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ABSTRACT

Rank transmutation maps have emerged as one of the adopted methods for

proposing new probability distributions. This study used the quartic rank trans-

mutation to introduce three new probability distributions: the Quartic Trans-

muted Exponential Distribution, Quartic Transmuted Lindley Distribution, and

Quartic Transmuted Rayleigh Distribution. The construction of these distribu-

tions involves meticulously examining mathematical concepts, encompassing

probability density functions, survival functions, moments, entropies, and or-

der statistics. Visual aids, including cumulative distribution functions, proba-

bility density functions, and hazard rate functions, enhance the comprehension

of distribution characteristics. A comprehensive simulation study underscores

a consistent trend: a reduction in bias for maximum likelihood estimation and

refinement in standard errors with increasing sample size. The practical applica-

bility of these newly proposed distributions was demonstrated using real-world

datasets. The quartic transmuted exponential distribution was effectively em-

ployed to model the lifetime of 50 devices, referencing data from Aarset’s study

in 1987. Similarly, the quartic transmuted Lindley distribution was adeptly ap-

plied to remission times (measured in months) of 128 bladder cancer patients.

Finally, the quartic transmuted Rayleigh distribution was successfully utilized

to analyze a dataset comprising 72 instances of exceedance from the Wheaton

River flood data near Carcoss in Yukon Territory, Canada. Evaluation crite-

ria such as log-likelihood, AIC, AICc, and BIC affirm the superior flexibility

and performance of the proposed distributions. This research significantly con-

tributes to distribution theory, offering innovative methods to enhance distribu-

tion adaptability in diverse applications.
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CHAPTER ONE

INTRODUCTION

This chapter provides a comprehensive introduction to the thesis, outlin-

ing the motivation and background for the study. It includes the problem state-

ment, which highlights the gaps and challenges addressed by the research. The

chapter also details the study’s objectives, setting the stage for the subsequent

chapters. Key elements such as the significance and the scope of the study are

presented. Finally, an overview of the thesis structure is provided to guide the

reader through the journey of the research. Each chapter is briefly described,

giving insights into how the thesis unfolds to address the stated objectives and

achieve the research aims.

Background to the Study

Statistics, as a discipline within mathematical science, encompasses the

process of collecting, organizing, analyzing, and drawing well-founded con-

clusions about a population. This field consists of two primary branches: de-

scriptive statistics and inferential statistics. Descriptive statistics involves the

systematic summarization and depiction of key characteristics of data, utiliz-

ing various techniques such as means, percentages, graphs, and sums. These

methods facilitate the extraction of meaningful insights and patterns from the

data, enabling researchers to grasp its essential features and properties. On the

other hand, inferential statistics aims to make informed judgments and decisions

about a population by utilizing information obtained from a sample. By drawing

inferences from the sample data, statisticians strive to generalize their findings

and make conclusions that hold true for the broader population. While both de-

scriptive and inferential statistics play crucial roles, statisticians often emphasize

inferential statistics, prioritizing the process of making accurate inferences over

the descriptive aspects. Consequently, in recent years, the significance and em-

phasis placed on inferential statistics have grown substantially within the field
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of statistics.

At the core of statistical inference lies a vast toolbox of statistical meth-

ods and distributions employed by statisticians. These tools are essential for

making scientific developments and drawing conclusions amidst inherent uncer-

tainty and variability. By harnessing these statistical methods and distributions,

researchers gain the means to explore and understand the complexities of real-

world phenomena. These methods provide systematic frameworks for analyzing

data, identifying patterns, quantifying relationships, and uncovering hidden in-

sights. They offer robust approaches to investigate research questions, validate

hypotheses, and make well-informed decisions based on empirical evidence.

They provide a fundamental basis for quantifying uncertainty, estimating prob-

abilities, and performing statistical tests. By fitting observed data to appropriate

distributions, researchers gain valuable insights into the underlying mechanisms

and dynamics governing real-world phenomena.

Consequently, given the wide applicability and utility of statistical meth-

ods and distributions, their usage have become pervasive across various sci-

entific disciplines. From medicine to economics, sociology to environmental

studies, researchers in virtually all fields rely on statistical tools for data anal-

ysis and interpretation. This widespread adoption underscores the importance

of statistical inference in advancing knowledge and facilitating evidence-based

decision-making in the pursuit of scientific understanding.

Recognizing the profound significance of statistical methods and distribu-

tions, extensive efforts are devoted to the development of comprehensive col-

lections of classical probability distributions, as well as the associated statistical

methodologies. These classical distributions have been used in modelling sta-

tistical data in diverse domains within the applied and social sciences. However,

the successful utilization of these distributions needs a thorough understanding

of the underlying assumptions and a familiarity with the real-life phenomena to

which specific distributions can be applied. For example, in fields like reliability

2
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engineering, statistical methods and distributions play a vital role in modelling

the failure rate of machines. By utilizing these tools, researchers can predict po-

tential malfunctions, optimize maintenance strategies, and enhance the overall

reliability of systems. Environmental science heavily relies on statistical meth-

ods and distributions to investigate and quantify environmental pollution. These

tools enable scientists to analyse pollutant concentrations, identify sources of

pollution, and assess the impact on ecosystems and human health. In the realm

of medical science, statistical methods and distributions are instrumental in ex-

amining the survival time of patients after surgery. Through these analyses,

researchers can assess the effectiveness of different treatments, identify relevant

risk factors, and estimate patient prognosis. Actuarial science makes extensive

use of statistical methods and distributions to model insurance loss data. This

enables insurers to evaluate risks, determine appropriate premiums, and estab-

lish reserves that align with potential liabilities.

The aforementioned examples merely scratch the surface of the diverse

applications of statistical methods and distributions across various scientific

fields. By leveraging these tools, researchers gain valuable insights into com-

plex phenomena, make informed predictions, and derive meaningful conclu-

sions from empirical data. Consequently, a comprehensive understanding of the

assumptions underlying statistical distributions and their appropriate usage is

crucial for their effective application in practical contexts. This understanding

fosters advancements in scientific research, facilitates evidence-based decision-

making, and ultimately contributes to the progress of knowledge across disci-

plines.

Despite the usefulness of classical probability distributions, the intricate

nature of certain research often gives rise to data sets that are challenging to

model using these distributions. This is because classical distributions may not

always offer a satisfactory fit to such complex data. As Allison (1995) suggests,

many classical probability distributions may not be adequate for analysing intri-

3
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cate phenomena, leading to results that are more of an approximation than a true

representation of reality. Consequently, researchers in recent years have been ac-

tively exploring various methods to extend, generalize, or modify existing clas-

sical distributions. Researchers are also endeavouring to develop entirely new

statistical distributions that exhibit greater flexibility in modelling real-life data.

The primary objective is to create distributional models that can more accurately

capture the nuances of complex phenomena, leading to improved goodness of

fit. By extending, generalizing, or modifying existing classical distributions,

researchers aim to address the limitations posed by traditional approaches and

cater to the intricacies of real-life data. This, in turn, enhances the accuracy

and reliability of statistical analyses and facilitates a more comprehensive un-

derstanding of intricate research areas.

For this reason, numerous generalization or transformation methods have

been proposed in the existing literature. These methods, put forward by re-

searchers such as Pearson (1895), Johnson (1949), Tukey (1960), Eugene, Lee,

and Famoye (2002), Zografos and Balakrishnan (2009), and AAlzaatreh, Lee

and Famoye (2013) aim to extend or transform existing distributions or develop

entirely new distributions. According to Alzaatreh et al. (2013), the develop-

ment of new methods and distributions serves several essential purposes. First, it

involves creating skewness in distributions that are otherwise symmetrical. This

is crucial for capturing asymmetry and tail behaviour in real data sets. Second,

the focus is on developing heavy-tailed distributions that can effectively model

a wide range of real data sets with varying degrees of tail behaviour. Third, the

objective is to define special distributions that encompass various types of haz-

ard rate functions, allowing for the modelling of different failure patterns and

durations. Fourth, the aim is to generate distributions with different types of

skewness, enabling the representation of diverse forms of asymmetry in data.

Finally, the goal is to develop distributions that consistently offer better

fits to the underlying data compared to other generated distributions. That is,

4
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these new generalized, extended, or developed distributions are proposed with

the aim of generating distributions with non-monotonic failure rates, heavy tails,

flexibility in application, and workable distribution.

Problem Statement

Several approaches to developing new probability distributions are dis-

cussed in the literature (Johnson (1949), Tukey (1960), Eugene et al. (2002),

Zografos and Balakrishnan (2009), and Alzaatreh et al. (2013)). However, rank

transmutation maps have recently emerged as a well-situated approach for gen-

erating new statistical distributions. Shaw and Buckley (2009) introduced the

concept of transmuting probability distributions, proposing the quadratic rank

transmutation map (QRTM) distributions. They utilized these distributions to

extend non-Gaussian distributions by incorporating additional parameters into

their distributional functions. Several authors (Aryal & Tsokos (2011), Elbatal

& Aryal (2013), Merovci (2013a)) have used the QRTM method to obtain new

distributions. However, according to Granzotto et al. (2017), QRTM distribu-

tions capture the intricacies of unimodal datasets, but real-life data often pos-

sesses greater complexity, such as multimodal or bimodal characteristics. Con-

sequently, there are instances where the QRTM may not be suitable for fitting

such intricate distributions. In essence, the quadratic transmutation method cap-

tures the quadratic patterns within data, thus imposing a limitation on its appli-

cability.

To extend the QRTM to model bimodal (multi-modal) data, Granzotto,

Louzada and Balakrishnan (2017) introduced a new family of transmuted distri-

butions called the cubic rank transmutation map (CRTM). Several authors (Rah-

man, AL-Zahrani & Shahbaz, 2018; Celik, 2018; Bhatti, Hamedani, Najibi &

Ahmad, 2020) have applied the CRTM to obtain new probability distributions.

However, there are some situations where one needs to model some complex

5
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data that both the quadratic and the cubic ranks transmutation distributions can-

not offer a reasonable fit to the data. In such circumstances, there is a need to

develop a more suitable method or distribution to model the complexity of the

data. According to Granzatto et al. (2017), when data is bimodal, a higher func-

tion can be thought of as a good fit for the data. The authors further stated that

for each order added to the transmutation map, a new parameter is added to the

model. That is, by increasing the order, the model becomes more flexible than

the previous order.

Few researchers have tried to generalize the rank-transmuted map. For

instance, Riffi (2019), studied higher-rank transmuted families of distribution.

Further, Ali and Athar (2021) studied the generalized rank-mapped transmuted

distribution. In this thesis, an attempt is made to propose the quartic transmuted

distributions of gamma–type probability distributions and deduce some of their

statistical properties. The proposed distributions will be used to model complex

data arising in financial, environmental, and other areas of life.

Motivation for the Study

The motivation behind this study is the transmuted distributions’ ability

to offer a high level of flexibility and suitability for fitting data. Though both

the QRTM and CRTM have been studied in the literature, they at a point fail to

fit more complex data reasonably well. Hence, the researcher is motivated to

study a higher degree of the rank transmutation map to provide more flexibility

and tractability to data. Thus, this study aims at developing a new model from

existing distributions using the quartic transmuted rank map. Higher transmuted

distributions offer a more flexible approach to modelling complex data.

6
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Objective of the Study

The primary objective of this thesis is to develop more flexible probability

distributions over the classical probability distributions. The specific objectives

are to:

1. To propose an extension of the gamma–type probability distributions us-

ing the quartic rank transmutation map.

2. To derive the statistical characteristics of the proposed distributions (mo-

ments, moment-generating functions, order statistics, quantile functions,

etc.).

3. To find parameter estimates of the proposed new distributions.

4. To demonstrate the applications of the new distributions using simulation

and real data sets.

Significance of the Study

1. The development of a new statistical distribution will expand the range

of tools available to statisticians, providing greater flexibility in analysing

data across various fields.

2. The new distribution will improve the accuracy and robustness of statisti-

cal analysis.

3. The new distribution will offer a better fit for non-standard or unusual

datasets.

4. The development of a new statistical distribution will stimulate innova-

tion in statistical theory and methodology, leading to new techniques and

algorithms that can improve statistical inference and decision-making.

7
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5. It will encourage interdisciplinary collaborations and the adoption of new

statistical techniques by researchers from diverse fields, leading to a better

understanding of complex phenomena and real-world applications.

Organization of the Thesis

Chapter One presents the background of the study, statement of problem,

motivation, objectives, and significance of the study. Chapter Two describes

generators (approaches to developing, modifying, or extending probability dis-

tributions). The chapter also comprehensively reviews the quadratic and cubic

rank transmuted distributions. Chapter Three presents the derivation of the for-

mula for quartic rank transmuted distributions, and definitions of some basic

statistical terms and describes gamma-type distributions. Chapter Four deals

with new classes of probability distribution called the quartic transmuted dis-

tributions. Various statistical properties are explored. Estimation of the param-

eters of the family is performed through maximum likelihood estimation. A

simulation study is conducted to estimate the model parameters of the quartic

transmuted gamma-type distributions. Applications of the quartic transmuted

gamma-type distributions are demonstrated. Chapter Five is concerned with the

conclusions and possible further extensions for this research work.

8
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CHAPTER TWO

LITERATURE REVIEW

Introduction

The exploration and development of statistical distributions have long been

integral components of the field of statistics. The comprehensive review anal-

yses conducted by Kotz and Vicari (2005) sheds light on the fundamental be-

ginnings of statistical distribution development. The extensive work of Pearson

(1895) played a pivotal role in establishing the underpinning for a multitude of

methodologies aimed at generating diverse families of statistical distributions.

Lee, Famoye and Alzaatreh (2013) provided a comprehensive and thor-

ough overview of methods developed before 1980, along with an in-depth ex-

amination of those introduced after the 1980s. This literature review adopts their

comprehensive framework to examine the evolution of these methods and their

applications to various datasets. By delving into this timeline, we aim to present

a comprehensive overview of the evolution of techniques for constructing sta-

tistical distributions. This investigation underscores the dynamic nature of the

field and its continual growth, providing insights into the progress made in the

development of these fundamental tools for statistical analysis. Additionally,

the chapter delves into the examination of quadratic and cubic transmuted dis-

tributions, along with an overview of the diverse research endeavours conducted

on these distributions.

Methods of Developing Statistical Distributions Before 1980

Before 1980, various methodologies were employed to generate families

of statistical distributions. These methodologies encompassed techniques based

on differential equations, transformation (translation), and quantiles.

9
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The methods of Differential Equations

According to Lee et al. (2013), the first method for generating statistical

distributions is accredited to Pearson (1895). The phenomenal work of Pearson

(1895) detailed an approach for generating statistical distributions using dif-

ferential equations. These families of distributions were developed to model

non-systematic datasets. The Pearson probability distribution is defined by its

pdf y = p(x), which fulfils a differential equation expressed as follows:

1

q

d

dx
[q(x)] = − β + x

µ0 + µ1x+ µ2x2

Here, β, µ0, µ1, and µ2 are parameters that influence the form of the distribution

y = p(x). The solution to this equation varies according to the roots of the

polynomial µ0 + µ1x + µ2x
2 = 0, meaning that distinct types of distributions

arise from different solutions to that equation. Originally proposed by Pearson

in 1895, there are four primary distribution types: Type I to Type IV, with the

normal distribution later categorized as Type V. Subsequent refinements led to

a redefinition of Type V and the introduction of Type VI. Types VII through

XII were established as specific cases, and Johnson et al. (1994) provided an

in-depth examination of various distributions derived from the Pearson family.

Similar to the Pearson system of distributions, Burr (1942) introduced

an alternative system of distributions that comprises twelve types of cdfs, each

resulting in a wide range of density shapes. These distributions are derived

by considering cdfs that satisfy a specific differential equation, the solution of

which is provided by:

dQ = Q(1−Q)g(x) dx

whereQ lies within the interval [0, 1] and g(x) ≥ 0 and is defined on the variable

x. Most of the proposed distributions by Burr (1942) are unimodal. Numerous

studies have investigated the characterization and extensions of distributions de-

10
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rived from Pearson systems of distribution and Burr systems of distribution. For

example, the generalization of Pearson’s differential equation proposed by Dun-

ning and Hanson (1977) can be expressed as:

d

dx
[p(x)] =

(λ0 + λ1x+ λ2x
2 + · · ·+ λnx

n) p(x)

(α0 + α1x+ α2x2 + · · ·+ αrxr)

where n > 0 and r > 0. Several characterizations and generalizations of Pear-

son’s system have since been developed, leading to the creation of new families

of distributions (Chaudhry & Ahmed, 1993; Kibria & Shakil, 2011).

Methods of Transformation (Translation)

The method of generating family of distributions proposed by Johnson

(1949) has become the milestone of this method. Johnson (1949) introduced

a technique for generating distributions through a normalization transformation

described by the equation:

Z = λ+ γf

(
X − ζ

α

)
In this equation, λ, γ, ζ, and α are parameters, with f(.) representing the trans-

lation function and Z being the Z-score variable. This approach is known as the

transformation or translation method, and Johnson (1949) notably assumed that

both γ and α are positive without losing generality. The author also proposed

three specific transformation functions, which are:

The first transformation defined for this method is given by:

Z = λ+ γ ln

(
X − ζ

α

)
, for X > ζ

This transformation covers the lognormal family. The second transformation is

11
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denoted by:

Z = λ+ γln

(
Y − ζ

ζ + α− Y

)
, ζ ≤ Y ≤ ζ + α

This transformation is the bounded of family distributions. The distribution can

be bounded on the lower end, the upper end or both ends. This family covers

gamma, beta, and many other distributions. The third transformation is defined

by:

Z = λ+ γ ln


(
X − ζ

α

)
+

√√√√[(X − ζ

α

)2

+ 1

] , −∞ < X <∞

= λ+ γ sinh−1

(
X − ζ

α

)

This transformation is the unbounded family of distributions, and they cover the

distribution, normal distribution, and many other distributions.

As a special case, the Birnbaum–Saunders (1969) distribution was ob-

tained from the Johnson (1949) families of distributions. The Birnbaum–Saunders

distribution, named after its developers, is a probability distribution commonly

used in reliability engineering and material science. It is particularly suited for

modelling material fatigue and lifetime data. This distribution has found appli-

cations in various fields, especially when dealing with failure and survival anal-

ysis. It offers a flexible framework for modelling lifetimes, making it a valuable

tool in statistical analysis. Johnson’s systems have been widely employed in

the literature to generate several generalized Birnbaum–Saunders distributions,

such as the location–scale Birnbaum–Saunders family, the non-central Birn-

baum–Saunders distribution, and the four-parameter generalized Birnbaum–Saunders

distribution (Athayde, Azevedo, Leiva & Sanhueza, 2012).

As an extension, Tukey (1977) used the transformation method to con-

struct skew and heavy–trailed distributions and called these systems of distribu-

12
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tions as Tukey’s GH-Family. This family is expressed by:

Z = W × Tα(W ), α ∈ R

Forw ≥ 0, the function T (w) is characterized by being positive, symmetric, and

strictly increasing. This distribution was extended and formalized by Martinez

and Iglewicz (1984) and Hoaglin (1985) and has demonstrated its effective-

ness in various fields, including medicine, finance, and environmental studies

(Fischer, 2010). Various forms of the T (w) function have been extensively an-

alyzed and defined in the literature. A widely recognized instance is Tukey’s

GH-transformation, defined as:

Zm,n(W ) = α + β(emW − 1)
e

(
nW2

2

)
m

The parameters α is the location parameter and β is the scale parameter. The

parameters m and n are associated with skewness and kurtosis, respectively.

The Zm,0 represents the m-distribution, which features skewness without kurto-

sis, whereas the Z0,n denotes the n-distribution, which displays fat or thin tails

without skewness. According to Headrick, Kowalchuk and Sheng (2008), the

GH-distribution has two main limitations: first, the corresponding pdf and cdf

are not explicitly defined due to the lack of well-defined shape parameters; sec-

ond, fitting a GH-distribution to real datasets is challenging because estimating

the parameters m and n is difficult.

Hoaglin (1985) suggested fitting the GH-distribution by approximating

it with a chi-square distribution having six degrees of freedom. Subsequent

research has concentrated on estimating the parameters m and n or develop-

ing approximations for the parametric pdf and cdf to improve estimation tech-

niques for the GH-distribution in practical applications. For instance, Head-

rick et al. (2008) derived the moments of the GH-distribution as functions of

13

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



(m,n). Additionally, there has been significant work on extending and general-

izing the GH-distribution. Fischer (2010) reviewed various generalizations and

introduced new extensions, while Rayner and MacGillivray (2002) proposed an

alternative G-transformation method known as K-transformation. Furthermore,

Fischer and Klein (2004) investigated the J-transformation, suggesting a general

transformation within Tukey’s GH-distribution.

The Method of Quantile Function

This method is accredited to the works of Hastings et al. (1947) and Tukey

(1960). The focus was on the development of the lambda distribution. However,

Ramberg and Schmeiser (1972, 1974) expanded the scope of this distribution

and introduced it as the generalized lambda distributions (GLDs). This class

of distributions is characterized by its percentile function and is expressed as

follows:

Q(u) = Q(u;α1, α2, α3, α4)

= α1 +
uα3 − (1− u)α4

α2

, where 0 ≤ u ≤ 1

The parameters α1 and α2 represent the location and scale parameters, while α3

and α4 control the skewness and kurtosis, respectively. The corresponding pdf

is of the form:

f(x) =
α2

α3uα3−1 + α4(1− u)α4−1
, with x = Q(u)

For a valid pdf, it is required that the condition α3u
α3−1 + α4(1 − u)α4−1 must

have the same sign throughout the interval [0, 1] and must be consistently pos-

itive or negative. Freimer, Kollia, Mudholkar and Lin (1988) explored both

the similarities and differences between Pearson’s system and the generalized

lambda distribution. The authors noted that Pearson’s system does not include
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the logistic distribution, whereas the generalized lambda distribution does not

cover all possible values of skewness and kurtosis. Karian, Dudewicz and Mc-

donald (1996), and Karian and Dudewicz (2000) developed an extended GLDs.

The extended GLDs entails both GLD and the generalized beta distribution and

is defined by:

f(x) =


(x− a1)a3(a1 + a2 − x)a4

B(a3 + 1, a4 + 1)a
(a3+a4+1)
2

, for a1 ≤ x ≤ a1 + a2

0, otherwise

where B(., .) is the complete beta function. Several studies have explored ex-

tensions and generalizations of this method. For instance, Karian and Dudewicz

(2000) provided a thorough discussion on both the generalized lambda distribu-

tion and its extended form. Additionally, Tuner and Pruitt (1978), Morgenthaler

and Tukey (2000), and Jones (2002) have investigated quantiles associated with

Tukey’s lambda distribution.

While the traditional techniques for generating families of probability dis-

tributions through differential equations, transformations, and quantiles were

established before 1980, they still remain actively utilized and have garnered

increasing attention. New probability distributions, along with their statistical

characteristics, are continually emerging in the literature based on these method-

ologies and their practical applications. However, as the need for distributions

that are both flexible and straightforward for practical applications persisted,

researchers encountered challenges in creating entirely new distributions. Con-

sequently, different approaches emerged after 1980. These approaches entailed

integrating fundamental distributions to construct more elaborate and adaptable

distributions.
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Methods of Developing Statistical Distributions after 1980

This section provides an overview of advancements in the methods used

to generate probability distributions since 1980.

The Methods of Generating Skewed Distributions

This method involves combining two symmetric distributions to generate

a skewed distribution. It was first introduced by Azzalini (1985) and referred to

as the skew normal family of distributions. The skew normal family is given by:

If Y is a random variable with a pdf symmetric about 0 and U has the cdf H(.)

that is absolutely continuous, with H/(.) also being symmetric, then, for any

real number k ∈ R,

0.5 = P (Y − kX < 0) = EZ [P (U < kz |Z = z ] =

∫ ∞

−∞
f0(z)H(kz)du

Consequently, 2f0(z)H(kz),−∞ < z < ∞ represent a valid pdf. When Z

follows a standard normal distribution N(0, 1), the random variable Zk is said

to follow a skew-normal distribution SN(k) with skewness parameter k if its

pdf is given by

fZk
(z; k) = 2Φ(z)λ(kz), z ∈ R, k ∈ R

where Φ(z) and λ(z) are N(0, 1) pdf and cdf respectively. The distribution of

(SN(K)) is characterized by a single parameter k. However, location and scale

parameters can be added using the translation Y = a + bX . Many alternatives

of the skew normal distribution and its extensions have been greatly proposed

and studied. Pearson (1895) provided a comprehensive summary of the devel-

opments, characterizations, and generalizations of (SN(K)). As an extension

and generalization, Azzalini (1986), pointed out that the family (SN(K)) can
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only produce tails thinner than the normal ones, and proposed a broader class of

densities of the form:

2g(z;ϖ)G(kz)

where g(.) and G(.) are the pdf and cdf of a symmetric random variable. Dif-

ferent definitions lead to different families of skewed distributions. Azzalini

(1986), defined g(.) as:

g(x;ϖ) = Cϖexp

(
−|x|ϖ

ϖ

)

where ϖ > 0 and Cϖ = (2ϖ
1
ϖΓ( 1

ϖ
))−1. It can be seen that g(x, 2) is N(0,1),

g(x, 1) is the Laplace, and g(x,ϖ) converges to uniform (-1,1) as ϖ goes to

infinity. It is easy to see that one can apply different symmetric distribution from

2g(z;ϖ)G(kz) to generate different skewed distributions. Various extensions

of SN(k) have been developed in the literature. Some extensions are based on

normal distribution, while other generalizations are based on other symmetric

densities. Some extensions based on normal distribution were given by Arnold,

Beaver, Groeneveld and Meeker (1993).

f(x; k0, k1) = ϕ(x)Φ(k0 + k1x)Φ[k
1
0 + k21] with k0, k1 ∈ R

and

f(x; k0, k1, µ, σ) =
φ(x−µ

σ
)Φ(k0 + k x−µ

σ
)

Φ( k0
1+k21

)

which includes location and scale parameters. Pewsey (2000) proposed the

wrapped skew normal distribution on the circle. Let X be SN(k) and Y =

g + hX . Define the random variable Q = Y (Mod2π). The density of Q is

given by

f(Q; g, h, k) =
2

h

∞∑
n=−∞

φ

(
Q+ 2πn− g

h

)
Φ

[
k

(
Q+ 2πn− g

h

)]
, 0 ≤ Q ≤ 2π
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Arellano-Valle, Gómez, and Quintana, (2004) pointed out that as the skewing

parameter tends to infinity, the SN(k) distribution behaves like a half–normal

distribution. To mitigate such issue, they proposed the following extensions:

f(x; k0, k1) = 2φ(x)Φ

(
k1x√

1 + k2x2

)
,with k1 ∈ R, k2 ≥ 0.

An extension of the distribution developed by Arellano-Valle et al. (2004) using

the marginal density from bivariate normal density function was proposed by

Arnold et al. (2007) and was defined by:

f(x; k1, k2) ∝ φ(x)Φ

(
k1 + k2x√

1 + (k1 + k2x)2

)
,with k1, k2 ∈ R.

According to Choudhury and Matin (2011), the SN(k) distribution and the ex-

tensions by Arellano–Valle et al. (2004) do not characterize the kurtosis of a

distribution well and therefore proposed a distribution that characterize skew-

ness and kurtosis.

f(x; k1, k2, k3) = 2φ(x)Φ

(
k1x√

1 + k2x2 + k3x4

)
,with k1 ∈ R, k2, k3 ≥ 0.

Balakrishnan (2002) also proposed an extension based on normal distribution

which has the connection to normal order statistics and is defined by:

fn(x; k) =
φ(x)[Φ(kx)]n

Cn(k)

where n is positive integer and Cn(k) = 1
π

∫∞
−∞ [Φ(kx)]n ϕ(x) dx. When n is

odd, Cn(k) can be expressed:

C2n+1(k) =
2n+1∑
i=1

(−1)i+1

(
2n+ 1

i

)
1

2i
× C2n+1−i(k), n = 0, 1, 2, . . . , k ∈ R

According to Balakrishnan (2002), when k = 1, fn(x, 1) becomes the
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density of the largest order statistic in a sample of size (n+1) from the standard

normal distribution. Gupta and Gupta (2004), Sharafi and Behboodian (2008),

and Yadegari, Gerami and Khaledi, (2008) have all studied some extensions, de-

tails statistical properties and applications of this generalizations version have

been investigated. Generalizations of the SN(k) distribution to skewed sym-

metric distributions have been studied extensively in the literature by Azzalini

(2005) using the following definition.

f(x) = 2f0(x)G[w(x)], x ∈ R

where f0 is a pdf symmetric about 0, G is a cdf such that G/is a pdf symmet-

ric about 0, and w(.) is any odd function. There are still some works in the

literature that generate families of skew symmetric distributions. The general-

ization proposed by Azzalini (2005) included skewed distributions with more

flexible tails for the generated skewed distributions using a non–normal distri-

bution g(.). Arnold and Beaver (2000, 2002) proposed using two different inde-

pendent, non–normal symmetric distributions to generate “non–normal skewed

distributions”. Let Ψ1 and Ψ1 be the pdf and cdf of X and let Ψ2 and Ψ2 be the

pdf and cdf of Y . The random variables X and Y are independent and symmet-

ric. The conditional density of X given that (k0 + k1X > Y ) is of the form:

f(x; k0, k1) =
ψ1(x)ψ2(k0 + k1x)

P (k0 + k1X > Y )

Another extension is the skew scale mixtures of normal distributions (SSMN)

proposed by Ferreira et al., (2011). The SSMN distribution uses the mixture of

normal distribution as f0 and normal as G(.). Nadarajah and Kotz ((2006),

(2007a), (2007b)) published three papers to study many specific skewed distri-

butions by applying different pdfs f0 and different cdf G. Nadarajah and Kotz

(2006) provided a list of skewed distributions and defined the moments, and
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characteristic functions. For each of the skewed distributions, the same group G

was applied including Student’s t, Cauchy, Laplace, logistic, and uniform distri-

butions. Further, Nadarajah and Kotz ((2007a), (2007b)) defined and presented

hazard functions, central and non-central moments of many skewed distribu-

tions by taking both f0 and G for the same random variable. Several authors

have proposed and developed some alternatives for generating skewed distri-

butions for symmetric random variables (Fernandez & Steel, 1998; Mudholkar

& Hutson, 2000; Arnold, 2004; Abtahi et al., 2012; Chang & Genton, 2004;

Ferreira & Steel, 2006). It should be noted that the skewed symmetric methods

described here are methods that introduce a skewing mechanism into symmet-

ric distributions to generate skew families of distributions. The skewness of the

distributions often is directly connected to the skewing factor, which is useful

for capturing the magnitude of skewness.

Beta–Generated Method

The first work produced in this category was the paper by Eugene et

al. (2002). Eugene et al. (2002) used the beta distribution as the generator to

develop the beta–distributions. The cdf of the beta–class random variable Y is

defined by:

F (y) =

∫ G(y)

0

b(s) ds

where b(s) is the pdf of the beta random variable and G(y) is the cdf of any

random variable. The pdf corresponding to the beta–class distribution is given

by:

f(y) =
1

B(a, b)
g(y)Ga−1(y) (1−G(y))b−1

According to Eugene et al., (2002) and Jones (2004), this family of distri-

butions can be considered as a generalization of distributions of order statistics

for the random variable Y with cdf, G(y). When a and bare integers, the pdf

is the ath order statistics of the random sample of size (a + b − 1). It is of
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interest to know that the beta-generated family was developed by generating

distributions with more parameters using beta distribution as the generator. The

new developed distributions add more parameters for fitting different types of

shapes. Hence, the skewness is not directly defined by a specific parameter;

instead, it is the combination of all shape parameters that play the role of mea-

suring skewness. The beta generated method provides an easy way to generate

new distributions. Let G(y) be the parent distribution, the beta distribution the

generator, and the resulting beta generated distribution in a “B-G distribution”.

Aside generating new distributions, some existing generalized distributions can

also be generated using the pdf by properly defining G(y) (McDonald, 1984;

Jones, 2004; Jones & Faddy, 2003; Sepanski & Kong, 2008).

The statistical properties of each of the B–G distribution that are com-

monly studied are: moments, modes, limiting behaviour, hazard functions, dis-

tribution shapes, measure of entropy, mean, and median deviations. However,

the moments of Cauchy distribution do not exist and thus, makes the Cauchy

distribution rarely used for modelling real data. In the context of generaliza-

tions and extensions, the beta generated method can straightforwardly be ex-

tended by replacing beta distribution using any distribution defined on a finite

[a, b]. For instance, any generalized form of the beta distribution such as the

generalized three parameter beta distributions proposed by McDonald (1984),

or the Johnson’s family of bounded distributions (SB) can be used as the gen-

erator by normalizing the domain to [0, 1]. Jones (2009) and Cordeiro et al.

(2011) extended the beta–class family by replacing the beta distribution using

the Kumaraswamy (1980) distribution. The Kumaraswamy (1980) distribution

is defined as:

f(y) = abya−1 (1− ya)b−1 , with G(y) = 1− [1− F (y)a]b , y ∈ (0, 1).

The pdf of the Kumaraswamy generated distribution (Kw–G) is a family of
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distribution defined by:

g(y) = abf(y)F a−1(x) (1− F a(x))b−1

Cordeiro et al., (2011) andNadarajah, Cordeiro and Ortega (2012) have studied

some general properties of the Kw-G family of distribution. Various Kw-G dis-

tributions have been studied in the literature including: Kw-normal distribution

by Cordeiro et al., (2011), Kw-gamma distribution by Cordeiro et al. (2011),

Kw-inverse Gaussian distribution by Cordeiro et al. (2011), Kw-Weibull dis-

tribution by Cordeiro et al., (2011) and Cordeiro et al., (2010), Kw-generalized

gamma by de Pascoa et al., (2011).

Alexandra et at., (2012) introduced generalization of the beta generated

family by using the generalized beta of type I, McDonald (1984) as the genera-

tor. Further, Zografos and Balakrishnan (2009) also extended the beta generated

family by using the generalized gamma density as the generator. This gener-

alization was called generalized gamma-generated family (GGG). The general-

ized gamma has the pdf:

PX(x; a, b, γ) =
γ

baγΓ(a)
xaγ−1exp[− (x/b)γ]

The pioneering work by Eugene et al. (2002) laid the foundation for the study of

various Beta-generated distributions in the literature. Subsequent research has

explored a wide range of these distributions, including the Beta-normal (Eugene

et al., 2002; Famoye et al., 2004; Gupta & Nadarajah, 2004), Beta-Gumbel

(Nadarajah & Kotz, 2004), Beta-Frechet (Nadarajah & Gupta, 2004; Barreto

& Cordeiro, 2011), Beta-exponential (Nadarajah & Kotz, 2005), Beta-Weibull

(Famoye & Lee, 2005; Lee et al., 2007; Cordeiro et al., 2011).
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Method of Adding Parameters

This method is about adding parameter(s) to a parent (existing) distribution

to generate a generalized or an extended distribution and is a very common ap-

proach for developing more flexible statistical distributions. The literature con-

tains many generalized distributions like generalized gamma, generalized beta,

generalized Pareto, generalized Weibull, etc. Johnson, Kotz and Balakrishnan

(1994) have a section on generalization and many of these distributions were

obtained by adding one or two parameters to the parent distribution to create its

generalized version. It should be noted that, there is a clear distinction between

the method adding parameters and the methods of combination. The method of

adding parameters is to add extra parameter(s) to an existing distribution; while

the methods of combination combine two existing distributions to form new dis-

tributions. Consequently, the methods of combination are able to generate larger

families of distributions. Conversely, the method of adding parameters can be

applied to any family of distributions generated through the methods of combi-

nation to generate the ‘exponentiated’ version of the new family, and vice versa.

However, according to Johnson et al., (1994), fitting real world data using more

than four parameters are often not practical.

The Exponentiated Method

The pioneering work on the exponentiated method is given in Mudholkar

and Srivastava (1993) was on the exponentiated Weibull family defined by:

F (y) =
[
1− exp

(
−(ay)b

)]γ
, y > 0, a, b, γ > 0

When we put γ = 1, the cdf of the Weibull distribution is obtained. In general,

the exponentiated method can be described as follows: Let G(y) and Ga(y) be
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the cdfs of random variable Y and the exponentiated Y . Then,

Gα(y) = [G(y)]α, α > 0

Gupta, Gupta and Gupta (1998) gave a systematic treatment ofGa(y) = [G(y)]a, a >

0. Gupta and Kundu (2001) studied exponentiated exponential family. Nadara-

jah and Kotz (2006) studied a list of exponentiate X distributions including ex-

ponentiated exponential, gamma, Weibull, Gumbel, and Frechet distributions.

Gupta and Kundu (2007) gave a review of the development of generalized ex-

ponential distributions. Nadarajah et al., (2012) gave a thorough survey of the

exponentiated Weibull distributions.

In addition to the exponentiated method, there have been different alter-

natives to generate different types of flexible families of distributions using dif-

ferent functions of G(y). Gera (1997) defined Ga(y) as follows:

Ga(y) = e−ayγG(y), a, γ > 0

Cancho and Bolfarine (2001) also defined GE(y) as:

GE(y) = a− a[1−G(y)], a ∈ (0, 1)

This method can be considered as a mixture method. The Kumaraswamy gen-

erated family can also be defined as an exponentiated method by adding one

exponent to F and the other to (1 − F a). Furthermore, Marshall and Olkin

(1997) proposed a method of adding an extra parameter from a lifetime distri-

bution perspective. The authors applied their method to extend exponential and
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Weibull distributions. The survival function of this family is defined by:

G(y) = 1− λS(y)

1− (1− λ)S(y)

= 1− λS(y)

F (y) + λS(y)

S(x) = 1− F (y), ∈ R, λ > 0

Some new distributions have been proposed by taking the base distribution to the

extended Weibull (Ghitany, Al-Hussaini & Al-Jarallah, 2005), normal (Garcı́a,

Gómez-Déniz & Vázquez-Polo, 2010), and Birnhaum–Saunders distributions

(2013). For a thorough discussion and review of life distributions, one may

refer to the book by Marshall and Olkin (2007).

The Transformed–Transformer Method (T −X) Family

The beta-generated distributions are generated using distributions with

support between 0 and 1 as the generator. The limitation of using a genera-

tor between 0 and 1 raises an interesting question, “can other distributions with

different supports as a generator be used to derive different classes of distri-

butions?” Alzaatreh et al., (2013) introduced a general method that allows for

using continuous pdf as the generator. Let X be a random variable with pdf

g(x) and cdf G(x). Also, let T be a continuous random variable with the pdf

r(t), defined on [a, b]. The cdf of a new family of distribution is defined by:

GT−Y (x) =

∫ W [G(x)]

a

r(t)dt = R[W (x)],

where W [G(x)] satisfies the following conditions
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W [G(x)] ∈ [a, b],

W [G(x)] is differentiable and monotonically non-decreasing,

W [G(x)] → a as x→ −∞,

W [G(x)] → b as x→ ∞


The corresponding pdf is:

g(y) = − d

dx
W [G(x)] r[W [G(x)]]

This family of distribution is named as “transformed – transformer” class of

family. The new pdf g(x) is the pdf transformed from the random variable T

through the transformer random variable X . Different W [G(x)] will define dif-

ferent new family of T − X distributions. The definition of depends on the

support of the random variable T . Alzaatreh et al. (2013) defined the T − X

family for several differentW [G(x)] functions under different supports of T and

studied the family when W [G(x)] = −log(1− F (x)) in some details.

The T −X Family when W (G(x)) is defined as −log(1− F (x))

By W [G(x)] = − log(1− F (x)), the corresponding T-X family has the cdf and

pdf, respectively, as:

G(x) = R[− log(1− F (x))] = R[Hf (x)]

g(x) =
f(x)

1− F (x)
r[1− log(1− F (x))] = bf (x)r[Hf (x)], x > 0

where bf (x) and Hf (x) are the hazard and cumulative hazard functions of the

random variable X with PDF f(x).

A list of subfamilies of this T-X family includes: γ-X, Exponential-X,
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Beta-Exponential-X, Exponentiated-Exponential-X, Half-Normal-X, Levy-X, Log-

Logistic-X, Rayleigh-X, Type-II Gumbel-X, Lomax-X, Inverted Beta-X, In-

verse Gaussian-X, and Weibull-X. Some subfamilies of the T −X family based

on W [G(x)] = −log(1− F (x)) are:

Gamma-X Family

When T ∼ Gamma(a, b), the resulting gamma-family is defined as:

g(x) =
1

Γ(a)ba
f(x) [− log(1− F (x))]a−1 (1− F (x))

1
b
−1

The upper record value distribution is a special case of the gamma-normal dis-

tribution, and Tracy’s generalized gamma distribution is a special case of the

gamma-gamma Weibull distribution.

Weibull-X Family

When T ∼ Weibull(v, γ), the resulting Weibull-X family is defined as:

g(x) =
v

b

f(x)

1− F (x)

{
− log(1− F (x))

b

}v−1

exp

{
−
(
− log(1− F (x))

b

)v}

When v = 1, the Weibull-X family reduces to the Exp(1− F (x)) distributions.

The Type II generalized logistic distribution is a special case of the Weibull-

logistic distribution. The Weibull-Pareto was studied in detail in Roy (2004).

Beta-Exponential-X Family

When T ∼ Beta-Exponential(a, b, v), the PDF of the Beta-Exponential-X fam-

ily is:

g(x) =
v

B(a, b)
f(x)(1− F (x))vb−1 [1− (1− F (x))v]a−1

where B(a, b) is the beta function.
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Special cases include:

• When b = 1 and v = 1, g(x) reduces to the Exp(F ) distributions.

• When a = 1, g(x) reduces to the Exp(1− F ) distributions.

• When b = 1 and v = 1, g(x) also reduces to the exponentiated–exponential-

X family with odf:

f(x) [1− (1− F (x))v]a−1 (1− F (x))v−1.

Composite Methods

The term composite distribution discussed here is different from the com-

monly used compound distribution or mixture distribution. Cooray and Ananda

(2005) proposed the composite method by combining two distributions in the

following way: Let X be a random variable with pdf: The piecewise function

f(x) is defined as:

f(x) =


cf1(x), if x ∈ (0, θ)

cf2(x), if x ∈ (θ,∞)

where c is the normalizing constant, and f1 and f2 are PDFs with positive sup-

port. The unknown θ is determined so that the newly formed PDF f(x) is con-

tinuous and differentiable at θ. The continuity and differentiability are achieved

by imposing the following constraints f1(θ) = f2(θ) and f ′
1(θ) = f ′

2(θ)

According to Cooray and Ananda (2005), the rationale for the composite

distribution is that f1 models a large portion of the data well but quickly fades

to zero, thus fitting poorly a portion of the tail. On the other hand, f2 fits the tail

portion well but fits the other portion poorly. By combining two distributions,

where one fits the portion below a given threshold and the other fits the portion

larger than the threshold, the composite distribution was proposed.
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Various new composite distributions have been developed in the literature,

including: composite-Burr (Nadarajah & Bakar, 2012), composite exponential

(Cooray & Ananda, 2005; Teodorescu & Vernic, 2009), Composite Weibull-

Pareto (Preda & Ciumara, 2006), composite lognormal (Scollnik, 2007; Preda

& Ciumara, 2006; Pigeon & Denuit, 2011), truncated composite lognormal-

Pareto (Teodorescu, 2010), truncated composite Weibull-Pareto (Teodorescu

& Panaitescu, 2009), composite lognormal-lognormal (Cooray, Gunasekera &

Ananda, 2010), composite inverse Weibull-Weibull (Cooray et al., 2010), com-

posite log-Gauss-Pareto (Eliazar & Cohen, 2012).

Quadratic Rank Transmutation Map

Shaw and Buckley (2009) developed a new family of probability distri-

butions using the quadratic rank transmutation map and called it the transmuted

distributions. The cdf of the quadratic transmuted distribution is defined as:

G(x) = (1 + λ)F (x)− λF 2(x)

where F (x) is the cumulative distribution function of the baseline distribution,

and |x| ≤ 1. By putting λ = 0, we notice that the baseline cumulative (cdf) is

the same as the original pdf.

Proof

Proving the quadratic transmutation map is intuitively simple. Let X1 and X2

be independent and identically distributed non-negative random variable with

cdf F (x). Then, we have

Y
def
=


min(X1, X2) with probability α

max(X1, X2) with probability 1− α
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where 0 ≤ α ≤ 1. The distribution of Y is clearly

GY (x) = αPr[min(X1, X2) ≤ x] + (1− α) Pr[max(X1, X2) ≤ x]

We know that Gmin(x) = 1− [1− F (x)] and Gmax(x) = [F (x)]n. Hence,

GY (x) = α
[
1− (1− F (x))2

]
+ (1− α)F 2(x)

Expanding, we have

GY (x) = α
[
1−

(
1− 2F (x) + F 2(x)

)]
+ F 2(x)− αF 2(x)

= α
[
1− 1 + 2F (x)− F 2(x)

]
+ F 2(x)− αF 2(x)

= 2αF (x)− αF 2(x) + F 2(x)− αF 2(x)

= 2αF (x) + (1− 2α)F 2(x)

When we let 2α = λ, we obtain the well-known quadratic transmuted distribu-

tion. The corresponding pdf is given by

g(x) = f(x)[1 + λ− 2λF (x)]

Several authors have applied the quadratic transmuted to develop various distri-

butions following the idea of Shaw and Buckley (2009). The work of Aryal

and Tsokos (2009, 2011) stands as a pioneering contribution in introducing

the quadratic transmuted method. Their research unveiled a novel approach

to transmutation and presented a set of transmuted probability distributions that

demonstrated enhanced distributional flexibility, particularly beneficial in the

realms of environmental and reliability analysis. Building on this foundation,

Bourguignon et al. (2016) and Das (2015) further delved into the quadratic

transmuted family of distributions. Their studies provided valuable insights into

the general characteristics and outcomes associated with this transmuted fam-
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ily of distributions, contributing to the broader understanding and application of

transmutation methods in statistical modelling and analysis. Tahir and Cordeiro

(2016) have detailed a list for quadratic transmuted distributions. The research

works done on the quadratic transmuted family of distributions is evidently en-

riched enough in the literature and is also speedily convalescing. We now dis-

cuss the cubic transmuted families of distributions.

Cubic Rank Transmutation Map

Granzotto et al., (2017) developed a cubic transmuted family of the form:

G(x) = λ1F (x) + (λ2 − λ1)F
2(x) + (1− λ2)F

3(x)

where λ1 ∈ [0, 1] and λ2 ∈ [−1, 1].

Proof:

Let X1, X2, andX3 be independent and identically random variables distributed

with cdf F (x). We know that:

X1:3 = min{X1, X2, X3}, X2:3 = the 2nd smallest of (X1, X2, X3),

X3:3 = max{X1, X2, X3}

and let

Y
def
=


X1:3, with probability α1,

X2:3, with probability α2,

X3:3, with probability α3,

where

∑3
i=1 αi = 1 =⇒ α3 = 1− α1 − α2
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The distribution of GY (x) is clearly given by

GY (x) = α1 Pr [min(X1, X2, X3) ≤ x] + α2 Pr [X2:3 ≤ x]

+ (1− α1 − α2) Pr [max(X1, X2, X3) ≤ x]

= α1

[
1− (1− F (x))3

]
+ α2

{
3∑

i=1

(
3

i

)
F (x)i[1− F (x)]3−i

}

+ (1− α1 − α2)[F (x)]
3

= 3α1F (x)− 3α1F (x)
2 + α1F (x)

3 + 3α2F (x)
2 − 2α2F (x)

3

+ [F (x)]3 − α1[F (x)]
3 − α2[F (x)]

3

= 3α1F (x) + 3(α2 − α1)F (x)
2 + (1− 3α2)F (x)

3

When we let λ1 = 3α1 and λ2 = 3α2, we obtain the cubic rank transmuted

distribution given by Granzotto et al., (2017). The corresponding pdf is also

given by:

g(x) = f(x)[λ1 + 2(λ2 − λ1)F (x) + 3(1− λ2)F
2(x)

Numerous researchers have explored various forms of cubic rank trans-

muted distributions. Rahman et al. (2018a, 2018c, 2019b) introduced three

novel families of cubic rank transmuted distributions. AL-Kadim (2018) also

examined a generalized transmuted distribution family, which was found to be

a specific case of the generalized transmuted families proposed by Rahman

et al. (2018a, 2018c). Ali and Athar (2021) presented a generalized rank-

mapped transmuted distribution method for generating continuous distribution

families, and they studied the nth degree generalized transmutation map derived

from continuous distribution families. Aslam et al. (2018) analyzed another

cubic transmuted-G family of distributions and investigated its associated sta-

tistical properties. Several cubic rank transmuted distributions have been in-

troduced in the literature, including the cubic transmuted Weibull (Granzotto
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et al., 2017; AL-Kadim & Mohammed, 2017), cubic transmuted log-logistic

(Granzotto et al., 2017), cubic transmuted exponential (Rahman, Al-Zahrani

& Shahbaz, 2018b; Rahman, Al-Zahrani & Shahbaz 2018c), cubic transmuted

Pareto (Rahman et al., 2018b; Ansari & Eledum, 2018), cubic transmuted Frechet

(Celik, 2018), cubic transmuted Gumbel (Celik, 2018), cubic transmuted Gom-

pertz (Celik, 2018), cubic transmuted Burr III-Pareto (Bhatti et al., 2019), cu-

bic transmuted uniform (Rahman et al., 2019b), and cubic transmuted Gom-

pertz–Makeham (Hamdam & Riffi, 2020) distributions. The cubic rank trans-

muted distributions have been shown to be more adaptable in modelling com-

plex and bimodal data compared to quadratic transmuted distributions.

Chapter Summary

In this chapter, various rank transmutation map methodologies for devel-

oping and modifying probability distributions were comprehensively examined,

encompassing periods both preceding and following the 1980s. The exploration

delved into the historical timeline of these methodologies, offering insights into

the dynamic evolution of techniques for constructing statistical distributions.

The investigation highlighted the continual growth of the field, emphasizing the

progress made in developing fundamental tools for statistical analysis. Fur-

thermore, the chapter undertook an examination of quadratic and cubic trans-

muted distributions, providing an overview of the diverse research endeavors

conducted on these distributions.
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CHAPTER THREE

METHODOLOGY

Introduction

This chapter presents definitions of some probability concepts and termi-

nologies in statistics.

Some Statistics Terminologies

In this section, we outline several key properties of probability distribu-

tions that will be referenced throughout this thesis. These definitions are based

on works by Hogg, McKean and Craig (2009), Ofosu and Hesse (2011), and

Howard and Nkansah (2016). The focus of this thesis is primarily on continu-

ous random variables.

Sample Space

Let Ω be a sample space with an associated probability function f(x), and

let X be a continuous random variable defined on Ω. For any real number x, the

cdf of X , denoted by F (x), represents the probability that the values of X on

the real line are less than or equal to x. Explicitly, this is expressed as:

F (x) = P (s ∈ Ω | X(s) ≤ x).

For a continuous random variable x, the function F (x) is non-decreasing and

satisfies the conditions that it equals 0 for values less than or equal to the begin-

ning of Ω and rises to 1 at the end and beyond Ω. This implies that for all x,

the range of F (x) is 0 ≤ F (x) ≤ 1, with the probability P (X = y) = 0 for

any specific value y. Consequently, F (x) is continuous, which allows for the

existence of an inverse function.
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Continuous Random Variable

Let X be a continuous random variable with probability density function

(pdf) f . Then, f is defined by the following relationship:

F (x) = P (X ≤ x) =

∫ x

−∞
f(y) dy for all x.

Expected Value of a Random Variable

Let X represent any random variable with a pdf or probability mass func-

tion (pmf) denoted as f(x). The mean or expected value of X , often denoted by

µ or E(X), is defined as follows:

1. For the continuous case:

µ = E(X) =

∫ ∞

−∞
xf(x) dx

2. For the discrete case:

µ = E(X) =
∑
all i

xif(xi) exists.

Moment Generating Functions

The rth moment of a random variable X with pdf f(x) represents the

expected value of X raised to the power of r. This is defined as:

E (Xr) =


∑

x x
rf(x), if X is discrete∫

R
xrf(x) dx, if X is continuous

Let X be a random variable with cumulative distribution function F (x) and

probability density function f(x). Assume there exists a positive constant h

such that the expected value E
(
etX
)

exists for all t ∈ (−h, h). The function of
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t given by E
(
etX
)

is known as the moment generating function (MGF) of X in

a neighbourhood of zero. The MGF, denoted by MX(t), is expressed as:

MX(t) = E
(
etX
)
,

with specific forms:

MX(t) =


∑∞

x=0 e
txf(x), if X is discrete∫∞

−∞ etxf(x) dx, if X is continuous

Clearly, we can see how the MGF generates moments.

Order Statistics

Consider a random sample X1, . . . , Xn of size n drawn from a continuous

distribution with probability density function f(x) and cumulative distribution

function F (x). Let X(1) denote the smallest value in the sample (X1, . . . , Xn),

X(2) the second smallest, and so on, up to X(n), which is the largest. In other

words,X(1) ≤ X(2) ≤ . . . ≤ X(n) represent the ordered values ofX1, X2, . . . , Xn

when arranged in increasing order. The variable X(k) for k = 1, 2, . . . , n, is re-

ferred to as the kth order statistic of the sample.

The cumulative distribution function (CDF) of X(n), the maximum of n

observations, is given by:

GX(n)
(x) = P

[
X(n) ≤ x

]
= P (X1 ≤ x,X2 ≤ x, . . . , Xn ≤ x)

=
n∏

i=1

P (Xi ≤ x) (by independence)

= {F (x)}n.

Differentiating with respect to x, the pdf of X(n) is:
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gX(n)
(x) = n[F (x)]n−1f(x).

The cdf of X(1), the minimum of n observations, is given by:

GX(1)
(x) = P

[
X(1) ≤ x

]
= 1− P (X1 > x,X2 > x, . . . , Xn > x)

= 1−
n∏

i=1

P (Xi > x) (by independence)

= 1−
n∏

i=1

[1− P (Xi ≤ x)]

= 1− [1− F (x)]n.

Differentiating with respect to x, the PDF of X(1) is:

gX(1)
(x) = n[1− F (x)]n−1f(x).

In general, the cdf of X(k), the kth order statistic, is:

GX(k)
(x) = P

[
X(k) ≤ x

]
=

n∑
j=k

(
n

j

)
[F (x)]j[1−F (x)]n−j = IF (x)(k, n−k+1),

where IF (x)(k, n− k + 1) denotes the incomplete beta function.

The corresponding pdf of X(k) is:

gX(k)
(x) =

d

dx

[
GX(k)

(x)
]
=

n!

(k − 1)!(n− k)!
[F (x)]k−1[1− F (x)]n−kf(x).

Entropy Measure

The concept of entropy, first introduced by Clausius (1865), has since

found applications across a range of disciplines, including classical thermody-
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namics, statistical science, and information theory. Shannon (1948) extended

the notion of entropy to characterize uncertainty and missing information in

telecommunication signals, leading to the development of information theory.

This interpretation, which was suggested by Von Neumann in 1932, has be-

come the prevailing understanding of entropy. The definition of entropy varies

across fields: in information theory, it quantifies the amount of information con-

tained in a signal, while in statistics, it measures the uncertainty associated with

the probability distribution of a random variable. Higher entropy values reflect

greater uncertainty in the data. This section also covers three specific types of

entropy: Shannon’s entropy, as defined by Shannon (1948); Renyi’s entropy,

introduced by Renyi (1961); and q-entropy, defined by Ullah (1996).

Shannon Entropy

Consider a non-negative continuous random variable Y with probability

density function g(y). The Shannon entropy of Y , denoted by H(g), is defined

as:

H(g) = E[− log g(Y )] = −
∫ ∞

−∞
g(y) log g(y) dy

This is commonly referred to as differential entropy or continuous entropy.

Renyi Entropy

Consider a non-negative continuous random variable Y with its proba-

bility density function denoted as g(y). The Renyi entropy of order β for Y ,

symbolized as Hβ(g), is defined by:

Hβ(g) =
1

1− β
log

(∫ ∞

−∞
g(y)β dy

)
, for β > 0 and β ̸= 1
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The Shannon entropy, denoted as H(Y ), can be obtained as the limit of Renyi

entropy as β approaches 1:

H(Y ) = lim
β→1

Hβ(Y ) = −
∫ ∞

−∞
log g(y) dy,

assuming that both integrals are well-defined.

Q-Entropy

Let Y be a non-negative continuous random variable with density function

g(y). The r-entropy of Y , denoted as JH(r), is defined as:

JH(r) =
1

r − 1

(
1−

∫ ∞

0

g(y)r dy

)
,

where r > 0andr ̸= 1.

Some Basic Survival Quantities

Probability distributions have certain basic properties with regards to

its reliability or survival features by means of some functions. The commonly

used basic quantities are survival functions (reliability function), failure rate

function (hazard rate function) and the residual mean functions. Theoretically,

these functions are related such that, an existence of one can be used to obtain or

derive the others. In this thesis, the basic quantities of survival functions along

with their corresponding symbolizations and definitions are exploited. Though

these functions are not squarely best, there are still some reasons that are of

interest for studying all these functions. These definitions can be found in Klein

and Moeschberger (2003).
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Survival Function (Reliability Function)

The survival function is a fundamental measure used to describe time-

to-event scenarios. It represents the probability that an individual will survive

beyond a specified time x, or equivalently, that the event will occur after time x.

Formally, the survival function S(X) is defined as:

S(X) = P (X > x)

In contexts involving the failure of equipment or products, this survival function

is often referred to as the reliability function R(x).

The survival function is a key metric used to describe time-to-event situa-

tions. It denotes the probability that an individual will endure beyond a specified

time t, or equivalently, that the event occurs after time t. It is formally defined

as:

S(T ) = P (T > t)

In the context of equipment failures or product lifespan, the survival function

S(t) is often termed the reliability function R(t).

For a continuous random variable T , S(t) is a strictly decreasing and con-

tinuous function. For a continuous random variable T , the survival function

S(t) is the complement of the cumulative distribution function G(t), given by:

S(t) = 1−G(t) where G(t) = P (T ≤ t).

Moreover, the survival function S(t) can also be expressed as the integral of the

probability density function (pdf) g(t). That is:

S(t) = P (T > t) =

∫ ∞

t

g(u) du
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Thus,

g(t) = − d

dt
S(t)

It is noteworthy that g(t) dt can be seen as the ”approximate” probability of the

event occurring at time t, and g(t) is a non-negative function with the integral

over its range summing to one.

The Hazard Rate Function (or the Failure Rate)

A fundamental concept in survival analysis is the hazard rate function,

which finds applications in various domains. In reliability analysis, it is known

as the conditional failure rate; in demography, it is referred to as the force of

mortality; in stochastic processes, it is called the intensity function; in epidemi-

ology, it is termed the age-specific failure rate; and in economics, it is known as

the inverse of Mill’s ratio. Commonly, it is simply referred to as the hazard rate.

The hazard rate function is mathematically defined as:

λ(t) = lim
∆t→0

P (t ≤ T < t+∆t | T ≥ t)

∆t

For a continuous random variable T , the hazard rate function can be expressed

as:

λ(t) =
g(t)

S(t)
= − d

dt
ln[S(t)]

Another related quantity is the cumulative hazard function Λ(t), defined by:

Λ(t) =

∫ t

0

λ(u) du = − ln[S(t)]

Thus, for continuous survival times, the survival function S(t) can be written

as:
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S(t) = exp (−Λ(t)) = exp

(
−
∫ t

0

λ(u) du

)

The Mean Residual Life Function

A key measure in survival analysis is the mean residual lifetime at a

specific time t. For individuals who have reached time t, this measure quantifies

their anticipated remaining duration. It is defined as:

ERL(t) = E(T − t | T > t)

For a continuous random variable T , the expected remaining lifetime can be

formulated as:

ERL(t) =

∫∞
t
(u− t)f(u) du

S(t)
=

∫∞
t
S(u) du

S(t)
=

1

1− F (t)

∫ ∞

t

(1− F (u)) du

where f(t) denotes the probability density function (pdf) and S(t) represents

the survival function.

Furthermore, the mean of T is expressed as:

µ = E(T ) =
∫ ∞

0

uf(u) du =

∫ ∞

0

S(u) du

The variance of T in terms of the survival function is given by:

Var(T ) = 2

∫ t

0

uS(u) du−
[∫ ∞

0

S(u) du

]2
The p-th quantile of the distribution of T , also known as the 100p-th percentile,

is the smallest value tp such that:

S(tp) ≤ 1− p or tp = inf{u | S(u) ≤ 1− p}
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For a continuous random variable T , the p-th quantile can be determined by

solving:

S(tp) = 1− p

Parameter Estimation Techniques

Estimators offer the foundation for the practical discussion of statistical

inference. The problem of estimation, as it shall be studied in this thesis, is

loosely expressed as: Consider a random variable X representing some char-

acteristic of the elements in a population, where its density or mass function

is denoted as f(x; θ). This function depends on an unknown parameter vector

θ = (θ1, θ2, . . . , θr), which has r components. The parameter space, denoted

by Ω, defines the permissible range for θ. The objective is to identify a statistic

t(X) such that it provides an approximate value of θ. This statistic t(X) is re-

ferred to as an estimator of θ, and the value t(θ) is known as the estimate of θ.

Estimation involves using the information from a sample to infer characteristics

of the population from which the sample originates. Various methods are em-

ployed to estimate unknown parameters when fitting probability distributions.

Method of moments

A traditional approach to parameter estimation is the method of moments,

which was first introduced by Karl Pearson (1894). This method involves speci-

fying the true distribution by expressing the population moments as functions of

the parameter of interest. These theoretical moments are then equated to the cor-

responding sample moments. The number of parameters to be estimated dictates

the number of equations needed. Solving these equations yields the estimates

for the parameters of interest.

Consider estimating unknown parameters θ = (θ1, θ2, . . . , θr) that charac-
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terize the distribution of a random variable Z with probability density function

(pdf) or probability mass function (pmf) fz(z; θ). Suppose the first r moments

of the population can be expressed as functions of the parameters θ as follows:

µ1 = E[Z] = λ1(θ1, θ2, . . . , θr),

µ2 = E[Z2] = λ2(θ1, θ2, . . . , θr),

...

µr = E[Zr] = λr(θ1, θ2, . . . , θr).

Given a sample of size n with values z1, z2, . . . , zn, let µ̂j = 1
n

∑n
i=1 z

j
i

denote the j th sample moment, which estimates µj . The method of moments

estimator for θ = (θ1, θ2, . . . , θr), denoted by θ̂ = (θ̂1, θ̂2, . . . , θ̂r), is determined

by solving (if possible) the following equations:

µ̂1 = λ1(θ̂1, θ̂2, . . . , θ̂r),

µ̂2 = λ2(θ̂1, θ̂2, . . . , θ̂r),

...

µ̂r = λr(θ̂1, θ̂2, . . . , θ̂r).

The method of moments estimators θ̂ = (θ̂1, θ̂2, . . . , θ̂r) rely on the strong law

of large numbers, which asserts that for a random sample X1, X2, . . . , Xn from

the distribution of X ,
1

n

n∑
i=1

Xk
i

a.s.−−→ E(Xk).

Thus, if the kth population moment is finite, the kth sample moment converges

almost surely to the kth population moment (Ofosu & Hesse, 2011).
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Method of Maximum Likelihood

The method of maximum likelihood is a widely used estimation tech-

nique due to its ease of application and the desirable statistical properties of its

estimators. Originally developed by C.F. Gauss, this method was formalized

as a general estimation approach by Fisher in 1920. The core principle of this

method involves finding the parameter values that maximize a likelihood func-

tion.

Suppose X is a random variable with probability density function (pdf) or

probability mass function (pmf) f(x;ϕ), where ϕ = (ϕ1, ϕ2, . . . , ϕr) represents

the unknown parameters. Let x1, x2, . . . , xn denote the observed values from a

sample of size n of X . The likelihood function for this sample is defined as:

L(ϕ1, ϕ2, . . . , ϕr) = L(ϕ) =
n∏

i=1

f(xi;ϕ1, ϕ2, . . . , ϕr) =
n∏

i=1

f(xi;ϕ),

where ϕ = (ϕ1, ϕ2, . . . , ϕr).

This likelihood function represents the joint probability of the observed sample,

viewed as a function of the unknown parameters, with the observed values of

the random variables treated as fixed.

Two key points simplify the process of working with the likelihood func-

tion. First, for independent events, the likelihood function is typically the prod-

uct of individual probabilities. Second, it is often convenient to work with the

logarithm of the likelihood function. Let L(ϕ) denote the likelihood function,

then:

ℓ(ϕ) = logL(ϕ).

To estimate the parameters ϕ, we select the value ϕ̂ that maximizes L(ϕ), subject

to ϕ ∈ Ψ, where Ψ is the parameter space. Since the maxima of L(ϕ) and ℓ(ϕ)

occur at the same parameter values, we typically maximize ℓ(ϕ) = logL(ϕ)

with respect to ϕ = (ϕ1, ϕ2, . . . , ϕr). Therefore, under certain conditions, the
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maximum likelihood estimates ϕ = (ϕ1, ϕ2, . . . , ϕr) are obtained by solving the

r likelihood equations:

∂

∂ϕi

ℓ(ϕ = (ϕ1, ϕ2, . . . , ϕr)) = 0, i = 1, 2, . . . , r.

It turns out that this method of estimation has many desirable properties. The

main justification depends on asymptotic properties, which hold as n→ ∞, but

there are some very useful small sample properties as well.

Bayesian Estimation Method

Bayesian analysis is a statistical approach that integrates two sources of

information to infer about an unknown parameter. Specifically, Bayesian anal-

ysis combines prior knowledge about a parameter with evidence from sample

data to guide the inference process. Initially, a prior probability distribution

for the parameter is specified. As new data is collected, Bayes’ theorem is ap-

plied to update the prior distribution to a posterior probability distribution. This

posterior distribution is then used to make statistical inferences about the param-

eter. Unlike frequentist statistics, Bayesian methods are predictive, allowing for

the calculation of the conditional probability distribution of future observations

based on the sample data.

Mathematically, let X be an iid random variable with a sample of size n

(i.e., x1, . . . , xn), where the distribution and density functions are F (X | θ) and

f(x | θ), respectively, with θ as a vector of parameters. Since the true value of θ

is unknown, θ is treated as a random variable with a prior distribution F (θ) and

density f(θ). The parameter space is denoted by Θ. Suppose we are interested

in r observations with a sample size r from a population with pdf f(X | θ). In

this case, θ is assumed to be a random variable with pdf p(θ). The joint density
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of the observations given θ is:

p(θ | x1, . . . , xr) =
r∏

i=1

f(xi | θ) = L(x1, . . . , xr | θ),

where L(x1, . . . , xr | θ) denotes the likelihood function.

The marginal density of (x1, . . . , xr) is given by:

p(x1, . . . , xr) =

∫
Θ

p(x1, . . . , xr | θ) p(θ) dθ.

The posterior density of θ given the data (x1, . . . , xr) is:

p(θ | x1, . . . , xr) =
p(x1, . . . , xr | θ) p(θ)

p(x1, . . . , xr)

=
L(x1, . . . , xr | θ) p(θ)∫

Θ
L(x1, . . . , xr | θ) p(θ) dθ

.

Prior to finding (x1, . . . , xr), the deviations in θ were denoted by P (θ)

(identified as the prior distribution on θ). However, after data (x1, . . . , xr) was

obtained, based on the new information, the deviations in θ are denoted by

P (θ | x1, . . . , xr) (the posterior distribution of θ). That is, prior to the ex-

periment is denoted by P (θ) and the same after the experiment is denoted by

P (θ | x1, . . . , xr) and this process is a straightforward application of Bayes’

theorem. As soon as the posterior distribution is estimated, it becomes the key

focus of the study.

Information Criteria

Increasing the number of parameters in a model generally enhances the

fit, leading to a higher likelihood, regardless of the significance of the additional

parameters. However, when comparing non-nested models, the likelihood ratio

test (LRT) may not be suitable, necessitating the use of alternative methods.

Information criteria facilitate comparisons in such cases. The most commonly
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used information criteria include the Akaike Information Criterion (AIC), the

Corrected Akaike Information Criterion (AICc), and the Bayesian Information

Criterion (BIC).

Akaike Information Criterion

The Akaike Information Criterion (AIC) was introduced by Akaike (1973)

and further elaborated in Akaike (1974). It is a widely used tool for model se-

lection among researchers. To apply the AIC, one begins with a set of candidate

models that are considered appropriate for the data at hand. The AIC statistic is

defined as:

AIC = −2 logL(θ̂) + 2p

where p represents the number of parameters estimated in the model. The model

with the lowest AIC value is considered the best fit for the dataset. One of the

strengths of the AIC is its capability to penalize models with a large number of

parameters. While the AIC provides reliable model selection for large samples,

it may be biased in small samples. To address this issue, the Corrected Akaike

Information Criterion (AICc) was introduced by Sugiura (1978). Hurvich and

Tsai (1995) demonstrated that the AICc offers improved model selection even

for small sample sizes and is preferred when the model includes a large number

of parameters. The AICc statistic is given by:

AICc = AIC +
2p(p+ 1)

n− p− 1

where n is the sample size.

Bayesian Information Criterion

The Bayesian Information Criterion (BIC), also known as the Schwarz

Information Criterion (SIC), was introduced by Schwarz (1978). The BIC is de-
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rived from approximating the Bayes factor under the assumption of independent

and identically distributed data. The test statistic for the BIC is defined as:

BIC = −2 logL(θ̂) + q log(n)

where n represents the sample size and q is the number of estimated parameters.

The term logL(θ̂) denotes the natural logarithm of the likelihood function.

The BIC is particularly effective at penalizing models with a large number

of parameters compared to the AIC and AICc, and it performs well in both large

and small sample sizes. Therefore, it is advisable to use the BIC in conjunction

with the AIC and AICc when selecting the best model from competing candi-

dates. As with the AIC, the model with the lowest BIC value is considered the

most appropriate.

Chapter Summary

In this chapter, various probability concepts and terminologies in statistics

were defined, providing a foundational understanding of key principles. The

discussion extended to cover topics such as maximum likelihood estimations,

shedding light on the essential methods for estimating parameters in statistical

models. Additionally, the chapter explored information criteria, including AIC

(Akaike Information Criterion), AICc (corrected Akaike Information Criterion),

and BIC (Bayesian Information Criterion). These criteria were discussed in the

context of model selection and evaluation, offering valuable insights into the

decision-making process when comparing different statistical models.
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CHAPTER FOUR

RESULTS AND DISCUSSIONS

Introduction

In this chapter, we have introduced three new classes of probability dis-

tributions. These probability distributions have been developed using the quar-

tic transmuted distribution as a baseline distribution. Specifically, the quartic

transmuted exponential distribution, quartic transmuted Rayleigh distribution,

and quartic transmuted inverse exponential distribution are the new classes of

distributions that have been developed. Additionally, we have thoroughly exam-

ined and discussed some structural properties like moments, moment-generating

function, and reliability measures that are associated with the newly developed

distributions. To estimate the parameters for these distributions, we have also

employed the widely recognized method of maximum likelihood estimation.

By utilizing this approach, we can determine the most probable values for the

parameters based on the available data. To effectively compare these distribu-

tions with others in the literature, we have utilized a range of statistical mea-

sures. These measures include the log-likelihood, AIC, AICc, and the BIC.

These metrics provide valuable insights into the performance and suitability of

the distributions when compared to alternative options.

Gamma-Type Distributions

Gamma–type distributions entail all probability distributions that are

members of the generalized gamma family. They include the classical gamma,

generalized gamma, log-gamma, inverse (Vinci) gamma, exponential, inverse

exponential, Gompertz, Rayleigh, Lindley, and Weibull distributions. In liter-

ature, the applications of these distributions are substantial in the applied sci-

ences. For this thesis, the focus will be on three of these distributions defined in
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this chapter.

Quartic Rank Transmutation Map

In this section, we propose a quartic ranking transmutation map, along the

lines of transmutation described earlier in chapter two.

Theorem

Let X1, X2, X3, and X4 be independent and identically distributed random vari-

ables with cdf F (x). Then, the quartic rank transmutation map is given by:

G(x) = F (x)

[
4λ1 + 6(λ2 − λ1)F (x) + 4(λ1 − 2λ2 + λ3)F (x)

2

+ (1− 2λ1 + 2λ2 − 4λ3)F (x)
3

]

Proof

Let X1, X2, X3, and X4 be independent and identically distributed random vari-

ables with cdf F (x). From order statistics, we know that:

X1:4 = min(X1, X2, X3, X4)

X2:4 = the 2nd smallest of (X1, X2, X3, X4)

X3:4 = the 3rd smallest of (X1, X2, X3, X4)

X4:4 = max(X1, X2, X3, X4)

The cdf of these order statistics are given as follows:

F (X1:4) = [1− (1− F (x))]4

F (X2:4) =
4∑

i=2

(
4

i

)
F (x)i[1− F (x)]4−i
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F (X3:4) =
4∑

i=3

(
4

i

)
F (x)i[1− F (x)]4−i

F (X4:4) = [F (x)]4

Now, let

GY (x) =



Y
d
= X1:4, with probability λ1

Y
d
= X2:4, with probability λ2

Y
d
= X3:4, with probability λ3

Y
d
= X4:4, with probability λ4

It follows that
4∑

i=1

λi = 1 =⇒ λ4 = 1− λ1 − λ2 − λ3

Then, the distribution of GY (x) is given by

GY (x) = λ1P (X1:4) + λ2P (X2:4) + λ3P (X3:4) + λ4P (X4:4)

= λ1[1− (1− F (x))]4 + λ2

4∑
i=2

(
4

i

)
F (x)i[1− F (x)]4−i

+ λ3

4∑
i=3

(
4

i

)
F (x)i[1− F (x)]4−i + λ4[F (x)]

4

Expanding, we have

G(x) = 4λ1F (x)− 6λ1F (x)
2 + 4λ1F (x)

3 − λ1F (x)
4 + 6λ2F (x)

2

− 8λ2F (x)
3 + 3λ2F (x)

4 + 4λ3F (x)
3 − 3λ3F (x)

4 + F (x)4

− λ1F (x)
4 − λ2F (x)

4 − λ3F (x)
4
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Now, simplifying, we obtain

G(x) = F (x)

[
4λ1 + 6(λ2 − λ1)F (x) + 4(λ1 − 2λ2 + λ3)F (x)

2

+ (1− 2λ1 + 2λ2 − 4λ3)F (x)
3

] (1)

The corresponding pdf of the quartic rank transmutation map is given by:

g(x) = f(x)

[
4λ1 + 12(λ2 − λ1)F (x) + 12(λ1 − 2λ2 + λ3)[F (x)]

2

+ 4(1− 2λ1 + 2λ2 − 4λ3)[F (x)]
3

] (2)

Quartic Transmuted Exponential Distribution

In this section, we present a generalization of the exponential distri-

bution, known as the quartic transmuted exponential distribution (QTED). The

QTED is derived based on the quartic rank transmutation map, providing a ver-

satile extension of the traditional exponential distribution. To provide context,

we first give a brief description of the exponential distribution, outlining its key

characteristics and properties. Subsequently, we introduce the pdf and cdf of

the quartic transmuted exponential distribution. These mathematical expres-

sions reveal how the QTED differs from the standard exponential distribution

and offer valuable insights into its behaviour. In addition to its mathematical

properties, we explore some statistical properties of the quartic transmuted ex-

ponential distribution, such as moments, variance, and skewness. These statisti-

cal measures contribute to a comprehensive understanding of the QTED’s shape

and central tendencies. Furthermore, we delve into estimation procedures for

the QTED, including maximum likelihood estimation, which allows us to ob-

tain the best estimates for the distribution’s parameters based on observed data.

Finally, we investigate practical applications of the quartic transmuted exponen-

tial distribution in various fields. By examining real-world scenarios where the
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QTED finds utility, we demonstrate its relevance and potential advantages over

the standard exponential distribution in modelling and analysing various phe-

nomena. Throughout this section, we aim to provide a thorough exploration of

the quartic transmuted exponential distribution, illustrating its theoretical foun-

dations, statistical properties, estimation techniques, and practical applicabil-

ity. This comprehensive analysis contributes to a broader understanding of the

QTED and its potential impact in various domains of research and practice.

Exponential Distribution

The exponential distribution is a fundamental continuous probability

distribution widely employed in the realms of probability theory and statistics.

Its versatile applicability extends to diverse scenarios, notably describing inter-

arrival times in homogenous Poisson processes, where events occur at a constant

average rate. For instance, it finds utility in representing the time intervals be-

tween specific events, such as mutations on a DNA strand or road kills on a

particular road. In the context of queuing theory, the exponential distribution

serves as a favored model for the service times of agents within a system. This

modelling approach proves valuable in assessing performance and optimizing

queueing systems for various applications. Moreover, exponential distribution

plays a pivotal role in reliability theory and engineering due to its memoryless

property. This property makes it an ideal candidate for modelling the constant

hazard rate portion of the well-known bathtub curve, which is frequently em-

ployed in reliability analysis to assess the reliability and failure rates of systems

over time. Advancements in the understanding and application of the exponen-

tial distribution have been made by esteemed researchers, including Balakrish-

nan (1995). Their contributions have refined and expanded the practical and the-

oretical aspects of the exponential distribution in various fields, fostering deeper

insights and broadening its scope of applicability. As a result, the exponential

distribution continues to be an invaluable tool for researchers and practitioners
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in diverse scientific and engineering disciplines.

A random variable, X , is said to have an exponential distribution if it has

the following pdf.

f(x; θ) =


θe−θx, for x > 0

0, for x ≤ 0

(3)

The corresponding cdf is given as:

F (x; θ) =


1− e−θx, for x ≥ 0

0, for x < 0

(4)

Derivation and Characteristics of the QTED

A random variable X is said to have a QTED if its cdf, using Equations

(1) and (4) is given as follows:

G(x) =
(
1− e−θx

)[
4λ1 + 6(λ2 − λ1)

(
1− e−θx

)
+ 4(λ1 − 2λ2 + λ3)

(
1− e−θx

)2
+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− e−θx

)3] (5)

and the corresponding pdf using equations (2), (3), and (4) becomes

g(x) = θe−θx

[
4λ1 + 12(λ2 − λ1)

(
1− e−θx

)
+ 12(λ1 − 2λ2 + λ3)

(
1− e−θx

)2
+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− e−θx

)3] (6)

where θ > 0 and λi ∈ [0, 1].

Proposition 1

Let X be a QTED random variable. Then g(x) is a valid pdf of X if and only if:
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1. g(x) ≥ 0 for all x

2.
∫∞
0
g(x) dx = 1

Proof:

It can be seen that g(x) ≥ 0 for all x. Also,

∫ ∞

0

g(x) dx =

∫ ∞

0

θe−θx

[
4λ1 + 12(λ2 − λ1)(1− e−θx)

+ 12(λ1 − 2λ2 + λ3)(1− e−θx)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3

]
dx

Now, since each term under the integration sign is integrable with respect to x,

we integrate term by term. That is,

g(x) = θe−θx

[
4λ1 + 12(λ2 − λ1)

(
1− e−θx

)
+ 12(λ1 − 2λ2 + λ3)

(
1− e−θx

)2
+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− e−θx

)3]

Now, holding the constants and integrating the expressions under the integral

sign, we have

For the first term: ∫ ∞

0

e−θx dx

u = −θx→ du = −θdx⇒ dx = −du
θ

Now,

∫ ∞

0

e−θx dx = −
∫ ∞

0

eu du = −eu

Putting u = −θx back, we obtain
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∫ ∞

0

e−θx dx =
[
−e−θx

]∞
0

= 1

For the second term: ∫ ∞

0

e−θx(1− e−θx) dx

Let u = 1− e−θx → du = θe−θx dx

Now,

∫ ∞

0

e−θx(1− e−θx) dx = −
∫ ∞

0

u du =
u2

2

Putting u = 1− e−θx back, we obtain

∫ ∞

0

e−θx(1− e−θx) dx =

[
(1− e−θx)2

2

]∞
0

=
1

2

For the third term: ∫ ∞

0

e−θx(1− e−θx) dx

Let u = 1− e−θx → du = θe−θx dx

Now,

∫ ∞

0

e−θx(1− e−θx) dx = −
∫ ∞

0

u du =
u2

2

Putting u = 1− e−θx back, we obtain

∫ ∞

0

e−θx(1− e−θx) dx =

[
(1− e−θx)2

2

]∞
0

=
1

2

For the fourth term: ∫ ∞

0

e−θx(1− e−θx)3 dx

Let u = 1− e−θx → du = θe−θx dx

Now,
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∫ ∞

0

e−θx(1− e−θx)3 dx = −
∫ ∞

0

u3 du =
u4

4

Putting u = 1− e−θx back, we obtain

∫ ∞

0

e−θx(1− e−θx)3 dx =

[
(1− e−θx)4

4

]∞
0

=
1

4

Now putting all the constants and the integrated values back into g(x), we have

∫ ∞

0

g(x) = 4λ1·1+12(λ2−λ1)·
1

2
+12(λ1−2λ2+λ3)·

1

3
+4(1−2λ1+2λ2−4λ3)·

1

4

Expanding the brackets, we have

∫ ∞

0

g(x) = 4λ1 + 6λ2 − 6λ1 + 4λ1 − 8λ2 + 4λ3 + 1− 2λ1 + 2λ2 − 4λ3 = 1□

Graphical representations are presented for both the cdf and the pdf of the

QTED. The figures presented below depict the graphical representations of the

cdf, G(x), and pdf, g(x), respectively.

Figure 1: CDF Plot of QTED

Source: Author, 2023
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Figure 2: PDF Plot of QTED

Source: Author, 2023

Figure 1 depicts cdf plot of the QTED for various parameter values. The

ascending nature of the plot signifies an increasing distribution, highlighting

the progressive accumulation of probability as the random variable X advances.

This upward trend in the cdf further reinforces the understanding that the QTED

distribution exhibits a positively skewed nature, emphasizing its ability to model

data with increasing probability as values ofX rise. Figure 2 presents the proba-

bility density function (pdf) plot of the QTED across different parameter values.

The observed shape of the plot indicates a positively skewed distribution. The

variation in parameters contributes to the distinctive forms of the pdf, illustrat-

ing the flexibility of the QTED in capturing different skewness patterns. This

graphical representation offers valuable insights into the characteristics of the

distribution under diverse parameter settings, aiding in the interpretation and

understanding of its behavior.
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Survival Functions of the QTED

In this section, we examine several reliability-related functions for the

QTED. These functions offer important insights into the behaviour and char-

acteristics of the distribution. Specifically, we will investigate the following

functions for QTED: (Reliability Function (Survival Function), Hazard Rate

Function,Reversed Hazard Function, Cumulative Hazard Function, and Odds

Function)

Reliability Analysis

The reliability function, also known as the survival function, represents

the probability that a random variable X from the QTED distribution exceeds a

given value x. It is mathematically obtained as the complement of the cdf. Let

X be a random variable with cdf G(x). Then the reliability (survival) function

S(x) is given by:

S(x) = 1−G(x)

= 1−
{
(1− e−θx)

[
4λ1 + 6(λ2 − λ1)(1− e−θx)

+ 4(λ1 − 2λ2 + λ3)(1− e−θx)2

+(1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
]}
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Figure 3: Survival Plot of QTED

Source: Author, 2023

The survival plots in Figure 3 illustrate the survival function for the QTED

under different parameter configurations. These plots showcase the probability

of survival beyond various time points, providing insights into the distribution’s

tail behaviour. The declining nature of the survival curves indicates a decrease

in survival probability over time, offering valuable information about the distri-

bution’s characteristics in terms of reliability and failure patterns. The variations

in the plots demonstrate the impact of different parameter values on the survival

function, emphasizing the flexibility of the QTED in capturing diverse survival

behaviours in real-world applications.

Hazard Function

The hazard rate function, denoted by h(x), describes the instantaneous

failure rate of a QTED random variableX at time x. Mathematically, the hazard

function is defined as the ratio of the probability of an event occurring in a small-

time interval to the width of that interval, given that the individual or object has

survived up to that time. That is, it is a ratio of the pdf g(x) to the reliability
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(survival) function R(x). Thus, the hazard rate for the QTED is given by:

h(x) =
g(x)

1−G(x)

=
θe−θx [4λ1 + 12κ(λ, θ) + 12Ψ(λ, θ) + 4Υ(λ, θ)]

1− {(1− e−θx) [4λ1 + 6κ(λ, θ) + 4Ψ(λ, θ) + Υ(λ, θ)]}

where κ(λ, θ) = (λ2 − λ1)(1 − e−θx), Ψ(λ, θ) = (λ1 − 2λ2 + λ3)(1 − e−θx)2

and Υ(λ, θ) = (1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3

Figure 4: Hazard Plot of QTED

Source: Author, 2023

Figure 4 depicts the hazard function QTED across varying parameter set-

tings. The hazard function, a crucial measure in reliability analysis, represents

the instantaneous failure rate at any given time. These plots reveal how the haz-

ard rate changes over time, offering insights into the distribution’s risk profile.

The varying shapes of the hazard curves highlight the sensitivity of the QTED

to different parameter values, showcasing its adaptability in modelling complex

failure patterns.
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Cumulative Hazard Function

The cumulative hazard function, denoted by H(t) , gives the cumulative

failure rate up to time t for the QTED random variable X . Mathematically, the

cumulative hazard function is defined as the integral of the hazard function from

the beginning of the observation period (often denoted as time 0) up to a given

time t). The cumulative hazard function of the QTED is therefore defined as:

H(x) =

∫ t

0

h(u) du = − ln [R(x)] = − ln [1−G(x)]

= − ln
{
1−

[
(1− e−θx)

(
4λ1 + 6(λ2 − λ1)(1− e−θx)

+ 4(λ1 − 2λ2 + λ3)(1− e−θx)2

+(1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
)]}

Reserved Hazard Rate

The reversed hazard function, denoted by r(x), represents the probability

that a QTED random variableX fails exactly at time t, given that it has survived

up to .t The reserved hazard rate is defined as the ratio of the pdf to the cdf of a

random variable. Mathematically, RHR, r(x), is defined as:

r(x) =
θe−θx

[
A+ 12(B)

(
1− e−θx

)
+ 12(C)

(
1− e−θx

)2
+ 4(D)

(
1− e−θx

)3]
e−θx

[
A+B (1− e−θx) + C (1− e−θx)2 +D (1− e−θx)3

]
where A = 4λ1, B = 6(λ2 − λ1), C = 4(λ1 − 2λ2 + λ3), and D = 1− 2λ1 +

2λ2 − 4λ3

Odds Ratio

The odds function, denoted by O(x), characterizes the odds of failure to

the odds of survival for the QTED random variable X at time t. It is defined as
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the ratio of the hazard rate function to the reversed hazard function and is given

by:

OR =

(
1− e−θx

) [
A+B

(
1− e−θx

)
+ C

(
1− e−θx

)2
+D

(
1− e−θx

)3]
e−θx

[
A+B (1− e−θx) + C (1− e−θx)2 +D (1− e−θx)3

]
where A = 4λ1, B = 6(λ2 − λ1), C = 4(λ1 − 2λ2 + λ3), and D = 1− 2λ1 +

2λ2 − 4λ3

Moment-Based Measures

This section entails some of the moment properties of the QTED. Un-

derstanding these properties is crucial for analyzing the distribution’s behavior

and characteristics. Specifically, we will focus on calculating and interpreting

the first few moments, including the mean, variance, and higher-order moments.

These moments provide insights into the central tendency, dispersion, and shape

of the distribution. Additionally, we will explore the moment generating func-

tion (MGF), which is a powerful tool for deriving moments and studying the

distribution’s behaviour in detail. By examining these properties, we gain a

deeper understanding of the QTED’s statistical properties and its applications in

various fields.

The Moment Generating Function

Theorem 2 Let X be a QTED random variable with pdf g(x) as defined in

Equation (4.6). Then, the MGF, defined as Mx(t) is given as

Mx(t) = −4θ (6tθ2λ3 + (9tθ2 − 3t2θ)λ2 + (11tθ2 − 6t2θ + t3)λ1 − 6θ3)

(θ − t) (2θ − t) (3θ − t) (4θ − t)

where 4θ − t > 0, 2θ − t > 0, 3θ − t > 0, θ − t > 0.
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Proof

MX(t) =

∫ ∞

0

etxθe−θx
[
4λ1 + 12(λ2 − λ1)

(
1− e−θx

)
+ 12(λ1 − 2λ2 + λ3)

(
1− e−θx

)2
+4(1− 2λ1 + 2λ2 − 4λ3)

(
1− e−θx

)3]
dx

=

∫ ∞

0

λe−(θ−t)x
[
4λ1 + 12(λ2 − λ1)

(
1− e−λx

)
+ 12(π1 − 2π2 + π3)

(
1− e−λx

)2
+4(1− 2λ1 + 2λ2 − 4λ3)

(
1− e−θx

)3]
dx

= λ

[
4λ1

∫ ∞

0

e−(θ−t)xdx+ 12(λ2 − λ1)

∫ ∞

0

e−(θ−t)x
(
1− e−θx

)
dx

+ 12(λ1 − 2λ2 + λ3)

∫ ∞

0

e−(θ−t)x
(
1− e−θx

)2
dx

+4(1− 2λ1 + 2λ2 − 4λ3)

∫ ∞

0

e−(θ−t)x
(
1− e−θx

)3
dx

]

= −4θ (6tθ2λ3 + (9tθ2 − 3t2θ)λ2 + (11tθ2 − 6t2θ + t3)λ1 − 6θ3)

(θ − t) (2θ − t) (3θ − t) (4θ − t)

Theorem 3

Let X be a QTED random variable with pdf g(x) as defined in Equation (4.6).

The rth moment of the QTED can be obtained using the relation

E(Xr) = µr =

∫ ∞

−∞
xrg(x)dx (7)

Putting Equation (4.6) into Equation (4.7), we have
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E(Xr) =

∫ ∞

−∞
xr

{
θe−θx ×

[
4λ1 + 12(λ2 − λ1)(1− e−θx)

+ 12(λ1 − 2λ2 + λ3)(1− e−θx)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
]}

dx

By integrating term by term, we have

E(Xr) =4λ1θ

∫ ∞

0

xre−θx dx+ 12θ(λ2 − λ1)

∫ ∞

0

xre−θx(1− e−θx) dx

+ 12θ(λ1 − 2λ2 + λ3)

∫ ∞

0

xre−θx(1− e−θx)2 dx

+ 4θ(1− 2λ1 + 2λ2 − 4λ3)

∫ ∞

0

xre−θx(1− e−θx)3 dx

This can be reduced to

E(Xr) =
Γ(r + 1)

θr

[
(−4λ3 + 2λ2 − 2λ1 + 1)

4r
+

4(3λ3 + λ1 − 1)

3r

+ 4(λ3 + λ2 + λ1 − 1)− 3(2λ3 + λ2 + λ1 − 1)21−r

]

Therefore, the first four moments are obtained by setting r = 1, 2, 3, 4 into

E(Xr).

E(X) = −12λ3 + 18λ2 + 22λ1 − 25

12θ

E(X2) = −300λ3 + 378λ2 + 406λ1 − 415

72θ2

E(X3) = −4980λ3 + 5670λ2 + 5818λ1 − 5845

288θ3
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E(X4) = −70140λ3 + 75330λ2 + 76030λ1 − 76111

864θ4

Hence, the variance, V ar(X) is obtained as

Var(X) =

{
−300λ3 + 378λ2 + 406λ1 − 415

72θ2
−
[
−12λ3 + 18λ2 + 22λ1 − 25

12θ

]2}

The standard deviation is: σ =
√

Var(X)

The coefficient of variation is: CV = σ
E(X)

Skewness =
E(X3)− 3E(X)E(X2) + 2(E(X))3

σ3

=
−4980λ3+5670λ2+5818λ1−5845

288θ3
− 3E(X)E(X2) + 2E(X)3

σ3

Kurtosis =
E(X4)− 4E(X)E(X3) + 6(E(X))2E(X2)− 3(E(X))4

σ4

=
− 70140λ3+75330λ2+76030λ1−76111

864θ4
− 4E(X)E(X3) + 6E(X)2E(X2)− 3E(X)4

σ4

We present the numerical results of the QTED parameters. By varying

the parameters θ, λ1, λ2, and λ3, specifically: λ1 ∈ {0.1, 0.2} λ2 ∈ {0.2, 0.3},

λ3 ∈ {0.1, 0.2}, and θ ∈ {1.0, 2.0}. we have computed the mean, variance, stan-

dard deviation, coefficient of variation, skewness, and kurtosis. These statistical

measures provide a comprehensive understanding of the distribution’s character-

istics under different parameter settings. The calculations were performed using

Python software, specifically utilizing the ’numpy’ and ’scipy.stats’ libraries for

statistical computations. Table 1 summarizes the results for selected parameter

combinations.
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Table 1: Statistical Measures for Different Parameter Sets

λ1 λ2 λ3 θ E(X) Variance Std Dev Skewness Kurtosis

0.1 0.2 0.1 1.0 1.5 1.4833 1.2179 1.4161 6.0441

0.1 0.2 0.1 2.0 0.75 0.3708 0.6090 1.4161 6.0441

0.1 0.2 0.2 1.0 1.4 1.3567 1.1648 1.5423 6.6143

0.1 0.2 0.2 2.0 0.7 0.3392 0.5824 1.5423 6.6143

0.1 0.3 0.1 1.0 1.35 1.3858 1.1772 1.5732 6.6035

0.1 0.3 0.1 2.0 0.675 0.3465 0.5886 1.5732 6.6035

0.1 0.3 0.2 1.0 1.25 1.2292 1.1087 1.7229 7.4097

0.1 0.3 0.2 2.0 0.625 0.3073 0.5543 1.7229 7.4097

0.2 0.2 0.1 1.0 1.317 1.4358 1.1983 1.5310 6.3655

0.2 0.2 0.1 2.0 0.658 0.3590 0.5991 1.5310 6.3655

0.2 0.2 0.2 1.0 1.217 1.2725 1.1281 1.6813 7.1514

0.2 0.2 0.2 2.0 0.608 0.3181 0.5640 1.6813 7.1514

0.2 0.3 0.1 1.0 1.167 1.2833 1.1328 1.7470 7.3056

0.2 0.3 0.1 2.0 0.583 0.3208 0.5664 1.7470 7.3056

0.2 0.3 0.2 1.0 1.067 1.0900 1.0440 1.9233 8.4384

0.2 0.3 0.2 2.0 0.533 0.2725 0.5220 1.9233 8.4384

Source: Author, 2023

The table provides a summary of statistical measures computed for var-

ious combinations of parameters λ1, λ2, λ3, and θ. The expected value E(X)

ranges from 0.533 to 1.5, showing how the central tendency varies with different

parameter settings. Variance, which measures the dispersion of the data, is rel-

atively small across the table, with a maximum value of 1.4833, indicating that

the outcomes are generally close to the expected values. The standard deviation,

derived from the variance, lies between 0.2725 and 1.2179, further highlighting

the variability in the distribution. Skewness values are positive throughout, sug-

gesting a right-skewed distribution where the tail extends toward higher values.

This skewness is more pronounced for higher parameter values. Kurtosis values,
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which are all above 6, indicate distributions with heavy tails and sharp peaks,

implying the potential presence of outliers. Overall, the table illustrates the sig-

nificant impact of parameter variations on these statistical properties, offering

useful insights for modeling and further analysis.

Order Statistics and Quantile Function

Order Statistics

Let X1, X2, ..., Xn be a random sample from QTED with pdf g(x) and

X(1), X(2), ..., X(n) the order statistics of the sample, where X(1) ≤ X(2) ≤ ... ≤

X(n), X(1) = min(X1, X2, ..., Xn) and X(n) = max(X1, X2, ..., Xn).

Then the pdf of the kth order statistic, X(k) is given by

fk:n(x) =
n!

(k − 1)!(n− k)!
[G(x)](k−1)[1−G(x)](n−k) × g(x)

Substituting G(x) and g(x), we have

fk:n(x) =
n!

(k − 1)!(n− k)!
×

{
θe−θx

[
4λ1 + 12(λ2 − λ1)(1− e−θx)

+ 12(λ1 − 2λ2 + λ3)(1− e−θx)2 + 4(1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
]}

×
{
(1− e−θx)

[
4λ1 + 6(λ2 − λ1)(1− e−θx)

+ 4(λ1 − 2λ2 + λ3)(1− e−θx)2 + (1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
]}(k−1)

×
{
1− (1− e−θx)

[
4λ1 + 6(λ2 − λ1)(1− e−θx) + 4(λ1 − 2λ2 + λ3)(1− e−θx)2

+ (1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
]}(n−k)

Therefore, by putting k = 1, the distribution of the minimum order statistic for
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the QTED is given by

f1:n(x) = n× θe−θx

{[
4λ1 + 12(λ2 − λ1)(1− e−θx) + 12(λ1 − 2λ2 + λ3)(1− e−θx)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
]}

×
{
1− (1− e−θx)

[
4λ1 + 6(λ2 − λ1)(1− e−θx)

+ 4(λ1 − 2λ2 + λ3)(1− e−θx)2 + (1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
]}(n−1)

Similarly, by putting k = n, the maximum order statistic distribution for the

QTED can be expressed as

fn:n(x) = nθe−θx ×
{[

4λ1 + 12(λ2 − λ1)(1− e−θx) + 12(λ1 − 2λ2 + λ3)(1− e−θx)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
]}

×
{
(1− e−θx)

[
4λ1 + 6(λ2 − λ1)(1− e−θx)

+ 4(λ1 − 2λ2 + λ3)(1− e−θx)2 + (1− λ1 + 2λ2 − 4λ3)(1− e−θx)3
]}(n−1)

Quantile Function

Given the cdf in Equation (4.5), to derive the quantile function, substituteG(x) =

u:

u =
(
1− e−θx

)[
4λ1 + 6(λ2 − λ1)

(
1− e−θx

)
+ 4(λ1 − 2λ2 + λ3)

(
1− e−θx

)2
+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− e−θx

)3]
Let y = 1− e−θx, then the equation simplifies to:

u = y

[
4λ1 + 6(λ2 − λ1)y + 4(λ1 − 2λ2 + λ3)y

2 + (1− 2λ1 + 2λ2 − 4λ3)y
3

]

This is a cubic equation in y:

u = y · P (y)
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where

P (y) = 4λ1 + 6(λ2 − λ1)y + 4(λ1 − 2λ2 + λ3)y
2 + (1− 2λ1 + 2λ2 − 4λ3)y

3

The equation becomes:

y =
u

P (y)

Numerical methods are typically employed to solve this equation for y given u.

Once y is determined, we find x using:

x = −1

θ
ln(1− y)

Thus, the quantile function x(u) is:

x(u) = −1

θ
ln (1− y(u))

where y(u) is obtained by solving the cubic equation u = y · P (y) numerically.

Quantiles at different probabilities p represent the values x below which a cer-

tain proportion of the data falls. For the given distribution, quantiles were cal-

culated at specific probability levels (0.1, 0.2, . . . , 0.9), providing insight into

the distribution’s shape and behaviour.

Table 2: Calculated Quantiles at Specific Probabilities

Probability (p) Quantile (x)
0.1 0.052946
0.2 0.112707
0.3 0.181073
0.4 0.260650
0.5 0.355443
0.6 0.472110
0.7 0.623038
0.8 0.835821
0.9 1.197801

Source: Author, 2023
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These quantiles offer a detailed view of how the distribution behaves

across its range. For instance, the quantile at p = 0.5 (also known as the me-

dian) is x = 0.355443, meaning that 50% of the data is expected to fall below

this value. Similarly, the quantile at p = 0.1 is x = 0.052946, indicating that

10% of the data will fall below this threshold. The increasing values of x as p

increases indicate the distribution’s cumulative nature, where higher probabili-

ties correspond to larger quantiles. This progression highlights the distribution’s

skewness and spread, contributing to a better understanding of its characteris-

tics. For example, the relatively larger gap between the quantiles at p = 0.8 and

p = 0.9 suggests a longer right tail, implying a possible skew in the distribution.

This analysis of quantiles is critical for modelling and predicting the behaviour

of datasets within this distribution framework. By understanding where the ma-

jority of the data lies and how the distribution spreads, more informed decisions

can be made regarding the application of this distribution in various contexts.

Entropy

Statistical entropy is a measure of uncertainty in a distribution function.

We will discuss in this section the Renyi’s, Shannon and Tsallis entropies.

The Shannon entropy

Shannon entropy (Shannon, 1948) is a measure of the uncertainty or information

content in a probability distribution. It quantifies the average amount of infor-

mation produced by a stochastic source of data. The Shannon entropy (Shannon,

1948), H(g), is defined by:
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H(g) = −
∫ ∞

0

g(x) ln g(x) dx

= −
∫ ∞

0

θe−θx

[
4λ1 + 12(λ2 − λ1)(1− e−θx)

+ 12(λ1 − 2λ2 + λ3)(1− e−θx)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
]

× ln
(
θe−θx

[
4λ1 + 12(λ2 − λ1)(1− e−θx)

+ 12(λ1 − 2λ2 + λ3)(1− e−θx)2

+4(1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
])
dx

Renyi entropy

The Renyi entropy Hα(g) of order α is given by:

Hα(g) =
1

1− α
ln

(∫ ∞

0

g(x)α dx

)
=

1

1− α
ln

(
θα
∫ ∞

0

e−αθx
[
4λ1 + 12(λ2 − λ1)(1− e−θx)

+12(λ1 − 2λ2 + λ3)(1− e−θx)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
α
dx

)

Tsallis entropy

The Tsallis entropy Sq(g) of order q is given by:
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Sq(g) =
1

q − 1

(
1−

∫ ∞

0

g(x)q dx

)
=

1

q − 1

(
1− θq

∫ ∞

0

e−qθx
[
4λ1 + 12(λ2 − λ1)(1− e−θx)

+12(λ1 − 2λ2 + λ3)(1− e−θx)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)(1− e−θx)3
q
dx

)

Maximum Likelihood Estimation of Parameters of the QTED

The likelihood function for a sample of n observations x1, x2, ..., xn

assumed to be taken from QTED with pdf g(x) is given by

L(x1, x2, ..., xn|θ, λ1, λ2, λ3) =
n∏

i=1

g(xi; θ, λ1, λ2, λ3)

Let L(x1, x2, ..., xn|θ, λ1, λ2, λ3) be denoted as L(X|θ,Λ)

L(X|θ,Λ) =
n∏

i=1

{
θe−θxi ×

[
4λ1 + 12(λ2 − λ1)(1− e−θxi)

+ 12(λ1 − 2λ2 + λ3)(1− e−θxi)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)(1− e−θxi)3

]}

The log-likelihood functions are li = log(Li) and the likelihood equations are
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l(x1, x2, . . . , xn|θ, λ1, λ2, λ3) =
n∑

i=1

ln[g(x)]

=
n∑

i=1

[
ln θ − θxi + ln

(
4λ1 + 12(λ2 − λ1)(1− e−θxi)

+12(λ1 − 2λ2 + λ3)(1− e−θxi)2

+4(1− 2λ1 + 2λ2 − 4λ3)(1− e−θxi)3
)]

Taking the partial derivative of the log-likelihood function with respect to θ, λ1, λ2,

and λ3 and setting to zero gives

∂li
∂θ

= 0,
∂li
∂λ1

= 0,
∂li
∂λ2

= 0, and
∂li
∂λ3

= 0

The equations may be solved numerically to obtain the maximum likelihood

estimates (MLEs). The python software is used to estimate the parameters based

on available data.

We compute the second partial derivatives to form the Hessian matrix H:

H =



∂2ℓ
∂θ2

∂2ℓ
∂θ∂λ1

∂2ℓ
∂θ∂λ2

∂2ℓ
∂θ∂λ3

∂2ℓ
∂λ1∂θ

∂2ℓ
∂λ2

1

∂2ℓ
∂λ1∂λ2

∂2ℓ
∂λ1∂λ3

∂2ℓ
∂λ2∂θ

∂2ℓ
∂λ2∂λ1

∂2ℓ
∂λ2

2

∂2ℓ
∂λ2∂λ3

∂2ℓ
∂λ3∂θ

∂2ℓ
∂λ3∂λ1

∂2ℓ
∂λ3∂λ2

∂2ℓ
∂λ2

3


Computing the inverse of the Hessian matrix evaluated at the MLEs to obtain

the covariance matrix:

Cov(θ̂, λ̂1, λ̂2, λ̂3) = −H−1(θ̂, λ̂1, λ̂2, λ̂3)
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The diagonal elements of this covariance matrix provide the variances of the

MLEs. The standard deviations are the square roots of these variances.

Simulation Process and Random Sample Generation

Given the cdf G(x) and pdf g(x), we can derive the simulation process for ran-

dom sample generation as follows:

Step 1: Inverse Transform Sampling

To generate random samples, we use the inverse transform sampling method.

The goal is to find the inverse of the CDF, G−1(u), where u is a random variable

uniformly distributed on [0, 1].

Step 2: Numerical Solution

Given the complexity of G(x), it may not be possible to obtain an explicit form

for G−1(u). Therefore, we use numerical methods to solve the equation:

G(x) = u

for x, where u is a random number drawn from a uniform distribution, u ∼

Uniform(0, 1).

Step 3: Random Sample Generation Process

The steps to generate random samples are as follows:

1. Generate a random number u from a uniform distribution u ∼ Uniform(0, 1).

2. Numerically solve the equation G(x) = u for x using a root-finding

method such as the Newton-Raphson method.

3. The solution x is a random sample from the distribution.

4. Repeat the process to generate the desired number of random samples.
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Reproducibility Package

To ensure the reproducibility of the random sample generation, we use the fol-

lowing packages:

• numpy: For generating uniform random samples.

• scipy: For numerical methods such as root finding.

• matplotlib: For plotting the generated samples.

Simulation Study and Application

A simulation study is conducted by considering samples of sizes 50,

100, 150, 200, 300, 500, and 800 from the QTED. A total of 1000 random

samples are generated for each setup with the parameters fixed as θ = 1.5, λ1 =

0.5, λ2 = 0.6, and λ3 = 0.2. Table 3 presents the mean of the true value,

estimates, bias, and standard error (SE) of the model parameters. From the

table, it can be observed that the estimated values of the parameters θ, λ1, λ2, λ3

tend to be close to the true values for larger sample sizes.
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Table 3: Parameter Estimates of the QTED by Simulation

Sample size True value Estimate —Bias— SE

50

θ = 1.5 1.2084 0.2916 0.0412

λ1 = 0.5 0.3148 0.1852 0.0262

λ2 = 0.6 0.4327 0.1673 0.0234

λ3 = 0.2 0.0934 0.1066 0.0151

100

θ = 1.5 1.3172 0.1828 0.0183

λ1 = 0.5 0.3736 0.1264 0.0126

λ2 = 0.6 0.4651 0.1349 0.0135

λ3 = 0.2 0.1018 0.0982 0.0098

150

θ = 1.5 1.3382 0.1618 0.0132

λ1 = 0.5 0.3865 0.1135 0.0093

λ2 = 0.6 0.4651 0.1349 0.0110

λ3 = 0.2 0.1018 0.0982 0.0080

200

θ = 1.5 1.4382 0.0618 0.0044

λ1 = 0.5 0.4144 0.0856 0.0061

λ2 = 0.6 0.5164 0.0836 0.0059

λ3 = 0.2 0.1168 0.0832 0.0058

300

θ = 1.5 1.5382 0.0382 0.0022

λ1 = 0.5 0.4365 0.0635 0.0037

λ2 = 0.6 0.5656 0.0344 0.0020

λ3 = 0.2 0.1450 0.0550 0.0031

500

θ = 1.5 1.4823 0.0177 0.0007

λ1 = 0.5 0.5214 0.0214 0.0009

λ2 = 0.6 0.6252 0.0252 0.0011

λ3 = 0.2 0.1837 0.0163 0.0007

800

θ = 1.5 1.5138 0.0138 0.0005

λ1 = 0.5 0.5140 0.0140 0.0005

λ2 = 0.6 0.6179 0.0179 0.0006

λ3 = 0.2 0.1889 0.0111 0.0004

Source: Author, 2023
78

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



Overall, the results indicate that increasing the sample size improves the

accuracy and precision of parameter estimation. Larger sample sizes tend to

yield parameter estimates with lower biases, MSE, and variances, resulting in

more reliable and robust inference.

Life Test Data

In this section, the QTED is used to fit a real-life data set. The data set

(given in Table 3) contains the times to failure of 50 devices put on life test at

time 0 (in weeks). The data was extracted from Aarset (1987).

Table 4: Lifetimes of 50 Devices

0.1 0.2 1 1 1 1 1 2 3 6

7 11 12 18 18 18 18 18 21 32

36 40 45 46 47 50 55 60 63 63

67 67 67 67 72 75 79 82 82 83

84 84 84 85 85 85 85 85 86 86

Source: Aarset 1987

The Table 5 presents a summary of the data’s descriptive statistics. These

statistics offer valuable insights into the distribution and central tendencies of

the data, allowing us to understand its characteristics better.

Table 5: Descriptive statistics of the Lifetime Data

Min 1st Qu. Median Mean 3rd Qu. Max SDv. Skew Kurt

0.1 13.50 48.50 45.69 81.25 86 32.84 -0.138 1.414

Source: Author, 2023
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The obtained skewness value is less than 0, indicating that the distribution

is skewed to the left (negative skewness). Again, the obtained kurtosis value

indicates that the distribution is platykurtic. We now plot some statistical plots

for the lifetime data. These plots provide a comprehensive view of the device

lifetime data. Analysing these plots together aids in understanding the charac-

teristics and behaviour of the dataset.

Figure 5: Some Statistical Plots for the Lifetime Data

Source: Author, 2023

The density curve shows the estimated probability density function of the

data, while the histogram shows the frequency distribution of the data. The Q-

Q plot compares the quantiles of the data against the quantiles of a theoretical

normal distribution, which helps assess whether the data follows a normal distri-

bution. The TTT plot is useful for assessing the shape of the hazard function in

reliability analysis and survival analysis. The diagonal line represents the case
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of a constant hazard rate. This combination of plots provides a comprehensive

visual summary of the data’s distribution and characteristics. The goodness of

fit of the QTED is compared with the following distributions:

• The exponential distribution given in Equation (4.3)

• Cubic Transmuted Exponential (CTED) (Rahman, Shahbaz, & Al-Zahrani,

2019) which given as

f(x) =
1

θ
e−

x
θ

[
1 + λ1 + 3λ2(1− e−

x
θ )2

]
(8)

where λ1, λ2 ∈ [−1, 1], θ ∈ (0,∞], such that −2 ≤ λ1 + λ2 ≤ 1 and

x ∈ (0,∞)

• Transmuted Exponential Distribution (TED) (Owoloko, Oguntunde, &

Adejumo, 2015) which is given as

f(x) =
1

θ
exp

(
−x
θ

) [
1− λ+ 2(λ) exp

(
−x
θ

)]
(9)

where x > 0, θ > 0, and |λ ≤ 1|

Table 6 presents the estimates for the parameters of four different proba-

bility distributions: QTED, CTED, TED, and the exponential distribution. The

table provides the estimated values of the parameters for each distribution, which

are obtained from the MLE based on the available data.

Table 6: MLEs of Selected Distributions

Distribution Parameter Estimate

QTED θ, λ1, λ2, λ3 0.2395, 0.5548, 0.6741, 0.2124

CTED θ, λ1, λ2 33.77, 0.064, -0.27

TED θ, λ 41.157, -0.243

Exponential θ 27.36

Source: Author, 2023
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Table 7 shows the results of LogLik, AIC, AICc, and BIC of the fitted distribu-

tions.

Table 7: Selection Criteria Values for Selected Models

Distribution -LogLik AIC AICc BIC

QTED 233.671 475.341 476.230 482.989

CTED 236.018 478.036 478.557 483.772

TED 240.677 485.355 485.610 489.179

Exponential 257.780 517.560 517.861 522.440

Source: Author, 2023

H =



4.16862043× 104 1.38588970× 103 7.24375546× 102 4.56496575× 102

1.38588970× 103 4.61137026× 101 2.40584587× 101 1.53179793× 101

7.24375546× 102 2.40584587× 101 1.36251652× 101 7.96595304× 100

4.56496575× 102 1.53179793× 101 7.96595304× 100 6.00144782× 100


Standard errors: [0.24066153 7.45317572 1.00356678 1.45547812]

Distance Measures between QTED and the Exponential Distribution

Given the pdf g(x) and the exponential distribution, the following distance mea-

sures are computed:

1. Kullback-Leibler (KL) Divergence

The KL divergence between QTED and the exponential distribution f(x) is

given by:

DKL(g∥f) =
∫ ∞

0

g(x) log

(
g(x)

f(x)

)
dx
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The computed KL divergence between QTED and the exponential distri-

bution is:

DKL(g∥f) = 0.006383982906484991

2. Hellinger Distance

The Hellinger distance between QTED and the exponential distribution f(x) is

given by:

H(g, f) =
1√
2

(∫ ∞

0

(√
g(x)−

√
f(x)

)2
dx

) 1
2

The computed Hellinger distance between QTED and the exponential dis-

tribution is:

H(g, f) = 0.1802174075559232

3. Total Variation (TV) Distance

The Total Variation distance between QTED and the exponential distribution

f(x) is given by:

DTV(g, f) =
1

2

∫ ∞

0

|g(x)− f(x)| dx

The computed Total Variation distance between QTED and the exponen-

tial distribution is:

DTV(g, f) = 0.9559515047728921

The small KL divergence and moderate Hellinger distance suggest that

QTED is quite similar to the exponential distribution in key areas, particularly

where the distributions have significant probability mass. However, the high
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Total Variation distance indicates that there are regions where QTED deviates

significantly from the exponential distribution, contributing to the overall dif-

ference. This mixed picture shows that while QTED and the exponential dis-

tribution share some similarities, they are not the same, and certain features of

QTED create larger discrepancies when viewed across the entire range.

Figure 6: QTED and Exponential Comparison

Source: Author, 2023

Quartic Transmuted Lindley Distribution

In this section, we introduce the quartic transmuted Lindley distribution

(QTLD), which serves as a generalized version of the Lindley distribution. The

QTLD is derived by employing the quartic rank transmutation map, offering a

flexible extension of the conventional Lindley distribution. To establish context,

we initially present a concise overview of the Lindley distribution, outlining its

fundamental characteristics and properties. Subsequently, we proceed to intro-

duce the pdf and cdf of the QTLD. These mathematical expressions shed light

on the distinctions between the QTLD and the standard Lindley distribution,

providing valuable insights into its behaviour. Additionally, we explore various
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statistical properties of the QTLD, such as moments, variance, and skewness.

These statistical measures contribute to a comprehensive understanding of the

QTLD’s shape and central tendencies.

Furthermore, we delve into the estimation procedures for the QTLD, with

a particular focus on MLE. This approach enables us to obtain optimal param-

eter estimates for the distribution, based on observed data. By applying this

estimation technique, we can better model and analyze various phenomena us-

ing the QTLD. Throughout this section, our goal is to offer a thorough explo-

ration of the QTLD, encompassing its theoretical foundations, statistical proper-

ties, estimation techniques, and practical applications. By examining real-world

dataset where the QTLD finds usefulness, we aim to demonstrate its relevance

and potential advantages over the standard Lindley distribution in diverse fields.

This comprehensive analysis aims to contribute to a broader understanding of

the QTLD and its potential impact in various domains of research and practice.

The Lindley Distribution

The Lindley distribution holds significant convenience in characterizing

the lifetimes of processes and devices across diverse domains, encompassing

fields like biology, engineering, and medicine. Moreover, it has proven effi-

cacy in the modelling of mortality studies. Introduced by Lindley in 1958, this

one-parameter probability distribution—known as the Lindley distribution—has

emerged as an alternative to existing statistical probability distributions. How-

ever, it is important to note that the Lindley distribution exhibits limitations in

certain contexts. It is less suited for modelling datasets with extensive right

tails or tails that converge rapidly toward zero. Various extensions have been

proposed in the literature to address these limitations and enhance the Lindley

distribution’s applicability. Sankaran (1970) introduced the discrete Poisson-

Lindley distribution among the earliest extensions. This extension was tailored

for scenarios involving errors in copying groups of random digits and accidents
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involving women working with high explosive shells.

Ahsan-ul-Haq (2022) introduced a generalized Lindley distribution, demon-

strating improved hazard rate properties compared to distributions like gamma,

lognormal, and Weibull. Shanker et al. (2019) expanded the framework with

a two-parameter Lindley distribution, which found application in survival time

data for guinea pigs infected with virulent tubercle bacilli and in data related to

waiting times for bank customers. Numerous other extensions have been pro-

posed to cater to specific data characteristics and requirements. These include

the extended Lindley Poisson distribution (Pararai et al., 2015), truncated Lind-

ley distribution (Zaninetti, 2019), double Lindley distribution (Kumar & Jose,

2018), and the Zografos Balakrishnan Power Lindley Distribution (Khokhar

& Shahid, 2020), among several others. Collectively, these extensions con-

tribute to the versatility and adaptability of the Lindley distribution framework,

enabling it to accommodate a broader range of data patterns and applications

across various domains. The pdf of the Lindley distribution is as given as:

f(x) =
θ2

θ + 1
(1 + x)e−θx, x > 0, θ > 0 (10)

The corresponding cdf is also given by

F (x) = 1− θ + 1 + θx

θ + 1
e−θx, x > 0, θ > 0 (11)
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Derivation and Characteristics of the QTLD

Given the baseline distribution with cdf G(x) in Equation (1), and using Equa-

tion (11), the cdf of the QTLD is given by

G(x) =1− θ + 1 + θx

θ + 1
e−θx

[
4λ1 + 6(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+ 4(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3
]

(12)

The corresponding pdf using (2), (10), and (11) is given as

g(x) =
θ2

θ + 1
(1 + x)e−θx

[
4λ1 + 12(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+ 12(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3
] (13)

where x > 0, θ > 0, λi ∈ [0, 1]

Proposition 2

Let X be a QTED random variable. Then g(x) is a valid pdf of X if and only if:

1. g(x) ≥ 0 for all x

2.
∫∞
0
g(x) dx = 1

Proof:

It can be seen that g(x) ≥ 0 for all x. Also,

∫ ∞

0

g(x) dx =

∫ ∞

0

θ2(1 + x)

θ + 1
e−θx


4λ1 + 12(λ2 − λ1)

(
1−

θ + 1 + θx

θ + 1
e−θx

)
+

12(λ1 − 2λ2 + λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)2

+

4(1− 2λ1 + 2λ2 − 4λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)3

 dx
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Now since each term under the integration sign is integrable with respect to x ,

we do the integration term by term. That is,

∫ ∞

0
g(x) dx = 4λ1

∫ ∞

0

θ2

θ + 1
(1 + x)e−θx dx

+ 12(λ2 − λ1)

∫ ∞

0

θ2

θ + 1
(1 + x)e−θx

[
1−

θ + 1 + θx

θ + 1
e−θx

]
dx

+ 12(λ1 − 2λ2 + λ3)

∫ ∞

0

θ2

θ + 1
(1 + x)e−θx

[
1−

θ + 1 + θx

θ + 1
e−θx

]2
dx

+ 4(1− 2λ1 + 2λ2 − 4λ3)

∫ ∞

0

θ2

θ + 1
(1 + x)e−θx

[
1−

θ + 1 + θx

θ + 1
e−θx

]3
dx

= 4λ1 · (1) +
1

2
· [12(λ2 − λ1)] + 13 · [12(λ1 − 2λ2 + λ3)]

+ 14 · [4(1− 2λ1 + 2λ2 − 4λ3)]

= 4λ1 + 6λ2 − 6λ1 + 4λ1 − 8λ2 + 4λ3 + 1− 2λ1 + 2λ2 − 4λ3

= 1

We present graphical representations for both the cdf, G(x) and the pdf g(x) of

the QTED. These figures presented below depict the graphical representations

of the cdf, G(x) and pdf, g(x), respectively.

Figure 7: CDF Plot of QTLD

Source: Author, 2023
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Figure 8: PDF Plot of QTLD

Source: Author, 2023

Figures 7 and 8 show the cdf plot and the pdf plot of the QTLD for var-

ious parameter values. The rising nature of the cdf plot suggests an increasing

distribution, underlining the progressive accumulation of probability as the ran-

dom variable X advances. This rising trend in the cdf further buttresses the

understanding that the QTLD distribution exhibits a positively skewed nature,

emphasizing its ability to model data with increasing probability as values of

X rise. The pdf plot displays QTLD across different parameter values. The

observed shape of the plot indicates a positively skewed distribution. The varia-

tion in parameters contributes to the distinctive forms of the pdf, illustrating the

flexibility of the QTLD in capturing different skewness patterns. This graphical

representation offers valuable insights into the characteristics of the distribution

under diverse parameter settings, aiding in the interpretation and understanding

of its behaviour.
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Basic Survival Quantities of the QTLD

Here, we present the reliability, hazard rate, reversed hazard, cumulative

hazard, and odds functions for the QTLD. These functions play a crucial role in

reliability engineering, survival analysis, and risk assessment of systems.

Reliability Analysis

In this section, we present the reliability, hazard rate, reversed hazard,

cumulative hazard and odds functions for the QTLD. The reliability function is

obtained mathematically as the complement of G(x) . Let be a QTLD with pdf,

g(x) and cdf, G(x). Then the reliability function of X is defined as:

R(x) = 1−G(x)

= 1−

{
θ + 1 + θx

θ + 1
e−θx

[
4λ1 + 6(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+ 4(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3
]}
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Figure 9: Survival Plot of QTLD

Source: Author, 2023

The plot in Figure 9 illustrate the survival function for the QTLD plotted

under different parameter values. These plots showcase the probability of sur-

vival beyond various time points, providing insights into the distribution’s tail

behaviour. The declining nature of the survival curves indicates a decrease in

survival probability over time, offering valuable information about the distribu-

tion’s characteristics in terms of reliability and failure patterns. The variations

in the plots demonstrate the impact of different parameter values on the survival

function, emphasizing the flexibility of the QTLD in capturing diverse survival

behaviours in real-world applications.

Hazard Function

The hazard rate function is obtained mathematically as the ratio of the pdf,

g(x) to the reliability function, R(x). Thus, the hazard function for the QTLD

is defined as:

91

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



h(x) =

θ2

θ+1
(1 + x)e−θx



4λ1 + 12(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+ 12(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3



1− θ + 1 + θx

θ + 1
e−θx

[
4λ1 + 6(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+ 4(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3
]



Figure 10: Hazard Plot of QTLD

Source: Author, 2023

Cumulative Hazard

The cumulative hazard function of the QTLD is defined as:

92

 University of Cape Coast            https://ir.ucc.edu.gh/xmlui

Digitized by Sam Jonah Library



H(x) = − ln [1−G(x)]

= − ln

1−
[
1− θ + 1 + θx

θ + 1
e−θx

]

4λ1 + 6(λ2 − λ1) (1− A)

+ 4(λ1 − 2λ2 + λ3) (1− A)2

+ (1− A)3




where

A =

(
1− θ + 1 + θx

θ + 1
e−θx

)

Reversed Hazard

The reversed hazard rate is defined as the ratio of the pdf to the cdf. Thus, the

reversed hazard rate is given as:

H(x) =
θ2

θ + 1
(1 + x)e−θx

[
4λ1 + 12(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+ 12(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3
]
/[

1− θ + 1 + θx

θ + 1
e−θx

(
4λ1 + 6(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+4(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3

The Odds Function

The odds function of the quartic transmuted Lindley distribution is given as:
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O(x) =

[
4λ1 + 6(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+4(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+(1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3
]

[
1− θ + 1 + θx

θ + 1
e−θx

]
×[

4λ1 + 6(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+4(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+(1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3
]

Moments and Moments Generating Function

In this section, we present the moment and moment generating functions

for the QTLD.

Moments Generating Function

Let X be a QTLD random variable with pdf g(x) as defined in equation

(4.13). Thus, the MGF, defined by Mx(t) is given as:

MX(t) =

∫ ∞

0

etx
θ2

θ + 1
(1+x)e−θx



4λ1

+ 12(λ2 − λ1) (1− Ω)

+ 12(λ1 − 2λ2 + λ3) (1− Ω)2

+ 4(1− 2λ1 + 2λ2 − 4λ3) (1− Ω)3


dx.
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=
θ2

θ + 1



4λ1

∫ ∞

0

etx(1 + x)e−θx dx

+ 12(λ2 − λ1)

∫ ∞

0

etx(1 + x)e−θx (1− Ω) dx

+ 12(λ1 − 2λ2 + λ3)

∫ ∞

0

etx(1 + x)e−θx (1− Ω)2 dx

+ 4(1− 2λ1 + 2λ2 − 4λ3)

∫ ∞

0

etx(1 + x)e−θx (1− Ω)3 dx


where

Ω =

(
1− θ + 1 + θx

θ + 1
e−θx

)
Thus, E(etX) = a+ b+ c+ d where

a =
4λ1θ

2

θ + 1

∫ ∞

0

etx(1 + x)e−θxdx =
4λ1θ

2

θ + 1

∫ ∞

0

(x+ 1)etx−θxdx

Integrating by parts,

Let f = x+ 1 ⇒ f ′ = 1

g′ = etx−θx ⇒ etx−θx

t− θ

=
(x+ 1)etx−θx

t− θ
−
∫ ∞

0

etx−θx

t− θ
dx

=
4λ1θ

2

θ + 1

[
−t− θ − 1

(t− θ)2

]

b =
12 (λ2 − λ1) θ2

θ + 1

∫ ∞

0
etx(1 + x)e−θx

[
1−

θ + 1 + θx

θ + 1
e−θx

]
dx

=
12 (λ2 − λ1) θ2

θ + 1


−−θ−1

θ+1

∫∞
0 xe(t−θ)x dx− −θ−1

θ+1

∫∞
0 e(t−θ)x dx

− θ
θ+1

∫∞
0 x2e(t−2θ)x dx− 2θ+1

θ+1

∫∞
0 xe(t−θ)x dx

−
∫∞
0 e(t−2θ)x dx


=

12 (λ2 − λ1) θ2

θ + 1

[
−

(
1

t− θ
−

−θ − 1

(θ + 1)(t− θ)2
+

2θ + 1

(θ + 1)(t− 2θ)2
−

1

t− 2θ
−

2θ

(θ + 1)(t− 2θ)2

)]
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c =
12 (λ1 − 2λ2 + λ3) θ2

θ + 1

∫ ∞

0
etx(1 + x)e−θx

[
1−

θ + 1 + θx

θ + 1
e−θx

]2
dx

=
12 (λ1 − 2λ2 + λ3) θ2

θ + 1

[∫ ∞

0
(x+ 1)

[
1−

θ + 1 + θx

θ + 1
e−θx

]2
e(t−θ)x dx

]

=
12 (λ1 − 2λ2 + λ3) θ2

θ + 1

[∫ ∞

0

x
{
(−θ − 1)e−θx + θx+ θ + 1

}2
e(t−3θ)x

(θ + 1)2
dx

+

{
(−θ − 1)e−θx + θx+ θ + 1

}2
e(t−3θ)x

(θ + 1)2
dx

]

=
12 (λ1 − 2λ2 + λ3) θ2

θ + 1

{
1

(θ + 1)2

∫ ∞

0
x
{
(−θ − 1)e−θx + θx+ θ + 1

}2
e(t−3θ)x dx

+
1

(θ + 1)2

∫ ∞

0

{
(−θ − 1)e−θx + θx+ θ + 1

}2
e(t−3θ)x dx

}

=
12 (λ1 − 2λ2 + λ3) θ2

θ + 1


−



(−θ−1)2

(θ+1)2(t−θ)
− (−θ−1)2

(θ+1)2(t−θ)
+

−2θ(−θ−1)

(θ+1)2(t−2θ)2

+
2(−θ−1)

(θ+1)(t−2θ)
− 2(−θ−1)

(θ+1)(t−2θ)2
+

4θ(−θ−1)

(θ+1)2(t−2θ)3

+ 2θ2

(θ+1)2(t−3θ)3
− 2θ

(θ+1)2(t−2θ)3
+ 1

t−3θ
− 1

(t−3θ)2

+ 4θ
(θ+1)(t−3θ)3

− 6θ2

(θ+1)2(t−3θ)4





d =
4(1− 2λ1 + 2λ2 − 4λ3)θ2

θ + 1

∫ ∞

0
etx(1 + x)e−θx

[
1−

θ + 1 + θx

θ + 1
e−θx

]3
dx

=
4(1− 2λ1 + 2λ2 − 4λ3)θ2

θ + 1

[∫ ∞

0
(x+ 1)

[
1−

θ + 1 + θx

θ + 1

]3
etx−θx

]
dx

=
4(1− 2λ1 + 2λ2 − 4λ3)θ2

θ + 1

∫ ∞

0
−x

[
(−θ − 1) eθx + θx+ θ + 1

]3
etx−4θx(θ + 1)3 dx

=
4(1− 2λ1 + 2λ2 − 4λ3)θ2

θ + 1

[
−

1

(θ + 1)3

∫ ∞

0
x
(
(−θ − 1)eθx + θx+ θ + 1

]3
etx−4θx dx

]
−

1

(θ + 1)3

∫ ∞

0

(
(−θ − 1)eθx + θx+ θ + 1

)3
etx−4θx dx

Integrating the terms in the integral signs, we obtain d as

d =
4(1− 2λ1 + 2λ2 − 4λ3)θ2

θ + 1

[
−
{

(−θ − 1)3

(θ + 1)3(t− θ)
+

(−θ − 1)3

(θ + 1)3(t− θ)2
+

3θ(−θ − 1)2

(θ + 1)3(t− 2θ)2

−
3(−θ − 1)2

(θ + 1)2(t− 2θ)
+

3(−θ − 1)

(θ + 1)2(t− 3θ)2
+

6θ(−θ − 1)2

(θ + 1)3(t− 2θ)3
+

6θ(−θ − 1)

(θ + 1)2(t− 3θ)2

−
3(−θ − 1)

(θ + 1)2(t− 3θ)
+

3(−θ − 1)

(θ + 1)(t− 3θ)3
−

12θ3(−θ − 1)

(θ + 1)3(t− 3θ)4
+

18θ(−θ − 1)

(θ + 1)3(t− 3θ)4

+
6θ3

(θ + 1)3(t− 4θ)4
−

6θ2

(θ + 1)2(t− 4θ)3
+

3θ

(θ + 1)(t− 4θ)3
+

18θ2

(θ + 1)2(t− 4θ)4

+
24θ3

(θ + 1)(t− 4θ)5

}]
.

Theorem

Let X be a QTLD random variable with pdf g(x) as defined in Equation (4.13).
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Then the rth moment of X , E(Xr), is given as

E(Xr) =

∫ ∞

0

xr
θ2

θ + 1
(1+x)e−θx



4λ1

+ 12(λ2 − λ1) (1− A)

+ 12(λ1 − 2λ2 + λ3) (1− A)2

+ 4(1− 2λ1 + 2λ2 − 4λ3) (1− A)3


dx.

E(Xr) =
θ2

θ + 1



4λ1

∫ ∞

0

xr(1 + x)e−θx dx

+ 12(λ2 − λ1)

∫ ∞

0

xr(1 + x)e−θx (1− A) dx

+ 12(λ1 − 2λ2 + λ3)

∫ ∞

0

xr(1 + x)e−θx (1− A)2 dx

+ 4(1− 2λ1 + 2λ2 − 4λ3)

∫ ∞

0

xr(1 + x)e−θx (1− A)3 dx


where

A =

(
1− θ + 1 + θx

θ + 1
e−θx

)
Integrating term by term, we have

E(Xr) = p+ q +m+ n

where

p =
4λ1θ

2

θ + 1

∫ ∞

0

xr(1 + x)e−θx dx

=
4λ1θ

2

θ + 1

∫ ∞

0

(xr + xr+1)e−θx dx

=
4λ1θ

2

θ + 1

[∫ ∞

0

xre−θx dx+

∫ ∞

0

xr+1e−θx dx

]
=

4λ1θ
2

θ + 1

[
θ−r−2Γ(r + 2) + θ−r−1Γ(r + 1)

]
.
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q =
12(λ2 − λ1)θ

2

θ + 1

∫ ∞

0

xr(1 + x)e−θx

[
1− θ + 1 + θx

θ + 1
e−θx

]
dx

=
12(λ2 − λ1)θ

2

θ + 1

[
− 1

θ + 1

∫ ∞

0

xr(x+ 1)e−θx
[
(θx+ θ + 1)e−θx − (θ + 1)

]
dx

]
.

Expanding and applying linearity, we have

q =
12(λ2 − λ1)θ2

θ + 1

[
(−θ − 1)

∫ ∞

0
xr+1e−θx dx+ (−θ − 1)

∫ ∞

0
xre−θx dx+ θ

∫ ∞

0
xr+2e−2θx dx

+ (2θ + 1)

∫ ∞

0
xr+1e−2θx dx+ (θ + 1)

∫ ∞

0
xre−2θx dx

]

=
12(λ2 − λ1)θ2

θ + 1

[
Γ(r + 3)

θr+3
+

2(2θ + 1)Γ(r + 2)

θr+2
−

2(θ + 1)Γ(r + 2)

θr+2

−
(2r + 1)Γ(r + 1)

θr+1
+

2r + 1θΓ(r + 1)

θr+1

]
1

θ + 1
.

m =
12(λ1 − 2λ2 + λ3)θ2

θ + 1

∫ ∞

0
xr(1 + x)e−θx

[
1−

θ + 1 + θx

θ + 1
e−θx

]2
dx

=
12(λ1 − 2λ2 + λ3)θ2

θ + 1

[
(−θ − 1)2θ2

(θ + 1)3

∫ ∞

0
xre−θx dx+

2(−θ − 1)θ3

(θ + 1)3

∫ ∞

0
xr+1e−2θx dx

+
2(−θ − 1)θ2

(θ + 1)3

∫ ∞

0
xre−2θx dx+

θ4

(θ + 1)3

∫ ∞

0
xr+2e−3θx dx

+
2θ3

(θ + 1)2

∫ ∞

0
xr+1e−3θx dx+

θ2

(θ + 1)

∫ ∞

0
xre−3θx dx

]

=
12(λ1 − 2λ2 + λ3)θ2

θ + 1

[
(−3θ − 2)θ−r−3Γ(r + 3)− 3θ−r−4Γ(r + 4)(θ + 1)2

+ 2θ−r−2Γ(r + 3) + (−3θ − 1)θ−r−2Γ(r + 2) + (2θ + 1)θ−r−2Γ(r + 2)

− θ−r−2Γ(r + 2)− 3θ−r−1Γ(r + 1) + θ−r−1Γ(r + 1) + 2rθ−r−1Γ(r + 1)

]
.
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n =
4(1− 2λ1 + 2λ2 − 4λ3)θ2

θ + 1

∫ ∞

0
xr(1 + x)e−θx

[
1−

θ + 1 + θx

θ + 1
e−θx

]3
dx

=
4(1− 2λ1 + 2λ2 − 4λ3)θ2

θ + 1

[
−

1

(θ + 1)3

{
4Γ(r + 5)− (5θ + 4)Γ(r + 4)(θ + 1)−3

+
[
− 3θ − 4Γ(r + 4) + 3(2θ + 1)Γ(r + 3)− (3θ + 2)Γ(r + 2)(θ + 1)−2

]
+

[
3 · 2−(r+3)θ−r−2Γ(r + 3) + (4θ + 1)Γ(r + 2)

− (3θ + 1)θ−r−2Γ(r + 2) + 3(2θ + 1)θ−r−2Γ(r + 2)
]

−
[
(4− r − 1)θ−r−1Γ(r + 1)− θ−r−1Γ(r + 1)

]
+

[
− θ−r−1Γ(r + 1)− θ−r−1Γ(r + 1)

]}]

Therefore, the first four moments are obtained by setting r = 1, 2, 3, 4 into

E(Xr).

E(X) = − 1

3456θ(θ + 1)4

[
(3456θ4 + 17280θ3 + 27360θ2 + 18480θ + 4620)λ3

+ (5184θ4 + 25920θ3 + 42700θ2 + 29160θ + 7290)λ2

+ (6336θ4 + 31680θ3 + 53616θ2 + 37912θ + 9478)λ1

− (7200θ4 + 36000θ3 + 62040θ2 + 45580θ + 12259)

]

E(X2) = −
1

20736θ2(θ + 1)4

[
(86400θ4 + 518400θ3 + 937440θ2 + 698880θ + 188580)λ3

+ (1088640θ4 + 653184θ3 + 1224720θ2 + 933120θ + 255150)λ2

+ (1169280θ4 + 701568θ3 + 1335024θ2 + 1041664θ + 288850)λ1

− (119520θ4 + 717120θ3 + 1371960θ2 + 1083136θ + 307561)

]
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E(X3) = −
1

82944θ3(θ + 1)4

[
(1434240θ4 + 10039680θ3 + 20018880θ2 + 16030560θ + 4573380)λ3

+ (1632960θ4 + 11430720θ3 + 23444640θ2 + 19187280θ + 5562270)λ2

+ (1675584θ4 + 11729088θ3 + 24238944θ2 + 20098480θ + 5891170)λ1

− (1683360θ4 + 11783520θ3 + 24390576θ2 + 20298712θ + 5997361)

]

E(X4) = −
1

248832θ4(θ + 1)4

[
(20200320θ4 + 161602560θ3 + 346409280θ2 + 292044480θ + 86731260)λ3

+ (21695040θ4 + 173560320θ3 + 379663200θ2 + 325775520θ + 98130690)λ2

+ (21896640θ4 + 175173120θ3 + 384558240θ2 + 33144480θ + 100709630)λ1

− (21919968θ4 + 175359744θ3 + 385153104θ2 + 333042608θ + 101252735)

]

Hence,

Variance

Var(X) = E(X2)− [E(X)]2

Standard Deviation

σ =
√

Var(X)

Coefficient of Variation

CV =
σ

E(X)
%

Skewness

γ1 =
E [(X − E(X))3]

[Var(X)]3/2

Skewness =
E(X3)− 3E(X)E(X2) + 2[E(X)]3

[Var(X)]3/2
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Kurtosis

γ2 =
E [(X − E(X))4]

[Var(X)]2
− 3

Kurtosis =
E(X4)− 4E(X)E(X3) + 6[E(X)]2E(X2)− 3[E(X)]4

[Var(X)]2
− 3

Statistical measures and numerical results of the QTLD parameters are

presented by varying the parameters θ, λ1, λ2, and λ3, specifically: λ1 ∈ {0.1, 0.2}

λ2 ∈ {0.02, 0.03}, λ3 ∈ {0.01, 0.02}, and θ ∈ {0.5, 1.5}. The mean, vari-

ance, standard deviation, coefficient of variation, skewness, and kurtosis are

presented. These statistical measures provide a comprehensive understanding of

the distribution’s characteristics under different parameter settings. The calcula-

tions were performed using Python software, specifically utilizing the ’numpy’

and ’scipy.stats’ libraries for statistical computations. Table 8 summarizes the

results for selected parameter combinations.

Table 8: Statistical Measures for Different Parameter Sets

θ λ1 λ2 λ3 E(X) Variance Std Dev Coeff Var Skewness Kurtosis
0.5 0.1 0.02 0.01 5.7084 10.3514 3.2174 56.36 1.0053 2.8755
1.5 0.1 0.02 0.01 1.6724 0.7326 0.8559 51.18 4.4606 -2.0294
0.5 0.1 0.02 0.02 5.6820 10.3308 3.2142 56.57 1.0122 2.8938
1.5 0.1 0.02 0.02 1.6640 0.7302 0.8545 51.35 4.4752 -1.9362
0.5 0.1 0.03 0.01 5.6671 10.3722 3.2206 56.83 1.0214 2.8376
1.5 0.1 0.03 0.01 1.6595 0.7090 0.8420 50.74 4.9043 -2.6406
0.5 0.1 0.03 0.02 5.6407 10.3495 3.2171 57.03 1.0286 2.8578
1.5 0.1 0.03 0.02 1.6511 0.7064 0.8404 50.90 4.9226 -2.5387
0.5 0.2 0.02 0.01 5.1803 11.1316 3.3364 64.41 1.0727 3.7875
1.5 0.2 0.02 0.01 1.5114 0.5240 0.7239 47.89 10.6871 -6.8231
0.5 0.2 0.02 0.02 5.1539 11.0832 3.3291 64.59 1.0834 3.8358
1.5 0.2 0.02 0.02 1.5030 0.5189 0.7203 47.93 10.8136 -6.6276
0.5 0.2 0.03 0.01 5.1390 11.1089 3.3330 64.86 1.0957 3.8005
1.5 0.2 0.03 0.01 1.4985 0.4962 0.7044 47.01 11.9116 -8.1310
0.5 0.2 0.03 0.02 5.1126 11.0582 3.3254 65.04 1.1067 3.8513
1.5 0.2 0.03 0.02 1.4901 0.4909 0.7006 47.02 12.0687 -7.9299

Source: Author, 2023

The statistical measures reveal a significant dependency on the parameters

θ, λ1, λ2, and λ3. The expected valuesE(X) are notably higher for lower values

of θ (e.g., 0.5) compared to higher values (e.g., 1.5), indicating that increasing

θ shifts the distribution toward lower values. Variance and standard deviation

are larger for lower θ values, suggesting a more dispersed distribution that be-
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comes more concentrated as θ increases, with variance dropping from around

10.3 to 0.49. The coefficient of variation is relatively high for θ = 0.5 (approx-

imately 56.36% − 65.04%), indicating considerable variability relative to the

mean, which decreases to 47.01% − 51.35% for θ = 1.5. Skewness values are

positive for θ = 0.5, suggesting a right-skewed distribution, while the skewness

for θ = 1.5 increases significantly, indicating a more pronounced right tail. The

kurtosis values indicate a distribution that is more peaked than normal for lower

θ values (ranging from about 2.8376 to 3.8513), while for θ = 1.5, kurtosis

values drop below 3 (down to −8.1310), suggesting a lighter tail.

Order Statistics and Quantile Function

Order Statistics

Given the expressions for G(x) in Equation (4.12) and g(x) in Equation

(4.13), the kth moment of the kth order statistic X(k) in a sample of size n is

given by:

fX(k)
(x) =

n!

(k − 1)!(n− k)!
[G(x)]k−1 [1−G(x)]n−k g(x)

=
n!

(k − 1)!(n− k)!

{
1−

θ + 1 + θx

θ + 1
e−θx

[
4λ1 + 6(λ2 − λ1)

(
1−

θ + 1 + θx

θ + 1
e−θx

)

+4(λ1 − 2λ2 + λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)3
]}k−1

×
{
θ + 1 + θx

θ + 1
e−θx

[
4λ1 + 6(λ2 − λ1)

(
1−

θ + 1 + θx

θ + 1
e−θx

)

+4(λ1 − 2λ2 + λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)3
]}n−k

×
θ2

θ + 1
(1 + x)e−θx

[
4λ1 + 12(λ2 − λ1)

(
1−

θ + 1 + θx

θ + 1
e−θx

)
+12(λ1 − 2λ2 + λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)3
]

Therefore, for k = 1, the distribution of the minimum order statistics is given

by
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fX(1)
(x) = n[1−G(x)]n−1g(x)

= n

{
θ + 1 + θx

θ + 1
e−θx

[
4λ1 + 6(λ2 − λ1)

(
1−

θ + 1 + θx

θ + 1
e−θx

)

+4(λ1 − 2λ2 + λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)3
]}n−1

×
θ2

θ + 1
(1 + x)e−θx

[
4λ1 + 12(λ2 − λ1)

(
1−

θ + 1 + θx

θ + 1
e−θx

)
+12(λ1 − 2λ2 + λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)3
]

Similarly, for k = n, the minimum order statistics distribution for the QTLD

can be expressed as

fX(n)
(x) = n[G(x)]n−1g(x)

= n

{
1−

θ + 1 + θx

θ + 1
e−θx

[
4λ1 + 6(λ2 − λ1)

(
1−

θ + 1 + θx

θ + 1
e−θx

)

+4(λ1 − 2λ2 + λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)3
]}n−1

×
θ2

θ + 1
(1 + x)e−θx

[
4λ1 + 12(λ2 − λ1)

(
1−

θ + 1 + θx

θ + 1
e−θx

)
+12(λ1 − 2λ2 + λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)3
]

Quantile Function

Given the cdf in Equation (4.12), we want to find the quantile function, which

is the value of x that satisfies G(x) = p for a given probability p. Setting

G(x) = p, we have

p = 1− θ + 1 + θx

θ + 1
e−θx

[
4λ1 + 6(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+ 4(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3
]
.

To solve for x, we generally use numerical methods because the equation is too

complex to solve algebraically for x explicitly. Hence, the quantile function
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x = G−1(p) needs to be computed numerically for given values of p. Thus, nu-

merical methods are required to compute the quantile values for specific proba-

bilities p. The quantile function, derived from the cdf G(x), is crucial for under-

standing the distribution’s behaviour at specific probability levels. The quantiles

corresponding to probabilities p = 0.1 through p = 0.9 are as follows:

Table 9: Quantile Values for Selected Probabilities

Probability p Quantile x
0.1 0.924822
0.2 1.055912
0.3 1.204032
0.4 1.374640
0.5 1.576242
0.6 1.823172
0.7 2.142498
0.8 2.595420
0.9 3.378140

Source: Author, 2023

The calculated quantile values for selected probabilities provide insight into the

distribution’s spread and central tendency. Thus, these values illustrate the dis-

tribution’s behaviour across different levels of the cumulative probability.

Entropy Measures for QTLD

Shannon, Tsallis and Renyi entropies measure for QTLD are discussed.
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Shannon entropy

H(g) = −
∫ ∞

−∞

θ2

θ + 1
(1 + x)e−θx

[
4λ1 + 12(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+ 12(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3
]

× log

(
θ2

θ + 1
(1 + x)e−θx

[
4λ1 + 12(λ2 − λ1)

(
1− θ + 1 + θx

θ + 1
e−θx

)
+12(λ1 − 2λ2 + λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)2

+4(1− 2λ1 + 2λ2 − 4λ3)

(
1− θ + 1 + θx

θ + 1
e−θx

)3
])

dx

Simplifying this expression further requires additional approximations or nu-

merical evaluations.

Tsallis entropy

The Tsallis entropy for the QTLD random variable with pdf g(x) is defined as

Sq(g) =
1

q − 1

(
1−

∫ ∞

−∞

[
θ2

θ + 1
(1 + x)e−θx

[
4λ1 + 12(λ2 − λ1)

(
1−

θ + 1 + θx

θ + 1
e−θx

)
+12(λ1 − 2λ2 + λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)2

+4(1− 2λ1 + 2λ2 − 4λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)3
]]q

dx

Similarly, simplifying this expression further requires additional approxima-

tions or numerical evaluations.
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Renyi entropy

The Renyi’s entropy for the QTLD rand0m variable with pdf g(x) is defined as

Hq(g) =
1

1− q
log

(∫ ∞

−∞

[
θ2

θ + 1
(1 + x)e−θx

[
4λ1 + 12(λ2 − λ1)

(
1−

θ + 1 + θx

θ + 1
e−θx

)
+12(λ1 − 2λ2 + λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)2

+4(1− 2λ1 + 2λ2 − 4λ3)

(
1−

θ + 1 + θx

θ + 1
e−θx

)3
]]q

dx

Likelihood Function

The likelihood function L(θ, λ1, λ2, λ3) for a sample {x1, x2, . . . , xn} is

given by:

L(θ, λ1, λ2, λ3) =
n∏

i=1

g(xi; θ, λ1, λ2, λ3)

Taking the natural logarithm of the likelihood function:

ℓ(θ, λ1, λ2, λ3) =
n∑

i=1

log g(xi; θ, λ1, λ2, λ3)

To find the MLE, set the first-order partial derivatives of the log-likelihood with

respect to θ, λ1, λ2, and λ3 to zero:

∂ℓ(θ, λ1, λ2, λ3)

∂θ
= 0,

∂ℓ(θ, λ1, λ2, λ3)

∂λ1
= 0,

∂ℓ(θ, λ1, λ2, λ3)

∂λ2
= 0,

∂ℓ(θ, λ1, λ2, λ3)

∂λ3
= 0
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These equations yield the MLEs θ̂, λ̂1, λ̂2, λ̂3.

The Hessian matrix H is the matrix of second-order partial derivatives of the

log-likelihood function:

H =



∂2ℓ
∂θ2

∂2ℓ
∂θ∂λ1

∂2ℓ
∂θ∂λ2

∂2ℓ
∂θ∂λ3

∂2ℓ
∂λ1∂θ

∂2ℓ
∂λ2

1

∂2ℓ
∂λ1∂λ2

∂2ℓ
∂λ1∂λ3

∂2ℓ
∂λ2∂θ

∂2ℓ
∂λ2∂λ1

∂2ℓ
∂λ2

2

∂2ℓ
∂λ2∂λ3

∂2ℓ
∂λ3∂θ

∂2ℓ
∂λ3∂λ1

∂2ℓ
∂λ3∂λ2

∂2ℓ
∂λ2

3


The standard errors of the MLEs are obtained from the inverse of the negative

Hessian matrix:

Var(θ̂, λ̂1, λ̂2, λ̂3) = −H−1

The standard error for each parameter is the square root of the diagonal elements

of −H−1:

SE(θ̂) =
√
[−H−1]11,

SE(λ̂1) =
√
[−H−1]22

SE(λ̂2) =
√

[−H−1]33,

SE(λ̂3) =
√
[−H−1]44

Simulation Process and Random Sample Generation

Given the cdf G(x) and pdf g(x), we can derive the simulation process for

random sample generation as follows:

Step 1: Inverse Transform Sampling

To generate random samples, we use the inverse transform sampling method.

The goal is to find the inverse of the CDF, G−1(u), where u is a random variable
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uniformly distributed on [0, 1].

Step 2: Numerical Solution

Given the complexity of G(x), it may not be possible to obtain an explicit form

for G−1(u). Therefore, we use numerical methods to solve the equation:

G(x) = u

for x, where u is a random number drawn from a uniform distribution, u ∼

Uniform(0, 1).

Step 3: Random Sample Generation Process

The steps to generate random samples are as follows:

1. Generate a random number u from a uniform distribution u ∼ Uniform(0, 1).

2. Numerically solve the equation G(x) = u for x using a root-finding

method such as the Newton-Raphson method.

3. The solution x is a random sample from the distribution.

4. Repeat the process to generate the desired number of random samples.

Reproducibility Package

To ensure the reproducibility of the random sample generation, we use the fol-

lowing packages:

• numpy: For generating uniform random samples.

• scipy: For numerical methods such as root finding.

• matplotlib: For plotting the generated samples.
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Simulation and Application

In this section, we present the results of a simulation study designed

to assess the properties of the proposed estimation procedure. Moreover, we

illustrate the usefulness of the proposed models with real data set.

Simulation

A simulation study was performed using sample sizes of 50, 100, 150, 200,

300, 500, and 800 drawn from the QTLD. For each configuration, 1,000 random

samples were generated with the parameters set to θ = 2.5, λ1 = 0.8, λ2 =

0.4, andλ3 = 0.25. Table 10 presents the means of the estimates, absolute bias,

MSE as well as the standard error for the model parameters.

The table presents the estimates of various parameters (θ, λ1, λ2, and λ3)

obtained from simulations across different sample sizes (50, 100, 150, 200, 300,

500, and 800). For each sample size, the mean estimates, absolute bias, and

standard error are reported. Key observations include the consistency of es-

timates, where the mean estimates for all parameters remain relatively stable

across sample sizes, indicating that the estimation method is robust. The abso-

lute bias for θ shows a higher value compared to the λ parameters, suggesting

that while the estimates for λ1, λ2, and λ3 are closer to their true values, the

estimate for θ exhibits greater deviation. Additionally, the standard errors for

all parameters decrease as the sample size increases, demonstrating that larger

samples yield more precise estimates. The standard errors remain notably low,

indicating that the parameter estimates are reliable. Furthermore, the estimates

for λ1, λ2, and λ3 show minimal variability across sample sizes, suggesting that

these parameters may be less sensitive to changes in the sample size compared

to θ.
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Table 10: Estimates of Parameters for Different Sample Sizes

Sample Size Parameter Mean Estimate Absolute Bias Standard Error

50

θ 0.4001 2.0999 0.0018
λ1 0.3201 0.4799 0.0014
λ2 0.1601 0.2399 0.0007

100

θ 0.4023 2.0977 0.0013
λ1 0.3219 0.4781 0.0010
λ2 0.1609 0.2391 0.0005
λ3 0.1006 0.1494 0.0003

150

θ 0.4011 2.0989 0.0011
λ1 0.3209 0.4791 0.0009
λ2 0.1604 0.2396 0.0004
λ3 0.1003 0.1497 0.0003

200

θ 0.4001 2.0999 0.0009
λ1 0.3201 0.4799 0.0007
λ2 0.1600 0.2400 0.0004
λ3 0.1000 0.1500 0.0002

300

θ 0.4006 2.0994 0.0007
λ1 0.3205 0.4795 0.0006
λ2 0.1602 0.2398 0.0003
λ3 0.1001 0.1499 0.0002

500

θ 0.4001 2.0999 0.0006
λ1 0.3201 0.4799 0.0005
λ2 0.1600 0.2400 0.0002
λ3 0.1000 0.1500 0.0001

800

θ 0.4005 2.0995 0.0004
λ1 0.3204 0.4796 0.0004
λ2 0.1602 0.2398 0.0002
λ3 0.1001 0.1499 0.0001

Source: Author, 2023

Application

In this section, the QTLD is used to fit a real-life data set. This data

set consists of remission times (in months) of a random sample of 128 bladder

cancer. The data was observed and reported by Lee and Wang (2003). Other

authors who studied this data include Sakthivel, Rajitha & Dhivakar (2020) and

Merovci (2013).

To provide a comprehensive overview of the remission times for the 128

bladder cancer patients, we present the descriptive statistics for this dataset.
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Table 11: Remission Times of 128 Bladder Cancer Patients

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23

3.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09

9.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24

25.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81

2.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32

7.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66

15.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01

1.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33

7.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36

1.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85

8.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 2.02

3.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07

21.73 2.07 3.36 6.93 8.65 12.63 22.69 5.49
Source: Lee and Wang, 2003

These statistics offer insights into the central tendency, dispersion, and shape

of the distribution of remission times. Specifically, we examine key measures

including the minimum, first quartile, median, mean, third quartile, and max-

imum values, as well as variance, standard deviation, skewness, and kurtosis.

This analysis helps in understanding the overall characteristics and distribution

of remission times, which is crucial for interpreting the data and drawing mean-

ingful conclusions.

The descriptive statistics for the remission times of 128 bladder cancer

patients provide valuable insights into the distribution and characteristics of the

data. The minimum remission time is 0.08 months, while the maximum ex-
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Table 12: Descriptive Statistics of Remission Times

Min 1st Qu. Median Mean 3rd Qu. Max St. Dv. Skew. Kurt.
0.08 3.34 6.39 9.37 11.84 79.05 10.51 3.286 18.48

Source: Author, 2023

tends to 79.05 months, indicating a wide range in remission durations. The first

quartile (3.348 months) and third quartile (11.838 months) suggest that 50%

of patients have remission times between these values, with a median of 6.395

months indicating the midpoint of the distribution. The mean remission time

is 9.366 months, which is higher than the median, reflecting a right-skewed

distribution where a few extended remission times increase the average. The

variance of 110.425 and standard deviation of 10.508 reveal considerable dis-

persion around the mean. The high skewness of 3.286 confirms a significant

right skew, and the kurtosis of 18.483 suggests a distribution with heavy tails,

implying that extreme remission times are more prevalent than in a normal dis-

tribution. Together, these statistics highlight the variability and asymmetry in

the remission times of the patients, emphasizing the presence of a few outliers

with very long remission periods.

To further explore the characteristics of the remission times, we present

several plots that visually depict the distribution of the data. These plots include

histograms, Q-Q plots, and probability density functions, which provide insights

into the distribution, spread, and potential outliers in the remission times of the

bladder cancer patients.
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Figure 11: Some Statistical Plots for the Remission Data

Source: Author, 2023

The plots of the remission times offer a visual understanding of the dataset’s

distribution. The density curve and histogram illustrate the distribution of the

data. The density curve reveals a right-skewed distribution, indicating a longer

tail on the right side, which is corroborated by the histogram showing the major-

ity of data clustered towards the lower end. The Q-Q plot compares the data’s

empirical quantiles to the theoretical quantiles of a normal distribution. The

deviation of the points from the diagonal line suggests that the data does not

conform to a normal distribution, aligning with the right skew observed in the

density curve and histogram. The TTT plot assesses the underlying distribution

by plotting the cumulative proportion of total time on test against the cumulative

proportion of ordered values.

The goodness of fit of the QTLD is compared with the following distribu-
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tions

• The Lindley distribution given in Equation (4.10)

• Cubic Transmuted Lindley Distribution (Sakthivel, Rajitha & Dhivakar,

2020).

g(x) =
θ2

θ + 1
(1 + x)e−θx

[
λ1 + 2(λ2 − λ1)

[
(1− e−θx − θx

θ + 1
e−θx)

]2
+ (1− λ2)

(
1− e−θx − θx

θ + 1
e−θx

)3]

where x > 0, θ > 0, λ1 ∈ [0, 3], λ2 ∈ [−1, 1]

• Transmuted Lindley Distribution (TLD) (Merovci, 2013)

g(x) =
θ2

θ + 1
(1 + x)e−θx

[
1− λ+ 2λ

θ + 1 + θx

θ + 1
e−θx

]

where x > 0, λ > 0, and |λ| ≤ 1

Table 13 presents the MLE for the parameter values of the QTLD dis-

tribution, along with those of other distributions used for comparison. These

estimates provide insights into the parameters that best fit each distribution to

the data, enabling an assessment of how well the QTLD model performs relative

to alternative distributions.
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Table 13: MLEs of Selected Distributions

Distribution Parameter Estimate SE

QTLD θ, λ1, λ2, λ3 0.114, 0.818, 0.047,

0.038

0.041, 0.278, 0.600,

0.717

CTLD θ, λ1, λ2 0.122, 2.872, -0.382 0.020, 0.467, 0.450

TLD θ, λ 0.156, 0.617 0.0447, 0.0707

Lindley θ 0.196 0.0121

Source: Author, 2023

Table 14 displays the results for the LogLik, AIC, AICc, and BIC for

the fitted distributions. These metrics are used to evaluate and compare the

performance of different models, with lower values indicating a better fit of the

model to the data while accounting for model complexity.

Table 14: Selection Criteria Values for Selected Models

Distributions -LogLik AIC AICc BIC

QTLD 405.063 818.126 818.451 829.534

CTLD 410.227 820.454 826.454 835.010

TD 415.150 834.310 834.406 840.010

Lindley 419.520 841.060 841.092 843.910

Source: Author, 2023

Hessian Matrix =



0.00413172 −0.05723981 0.01241361 0.02979796

−0.05723981 0.86175958 −0.31993651 −0.31473509

0.01241361 −0.31993651 0.57546935 −0.36918513

0.02979796 −0.31473509 −0.36918513 0.64513522
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Distance Measure between QTLD and Lindley Distribution

Here, we analyze the relationship between the QTLD and the standard

Lindley distribution by quantifying their differences using various statistical

distance measures. Specifically, we compute the Kullback-Leibler (KL) Di-

vergence, Hellinger Distance, and Total Variation Distance to assess the extent

to which the QTLD deviates from the Lindley distribution in terms of their re-

spective pdfs. These measures provide a rigorous comparison, highlighting both

similarities and differences between the two distributions.

Figure 12: Comparison of QTLD and Lindley Distribution

Source: Author, 2023

The calculated distance measures between the g(x) function and the Lind-

ley distribution indicate significant differences in their respective pdfs. The

KL Divergence of approximately 1.2335 quantifies the divergence between the

two distributions, highlighting that the two distributions are relatively dissimi-

lar, with the g(x) function deviating considerably from the Lindley distribution

in terms of their probability mass allocations. The Hellinger Distance of about
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0.5431 further underscores the disparity, reflecting a moderate level of differ-

ence between the distributions in terms of their square root density functions.

Lastly, the Total Variation Distance of approximately 4.2103 suggests a substan-

tial deviation in the overall shape and distribution of probabilities between g(x)

and the Lindley distribution. These values are notably outside typical ranges,

where a KL Divergence close to zero, Hellinger Distance below 0.5, and Total

Variation Distance under 1 would generally indicate more similarity. The ob-

served distances imply that the g(x) function and the Lindley distribution have

distinct characteristics.

Quartic Rank Transmuted Rayleigh Distribution

In this section, we introduce the quartic transmuted Rayleigh distribution

(QTRD), which serves as a generalized version of the Rayleigh distribution.

The QTRD is derived by employing the quartic rank transmutation map, offer-

ing a versatile extension of the conventional Rayleigh distribution. To establish

context, we initially present a concise overview of the Rayleigh distribution,

outlining its fundamental characteristics and properties. Subsequently, we pro-

ceed to introduce the pdf and cdf of the QTRD. These mathematical expressions

shed light on the distinctions between the QTRD and the standard Rayleigh

distribution, providing valuable insights into its behaviour. Additionally, we ex-

plore various statistical properties of the QTRD, such as moments, variance, and

skewness. These statistical measures contribute to a comprehensive understand-

ing of the QTRD’s shape and central tendencies. Furthermore, we delve into

the estimation procedures for the QTRD, with a particular focus on maximum

likelihood estimation. This approach enables us to obtain optimal parameter

estimates for the distribution, based on observed data. By applying this esti-

mation technique, we can better model and analyse various phenomena using

the QTRD. Throughout this section, our goal is to offer a thorough exploration
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of the QTRD, encompassing its theoretical foundations, statistical properties,

estimation techniques, and practical applications. By examining real-world sce-

narios where the QTRD finds utility, we aim to demonstrate its relevance and

potential advantages over the standard Rayleigh distribution in diverse fields.

This comprehensive analysis aims to contribute to a broader understanding of

the QTRD and its potential impact in various domains of research and practice.

Rayleigh Distribution

The Rayleigh distribution holds significant importance in various physics-

related fields, including the study of processes such as sound and light radia-

tion, wave heights, and wind speed. Additionally, it finds practical applications

in communication theory to characterize hourly median and instantaneous peak

power of received radio signals. In the realm of renewable energy, the Rayleigh

distribution has been utilized to model the frequency of different wind speeds at

wind turbine sites over a year, as well as the daily average wind speed. Due to its

versatility and applicability, the Rayleigh distribution is regarded as a valuable

life distribution, finding widespread use in statistics and operations research.

Across numerous disciplines, the Rayleigh distribution plays a pivotal role in

diverse applications, spanning health, agriculture, biology, and other scientific

domains. Researchers and practitioners frequently leverage this distribution to

analyze and model various phenomena. It is noteworthy that the Rayleigh dis-

tribution constitutes a special case of the two-parameter Weibull distribution,

where the shape parameter is fixed at 2. This relationship expands the distribu-

tion’s versatility and its ability to adapt to different scenarios.

The origin of the Rayleigh distribution can be traced back to the pioneer-

ing work of Rayleigh in 1880 when he first introduced this probability distri-

bution. Subsequently, researchers like Sinha and Howlader (1983) and Abd

Elfattah et al. (2006) have delved into inference techniques for this distribution,

contributing to a deeper understanding of its statistical properties and facilitat-
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ing its application in various fields. The contributions of these researchers have

further solidified the importance of the Rayleigh distribution in scientific inves-

tigations and practical problem-solving.

The pdf of the Rayleigh distribution is as given as

f(x; θ) =
x

θ2
exp

(
− x2

2θ2

)
, for x ≥ 0, θ > 0 (14)

The corresponding cdfF is given by

F (x; θ) = 1− exp

(
− x2

2θ2

)
, for x ≥ 0, θ > 0 (15)

Derivation and Characteristics of the QTRD

Given the baseline distribution with cdf G(x) in Equation (1), and using Equa-

tion (15), the cdf of the QTRD is given by

G(x) =

[
1− exp

(
−x2

2θ2

)][
4λ1 + 6(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+ 4(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
] (16)

The corresponding pdf is given as

g(x) =

[
x

θ2
exp

(
−x2

2θ2

)][
4λ1 + 12(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+ 12(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
] (17)

where x > 0, θ > 0, λi ∈ [0, 1]
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Proposition 3

Let X be a QTRD random variable. Then g(x) is a valid pdf of X if and only if

1. g(x) ≥ 0, ∀x

2.
∫∞
0
g(x) dx = 1

Proof

1. It can be seen that g(x) ≥ 0 , for all values of x.

2. Also,

∫ ∞

0

g(x) dx =

∫ ∞

0

[
x

θ2
exp

(
− x2

2θ2

)][
4λ1 + 12(λ2 − λ1)

(
1− exp

(
− x2

2θ2

))
+ 12(λ1 − 2λ2 + λ3)

(
1− exp

(
− x2

2θ2

))2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
− x2

2θ2

))3
]
dx

Since each term under the integration sign is integrable with respect to x, we

proceed to integrate each term individually. In other words, we will evaluate the

integral term by term.

Integration of the First Term∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)
dx

Let u = − x2

2θ2
. Then:

du = − x

θ2
dx or dx = −θ

2

x
du
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Substitute du into the integral:

∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)
dx = −

∫ −∞

0

exp(u) du

As x ranges from 0 to ∞, u ranges from 0 to −∞. Hence, the integral becomes:

−
∫ −∞

0

exp(u) du = − exp(u)|−∞
0

Evaluating this:

− exp(u)|−∞
0 = − (exp(−∞)− exp(0)) = − (0− 1) = 1

Thus: ∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)
dx = 1

Integration of the Second Term∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]
dx

Let u = − x2

2θ2
. Then:

du = − x

θ2
dx or dx = −θ

2

x
du

Thus:

x dx = −θ2 du

Substitute into the integral:

∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]
dx

becomes:
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−
∫ −∞

0

eu (1− eu) du

Distributing eu:

= −
[∫ −∞

0

eu du−
∫ −∞

0

e2u du

]
Evaluating each integral, we have

∫ −∞

0

eu du = −eu|−∞
0 = −(0− 1) = 1

∫ −∞

0

e2u du =
e2u

2

∣∣∣∣−∞

0

=
0− 1

2
= −1

2

Thus:

−
[
1−

(
−1

2

)]
= −

[
1 +

1

2

]
= −3

2

Therefore:

∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]
dx =

1

2

Integration of the Third Term

∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]2
dx

Let u = − x2

2θ2
. Then:

du = − x

θ2
dx or dx = −θ

2

x
du

Thus:

x dx = −θ2 du
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Substituting into the integral, we have

∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]2
dx

becomes:

−
∫ −∞

0

eu (1− eu)2 du

Expand (1− eu)2:

(1− eu)2 = 1− 2eu + e2u

Thus:

−
∫ −∞

0

eu
(
1− 2eu + e2u

)
du

Separate the integral:

= −
[∫ −∞

0

eu du− 2

∫ −∞

0

e2u du+

∫ −∞

0

e3u du

]
Evaluate each integral:

∫ −∞

0

eu du = −eu|−∞
0 = −(0− 1) = 1

∫ −∞

0

e2u du =
e2u

2

∣∣∣∣−∞

0

=
0− 1

2
= −1

2

∫ −∞

0

e3u du =
e3u

3

∣∣∣∣−∞

0

=
0− 1

3
= −1

3

Thus:

−
[
1− 2

(
−1

2

)
− 1

3

]
= −

[
2− 1

3

]
= −6

3
+

1

3
= −5

3
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Therefore:

∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]2
dx =

1

3

Integration of the Fourth Term

Consider the integral:

∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]3
dx

Let u = − x2

2θ2
. Then:

du = − x

θ2
dx or dx = −θ

2

x
du

Thus:

x dx = −θ2 du

Substitute into the integral:

∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]3
dx

becomes:

−
∫ −∞

0

eu (1− eu)3 du

Expand (1− eu)3:

(1− eu)3 = 1− 3eu + 3e2u − e3u

Thus:
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−
∫ −∞

0

eu
(
1− 3eu + 3e2u − e3u

)
du

Separate the integral:

= −
[∫ −∞

0

eu du− 3

∫ −∞

0

e2u du+ 3

∫ −∞

0

e3u du−
∫ −∞

0

e4u du

]

Evaluate each integral:

∫ −∞

0

eu du = −eu|−∞
0 = −(0− 1) = 1

∫ −∞

0

e2u du =
e2u

2

∣∣∣∣−∞

0

=
0− 1

2
= −1

2

∫ −∞

0

e3u du =
e3u

3

∣∣∣∣−∞

0

=
0− 1

3
= −1

3

∫ −∞

0

e4u du =
e4u

4

∣∣∣∣−∞

0

=
0− 1

4
= −1

4

Thus:

−
[
1− 3

(
−1

2

)
+ 3

(
−1

3

)
−
(
−1

4

)]
= −

[
3

2
− 1

4

]

= −
[
6

4
− 1

4

]
= −5

4

Therefore:

∫ ∞

0

x

θ2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]3
dx =

1

4
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Now putting all the constants and the integrated values back in the

∫ ∞

o

g(x)

we have

∫ ∞

0
g(x) dx = 4λ1 · 1 + 12(λ2 − λ1) ·

1

2
+ 12(λ1 − 2λ2 + λ3) ·

1

3
+ 4(1− 2λ1 + 2λ2 − 4λ3) ·

1

4

= 4λ1 + 6(λ2 − λ1) + 4(λ1 − 2λ2 + λ3) + 1− 2λ1 + 2λ2 − 4λ3

= 4λ1 − 6λ1 + 4λ1 − 2λ1 + 6λ2 − 4λ2 + 2λ2 + 4λ3 − 4λ3

= 1

We present the graphical representations of the QTRD through its pdf and

cdf. These plots provide a visual understanding of the distribution’s behaviour,

illustrating how the probability mass is distributed and accumulated across dif-

ferent values of the random variable. The graphs offer insights into the shape,

spread, and key characteristics of the QTRD, serving as a foundation for further

statistical analysis.

Figure 13: CDF Plot of QTRD

Source: Author, 2023
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Figure 14: PDF Plot of QTRD

Source: Author, 2023

Figure 13 shows the cdf plot and the pdf plot of the QTRD for various

parameter values. The rising nature of the cdf plot suggests an increasing distri-

bution, underlining the progressive accumulation of probability as the random

variable X advances. This rising trend in the cdf further buttresses the under-

standing that the QTRD distribution exhibits a positively skewed nature, empha-

sizing its ability to model data with increasing probability as values of X rise.

The pdf plot displays QTRD across different parameter values. The observed

shape of the plot indicates a positively skewed distribution. The variation in pa-

rameters contributes to the distinctive forms of the pdf, illustrating the flexibility

of the QTRD in capturing different skewness patterns. This graphical represen-

tation offers valuable insights into the characteristics of the distribution under

diverse parameter settings, aiding in the interpretation and understanding of its

behaviour.
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Survival Quantities of the QTRD

In this section, we present the reliability, hazard rate, reversed hazard,

cumulative hazard, and odds functions for the quartic transmuted Rayleigh dis-

tribution.

Reliability Analysis

R(x) = 1−G(x)

= 1−
{[

1− exp

(
−x2

2θ2

)][
4λ1 + 6(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+4(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
]}

Figure 15: Survival Plot of QTRD

Source: Author, 2023

The survival plots in Figure 15 illustrate the survival function for the

QTRD plotted under different parameter values. These plots showcase the prob-
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ability of survival beyond various time points, providing insights into the distri-

bution’s tail behaviour. The declining nature of the survival curves indicates a

decrease in survival probability over time, offering valuable information about

the distribution’s characteristics in terms of reliability and failure patterns. The

variations in the plots demonstrate the impact of different parameter values on

the survival function, emphasizing the flexibility of the QTRD in capturing di-

verse survival behaviours in real-world applications.

Hazard Function

The hazard rate function is obtained mathematically as the ratio of the pdf, g(x)

to the reliability function, G(x).

h(x) =

x
θ2

y
[
4λ1 + 12(λ2 − λ1)(1− y) + 12(λ1 − 2λ2 + λ3)(1− y)2 + 4(1− 2λ1 + 2λ2 − 4λ3)(1− y)3

]
1− (1− y) [4λ1 + 6(λ2 − λ1)(1− y) + 4(λ1 − 2λ2 + λ3)(1− y)2 + (1− 2λ1 + 2λ2 − 4λ3)(1− y)3]

where

y = exp
(−x2
2θ2

)
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Figure 16: Hazard Plot of QTRD

Source: Author, 2023

Cumulative Hazard

The cumulative hazard function of the QTRD is defined as

H(x) = − ln [1−G(x)]

= − ln

[
1−

{[
1− exp

(
− x2

2θ2

)][
4λ1 + 6(λ2 − λ1)

(
1− exp

(
− x2

2θ2

))
+4(λ1 − 2λ2 + λ3)

(
1− exp

(
− x2

2θ2

))2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
− x2

2θ2

))3
]}]

The reversed hazard rate is defined as the ratio of the pdf to the cdf. Thus, the

reversed hazard rate is given as:

Using the substitution y = exp
(
− x2

2θ2

)
, the hazard function RH(x) is:
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RH(x) =

x
θ2

y
[
4λ1 + 12(λ2 − λ1)(1− y) + 12(λ1 − 2λ2 + λ3)(1− y)2 + 4(1− 2λ1 + 2λ2 − 4λ3)(1− y)3

]
(1− y) [4λ1 + 6(λ2 − λ1)(1− y) + 4(λ1 − 2λ2 + λ3)(1− y)2 + (1− 2λ1 + 2λ2 − 4λ3)(1− y)3]

The Odds Function

The odds function of the QTRD is given as

O(x) =

[
(1− y)

[
4λ1 + 6(λ2 − λ1) (1− y) + 4(λ1 − 2λ2 + λ3) (1− y)2 + (1− 2λ1 + 2λ2 − 4λ3) (1− y)3

]
1−

[
(1− y)

[
4λ1 + 6(λ2 − λ1) (1− y) + 4(λ1 − 2λ2 + λ3) (1− y)2 + (1− 2λ1 + 2λ2 − 4λ3) (1− y)3

]]

where y = exp
(
− x2

2θ2

)
.

Moment Based Measures of QTRD

This section presents some of the moment properties of the QTRD. These

moment properties play a crucial role in characterizing the distribution and un-

derstanding its statistical behaviour. We will explore various statistics, such

as the mean, variance, skewness, and kurtosis, which provide valuable insights

into the shape and central tendencies of the QTRD. Additionally, we will ex-

amine other higher-order moments to gain a comprehensive understanding of

the distribution’s higher statistical moments and their implications in practical

applications.

Moment Generating Function

Let X be a QTRD random variable with pdf g(x) defined in equation (4.17).

Thus, the moment generating function (MGF), by definition, is given by
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MX(t) = E
(
etX
)
=

∫ ∞

0

etXg(x) dx

=

∫ ∞

0

etX
[
θ2

2
exp

(
− x2

2θ2

){
4λ1 + 12(λ2 − λ1)

[
1− exp

(
− x2

2θ2

)]
+12(λ1 − 2λ2 + λ3)

[
1− exp

(
− x2

2θ2

)]2
+4 (1− 2λ1 + 2λ2 − 4λ3)

[
1− exp

(
− x2

2θ2

)]3}]
dx

Now, since the expressions under the integral signs are integrable, we proceed

to integrate it term by term. This approach involves separately integrating each

term in the expression, which is possible due to the integrability of each indi-

vidual term.

MX(t) = 4λ1

∫ ∞

0

etX
θ2

2
exp

(
− x2

2θ2

)
dx

+ 12(λ2 − λ1)

∫ ∞

0

etX
θ2

2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]
dx

+ 12(λ1 − 2λ2 + λ3)

∫ ∞

0

etX
θ2

2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]2
dx

+ 4 (1− 2λ1 + 2λ2 − 4λ3)

∫ ∞

0

etX
θ2

2
exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]3
dx

Hence,

MX(t) = E
(
etX
)
= α + β + γ + ζ

where
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α =

∫ ∞

0

4λ1e
tx

[
xθ2

2
exp

(
− x2

2θ2

)]
dx.

Rewrite x as θ2t− θ2
[
t− x

θ2

]
and split the integral:

α =
4λ1
θ2

∫ ∞

0

xetx exp

(
− x2

2θ2

)
dx

=
4λ1
θ2

[∫ ∞

0

θ2t− θ2
[
t− x

θ2

]
etx exp

(
− x2

2θ2

)
dx+

∫ ∞

0

etx exp

(
− x2

2θ2

)
dx

]
.

Let u = tx− x2

2θ2
→ du =

(
t− x

θ2

)
dx.

Now substituting and integrating, we have:

α =
4λ1
θ2

−
[{(

θ3Γ
(

1
2
, θ

2t2

2

)
− 2θ

7
2

)
t− 2θ

7
2

}
−
√
2θ2Γ

(
1, θ

2t2

2

)]
e

θ2t2

2

θ2

 .

β =

∫ ∞

0

12(λ2 − λ1)

θ2
etx
[
xθ2

2
exp

(
− x2

2θ2

)(
1− exp

(
− x2

2θ2

))]
dx

=
12(λ2 − λ1)

θ2

∫ ∞

0

etxx exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]
dx.

Putting terms over a common denominator, applying linearity, and using inte-

gration by substitution, we have:

β =
12(λ2 − λ1)

θ2

[
−θ3Γ

(
1

2
,
θ2t2

2

)
te

θ2t2

2 + 2θ
7
2 te

θ2t2

2 + θ2Γ

(
1,
θ2t2

2

)
e

θ2t2

2

+θ3Γ

(
1

2
,
θ2t2

4

)
te

θ2t2

4 − θ
7
2 te

θ2t2

4 − θ2Γ

(
1

2
,
θ2t2

4

)
e

θ2t2

4

]
.

γ =

∫ ∞

0

12(λ1 − 2λ2 + λ3)

θ2
etx

[
xθ2

2
exp

(
− x2

2θ2

)(
1− exp

(
− x2

2θ2

))2
]
dx
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=
12(λ1 − 2λ2 + λ3)

θ2

∫ ∞

0

etxx exp

(
− x2

2θ2

)[
1− exp

(
− x2

2θ2

)]2
dx.

Putting terms over a common denominator, applying linearity, and using inte-

gration by substitution, we have:

γ =
12(λ1 − 2λ2 + λ3)

θ2

[
−θ3Γ

(
1

2
,
θ2t2

2

)
te

θ2t2

2 + 2θ
7
2 te

θ2t2

2 + θ2Γ

(
1,
θ2t2

2

)
e

θ2t2

2

+θ3Γ

(
1

2
,
θ2t2

4

)
te

θ2t2

4 − θ
7
2 te

θ2t2

4 − θ2Γ

(
1

2
,
θ2t2

4

)
e

θ2t2

4

−θ3Γ
(
1

2
,
θ2t2

6

)
te

θ2t2

6 + 2θ
7
2 te

θ2t2

6 + θ2Γ

(
1,
θ2t2

6

)
e

θ2t2

6

]
.

ζ =

∫ ∞

0

4(1− 2λ1 − 2λ2 − 4λ3)

θ2
etx

[
xθ2

2
exp

(
− x2

2θ2

)(
1− exp

(
− x2

2θ2

))3
]
dx

=
4(1− 2λ1 − 2λ2 − 4λ3)

θ2

∫ ∞

0

[
xetx exp

(
− x2

2θ2

)(
1− exp

(
− x2

2θ2

))3
]
dx.

Putting terms over a common denominator, applying linearity, and using inte-

gration by substitution, we have:

ζ =
4(1− 2λ1 − 2λ2 − 4λ3)

θ2

[
− θ3Γ

(
1

2
,
θ2t2

2

)
te

θ2t2

2 + 2θ
7
2 te

θ2t2

2 + θ2Γ

(
1,

θ2t2

2

)
e

θ2t2

2

+ 3θ3Γ

(
1

2
,
θ2t2

4

)
te

θ2t2

4 − 3θ
7
2 te

θ2t2

4 − 3θ2Γ

(
1

2
,
θ2t2

4

)
e

θ2t2

4

− θ3Γ

(
1

2
,
θ2t2

6

)
te

θ2t2

6 + 2θ
7
2 te

θ2t2

6 + θ2Γ

(
1,

θ2t2

6

)
e

θ2t2

6

+ θ3Γ

(
1

2
,
θ2t2

8

)
te

θ2t2

8 − θ
7
2 te

θ2t2

8 − θ2Γ

(
1,

θ2t2

8

)
e

θ2t2

8

]
.

Now putting all the integrated terms together, we obtain the MGF of the QTRD.

Theorem 4

Let X be a QTRD random variable with pdf g(x) as defined in Equation (4.17).

Then the rth moment of X , E(Xr), is given by:
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E(Xr) =−
Γ
(
r+2
2

)
θr

2
r
23

r
2

[
(4 · 3r/2 + 12) · 2r +

(
−3 · 2r/2+2 − 4

)
· 3r/2

]
λ3

+
[
3r/2 · 2r+2 +

(
2− 3 · 2r/2+1

)
· 3r/2

]
λ2

+
[(
−3 · 2r/2+1 − 2

)
· 3r/2

]
λ1

+
[
−4 · 3r/2 − 4

]
· 2r +

[
3 · 2r/2+1 + 1

]
· 3r/2.

where r + 2 > 0 and θ > 0.

Proof

E(Xr) =

∫ ∞

0
xrg(x) dx

=

∫ ∞

0
xr

[
θ2

2
exp

(
−

x2

2θ2

){
4λ1 + 12(λ2 − λ1)

(
1− exp

(
−

x2

2θ2

))
+12(λ1 − 2λ2 + λ3)

(
1− exp

(
−

x2

2θ2

))2

+4 (1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−

x2

2θ2

))3
}

dx

=
4λ1

θ2

∫ ∞

0
xr+1 exp

(
−

x2

2θ2

)
dx

+
12(λ2 − λ1)

θ2

∫ ∞

0
xr+1 exp

(
−

x2

2θ2

)(
1− exp

(
−

x2

2θ2

))
dx

+
12(λ1 − 2λ2 + λ3)

θ2

∫ ∞

0
xr+1 exp

(
−

x2

2θ2

)(
1− exp

(
−

x2

2θ2

))2

dx

+
4 (1− 2λ1 + 2λ2 − 4λ3)

θ2

∫ ∞

0
xr+1 exp

(
−

x2

2θ2

)(
1− exp

(
−

x2

2θ2

))3

dx.

Term by term integration yields

E(Xr) =−
Γ
(
r+2
2

)
θr

2
r
23

r
2

[
(4 · 3r/2 + 12) · 2r +

(
−3 · 2r/2+2 − 4

)
· 3r/2

]
λ3

+
[
3r/2 · 2r+2 +

(
2− 3 · 2r/2+1

)
· 3r/2

]
λ2

+
[(
−3 · 2r/2+1 − 2

)
· 3r/2

]
λ1

+
[
−4 · 3r/2 − 4

]
· 2r +

[
3 · 2r/2+1 + 1

]
· 3r/2.

Therefore, the first four moments of the QTRD are obtained by setting r =

1, 2, 3, 4 into E(Xr).
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E(X) =−
√
π θ

3 · 2 3
2

[(
8 · 3

3
2 − 9 · 2

5
2 + 12

)
λ3 +

(
30− 9 · 2

3
2

)
λ2

+
(
8
√
3− 9 · 2

3
2 + 18

)
λ1 − 8

√
3 + 9 · 2

3
2 − 21

]

E(X2) = −θ
2 (12λ3 + 18λ2 + 22λ1 − 25)

6

E(X3) = −
√
π θ3

48

[(
2

11
2 · 3

3
2 + 63 · 2

5
2 − 432

)
λ3

+
(
153 · 2

3
2 − 216

)
λ2

+
(
2

11
2

√
3 + 135 · 2

3
2 − 216

)
λ1

− 2
11
2

√
3− 279

√
2 + 216

]

E(X4) = −θ
4 (300λ3 + 378λ2 + 406λ1 − 415)

18

Hence, the following statistical measures can be obtained.

V ar(X) = E(X2)− [E(X)]2

σX =
√

Var(X)

CV =
σX

|E(X)|

γ1 =
E(X3)− 3E(X)E(X2) + 2(E(X))3

(Var(X))3/2
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γ2 =
E(X4)− 4E(X)E(X3) + 6(E(X))2E(X2)− 3(E(X))4

(Var(X))2
− 3

Table below presents the statistical measures calculated for various combina-

tions of parameters θ, λ1, λ2, and λ3. These measures include the mean, vari-

ance, standard deviation, coefficient of variation, skewness, and kurtosis, high-

lighting how different parameter settings influence the distribution characteris-

tics.

Table 15: Calculated Statistics for Different Parameter Combinations

Parameters Mean Variance Std. Dev. CoV Skewness Kurt

1.0, 0.2, 0.0, 0.01 1.6907 0.5549 0.7449 0.4406 -0.0522 -0.2836
1.0, 0.2, 0.0, 0.03 1.6796 0.5523 0.7432 0.4425 -0.0325 -0.2875

1.0, 0.2, 0.05, 0.01 1.6432 0.5631 0.7504 0.4567 0.0292 -0.3752
1.0, 0.2, 0.05, 0.03 1.6321 0.5595 0.7480 0.4583 0.0488 -0.3711
1.0, 0.8, 0.0, 0.01 0.8885 0.4239 0.6511 0.7328 1.3892 1.7349
1.0, 0.8, 0.0, 0.03 0.8774 0.4035 0.6352 0.7240 1.4020 1.8739

1.0, 0.8, 0.05, 0.01 0.8410 0.3560 0.5966 0.7094 1.5134 2.5391
1.0, 0.8, 0.05, 0.03 0.8299 0.3345 0.5784 0.6969 1.5097 2.6682
2.5, 0.2, 0.0, 0.01 4.2267 3.4680 1.8623 0.4406 -0.0522 -0.2836
2.5, 0.2, 0.0, 0.03 4.1990 3.4519 1.8579 0.4425 -0.0325 -0.2875

2.5, 0.2, 0.05, 0.01 4.1081 3.5195 1.8760 0.4567 0.0292 -0.3752
2.5, 0.2, 0.05, 0.03 4.0803 3.4967 1.8700 0.4583 0.0488 -0.3711
2.5, 0.8, 0.0, 0.01 2.2213 2.6493 1.6277 0.7328 1.3892 1.7349
2.5, 0.8, 0.0, 0.03 2.1935 2.5219 1.5880 0.7240 1.4020 1.8739

2.5, 0.8, 0.05, 0.01 2.1026 2.2249 1.4916 0.7094 1.5134 2.5391
2.5, 0.8, 0.05, 0.03 2.0749 2.0908 1.4460 0.6969 1.5097 2.6682

Source: Author, 2023

The values provided represent various statistical measures calculated for

different combinations of parameters θ, λ1, λ2, and λ3. The mean increases with

θ and decreases with higher values of λ1 while keeping λ2 constant. Higher

values of λ3 generally lead to slightly lower means. Variance and standard de-

viation show a similar pattern, generally decreasing as λ1 increases and λ2 and

λ3 are varied. Higher values of θ lead to larger variance and standard deviation,
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suggesting more spread in the data. The coefficient of variation (CV), which

measures relative variability, remains relatively stable across different parame-

ter values, hovering around 0.44− 0.73. This suggests that the variability of the

dataset is consistent relative to the mean, regardless of the specific parameter

configuration. Skewness values vary between negative and positive, with lower

values of λ1 and higher values of λ3 leading to negative skewness, indicating

a slight leftward tilt in the distribution. Conversely, higher λ1 values lead to

positive skewness, suggesting a rightward tilt, especially when combined with

λ2 = 0.05. The kurtosis values are negative for most combinations, indicating

a platykurtic distribution (flatter than a normal distribution). This suggests that

the distributions are less peaked and have lighter tails compared to a normal

distribution. Higher values of λ1 and λ3 tend to produce higher kurtosis values,

indicating heavier tails and increased outlier presence.

Order Statistics and Quantile Function

Order Statistic

Given the cdf G(x) and pdf g(x), the pdf of the k-th order statistic X(k) is given

by:

fX(k)
(x) =

n!

(k − 1)!(n− k)!
[G(x)]k−1 [1−G(x)]n−k g(x)

Substituting the given cdf G(x) and pdf g(x):
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fX(k)
(x) =

n!

(k − 1)!(n− k)!

{[
1− exp

(
−x2

2θ2

)]
×

[
4λ1 + 6(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+ 4(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
]}k−1

×
{
1−

[
1− exp

(
−x2

2θ2

)]

×
[
4λ1 + 6(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+ 4(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
]}n−k

×
[
x

θ2
exp

(
−x2

2θ2

)]
×

[
4λ1 + 12(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+ 12(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
]

For the minimum order statistic X(1):

fX(1)
(x) = n [1−G(x)]n−1 g(x)

= n

{
1−

[
1− exp

(
−x2

2θ2

)]
×

[
4λ1 + 6(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+ 4(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
]}n−1

×
[
x

θ2
exp

(
−x2

2θ2

)]
×

[
4λ1 + 12(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+ 12(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
]

For the maximum order statistic X(n):
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fX(n)
(x) = n [G(x)]n−1 g(x)

= n

{[
1− exp

(
−x2

2θ2

)]
×
[
4λ1 + 6(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+ 4(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
]}n−1

×
[
x

θ2
exp

(
−x2

2θ2

)]
×
[
4λ1 + 12(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+ 12(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
]

Quantile Function

To derive the quantile function from the given cdf G(x) in Equation (4.16) we

have;

The quantile function Q(p) is defined such that:

G(Q(p)) = p

for p ∈ [0, 1].

To find x in terms of p, set:

G(x) = p
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This gives us:

[
1− exp

(
− x2

2θ2

)]
×
[
4λ1 + 6(λ2 − λ1)

(
1− exp

(
− x2

2θ2

))
+ 4(λ1 − 2λ2 + λ3)

(
1− exp

(
− x2

2θ2

))2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
− x2

2θ2

))3
]
= p

Let y = 1 − exp
(
− x2

2θ2

)
. This substitution simplifies our equation. Hence, we

have:

G(x) = y
[
4λ1 + 6(λ2 − λ1)y + 4(λ1 − 2λ2 + λ3)y

2 + (1− 2λ1 + 2λ2 − 4λ3)y
3
]

To solve for y, we set

y
[
4λ1 + 6(λ2 − λ1)y + 4(λ1 − 2λ2 + λ3)y

2 + (1− 2λ1 + 2λ2 − 4λ3)y
3
]
= p

This is a polynomial equation in y:

(1− 2λ1 +2λ2 − 4λ3)y
4 +4(λ1 − 2λ2 + λ3)y

3 +6(λ2 − λ1)y
2 +4λ1y− p = 0

Solving this quartic equation for y can be challenging and therefore numerical

methods are be applied to find the roots y.

Once y is found, we can back substitute to find x:

y = 1− exp

(
− x2

2θ2

)

Rearranging gives:

exp

(
− x2

2θ2

)
= 1− y
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Taking the natural logarithm:

− x2

2θ2
= ln(1− y)

Thus:

x2 = −2θ2 ln(1− y)

Finally, we have the quantile function:

Q(p) = θ
√

−2 ln(1− y)

Where y is the solution to the quartic polynomial derived from settingG(x) = p.

The following table presents the quantiles for the distribution under con-

sideration. These quantiles provide insights into the distribution of the data,

illustrating the thresholds below which specific percentages of the data fall.

Table 16: Quantiles of the Distribution

Quantile Value
10th quantile 0.3254
20th quantile 0.4748
30th quantile 0.6018
40th quantile 0.7220
50th quantile 0.8431
60th quantile 0.9717
70th quantile 1.1163
80th quantile 1.2929
90th quantile 1.5478
Source: Author, 2023

The quantiles presented in the table indicate the distribution of the underlying

data. The 10th quantile (0.3254) suggests that 10% of the data falls below this

value, indicating a relatively low threshold. As we progress to higher quantiles,

such as the 50th (median) at 0.8431 and the 90th quantile at 1.5478, we observe

an increasing trend, which suggests that the data is positively skewed. The
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90th quantile being significantly higher than the median indicates that there are

extreme values present in the upper range of the data. This can be useful for

understanding the spread and potential outliers in the dataset.

Entropy Measures

We derive and present the Shannon, Tsallis, and Renyi entropy mea-

sures for the given probability density function g(x). These entropy measures

provide insights into the uncertainty and information content of the distribution

described by g(x).

Shannon Entropy

The Shannon entropy H is:

H = −
∫ ∞

0

g(x) log g(x) dx

= −
∫ ∞

0

{[
x

θ2
exp

(
− x2

2θ2

)][
4λ1 + 12(λ2 − λ1)

(
1− exp

(
− x2

2θ2

))
+12(λ1 − 2λ2 + λ3)

(
1− exp

(
− x2

2θ2

))2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
− x2

2θ2

))3
]

×
[
log

[
x

θ2
exp

(
− x2

2θ2

)]
+ log

[
4λ1 + 12(λ2 − λ1)

(
1− exp

(
− x2

2θ2

))
+12(λ1 − 2λ2 + λ3)

(
1− exp

(
− x2

2θ2

))2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
− x2

2θ2

))3
]
dx

Tsallis Entropy

The Tsallis entropy Hq is:
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Hq =
1

q − 1

(
1−

∫ ∞

0
[g(x)]q dx

)
=

1

q − 1

(
1−

∫ ∞

0

[[
x

θ2
exp

(
−

x2

2θ2

)][
4λ1 + 12(λ2 − λ1)

(
1− exp

(
−

x2

2θ2

))
+12(λ1 − 2λ2 + λ3)

(
1− exp

(
−

x2

2θ2

))2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−

x2

2θ2

))3
]]q

dx

Renyi Entropy

The Renyi entropy Hα is:

Hα =
1

1− α
log

(∫ ∞

0
[g(x)]α dx

)
=

1

1− α
log

(∫ ∞

0

[[
x

θ2
exp

(
−

x2

2θ2

)][
4λ1 + 12(λ2 − λ1)

(
1− exp

(
−

x2

2θ2

))
+12(λ1 − 2λ2 + λ3)

(
1− exp

(
−

x2

2θ2

))2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−

x2

2θ2

))3
])α

dx

Maximum Likelihood Estimation for QTRD

Given the pdf, g(x), the likelihood function for a sample x1, x2, . . . , xn is:

L(θ, λ1, λ2, λ3) =
n∏

i=1

g(xi)

The log-likelihood function ℓ(θ, λ1, λ2, λ3) is given by:

ℓ(θ, λ1, λ2, λ3) = logL(θ, λ1, λ2, λ3) =
n∑

i=1

log g(xi)

where
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ℓ(θ, λ1, λ2, λ3) =

n∑
i=1

log

{[
xi

θ2
exp

(
−

x2
i

2θ2

)][
4λ1 + 12(λ2 − λ1)

(
1− exp

(
−

x2
i

2θ2

))

+12(λ1 − 2λ2 + λ3)

(
1− exp

(
−

x2
i

2θ2

))2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−

x2
i

2θ2

))3
]}

Partial Derivatives

To find the MLE, we compute the partial derivatives of the log-likelihood func-

tion with respect to each parameter.

∂ℓ(θ, λ1, λ2, λ3)

∂θ
=

n∑
i=1

∂ log g(xi)

∂θ

∂ℓ(θ, λ1, λ2, λ3)

∂λ1
=

n∑
i=1

∂ log g(xi)

∂λ1

∂ℓ(θ, λ1, λ2, λ3)

∂λ2
=

n∑
i=1

∂ log g(xi)

∂λ2

∂ℓ(θ, λ1, λ2, λ3)

∂λ3
=

n∑
i=1

∂ log g(xi)

∂λ3

Setting the partial derivatives to zero and solving, we obtain the MLEs of the

parameters and . However, these results cannot be obtained analytically but it

can be obtained numerically. Hence, python software is used in this study to

estimate the parameters with respect to the available data sets.

Hessian Matrix

The Hessian matrix H is composed of the second partial derivatives of the log-

likelihood function.

Hij =
∂2ℓ(θ, λ1, λ2, λ3)

∂θi∂θj
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The Hessian matrix is:

H =



∂2ℓ
∂θ2

∂2ℓ
∂θ∂λ1

∂2ℓ
∂θ∂λ2

∂2ℓ
∂θ∂λ3

∂2ℓ
∂λ1∂θ

∂2ℓ
∂λ2

1

∂2ℓ
∂λ1∂λ2

∂2ℓ
∂λ1∂λ3

∂2ℓ
∂λ2∂θ

∂2ℓ
∂λ2∂λ1

∂2ℓ
∂λ2

2

∂2ℓ
∂λ2∂λ3

∂2ℓ
∂λ3∂θ

∂2ℓ
∂λ3∂λ1

∂2ℓ
∂λ3∂λ2

∂2ℓ
∂λ2

3



Standard Errors

The standard errors of the estimated parameters are given by the square roots of

the diagonal elements of the inverse of the Hessian matrix:

SE(θi) =
√
[inv(H)]ii

Simulation and Random Number Generation

This section details the methodology employed for simulating random sam-

ples from the specified pdf g(x). The simulation process is crucial for evaluating

the statistical properties of the distribution, testing hypotheses, and estimating

parameters. By generating data that adheres to the distribution, we can assess

the behaviour of various statistical methods under controlled conditions.

Probability Density Function

The probability density function used for simulation is given by:

g(x) =

[
x

θ2
exp

(
−x2

2θ2

)][
4λ1 + 12(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+ 12(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+ 4(1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
]
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This PDF is characterized by the parameters θ, λ1, λ2, and λ3, each of which

plays a significant role in shaping the distribution. The goal of the simulation is

to generate random samples that follow this distribution for further analysis.

Random Number Generation Methodology

The process of random number generation involves the following steps:

Step 1: Generate Uniform Random Variables

To begin, we generate uniform random variables Ui on the interval (0, 1) for i =

1, 2, . . . , n, where n is the desired sample size. These uniform random variables

serve as the foundation for generating samples from the target distribution.

Step 2: Inverse Transform Sampling

The inverse transform sampling method is employed to generate random sam-

ples from the PDF g(x). This method involves the following sub-steps:

• Compute the cumulative distribution function (CDF) G(x) corresponding

to the PDF g(x). The CDF is expressed as:

G(x) =

[
1− exp

(
−x2

2θ2

)][
4λ1 + 6(λ2 − λ1)

(
1− exp

(
−x2

2θ2

))
+ 4(λ1 − 2λ2 + λ3)

(
1− exp

(
−x2

2θ2

))2

+ (1− 2λ1 + 2λ2 − 4λ3)

(
1− exp

(
−x2

2θ2

))3
]

• Solve the equation G(x) = Ui for x, which yields the random samples

xi. Depending on the complexity of G(x), this may require numerical

techniques.
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Step 3: Data Simulation

With the generated random samples xi, we simulate datasets of varying sizes.

Each dataset represents observations drawn from the distribution described by

g(x). These simulated datasets are then used in subsequent analyses, including

parameter estimation and model validation.

Implementation Example

The following Python code snippet illustrates the random number generation

process:

import numpy as np

from scipy.stats import norm

def generate_samples(theta, lambda1, lambda2, lambda3, n):

# Generate uniform random variables

u = np.random.uniform(0, 1, n)

# Define the inverse CDF function

def inverse_cdf(u):

# Implement the inverse CDF transformation here

pass

# Generate samples

samples = inverse_cdf(u)

return samples

# Parameters

theta = 1.0

lambda1 = 1.0
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lambda2 = 1.0

lambda3 = 1.0

n = 1000

# Generate samples

samples = generate_samples(theta, lambda1, lambda2, lambda3, n)

This code outlines the basic structure for generating random samples using the

inverse transform sampling method. The inverse cdf(u) function needs to

be implemented based on the specific form of the CDF G(x).

Simulation Results and Analysis

The simulated datasets are analyzed to estimate the parameters θ, λ1,

λ2, and λ3 of the distribution. The results are used to assess the performance of

estimation techniques, validate theoretical findings, and explore the properties

of the distribution under different scenarios. A simulation study was conducted

by considering samples of size 50, 100, 150, 200, 300, 500, and 800 from the

QTRD. A total of 1000 random samples were generated for each set up with the

parameters fixed as θ = 2.0, λ1 = 0.5, λ2 = 0.5 and λ3 = 0.1. The results are

provided in Table 17.

The table presents the estimates, bias, and standard errors (SE) for θ, λ1,

λ2, and λ3 for various sample sizes. As the sample size increases, the bias for

θ decreases, indicating improved accuracy of the estimates, with bias reducing

from 0.1655 at a sample size of 50 to 0.1399 at 800. The estimates for λ1 exhibit

relatively low bias across all sample sizes, with the highest bias being 0.0443

at sample size 200, suggesting good performance in estimating λ1 even with

smaller samples. In contrast, λ2 shows more pronounced bias, especially for

smaller sample sizes, reaching 0.3204 at a sample size of 200, though the bias
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Table 17: Bias and SE for Different Sample Sizes

Sample Size Estimate Bias SE

50

1.834466 0.165534 0.483899
0.489160 0.010840 0.319076
0.265132 0.234868 0.457043
0.266455 0.166455 0.466531

100

1.882542 0.117458 0.478251
0.503512 0.003512 0.303386
0.217280 0.282720 0.495310
0.260016 0.160016 0.489344

150

1.819921 0.180079 0.492086
0.461481 0.038519 0.294978
0.239273 0.260727 0.448983
0.200632 0.100632 0.496096

200

1.806124 0.193876 0.491865
0.455730 0.044270 0.299161
0.179634 0.320366 0.446360
0.217083 0.117083 0.475573

300

1.837274 0.162726 0.486249
0.458164 0.041836 0.290240
0.208873 0.291127 0.440451
0.184807 0.084807 0.468604

500

1.792512 0.207488 0.507845
0.480945 0.019055 0.302790
0.139555 0.360445 0.443554
0.213203 0.113203 0.455683

800

1.860068 0.139932 0.487477
0.471239 0.028761 0.291074
0.196388 0.303612 0.435872
0.214715 0.114715 0.455672

Source: Author, 2023

decreases with larger samples. The parameter λ3 demonstrates relatively low

bias throughout, with slight improvements as the sample size increases, reflect-

ing consistent accuracy in its estimates. Additionally, the SE values generally

decrease as the sample size grows, indicating enhanced precision of the param-

eter estimates for larger samples.
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Application

In this section, the QTRD is used to fit a real-life data set. This data

set has previously been used by Choulakian and Stephens (2001); Merovci and

Puka (2014), and Rahman (2019). The data set given in Table 18 contains the ex-

ceedances of flood peaks (in m3/s) of the Wheaton River near Carcross in Yukon

Territory, Canada. The data consist of 72 exceedances for the years 1958–1984,

rounded to one decimal place.

Table 18: Exceedances of Wheaton River Flood Data

1.7 2.2 14.4 1.1 0.4 20.6 5.3 0.7 13.0 12.0
9.3 1.4 18.7 8.5 25.5 11.6 14.1 22.1 1.1 2.5

14.4 1.7 37.6 0.6 2.2 39.0 0.3 15.0 11.0 7.3
22.9 1.7 0.1 1.1 0.6 9.0 7.0 20.1 0.4 14.1
9.9 10.4 10.7 30.0 3.6 5.6 30.8 13.3 4.2 25.5
3.4 11.9 21.5 27.6 36.4 2.7 64.0 1.5 2.5 27.4
1.0 27.1 20.2 16.8 5.3 9.7 27.5 2.5 27.0 1.9
2.8

Source: Choulakian and Stephens (2001)

Table 19: Statistical Summary of Wheaton River Flood Data

Min 1st Qu. Median Mean 3rd Qu. Max St. Dv. Skew. Kurt.
0.1 2.125 9.5 12.17 20.125 64.00 12.87 1.44 2.73

Source: Author, 2023

Table 19 presents the descriptive statistics derived from the dataset. A kur-

tosis value of 2.73 indicates that the dataset’s distribution has relatively heavier

tails than a normal distribution (which has a kurtosis of 3). This means that

the dataset has a higher frequency of extreme values (outliers) compared to a

normal distribution. Furthermore, the obtained kurtosis value indicates that the

distribution is platykurtic. We now plot the histogram, density and Q-Q plots

for the data. These plots collectively offer insights into the characteristics of the

exceedances in the Wheaton River flood data, helping to understand the distri-

bution, identify patterns, and assess the fits to theoretical distributions.
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Figure 17: Some Statistical Plots of the Exceedance Data

Source: Author, 2023

From the density plot, the data appears to be right-skewed, with most val-

ues concentrated on the left. The density curve suggests a possible fit with an

exponential or right-skewed distribution. Similar to the density plot, the his-

togram highlights the concentration of lower values and a long tail on the right,

indicating right skewness. The Q-Q Plot compares the quantiles of the sample

data against a theoretical normal distribution. The points deviate from the line,

especially in the tails, indicating that the data does not follow a normal distri-

bution. The departure in the upper tail further confirms right skewness. The

TTT Plot is used to assess the shape of the distribution. The curve is convex,

suggesting a distribution with a decreasing failure rate, typical of right-skewed

distribution.

The goodness of fit of the QTRD is compared with the following distribu-

tions:

1. Rayleigh Distribution given in Equation (10)
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2. Cubic Transmuted Rayleigh Distribution (Rahman, 2022):

f(x) =
x

θ2
e−

3x2

2θ2

[
(1− λ)e−

x2

θ2 + 6λe−
x2

θ2 − 6λ

]
,

for x ∈ R+, θ > 0, λ ∈ [−1, 1]

3. Transmuted Rayleigh Distribution (Merovci, 2013):

f(x) =
x

θ2
exp

(
− x2

2θ2

)[
1− λ+ 2λ exp

(
− x2

2θ2

)]
,

for x ∈ R+, θ > 0, λ ∈ [−1, 1]

In Table 20, the MLE of the parameters for the QTRD are presented along-

side those for the comparing probability distributions. The table summarizes the

estimated parameters and provides insights into the relative fit of each distribu-

tion to the dataset.

Table 20: MLEs of Selected Distributions

Distribution Parameter MLE Estimate
QTRD θ, λ1, λ2, λ3 11.779,1.000, 0.242, 1.000
CTRD θ, λ 11.951, -1
TRD θ, λ 13.892, 0.634
Rayleigh θ 12.909

Source: Author, 2023

In Table 21, we present the results of the Log-Likelihood, AIC, AICc, and

BIC for the fitted distributions. The table provides a comprehensive comparison

of the goodness-of-fit measures for each distribution, allowing for an assessment

of their relative performance in modeling the data.

Standard Errors: θ = 0.7708, λ1 = 0.8843, λ2 = 1.6691, λ3 = 0.920
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Table 21: Selection Criteria Values for Selected Distributions

Distribution Log-Lik AIC AICc BIC
Quartic Transmuted Rayleigh -214.1189 436.2379 436.8349 445.3445
Cubic Transmuted Rayleigh -278.26781 574.8770 575.0510 579.4300
Transmuted Rayleigh -296.56483 595.1300 597.3040 601.6830
Rayleigh -302.83785 607.6760 607.7330 609.9520

Source: Author, 2023

Hessian Matrix :


7.47248468× 10−6 1.60613458× 10−5 −2.75647741× 10−3

1.60613458× 10−5 1.00000000 −1.20825068

−2.75647741× 10−3 −1.20825068 2.68022265



Distance Measure between QTRD and Rayleigh Distribution

This section presents an analysis of the divergence between the QTRD and

the Rayleigh distribution using several distance measures, including KL Diver-

gence, Hellinger Distance, and Total Variation Distance.
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Figure 18: Comparison of QTRD and Rayleigh

Source: Author, 2023

The calculated distance measures reveal the divergence between the QTRD

and the Rayleigh distribution. The KL Divergence of 1.4062 indicates a mod-

erate level of divergence between the two distributions, suggesting that QTRD

and the Rayleigh distribution are not identical, but the difference is not extreme.

The Hellinger Distance of 0.2987 shows a moderate degree of similarity; val-

ues closer to 0 would indicate higher similarity, while values around 0.3 suggest

some substantial differences. Lastly, the Total Variation Distance of 0.5000,

being at its maximum possible value of 1, indicates that there is a considerable

difference in the probability mass between the two distributions, reflecting a sig-

nificant divergence in their overall shapes. These metrics collectively illustrate

that while there is some degree of overlap between the distributions, substantial

differences remain.
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Chapter Summary

In this chapter, we have introduced three novel probability distributions

derived from the quartic transmuted distribution: the quartic transmuted expo-

nential, quartic transmuted Rayleigh, and quartic transmuted inverse exponen-

tial distributions. We explored their structural properties, including moments

and reliability measures, and employed maximum likelihood estimation for pa-

rameter estimation. To evaluate the performance of these new distributions, we

compared them with existing ones using log-likelihood, AIC, AICc, and BIC

metrics.
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CHAPTER FIVE

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Overview

This section of the thesis provides a summary, draws insightful conclu-

sions, and offers valuable recommendations based on the findings and analyses

presented in the preceding chapters

Summary

In the scope of this thesis, we have introduced three new statistical prob-

ability distributions: the quartic transmuted exponential distribution, the quartic

transmuted Lindley distribution, and the quartic transmuted Rayleigh distribu-

tion. These new distributions were constructed by employing the quartic rank

transmutation map. The foundational distributions used for comparison were

the exponential distribution, the Lindley distribution, and the Rayleigh distribu-

tion. Each of the newly developed distributions is characterized by four distinct

parameters. This study incorporates a thorough exploration of these distribu-

tions, encompassing various mathematical aspects such as probability density

functions, survival and hazard functions, moments, means, variances, entropies,

and order statistics. Additionally, visual representations such as cdfs, pdfs, and

hazard rate functions were provided to aid in comprehending the distribution

characteristics. For each of the developed distributions, an extensive simula-

tion study was undertaken. The outcomes of this study underscored a consistent

trend: as the sample size increases, the bias in maximum likelihood estima-

tion diminishes, and the standard error becomes more refined. This simulation-

based comparison served as an evaluation of estimator performance. The practi-

cal applicability of these newly proposed distributions were demonstrated using

real-world datasets. The quartic transmuted exponential distribution was ef-
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fectively employed to model the lifetime of 50 devices, referencing data from

Aarset’s study in 1987. Similarly, the quartic transmuted Lindley distribution

was adeptly applied to remission times (measured in months) of 128 bladder

cancer patients. Finally, the quartic transmuted Rayleigh distribution was suc-

cessfully utilized to analyze a dataset comprising 72 instances of exceedance

from the Wheaton River flood data near Carcoss in Yukon Territory, Canada.

Based on the evaluation conducted with these datasets, it became apparent that

the probability distributions proposed in this thesis consistently outperformed

alternative distributions in terms of their ability fit to the observed data.

Conclusions

A profound understanding of selecting an appropriate statistical distri-

bution for modelling lifetime data is vital across various academic disciplines.

The foundation of many parametric inferences in these academic disciplines

rests on specific distributional assumptions. However, datasets originating from

these fields often deviate from the constraints of classical statistical distribu-

tions. Consequently, researchers in distribution theory are actively devising an

array of methods to enhance and adapt classical statistical distributions, enabling

them to better accommodate diverse datasets parametrically. Against this back-

drop, a new statistical distribution generator, named the quartic rank transmuted

distribution, has been developed and studied following the concept of the rank

transmutation map. This generator was derived and studied with the objective

of modifying existing well-established statistical distributions. It was employed

to generalize three probability distributions: the Quartic Transmuted Exponen-

tial Distribution (QTED), the Quartic Transmuted Lindley Distribution (QTLD),

and the Quartic Transmuted Rayleigh Distribution (QTRD). The QTED, for in-

stance, was developed by adapting the exponential distribution as its foundation

and then employing the quartic rank transmutation concept. This newly devised
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distribution was subjected to a comprehensive comparative analysis involving

other related distributions, including the Cubic Transmuted Exponential Distri-

bution (CTED), the Transmuted Exponential Distribution (TED), and the Ex-

ponential Distribution (ED). A similar approach was followed for the QTLD

and QTRD, which were derived from the Lindley and Rayleigh distributions,

respectively. The assessment of these distributions relied on various evaluation

criteria, such as log-likelihood, Akaike Information Criterion (AIC), corrected

AIC (AICc), and Bayesian Information Criterion (BIC). Through rigorous anal-

ysis, it was demonstrated that the proposed distributions within this thesis ex-

hibit superior flexibility and performance. This research provides a substantial

contribution to the field of distribution theory by introducing new methods for

enhancing the adaptability of distributions in diverse applications.

Recommendations

In order to enhance adaptability in diverse applications, the proposed transmuted

distributions are highly recommended. This thesis recommends the following:

• Emphasizing the remarkable adaptability and performance of the newly

introduced distributions, researchers are encouraged to explore the robust-

ness of these distributions in diverse scenarios. Further investigation into

how these distributions respond to different data variations and noise lev-

els could yield valuable insights.

• To further explore the potential of the quartic rank transmuted distribu-

tions, it is recommended to employ various estimation techniques. Com-

paring maximum likelihood estimation with alternative methods such as

the method of moments and Bayesian estimation could provide a compre-

hensive view of the distributions’ performance across different scenarios.

This would contribute to a more holistic understanding of the distribu-

tions’ behaviour under various estimation frameworks.
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