𝑟 where 𝑘 is a divisor of 

𝑛, form a cyclic subgroup ⟨𝑟/ௗ⟩. In addition, each reflection 𝑠 and combinations 

𝑟𝑠 (where 𝑘 ranges from 0 to 𝑛 − 1) form a period 2 cyclic subgroup. 
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Theorem 22. |𝐶(𝐷ଶ)| = 𝑛 + 𝜏(𝑛), for every 𝑛 ∈ 𝑁. For a proof, see Dillstrom 

(2016) 

Theorem 23. 𝛼(𝐷ଶ) =
୬ାτ(୬)

ଶ
  

Theorem 24. The cardinality of subgroups in a dihedral group |𝐷| = 𝑛 is 𝜏 (𝑛) +

𝜎(𝑛), (Bardhan et al., 2023).  

The Klein four-group is the smallest non-cyclic group and it has 4 elements, 

which are all self-inverse, and any two of the three non-identity elements multiply 

to the third one. The elements of 𝐾ସ are often written as 𝑒, 𝑎, 𝑏, 𝑐, where 𝑒 is the 

identity element and has period length 1 but the other three non-identity elements 

having a higher period length. The Klein group has order 2 for all other instances 

of 𝑒. The Klein four-group is the smallest non-cyclic group. However, it is an 

abelian group, and structurally equivalent to the dihedral group of period 4 that is 

𝐷ଶ(ଶ). The Klein four-group has the description: 𝐾ସ = ⟨𝑎, 𝑏|𝑎ଶ = 𝑏ଶ = (𝑎𝑏)ଶ = 𝑒⟩ 

An element’s conjugacy class means collection of all members that are 

conjugate to one another. Let 𝐺 be a group. When something like 𝑔𝑎𝑔ିଵ = 𝑏 holds 

true, then the element 𝑎, 𝑏 ∈ 𝐺 are conjugate with each other such that 𝑏 is known 

as a conjugate of 𝑎 and in same manner 𝑎 is called as a conjugate to 𝑏. The 

conjugacy class is a quotient of which (𝐺) which also divided into several classes 

of equivalence the component group associate to each exactly one conjudate class 

when its equivalent classes 𝐶𝑙ீ(𝑎) and 𝐶𝑙ீ(𝑏) are same exactly when 𝑎 and 𝑏 are 

conjuagted or else different. The conjugacy class 𝑎 ∈ 𝐺 is denoted as 𝐶𝑙ீ(𝑎) =

{𝑔𝑎𝑔ିଵ: 𝑔 ∈ 𝐺}. If 𝐺 is abelian, consequently, for every 𝑎, 𝑔 ∈ 𝐺, 𝐶𝑙ீ(𝑎) = {𝑎}. 

If all conjugacy classes are singletons, then 𝐺 is abelian. An element 𝑎 ∈ 𝐺 is in 
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𝑍(𝐺) if and only if its conjugacy class consists solely of 𝑎. The identity element is 

the only member of its conjugacy class, that is, 𝐶𝑙ீ(𝑒)  = {𝑒}. 

Proposition 4. 𝐶𝑙ீ(𝑥) = {𝑥} if and only if 𝑥 ∈ 𝑍(𝐺). For a proof, see Macauley, 

(2014). 

Proposition 5. Conjugacy class is an equivalence relation. For a proof, see 

Macauley (2014).  

Proposition 6. In a group, for all positive integers 𝑛, (𝑥𝑔𝑥ିଵ) = 𝑥𝑔𝑥ିଵ. For a 

proof, see Miller (1911).  

Theorem 25. Every element within a conjugacy class shares the identical period. 

For a proof, see Miller (1911).  

Proposition 7. Every normal subgroup is the union of conjugacy classes. For a 

proof, see Macauley (2014).  

A subset of a group called a coset is produced by multiplying each element 

of a subgroup by a fixed group’s element. The collection of elements 𝑔𝐻, where 

𝑔𝐻 =  {𝑔ℎ|ℎ ∈ 𝐻}, is defined as the left coset of an element 𝑔 ∈ 𝐺, 𝐻, represented 

by 𝑔𝐻, given a group 𝐺 and a subgroup 𝐻 of 𝐺. This is done by multiplying g with 

each element of 𝐻. Similarly, all items that belong to the set produced by 

multiplying 𝑔 by each element in 𝐻 are designated as the right coset of 𝑔 ∈ 𝐺 

regarding 𝐻, which is represented as 𝐻𝑔: 𝐻𝑔 = {ℎ𝑔|ℎ ∈ 𝐻}. Cosets are a naturally 

occurring class of subsets of a group. Take an abelian group 𝐺 of integers, whose 

subgroup 𝐻 is composed of even integers, and whose operation is specified by the 

standard addition. Then, precisely two cosets exist: odd integers, 1 + 𝐻, and even 

integers, 0 + 𝐻. It should be noted that the cosets are subsets of the group 𝐺, not 
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necessarily subgroups in and of themselves. Still, they have certain characteristics 

in common with subgroups, (Rotman, 2006).  

 Coset Closure: Given that 𝐻 ≤ 𝐺, the coset 𝑔𝐻 for any 𝑔 ∈ 𝐺 is closed 

under group operation. In other words, if ℎଵ and ℎଶ belong to 𝐻, then ℎଵ ∗

ℎଶ will lie in 𝑔𝐻. 

 Coset Equality: There exist two cosets 𝑔ଵ𝐻 and 𝑔ଶ𝐻 of the same subgroup 

𝐻, which are either identical or disjoint. 

 Coset Partition: The set 𝐺 is expressed in the form of distinct union of cosets 

of 𝐻. That is, each element in 𝐺 belongs to distinct coset of 𝐻. 

 Coset Cardinality: The size of every cosets of 𝐻 within 𝐺 is identical to 𝐻’𝑠 

size. 

For each member 𝑔 ∈ 𝐺 and each subgroup 𝐻 of an abelian group 𝐺, the equation 

𝑔 + 𝐻 = 𝐻 + 𝑔 holds. In generic groups, 𝐻𝑔 = 𝑔(𝑔ିଵ𝐻𝑔) is the right coset of 𝐻 

with regard to 𝑔 and the left coset of the conjugate subgroup 𝑔ିଵ𝐻𝑔 with respect 

to g. A subgroup 𝐻 and an element g of a group 𝐺 are supplied to this. Cosets are 

essential group theory studies because they let us examine a group’s coset 

decomposition and the connections between cosets and subgroups to examine a 

group’s structure and characteristics. 

A subset of a group that remains unchanged when conjugated by 

components of the larger group is known as a normal subgroup. Put otherwise, this 

group doesn’t change when any element from the bigger group conjugates with it. 

To be more precise, if 𝑁 ≤ 𝐺/𝑁 is a subgroup of a group 𝐺, then 𝑁 is normal in 𝐺 

if the conjugate of 𝑁 by 𝑔 lies within 𝑁. This is because element g belongs to 𝐺 in 
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every instance. Therefore, if 𝑔𝑁𝑔ିଵ = 𝑁 is true for any 𝑔 in 𝐺, then a subgroup 𝑁 

of a group 𝐺 is normal. Accordingly, it is denoted as 𝑁 ⊴ 𝐺. There are several 

comparable standards that can be used to assess if a subgroup is normal: 

 Right and left cosets equality: In each and every 𝑔 ∈ 𝐺, 𝑁𝑔 is the same as 

𝑔𝑁 (Hungerford, 2003). 

 Quotient group: 𝐺/𝑁 is the representation of the resultant group obtained 

by applying coset multiplication to the set of left cosets of 𝑁 in 𝐺. 𝑁 is 

considered normal in this case if and only if 𝐺/𝑁 is a group. 

 Kernel of a homomorphism: If 𝑁 is the kernel of a group homomorphism 

from 𝐺 to a different group, then it is normal. 

 A union of 𝐺’𝑠 conjugacy classes is 𝑁 (Cantrell, 2000). 

 There is a group homomorphism 𝐺 → 𝐻 with kernel 𝑁 (Cantrell, 2000). 

 𝐺’𝑠 inner automorphism preserves 𝑁 (Fraleigh, 2003). 

           The trivial subgroup {𝑒} of 𝐺 is self-normal in 𝐺 for every group 𝐺. 

Similarly, 𝐺 is normal within its own structure. According to Robinson (1996), the 

group 𝐺 is defined as simple if its normal subgroups consist solely of {𝑒} and 𝐺. 

Furthermore, it was shown by Hungerford (2003) and Hall (1999) that the centre of 

an arbitrary group and the commutator subgroup [𝐺, 𝐺] are included in the normal 

subgroups of that group. More broadly, any characteristic subgroup is a normal 

subgroup since conjugation is an isomorphism (Hall, 1999). In group theory, 

normal subgroups are significant. They allow for the definition of quotient groups, 

which capture the algebraic structure of a group modulo a normal subgroup. 
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Additionally, they can be found in a number of theorems and notions, including the 

notion of simple groups, the normalizer of a subgroup, and isomorphism theorems. 

Proposition 8. If the index of 𝐻 in 𝐺 is 2, then the subgroup 𝐻 of 𝐺 is normal. For 

a proof, see Humphreys (1996).  

Theorem 26. Given that 𝐺 = 𝑀 + 𝑁 and 𝑀 ∩ 𝑁 = {0} are additive groups with 𝑀 

and 𝑁 as normal subgroups, then 𝐺 = 𝑀 ⊕ 𝑁. For a proof, see Hungerford (2003). 

An essential idea in group theory and abstract algebra is a quotient group, 

sometimes referred to as a factor group. It is formed by considering a new group 

whose components constitute the cosets of the provided Group’s normal subgroup 

after determining the group’s normal subgroup. The quotient group 𝐺/𝑁, read as 

‘𝐺 modulo 𝑁’ or ‘𝐺 quotient 𝑁’ emphasizes the idea that 𝐺/𝑁 is obtained via 

‘modding out’ or ‘dividing’ the group 𝐺 by the normal subgroup 𝑁. It represents 

the collection of distinct cosets formed by partitioning 𝐺 based on the equivalence 

relation defined by 𝑁. The quotient group 𝐺/𝑁 is structurally equivalent to the 

trivial group, and 𝐺/{𝑒} is isomorphic to 𝐺. |𝐺: 𝑁|, or the index of 𝑁 in 𝐺, is the 

size of 𝐺/𝑁. The index is likewise equivalent to the period of 𝐺 divided by the 

period of 𝑁 if 𝐺 is finite. If 𝐺 and 𝑁 are not finite, the set 𝐺/𝑁 may be, for example, 

ℤ/2ℤ. 

An isomorphism is a type of mapping between two mathematical structures 

that preserves their structure. In other words, if two structures are isomorphic, they 

are essentially the same structure, but may differ in their notation or presentation. 

If there is a bijective homomorphism (a function that maintains the group structure) 

between two groups, say 𝐺 and 𝐻, then the two groups are deemed to be structurally 
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equivalent or isomorphic. The implication is that the elements of 𝐺 and 𝐻 behave 

same way under the group operations, and the only difference is the way they are 

labeled or presented. Isomorphisms are important in mathematics because they 

allow us to study and understand complex structures by comparing them to simpler, 

more familiar structures. For instance, if we can show that two groups are 

isomorphic, we can use our knowledge of one group to understand the other group. 

Moreover, isomorphisms are useful for constructing new examples of mathematical 

structures by finding isomorphic copies of known structures. For instance, if we 

know that two groups are structurally equivalent, we can create new groups that 

share the same structure. We also have the isomorphism theorems which are a set 

of three important theorems in group theory. They relate the concepts of 

homomorphisms and quotients of groups, and they aid in the comprehension of 

structure of groups. The first isomorphism theorem states that if we have a 

homomorphism between two groups, we can find a natural isomorphism between 

the image of homomorphism and the quotient group. The function 𝜙: 𝐺 → 𝐺 is 

defined by 𝜙(𝑔) = 𝑎𝑔𝑎ିଵ for all 𝑔 ∈ 𝐺 when we examine the inner 

automorphism theorem. Put differently, the map 𝜙 represents an isomorphism 

between 𝐺 and itself. This theorem states that for every 𝑎, the inner automorphism 

𝜙 preserves the group structure in a group 𝐺, where 𝜙(𝑔) = 𝑎𝑔𝑎ିଵ. Since it is 

an isomorphism from 𝐺 to itself, the map is bijective and preserves the group’s 

functionality. It is represented by 𝐼𝑛𝑛(𝐺). 

Theorem 27. Let 𝐺 be a group, 𝑥 ∈ 𝐺, and 𝜑 denote the inner automorphism 

induced by 𝑥 in 𝐺. Hence, an automorphism of 𝐺 is 𝜑 (Schupp, 1987).  
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Theorem 28. Let 𝑓: 𝐺 → 𝐺෨ represent a homomorphism of groups. Let 𝐾 = 𝑘𝑒𝑟(𝑓) 

and 𝐻෩ = 𝑖𝑚(𝑓) be the kernel and image of f, respectively, where 𝐾 is a normal 

subgroup in 𝐺 and 𝐻෩ is a subgroup of 𝐺෨. Therefore we have a natural isomorphism. 

𝑓ሚ: 𝐺/𝐾 → 𝐻෩, 𝑔𝐾 ⟼ 𝑓(𝑔). For a proof, see Schupp (1987).  

Theorem 29. Consider 𝐺 as a group, where 𝐻 ≤ 𝐺 and 𝐾 ⊲ 𝐺. Then there is a 

natural isomorphism 𝐻𝐾/𝐾 → 𝐻෩/(𝐻 ∩ 𝐾), ℎ𝐾 ⟼ ℎ(𝐻 ∩ 𝐾). For a proof, see 

Schupp (1987).  

Theorem 30. Consider the group 𝐺, where 𝐾 ⊲ 𝐺 and 𝑁 ⊲ 𝐾 and 𝑁 ⊲ 𝐺 are 

present. Then 𝐾/𝑁 ⊲ 𝐺/𝑁 and (𝐺/𝑁)/(𝐾/𝑁) ≅  𝐺/𝐾, with the isomorphism 

(𝑔𝑁)・(𝐾/𝑁)  ⟼ 𝑔𝐾. For a proof, see Schupp (1987).  

In the concept of isomorphism and count of cyclic subgroups, Dillstrom 

(2016) presented two tables. We first analyze the count of cyclic subgroups in small 

groups (Table 1) before listing their isomorphism types (Table 2). 

Table 1: Count of Cyclic Subgroups  

𝑮 |𝑪(𝑮)| Note  𝑮 |𝑪(𝑮)| Note  

〈𝒆〉 1 |𝐶(𝐺)| = 1 𝐶଼ 4 |𝐶(𝐺)| = |𝐺|/2 

𝑪𝟐 2 |𝐶(𝐺)| = |𝐺| 𝐶ସ × 𝐶ଶ 6 |𝐶(𝐺)| = |𝐺| − 2 

𝑪𝟑 2 |𝐶(𝐺)| = |𝐺| − 1 𝐶ଶయ 8 |𝐶(𝐺)| = |𝐺| 

𝑪𝟒 3 |𝐶(𝐺)| = |𝐺| − 1 𝐷଼ 7 |𝐶(𝐺)| = |𝐺| − 1 

𝑪𝟐 × 𝑪𝟐 4 |𝐶(𝐺)| = |𝐺| 𝑄଼ 5 |𝐶(𝐺)| = |𝐺| − 3 

𝑪𝟓 2 |𝐶(𝐺)| = 2 𝐶ଽ 3 |𝐶(𝐺)| = |𝐺|/3 

𝑪𝟔 4 |𝐶(𝐺)| = |𝐺| − 2 𝐶ଷ × 𝐶ଷ 5 |𝐶(𝐺)| = |𝐺| − 4 

𝑫𝟔 ≅ 𝑺𝟑 5 |𝐶(𝐺)| = |𝐺| − 1 𝐶ଵ 4 |𝐶(𝐺)| = |𝐺| − 6 

𝑪𝟕 2 |𝐶(𝐺)| = 2 𝐷ଵ 7 |𝐶(𝐺)| = |𝐺| − 3 

Source: Dillstrom (2016)  
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Table 2: Small Order Groups  

|𝑮| Number of Groups Isomorphism Tyes  

1 1 〈𝑒〉 

2 1 𝐶ଶ 

3 1 𝐶ଷ 

4 2 𝐶ସ, 𝐶ଶ × 𝐶ଶ ≅ 𝑉ସ  

5 1 𝐶ହ 

6 2 𝐶, 𝐷 ≅ 𝑆ଷ 

7 1 𝐶 

8 5 𝐶଼, 𝐶ସ × 𝐶ଶ, 𝐶ଶయ , 𝐷଼, 𝑄଼ 

9 2 𝐶ଽ, 𝐶ଷ × 𝐶ଷ 

10 2 𝐶ଵ, 𝐷ଵ 

Source: Dillstrom, (2016) 

From Table 1, Dillstrom (2016) proposed and established the following 

propositions and theorems: 

Proposition 9.  Consider 𝐺 as finite-ordered. |𝐶(𝐺)| = 1 if 𝐺 = ⟨𝑒⟩ is true. For a 

proof, see Dillstrom (2016). 

Proposition 10. Consider 𝐺 as finite-ordered. If, a certain prime 𝑝, 𝐺 = 𝐶, then 

|𝐶(𝐺)| = 2. For a proof, see Dillstrom (2016). 

The set of all elements of 𝐺 that are mapped to the identity element of 𝐻 is 

known as the kernel of a group homomorphism 𝑓: 𝐺 → 𝐻. The identity element of 

𝐺 is always present in the kernel, which is a subgroup normal in 𝐺. Consequently, 

the preimage of the singleton set {𝑒ு}, or the subset of 𝐺 consisting of all the 

elements of 𝐺 that are mapped by 𝑓 to the element 𝑒ு, is the kernel of 𝑓. This is the 

case if 𝑒ு is the identity element of 𝐻. Typically represented by 𝑘𝑒𝑟 𝑓: 

𝑘𝑒𝑟 𝑓 = {𝑔 ∈ 𝐺 | 𝑓(𝑔) = 𝑒ு} 
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Identity elements are preserved by group homomorphisms, hence the identity 

element 𝑒ீ of 𝐺 must be a member of the kernel. If and only if the homomorphism 

𝑓 has the singleton set {𝑒ீ} as its kernel, then it is injective. 

Proposition 11. If there exists a homomorphism 𝜑: 𝐺 → 𝐻. Then 𝜑 is injective 

whenever 𝑘𝑒𝑟 𝜑 = {𝑒} (Dummit & Foote, 2004).  

The direct product is defined as the natural component-wise operation on 

the Cartesian product 

ෑ 𝐺



ୀଵ

= 𝐺 ×∙ ∙ ∙× 𝐺, (𝑥ଵ,∙∙∙, 𝑥) ∙ (𝑦ଵ,∙ ∙ ∙, 𝑦) ≔ (𝑥ଵ𝑦ଵ,∙ ∙ ∙, 𝑥𝑦) 

which defines a group structure. The order of a direct product, being a Cartesian 

product, is exactly the product formed by the orders of its components. The 

algebraic object that is produced satisfies a group’s axioms. If a group 𝑃 satisfies 

the following three conditions, it is structural similarity to the direct product of 𝐺 

and 𝐻. 

 𝐺 ∩ 𝐻 is trivial. 

 Each member of 𝑃 is uniquely expressed as product of members of 𝐺 and 

𝐻. 

 Both 𝐻 and 𝐺 are normal in 𝑃. 

     One generalization of a direct product of groups is the semi-direct product. 

Denoted as 𝑃 = 𝐺 ⋊ 𝐻 or 𝑃 = 𝐻 ⋉ 𝐺, we say 𝑃 is the semi-direct product of 𝐺 and 

𝐻. As a result, when 𝐻 acts on 𝐺, 𝑃 is a semi-direct product. For clarity, it is 

recommended to indicate the normal subgroup. The two concepts associated with 

the semi-direct product are the inner semi-direct 
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product and outer semi-direct product. In order to achieve the inner semidirect 

product of 𝐺 and 𝐻, the third requirement can be relaxed such that out of the two 

subgroups 𝐺 and 𝐻, only one needs to be normal. Suppose that 𝐺 is a normal 

subgroup and as a group under composition, let 𝐴𝑢𝑡(𝐺) represent the group of all 

automorphisms of 𝐺. We construct a group homomorphism 𝜙: 𝐻 → 𝐴𝑢𝑡(𝐺) 

specified by conjugation, 𝜙ℎ(𝑔) = ℎ𝑔ℎିଵ, for every ℎ ∈ 𝐻 and 𝑔 ∈ 𝐺. This allows 

us to form a group 𝑃ᇱ = (𝐺, 𝐻) having as its definition the group operation (𝑔ଵ, ℎଵ)

・(𝑔ଶ, ℎଶ) = (𝑔ଵ𝜙ℎଵ(𝑔ଶ), ℎଵℎଶ) for 𝑔ଵ, 𝑔ଶ ∈ 𝐺 and ℎଵ, ℎଶ ∈ 𝐻. The subgroups 𝐺 

and 𝐻 determine 𝑃 up to isomorphism. According to Dummit and Foote (1991), the 

construction of the group 𝑃 from its subgroups is known as the internal semi-direct 

product or inner semi-direct product. The outer semi-direct product considers two 

groups 𝑁 and 𝐻 which are combined in a specific way to form a new group. The 

construction of a new group 𝑁 ⋊థ 𝐻, also known as the outer semi-direct product 

of 𝑁 and 𝐻 with regard to 𝜙, is possible given any two groups 𝑁 and 𝐻 and a group 

homomorphism 𝜙: 𝐻 → 𝐴𝑢𝑡(𝑁) (Robinson, 2003): 

 The set underlying the structure is 𝑁 × 𝐻, the Cartesian product of 𝑁 and 

𝐻. 

 The homomorphism 𝜙 determines the group operation:  

.(𝑁 ⋊థ 𝐻) × (𝑁 ⋊థ 𝐻) → 𝑁 ⋊థ 𝐻 

             (𝑛ଵ, ℎଵ)・(𝑛ଶ, ℎଶ) = (𝑛ଵ𝜙ℎଵ(𝑛ଶ), ℎଵℎଶ) 

 for 𝑛ଵ, 𝑛ଶ ∈ 𝑁 and ℎଵ, ℎଶ ∈ 𝐻.  

The direct product of distinct normal subgroups respectively from distinct groups 

is also a normal subgroup of the new group formed by the direct product of the 
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distinct groups.  Theorem 31. Given the groups G and G′. Let H ◁ G and H′◁ 

Theorem 31. Given the groups 𝐺 and 𝐺ᇱ. Let 𝐻 ⊲ 𝐺 and 𝐻ᇱ ⊲ 𝐺ᇱ. This yields 

(𝐻 × 𝐻)  ⊲ (𝐺 × 𝐺ᇱ). For a proof, see Robinson (2003).  

Theorem 32. For a finite group 𝐺, if 𝐻 ≤ 𝐺 and 𝐾 ≤ 𝐺, and both 𝐻 and 𝐾 are 

normal subgroups, and 𝐻 ∩ 𝐾 = {𝑒}, then |𝐺| = |𝐻𝐾| = |𝐻| × |𝐾|. For a proof, 

see Robinson (2003).  

            By using Lagrange’s theorem, |𝐻| divides |𝐺| for a finite group 𝐺 if 𝐻 is a 

subgroup of 𝐺. 

Theorem 33. |𝐺| = [𝐺: 𝐻]・|𝐻| when 𝐻 ≤ 𝐺 (Dummit & Foote, 2004).  

Remarks: If 𝐺 is infinite, then Theorem 33 is still valid as long as |𝐺|, |𝐻|, and 

[𝐺: 𝐻] are taken to be cardinal integers. 

Theorem 34. [𝐺: 𝐾] = [𝐺: 𝐻][𝐻: 𝐾] if 𝐻 is a subgroup of 𝐺 and 𝐾 is a subgroup 

of 𝐻. For a proof, see Robinson (2003).  

Remarks: If 𝐾 = {𝑒} where 𝑒 ∈ 𝐺, then [𝐺: {𝑒}] = |𝐺| and [𝐻: {𝑒}] = |𝐻|. Hence 

|𝐺| = [𝐺: 𝐻]・|𝐻|.  

Theorem 35. Given a prime number 𝑝 and a finite group 𝐺, if 𝑝 divides the period 

of the group, then 𝐺 has to contain an element with period 𝑝 (Groups abelian to 

Cauchy’s theorem). For a proof, see Robinson (2003) 

The Sylow theorems constitute a series of important theorems in group 

theory that provide information about finite group structure. They provide insight 

about the existence and properties of certain subgroups, known as Sylow 

subgroups, within a finite group. The theorem as it is explained, if 𝐺 is a finite 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



22 
 

group with prime number 𝑝, then 𝐺 contains subgroups of size 𝑝 for every positive 

integer 𝑘 for which 𝑝 is a divisor of |𝐺|. 

Definition: Let 𝐺 be a finite group with |𝐺| = 𝑝𝑚, where 𝑝 is a prime dividing 

|𝐺|, 𝑘 ≥ 1, and 𝑝 ∤ 𝑚. 

Theorem 36. If 𝐻 ≤ 𝐺 of size 𝑝. Then we have Sylow p-subgroup being 𝐻 

(K�̈�mmerer & Paulson, 1999).  

Definition: A Sylow p-subgroup of 𝐺 is a subgroup 𝐻 < 𝐺 with order 𝑝, where 

|𝐺| = 𝑝・𝑚 and 𝑝 does not divide 𝑚. The collection of such subgroups is denoted 

by 𝑆𝑦𝑙𝑝(𝐺). 

Theorem 37. (Second Sylow theorem). Every pair of Sylow 𝑝-subgroups is 

conjugate, implying that they are structurally equivalent: if 𝐻 and 𝐾 are Sylow 𝑝-

subgroups, there is an element 𝑔 ∈ 𝐺 such that 𝑔ିଵ𝐻𝑔 = 𝐾 (K�̈�mmerer & 

Paulson, 1999).  

Claim that 𝐺 acts on a set 𝑋. The orbit of 𝑥 for each 𝑥 ∈ 𝑋 is defined as 

𝑂𝑟𝑏𝑖𝑡(𝑥) = {𝑔・𝑥|𝑔 ∈ 𝐺}, denoting the subset of 𝑋 that may be reached from 𝑥 

by means of the action of elements in 𝐺. Furthermore, all components of 𝐺 that 

leave 𝑥 unchanged under the group action constitute the subgroup 𝑆𝑡𝑎𝑏(𝑥) = {𝑔 ∈

𝐺|𝑔・𝑥 = 𝑥}, which stabilizes 𝑥. These ideas are essential to comprehending group 

dynamics. 

Proposition 12. (Orbit-Stabilizer Theorem). If 𝐺 is a group acting on a finite set 𝑋, 

and 𝑥 ∈ 𝑋, then |𝑂𝑟𝑏𝑖𝑡(𝑥)|・|𝑆𝑡𝑎𝑏(𝑥)| = |𝐺|. For a proof, see Macauley (2014).  

Proposition 13. If 𝐺, a 𝑝-group, acts on a set 𝑆 via 𝜑: 𝐺 → 𝑃𝑒𝑟𝑚(𝑆), then the 

condition |𝐹𝑖𝑥(𝜑)| ≡ |𝑆| is satisfied. For a proof, see Macauley (2014). 
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Proposition 14. For a 𝑝-subgroup 𝐻 of 𝐺, it holds that [𝑁ீ(𝐻): 𝐻] ≡ [𝐺: 𝐻]. For 

a proof, see Macauley (2014).  

Theorem 38. Suppose |𝐺| = 𝑝𝑚. Let 𝐻 ≤ 𝐺 where |𝐻| = 𝑝 < 𝑝, we have 𝐻 ⋪

𝑁ீ(𝐻), where 𝑝 divides the quotient [𝑁ீ(𝐻): 𝐻]. For a proof, see Macauley (2014) 

Theorem 39. (Third Sylow Theorem). Define 𝑛 as the count of Sylow 𝑝-subgroups 

where, 

 𝑛|𝑚 

 𝑛 ≡ 1 𝑚𝑜𝑑 𝑝 

 𝑛 =
|ீ|

|ேಸ(ு)|
 where 𝐻 is a Sylow 𝑝-subgroup and 𝑁ீ(𝐻) denotes the 

normalizer of 𝐻, the largest subgroup of 𝐺 in which 𝐻 is normal (K�̈�mmerer 

& Paulson, 1999).  

Remark: This theorem implies that 𝑛|𝑚, where |𝐺| = 𝑝・𝑚. For a proof, see 

Macauley (2014).  

Theorem 36 asserts that there is at least one subgroup of 𝐺, known as a 

Sylow 𝑝-subgroup of period 𝑝, for each prime 𝑝 dividing the period of 𝐺. Put 

differently, there is a subgroup 𝐻 satisfying |𝐻| = 𝑝 withing 𝐺, where 𝑝 does not 

divide |𝐺/𝐻| (the index of 𝐻 in 𝐺). This theorem guarantees the existence of 

subgroups of certain orders within a finite group. The second theorem establishes 

the conjugacy relationship between Sylow 𝑝-subgroups. It states that for a finite 

group 𝐺, any pair of Sylow 𝑝-subgroups is conjugate. In other words, an element 𝑔 

exists in 𝐺 such that conjugating 𝐻 by 𝑔 yields 𝐾. This result provides information 

about the structure and interrelations between Sylow p-subgroups within a group. 
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The third theorem assert, Sylow 𝑝-subgroups count in 𝐺 is 1 𝑚𝑜𝑑 𝑝, which means 

if it is divided by 𝑝, a residue of 1 remains. Furthermore, this number divides the 

index 𝑚, which is the factor of |𝐺| not divisible by 𝑝. It provides information about 

the counting and divisibility properties of Sylow 𝑝-subgroups. 

            The Burnside theorem is an important theorem for comprehending finite 

group structure. Thus, it provides insight into the simplicity of groups whose orders 

follow a specific factorization pattern involving two distinct primes. 

Theorem 40. (Burnside). Let a group 𝐺 posses period 𝑝𝑞 such that 𝑝, 𝑞 primes. 

Hence, without being a prime period cyclic, 𝐺 is not simple. For a proof, see Bender 

(1972).  

            Nilpotency is a concept that describes how ‘nilpotent’ a group is. Intuitively, 

a nilpotent group is one that is ‘close’ to being abelian, meaning that its commutator 

subgroup (subgroup formed by all commutators of group elements) is ‘small’. 

Specifically, if 𝐺 is finite-ordered and a sequence of subgroups exists, then the 

group is nilpotent 

{1} = 𝐺 ⊲ 𝐺ଵ ⊲ 𝐺ଶ ⊲ ∙ ∙ ∙ ⊲ 𝐺 = 𝐺 

so that every factor group 𝐺/𝐺ିଵ is a normal subgroup of 𝐺/𝐺ିଵ and is also an 

abelian group. We also look at the nilpotency class of a group which measures how 

many steps are required in the nilpotent sequence to reach the trivial subgroup. It 

quantifies the extent to which the group deviates from being abelian. Formally, in 

a group 𝐺 the nilpotency class is referred to as the length of the shortest possible 

nilpotent sequence for 𝐺. Some important examples of nilpotent groups include 

abelian groups (which have nilpotency class 1), 𝑝-groups (which have nilpotency 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



25 
 

class at most |𝐺|), and the Heisenberg group (which has nilpotency class 2). 

Nilpotent groups have many special properties and are of interest in numerous 

mathematical disciplines, including as number theory, geometry, and physics. For 

example, finite 𝑝-groups are nilpotent and are crucial to algebraic number theory 

and Galois theory. Moreover, nilpotent Lie groups (consist of continuous groups 

that are ‘almost’ abelian) are fundamental objects in differential geometry and 

mathematical physics. 

Theorem 41. Consider a group 𝐺 with 𝑁 ⊲ 𝐺. Then 𝐺 is solvable if and only if 

both 𝑁 and 𝐺/𝑁 are solvable. For a proof, see Rotman (2006) 

Proposition 15.  If 𝐴 and 𝐵 have coprime periods, then 𝑐(𝐴 × 𝐵) = 𝑐(𝐴)𝑐(𝐵), and 

subsequently 𝛼(𝐴 × 𝐵) = 𝛼(𝐴)𝛼(𝐵) (Dummit & Foote, 2004).  

Theorem 42. For any 𝑛 ≥ 0, 𝛼(𝐺) = 𝛼(𝐺 × 𝐶ଶ) is true if 𝐺 represent any finite 

group. For a proof, see Dillstrom (2016). 

Remark: If 𝐺 ≅ 𝐶ଶ, consequently 𝛼(𝐺) = 1. 

The relationship between the alpha invariant and nilpotency of finite groups 

is that the alpha invariant can be used to provide a standard for a finite group to be 

nilpotent. In other words, If and only if the ratio of 𝐺’𝑠 cyclic subgroup count to its 

order is smaller than or equal to 
ଵ

ଶ
, then a finite group 𝐺 is nilpotent. 

Theorem 43. Consider a finite group 𝐺. 𝐺 is nilpotent if and only if 𝛼(𝐺) ≤
ଵ

ଶ
 

(Garonzi & Lima, 2018).  

            Similarly, the alpha invariant provides a useful criterion to ascertain if a 

finite group is solvable, and has important impact on the structure and properties of 

finite groups. Moreover, the Feit-Thompson Theorem provides a deep connection 
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between the alpha invariant and the solvability of finite groups, and is a crucial 

result in the field of finite groups.  

Theorem 44. Consider a finite group 𝐺. If 𝛼(𝐺) ≤
ଷ

ସ
, then 𝐺 is solvable (Garonzi 

& Lima, 2018). 

Statement of the Problem 

The research seeks to contribute to the field of group theory by considering 

a conjecture and its possible extension on the relationship between finite groups, 

nilpotency, the alpha invariant, and the structure of the group. 

Research Objectives 

            The objectives of this thesis includes: 

 To prove the conjecture on the condition that 𝛼(𝐺) ≤
ଷ

ସ
 and 𝐺 is not 

nilpotent, will yield 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ, and specify the values of 𝑛 for which 

the conjecture holds. 

 To examine the group 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ when 𝛼(𝐺) =
ଷ

ସ
 and 𝐺 is not 

nilpotent, with a focus on identifying if it possesses a non-trivial centre. 

 To demonstrate that under these conditions of 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ, with the 

alpha invariant being 
ଷ

ସ
 and 𝐺 not being nilpotent, then 𝐺 necessarily 

contains subgroup, non-trivial in nature, that is both normal and 

characteristic. 

 To investigate normal subgroups within the group 𝐷ଶସ × 𝐶ଶ and analyze 

their structural properties up to isomorphism. 
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 To characterize finite groups 𝐺 for which the count of cyclic subgroups 

|𝐶(𝐺)| = |𝐺| − 6 is achieved, exploring the structural properties and 

characteristics that lead to this cardinality. 

Significance of the Study 

The research will provide existence and uniqueness of non-nilpotent group 

with a high proportion of cyclic subgroups, and highlights the importance of 

understanding the relationship between the group structure and characteristics of 

its subgroups as it relates to the conjecture. The significance of examining cyclic 

subgroups and its count in finite group lies in its implications for understanding the 

properties and structure of finite groups. This area of research holds fundamental 

position in group theory and finds practical applications in various fields. By 

investigating the distinct cyclic subgroups count in a finite group, we can gain 

insights into the group’s structure and its relationship to other groups. This 

knowledge is essential for various applications, ranging from cryptography in 

computer science to representation theory in chemistry, and even in advanced 

theories and implementations in computer science (Wen, 2022). Secondly, the 

significance of this research on the value 
ଷ

ସ
 in the classification of non-nilpotent 

groups is that it has been shown that if a group has 𝛼(𝐺) =
ଷ

ସ
 and is nilpotent, so 

𝐺 is a 2-group and every group that demonstrates 𝛼(𝐺) >
ଷ

ସ
 has been categorized 

(Garonzi & Lima, 2018) as cited by Cayley (2021). However, for non-nilpotent 

groups, the significance of 𝛼(𝐺) =
ଷ

ସ
 is not well-documented according to the 

researcher’s perspective. Therefore, the study will lead to the full appreciation of 
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the conjecture and its possible extensions into gray areas that will contribute to 

knowledge in the academic field. 

Delimitation 

To address the research problems, the study acknowledges that examining 

infinite groups could be relevant. However, the focus is deliberately restricted to 

finite groups that meet the criteria of the research problem and its potential 

extensions. This delimitation ensures a more manageable scope and permits a more 

thorough investigation of finite groups within the context of the conjecture. 

Limitation 

A potential restriction of this research is the availability or accessibility of 

certain groups that may meet the specified criteria for testing the conjecture, as well 

as our scope in terms of the order of groups which will be finite. 

Definitions of Terms 

We present key ideas and concepts that will be employed throughout this 

thesis. For additional information, we recommend referring to the works by 

Dummit and Foote (1991; 2004), Fraleigh (2003), Hall (1999), and Isaacs (2008). 

Definition 1 (A Group) 

      A group 𝐺 is endowed with an operation (denoted as ∗) and a nonempty set 

that meet the subsequent assumptions 

 Closure: If 𝑎, 𝑏 is any element in 𝐺, then the operation 𝑎 ∗ 𝑏 is also in 𝐺. 

 Associativity: For any elements 𝑎, 𝑏, 𝑐 in 𝐺, (𝑎 ∗ 𝑏) ∗ 𝑐 = 𝑎 ∗ (𝑏 ∗ 𝑐). 

 Identity element: There is an element 𝑒 in 𝐺 where 𝑎 ∗ 𝑒 = 𝑒 ∗ 𝑎 = 𝑎 exists 

for every element a in 𝐺. 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



29 
 

 Inverse element: For every element a in 𝐺, 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 = 𝑒 can be 

expressed for some element 𝑏 in 𝐺. 

Definition 2 (Period of element) 

Considering the group 𝐺 and 𝑎 ∈ 𝐺, 𝑎 has finite period if 𝑛 and a positive 

integer with 𝑎 = 𝑒, where 𝑛 > 0. The order or period of 𝑎 is expressed as 𝑜(𝑎) or 

|𝑎|. It is claimed that 𝑎 has infinite period if ∀𝑛 ∈ ℕା, 𝑎 ≠ 𝑒. In this case, we 

write 𝑜(𝑎) = ∞. 

Definition 3 (Subgroup of a Group) 

Considering the group 𝐺. If 𝐻 forms a group under the operation induced 

by 𝐺, then a subset 𝐻 of 𝐺 is called a subgroup of 𝐺. We designate 𝐻 ≤ 𝐺 if 𝐻 is a 

subgroup of 𝐺. 

Definition 4 (Centre and centralizer) 

Let 𝐺 be finite-ordered: 

 𝑍ீ = 𝑍(𝐺) = {𝑧 ∈ 𝐺| 𝑧𝑎 = 𝑎𝑧, ∀𝑎 ∈ 𝐺}. 

 If 𝑎 ∈ 𝐺, the 𝐶ீ(𝑎) = 𝐶(𝑎) = {𝑧 ∈ 𝐺|𝑧𝑎 = 𝑎𝑧} is called the centralizer of 

𝑎. 

Definition 5 (cyclic subgroup) 

The subgroup ⟨𝑔⟩ = {𝑔: 𝑘 ∈ ℤ} is a cyclic subgroup of 𝐺 formed by 𝑔; if 

𝐺 = ⟨𝑔⟩, consequently we claim that 𝐺 is a cyclic group in which 𝑔 is a generator 

of 𝐺. Thus, suppose 𝐺 be a group with multiplication as the group operator. We 

state that 𝐺 is a cyclic group only if ∃𝑎 ∈ 𝐺 and 𝐺 = ⟨𝑎⟩, and ⟨𝑎⟩ = {𝑎: 𝑘 ∈ ℤ}. 

Also, if 𝐺 be a group with addition as the group operator. Then, 𝐺 is considered 

cyclic only when ∃𝑎 ∈ 𝐺 resulting in 𝐺 = ⟨𝑎⟩, and ⟨𝑎⟩ = {𝑘𝑎: 𝑘 ∈ ℤ}. 
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Definition 6 (Euler’s phi function) 

The function known as Euler’s totient determines the relative primeness 

(represented as 𝑝) of a set of positive integers less than or equal to 𝑛. Thus, 

𝜑(𝑛) = 𝑛 ෑ ൬1 −
1

𝑝
൰

|

 

Definition 7 (Class equation) 

Suppose, in finite group 𝐺, the class equation takes the form 

|𝐺| = |𝑍(𝐺)| + ∑|𝐶𝑙ீ(𝑥)|, 

with the sum ranging over distinct conjugacy classes of size greater than one. 

Definition 8 (Normal subgroup) 

When a subgroup 𝑁 of 𝐺 remains intact when conjugated, meaning that any 

element in 𝑁 that has a conjugate in 𝐺 also belongs to 𝑁. This is known as 

normality. 

Definition 9 (Quotient group) 

Let 𝑁 ⊲ 𝐺. The collection of all left cosets of 𝑁 in 𝐺 such that 𝐺/𝑁 =

{𝑎𝑁: 𝑎 ∈ 𝐺} is the quotient group, which we refer to as 𝐺/𝑁. 

Definition 10 (Isomorphism) 

     An isomorphism is defined as a map 𝜙: 𝐺 → 𝐻, and 𝐺 and 𝐻 are said to be 

isomorphic or to be of the same isomorphism type 𝐺 ≅ 𝐻, if 

 𝜙 is a homomorphism ൫𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦)൯, for all 𝑥, 𝑦 ∈ 𝐺 

 𝜙 is a bijection 

where in 𝐺, the product 𝑥𝑦 is calculated on the left, and in 𝐻 is the product 

𝜙(𝑥)𝜙(𝑦) on the right. It makes sense that if a map 𝜙 preserves the group structures 
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of both its domain and codomain, it is a homomorphism.  

Definition 11 (Automorphism) 

    An automorphism 𝜙: 𝐺 → 𝐺 denote bijective map, in which for any 𝑥, 𝑦 ∈ 𝐺: 

 ϕ is a homomorphism ൫𝜙(𝑥𝑦) = 𝜙(𝑥)𝜙(𝑦)൯ 

 𝜙(𝑒) = 𝑒, where 𝑒 ∈ 𝐺 

 𝜙(𝑥 − 1) = (𝜙(𝑥))ିଵ 

Definition 12 (Characteristic subgroup) 

If 𝐻 satisfies 𝜙(𝐻) ⊆ 𝐻 for any automorphism 𝜙 of 𝐺, it is a characteristic 

subgroup and a subgroup of 𝐺. Since 𝜙ିଵ(𝐻) ⊆ 𝐻 implies an inverse inclusion 

𝐻 ⊆ 𝜙(𝐻), 𝜙(𝐻) = 𝐻 holds true for every automorphism 𝜙 of 𝐺. 

Definition 13 (Inner Automorphism theorem) 

Suppose 𝐺 represent the group where 𝑎 ∈ 𝐺. If 𝜙: 𝐺 → 𝐺 by 𝜙(𝑔) =

𝑎𝑔𝑎ିଵ for all 𝑔 ∈ 𝐺. Then, 𝜙 is an automorphism of 𝐺. 

Definition 14 (Direct product) 

Given the groups (𝐻, 𝛥) and (𝐺,∗), 𝐺 × 𝐻 has the following definition: 

 The Cartesian product, 𝐻 × 𝐺, is the underlying set. In other words, in the 

ordered pairs (ℎ, 𝑔), 𝑔 ∈ 𝐺 and ℎ ∈ 𝐻. 

 Component-wise, the binary operation on 𝐻 × 𝐺 is defined as follows: 

(ℎଵ, 𝑔ଵ)・(ℎଶ, 𝑔ଶ) = (ℎଵ𝛥ℎଶ, 𝑔ଵ ∗ 𝑔ଶ). 

Definition 15 (Nilpotent class) 

A group 𝐺 is called nilpotent of class 𝑘 if the 𝑘𝑡ℎ term of its lower central 

series is the trivial subgroup {1}, where the 𝑘𝑡ℎ term is recursively defined in this 
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way: 𝐺ଵ = 𝐺 and 𝐺ାଵ = [𝐺 , 𝐺] where [𝐺 , 𝐺] denotes the subgroup formed by 

the commutators [𝑔, ℎ] with 𝑔 ∈ 𝐺 and ℎ ∈ 𝐺. 

Organisation of the Study 

The research consists of five chapters, with Chapter One already discussed. 

The succeeding Chapters are organized as follows: In the second chapter, relevant 

group structure literature is reviewed and also the relationship between alpha 

invariant and nilpotency in finite groups. Description of the research methodology 

and approach is the focus of Chapter Three. The key findings of the study are 

captured in Chapter Four, while Chapter Five summarizes, concludes, and makes 

recommendations. 
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction 

In this chapter, there is a review of the work of several authors whose 

research in the field of group theory have laid the foundation for further studies in 

this area. First, there is a notional look at the seminal works of foundational authors 

in the field group theory and then a careful review of research works in terms of 

contributions and theories that are directly related to the achievement of the 

objectives of the research work. 

The Evolution and Advancement of Group Theory 

The evolution of group theory can be traced back to four main sources: 

Poincar�́� and Klein (1876), cited by Kleiner (1986); the classical algebra Lagrange 

(1770), number theory Gauss (1801), geometry Klein (1874), and analysis Lie 

(1874). In the paper (Lagrange, 1770), contributions to the study of algebraic 

equations and permutations, introducing fundamental concepts that later influenced 

the formal development of group theory were made. The development of group 

theory was greatly aided in 1801, by Carl Friedrich Gauss’s investigation of 

modular arithmetic and additive and multiplicative groups in number theory. In his 

Erlangen Programme (Klein, 1872), Felix Klein proposed a framework for 

understanding various geometries through transformation groups, strengthening the 

connection between geometry and group theory. In 1874, Sophus Lie introduced 

the concept of continuous transformation groups, later known as Lie groups, 

establishing a fundamental link between differential equations and group theory 
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(Lie, 1874). Additionally, Henri Poincar´e and Felix Klein made significant 

contributions to the application of Lie groups in analysis, further advancing group 

theory (Poincar�́� & Klein, 1890). Group theory, a subfield of abstract algebra, 

explores the properties and structures of mathematical groups, thus sets equipped 

with an operation that satisfies specific axioms. As we delve into the literature, we 

encounter the profound insights and groundbreaking work of several influential 

authors who have significantly advanced the understanding of group theory. 

One of the foundational figures in the development of group theory is 

Eሖ variste Galois, a French mathematician from the 19th century cited by Kleiner 

(1986). The paper made remarkable contributions to the study of group theory, 

particularly through exploration of solvability by radicals and the concept of Galois 

groups. The work also laid the groundwork for understanding the relationships 

between symmetries, permutations, and equations, forming the basis for modern 

group theory. Building on Galois’s foundation, Fraleigh (2003) noted that Augustin-

Louis Cauchy made significant strides in the early 19th century by formalizing a 

systematic approach to the study of groups. His work led to Cauchy’s theorem, 

which states that every finite group with prime order is cyclic. This result marked 

a crucial milestone in the development of group theory and spurred further 

investigations into the properties of finite groups. 

In the later nineteenth and early twentieth centuries, the German 

mathematician Georg Cantor and British mathematician Arthur Cayley made 

substantial contributions to group theory, (Robinson, 1996). Cantor’s work on 

infinite sets and cardinality influenced the study of infinite groups, while Cayley 
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formalized the concept of abstract groups and introduced the notion of group 

presentations. Their insights paved the way for the generalization of group theory 

beyond finite structures. In the mid-20th century, Hungarian mathematician Paul 

Erdós and Paul Turán made significant contributions to the study of permutation 

groups and their applications (Miller, 1922). Their work, along with that of Hall 

(1999) focused on the representation theory associated with finite groups, providing 

essential tools for understanding the structure of groups. Moving into more recent 

times, in the area of classification theorems, contributions of contemporary 

mathematicians who have expanded the boundaries of group theory such as 

Aschbacher et al. (2011), through their research developed the Classification of 

Finite Simple Groups. The monumental achievement helped to classify all finite 

simple groups and provided a comprehensive framework for understanding their 

structure. However, a note must be taken that two volumes by Gorenstein (1982, 

1983) cover the low rank and odd characteristic parts of the proof for the 

classification theorem. 

The research study by Cayley (2021) delves into the properties of finite 

groups concerning the ratio of cyclic subgroups to the group’s order. The study 

presents a comprehensive analysis of various aspects related to this ratio, with a 

focus on the parameter 𝛼(𝐺). The fundamental objectives of the research, which 

include an investigation into the basic properties of𝛼, computation of 𝛼(𝐺) for 

different groups, and classification of Dihedral groups exhibiting 𝛼(𝐺) =
ଷ

ସ
. 

Additionally, the study explores the minimum number of involutions required in 

groups with 𝛼(𝐺) =
ଷ

ସ
 , thus groups satisfying 𝛼(𝐺) =

ଷ

ସ
 must have a minimum 
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number of involutions, specifically 
|ீ|

ଶ
− 1. The research emphasizes the 

significance of understanding groups where the ratio of cyclic subgroups to group 

order is 
ଷ

ସ
. It discusses previous works by Garonzi and Lima (2018) and the 

classification efforts by Wall (1970) and Miller (1920), providing a context for the 

current study. Cayley (2021) research highlights a partial nilpotent group 

classification with 𝛼 =
ଷ

ସ
, conducted by Ta෬rna෬uceanu (2015). It introduces the 

concept of nilpotent groups and presents a useful characterization theorem along 

with a proposition stating that if a nilpotent group has 𝛼 =
ଷ

ସ
, then it must be a 2-

group. The proof of this proposition is provided, showing that for a nilpotent group, 

the Sylow 𝑝-subgroups must have certain properties regarding their cyclic 

subgroups, leading to the conclusion that the group must be a 2-group. The research 

discusses the classification of groups based on the number of cyclic subgroups. It 

begins by noting that all groups with alpha greater than 
ଷ

ସ
 have been classified, 

referring to the works of Garonzi and Lima (2018) and Wall (1970) suggesting that 

it is natural to investigate groups where alpha equals 
ଷ

ସ
 (Cayley, 2021). A 

computational analysis is also undertaken to determine a comprehensive group 

classification with 𝛼 =
ଷ

ସ
 , (Group, 2021). The investigation into the properties of 

finite groups, particularly in relation to their cyclic subgroups, simplicity, 

involutions, and commuting probabilities, has been a subject of interest among 

mathematicians seeking to understand fundamental characteristics of group 

structures. Cayley (2021) work introduces a series of propositions and definitions 

that shed light on various aspects of finite groups in his preliminary findings. 
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Proposition 5.4 (Cayley, 2021), serves as a foundational insight, establishing that 

among dihedral groups, only 𝐷ଵ and 𝐷ଶସ possess 𝛼 values equal to 
ଷ

ସ
. This 

proposition lays the groundwork for subsequent inquiries into groups exhibiting 

specific values of 𝛼, highlighting the significance of these groups within the 

broader context of finite group theory. It is noted that the count of group 𝐺 elements 

satisfying 𝑔ଶ = 1 and represented by 𝐼(𝐺), is equal to or greater than twice the ratio 

of cyclic subgroups to the order of the group (𝛼(𝐺)), minus one. Additionally, 𝛼(𝐺) 

equals one, holds exactly when 𝐺 is an elementary abelian 2-group. This provides 

valuable understanding into the relationship between the count of involutions in a 

group and its 𝛼 value. By establishing a lower bound on the count of involutions 

based on alpha value, thereby offering a method for identifying elementary abelian 

2-groups and enriching our understanding of group classification. 

Moving forward, the findings introduce the concept of commuting 

probability, a measure of the likelihood of elements commuting within a group. 

This concept sets the stage for analysing the dynamics of group elements and their 

interactions, offering valuable insights into group behavior. On the other hand, if 

the ratio of cyclic subgroups to the period of the group (𝛼(𝐺)) is greater than or 

equal to 
ଵ

ଶ
, then the commuting probability (𝑐𝑝(𝐺)) is greater than or equal to the 

square of the ratio of elements in the group that satisfy 𝑔ଶ = 1 to the period of the 

group (𝐼(𝐺)/|𝐺|), squared. This establishes a lower bound on the commuting 

probability of a group, further elucidating the relationship between 𝛼 and the 

commuting behavior of group elements. By connecting 𝛼 values to commuting 
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probabilities and the number of involutions, it contributes to a deeper understanding 

of group structures and dynamics. 

The research then moves into a different gear particularly focusing on finite 

groups and their representations. The discussion begins with the introduction of the 

general linear group (𝐺𝐿) of a vector space 𝑉 over a field 𝐹. By defining 𝐺𝐿(𝑉 ) 

as the group of automorphisms of 𝑉 and 𝐺𝐿(𝑛, 𝐹) as the group of invertible 𝑛 × 𝑛 

matrices over 𝐹, this definition establishes a fundamental connection between 

linear transformations and group theory. The subsequent note emphasizes the 

structural equivalence of 𝐺𝐿(𝑉 ) and 𝐺𝐿(𝑛, 𝐹) under certain conditions, 

highlighting the versatility of 𝐺𝐿 in mathematical contexts involving linear algebra. 

The research extends the discussion to representations of groups on vector 

spaces, introducing group homomorphisms from 𝐺 to 𝐺𝐿(𝑉 ). This definition 

establishes the foundation for comprehending the manner in which groups operate 

on vector spaces via linear transformations, preparing the groundwork for delving 

deeper towards the investigation of group representations. There is also the 

introduction of faithful representations, characterizing representations where the 

group homomorphism from 𝐺 to 𝐺𝐿(𝑉 ) is injective. Faithful representations are 

pivotal in understanding group actions on vector spaces, providing insights into the 

structure and behavior of groups. Proposition 5.12 Shifts the focus to non-abelian 

simple groups, establishing an upper bound on the number of conjugacy classes 

in such groups. By bounding the count of conjugacy classes by half the order of the 

group, this proposition offers valuable insights into the distribution of elements 

within non-abelian simple groups, contributing to their classification and structural 
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understanding. Proposition 5.13 of the same research then establishes a maximum 

value for the ratio of cyclic subgroups to the order of non-abelian simple groups, 

providing valuable constraints for further classification efforts. Using commuting 

probabilities within the group, the proposition offers a precise upper limit for 𝛼(𝐺), 

enhancing our comprehension of cyclic subgroup distribution. Proposition 5.13 is 

complemented by presenting an even tighter upper bound for α(G) in non-solvable 

groups. Garonzi and Lima (2018) findings underscore the importance of studying 

non-solvable groups, refining our understanding of cyclic subgroup distribution and 

contributing to classification endeavors. This discussion is extended to simple 

groups, affirming that 𝛼(𝐺) cannot equal 
ଷ

ସ
, thus relying on the results of 

Proposition 5.13, illustrating the broader implications of the established upper limit 

on 𝛼(𝐺) for simple group classification.  

            On the preliminary findings of the same research, it further establishes that 

if 𝛼(𝐺) =
ଷ

ସ
, then 𝐺 must be solvable, shedding light on the structural characteristics 

of groups with a high proportion of cyclic subgroups. However, the ratio of cyclic 

subgroups to the group’s order, 𝛼(𝐺), cannot equal 
ଷ

ସ
 for the non-abelian group 𝐺 

of period 𝑝𝑞, such that 𝑝 is not a divisor of 𝑞 − 1 and 𝑝 and 𝑞 are prime numbers. 

Similarly, if 𝐺 is isomorphic to the affine general linear group 𝐺𝐴(1, 𝑝), then the 

ratio of cyclic subgroups to the period of the group, represented by 𝛼(𝐺), cannot 

equal 
ଷ

ସ
. In their exploration of the connection between group families containing 

involutions, the author considers the classifications presented by Miller (1920) and 

Wall (1970). Miller (1920) categorized groups with |𝐺| involutions into 15 families, 
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while Wall refined this classification by focusing on groupings into four families, 

each with at least |𝐺|ଶ involutions. The research primarily investigates groups with 

𝛼 =
ଷ

ସ
 . The authors start by proving Proposition 6.1, which establishes a lower 

bound on the count of involutions in a group 𝐺 when alpha equals 
ଷ

ସ
. They 

demonstrate that if𝛼 =
ଷ

ସ
, then 𝑛ଶ(𝐺) ≥ |𝐺|ଶ − 1. This result is significant as it 

provides a foundational understanding of the distribution of involutions within 

groups based on their order. The subsequent analysis involves understanding the 

implications of 𝑛ଶ(𝐺) in relation to the families described by Miller and Wall. 

When a group 𝐺 fulfills 𝑛ଶ(𝐺) = |𝐺|ଶ − 1, it fits into one of Miller’s families. 

Conversely, if 𝑛ଶ(𝐺) > |𝐺| − 1, the group falls into one of Wall’s families. 

Additionally, for all 𝑘 ≠ 1, 2, 3, 4, 6, the given inequalities are meticulous if 

𝑛ଶ(𝐺) ≠ 0, leading to a clear categorization of the group into Wall’s families.    

Further explaining Wall’s families, the author describes the characteristics of core 

groups within these families. These descriptions outline various presentations and 

properties of the core groups, such as being abelian, the product of dihedral groups, 

or specific presentations involving generators and relations. This detailed 

categorization helps in understanding the structural diversity among groups 

containing a significant number of involutions, thereby bridging the classifications 

proposed by Miller (1920) and Wall (1970) and providing concrete results 

regarding the lower bound of involutions in certain groups. The authors offer 

valuable insights into the underlying structures of finite groups. 
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The research presented explores Proposition 6.2, which focuses on the 

characterization of groups within Wall’s First Family when 𝛼 =
ଷ

ସ
. The main goal 

is to identify the specific forms of groups that fall within this classification, 

providing a rigorous proof to support the assertion. The proposition establishes that 

groups in Wall’s First Family can be represented as 𝐺 = 𝐷ଵ × 𝐶
ଶ or 𝐷ଶସ × 𝐶

ଶ. The 

proof begins by considering 𝐺 = 𝐴 ⋊ 𝐶ଶ, with 𝐴 serving as abelian group with the 

action 𝑥 ↦ 𝑥ିଵ under the generator 𝑡 of 𝐶ଶ. This action leads to an observation that 

(𝑎𝑡)ଶ = 𝑎𝑎ିଵ𝑡ଶ = 1, indicating 𝐴 contains |𝐴| cyclic subgroups of order 2. Further 

analysis of the structure of 𝐴 leads to the determination of its form. It is shown that 

𝐴 possess cyclic group 𝐶 with prime 𝑝, where 𝑝 must be either 2 or 3. This 

deduction is crucial for narrowing down the possibilities for the structure of 𝐴. The 

author then asserts that if 𝐴 is isomorphic to 𝐶
ସ × 𝐶

଼ × 𝐶
ଷ, where 𝑙 > 0, then 𝐴 is 

isomorphic to 𝐶଼. This deduction is supported by demonstrating contradictions that 

arise when assuming other forms for 𝐴, such as 𝐶
ସ × 𝐶

ଷ or 𝐶
ସ . This careful 

analysis allows for a precise determination of the possible forms of 𝐴. Proposition 

6.3 provides insights into the structural properties of core groups within Wall’s 

Second Family. The proposition establishes that Wall’s Second Family’s core group 

has 𝛼 =
ଶହ

ଷଶ
. The analysis proceeds to enumerate the various elements within this 

group based on their orders. Specifically, the group includes a single period 1 

element, 35 elements of period 2, and 28 elements of order 4.  

This enumeration provides a comprehensive understanding of the group’s 

composition, laying the groundwork for further analysis. Applying Proposition 3.3, 

which relates the count of conjugacy classes to the group’s structure, the author 
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derives the count of conjugacy classes for 𝐷଼ × 𝐷଼. By summing the contributions 

from elements of different orders, the total number of conjugacy classes is 

determined to be 50. Subsequently, the value of 𝛼 is computed; for 𝐷଼ × 𝐷଼, 𝛼 is 

found to be 
ଶହ

ଷଶ
, which surpasses the threshold of 

ଷ

ସ
. 

The research further provides a comprehensive analysis on associated 

Wall’s Third Family groups and their properties, culminating in the important result 

that none of the groups in this family has 𝛼 =
ଷ

ସ
 (Proposition 6.4). The proof is 

based on the presentation of Wall’s Third Family core groups and involves the 

analysis of the count of elements of period 2 or less, the count of period 4 elements, 

and the cyclic subgroups count of group 𝐺. The research provides a detailed 

analysis of the elements and subgroups within the groups in Wall’s Third Family. It 

introduces the concept of the count of words of a particular form having period 2 

or less, denoted as 𝑓(𝑛), and derives an expression for f(n) using the binomial 

theorem. The research then proceeds to calculate the count of period 4 members 

and cyclic subgroups count of the group 𝐺, ultimately leading to the conclusion 

that none of the groups in this family has 𝛼 =
ଷ

ସ
. 

Proposition 6.5 (Cayley, 2021) asserts that Wall’s Fourth Family has no 

groups that have 𝛼 =
ଷ

ସ
, and it is supported by a detailed proof involving the analysis 

of the core groups’ presentation and the determination of the count of elements of 

different orders within the groups. Furthermore, Theorem 6.6 is introduced, which 

holds that if 𝛼(𝐺) =
ଷ

ସ
 and 𝐺 includes a period 8 element, then 𝐷ଵ × 𝐶ଶ

 for 𝑛 ≥ 0. 
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The theorem provides a clear and specific characterization of groups with 𝛼 =
ଷ

ସ
 

and an element of order 8. 

Finally, Proposition 6.7 demonstrates that Miller’s First Family groups 

share a common parameter, 𝛼, which is determined to be 
ଷ

ସ
. This is achieved by 

analysing the structure of the core group, G0, within this family and calculating its 

number of cyclic subgroups and α value based on the orders of its elements. The 

proof provides insight into the uniformity of certain properties across all groups in 

this family. Overall, the research provides a valuable contribution to the study of 

group theory and abstract algebra, offering insights into the classification of groups 

based on the parameter 𝛼 and the structural properties of groups in Miller’s and 

Wall’s families. 

The study by Song and Zhou (2019) also contributes significantly to the 

understanding of finite group theory by establishing a precise criterion for the count 

of cyclic subgroups within a finite group. Through a rigorous analysis, the authors 

demonstrate that G being a finite group exhibits |𝐺| − 3 only if 𝐺 is isomorphic to 

one of the two groups, 𝐷ଵ or 𝑄଼. To achieve the main result the author introduces 

Lemma 2.1. This lemma explains the link between a finite group G’s period and 

count cyclic subgroups. Specifically, it asserts that if G’s order is expressed as a 

product of prime powers, and the number of distinct primes involved exceeds three, 

then the discrepancy between G’s order and the count of its cyclic subgroups 

surpasses the largest prime factor. By employing Theorem 1.5.1 (Song & Zhou, 

2019) and exploiting the properties of prime powers, the proof rigorously deduces 

constraints of the coefficients in the lemma. This deduction process lays the 
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groundwork for subsequent analyses in the research. The second part of the research 

provides information on the period of a group 𝐺 and its cyclic subgroups. It states 

that if the period of 𝐺 is equal to 𝑝𝑞, where 𝑝 and 𝑞 are primes with 𝑝 < 𝑞, then 

the difference between the period of 𝐺 and the count of its cyclic subgroups is 

greater than 𝑞, except for the groups 𝐷ଶ, 𝐶ଷ, 𝐷ଵଶ, 𝐶, or 𝑆ଷ, which have specific 

values for this difference. The analysis of the lemma begins by assuming that the 

difference between a finite group 𝐺’𝑠 period and cyclic subgroup count is less than 

or equal to 𝑞. By Lemma 2.1, it is proved that this presumption results in a paradox.             

The authors then proceed to consider two cases: when 𝑞 ≥ 5 and when 𝑞 = 3 and 

𝑝 = 2. In the case where 𝑞 ≥ 5, the proof shows that 𝐺 possesses just one Sylow 

q-subgroup, which is isomorphic to 𝐶. If 𝑝 ≠ 2, then G has no cyclic subgroups 

of period 4, and if 𝑝 = 2, consequently 𝐺 is structurally equivalent to 𝐷ଶ. In either 

case, the number of 𝐺’𝑠 cyclic subgroups and its period diverge by more than 𝑞. In 

the case where 𝑞 = 3 and 𝑝 = 2, the authors show that 𝐺 has at most 6 nontrivial 

3-elements, and its Sylow 3-subgroup is isomorphic to 𝐶ଷ. 𝐺 is structurally 

equivalent to 𝐶 or 𝐷ଵଶ if 𝐺 contains a cyclic subgroup of period 4. 𝐺 is structurally 

equivalent to 𝐶 or 𝑆ଷ if 𝐺 lacks a cyclic subgroup of period 4. In either case, the 

deviation in the group’s period and the number of cyclic subgroups is equal to either 

1 or 2.  

            The final section of the research addresses groups of period 2 and their 

cyclic subgroups. The authors establish that if what separates the the group’s period 

|𝐺| and the count of its cyclic subgroups is 2 − 3, then 𝐺 is structurally equivalent 

to the quaternion group 𝑄଼. The analysis initiates with the scenario where the 
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exponent of 𝐺 is 4, demonstrating the presence of a normal cyclic subgroup 𝑋 of 

period 4. Subsequently, it shows that the centralizer 𝐶 = 𝐶ீ(𝑋) of 𝑋 is an 

elementary 2-group. The analysis progresses by disproving the possibility of 𝐶 

being non-abelian, leading to the conclusion that 𝐶 must be abelian. Moreover, the 

proof establishes that if 𝐶 is abelian, it must be isomorphic to 𝐶ସ or 𝐶ସ × 𝐶ଶ. By 

examining the potential structures of 𝐶 and utilizing properties of cyclic subgroups, 

it deduces that 𝐶 is isomorphic to 𝐶ସ. Consequently, it concludes that 𝐺 is 

structurally equivalent to the quaternion group 𝑄଼. In summary, the research 

presents Theorem 2.4, which asserts that if the difference between the period of the 

centralizer of group 𝐺 and |𝐺| equals 3, we have 𝐺 being isomorphic to either 𝐷ଵ 

or 𝑄଼. 

The study of finite group theory lies at the junction of several deep 

mathematical questions, with each lead enriching the understanding of the 

underlying structure in these mathematical objects. Of several aspects relating to 

finite groups, the enumeration and classification of cyclic subgroups occupy an 

important place. The central theme of the research by Tarnauceanu and Lazorec 

(2019) is a parameter 𝛼(𝐺), a measure defined within the poset structure of cyclic 

subgroups of a finite group 𝐺. It is just a ratio of the cardinality of the poset of 

cyclic subgroups, denoted by 𝐿ଵ(𝐺), against |𝐺|. When attempting to understand 

the intricate structural details of finite groups, this parameter becomes crucial: 

𝛼(𝐺) =
𝐿ଵ(𝐺)

|𝐺|
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In terms of overview, the study focuses on the nilpotent groups class 𝐶 that are 

finite and with 𝛼(𝐺) =
ଷ

ସ
 , where 𝛼(𝐺) is the ratio of the count of cyclic subgroups 

of a finite group 𝐺 to the count of elements in 𝐺 (Dillstrom, 2016). They show that 

if a 2-group is in this class, then it satisfies certain requirements. Additionally, the 

authors examine the inclusion of various classes of finite groups in the class 𝐶. The 

paper builds upon previous work in the field, such as the study by Garonzi and 

Lima (2018) which classified all groups with 𝛼(𝐺) >
ଷ

ସ
 using a computational 

analysis (Cayley, 2021). The author also reference other works on finite groups and 

their cyclic subgroups, such as the paper by Song and Zhou (2019), which describes 

the finite groups with |𝐺| − 3 cyclic subgroups. As the study unfolds, the research 

extends its inquiry into the inclusion (’appartenance’) of various classes of finite 

groups to the defined class 𝐶. This exploration broadens the scope of the study, 

connecting it with existing classifications and shedding light on the interplay 

between group properties and the prescribed conditions for 𝛼(𝐺).  

           The research conducted by Tarnauceanu and Lazorec (2019) investigates the 

properties of finite abelian groups within a specific class denoted as 𝐶. The study 

focuses on understanding the structural characteristics of these groups, providing 

essential lemmas and theorems to establish a comprehensive framework. The 

primary aim is to identify and describe the finite abelian groups belonging to 𝐶. In 

their work, the authors also introduces crucial concepts, such as p-groups of 

exponent 𝑝 and the count of cyclic subgroups of period 𝑝, denoted as 𝑛(𝐺). 

The researchers lay the foundation by formulating the objective of finding abelian 

groups within the defined class 𝐶. They consider 𝐺 as a finite p-group with size or 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



47 
 

period 𝑝 and express Lemma 2.1 as follows in their paper. Then𝛼(𝐺) ≤ 𝛼(ℤ). 

In the same way, Lemma 2.2 looked at 𝐺 being a finite p-group of period 𝑝 where 

𝑝 is an odd prime number and 𝛼(𝐺) <
ଷ

ସ
 . These two pivotal lemmas, namely 

Lemma 2.1 and Lemma 2.2, have a significant impact on the subsequent 

development of the theorems. Lemma 2.1 establishes an inequality relating the 

alpha function of a finite p-group to that of the cyclic group ℤ. The proof involves 

a meticulous manipulation of the period of the group and the count of cyclic 

subgroups. Lemma 2.2, on the other hand, defines an upper bound on the alpha 

function for finite p-groups of period 𝑝, demonstrating that alpha of 𝐺 is always 

less than 
ଷ

ସ
. The following theorems were then established, that is Theorem 2.3 

where ℤଶ
 × ℤସ is the single finite abelian group included in 𝐶, given that 𝑛 ∈ ℕ. 

Then, Theorem 2.4 on 𝐺 ≅ ℤభ × ℤమ × ⋯ × ℤೖ , where 1 ≤ 𝑑ଵ ≤ 𝑑ଶ ≤ ⋯ ≤

𝑑 and 𝑝 is a prime number. This leads to the total count of cyclic subgroups of 𝐺 

being: 

1 +
1

𝑝 − 1
 𝑝ௗబାௗభା⋯ାௗ

ିଶ

ୀ

𝑝ି − 1

𝑝ିିଵ − 1
൫𝑝(ିିଵ)ௗశభ − 𝑝(ିିଵ)ௗ൯

+ (𝑑 − 𝑑ିଵ)𝑝ௗబାௗభା⋯ାௗషభ 

Theorems 2.3 and 2.4 form the core contributions of the study. Theorem 2.3 

rigorously characterizes the finite abelian groups in 𝐶, revealing that the only 

groups satisfying the specified conditions are ℤଶ
 × ℤସ, where 𝑛 belongs to the set 

of natural numbers. This result is derived through a meticulous analysis of alpha 

functions and the distinct properties of abelian p-groups. The formulation of 

Theorem 2.4 introduces an explicit formula for computing in any finite abelian p-
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group, the total count of cyclic subgroups. This formula, involving 𝑔
(𝑖) and a 

comprehensive summation, not only contributes to the study’s objectives but also 

offers a valuable tool for further investigations. The principal finding that explains 

the characteristics of the groups that are a part of 𝐶 is established in Theorem 2.6. 

Theorem 2.6. Given 𝐺 ∈ 𝐶. 𝐺 is a 2-group such that 𝐺′ = 𝛷(𝐺) or 𝑛 ∈ ℕ where 

𝐺/𝐺′ ≅ ℤଶ
 × ℤସ  and 𝐺′ is elementary abelian. In Theorem 2.6, the structural 

characteristics of groups in 𝐶 are outlined. The proof utilizes the finite nilpotent 

nature of these groups and establishes the circumstances in which a group in 𝐶 is a 

2-group with specific properties. The following cases are established: 

 If 𝛼(𝐺/𝐺′) > 3/4, then 𝐺/𝐺′ is structurally equivalent to a group that 

Theorem 5 provides (Garonzi & Lima, 2018). 

 As a consequence of Theorem 2.3, we have 𝐺/𝐺′ ≅ ℤଶ
 × ℤସ, when 

𝛼(𝐺/𝐺′) = 3/4 

In case one, due to 𝐺/𝐺′ being abelian, the only valid option from the 

classification is 𝐺/𝐺′ ≅ ℤଶ
, where the integer 𝑛 is positive. This suggests that the 

centre of 𝐺, represented by 𝛺(𝐺), contains the derived subgroup 𝐺′, leading to the 

deduction that 𝛺(𝐺) ⊆ 𝐺′. The reverse containment is asserted to be prominent, 

resulting in the equality 𝐺′ =  𝛺(𝐺). In case 2, the alpha function values for 𝐺 and 

𝐺/𝐺′ are equal: 𝛼(𝐺) = 𝛼(𝐺/𝐺′). The conclusion drawn from this equality is that 

the derived subgroup 𝐺′ forms elementary abelian group of period 2. 

     The final section of their research focuses on other classes of finite 2-groups 

and connections between 𝐶 such as generalized dicyclic 2-groups, (almost) 

extraspecial 2-groups, 2-groups possessing a cyclic maximal subgroup, and 
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generalized dihedral 2-groups. In Proposition 3.1, they let 𝑛 ≥ 2 be an integer 

which is positive and let 𝐺 be a 2-group with 𝑒𝑥𝑝(𝐺) = 4 and a period of 2. 

Consequently, 𝐺 ∈ 𝐶 only when 𝐼(𝐺) = 2(ିଵ) − 1. Thus, Proposition 3.1 provides 

the required and sufficient condition for a 2-group to be a member of class 𝐶 based 

on its order and its involution count. Specifically, for a 2-group 𝐺 of period 2 with 

exponent 𝑒𝑥𝑝(𝐺) = 4, the group belongs to class 𝐶 only when the number of 

involutions, 𝐼(𝐺), equals 2(ିଵ) − 1. Additionally, the researchers contextualize 

the result within the broader framework of existing literature in Miller (1920) 

highlighting its relevance and significance in advancing the understanding 

characterization of finite 2-groups. This proposition extends its characterization to 

exponent 4, of all classes of finite 2-groups, including extraspecial and almost 

extraspecial groups. The study involves theoretical elements pertaining to group 

central products. The connection between internal and external central products is 

established, as provided for by Theorem 3.4 (Lewis et al., 2018). Moreover, 

according to Theorem 2.3 (Bouc & Mazza, 2004), 

 Assuming 𝐺 to be an extraspecial 2-group, r represents a positive integer in 

which |𝐺| =  2(ଶାଵ) and 𝐺 ≅ 𝐷଼
() or 𝐺 ≅ 𝑄଼ × 𝐷଼

(ିଵ) occur. 

 When |𝐺| =  2(ଶାଶ) and 𝐺 ≅ 𝐷଼
()

× 𝑍ସ are almost extraspecial 2- groups, 

𝑟 is a positive integer. 

     The theoretical aspects related to extraspecial and almost extraspecial 2-

groups are explored, thereby showcasing their structures and connections with 𝐶. 

Lemma 3.2 (Tarnauceanu & Lazorec, 2019) provides an expression for the count 

of cyclic subgroups of period 2 in these groups. Theorem 3.3 of the same research 
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establishes that, among extraspecial 2-groups, none belongs to 𝐶, while any almost 

extraspecial 2-group is a member of 𝐶. Similarly, in Theorem 3.4, the classification 

of 𝐶 contains generalized dicyclic 2-groups reveals that they are structurally 

equivalent to abelian groups within 𝐶. Thus, the theorem posits that within the 

designated class 𝐶 of groups, the only generalized dicyclic 2-groups are those 

isomorphic to ℤଶ
 × ℤସ, where the integer 𝑛 is non-negative. The proof initiates by 

considering 𝑛 ≥ 2 and an abelian group 𝐴 with period 2(ିଵ). This group serves as 

the foundation for constructing the dicyclic extension 𝐷𝑖𝑐ଶ(𝐴), which includes 𝐴 

alongside additional elements such as 𝛾, possessing an order of 4 and commuting 

with all elements of 𝐴.  

           Proceeding further, the proof demonstrates the presence of additional cyclic 

subgroups within the subgroup lattice of 𝐷𝑖𝑐ଶ(𝐴), beyond those inherent to 𝐴. By 

hypothetically introducing another cyclic subgroup 𝐻 within 𝐷𝑖𝑐ଶ(𝐴), a 

contradiction arises, leading to the conclusion that the subgroup count in 𝐷𝑖𝑐ଶ(𝐴) 

is 

|𝐿ଵ(𝐷𝑖𝑐ଶ(𝐴))| = |𝐿ଵ(𝐴)|  +  2(ିଶ). 

Upon assuming that 𝐷𝑖𝑐ଶ(𝐴) belongs to class 𝐶, the equation 𝛼(𝐷𝑖𝑐ଶ(𝐴)) =
ଷ

ସ
 

emerges, yielding |𝐿ଵ(𝐴)|  = 2(ିଵ). Consequently, finite abelian groups 𝐴 for 

which |𝐴| = |𝐿ଵ(𝐴)|  = 2(ିଵ) hold are identified. Moreover, conditions 

elucidating the structure of 𝐴 with 𝑒𝑥𝑝(𝐴) = 2 are established, leading to the 

deduction that 𝐴, an abelian 2-group, has exponent 2 and period 2ିଵ. This insight 

culminates in the confirmation of the isomorphism 𝐷𝑖𝑐ଶ(𝐴) ≅ 𝑍ଶ
(ିଶ)

× 𝑍ସ for 
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every 𝑛 ∈ 𝑁, affirming the inclusion of the abelian 2-groups 𝑍ଶ
(ିଶ)

× 𝑍ସ within 

class 𝐶. Brown (2010) presents more characteristics of dihedralization of several 

finite abelian groups as well as generalized dihedral groups. The authors then 

present Lemma 3.5, to determine which 𝐶 generalized dihedral 2-groups are 

contained in. The lemma establishes categorization of finite abelian 2-groups with 

the parameter 𝛼(𝐺) equal to 
ଵ

ଶ
. The rationale behind using Lemma 3.5 is to establish 

a criterion for identifying the abelian 2-groups that meet the conditions necessary 

to belong to the class 𝐶 by characterizing the structure of these groups based on 

their value of 𝛼(𝐺). This subsequently leads to drawing upon Theorem 4.3 

presented in Tárnáuceanu (2010) to ascertain the quantities, respectively period 2 

and 8 cyclic subgroups, within the abelian 2-group 𝐺. These quantities, denoted as 

𝑛ଶ(𝐺) and 𝑛଼(𝐺), are expressed as functions dependent on parameters 𝑛, 𝑎, and 𝑏, 

as detailed as follows: 

𝑛ଶ(𝐺) = 2ାା − 1 

𝑛଼(𝐺) = 2ାଶାଶିଶ(2  −  1). 

Utilizing these expressions, the analysis proceeds to establish the relationship 

1 + 𝑛ଶ(𝐺) = 2𝑛଼(𝐺) 

which is pivotal in determining the values of a and b that satisfy this equation. 

Ultimately, it concludes that 𝑎 = 0 and 𝑏 = 1, thereby establishing the 

isomorphism 𝐺 ≅ ℤଶ
 × ℤ଼. Conversely, it asserts that if 𝐺 is isomorphic ℤଶ

 × ℤ଼, 

where 𝑛 ∈ ℕ, then 

𝛼(𝐺) = 𝛼(ℤଶ
 × ℤ଼) = 𝛼(ℤ଼) =

1

2
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thereby completing the proof. The study further investigates the relationship 

between the class 𝐶 and the set of finite generalized dihedral 2-groups, culminating 

in Theorem 3.6, which asserts that 𝐶 contains only certain types of finite 

generalized dihedral 2-groups. Specifically, the theorem concludes that such groups 

are structurally equivalent to ℤଶ
 × 𝐷ଵ, with 𝑛 ∈ ℕ. The proof methodically 

demonstrates that if 𝐷(𝐺) is in 𝐶, then 𝐺 ought to be a finite abelian 2-group with 

certain properties. Specifically, 𝐺 is isomorphic to ℤଶ
 × ℤ଼, as established by 

Lemma 3.5. Using Theorem 5.1 from Brown (2010), the isomorphism between 

𝐷(𝐺) and ℤଶ
 × 𝐷(ℤ଼) is derived, ultimately leading to the conclusion that 𝐷(𝐺) is 

isomorphic to ℤଶ
 × 𝐷ଵ. Conversely, it is demonstrated that if 𝐺 is isomorphic to 

ℤଶ
 × 𝐷ଵ, then 𝐷(𝐺) belongs to 𝐶. This reciprocal relationship solidifies the 

correlation between class 𝐶 structurally equivalent to ℤଶ
 × 𝐷ଵ and the set of finite 

generalized dihedral 2-groups.  

           Finally, the connection between the set of finite 2-groups with a cyclic 

maximal subgroup and the class 𝐶 are described in Theorem 3.7 of the same paper. 

Theorem 3.7 is motivated by a membership analysis of non-abelian 2-groups in 

class 𝐶 with cyclic maximal subgroups. Initially, attention is directed towards finite 

2-groups with a cyclic maximal subgroup, excluding type ℤଶ × ℤଶషభ  abelian 

groups. These abelian groups, according to Theorem 2.3, are elements of 𝐶 solely 

when 𝑛 = 3. Therefore, the focus shifts to investigating the inclusion of non-

abelian 2-groups with cyclic maximal subgroups in 𝐶. Theorem 4.1 from Suzuki 

(1986) offers a comprehensive categorization of such non-abelian 2-groups, listing 

the modular 2-group 𝑀(2), dihedral group 𝐷ଶ, generalized quaternion group 
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𝑄ଶ, and quasi-dihedral group 𝑆ଶ. By examining the count of cyclic subgroups of 

each group, denoted as |𝐿ଵ(𝐺)|, and solving the equation 𝛼(𝐺) =
ଷ

ସ
 over positive 

integers, the conditions under which these groups belong to 𝐶 are determined. In 

T�́�rn�́�uceanu and Toth (2015), the count of each of these groups’ cyclic subgroups 

is referenced. The paper concludes by highlighting the significance of 𝐷ଵ as the 

sole finite generalized dihedral 2-group and the lone finite non-abelian 2-group with 

a cyclic maximal subgroup in 𝐶, barring direct factors of type ℤଶ
, where 𝑛 ≥ 1. 

The paper also suggests an alternative proof of Theorem 2.3 using a one-to-one 

mapping 𝛼 from the class of finite abelian p-groups.  

The research paper (Garonzi & Lima, 2018) titled ‘On the number of cyclic 

subgroups of a finite group’, the paper discusses the function 𝛼(𝐺) =
ୡ(ୋ)

|ୋ|
  and its 

properties. The author, like Tárnáuceanu (2015), explore the basic properties of this 

function and relate to the probability of commutation. The paper aims to 

characterize groups 𝐺 belonging to certain families 𝐹 where 𝛼(𝐺) is maximal and 

the classification where𝛼(𝐺) >
ଷ

ସ
. This suggests that the authors are interested in 

understanding the distribution of cyclic subgroups within finite groups and 

identifying patterns or extremal cases. In order to arrive at an asymptotic solution, 

the author additionally examine the cyclic subgroups count arising from the direct 

product 𝐺. This implies that they are investigating the behavior of 𝛼(𝐺) as the group 

𝐺 grows in size or as it is raised to a higher power. The paper also addresses when 

𝛼(𝐺) = 𝛼(𝐺/𝑁) provided 𝐺/𝑁 constitutes a symmetric group. This brings to bear 

the authors’ intention of examining the relationship between the function 𝛼(𝐺) and 
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the structure of the quotient group 𝐺/𝑁. The study discusses the concept of the 

commuting probability (𝑐𝑝) in 𝐺, noted it as the ratio of the count of commuting 

pairs of elements to the total possible pairs in 𝐺. It relates this probability in terms 

of conjugacy classes count of 𝐺, which has been extensively studied by various 

authors, with particular reference to Guralnick and Robinson (2006). The authors 

then present Lemma 1 and Lemma 2, (Brauer & Fowler, 1955), connecting the size 

of the elements contained in 𝐺 that square to the identity (represented as 𝐼(𝐺)) with 

the count of conjugacy classes and the commuting probability. This lemma 

establishes an inequality indicating that if the ratio of cyclic subgroups to the group 

order (𝛼(𝐺)) is larger than or equivalent to 
ଵ

ଶ
, then the commuting probability is 

bounded from below. Further results (Guralnick & Robinson, 2006) are introduced, 

providing bounds on the commuting probability based on properties of solvable and 

non-solvable groups. These results elucidate that if 𝛼(𝐺) exceeds 
ଵ

ଶ
, then certain 

index relations involving the maximal normal solvable subgroup or the Fitting 

subgroup of 𝐺 hold. The rationale behind this presentation lies in elucidating 

relationships between various group-theoretic quantities, such as conjugacy classes, 

cyclic subgroups, and commuting probabilities. These relationships help in 

understanding the structural properties of groups and provide bounds or constraints 

on certain group-theoretic parameters based on others, thus contributing to a deeper 

understanding of group theory and its applications.  

            The authors then present Theorem 4 of the research that establishes a 

relationship between the ratio of cyclic subgroups to group order (𝛼(𝐺)) in a finite 

non-solvable group G and the corresponding ratio in the symmetric group of degree 
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𝑆ହ. Stating in specifics, 𝛼(𝐺) is bounded by 𝛼(𝑆ହ), with equality holding only when 

𝐺 is structurally equivalent to a direct product of 𝑆ହ and a cyclic group of period 2 

raised to some power. The reason behind the theorem lies in the scrutiny of structure 

of finite non-solvable groups and their relation to the symmetric group 𝑆ହ. The 

proof involves demonstrating that if 𝛼(𝐺) exceeds a certain threshold, then 𝐺 must 

possess a specific structural form. This is achieved through a series of deductions 

and considerations, including the analysis of minimal normal subgroups and the 

computation of ratios involving group orders. Furthermore, computational 

methods, such as those provided by Leemans and Vauthier (2006) and Group 

(2018), are utilized to verify the theorem’s implications for groups of manageable 

sizes. The results confirm that the only finite non-solvable group satisfying the 

given conditions is indeed isomorphic to 𝑆ହ. Additionally, the corollary derived 

from the theorems provides further insights by establishing constraints on the 

structure of groups with 𝛼(𝐺) exceeding 𝛼(𝑆ହ), indicating their solvability and 

bounding the index of their Fitting subgroup. 

The next section of the research (Garonzi & Lima, 2018) investigates 

groups with a ‘large’ value of 𝛼(𝐺), specifically focusing on groups where 𝛼(𝐺) 

exceeds 
ଷ

ସ
. This threshold is chosen because the set of values of 𝛼(𝐺) signifies the 

largest non-trivial accumulation point. The rationale behind this choice is to 

understand the structural properties of groups exhibiting high ratios of cyclic 

subgroups to group order. To classify these groups, the approach involves 

recognizing that if 𝛼(𝐺) is greater than 
ଷ

ସ
, then the ratio of the size of the set of 

elements in 𝐺 that square to the identity (𝐼(𝐺)) to the group order (|𝐺|) must 
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exceed 
ଵ

ଶ
. This observation allows for the utilization of Wall’s classification 

theorem, outlined in Wall (1970) Section 7, which provides a systematic method 

for categorizing finite groups based on their properties and structural 

characteristics. Garonzi and Lima (2018) established a theorem (Theorem 5) where 

it is summarized as 𝛼(𝑋) >
ଷ

ସ
 with 𝑋 being a group. If 𝐺 lacks 𝐶ଶ as a direct factor, 

𝐺 is either trivial (leading to 𝛼(𝑋) = 1), or 𝑋 is constructed by the direct product 

of an elementary abelian 2-group with 𝐺, resulting in 𝛼(𝑋) = 𝛼(𝐺), or one of 

these possibilities arises: 

 Case I. Assume 𝐺 ≅ 𝐴 ⋊ ⟨𝜖⟩, with ⟨𝜖⟩ = 𝐶ଶ acting on 𝐴 via inversion, and 

an integer 𝑛 ≥ 1 such that one of these cases applies: 

 𝐴 = 𝐶ଷ, 𝛼(𝐺) =
ଷ∙ଷାଵ

ସ∙ଷ
. 

 𝐴 = 𝐶ସ , 𝛼(𝐺) =
ଷ∙ଶାଵ

ସ∙ଶ
. 

 Case II. 𝐺 ≅ 𝐷଼ × 𝐷଼ and 𝛼(𝐺) =
ଶହ

ଷଶ
. 

 Case III. 𝐺 is a quotient 𝐷଼ೝ/𝑁 where 𝑁 = {(𝑎ଵ, . . . , 𝑎) ∈

𝑍(𝐷଼) |𝑎ଵ, . . . , 𝑎 = 1} and 𝛼(𝐺) =
ଷ∙ଶೝାଵ

ସ∙ଶೝ
. 

 Case IV. Suppose 𝐺 is structured as 𝑉 ⋊ ⟨𝑐⟩, with 𝑉 = 𝐹ଶమೝ  defined by the 

basis {𝑥ଵ, 𝑦ଵ, . . . , 𝑥 , 𝑦}, and 𝑐, an element of period 2, acts trivially on 𝑦 

and satisfies 𝑥
 = 𝑐𝑥 for each 𝑖 where 𝛼(𝐺) =

ଷ∙ଶೝାଵ

ସ∙ଶೝ
 

The proof of Theorem 5 (Garonzi & Lima, 2018) expands on and broadens the 

previously known findings in (T�́�rn�́�uceanu, 2015). 
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In line with research that provides valuable insights into the structural 

properties of finite groups containing a predetermined count of cyclic subgroups, 

T�́�rn�́�uceanu (2016) works on a partial solution to an open problem posed in 

T�́�rn�́�uceanu (2015). Specifically, the research by T�́�rn�́�uceanu (2016) describes 

finite groups 𝐺 that have cyclic subgroups satisfying |𝐺| − 2. The introduction 

section of the research outlines fundamental results in group theory and highlights 

the main theorem established in T�́�rn�́�uceanu (2015), which identifies specific 

groups where the cyclic subgroups count equals the period of the group minus one. 

Building upon this, the research to extend this study by investigating finite groups 

𝐺 that the cyclic subgroups count satisfies the condition |𝐶(𝐺)| = |𝐺| − 2. 

Additionally, the research notes that some finite groups with small orders, including 

ℤ, ℤଶ × ℤସ, 𝐷ଵଶ, and ℤଶ × 𝐷଼, demonstrate this characteristic. Theorem 1 of 

T�́�rn�́�uceanu (2016) provides a comprehensive analysis of finite group structure 𝐺 

where |𝐶(𝐺)| = |𝐺| − 2. Analytical method employed mirrors that of Theorem 2 

in T�́�rn�́�uceanu (2015). The proof begins by assuming |𝐶(𝐺)| = |𝐺| − 2 for |𝐺| =

𝑛 and proceeds by analysing the positive 𝑛 divisors. By considering the count ni of 

cyclic subgroups of order 𝑑 within 𝐶(𝐺), the equation ∑ 𝑛  𝜙(𝑑)

ୀଵ = 𝑛 is 

established. Given |𝐶(𝐺)| = 𝑛 − 2, the equation ∑ 𝑛( 𝜙(𝑑) − 1)
ୀଵ = 2 is 

derived, leading to two distinct cases for further examination. 

In Case 1, since 𝑛బ
൫ 𝜙(𝑑బ

) − 1൯ = 2  and 𝑛( 𝜙(𝑑) − 1) = 0 for every 

𝑖 ≠ 𝑖, there exists 𝑖 ∈ {1, 2, . . . , 𝑘}. It is established that 𝑛బ
= 2 and 𝜙(𝑑బ

) = 2, 

thus 𝑑బ
∈ {3, 4, 6}. It is deduced that 𝑑బ

≠ 6 and 𝑑బ
≠ 3. Consequently, 𝑑బ

= 4, 

implying 𝐺 is a 2-group with exactly two period 4 cyclic subgroups. Further 
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analysis shows that for 𝑚 = 3, ℤଶ × ℤସ is the only group satisfying |𝐶(𝐺)| = |𝐺| −

2. Again, for 𝑚 ≥ 4, by referencing Theorems 5.2 and 5.1 and Proposition 1.4 of 

Janko (2005), it is inferred that 𝐺 is isomorphic to specific groups listed, none of 

which satisfy |𝐶(𝐺)| = |𝐺| − 2 except for ℤଶ  ×  𝐷଼. 

In Case 2, the examination extends to situations where two distinct divisors 

𝑑భ
 and  𝑑మ

 each contribute exactly one cyclic subgroup while all others yield none. 

Specifically, there exist 𝑖ଵ, 𝑖ଶ ∈ {1, 2, . . . , 𝑘}, 𝑖ଵ ≠ 𝑖ଶ, where 𝑛భ
൫ 𝜙(𝑑భ

) − 1൯ = 1 

and 𝑛మ
൫ 𝜙(𝑑మ

) − 1൯ = 1 and 𝑛( 𝜙(𝑑) − 1) = 0 for all 𝑖 ≠ 𝑖ଵ, 𝑖ଶ. It is established 

that 𝑛భ
= 𝑛మ

= 1 and  𝜙(𝑑భ
) =  𝜙(𝑑మ

) = 2, thus 𝑑భ
, 𝑑మ

∈ {3, 4, 6}. Further 

analysis follows that if 𝑑మ
= 4, then 𝑑భ

= 3, leading to 𝐺 containing period 3 and 

4 normal cyclic subgroups, resulting in a contradiction. Also, if 𝑑మ
= 6, then 𝑑భ

=

3. It is deduced that 𝐺 requires a Sylow 3-subgroup to be cyclic. Further analysis 

and deductions are made based on the value of 𝑛ଶ. Based on the derived 

possibilities for 𝑛ଶ, a conclusion that 𝐺 is structurally equivalent to specific groups, 

none of which satisfy |𝐶(𝐺)| = |𝐺| − 2 except for ℤ and 𝐷ଵଶ. Reference to Isaacs 

(2008) is made support the analysis regarding the count of subgroups of prime 

period 𝑝 in 𝐺. The research significantly advances the understanding of finite group 

theory. 

Within the study by Dillstrom (2016), the focus is on cataloging the count 

of unique cyclic subgroups within a finite group 𝐺. The paper highlights that despite 

its importance, this topic has received relatively little attention in existing literature. 

The subgroups’ cyclic structure within a finite group is shown to be constrained by 

various factors, such as Cauchy’s Theorem, which defines a natural lower bound 
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for evaluating cyclic subgroups count. The research contributes by establishing 

characterizations for different values cyclic subgroups count (|𝐶(𝐺)| = 𝑘) ranging 

from 1 to 4. It also delves into the specific cases of dihedral groups and elementary 

abelian p-groups. Furthermore, the study shows alternative approach for situations 

where the count of cyclic subgroups is the same as the group’s order minus a 

constant 𝑘, with k being 0 or 1. Of particular note is the characterization of the case 

where 𝑘 = 2, which addresses an open problem previously posed by T�́�rn�́�uceanu 

(2016). In Remark 4.3, Dillstrom (2016) referenced T�́�rn�́�uceanu (2016) work, 

indicating period 𝑛 of 𝐺 with 𝑑ଵ, 𝑑ଶ, . . . , 𝑑 being 𝑛’𝑠 positive divisors. For each 

𝑖 ∈ {1, 2, . . . , 𝑘}, set 𝑛 = |{𝐻 ∈ 𝐶(𝐺)||𝐻| = 𝑑}|, then ∑ 𝑛 𝜙(𝑑)

ୀଵ = 𝑛 and 

𝜙(𝑥) denote Euler’s phi function. T˘arn˘auceanu (2015). However, the paper also 

acknowledges the complexity of the 𝑘 = 2 problem, suggesting that further 

investigation may require a more robust approach than the one outlined in Remark 

4.3 of T�́�rnauce�́�nu’s article, which provides a criterion for determining which 

cases to consider when the count of cyclic subgroups is relatively large compared 

to the group order. In pursuit of the overarching goals outlined in Dillstrom (2016) 

research, the author initiates the investigation by examining the subgroup structure 

of finite groups, with a specific emphasis on groups of period less than or equal to 

10. The author utilizes these smaller groups as a foundational framework for 

analysing the subgroup compositions of larger groups within related families.  

            The presentation includes a tabulated summary, as illustrated in Table 2, 

detailing the distribution of small order groups up to isomorphism. Table 2 provides 

a concise overview, delineating the number of groups and their corresponding 
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isomorphism types for each order. Noteworthy observations arise, highlighting the 

prevalence of cyclic, dihedral, and direct product groups within this constrained 

domain, while also identifying the quaternion group 𝑄଼ as a notable exception. 

Through, these initial observations, Dillstrom (2016) sets forth clear objectives for 

the investigation. The primary aim is to characterize the count of cyclic subgroups 

for groups of varying types and orders, particularly focusing on those exhibiting a 

limited count of cyclic subgroups, up to four. By conducting manual calculations, 

the study records the cardinality of cyclic subgroups (|𝐶(𝐺)|) for each of these 

small-order groups, elucidating notable arithmetic relationships between these 

values and the order of the groups (|𝐺|). These observations are succinctly captured 

and presented in Table 1, which serves as a comprehensive record of the calculated 

values and their corresponding notes.  

            In furthering the discourse initiated by Dillstrom (2016) on finite groups 

that have many cyclic subgroups relative to their size, the research presents an 

alternative proof aimed at characterizing finite groups 𝐺 satisfying the condition 

|𝐶(𝐺)| = |𝐺| − 1. This endeavor builds upon existing frameworks, particularly 

drawing from T�́�rn�́�uceanu (2016) methodology up to a certain juncture in the 

argumentative process. The author also provides alternative proofs to characterize 

other finite groups as proved by other authors. The author specifically worked on a 

finite group having the characterization |𝐶(𝐺)| = |𝐺| − 1 being true when 𝐺 

belongs to 𝐶ଷ, 𝐶ସ, 𝑆ଷ, or 𝐷଼ (see workings in Dillstrom (2016)). Again, solution to 

the subsequent groups: 𝐶ସ × 𝐶ଶ, 𝐶ଶ × 𝐷଼, 𝐶, or 𝐷ଵଶ as having |𝐶(𝐺)| = |𝐺| − 2 

were provided (see proof in Dillstrom (2016)). Dillstrom (2016) research not only 
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expands the existing body of knowledge within finite group theory but also fosters 

a spirit of intellectual inquiry and innovation. This endeavor underscores the 

dynamic and collaborative nature of mathematical inquiry, wherein researchers 

build upon each other’s work to collectively advance the frontiers of knowledge. 

Through the exploration of divergent proof techniques and analytical approaches, 

the study contributes to the ongoing discourse surrounding subgroup structure 

characterization in finite groups, enriching the theoretical landscape with nuanced 

perspectives and novel methodologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



62 
 

CHAPTER THREE 

METHODOLOGY 

Introduction 

In this chapter we describe and elaborate on the methods, theorems and 

procedures employed in analysing and obtaining the results of the conjecture and 

other complex open problem concerning finite groups and their properties. The 

main research objective revolves around determining the structural characteristics 

and intrinsic properties of finite groups exhibiting specific alpha invariants of  
ଷ

ସ
  

and discerning their nilpotency conditions. This chapter expounds upon the 

systematic approach applied to unveil solutions and findings that are explained in 

subsequent chapters.  

To establish the requisite theoretical groundwork for objective one, we 

begin with a comprehensive grasp of important concepts and theorems 

underpinning our research analysis. The following foundational concepts are 

instrumental in our study: 

Subgroup Count 

To ensure that we list all the subgroup within group 𝐺, the subsequent 

systematic approach is utilized: 

 Group Order: We start by considering subgroups with periods that are 

factors of the group’s order. 

 Trivial Subgroups: These are always subgroups of any group. 

 Cyclic Subgroups: We test if any elements belonging to the group can 

generate cyclic subgroups. 
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 Pairs of Elements: We explore subgroups generated by pairs of elements. 

 Normal Subgroups: Determine if any of the subgroups are normal 

subgroups, which may lead to additional subgroups known as quotient 

groups. 

 Sylow Subgroups: We also employ Sylow theory to analyze subgroups of 

specific orders and determine if there are additional subgroups. 

 Group theory Software: To confirm our steps, we employ group theory 

software, GAP (Groups, Algorithms, and Programming), to calculate 

subgroups automatically. 

Characterizing non-nilpotent groups with specific alpha value 

            The first objective of our research aims to solve an open problem regarding 

the requirements for 𝐺, finite-ordered, with a specific structure having 𝛼(𝐺) =
ଷ

ସ
. 

The problem is investigated through a structured approach, beginning with the 

construction of the general form of such a group, then with an exploration of its 

subgroup structure, particularly focusing on cyclic subgroups and the implications 

for nilpotency. 

Constructing the General Form of 𝑮: We start by considering a finite group 𝐺 

that possesses 𝛼(𝐺) =
ଷ

ସ
. By applying Theorem 33, which asserts that subgroup’s 

order must divide |𝐺|, we derive the relationship between cyclic subgroups count 

𝐶(𝐺) and |𝐺|: 

4

3
∙ 𝐶(𝐺) = |𝐺| 

Given that |𝐺| is finite, it emerges that 
ସ

ଷ
∙ 𝐶(𝐺) must be an integer. Consequently, 
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𝐶(𝐺) must be divisible by 3. 

Analysing G’s structure: Explore the composition of group 𝐺 under the condition 

that 𝐶(𝐺), the count of cyclic subgroups including the trivial subgroup, is a multiple 

of 3. Assume |𝐺| has p as a prime divisor. By Theorem 35, an element 𝑝 being the 

period must exist in 𝐺 which consequently implies, cyclic subgroup of period 𝑝 

exists. Therefore, the count of cyclic subgroups 𝐶(𝐺) must be at least 𝑝 + 1, 

considering each cyclic subgroup contributing one subgroup, including the trivial 

one. Extending this reasoning gives the expression: 

1 + (2 + 1) + (3 + 1) +  ⋯ +  (𝑝 + 1) 

This summation simplifies to a quadratic expression, which, by extension, must 

satisfy: 

𝑝ଶ + 3𝑝 + 2

2
= 3𝑘 

where 𝑘 is an integer. This condition restricts 𝑝 to being either an odd prime or 2, 

leading to the general form: 

|𝐺| = 2 × 3 × 𝑝ଵ × 𝑝ଶ ×  ⋯ × 𝑝 

with non-negative integers 𝑎 and 𝑏 and 𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝 distinct odd primes. 

Verifying Subgroup Structure: The factors 2, 3 , 𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝 represent the 

possible orders of subgroups of 𝐺. By Theorem 36, 𝐺 has Sylow subgroups 

𝑃, 𝑄, 𝑅, 𝑆ଶ, . . . , 𝑆 corresponding to the orders 2 , 3 , 𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝 respectively. To 

confirm that any H subgroup of G has period 2 × 3 × 𝑝ଵ × 𝑝ଶ ×  ⋯ × 𝑝, we 

apply the direct product theorem, demonstrating that: 

|𝐻| = |𝑃| × |𝑄| × |𝑅| × |𝑆ଶ| × ⋯ × |𝑆| 
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Since each Sylow p-subgroup’s order divides |𝐺|, Consequently |𝐻| divides the 

group’s order, and 𝐻 has the desired structure, thereby confirming isomorphism to 

the direct product of the Sylow subgroups. 

Nilpotency: We conclude the first part of the proof by exploring the non-nilpotency 

of 𝐺 using Theorem 45. Assuming, by contradiction, that 𝐺 is nilpotent, we argue 

that 𝐺 would have a lower central series with abelian factor groups. However, the 

presence of a minimal normal subgroup 𝑃𝑄, which is abelian and a product of 

Sylow subgroups, leads to a contradiction. This demonstrates that 𝐺, given its 

specific structure, cannot be nilpotent. 

The second part of the proof utilizes a series of logical deductions based on 

established group theoretical principles, Sylow’s theorems, and properties of 

nilpotent groups to analyze the given group structure. We start with the group 𝐺 ≅

𝐷ଶସ × 𝐶ଶ. The researcher’s primary goal is to determine the parameter 𝛼(𝐺) and 

identify specific instances when 𝐺 simplifies to either 𝐷ଶସ or 𝐷ଶସ × 𝐶ଶ. The 

calculation of 𝛼(𝐺) follows the equation: 

𝛼(𝐺) =
𝐶(𝐷ଶସ) ∙ 𝐶(𝐶ଶ)

|𝐷ଶସ| ∙ |𝐶ଶ|
 

This simplification implies that 𝑛 must be either 0 or 1, leading to 𝐺 being either 

𝐷ଶସ or 𝐷ଶସ × 𝐶ଶ. Next, we apply Lemma 4 concerning the dihedral group 𝐷ଶ, 

where we are able to establish the subgroup 𝐶 = ⟨𝑟⟩ is period 𝑛 cyclic because 

𝑟 = 𝑒 implies |𝑟| = 𝑛. Thus, 𝐶 is a cyclic subgroup of 𝐷ଶ. We also employ 

Lemma 5, which facilitates the process of creating subgroups inside a group’s direct 

product. Now, by the implication on non-nilpotent subgroups, we employ Theorem 

46 and use the proof by contradiction, assuming that 𝐺 is nilpotent and subgroup 𝐻 
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is not, leading to a contradiction through the properties of the lower central series 

and commutator subgroups, thereby proving that a non-nilpotent subgroup implies 

the non-nilpotency of the group. By extension, 𝐷ଶସ is within the group 𝐷ଶସ × 𝐶ଶ 

and, utilizing Lemma 4, we note that 𝐷ଶସ contains subgroup that is cyclic of period 

12 generated by a rotation element, and so 

𝐻 = ⟨𝑟, 𝑒⟩ × 𝐶ଶ  ≤ 𝐺 

By Lemma 5, it emerges 𝐻 ≤ 𝐺 and, applying Theorem 46, 𝐻 contains a non-

nilpotent subgroup (period 12 cyclic subgroup), 𝐻 is not nilpotent. Consequently, 

𝐺 cannot be nilpotent. The remainder of the technique is structured to cater for two 

corollaries, that is, Corollary 1 and Corollary 2. By Theorem 47, we establish that 

given 𝛼(𝐺) = 0.75 and the formula for 𝛼(𝐷ଶ), it demonstrates that 𝑛 must be 

even. Then by Lemma 6 and Lemma 7, we identify that 𝛼(𝐷ଶସ × 𝐶ଶ) =
ଷ

ସ
  and also 

𝐷ଵ and 𝐷ଶସ as the only dihedral groups satisfying the given 𝛼 value. We finally 

apply the induction method to prove Theorem 49, thus by verifying the base cases 

and utilizing inductive reasoning for 𝑛 = 𝑘 + 1, we demonstrate that 𝐺 maintains 

𝛼(𝐺) = 0.75 and conforms to the structures 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ or 𝐺 ≅ 𝐷ଵ × 𝐶ଶ, for 

all 𝑛 = 0,1. This completes the proof. 

Non-Trivial Centre Analysis 

In objective two, we establish that 𝐺 has a non-trivial centre by embarking 

upon a rigorous proof technique through analysing the centralizers, conjugacy 

classes, and commutativity within 𝐺. To investigate the group’s, 𝐺, structure and 

establish the non-triviality of its centre, we utilize the concept of group actions. 
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Specifically, we consider the conjugation operation of 𝐺 acting upon its own 

elements. This action is expressed below: 

Action Definition: The action 𝑔 ∙ 𝑥 = 𝑔𝑥𝑔ିଵ is defined for every element 𝑔 ∈ 𝐺 

and any 𝑥 ∈ 𝐺. 

Conjugacy Classes and Orbits: The conjugacy class of 𝑥 in 𝐺, under this action, 

is described as the orbit of 𝑥. The conjugacy class 𝑂𝑟𝑏(𝑥) can be expressed as: 

𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑐𝑦 𝐶𝑙𝑎𝑠𝑠 (𝑂𝑟𝑏𝑖𝑡): 𝑂𝑟𝑏(𝑥) = {𝑔𝑥𝑔ିଵ: 𝑔 ∈ 𝐺}. 

The size of this orbit is a crucial factor in our analysis. 

Utilizing the Orbit-Stabilizer Theorem: To relate the period of the conjugacy 

class to the centralizer of 𝑥, we apply Proposition 12, which is the Orbit-Stabilizer 

Theorem. 

Orbit-Stabilizer Theorem: 

|𝑂𝑟𝑏(𝑥)| =
|𝐺|

|𝐶ீ(𝑥)|
 

where the cardinality of the centralizer of 𝑥 ∈ 𝐺 is |𝐶ீ(𝑥)| 

Calculation of Conjugacy Class Size: To determine the size of the conjugacy class 

of 𝑥, we use the Orbit-Stabilizer Theorem. 

Total Size of 𝑮: Given that 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ, total size of 𝐺 is computed as: 

|𝐺| = |𝐷ଶସ| ∙ |𝐶ଶ|. 

Centralizer Components: The centralizer of 𝑥 ∈ 𝐺 is factored into the centralizers 

within 𝐷ଶସand 𝐶ଶ. Thus, the conjugacy class’s size: 

|𝐶ீ(𝑥)| = |𝐶మర
(𝑥మర

)| ∙ |𝐶మ  (𝑥మ  )|. 
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In conclusion, we achieve that since |𝐶మర
(𝑥మర

)| < |𝐷ଶସ|, it consequently yields 

|𝑂𝑟𝑏(𝑥)| > 1, indicating that conjugacy class period is greater than 1. This result 

shows that 𝑥 has a non-trivial conjugacy class, this conflict with the premise that 

𝑥 ∉ 𝑍(𝐺). Therefore, 𝑥 must lie in 𝑍(𝐺), implies that 𝐺 possesses a meaningful 

non-trivial centre. 

Subgroup Normality and Characteristics Analysis 

In objective three, we demonstrate the structured approach to put forth that 

a subgroup of 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ is both preserved by conjugation and automorphism, 

thereby establishing that it is both normal and characteristic. We specifically aim to 

demonstrate that a non-trivial subgroup 𝑍(𝐺) of 𝐺 possesses these properties. We 

employ a combination of computational and theoretical techniques to establish this 

result. Group (2021) is utilized to compute and analyze the elements and subgroups 

of 𝐷ଶସ. The elements or generators {𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑓ସ} and subgroups of 𝐷ଶସ were 

generated, providing a comprehensive list of subgroups, which was cross-

referenced with the theoretical findings. Next, the subgroups of 𝐷ଶସ were identified 

theoretically, highlighting subgroups spanned by various combinations of 𝑅 and 𝑆. 

We then establish that a non-trivial subgroup 𝐻 = {(𝑅, 𝑒)} ≤ 𝑍(𝐺) =

{(𝑒, 𝑒), (𝑒, 𝑐), (𝑅, 𝑒), (𝑅, 𝑐)} is used for further analysis. Next, we show that 𝐻 =

{(𝑅, 𝑒)} is normal in 𝐺. For any element 𝑔 ∈ 𝐺, where 𝑔 = (𝑥, 𝑦) with 𝑥 ∈ 𝐷ଶସ 

and 𝑦 ∈ 𝐶ଶ
, we demonstrate that 𝑔𝐻𝑔ିଵ is done by examining two scenarios 

depending on whether 𝑦 is the identity element or not. In both cases, we show that 

conjugating 𝐻 by 𝑔 leaves 𝐻 invariant, proving its normality. Finally, we establish 

that 𝐻 is characteristic by showing that it is invariant under any automorphism 𝜑 

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



69 
 

of 𝐺. Since 𝐷ଶସ × 𝐶ଶ
, any automorphism φ can be decomposed into automorphisms 

𝜑ଵ of 𝐷ଶସ and 𝜑ଶ of 𝐶ଶ
. Given that 𝐻 is a subgroup of the centre of 𝐺 and commutes 

with every member of 𝐺, we derive that 𝜑(𝐻) = 𝐻 for any automorphism 𝜑, 

thereby proving 𝐻 is characteristic. In all, we combine computational tools and 

theoretical analysis to prove that a subgroup that is not trivial 𝐻 of 𝐷ଶସ × 𝐶ଶ
 is both 

normal and characteristic. This methodology ensures a comprehensive and robust 

proof, blending computational verification with classical group theory to provide 

a clear demonstration of the subgroup’s invariance under conjugation and 

automorphism. 

Normal subgroups and isomorphism classes 

            Another critical aspect this research looks, is the identification and analysis 

of normal subgroups in objective four. Thus, we delve into the normal subgroups 

of a group 𝐺 and examine their structural properties up to isomorphism, with the 

aim to uncover the internal symmetries and ultimately demonstrate that 𝐺 is not a 

simple group but has non-trivial normal subgroups, making it solvable. To achieve 

our objective, we employ a systematic approach that includes analysing the 

structure of 𝐺, identifying normal subgroups in 𝐷ଶସ and 𝐶ଶ and their structural 

properties. We start by using the properties of 𝐷ଶସ to find its normal subgroups. By 

employing Theorem 33 and Euler’s totient function, we determine the possible 

orders of elements in 𝐷ଶସ. We list the elements and their orders and use Theorem 

25 to classify elements into conjugacy classes. The class equation for 𝐷ଶସ helps us 

understand the distribution of these elements. Next, we classify the subgroups of 

𝐷ଶସ based on their orders. We identify subgroups of orders 1, 2, 3, 4, 6, 8, 12, and 
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24, and verify their normality by using Proposition 7, Proposition 4 and Proposition 

8. This step ensures that we correctly identify all normal subgroups of 𝐷ଶସ. With 

the normal subgroups of 𝐷ଶସ identified, we move on to 𝐷ଶସ × 𝐶ଶ. The cyclic group 

𝐶ଶ has only two subgroups: the group itself {e, a} and its trivial subgroup {e}, 

where a is the non-identity element. By pairing each normal subgroup of 𝐷ଶସ with 

these subgroups of 𝐶ଶ, we form the normal subgroups of 𝐺. We then analyze their 

structures to determine their isomorphism types. This systematic approach not only 

provides insight into the composition of 𝐺 but also highlights the rich internal 

symmetry and solvable nature of the group. 

Characterizing cyclic subgroup count 

            In objective five, we describe and characterize finite groups 𝐺 for which 

cyclic subgroups count satisfies the condition |𝐶(𝐺)| = |𝐺| − 6. Our approach 

involves a thorough and detailed analysis of the structural properties of these 

groups, building on previous classification techniques by Tárnáuceanu (2016) and 

Song and Zhou (2019) and the introduction of new technique. By understanding 

their methodologies and results, we establish a strong foundation for our research, 

enabling us to adapt and extend their approaches to our specific problem. Thus, our 

methodology uniquely applies a detailed analysis of possible divisors and specific 

group orders to identify groups meeting the condition. We utilize the notion of 

Equation (7) and Proposition 2 to establish the general structure of the group 𝐺, 

thus; 

|𝐺| = 𝑝ଵ
 ∙ 𝑝ଶ

 ∙ 𝑝ଷ
 

where 𝑚 ≤ 3, 𝑛 ≤ 2, 𝑟 ≤ 1, 𝑝ଵ < 𝑝ଶ < 𝑝ଷ and 𝑝ଵ, 𝑝ଶ, . . . , 𝑝 are distinct primes. 
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The Sylow theorems are utilized to analyze the structure and count of Sylow 𝑝-

subgroups. This helps us establish conditions for the existence and uniqueness of 

these subgroups and also deduce the possible subgroup structures and their 

implications for the group’s overall structure. 

            In our first approach, we classify finite 𝑝-groups of order 𝑝 for 1 ≤ 𝑘 ≤ 3, 

ensuring that they satisfy the characterization |𝐶(𝐺)| = |𝐺| − 6. The approach first 

uses the Sylow theorems, showing that 𝐺 contains a nontrivial centre 𝑍(𝐺). If 𝐺 is 

cyclic, its structure is determined by the divisors of 𝑝. For non-cyclic groups, the 

methodology explores group extensions, determining whether 𝐺 can be 

decomposed into smaller cyclic subgroups through a split extension. If the 

extension does not split, 𝐺 remains indecomposable but cyclic. This technical 

process rigorously addresses each case of 𝑘, ensuring the correct count of cyclic 

subgroups. 

            In our next approach, we explore the finite groups structure of composite 

orders of the factorization |𝐺| = 𝑝𝑞, where 𝑝 and 𝑞 are distinct primes. We begin 

by identifying a normal subgroup 𝑁 with |𝑁| = 𝑝, establishing a short exact 

sequence that represents 𝐺 as an extension of 𝑁 by 𝐺/𝑁. Our analysis, as done 

previously, focuses on the different cases based on the orders of 𝐺, utilizing Sylow 

theorems to determine the existence and count of cyclic subgroups. We then 

investigate whether the extension splits, which leads us to discern between a direct 

product or a semi-direct product structure. In our exploration, we pay special 

attention to the role of automorphisms of 𝑁 and how their non-trivial actions can 

introduce non-abelian characteristics into the group structure. By examining these 
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aspects for groups with orders |𝐺| = 𝑝𝑞, under the constraints 𝑘, 𝑙 ≤ 3 and 

𝑔𝑐𝑑(𝑘, 𝑙) = 1, we reveal critical insights in the group structure that conforms with 

|𝐺| − 6 cyclic subgroups. 

           We Conclude by considering Proposition 3 and Theorem 22 to establish that 

certain groups satisfy |𝐶(𝐺)| = |𝐺| − 6. This case-by-case approach involves 

detailed proofs and logical deductions that finally ensure that our findings are 

accurate and valid. 

Chapter Summary 

           This chapter elaborate the approach and methods employed in achieving 

research objectives. The techniques employed in proving the conjecture are first 

examined, followed by non-trivial centre analysis, subgroup normality and 

characteristics analysis, then finally on characterizing cyclic subgroup count. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

Introduction 

            This chapter presents the key findings of the research, taking into account 

fundamental theorems and results that have motivated this research in the area of 

group theory. 

Characterizing finite groups with specific alpha invariant value 

            Motivated by the work of Cayley (2021), we solve the open problem and 

present conditions under which the open problem holds. Using 𝛼(𝐺) =
ଷ

ସ
, we first 

construct the generic form of the finite group 𝐺. 

Open Problem: Let group 𝐺 be finite. If 𝛼(𝐺) =
ଷ

ସ
 and 𝐺 is non-nilpotent, then 

𝐺 ≅ 𝐷ଶସ × 𝐶ଶ. 

           We first establish the solution to the initial part of the open problem, which 

sets the stage for proving the subsequent result. 

Lemma 1 

Let 𝐺 be finite-ordered with 𝛼(𝐺) =
ଷ

ସ
. Then |𝐺| is structured as 2 ∙ 3 ∙  𝑝ଵ ∙

 𝑝ଶ ⋯ 𝑝, with 𝑎 and 𝑏 as non-negative integers, and 𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝 as distinct odd 

primes. 

Proof. From 𝛼(𝐺) =
ଷ

ସ
, Theorem 33 suggests that subgroup’s order must divide |𝐺|. 

Thus, we derive that the count of cyclic subgroups, 𝐶(𝐺), must divide |𝐺|. Now, 

Equation (1) yields 

                                                    |𝐺| =
ସ

ଷ
× 𝐶(𝐺)                                              (2) 
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Since |𝐺| is finite, left-hand side of Eq. (2) must be a positive integer, indicating 

that 𝐶(𝐺) ≡ 0 (𝑚𝑜𝑑 3). We then analyze the structure of 𝐺 given that 𝐶(𝐺), 

including the trivial subgroup, is a multiple of 3. Suppose one of |𝐺|’𝑠 prime 

divisors is 𝑝, Theorem 35 guarantees the existence of a cyclic subgroup of period 

𝑝 in 𝐺. Therefore, the count of cyclic subgroups 𝐶(𝐺) must be at least 𝑝 + 1, such 

that each cyclic subgroup of period dividing 𝑝 contributes one subgroup of which 

the trivial subgroup is included. Thus, by extension we have 

                                  1 + (2 + 1) + (3 + 1) + ⋯ + (𝑝 + 1).                           (3) 

Eq. (3) is a multiple of 3, it must be of the form 3𝑘, with 𝑘 being an integer: 

                                             
మାଷାଶ

ଶ
= 3𝑘                                                         (4) 

                                           𝑝ଶ + 3𝑝 + 2 = 6𝑘                                                   (5) 

Since 6𝑘 is divisible by 2, the left-hand side of Eq. (5) must also be divisible by 2. 

This implies that p must be an odd prime or only the even prime 2, as otherwise, 

Eq. (5) would be odd, causing a contradiction. Therefore, if the count of cyclic 

subgroups of 𝐺 is a multiple of 3, and 𝑝 is an odd prime or only the even prime 2 

dividing |𝐺|, we can write that |𝐺| must be of the form: 

                                            2 ∙ 3 ∙ 𝑝ଵ ∙ 𝑝ଶ ⋯ 𝑝                                               (6) 

We further show that the factors 2 , 3 , 𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝 represent the potential 

subgroup orders of the finite group 𝐺. By Theorem 36, 𝐺 has a Sylow 2-subgroup 

𝑃 of order 2, a Sylow 3-subgroup 𝑄 of order 3, and a Sylow 𝑝ଵ-subgroup 𝑅 of 

order 𝑝ଵ. For each odd prime pi with 2 ≤ 𝑖 ≤ 𝑘, 𝐺 also has a Sylow 𝑝-subgroup 𝑆 

of period 𝑝. We show that any subgroup 𝐻 of 𝐺 has period 2 ∙ 3 ∙ 𝑝ଵ ∙ 𝑝ଶ ⋯ 𝑝, 

by considering the direct product theorem, which asserts that |𝐻| is the product of   
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the periods of its factors. Therefore, it suffices to demonstrate that |𝑃| = 2, |𝑄| =

3, |𝑅| = 𝑝ଵ, and |𝑆| = 𝑝 for all 2 ≤ 𝑖 ≤ 𝑘. Since 𝐻 ≤ 𝐺, its order must divide 

|𝐺|. Theorem 33 ensures that each Sylow 𝑝-subgroup divides |𝐺|. Thus, |𝑃| divides 

2, |Q| divides 3, |R| divides 𝑝ଵ, and |𝑆| divides 𝑝 for all 2 ≤ 𝑖 ≤ 𝑘. But each 𝑆 

is a𝑝-group and 𝑝’s are distinct, so they commute with each other and with 𝑃, 𝑄, 

and 𝑅, so the order of 𝐻 is the product of the orders of its factors, |𝐻| = 2 ∙ 3 ∙

𝑝ଵ ∙ 𝑝ଶ ⋯ 𝑝. Hence, 𝐺 has a subgroup 𝐻 with the desired structural equivalent to 

the direct product of 𝑃, 𝑄, 𝑅, 𝑆ଶ, . . . , 𝑆. 

Lemma 2 

Sylow 𝑝-subgroups of 𝐺 are cyclic if the period is the maximal p-power dividing 

|𝐺|. 

Proof. Suppose 𝐻 is a Sylow 𝑝-subgroup of 𝐺 with order 𝑝, noting that the highest 

power of 𝑝 dividing |𝐺| is 𝑝. By Theorem 36, such a subgroup exists. Since |𝐻| =

𝑝, 𝐻 is a 𝑝-group. By the Fundamental Theorem of Finite Abelian Groups, every 

finite 𝑝-group is cyclic. Hence, 𝐻 is cyclic. 

Lemma 3 

Let 𝐺 be a group and let 𝐻 be the unique Sylow 𝑝-subgroup of 𝐺 for a prime 𝑝. 

Then, 𝐻 is a normal subgroup of 𝐺. 

Proof. By Theorem 39, 𝑛 ≡ 1(𝑚𝑜𝑑 𝑝) and 𝑛 divides |𝐺|/𝑝, where 𝑝 is 𝑝’𝑠 

highest power that divides |𝐺|. Since H is the only Sylow p-subgroup, 𝑛 = 1. 

Thus, |𝐻 = 𝑝, and by Lemma 2, 𝐻 is cyclic. Since cyclic subgroups are always 

normal in their containing group, 𝐻 is normal in 𝐺. 
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Theorem 45. Given 𝐺 to be finite with |𝐺| = 2 ∙ 3 ∙ 𝑝ଵ ∙ 𝑝ଶ ⋯ 𝑝, where 𝑎, 𝑏 > 0 

and 𝑝ଵ, 𝑝ଶ ⋯ , 𝑝 are distinct odd primes. Then 𝐺 is non-nilpotent, and 𝐺 ≅

𝐷ଶସ × 𝐶ଶ. 

Proof. Suppose by contradiction that 𝐺 is nilpotent. According to the notion of 

nilpotency, 𝐺 must have a series of normal subgroups 

{𝑒} = 𝐺 ⊲ 𝐺ଵ ⊲ ⋯ ⊲  𝐺 = 𝐺 

such that each quotient 𝐺ାଵ/𝐺 is abelian. Let 𝑃 and 𝑄 denote Sylow 2-subgroup 

and Sylow 3-subgroup of 𝐺, respectively. Consider the smallest index 𝑖 such that 

both 𝑃 and 𝑄 are contained in 𝐺. As 𝑃 and 𝑄 are normal in 𝐺, the product 𝑃𝑄 is a 

subgroup of 𝐺. By the uniqueness of Sylow subgroups (Lemma 3), 𝑃𝑄 is the 

unique Sylow subgroup of its order, and thus 𝑃 ∩ 𝑄 = {𝑒}. Consequently, 𝑃𝑄 ≅

𝑃 × 𝑄, meaning 𝑃𝑄 is abelian. Now, consider any odd prime divisor 𝑝 of |𝐺|. Since 

𝑝 does not divide the order of 𝑃𝑄, the quotient 𝐺/𝑃𝑄 is abelian. However, in a 

nilpotent group, all factors in the series must be abelian. This contradicts the fact 

that 𝑃𝑄 is a minimal normal subgroup of 𝐺 that is abelian. Therefore, 𝐺 cannot be 

nilpotent. 

           Next, we demonstrate that 𝐺 is structurally equivalent to 𝐷ଶସ × 𝐶ଶ. Since 

|𝐺| = 2 ∙ 3 ∙ 𝑝ଵ ∙ 𝑝ଶ ⋯ 𝑝, Theorem 36 guarantees the existence of Sylow 

subgroups for each prime divisor of |𝐺|. For each 𝑝, let 𝐻 denote the 

corresponding Sylow 𝑝-subgroup of G. By Theorem 39, the count 𝑛 of Sylow 𝑝-

subgroups satisfies 𝑛 ≡ 1 mod pi and divides |𝐺|/𝑝
. Since 𝑝ଵ ∙ 𝑝ଶ ⋯ 𝑝 are 

distinct primes, the numbers 𝑛 are pairwise coprime. The product of all 𝑛 equals 

the order of the group, implying 𝑛 = 1 for all 𝑖. Hence, each Sylow subgroup is 
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unique and normal in 𝐺. Moreover, each Sylow subgroup 𝐻 is cyclic, and their 

intersections are trivial. Thus, the product of the Sylow subgroups forms a direct 

product: 

𝐺 ≅ 𝐻ଶ × 𝐻ଷ × ⋯ × 𝐻 , 

where each 𝐻  is isomorphic to 𝐶




 , the cyclic group of order 𝑝
. Since 𝐺 is the 

direct product of cyclic groups, we have: 

𝐺 ≅ 𝐶ଶೌ × 𝐶ଷ್ × 𝐶భ
భ × ⋯ × 𝐶


ೖ

ೖ . 

Finally, we observe the structure of G shares the same prime factorization as 

𝐷ଶସ × 𝐶ଶ. Therefore, we conclude that: 

𝐺 ≅ 𝑃 × 𝑄 × 𝑅 × 𝑆₂ ×. . .× 𝑆ₖ ≅ 𝐶ଶೌ × 𝐶ଷ್ × 𝐶భ
× 𝐶మ

× ⋯ × 𝐶ೖ
≅ 𝐷ଶସ × 𝐶ଶ 

           With the core structure defined, we now advance to demonstrate the second 

part of the open problem. 

Lemma 4 

Let 𝐷ଶ be of period 2𝑛, with 𝑛 ≥ 3. There exists 𝐶 of 𝐷ଶ generated by a rotation 

element of size 𝑛. 

Proof. By definition, 𝐷ଶ = ⟨𝑟, 𝑠 ∣ 𝑟 = 𝑠ଶ = 𝑒, 𝑠𝑟𝑠 = 𝑟ିଵ⟩. We suppose that, 

subgroup 𝐶 = ⟨𝑟⟩. Since 𝑟 = 𝑒 ⇒ |𝑟| = 𝑛, 𝐶 is cyclic of size 𝑛. Hence, 𝐶 ⊂

𝐷ଶ. 

Lemma 5 

For groups 𝐺ଵ and 𝐺ଶ, it follows that 𝐻ଵ × 𝐻ଶ ≤ 𝐺ଵ × 𝐺ଶ if 𝐻ଵ ≤ 𝐺ଵ and 𝐻ଶ ≤ 𝐺ଶ. 

Proof. The subgroup 𝐻ଵ × 𝐻ଶ is specified as the collection of ordered pairs (ℎଵ, ℎଶ) 

with ℎଵ ∈ 𝐻ଵ and ℎଶ ∈ 𝐻ଶ. The group operations are defined component-wise, 

making 𝐻ଵ × 𝐻ଶ a subgroup of 𝐺ଵ × 𝐺ଶ. 
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Theorem 46. Consider 𝐺 as a group and 𝐻 ≤ 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ. If 𝐻 is a non-

nilpotent subgroup, then 𝐺 is non-nilpotent and 𝛼(𝐺) =
ଷ

ସ
 . 

Proof. Suppose, by contradiction, that 𝐻 is a non-nilpotent subgroup and 𝐺 is a 

nilpotent group. Since 𝐻 is not nilpotent, existence is established for a positive 

whole number 𝑘 for which 𝐻 ≠ {𝑒}, and 𝐻 is the 𝑘-th term in the lower central 

series of 𝐻. Let 𝑥 ∈ 𝐻 such that 𝑥 ≠ 𝑒. Now consider the element 𝑥 in the group 

𝐺. Since 𝐻 ≤ 𝐺, and 𝑥 ∈ 𝐻 ⊆ 𝐻, this implies 𝑥 ∈ 𝐺. By notion, lower central 

series of a group 𝐺 exhibit 𝐺 = 𝐺ଵ ≥ 𝐺ଶ ≥ . .., where we define 𝐺ାଵ as [𝐺 , 𝐺] for 

each 𝑘 ≥ 1 and [𝐺 , 𝐺] represents the commutator subgroup of 𝐺 with 𝐺. Since 

𝑥 ∈ 𝐺, we have the commutator [𝑥, 𝐺] being the set of all commutators of the form 

[𝑥, 𝑔] = 𝑥𝑔𝑥ିଵ𝑔ିଵ for 𝑔 ∈ 𝐺. By iterating this commutator process 𝑘 times, we 

obtain the 𝑘𝑡ℎ lower central commutator, denoted as [𝑥, 𝐺] = [𝑥, [𝐺, . . . , 𝐺]], with 

𝑘 nested commutators. Since 𝐺 is assumed to be nilpotent, there must exist an 𝑛 

such that ([𝑥, 𝐺]) = {𝑒}. However, this implies that 𝑥 = ([𝑥, 𝐺]) = {𝑒}, 

which contradicts the choice of 𝑥 not being the identity element. Therefore, if 𝐻 is 

not nilpotent, then 𝐺 cannot be Nilpotent. In the reverse direction, we consider 𝐷ଶସ 

in 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ. By Lemma 4, 𝐷ଶସ incorporates a cyclic subgroup of the 

specified period 12 generated by a rotation element. So, we can write 𝐻 =

⟨𝑟, 𝑒⟩ × 𝐶ଶ ≤ 𝐺. Thus, Lemma 5 gives us 𝐻 ≤ 𝐺. Applying Theorem 46, and 

noting 𝐻 contains a non-nilpotent subgroup (the cyclic subgroup of order 12),we 

formalize that 𝐺 is non-nilpotent since 𝐺 contains non-nilpotent 𝐻. 

           Building on this insight, we proceed, given 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ, to establish the 

constraint on the n copies, thus; 
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𝛼(𝐺) =
𝐶(𝐷24). 𝐶൫𝐶2𝑛൯

|𝐷24|. ห𝐶2𝑛ห
=

3. (𝑛 + 1)

4.2𝑛 =
3

4
 

where 𝑛 = 0 or 1 such that 𝐺 = 𝐷ଶସ or 𝐺 = 𝐷ଶସ × 𝐶ଶ, respectively. Thus, the 

conjecture holds true, as demonstrated by the preceding arguments. 

           From the established result, we immediately derive the following 

corollaries: 

Corollary 1 

When 𝑛 = 0, then 𝐺 ≅ 𝐷ଶସ × 𝐶ଶబ ≅ 𝐷ଶସ such that 𝛼(𝐺) =
ଷ

ସ
 3 and 𝐺 is not 

nilpotent. 

Corollary 2 

When 𝑛 = 1, then 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ such that 𝛼(𝐺) =
ଷ

ସ
  and 𝐺 is not nilpotent. 

            To support the validity of Corollaries 1 and 2, it is necessary to examine the 

preceding lemmas and theorems, which furnish the requisite theoretical framework. 

Theorem 47. Let 𝛼(𝐺) =
ଷ

ସ
 and 𝐺 be a dihedral group 𝐷ଶ, then 𝑛 must be an even 

integer. 

Proof. It is observed from Theorem 23, 𝛼(𝐷ଶ) =
ାఛ()

ଶ
, and 𝐺 = 𝐷ଶ. Since 

𝛼(𝐷ଶ) = 0.75, we have 

𝑛 + 𝜏(𝑛)

2𝑛
= 075 

By subtracting 𝑛 from both sides, we arrive at the equation 0.5𝑛 = 𝜏 (𝑛), signifying 

that the count of divisors of 𝐺 is half of 𝑛. To explore the possible values for 𝑛, we 

first examine its parity. If 𝑛 is even, then 𝜏 (𝑛) is a positive integer. Conversely, if 

𝑛 is odd, 𝜏 (𝑛) fails to be an integer, leading to a contradiction. Therefore, 𝑛 must 
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be an even integer. Consequently, for the dihedral group 𝐺 = 𝐷ଶ, takes values 

from the set {2, 4, 6, . . . , 𝑘}, where 𝑘 is a positive even integer. 

Lemma 6 

The proportion of cyclic subgroups in the dihedral group 𝐷ଵ satisfies 𝛼(𝐷ଵ) =
ଷ

ସ
. 

Proof. To establish this result, Theorem 23 is utilized. Substituting the parameters 

for 𝐷ଵ, we obtain 

𝛼(𝐷16) =
3

4
. 

Hence, the claim holds. 

Lemma 7 

The proportion of cyclic subgroups in the dihedral group 𝐷ଶସ satisfies 𝛼(𝐷ଶସ) =
ଷ

ସ
 

Proof. Similarly, from Theorem 23 𝛼(𝐷ଶସ) =
ଷ

ସ
. This follows from an explicit 

enumeration of count of cyclic subgroups to groups order. From Lemma 6 and 

Lemma 7, we can similarly write 𝛼(𝐷ଶସ × 𝐶ଶ) = 𝛼(𝐷ଶସ) × 𝛼(𝐶ଶ) =
ଷ

ସ
× 1 =

ଷ

ସ
. 

Theorem 48. The only dihedral groups with 𝛼(𝐺) = 0.75 are 𝐷ଵ or 𝐷ଶସ. 

Proof. Inspired by the logic presented in Cayley (2021) proof, we present a 

similarly structured argument to demonstrate the result for Theorem 48. From 

Theorem 23, we observe 

𝛼(𝐺) =
𝜏(𝑛) + 𝑛

2𝑛
=

3

4
⟹ 𝜏(𝑛) =

𝑛

2
 

Since 𝜏 (𝑛) count positive divisors of 𝑛, we can determine an upper limit on the 

count of divisors that 𝑛 can have. Therefore 

𝜏 (𝑛) =
𝑛

2
≤ 2√𝑛 ⟹ 𝑛(𝑛 − 16) ≤ 0 ⟹ 0 ≤ 𝑛 ≤ 16 
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But by Theorem 47, 𝑛 =  2, 4, 6, 8, 10, 12, or 16. Where only 𝑛 = 8 or 12 satisfies 

𝛼(𝐺), hence 𝐺 = 𝐷ଶସ or 𝐷ଵ. 

           From Theorem 46 and Theorem 48, we establish our final theorem. 

Theorem 49. Given a finite group 𝐺 and 𝛼(𝐺) =
ଷ

ସ
. 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ or 𝐺 ≅

𝐷ଵ × 𝐶ଶ, for all 𝑛 = 0,1. 

Proof. Base case: For 𝑛 = 0,1: 

𝐺 ≅ 𝐷ଶସ × 𝐶ଶ ≅ 𝐷ଶସ × 𝐶ଵ ≅ 𝐷ଶସ 

or 

𝐺 ≅ 𝐷ଵ × 𝐶ଶ ≅ 𝐷ଵ × 𝐶ଶబ ≅ 𝐷ଶସ × 𝐶ଵ ≅ 𝐷ଵ 

Suppose 𝑧 ∈ {16, 24}. 

Inductive step: Suppose 𝑛 = 𝑘 and 𝛼(𝐺) = 0.75 and 𝐺 ≅ 𝐷௭  × 𝐶ଶೖ holds a 

certain positive integer 𝑘. Proving the validity of the assertion for 𝑛 = 𝑘 + 1 is 

prerequisite. Thus, for 𝑛 = 𝑘 + 1, we have: 

𝐺 ≅ 𝐷௭  × 𝐶ଶೖశభ . 

Rewrite this as: 

𝐺 ≅ ൫𝐷௭  × 𝐶ଶೖ൯ × 𝐶ଶ. 

We can deduce that 𝐷௭  × 𝐶ଶమೖ  is isomorphic to 𝐺ሖ = 𝐺/𝐶ଶ, where 𝐺ሖ = 𝐷௭  × 𝐶ଶమೖ . 

Using the assumption that 𝛼(𝐺ሖ ) = 0.75, we have: 

𝛼(𝐺ሖ ) = 𝛼(𝐷௭  × 𝐶ଶೖ)  =  0.75. 

Now, we consider the action of 𝐶ଶ on 𝐺. Since 𝐶ଶ belongs to the order 2 cyclic 

group, it has only two elements, say {𝑒, 𝑎}. We consider two issues: 

            Case 1: 𝐶ଶ acts trivially on 𝐺ሖ . If 𝐶ଶ acts trivially on 𝐺ሖ , then every element 

of 𝐺ሖ  is fixed by the action of 𝐶ଶ. This implies: 
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𝐺 = 𝐺ሖ × 𝐶ଶ 

Since 𝛼(𝐺ሖ ) = 0.75 and 𝐶ଶ acts trivially on 𝐺ሖ , we have: 

𝛼(𝐺)  =  𝛼(𝐺ሖ × 𝐶2) = 𝛼(𝐺ሖ ) × 𝛼(𝐶2) = 0.75 × 1 = 0.75. 

Therefore, the claim is true for 𝑛 = 𝑘 + 1. 

            Case 2: 𝐶ଶ acts non-trivially on 𝐺ሖ . If 𝐶ଶ acts non-trivially on 𝐺ሖ , then there 

is an existence of 𝑎 ∈ 𝐶ଶ with 𝑎 ≠ 𝑒. In this case, we can write: 

𝐺 = (𝐺ሖ ×  𝐶ଶ)/⟨(𝑒, 𝑎)⟩, 

where ⟨(𝑒, 𝑎)⟩ is the subgroup generated by (𝑒, 𝑎). But (𝑒, 𝑎) has order 2, and its 

action on 𝐺ሖ  is non-trivial. However, since (𝑒, 𝑎) has order 2, its square is: 

(𝑒, 𝑎) ∙ (𝑒, 𝑎) = (𝑒, 𝑎 ∙ 𝑎) = (𝑒, 𝑒) = 𝑒. 

Thus, the element (𝑒, 𝑎) is self-inverse, and its action on any group is trivial, 

regardless of the specific action on 𝐺ሖ . Hence, we can conclude that the action of 

(𝑒, 𝑎) on 𝐺 is indeed trivial, regardless of how it acts on 𝐺ሖ . Then, 

𝐺 = (𝐺ሖ ×  𝐶ଶ)/⟨(𝑒, 𝑎)⟩ ≅ 𝐺ሖ × 𝐶ଶ. 

Implying, 𝐺 ≅ 𝐺ሖ ×  𝐶ଶ, which leads to 

𝛼(𝐺) = 𝛼(𝐺ሖ × 𝐶2) = 𝛼(𝐺ሖ ) × 𝛼(𝐶2) = 0.75 × 1 = 0.75. 

Therefore, 𝑛 = 𝑘 + 1 is valid, which completes the proof. 

Orbit-Stabilizer Theorem and Centralizers in Direct Products 

           In the field of group theory, analysing the structure and characteristics of 

groups is essential to various mathematical disciplines and applications. A key 

aspect of group theory deals with the centre of a group, the presence of a non-trivial 

centre, especially in non-nilpotent groups, significantly influences the group’s 

overall structure and dynamics. In objective two consider the concept of group 
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actions and apply the Orbit-Stabilizer Theorem to analyse the centralizers in the 

direct products of 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ. This technique provides a more general and 

theoretically grounded framework for analyzing the structure of 𝐺 and the behavior 

of its conjugacy classes. 

Theorem 50. Let 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ when 𝛼(𝐺) =
ଷ

ସ
 and 𝐺 is not nilpotent. Then 𝐺 

has a non-trivial centre. 

Proof. Suppose 𝑥 ∈ 𝐺 is not in 𝑍(𝐺) = 𝐷ଶସ × 𝐶ଶ . Accordingly, there is some 𝑦 ∈

𝐺 such that 𝑥𝑦 ≠ 𝑦𝑥. We examine the action of 𝐺 on itself by conjugation, defined 

by 𝑔 ∙ 𝑥 = 𝑔𝑥𝑔ିଵ for all 𝑔 ∈ 𝐺. The orbit of 𝑥 under this action is precisely the 

conjugacy class of 𝑥, denoted by 𝑂𝑟𝑏(𝑥) = {𝑔𝑥𝑔ିଵ: 𝑔 ∈ 𝐺}. From Proposition 12, 

period of orbit is given by 

|𝑂𝑟𝑏(𝑥)| =
|𝐺|

|𝐶ீ(𝑥)|
 

where 𝐶ீ(𝑥) is the centralizer of 𝑥 in 𝐺. Since 𝐺 is the direct product of 𝐷ଶସ and 

𝐶ଶ, we have 

|𝐺| = |𝐷ଶସ| ∙ |𝐶ଶ| 

and can write 

|𝑂𝑟𝑏(𝑥)| =
|𝐷ଶସ| ∙ |𝐶ଶ|

|𝐶ீ(𝑥)|
=

|𝐷ଶସ| ∙ |𝐶ଶ|

ห𝐶మర
(𝑥మర

)ห ∙ ห𝐶మ (𝑥మ )ห
. 

Now, because 𝐶ଶ is abelian, 𝐶మ (𝑥మ ) = 𝐶ଶ, so 

ቚ𝐶మ (𝑥మ )ቚ = |𝐶ଶ|, 

and hence 

|𝑂𝑟𝑏(𝑥)| =
|𝐷ଶସ|

ห𝐶మర
(𝑥మర

)ห
. 
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Since 𝐷ଶସ is non-abelian, 𝐶మర
(𝑥మర

) must be a proper subgroup of 𝐷ଶସ, so 

ห𝐶మర
(𝑥మర

)ห < |𝐷ଶସ| 

and thus |𝑂𝑟𝑏(𝑥)| > 1. This implies that 𝑥 has a non-trivial orbit, which contradicts 

the assumption that 𝑥 ∉ 𝑍(𝐺). Therefore, 𝑥 must lie in 𝑍(𝐺), and the centre is non-

trivial. 

Invariance of Subgroups under Conjugation and Automorphism 

           In objective 3, we seek to prove that the group 𝐺’𝑠 subgroup is unaffected 

by conjugation and automorphism by showing that the subgroup of 𝐺 is 

respectively normal and characteristic. We specifically show that a subgroup 𝑍(𝐺) 

of 𝐺 has this property and is non-trivial. 

Theorem 51. Given 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ when 𝛼(𝐺) =
ଷ

ସ
 and 𝐺 is not nilpotent, it 

follows that 𝐺 possesses a non-trivial subgroup which is both normal and 

characteristic. 

Proof. To support the analysis of this theorem, we utilized Group (2021) to compute 

and examine the elements and subgroups of 𝐷ଶସ. Using the Order and Subgroups 

commands, we generated the elements and subgroups of 𝐷ଶସ, resulting in four 

generators {𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑓ସ} and 34 subgroups. This computational approach provides 

a concrete foundation for the theoretical results employed in the proof. 

𝐷ଶସ = {𝑒,𝑓ଵ, 𝑓ଶ, 𝑓ଷ, 𝑓ସ, 𝑓ଵ ∗ 𝑓ଶ, 𝑓ଵ ∗ 𝑓ଷ, 𝑓ଵ ∗ 𝑓ସ, 𝑓ଶ ∗ 𝑓ଷ, 𝑓ଶ ∗ 𝑓ସ, 𝑓ଷ ∗ 𝑓ସ, 𝑓ସ
ଶ, 𝑓ଵ ∗ 𝑓ଶ ∗

𝑓ଷ, 𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ସ, 𝑓ଵ ∗ 𝑓ଷ ∗ 𝑓ସ, 𝑓ଵ ∗ 𝑓ସ
ଶ, 𝑓ଶ ∗ 𝑓ଷ ∗ 𝑓ସ, 𝑓ଶ ∗ 𝑓ସ

ଶ, 𝑓ଷ ∗ 𝑓ସ
ଶ, 𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ଷ ∗ 𝑓ସ, 

𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ସ
ଶ, 𝑓ଵ ∗ 𝑓ଷ ∗ 𝑓ସ

ଶ, 𝑓ଶ ∗ 𝑓ଷ ∗ 𝑓ସ
ଶ, 𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ଷ ∗ 𝑓ସ

ଶ}  

Subgroups of D24: 𝐺𝑟𝑜𝑢𝑝([  ]), [𝐺𝑟𝑜𝑢𝑝([𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([ 𝑓ଵ ]), 𝐺𝑟𝑜𝑢𝑝([ 𝑓ଵ ∗

𝑓ଷ]), 𝐺𝑟𝑜𝑢𝑝([ 𝑓ଵ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([ 𝑓ଵ ∗ 𝑓ସ
ଶ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ଶ]), 𝐺𝑟𝑜𝑢𝑝([ 𝑓ଵ𝑓ଷ ∗ 𝑓ସ

ଶ]) 
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𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([ 𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ଷ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ସ, 

𝑓ଷ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ସ
ଶ]), 𝐺𝑟𝑜𝑢𝑝([ 𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ଷ𝑓ସ

ଶ]) 

𝐺𝑟𝑜𝑢𝑝([𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଵ, 𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ସ, 𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ଷ, 𝑓ସ]) 

𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ସ
ଶ, 𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଶ ∗ 𝑓ସ

ଶ, 𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ସ, 𝑓ଷ ∗ 𝑓ସ]) 

𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ଶ, 𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ସ
ଶ, 𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ଶ ∗ 𝑓ଷ, 𝑓ସ]) 

𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ସ, 𝑓ଶ ∗ 𝑓ସ
ଶ, 𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ସ, 𝑓ଷ, 𝑓ଵ ∗ 𝑓ଶ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ସ, 𝑓ଷ, 𝑓ଵ, 𝑓ଶ])] 

𝐺𝑟𝑜𝑢𝑝([𝑓ସ, 𝑓ଷ, 𝑓ଵ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ଵ ∗ 𝑓ସ
ଶ, 𝑓ଶ ∗ 𝑓ସ

ଶ, 𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ସ, 𝑓ଵ ∗ 𝑓ଶ]), 𝐺𝑟𝑜𝑢𝑝 

([𝑓ଵ, 𝑓ଶ ∗ 𝑓ସ
ଶ, 𝑓ଷ ∗ 𝑓ସ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ସ, 𝑓ଷ, 𝑓ଶ]), 𝐺𝑟𝑜𝑢𝑝([𝑓ସ, 𝑓ଵ]) 

            Theoretically using rotations (R) and reflections (S), 𝐷ଶସ or 𝐷ଶ(ଵଶ) has a 

group presentation given as: 𝐷ଶ(ଵଶ) = ⟨𝑅, 𝑆: 𝑅ଵଶ = 𝑆ଶ = 𝑒, 𝑅𝑆 = 𝑆𝑅ିଵ⟩. Thus, 

𝐷ଶ(ଵଶ) = {𝑒, 𝑅, 𝑅ଶ, 𝑅ଷ, … , 𝑅ଵଵ, 𝑆, 𝑆𝑅, 𝑆𝑅ଶ, 𝑆𝑅ଷ, … , 𝑆𝑅ଵଵ}. From Theorem 24 there 

are 34 subgroups of 𝐷ଶସ. Therefore, we proceed to generate these subgroups with 

two generators: subgroup spanned by R: {𝑒, 𝑅, 𝑅ଶ, 𝑅ଷ, 𝑅ସ,

𝑅ହ, 𝑅, 𝑅, 𝑅଼, 𝑅ଽ, 𝑅ଵ, 𝑅ଵଵ}, subgroup spanned by 𝑅ଶ: {𝑒, 𝑅ଶ, 𝑅ସ, 𝑅, 𝑅଼, 𝑅ଵ}, 

subgroup spanned by 𝑅ଷ: {𝑒, 𝑅ଷ, 𝑅, 𝑅ଽ},    subgroup spanned by 𝑅ସ: {𝑒, 𝑅ସ, 𝑅଼}, 

subgroup spanned by 𝑅: {𝑒, 𝑅}, subgroup spanned by 𝑅ଵଶ or the trivial subgroup: 

{𝑒}, subgroup spanned by 𝑅 and 𝑆 or the whole group: 𝐷ଶସ, subgroup spanned by 

𝑅ଶ and 𝑆: {𝑒, 𝑅ଶ, 𝑅ସ, 𝑅, 𝑅଼, 𝑅ଵ, 𝑆, 𝑅ଶ𝑆, 𝑅ସ𝑆, 𝑅𝑆, 𝑅଼𝑆, 𝑅ଵ𝑆}, subgroup spanned 

by 𝑅ଶ and 𝑅𝑆: {𝑒, 𝑅ଶ, 𝑅ସ, 𝑅, 𝑅଼, 𝑅ଵ, 𝑅𝑆, 𝑅ଷ𝑆, 𝑅ହ𝑆, 𝑅𝑆, 𝑅ଽ𝑆, 𝑅ଵଵ𝑆}, subgroup 

spanned by 𝑅ଷ and 𝑆: {𝑒, 𝑅ଷ, 𝑅, 𝑅ଽ, 𝑆, 𝑆𝑅ଷ, 𝑆𝑅, 𝑆𝑅ଽ}, subgroup spanned by 𝑅ଷ 

and 𝑅𝑆: {𝑒, 𝑅ଷ, 𝑅, 𝑅ଽ, 𝑅𝑆, 𝑅ସ𝑆, 𝑅𝑆, 𝑆𝑅ଵ}, subgroup spanned by 𝑅ଷ and 𝑅ଶ𝑆: 

{𝑒, 𝑅ଷ, 𝑅, 𝑅ଽ, 𝑅ଶ𝑆, 𝑅ହ𝑆, 𝑅଼𝑆, 𝑆𝑅ଵଵ}, subgroup spanned by 𝑅ସ and 𝑆: 

{𝑒, 𝑅ସ, 𝑅଼, 𝑆, 𝑅ସ𝑆, 𝑅଼𝑆}, subgroup spanned by 𝑅ସ and 𝑅𝑆: {𝑒, 𝑅ସ, 𝑅଼, 𝑅𝑆, 𝑅ହ𝑆, 𝑅ଽ𝑆}, 
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subgroup spanned by 𝑅ସ and 𝑅ଶ𝑆:  {𝑒, 𝑅ସ, 𝑅଼, 𝑅ଶ𝑆, 𝑅𝑆, 𝑅ଵ𝑆}, subgroup spanned 

by 𝑅ସ and 𝑅ଷ𝑆:  {𝑒, 𝑅ସ, 𝑅଼, 𝑅ଷ𝑆, 𝑅𝑆, 𝑅ଵଵ𝑆}, subgroup spanned by 𝑅 and 𝑆: 

{𝑒, 𝑅, 𝑆, 𝑅𝑆},  subgroup spanned by 𝑅 and 𝑅𝑆: {𝑒, 𝑅, 𝑅𝑆, 𝑅𝑆}, subgroup 

spanned by 𝑅 and 𝑅ଶ𝑆: {𝑒, 𝑅, 𝑅ଶ𝑆, 𝑅଼𝑆}, spanned by 𝑅 and 𝑅ଷ𝑆: 

{𝑒, 𝑅, 𝑅ଷ𝑆, 𝑅ଽ𝑆}, subgroup spanned by 𝑅 and 𝑅ସ𝑆: {𝑒, 𝑅, 𝑅ସ𝑆, 𝑅ଵ𝑆}, subgroup 

spanned by 𝑅 and 𝑅ହ𝑆: {𝑒, 𝑅, 𝑅ହ𝑆, 𝑅ଵଵ𝑆}, {𝑆, 𝑒}, {𝑅𝑆, 𝑒}, {𝑅ଶ𝑆, 𝑒}, {𝑅ଷ𝑆, 𝑒}, 

{𝑅ସ𝑆, 𝑒}, {𝑅ହ𝑆, 𝑒}, {𝑅𝑆, 𝑒}, {𝑅𝑆, 𝑒}, {𝑅଼𝑆, 𝑒}, {𝑅ଽ𝑆, 𝑒}, {𝑅ଵ𝑆, 𝑒}, {𝑅ଵଵ𝑆, 𝑒}. 

           From Theorem 50, we established that 𝐺 has a non-trivial centre, and 𝑍(𝐺) 

is the centre of 𝐺. Now let 𝐻 ≤ 𝑍(𝐺) where 𝐻 is non-trivial. This is possible since 

𝑍(𝐺) is non-trivial. To show that 𝐻 is normal, we demonstrate that for every 

element 𝑔 ∈ 𝐺, 𝑔𝐻𝑔ିଵ = 𝐻. Since 𝐻 is a subgroup of the centre of 𝐺, it commutes 

with all elements of 𝐺. Thus, for any 𝑔 ∈ 𝐺, 𝑔ℎ = ℎ𝑔 for ℎ ∈ 𝐻. Now, consider 

𝑔𝐻𝑔ିଵ, where 𝑔 ∈ 𝐺. It is 

evident that: 

𝑔𝐻𝑔ିଵ = {𝑔ℎ𝑔ିଵ: ℎ ∈  𝐻}. 

Since 𝐻 commutes with all elements of 𝐺, we can rewrite this as: 

𝑔𝐻𝑔ିଵ = {ℎ𝑔𝑔ିଵ: ℎ ∈  𝐻}. 

But 𝑔 and 𝑔ିଵ cancel out, leading to: 

𝑔𝐻𝑔⁻¹ = {ℎ |  ℎ ∈ 𝐻} = 𝐻. 

Thus, 𝐻 ⊲ 𝐺. From Theorem 20, 𝑍(𝐷ଶସ) = 𝑍(𝐷ଶ(ଵଶ)) = {𝑒, 𝑅}. Now, let’s 

consider 𝐶ଶ. The subgroups of 𝐶ଶ = {𝑒, 𝑐} are the trivial subgroup {𝑒} and the whole 

group 𝐶ଶ. Since 𝐶ଶ is abelian, its centre is itself: 𝑍(𝐶ଶ) = 𝐶ଶ = {𝑒, 𝑐}. Therefore, 

we can write: 
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𝐷ଶସ × 𝐶ଶ =  {(𝑒, 𝑒), (𝑒, 𝑐), (𝑅, 𝑒), (𝑅, 𝑐), (𝑅², 𝑒), (𝑅², 𝑐), (𝑅³, 𝑒), (𝑅³, 𝑐) …,  

(𝑆𝑅¹¹, 𝑒), (𝑆𝑅¹¹, 𝑐)} 

This leads to: 

𝑍(𝐷ଶସ × 𝐶ଶ) = {(𝑒, 𝑒), (𝑒, 𝑐), (𝑅, 𝑒), (𝑅, 𝑐)}. 

Thus, 𝐻 = {(𝑅, 𝑒)} is a non-trivial subgroup of 𝑍(𝐷ଶସ × 𝐶ଶ), and since 𝐻 =

{(𝑅, 𝑒)} is the centre of 𝐷ଶସ and also a subgroup of the centre of 𝐺, we can say 𝐻 

is likewise a centre of 𝐺. Now, suppose 𝑔 = (𝑥, 𝑦) ∈ 𝐺, with 𝑥 ∈ 𝐷ଶସ and 𝑦 ∈ 𝐶ଶ. 

We need to show that 𝑔𝐻𝑔ିଵ = 𝐻. We examine two scenarios based on the value 

of 𝑦. 

            Case 1: If 𝑦 = 𝑒 (the identity element of 𝐶ଶ), then 𝑔 = (𝑥, 𝑒). In this case, 

𝑔𝐻𝑔⁻¹ = (𝑥, 𝑒)𝐻(𝑥, 𝑒)ିଵ. 

But (𝑥, 𝑒)ିଵ = (𝑥ିଵ, 𝑒), so 

𝑔𝐻𝑔ିଵ = {(𝑥, 𝑒)(𝑅, 𝑒)(𝑥⁻¹, 𝑒) ∶  (𝑅, 𝑒)  ∈  𝐻} 

=  {(𝑥𝑅𝑥⁻¹, 𝑒) ∶  (𝑅, 𝑒)  ∈  𝐻} 

                                        = {(𝑅, 𝑒)}  =  𝐻 

Therefore, 𝑔𝐻𝑔⁻¹ = 𝐻 is satisfied in this case. 

           Case 2: If 𝑦 = 𝑐 (a non-identity element of 𝐶ଶ), then 𝑔 = (𝑥, 𝑐). Similarly, 

𝑔𝐻𝑔ିଵ = (𝑥, 𝑐)𝐻(𝑥, 𝑐)ିଵ. 

But (𝑥, 𝑐)ିଵ = (𝑥ିଵ, 𝑐ିଵ) where 𝑐 ∙ 𝑐 =  𝑒 in 𝐶ଶ, implying that 𝑐 is its own inverse. 

Now, 

𝑔𝐻𝑔ିଵ = {(𝑥, 𝑐)(𝑅, 𝑒)(𝑥ିଵ, 𝑐ିଵ) ∶ (𝑅, 𝑒) ∈ 𝐻}, 

where (𝑥, 𝑐) ∙ (𝑅, 𝑒) = (𝑥𝑅, 𝑐) and (𝑥𝑅, 𝑐) ∙ (𝑥ିଵ, 𝑐ିଵ) = (𝑅, 𝑒) = 𝐻. Thus, 

for both cases, we have shown that 𝑔𝐻𝑔ିଵ =  𝐻, confirming that the centre 𝐻 =
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{𝑅, 𝑒} is indeed invariant under the action of any element 𝑔 in the group 𝐺. Hence, 

𝐻 ⊲ 𝐺. 

            We then prove that 𝐻 is characteristic, thus we need to demonstrate that for 

every automorphism 𝜑 of 𝐺, 𝜑(𝐻) = 𝐻. Let an automorphism of 𝐺 be 𝜑. Since 

𝐺 ≅ 𝐷ଶସ × 𝐶ଶ, 𝜑 is of the form 𝜑 =  𝜑₁ ×  𝜑₂, where 𝜑₁ is an automorphism of 

𝐷ଶସ, and 𝜑₂ is an automorphism of 𝐶ଶ. Since 𝐻 ≤ 𝑍(𝐺), it commutes with all 

elements of 𝐺. Therefore, for any automorphism 𝜑₁ of 𝐷ଶସ and 𝜑₂ of 𝐶ଶ, we have: 

𝜑₁(𝐻) = 𝐻, and  𝜑₂(𝐻) = 𝐻. Therefore, 𝜑(𝐻) = 𝜑₁(𝐻) × 𝜑₂(𝐻) = 𝐻 × 𝐻 = 𝐻. 

This shows that for any automorphism 𝜑 of 𝐺, 𝜑(𝐻) = 𝐻, implying the 

characteristic nature of subgroup 𝐻 in 𝐺. Hence, 𝐺 has a non-trivial subgroup 𝐻 

that is both normal and characteristic. 

Normal Subgroups of 𝑮 ≅ 𝑫𝟐𝟒 × 𝑪𝟐𝒏  and their Isomorphisms 

           The focus of objective four settles on identifying the normal subgroups of 

𝐺 ≅ 𝐷ଶସ × 𝐶ଶ and classifying them up to isomorphism. 𝐶ଶ  is not cyclic for 𝑛 >

1, thus we first investigate the normal subgroups within the group 𝐷ଶସ × 𝐶ଶ and 

analyze their structural properties up to isomorphism. 

Proposition 16 

Let 𝐺 = 𝐷ଶସ × 𝐶ଶ. Then G is solvable, contains non-trivial normal subgroups, but 

not a simple group. 

Proof. From Theorem 51, 𝐺 = 𝐷ଶସ × 𝐶ଶ has a non-trivial normal subgroup. 

Similarly, |𝐺| is not prime and by Theorem 40, 𝐺 is not simple. Hence, by Theorem 

41, 𝐺 is solvable. 

Theorem 52. Normal subgroups in 𝐷ଶସ × 𝐶ଶ and their isomorphism classes. 
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Proof. From Theorem 33 and Euler’s totient function, we can deduce the possible 

orders of elements in 𝐷ଶସ, which are given by 1, 2, 3, 4, 6, 8, 12, and 24. The count 

of elements of orders 1, 2, 3, 4, 6, 8, 12, and 24 are 1, 13, 2, 2, 2, 0, 4, and 0 

respectively. By Theorem 25, all the elements of a conjugacy class exhibit equal 

period. Thus, we deduce the conjugacy classes for rotations as follows 𝑍(𝐷ଵଶ) =

{𝑒, 𝑅}, 𝐶𝑙భమ
(𝑅ସ) = {𝑅ସ, 𝑅଼}, 𝐶𝑙భమ

(𝑅ଷ) = {𝑅ଷ, 𝑅ଽ}, 𝐶𝑙భమ
(𝑅ଶ) = {𝑅ଶ, 𝑅ଵ}, 

𝐶𝑙భమ
(𝑅) = {𝑅, 𝑅ଵଵ}, 𝐶𝑙భమ

(𝑅ହ) = {𝑅ହ, 𝑅} and that of reflection we have 

𝐶𝑙భమ
(𝑆) = {𝑆, 𝑅ଶ𝑆, 𝑅ସ𝑆, 𝑅𝑆, 𝑅଼𝑆, 𝑅ଵ𝑆}, and 𝐶𝑙భమ

(𝑅𝑆) = {𝑅𝑆, 𝑅ଷ𝑆, 𝑅ହ𝑆, 𝑅𝑆,

𝑅ଽ𝑆, 𝑅ଵଵ𝑆}  and since conjugacy is an equivalence relation it partitions 𝐷ଶ(ଵଶ) into 

conjugacy classes. Thus, by the class equation, we can write that 

𝐷ଶସ = {𝑒} ∪ {𝑅} ∪ {𝑅ସ, 𝑅଼} ∪ {𝑅ଷ, 𝑅ଽ} ∪ {𝑅ଶ, 𝑅ଵ} ∪ {𝑅, 𝑅ଵଵ} ∪ {𝑅ହ, 𝑅}  

∪ {𝑆, 𝑅ଶ𝑆, 𝑅ସ𝑆, 𝑅𝑆, 𝑅଼𝑆, 𝑅ଵ𝑆} ∪ {𝑅𝑆, 𝑅ଷ𝑆, 𝑅ହ𝑆, 𝑅𝑆, 𝑅ଽ𝑆, 𝑅ଵଵ𝑆}. 

Such that |𝐶𝑙(𝐷ଶସ)| = 9, thus the number of conjugacy classes of size 1(order of 

center), 2 and 6 are 2, 5 and 2 respective 𝑦. Now we consider the normal subgroups 

within 𝐷ଶସ. The subgroup of order 1 in 𝐷ଶସ is isomorphic to the cyclic group ℤଵ 

and is unique since the only subgroup of order 1 is the trivial subgroup {e}. Also, 

we consider, for any 𝑔 ∈ 𝐷ଶସ, 𝑔ଵ𝑒𝑔ିଵ = 𝑒, hence the subgroup of order 1 is 

trivially normal in 𝐷ଶସ. The 13 subgroups of order 2 in 𝐷ଶସ are isomorphic ℤଶ. The 

structures of these subgroups are 𝐻ଵ = {𝑆, 𝑒}, 𝐻ଶ = {𝑅𝑆, 𝑒}, 𝐻ଷ = {𝑅ଶ𝑆, 𝑒}, 𝐻ସ =

{𝑅ଷ𝑆, 𝑒}, 𝐻ହ = {𝑅ସ𝑆, 𝑒}, 𝐻 = {𝑅ହ𝑆, 𝑒}, 𝐻 = {𝑅𝑆, 𝑒}, 𝐻଼ = {𝑅𝑆, 𝑒}, 𝐻ଽ =

{𝑅଼𝑆, 𝑒}, 𝐻ଵ = {𝑅ଽ𝑆, 𝑒}, 𝐻ଵଵ = {𝑅ଵ𝑆, 𝑒}, 𝐻ଵଶ = {𝑅ଵଵ𝑆, 𝑒} and 𝐻ଵଷ = {𝑒, 𝑅}.       

By Proposition 7, 𝐶𝑙భమ
(𝑆) = {𝑆, 𝑅ଶ𝑆, 𝑅ସ𝑆, 𝑅𝑆, 𝑅଼𝑆, 𝑅ଵ𝑆} is not a subset of 𝐻ଵ, 
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𝐻ଷ, 𝐻ହ, 𝐻, 𝐻ଽ, 𝐻ଵଵ respectively. Similarly, 𝐶𝑙భమ
(𝑅𝑆) = {𝑅𝑆, 𝑅ଷ𝑆, 𝑅ହ𝑆,

𝑅𝑆, 𝑅ଽ𝑆, 𝑅ଵଵ𝑆} is not a subset of 𝐻ଶ, 𝐻ସ, 𝐻, 𝐻଼, 𝐻ଵ, 𝐻ଵଶ. So, we can say 

subgroups 𝐻ଵ, 𝐻ଶ, 𝐻ଷ, … , 𝐻ଵଶ ⋬  𝐷ଶସ.  However, 𝐶𝑙భమ
(𝑅) = {𝑅} ⊂ 𝐻ଵଷ and also 

by Proposition 4,  𝐶𝑙భమ
(𝑒) = {𝑒} ⊂ 𝐻ଵଷ, which implies 𝐻ଵଷ is a normal subgroup. 

The structure of subgroup of order 3 is 𝐾ଵ = {𝑒, 𝑅ସ, 𝑅଼}  isomorphic to ℤଷ  and 

hence is unique and a normal subgroup of 𝐷ଵଶ. The structure of the subgroups of 

order 4 are 𝑀ଵ = {𝑒, 𝑅ଷ, 𝑅, 𝑅ଽ}, 𝑀ଶ = {𝑒, 𝑅, 𝑆, 𝑅𝑆}, 𝑀ଷ = {𝑒, 𝑅, 𝑅𝑆, 𝑅𝑆}, 

𝑀ସ = {𝑒, 𝑅, 𝑅ଶ𝑆, 𝑅଼𝑆}, 𝑀ହ = {𝑒, 𝑅, 𝑅ଷ𝑆, 𝑅ଽ𝑆}, 𝑀 = {𝑒, 𝑅, 𝑅ସ𝑆, 𝑅ଵ𝑆} and 

𝑀 = {𝑒, 𝑅, 𝑅ହ𝑆, 𝑅ଵଵ𝑆}. The subgroup 𝑀ଵ is isomorphic to ℤସ is cyclic and 

unique, and hence it is normal in 𝐷ଶସ. However, the subgroups 𝑀ଶ, 𝑀ଷ, 𝑀ସ, 𝑀ହ, 𝑀 

and 𝑀 are isomorphic to 𝐷ଶ ≅ 𝐾ସ = 〈𝑎, 𝑏 |𝑎ଶ = 𝑏ଶ = (𝑎𝑏)ଶ = 𝑒〉. Here 

𝐶𝑙భమ
(𝑆) = {𝑆, 𝑅ଶ𝑆, 𝑅ସ𝑆, 𝑅𝑆, 𝑅଼𝑆, 𝑅ଵ𝑆} is not a subset of 𝑀ଶ, 𝑀ସ and 𝑀. 

Similarly, 𝐶𝑙భమ
(𝑅𝑆) = {𝑅𝑆, 𝑅ଷ𝑆, 𝑅ହ𝑆, 𝑅𝑆, 𝑅ଽ𝑆, 𝑅ଵଵ𝑆} is not a subset of 𝑀ଷ, 𝑀ହ 

and 𝑀. Hence, 𝑀ଶ, 𝑀ଷ, 𝑀ସ, 𝑀ହ, 𝑀 and 𝑀 are not normal subgroup in 𝐷ଶସ. The 

subgroups of order 6 are 𝑁ଵ = {𝑒, 𝑅ଶ, 𝑅ସ, 𝑅, 𝑅଼, 𝑅ଵ}, 𝑁ଶ = {𝑒, 𝑅ସ, 𝑅଼,

𝑆, 𝑅ସ𝑆, 𝑅଼𝑆}, 𝑁ଷ = {𝑒, 𝑅ସ, 𝑅଼, 𝑅𝑆, 𝑅ହ𝑆, 𝑅ଽ𝑆}, 𝑁ସ = {𝑒, 𝑅ସ, 𝑅଼, 𝑅ଶ𝑆, 𝑅𝑆, 𝑅ଵ𝑆} 

and 𝑁ହ = {𝑒, 𝑅ସ, 𝑅଼, 𝑅ଷ𝑆, 𝑅𝑆, 𝑅ଵଵ𝑆}. The subgroup 𝑁ଵ is isomorphic to ℤ which 

is cyclic and unique and therefore normal in 𝐷ଶସ. Subgroups 𝑁ଶ, 𝑁ଷ,…, 𝑁ହ are 

isomorphic to  𝐷ଷ. 𝐶𝑙భమ
(𝑆) ⊄ 𝑁ଶ, 𝐶𝑙భమ

(𝑆) ⊄ 𝑁ସ, 𝐶𝑙భమ
(𝑅𝑆) ⊄ 𝑁ଷ and 

𝐶𝑙భమ
(𝑅𝑆) ⊄ 𝑁ହ which implies 𝑁ଶ, 𝑁ଷ,…, 𝑁ହ are not normal subgroup in 𝐷ଶସ. 

Subgroups of order 8 are 𝑃ଵ = {𝑒, 𝑅ଷ, 𝑅, 𝑅ଽ, 𝑆, 𝑆𝑅ଷ, 𝑆𝑅, 𝑆𝑅ଽ}, 𝑃ଶ =

{𝑒, 𝑅ଷ, 𝑅, 𝑅ଽ, 𝑅𝑆, 𝑅ସ𝑆, 𝑅𝑆, 𝑆𝑅ଵ}    and 𝑃ଷ = {𝑒, 𝑅ଷ, 𝑅, 𝑅ଽ, 𝑅ଶ𝑆, 𝑅ହ𝑆, 𝑅଼𝑆, 𝑆𝑅ଵଵ}. 

These subgroups are isomorphic to 𝐷ସ, but subgroups 𝑃ଵ, 𝑃ଶ and 𝑃ଷ are not normal  
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subgroups of 𝐷ଵଶ since 𝐶𝑙భమ
(𝑆) ⊄ 𝑃ଵ, 𝐶𝑙భమ

(𝑅𝑆) ⊄ 𝑃ଶ and 𝐶𝑙భమ
(𝑅ଶ𝑆) ⊄ 𝑃ଷ. 

Subgroups of order 12 are 𝑆ଵ = {𝑒, 𝑅, 𝑅ଶ, 𝑅ଷ, 𝑅ସ, 𝑅ହ, 𝑅, 𝑅, 𝑅଼, 𝑅ଽ, 𝑅ଵ, 𝑅ଵଵ}, 𝑆ଶ =

{𝑒, 𝑅ଶ, 𝑅ସ, 𝑅, 𝑅଼, 𝑅ଵ, 𝑆, 𝑅ଶ𝑆, 𝑅ସ𝑆, 𝑅𝑆, 𝑅଼𝑆, 𝑅ଵ𝑆} and 𝑆ଷ = {𝑒, 𝑅ଶ, 𝑅ସ, 𝑅, 𝑅଼,

𝑅ଵ, 𝑅𝑆, 𝑅ଷ𝑆, 𝑅ହ𝑆, 𝑅𝑆, 𝑅ଽ𝑆, 𝑅ଵଵ𝑆}. The subgroup 𝑆ଵ ≅ ℤଵଶ  and hence is unique 

and a normal subgroup. 𝐶𝑙భమ
(𝑆) ⊂ 𝑆ଶ and likewise, 𝐶𝑙భమ

(𝑅𝑆) ⊂ 𝑆ଷ. We can also 

say that 𝑆ଶ and 𝑆ଷ have index 2 and from Proposition 8, 𝑆ଶ and 𝑆ଷ are normal 

subgroups. Hence, we obtain 9 normal subgroups of 𝐷ଶ(ଵଶ) and since the number 

of normal subgroups equals the number of conjugacy classes, 𝐺 exhibits rich 

internal symmetry. We then consider the normal subgroups in 𝐶ଶ and their structures 

up to isomorphism. The subgroups of 𝐶ଶ are the trivial subgroup {𝑒} and the group 

itself that is {𝑒, 𝑎} where 𝑎 is a non-identity element.  In 𝐶ଶ, both the trivial 

subgroup {𝑒} and the group 𝐶ଶ ≅ 𝑍ଶ itself are normal subgroups. Hence there are 

18 normal subgroups in 𝐷ଶସ × 𝐶ଶ, and by Theorem 31, we deduce their structures 

as follows: 

{({𝑒}, {𝑒}), ({𝑒}, {𝑒, 𝑎})}, {({𝑒, 𝑅}, {𝑒}), ({𝑒, 𝑅}, {𝑒, 𝑎})}, {({𝑒, 𝑅ସ, 𝑅଼}, {𝑒}), ({𝑒, 

𝑅ସ, 𝑅଼}, {𝑒, 𝑎})}, {({𝑒, 𝑅ଷ, 𝑅, 𝑅ଽ}, {𝑒}), ({𝑒, 𝑅ଷ, 𝑅, 𝑅ଽ}, {𝑒, 𝑎})}, {({𝑒, 𝑅ଶ, 𝑅ସ, 𝑅, 

𝑅଼, 𝑅ଵ}, {𝑒}), ({𝑒, 𝑅ଶ, 𝑅ସ, 𝑅, 𝑅଼, 𝑅ଵ}, {𝑒, 𝑎})},{({e, 𝑅, 𝑅ଶ, 𝑅ଷ, 𝑅ସ, 𝑅ହ, … , 𝑅ଵଵ},{e

}), ({e, 𝑅, 𝑅ଶ, 𝑅ଷ, 𝑅ସ, 𝑅ହ, … , 𝑅ଵଵ},{𝑒, 𝑎})}, {({𝑒, 𝑅ଶ, 𝑅ସ, … , 𝑅ଵ, 𝑆, 𝑅ଶ𝑆, … , 𝑅ଵ𝑆}, 

{𝑒}), ({𝑒, 𝑅ଶ, 𝑅ସ, … , 𝑅ଵ, 𝑆, 𝑅ଶ𝑆, … , 𝑅ଵ𝑆}, {𝑒, 𝑎})},{({𝑒, 𝑅ଶ, … , 𝑅ଵ, 𝑅𝑆, 𝑅ଷ𝑆, 𝑅ହ𝑆,

… , 𝑅ଵଵ𝑆}, {𝑒}), ({𝑒, 𝑅ଶ, … , 𝑅ଵ, 𝑅𝑆, 𝑅ଷ𝑆, 𝑅ହ𝑆, … , 𝑅ଵଵ𝑆}, {𝑒, 𝑎})}, {({𝑒, 𝑅, 𝑅ଶ, 𝑅ଷ,.. 

, 𝑅ଵଵ, 𝑅𝑆, 𝑅ଶ𝑆, 𝑅ଷ𝑆, … , 𝑅ଵଵ𝑆}, {𝑒})({𝑒, 𝑅, 𝑅ଶ, 𝑅ଷ, … , 𝑅ଵଵ, 𝑅𝑆, 𝑅ଶ𝑆, 𝑅ଷ𝑆, … , 𝑅ଵଵ𝑆} 

{𝑒, 𝑎})}. 
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We also observe that 𝐶ଶ
 is isomorphic to the additive group of the vector 

space 𝔽ଶ
, where each subgroup of 𝐶ଶ

 corresponds to a vector subspace of 𝔽ଶ
. Thus, 

the count of subgroups of 𝐶ଶ
 is given by ∑ ൫


൯

ଶ


ୀ , where ൫


൯

ଶ
 is the Gaussian 

binomial coefficient. Hence, the count of normal subgroups of 𝐺 yields 

9 ቀ∑ ൫


൯
ଶ


ୀ ቁ. 

Characterizing Finite Groups with Specific Cyclic Subgroup Count 

            In objective five, we describe and characterize finite groups 𝐺 for which 

cyclic subgroups count identical to |𝐺| − 6 is achieved by exploring the structural 

properties of the groups that lead to this cardinality. We take note that 𝐺 is an 

elementary abelian 2-group if and only if |𝐶(𝐺)| = |𝐺|. Motivated by the research 

of T�́�rn�́�uceanu (2016) who classified groups satisfying |𝐺| − 2 and a similar 

classification by Song and Zhou (2019) on groups with |𝐺| − 3. This research 

builds on the methodology used by these authors but in a different twist relies 

heavily on prime factorization and Sylow theorems to determine possible group 

orders and structures. 

Lemma 8 

Let G be a finite group with |𝐶(𝐺)| = |𝐺| − 6. Then |𝐺| ≅ 2 ∙ 3 ∙ 5, with 𝑚 ≤

3, 𝑛 ≤ 2, and 𝑟 ≤ 1. 

Proof. Let 𝐺 be an order 𝑛 finite group. Given 

                                                 |𝐶(𝐺)| = |𝐺| − 6                                              (7) 

and using Proposition 2 we write, for finite group 𝐺 

|𝐺| =  𝑛(𝜑(𝑑))



ୀଵ

= 𝑛 
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|𝐶(𝐺)| =  𝑛



ୀଵ

 

where 𝜑 represents Euler’s phi function, 𝑑ଵ, 𝑑ଶ, … , 𝑑 represent 𝑛’𝑠 positive 

divisors. For each 𝑖 ∈ {1, 2, . . . , 𝑘}, define 𝑛 =  |{𝐻 ∈ 𝐶(𝐺)|ห|𝐻| =𝑑}|. Thus 

|𝐺| − |𝐶(𝐺)| =  𝑛(𝜑(𝑑) − 1) = 6



ୀଵ

 

Then one can find some 𝑖 ∈ {1, 2, . . . , 𝑘} where, 

𝑛బ
(𝜑൫𝑑బ

൯ − 1) = 6 

And 

𝑛(𝜑(𝑑) − 1) = 0 for all 𝑖 ≠ 𝑖. 

Thus, 

𝑛బ
=

6

(𝜑൫𝑑బ
൯ − 1)

 

where (𝜑൫𝑑బ
൯ − 1) ≠ 0 and 𝜑൫𝑑బ

൯ ≠ 1. Since 𝑛బ
 must be a positive integer, 

𝜑൫𝑑బ
൯ − 1 must be a divisor of 6. Therefore, 𝜑൫𝑑బ

൯ − 1 ∈ {1, 2, 3, 6}, which 

implies 𝜑൫𝑑బ
൯ ∈ {2, 3, 4, 7}. This leads to: 𝜑൫𝑑బ

൯ = 2 where 𝑑బ
∈ {3, 4, 6}, 

𝜑൫𝑑బ
൯ = 3 where 𝑑బ

∈ {}, φ(di0) = 4 where 𝑑బ
∈ {5, 8, 10, 12}, 𝜑൫𝑑బ

൯ = 7 

where 𝑑బ
∈ {}. Considering the properties and relationships among the divisors of 

the group’s order, we can deduce the order of 𝐺 from 𝑑బ
∈ {3, 4, 6} and 𝑑బ

∈

{5, 8, 10, 12}. By Theorem 33, |G| must be of the form |𝐺| ≅ 2 ∙ 3 ∙ 5 where 

𝑚 ≤ 3, 𝑛 ≤ 2, 𝑟 ≤ 1 and 𝑝ଵ < 𝑝ଶ < 𝑝ଷ. 

Lemma 9 

Let 𝐺 be a group of order 𝑝, where 𝑝 is a prime and 1 ≤ 𝑘 ≤ 3. Then, 𝐺 ≅ 𝐶ೖ, 
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or 𝐺 ≅ 𝐶ೖభ × 𝐶ೖమ × ⋯ × 𝐶ೖ  with 𝑘ଵ + 𝑘ଶ + ⋯ + 𝑘 = 𝑘, where for some 𝑘, 

the count of cyclic subgroups satisfies |𝐺| − 6 in 𝐺. 

Proof. Since 𝐺 is a 𝑝-group, by Theorem 36, it contains a nontrivial centre, 𝑍(𝐺). 

If 𝐺 is cyclic, then 𝐺 ≅ 𝐶ೖ and the proof is complete. If 𝐺 is not cyclic, we can 

explore its structure using group extensions. We first note 

that 𝐺/𝑍(𝐺) is a group of smaller order, say 𝑝 where 𝑗 < 𝑘. If the extension of 

𝑍(𝐺) by 𝐺/𝑍(𝐺) splits, then 𝐺 can be written as a direct product 𝐺 ≅

𝑍(𝐺) × 𝐺/𝑍(𝐺). We apply this recursively to decompose 𝐺 into a product of 

smaller cyclic p-groups, ultimately reaching the form 𝐺 ≅ 𝐶ೖభ × 𝐶ೖమ × ⋯ ×

𝐶ೖ . If the extension does not split, 𝐺 remains indecomposable and cyclic of order 

𝑝. Thus, 𝐺 is either cyclic or a direct product of cyclic 𝑝-groups, depending on the 

behavior of the extension. But 1 ≤ 𝑘 ≤ 3, so we have three cases: 

Case 1: 

For 𝑘 = 1, it implies |𝐺| = 𝑝, then 𝐺 is cyclic. Thus, the only divisors of 𝑝 are 1 

and 𝑝. Therefore, there exists an element 𝑥 ∈ 𝐺 such that |𝑥| = 𝑝, and the subgroup 

generated by 𝑥, denoted ⟨𝑥⟩, is the entire group 𝐺, meaning 𝐺 = ⟨𝑥⟩ ≅ 𝐶𝑝. Since 

𝐺 is cyclic, the only subgroups of 𝐺 are {𝑒} and 𝐺. We observe, case 1 has no group 

that satisfies Eq. (7). 

Case 2: 

For 𝑘 = 2, |𝐺| = 𝑝ଶ. This implies 𝐺 contains elements of order 𝑝. Consider |𝑥| =

𝑝 in 𝐺. We note that the subgroup generated by 𝑥, ⟨𝑥⟩, has order 𝑝. Again, since 

|𝐺| = 𝑝ଶ, there must exist an element 𝑦, not in ⟨𝑥⟩. Since 𝑦 is not in ⟨𝑥⟩, the 

subgroup ⟨𝑦⟩ is distinct from ⟨𝑥⟩. But |⟨𝑦⟩| divides |𝐺|, so it must be either 𝑝 or 𝑝ଶ. 
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If ⟨𝑦⟩ has order 𝑝ଶ, then 𝐺 is cyclic and isomorphic to 𝐶మ. If ⟨𝑦⟩ has order 𝑝, then 

𝐺 is not cyclic and is isomorphic to 𝐶 × 𝐶. For 𝐶మ, we have 3 cyclic subgroups: 

{𝑒}, ⟨𝑥⟩, and 𝐺. Similarly, 𝐶 × 𝐶 has 4 cyclic subgroups: ⟨𝑥⟩, ⟨𝑦⟩, ⟨(𝑥, 𝑒)⟩, and 

⟨(𝑒, 𝑦)⟩. So, for 𝐺 to satisfy Eq. (7), 𝐺 ≅ 𝐶మ ≅ 𝐶ଽ. 

Case 3: 

For 𝑘 = 3, |𝐺| = 𝑝ଷ. Similarly, by Theorems 36, 𝐺 must contain elements of order 

𝑝. Consider a case 𝑥 ∈ 𝐺, |𝑥| = 𝑝, so ⟨𝑥⟩ is a cyclic subgroup of order 𝑝. Again, let 

𝑦 be an element in 𝐺 where 𝑦 ∉ ⟨𝑥⟩. But, |⟨𝑦⟩| divides |𝐺|, so ⟨𝑦⟩ can have order 

𝑝, 𝑝ଶ, or 𝑝ଷ. Now, suppose |⟨𝑦⟩| = 𝑝ଷ, then 𝐺 is cyclic and 𝐺 ≅ 𝐶య . If |⟨𝑦⟩| =

𝑝ଶ, then 𝐺 is not cyclic, but it is a nontrivial extension of ⟨𝑥⟩ ≅ 𝐶. Similarly, if 

|⟨𝑦⟩| = 𝑝, then 𝐺 is non-cyclic and structurally equivalent to 𝐶 × 𝐶 × 𝐶. Now, 

counting cyclic subgroups, if 𝐺 ≅ 𝐶య, the number of cyclic subgroups corresponds 

to the divisors of 𝑝ଷ, which are {1, 𝑝, 𝑝ଶ, 𝑝ଷ}. Hence, the cyclic subgroups are {𝑒}, 

⟨𝑥⟩, ⟨𝑥⟩, 𝐺, giving a total of 4 cyclic subgroups. Also, when 𝐺 ≅ 𝐶 × 𝐶 × 𝐶, 

the cyclic subgroups count is 𝑝ଶ + 𝑝 + 1. Here, |𝐺| = 𝑝ଷ has no group that satisfies 

Eq. (7). 

           We then look at the finite groups’ structures of composite orders |𝐺| =

𝑝𝑞, with 𝑝 and 𝑞 as distinct primes. We mainly study the interaction between 

group extensions and Sylow subgroups, using these to uncover both abelian and 

non-abelian group structures. With a focus on the role of automorphisms in defining 

the nature of extensions, this proof sheds new light on the group-theoretic 

characteristics of extensions. 
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Lemma 10 

Let |𝐺| = 𝑝𝑞, with 𝑘, 𝑙 ≤ 3 and 𝑔𝑐𝑑(𝑘, 𝑙) = 1. Then 𝐺 ≅ 𝑁 × 𝐺/𝑁 or 𝐺 ≅ 𝑁 ⋊

𝐺/𝑁, where count of cyclic subgroups satisfies |𝐺| − 6 for specific 𝑘 and 𝑙. 

Proof. Suppose |𝐺| = 𝑝𝑞 includes a normal subgroup 𝑁 where |𝑁| = 𝑝. Then 

𝐺/𝑁 is of order 𝑞, meaning 𝐺/𝑁 is structurally equivalent to 𝐶. Therefore, we 

have a short exact sequence: 

1 → 𝑁 → 𝐺 → 𝐺/𝑁 ≅ 𝐶 → 1 

where 𝐺 is an extension of 𝑁 ≅ 𝐶ೖ by 𝐶. Now, if the extension splits, 𝐺 is 

structurally equivalent to the direct product 𝐶ೖ × 𝐶. Here, every element of 𝐺 

can be written as a pair (𝑥, 𝑦) where |𝑥| = 𝑝 and |𝑦|  =  𝑞, and all elements 

commute because 𝐺 is abelian. Alternatively, if the extension does not split, then 𝐺 

is considered non-abelian. Thus, 𝐺 is a semi-direct product, where 𝐺 ≅ 𝑁 ⋊ 𝐺/𝑁. 

Here, the quotient group 𝐺/𝑁 acts nontrivially on 𝑁 via conjugation, introducing 

non-commutative relations into the group structure. We now examine several cases 

of finite groups 𝐺 of order |𝐺| = 𝑝𝑞 and note that 𝑔𝑐𝑑(𝑘, 𝑙) = 1, which gives 

orders of 𝐺 as 𝑝𝑞, 𝑝ଵ𝑞, 𝑝𝑞ଵ, 𝑝ଶ𝑞, 𝑝𝑞ଶ, and 𝑝𝑞 for all 𝑝 < 𝑞 where 𝑘 ≤ 3 and 

𝑙 ≤ 3. 

Case 1: |𝑮| = 𝒑𝒒 

For |𝐺| = 𝑝𝑞 with 𝑝 < 𝑞, Theorem 39 imply 𝑛 = 𝑛 = 1, thus 𝐺 ≅ 𝑍𝑝 × 𝑍𝑞 ≅

𝑍. The subgroup structure yields four distinct cyclic subgroups: 1, 𝑝, 𝑞, 𝑝𝑞, 

confirming 𝐺 ≅ 𝐶ଵ and enriching the classification of period 𝑝𝑞 abelian groups 

satisfying Eq. (7). 
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Case 2: |𝑮| = 𝒑𝟐𝒒 

For |𝐺| = 𝑝ଶ𝑞, if 𝑛 = 1, 𝐺 ≅ 𝑍మ × 𝑍 , with 6 cyclic subgroups. When 𝑛  = 𝑞, 

𝐺 ≅ 𝑍మ × 𝑍, where 𝐴𝑢𝑡(𝑍మ) ≅ 𝑍 governs the non-abelian structure. For 𝑝 =

2, this yields count of cyclic subgroup of 𝑝𝑞 + 4 and 𝐺 ≅ 𝐷ଶ which aligns with 

Eq. (7), introducing non-commutative relations through the quotient action. 

Case 3: |𝑮| = 𝒑𝒒𝟐 

For |𝐺| = 𝑝𝑞ଶ, if 𝑛 = 1, 𝐺 ≅ 𝑍 × 𝑍మ , with 6 cyclic subgroups. If 𝑛 = 𝑝, 𝐺 ≅

𝑍మ ⋊ 𝑍, resulting in a non-abelian structure 𝐺 ≅ 𝐷ଵ଼ with cyclic subgroup count 

of 𝑞ଶ + 3 and consistent with Eq. (7). 

Case 4: |𝑮| = 𝒑𝟐𝒒𝟐 

For |𝐺| = 𝑝ଶ𝑞ଶ, if both Sylow subgroups are normal, 𝐺 ≅ 𝑍మ × 𝑍మ  , yielding 9 

cyclic subgroups. Otherwise, 𝐺 is a non-trivial extension of 𝑍మ by 𝑍మ or vice 

versa, with non-trivial automorphisms leading to new structural variations. Here, 

no group conforms to Eq. (7) 

Case 5: Higher-Order Extensions 

For higher-order cases like 𝑝ଷ𝑞, 𝑝ଶ𝑞ଷ, 𝑝ଷ𝑞ଶ, and 𝑝ଷ𝑞ଷ, if 𝑛 = 1 and 𝑛 = 1, 𝐺 is 

abelian and takes the form 𝐺 ≅ 𝑍ೌ × 𝑍್, with cyclic subgroups corresponding to 

divisors of |𝐺|. When 𝑛 > 1 or 𝑛 > 1, non-trivial extensions arise, and 𝐺 ≅ 𝑁 ⋊

𝑄, where automorphisms from Q act nontrivially on 𝑁, as in 𝐺 ≅ 𝐷ଶସ when |𝐺| =

𝑝ଷ𝑞 and |𝐶(𝐺)| = 𝑝ଶ𝑞 + 3. At this point, we address the formulation of our main 

theorem: 
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Theorem 53. Let 𝐺 be finite-ordered. Then 𝐺 has the characteristics of |𝐶(𝐺)| =

|𝐺| − 6 if 𝐺 include 𝐷ଶସ, 𝐶ଵଶ, 𝐶ଽ, 𝐶ଵ, 𝐷ଵ଼, 𝐷ଵ. 

Proof. By Proposition 3 and Theorem 22, we observe that 𝐷ଶସ, 𝐶ଵଶ, 𝐶ଽ, 𝐶ଵ, 𝐷ଵ଼,  

and 𝐷ଵ satisfy Eq. (7) 

            Conversely, Theorem 53 holds, from the analysis put fort in Lemmas 8, 9 

and 10. This complete our proof. 

Chapter Summary 

           This chapter presents the results of this research on characterizing finite 

groups with a specific alpha invariant value. The study further applies the Orbit-

Stabilizer Theorem to study centralizers in direct products, examines the invariance 

of subgroups under conjugation and automorphisms, classifies normal subgroups 

in 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ along with their isomorphism structures, and characterizes finite 

groups based on their cyclic subgroup count. 
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CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Overview 

            A summary of the research’s key findings and their implications is provided 

in this chapter. Highlights of how the study advances the understanding of group 

structures through proving conjectures, analyzing subgroup properties, and 

classifying important structural elements are presented. The conclusions emphasize 

how these findings have wider implications for group theory. The chapter also 

offers research recommendations, outlining possible avenues for applying these 

discoveries to different mathematical contexts. 

Summary 

            The principal aim of the research centred on a conjecture, properties, 

structure and characteristics of finite groups. The study addresses key concepts, 

utilizes rigorous techniques and most significantly review related literature and 

extent of contribution to achieve stated objectives. The researcher employs detailed 

theoretical analysis using group theory principles to validate the conjecture and 

determine the specific conditions under which the group structure 𝐷ଶସ × 𝐶ଶ holds. 

Next, the research focuses on determining whether such a group possesses a non-

trivial centre by analysing the conjugacy classes and centralizers within the direct 

product structure. This the researchers proves that indeed a non-trivial centre exist 

and uses the result as a buildup for subsequent research into grey areas. The 

research further introduce a novel approach by exploring the existence of non-

trivial subgroups within 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ that are both normal and characteristic. Our 
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proof demonstrates that such a subgroup, specifically 𝐻 = {(𝑅, 𝑒)}, possesses 

these properties, which is not immediately evident within this group structure. To 

reinforce our theoretical findings, we employ the GAP software, utilizing its 

computational properties to compute and analyze the elements and subgroups of 

𝐷ଶସ. This computational verification serves as a complementary tool, enhancing the 

robustness of our results by cross-referencing them with traditional proof methods. 

In addition, we conduct a detailed examination of the subgroup structure of 𝐷ଶସ and 

its interplay with the cyclic group 𝐶ଶ. By explicitly enumerating and analyzing 

subgroups arising from various element combinations, we provide a comprehensive 

understanding of the algebraic properties of these groups. Finally, we investigate 

the interaction between the centre 𝑍(𝐺) and its subgroups, demonstrating that 𝐻 is 

a normal and characteristic subgroup within the centre and, by extension, within 

the larger group 𝐺. This analysis highlights the intricate connection between 

subgroup properties and central elements, offering a better comprehension of 

group’s structure. Another important aspect of the research is also devoted to 

providing a detailed analysis of these normal subgroups, revealing their structural 

properties and determining how they fit into the broader group structure. Finally, 

the research characterizes finite groups 𝐺 for which the cyclic subgroups count is 

|𝐺| − 6. The group 𝐺 is shown to be structurally equivalent to one of the following: 

𝐷ଶସ, 𝐶ଵଶ, 𝐶ଽ, 𝐶ଵ, 𝐷ଵ଼, or 𝐷ଵ. 

Conclusions 

            This research significantly advances the understanding of the structural 

properties of direct product of 𝐷ଶସ and 𝐶ଶ. The findings contribute to group theory 
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by proving a conjecture about 𝛼(𝐺), exploring the centre and normal subgroups, 

and characterizing groups with a unique cyclic subgroup count. Specifically, the 

research looked at 

1. We explored the relationship between a non-nilpotent group and the alpha 

value and proved a conjecture posed in a research paper, (Cayley, 2021). As 

a consequence, we set values of n for which the conjecture holds. Thus, we 

demonstrated that when 𝛼(𝐺) =
ଷ

ସ
  and 𝐺 is non-nilpotent, 𝐺 ≅ 𝐷ଶସ × 𝐶ଶ, 

with 𝑛 ∈ {0, 1}. 

2. We established that for 𝐷ଶସ × 𝐶ଶwith 𝛼(𝐺) =
ଷ

ସ
  and 𝐺 not nilpotent, 𝐺 has 

a non-trivial centre. By analysing the conjugacy classes and centralizers 

within the direct product structure, it is shown that any element 𝑥 not in the 

centre leads to a contradiction, thereby proving that such 𝑥 must be in the 

centre, ensuring it is non-trivial. 

3. We proved that if 𝐷ଶସ × 𝐶ଶ where 𝛼(𝐺) =
ଷ

ସ
 and 𝐺 is not nilpotent, then 𝐺 

posses non-trivial subgroup that is both normal and characteristic. The proof 

employed both computational and theoretical techniques. We established 

the centralizer structure and demonstrated the invariance of the subgroup 

𝐻 = {(𝑅, 𝑒)} under conjugation and automorphisms. 

4. We investigated the normal subgroups within 𝐷ଶସ × 𝐶ଶ and their structural 

properties up to isomorphism. We demonstrated that 𝐷ଶସ × 𝐶ଶ is not a 

simple group but contains non-trivial normal subgroups, thus making it 

solvable. The analysis included identifying the orders and structures of 

normal subgroups in 𝐷ଶସ using Euler’s totient function and conjugacy 
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classes. Normal subgroups of 𝐶ଶ were also examined. In all, we classified 

the normal subgroups of 𝐷ଶସ × 𝐶ଶ, thereby enhancing the understanding of 

its subgroup structure. 

5. Finally, we investigated a theorem concerning the cyclic subgroup count of 

finite groups 𝐺 where |𝐶(𝐺)| = |𝐺| − 6. From our analysis we conclude 

that 𝐺 is one of the groups 𝐷ଶସ, 𝐶ଵଶ, 𝐶ଽ, 𝐶ଵ, 𝐷ଵ଼, or 𝐷ଵ, when |𝐶(𝐺)| =

|𝐺| − 6. 

Recommendations 

            Drawing upon the findings from our research, we suggest considering the 

following recommendations for future research: 

1. The findings of this study confirm the conjecture for groups of the form 𝐺 ≅

𝐷ଶସ × 𝐶ଶ with 𝛼(𝐺) =
ଷ

ସ
 . A natural direction for future research is to 

explore whether similar structural characteristics hold for other non-

nilpotent groups. Extending this result to a wider class of direct products, 

particularly those involving dihedral groups of different orders or other non-

abelian finite groups, may reveal deeper connections between 𝛼(𝐺) and 

group structure. 

2. The study demonstrates that, 𝐷ଶସ × 𝐶ଶ is solvable but not simple. To 

improve the categorization of such structures, a more comprehensive study 

of the circumstances in which a direct product of finite groups maintains 

solvability or achieves simplicity would be beneficial. It may be possible to 

gain a more thorough knowledge of how these characteristics appear in 
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direct products by establishing generic criteria for the solvability and 

simplicity of 𝐺ଵ × 𝐺ଶ under various subgroup configurations. 

3. Exploration of higher-order cases or other variations on cyclic subgroup 

counts. 
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