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ABSTRACT

Many infectious diseases including malaria are preventable, yet they

remain endemic in many communities due to lack of proper, adequate and

timely control policies.

Strategies for controlling the spread of any infectious disease include

a rapid reduction in both the infected and susceptible populations. (if a

cure is available) as well as a rapid reduction in the susceptible class if a

vaccine is available. For diseases like malaria where there is no vaccine, it

is still possible to reduce the susceptible class through a variety of control

measures.

In this dissertation, we have developed a mathematical model for the

transmission of malaria. We have shown that the model has a unique

disease-free and endemic equilibria.

The disease-free equilibrium ls locally and globally asymptotically sta-

ble, if R0 ≤ 1, and that the endemic equilibrium exist provided R0 > 1.

Simulation of the model clearly shows that, with a proper combination

of treatment and a concerted effort aimed at prevention, malaria can be

eliminated from our community.

It is not necessary (or impossible) to kill all mosquitoes in order to

eliminate malaria.

In fact, effective treatment offered to about 50% of the infected pop-

ulation, together with about 50% prevention rate is all that is required to

eliminate the disease.
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CHAPTER ONE

INTRODUCTION

Background

This chapter considers the background to the study. It also outlines

the purpose of the study. We also look at what others have done under

literature review.

Infectious diseases such as malaria, AIDS and cholera continue to claim

millions of lives around the world, Busenberg and Cooke (1993). Global

eradication programs of these infectious diseases have been implemented

for many years with some considerable success. Long term solutions to

combating some of these diseases have eluded researchers, because some of

these diseases have no cure. Malaria, an infection of the red blood cells,

caused by Plasmodium, is spread by the bite of an infected female anopheles

mosquito and is endemic to tropical areas where the climatic and weather

conditions allow continuous breeding of the mosquito.

There is no vaccine that can provide permanent immunity against

malaria. However, certain preventive drugs can be taken in advance be-

fore entering a malaria high-risk area to prevent or reduce the possibility

of infection. No drug therapy has been found to be completely effective

in preventing the infection. Moreover the drug therapy depends largely on

which type of malaria an individual has.
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The factors that have influence the resurgence and spread of malaria

include:
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(i) mosquito resistance to the usual insecticides.

(ii) resistance of some parasite strains to the commonly used anti malaria

drugs and

(iii) economic factors that influence the financing of malaria control oper-

ations.

Most malaria high-risk areas are located in developing countries where

(a) the level of education is generally low and

(b) drugs can be purchased without prescriptions.

A combination of (a) and (b) generally results in maladministration

of the drugs. A number of studies modeling the effects of vaccination

as a disease control mechanism have been carried out by many authors

such as Hill and Longini Jr (2003). Kribs-Zaleta and Velasco-Hernandez

(2000) considered a simple vaccination model in which they found that

vaccination without behavior change and indecency of vaccines may fail to

achieve the desired objective of eradicating the epidemic. This conclusion

is supported by Blower and Mclean (2002) and by Hadeler and Castillo

(1995). Most of the studies exhibited the bifurcation phenomena. The

concept of bifurcation which arose in studies by Kribs-Zaleta and Velasco-

Hernandez (2000), Dushoff et al. (1998), Greenhalgh et al. (2000), van

den Driessche and Watmough (2000) have important implications in the

behavior of the disease in a population.

Purpose of Study

The purpose of the study is as follows:
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(1) To develop an epidemic model for the transmission of malaria.

(2) Remove the inoculation parameter and determine the reproduction

number.

(3) Include the inoculation parameter and determine the reproduction

number.

(4) Use the method of linearization to determine the stability conditions

for the model with the inoculation parameter.

(5) Perform simulations on the model to determine the effects of various

control strategies.

(6) To make appropriate recommendations.

Literature Review

Mathematical modeling of malaria began in 1911 with Ross’ model

(1911) and major extensions are described in Macdonald’s (1957) book.

This Ross-Macdonald model is defined as

dx

dt
= (abM/N)y(1 − x) − rx (1.1)

dy

dt
= ax(1 − y) − µy (1.2)

where x is the fraction of infectious humans; y is the fraction of infec-

tious female mosquitoes; a is the number of bites on humans by a single

female mosquito per unit time, usually day; b is the probability of trans-

mission of infection from an infected mosquito to a susceptible human per

bite; M is the size of the total female mosquito population; N is the size of

the total human population; r is the rate of recovery for infectious humans

; and µ is the death rate of the female mosquito population. In a survey,
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Aron and May (1982) describe the properties of this model, including the

derivation of the reproductive number, R0, as

R0 =
Ma2b

Nµr

The reproductive number, R0, is defined as the number of secondary

infections that one infectious person would produce in a fully susceptible

population through the entire duration of the infectious period. The idea

is derived from the idea of a reproductive number in population dynamics

which is defined as the expected number of offspring that one organism will

produce over its lifespan. Heesterbeek in (2002) conducts a review on the

history of R0.

For simple homogeneous models, the reproductive number can be de-

fined as the product of the number of contacts that one individual has per

unit time, the probability of transmission per contact and the duration of

the infectious period. For Ross model 1.1, R0 is defined as the product of

the number of mosquitoes that one infectious human infects and the num-

ber of humans that one infectious mosquito infects, through the duration

of their infectious periods. The number of contacts with mosquitoes that

one human has per unit time is (aM/N). The probability of transmission

from an infectious human to a susceptible mosquito is assumed to be 1; and

1/r is the average duration of the infectious period of the human. Thus,

(M/N)(a/r) is the number of mosquitoes that one human infects over the

entire infectious period. Similarly, a is the number of contacts with humans

that one mosquito has per unit time; b is the probability of transmission

from an infectious mosquito to a susceptible human; and 1/µ is the aver-

age duration of the infectious period of the mosquito (female mosquitoes

are infectious till death). Thus, (abµ) is the number of humans that one

mosquito infects through its infectious lifetime. The product of the two,

(M/N)(a2b = (rµ)) forms the reproductive number. It is the number of
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humans that one infectious human will infect, through a generation of in-

fectious mosquitoes. Aron and May (1982) continue their review by adding

various characteristics of malaria to the model, such as an incubation period

in the mosquito, a periodically fluctuating density of mosquitoes, superin-

fection and a period of immunity in humans.

They also include a continuum model for immunity where the dynam-

ical variables are the population of asexual blood stages of Plasmodium

in humans, the population of gametocytes (sexual stages of Plasmodium

in humans), and the level of human immunity. In this system of partial

differential equations, the variables depend on both time and age. The

mosquitoes are modeled through V , the vectorial capacity, which is pro-

portional to the mosquito density. This model is a significant deviation

from the Ross-Macdonald model 1.1 as it does not keep track of the num-

ber of infected humans and mosquitoes. Instead, this continuum model

measures the number of parasites and level of immunity in the average hu-

man. This is useful for malaria because there can be a large difference in

the parasitemia load in different humans, that the Ross-Macdonald model

ignores.

In a later review, Anderson and May (1991) revisited many of the ideas

discussed by Aron and May. Anderson and May in this addition, compile

numerous data sets for parameter values, including the latent period in

mosquitoes and humans, the rate of recovery for humans, the expected

adult lifespan of mosquitoes and malaria prevalence data across age distri-

butions for humans. Anderson and May also studied the effect of adding

age structure to the basic Ross-Macdonald model 1.1. Finally, they looked

at different control strategies, discussing the effects of a vaccine and the

reduction of transmission rates on the malaria age-prevalence profile of the

human population.
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Other reviews on mathematical modeling in malaria include Nedelman

(1985) and Koella (1991). Nedelman surveys various data sets to statisti-

cally approximate parameters such as inoculation rates, rates of recovery

and loss of immunity in humans, human-biting rates of mosquitoes and in-

fectivity and susceptibility of humans and mosquitoes. Koella also begins

with the Ross-Macdonald model 1.1 with an additional latent stage for the

mosquitoes. He then studies the effect of variability of the parameters and

adds an infection-rate dependent period of immunity. Using this model

with immunity, he studies the effects of vaccines, comparing those that

act on asexual blood stages and those that block transmission, to show

that the asexual blood stage vaccines are more effective. An important

advance for the mathematical modeling of malaria was the inclusion of ac-

quired immunity in the model proposed by Dietz, Molineaux and Thomas

in 1974. Dietz et al. proposed a model with two different classes of humans:

one without immunity to malaria and one class with some immunity. As

the non-immune class falls sick, some people recover with immunity. The

immune class can get infected, but does not fall clinically ill and cannot

be infectious. The model by Dietz et al. also included superinfection, a

phenomenon usually associated with macroparasites. As also described by

Aron and May (2003) and Anderson and May 1991), superinfection is a

significant increase of the parasite load, when an infected person is rein-

fected from the outside. This is usually modeled by making the recovery

rate (r in the above equation 1.1 a (usually monotonically non increasing)

function of the inoculation rate . Various models, with superinfection, for

the recovery rate, r, include:

Ross(1911) : r = γ

Dietz(1974) : r = γ [e(λ/γ) − 1]
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and

Macdonald(1957) : r =











γ − λ γ > λ

0 γ ≤ λ

where λ is the inoculation rate (defined in 1.1 as λ = (abM = N)y) and

γ is the reinfection-free rate of recovery, i.e. 1/γ is the average duration

of the infectious period in the absence of further infection. The model for

superinfection by Dietz is also described by Bailey (1957).

Another important feature of malaria is the transient nature of

acquired immunity. Aron (1982) reviews the compartmental and

continuous models for temporary immunity in humans. In compartmental

models, an additional recovered class is added. In the usual Susceptible-

Infectious-Recovered-Susceptible (SIRS) or Susceptible-Exposed-Infectious-

Recovered-Susceptible

(SEIRS) model, the rate of loss of immunity, ρ, is a constant parameter.

However, sustained immunity to malaria requires continuous reinfection;

thus in the absence of reinfection, immunity is lost quickly, while in the

presence of a high infection rate, immunity is long-lived. This non-constant

period of immunity can be modeled by making the rate of loss of immunity,

ρ a function of the inoculation rate as shown below.

ρ(λ) =
λe(−λτ)

1 − e(−λτ)
(1.3)

where λ is again the inoculation rate and τ is the average duration of

the immune period in the absence of infection.

Some of the more recent papers on the mathematical modeling of

malaria have included environmental effects. Yang (2000) describes a com-

partmental model where humans follow an SEIRS-type (with more than one
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immune class for humans) pattern and mosquitoes follow a Susceptible-

Exposed-Infectious (SEI) pattern. Additionally, some of the parameters

related to mosquitoes are now a function of temperature. These include

the time taken for mosquito eggs to develop into adults and the time

taken for Plasmodium gametocytes ingested by the mosquito to develop

into sporozoites and migrate to the salivary glands (the incubation time

in the mosquito). Yang defines a reproductive number, R0 for this model

and shows, through linear stability analysis, that the disease-free equilib-

rium is stable for R0 < 1. He also derives an expression for an endemic

equilibrium that is biologically relevant only when R0 > 1. He uses numer-

ical simulations to support his proposition that forR0 > 1, the disease-free

equilibrium is unstable and the endemic equilibrium is stable.

Yang and Ferreira (2000) use the model by Yang (2000) to study the

effects of global warming. Using the estimated increase in temperature

of 1.00C − 3.50C by the year 2100, they show that it is possible in some

areas of the world for R0 to increase above 1; for areas to change from a

stable disease-free endemic state to one with low levels of endemicity and

for other areas to change from low levels of endemicity to high levels. They

do, however, conclude by saying that economic and social effects are still

more important than temperature effects and a good health care system

with good malaria control techniques can overcome the negative effects of

an increase in temperature.

Li et al. (2002) derive a model where humans move through multiple

Susceptible Exposed-Infectious-Recovered (SEIR) stages, where a history is

kept of previous infections. They include a submodel for the mosquito pop-

ulation with subdivisions for juveniles and adults. They use the steady state

value for the adult mosquito population, from this submodel, as the input

into their model for malaria transmission. They introduce dependence of
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the parameters for the mosquito population submodel on an environmental

parameter (eg. temperature or rainfall) and calculate the dependence of

the reproductive number, for the full malaria model, on this environmental

parameter.

Other recent models have included the spread of drug-resistant Plas-

modium, Koella and Anita (2003) and of the evolution of immunity. Koella

and Antia (2003) discuss a model where, starting with the Ross-Macdonald

model 1.1 and moving to more complicated models, they include a strain

of disease that is resistant to treatment. Their results show that in their

simplest models, there is a threshold value of fraction of infectious humans

treated, below which there is no resistance to drugs, and above which, re-

sisistance to treatment spreads. In the more complicated models, this kind

of resistance is usually not fixed, but there is some level of sensitivity to

drugs that is maintained in the population. Koella and BoËte (2003) study

a host-parasite evolution model of malaria where the host invests in its im-

mune system over time and the parasite invests in its ability to evade the

host’s immune response.

The model for malaria transmission that we analyze, is an extension of

the equations introduced by Ngwa and Shu (2000). In the Ngwa and Shu

model, humans follow an SEIRS-like pattern and mosquitoes follow a SEI

pattern, similar to that described by Yang (2000) but with only one immune

class for humans. Humans move from the susceptible to the exposed class at

some probability when they come into contact with an infectious mosquito,

and then to the infectious class, as in conventional SEIRS models. However,

infectious people can then recover with, or without, a gain in immunity; and

either return to the susceptible class, or move to the recovered class. A new

feature of this model is that although individuals in the recovered class are

assumed to be “immune”, in the sense that they do not suffer from serious
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illness and do not contract clinical malaria, they still have low levels of

Plasmodium in their blood stream and can pass the infection to susceptible

mosquitoes. After some period of time these recovered individuals return

to the susceptible class.

Susceptible mosquitoes get infected and move to the exposed class,

at some probability when they come into contact with either infectious

humans or recovered humans (albeit at a much lower probability). They

then pass on to the infectious class.

Both humans and mosquitoes leave the population through a density

dependent natural death rate. This allows the model to account for chang-

ing human and mosquito populations. Variations in mosquito populations

are crucial to the dynamics of malaria, and constant population models

do not account for this. The model also includes human disease-induced

death as mortality for malaria in areas of high transmission can be high,

especially in infants.

Ngwa and Shu analyze this model assuming a linear per capita death

rate. They convert the system to dimensionless quantities and in these new

variables, define a reproductive number, R0.

They show that when R0 > 1, there exists an endemic equilibrium

(nonnegative solution distinct from the disease-free equilibrium), and fur-

thermore, with no disease-induced death, this endemic equilibrium is unique.

Using linear analysis, they also show that the disease-free equilibrium is

locally asymptotically stable when R0 ≤ 1 and the unique endemic equilib-

rium (for no disease-induced death) is locally asymptotically stable when

R0 > 1. They conclude by using numerical simulations to support their

proposition that the endemic equilibrium is stable for R0 > 1.

In a second paper, Ngwa (2004) rewrites the reproductive number in

terms of the original (with dimension) parameters. He also includes a
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small disease induced death rate, using perturbation analysis to evaluate a

first order approximation to the endemic equilibrium with disease induced

death. Finally, he conducts some numerical simulations on a stochastic

expansion of the model.

This profusion of models has been driven by the need to understand

different aspects of the complex malaria epidemiology. In the model we

analyze, we aim to capture some of the more important aspects of this

epidemiology while still keeping it mathematically tractable. Some of the

important factors that we include are the presence of an exposed state in

mosquitoes and dynamically changing human and mosquito populations,

including human immigration and disease-induced death.

Outline of the Study

This section outlines the contents within each of the six chapters of the

thesis, and gives a brief description of these contents.

The Introduction is the first chapter of the study. It looks at the

background to the study. The objectives of the study is stated. A Literature

Review of the contributions by other researchers follows next. The final

section, gives a brief Outline of the Study.

Chapter two discusses the Dynamical Systems and their Stability. The

chapter looks at the Basic Definitions and Notations. Under chapter two

critical analyses of Linear and Nonlinear systems. It again considers the

Routh-Hurwitz Criteria, Phase Portrait Analysis and Gershgorin Theorem.

Finally, we consider Bifurcation Theorems with examples.

Chapter three considers Basic Epidemic models. We study, the dy-

namics of the compartmental models, SIR, SIS, SIRS. We also study the

effect of vaccination on a generic SIR model.
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In chapter four, Vector-Host Models are looked at into details. The

Compartmental Model for the Vector-Host Model together with the Differ-

ential Equation are drawn up. Two Species are considered for the Vector-

Host Model. We show that changing the boundaries condition and some of

the parameter values do not affect the stability of the system.In the same

chapter, we consider a very important concept called Basic Reproduction

Number. This concept is a determining factor as to whether a disease dies

out becomes endemic. The Derivation of the reproduction Number leads us

to the Next Generation Matrix. This shows the approach in finding the Ba-

sic Reproduction Number. Lastly we consider the Application of the Next

Generation Matrix in solving models such as TB Treatment, Multi Strain,

Vector-Host Model and SLIAR Model. The rest are Simple Vaccination

Model.

Chapter five considers Vector-Host Models. The Compartmental Model

for the Vector-Host Model together with the Differential Equation are

drawn up. Two Species are considered for the Vector-Host Model. We

show that changing the boundaries condition and some of the parameter

values do not affect the stability of the system. Conclusion conclude chapter

four.

A mathematical Analysis of the Effects of Control Strategies on the

Transmission Dynamics of Malaria in a Human Host and Mosquito Vector

with Temporary Immunity is looked at in chapter six. This chapter is my

contribution to literature and an effort aimed at fighting malaria. This

chapter start with and introduction . It then reviews works on malaria.

For illustrative purposes, an SIR model is used to show the effect of in-

oculation. Five-state compartmental model is drawn and the differential

equations explicitly defined. Chapter five then looks at the Determina-

tion of R0. The Existence of Equilibrium Solutions for disease-free and

12



the endemic equilibria are examined. We again, examine the global sta-

bility of the disease-free equilibrium. The effects of control strategies on

infected humans and infected mosquitoes are discussed. We conclude on

the chapter.

In Chapter Six, we make a summary of all the various observations that

have emerged from the study. We then discuss some of these observations.

Finally, we draw appropriate conclusions and make few recommendations

based on the result of the study.
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CHAPTER TWO

STABILITY ANALYSIS OF DYNAMICAL SYSTEMS

Systems Of ODES

A wide variety of natural phenomena can be modelled by a system of

two first-order autonomous system of ordinary differential equations of

the form

dx

dt
= f(x, y)

dy

dt
= g(x, y)

(2.1)

where f and g are differential functions in some region R of the xy-plane,

called the phase plane of the system 2.1.

Then, given t0 and any initial point (x0, y0) of R, there is a unique

solution x = x(t), y = y(t) of 2.1 that is defined on some open interval (a, b)

containing t0 and satisfied the initial conditions

x(t0) = x0, y(t0) = y0 (2.2)

The equations x = x(t), y = y(t) then describes a parametrized solution

curve in the phase plane. Any such a solution curve is called a trajectory

of the system in 2.1.

A critical point of the system in 2.1 is a point (x∗, y∗) such that

f(x∗, y∗) = g(x∗, y∗) = 0 (2.3)

15



For any critical point (x∗, y∗) of the system, the constant-valued func-

tions
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x(t) ≡ x∗, y(t) ≡ y∗ (2.4)

satisfy equation 2.1. Such a constant-valued solution is called an

equilibrium solution of the system. The trajectory of the equilibrium

solution consists of the single point (x∗, y∗).

Equilibrium solutions are of the greatest importance in many practical

situations. For instance, suppose that the system x′ = f(x, y), y′ = g(x, y)

is a model for two species x(t), y(t) that live in the same environment, then

a critical point (x∗, y∗) of the system denotes constant populations x(t) = x∗

and y(t) = y∗ that can coexist with one another in the environment.

Example 2.1. For example, the critical points of the system

dx

dt
= 30x − 5x2 − 3xy

dy

dt
= 8y − y2 − xy

(2.5)

are given by (0, 0), (0, 8), (6, 0), (3, 5).

If x(t) and y(t) denote populations of two species of animals sharing

the same environment, then the critical point x(t) ≡ 3, y(t) ≡ 5, gives the

number of each of the species that can co-exiting together. The other crit-

ical points can be interpreted analogously.

Nature of a Critical Point

Definition 2.1 (Node). A critical point (x∗, y∗) of an autonomous system

is called a node if
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(a) Either every trajectory approaches (x∗, y∗) as t → ∞ or every trajec-

tory recedes from (x∗, y∗) as t → ∞, and

(b) Every trajectory is tangent at (x∗, y∗) to some straight line through the

critical point

Definition 2.2. A node is said to be a sink if all trajectories approach

the critical point, and a source if all trajectories emanate (recede) from it.

See Figures 2 and 2.

Improper nodal sink at (0, 0)

–10000

–5000

0

5000

10000

15000

y

–300 –200 –100 100 200 300

x

Figure 1: A Nodal Sink at (0, 0) for x′ = −x, y′ = −2y
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Improper nodal source at (0, 0)
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Figure 2: A Nodal Source at (0, 0) for x′ = x, y′ = 2y
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Figure 3: A Stable Centre at (0, 0) for x′ = −y, y′ = 1
4
x
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Figure 4: Spiral Sink at (0, 0) for x′ = −2x − 2y, y′ = x

Stability of Linear and Non-Linear Systems

This section deals with the stability of linear and non-linear systems.

Stability of a Critical Point

In many applications the stability of an equilibrium point is often of

utmost importance. If (x∗, y∗) is a critical point, then the equilibrium

solution

x(t) ≡ x∗, y(t) ≡ y∗ is called stable or unstable depending on the nature

of the critical point.

Definition 2.3. A critical point (x∗, y∗) of the autonomous system 2.1 is

said to be stable, provided that if the initial point (x0, y0) is sufficiently

close to (x∗, y∗) then (x(t), y(t)) remains close to (x∗, y∗) for all t ≥ 0.

Let x = (x(t), y(t)),x0 = (x0, y0), and x∗ = (x∗, y∗).

Then the critical point x∗ is stable provided that, for each ǫ > 0, there

exists δ > 0 such that

‖x0 − x∗‖ < δ ⇒ ‖x(t) − x∗‖ < ǫ for all t > 0. (2.6)
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Obviously, the condition given in 2.6 also holds in the case of a nodal

sink, where x(t) → x∗ as t → ∞. Thus, the origin (0, 0) in Figures 2 and 2

are stable nodes.

The critical point (x∗, y∗) is called unstable if it is not stable. The

saddle point (0, 0) in Figure 2 is an unstable critical point since the point

(x(t), y(t)) tends to infinity as t tends to infinity.

Asymptotic Stability

A critical point (x∗, y∗) is called asymptotically stable if it is stable

and, every trajectory that starts sufficiently close to (x∗, y∗) also approaches

(x∗, y∗) as t → ∞. That is, there exists δ > 0 such that

‖x0 − x∗‖ < δ ⇒ lim
t→∞

x(t) = x∗ (2.7)

where x0 = (x0, y0), x∗ = (x∗, y∗), and x(t) = (x(t), y(t)) is a solution

with with starting point x(0) = x0.

Remark 2.1. suppose that (x(t), y(t)) represents populations coexisting in

the same environment with a critical point (x∗, y∗) which is asymptotically

stable. If the initial point (x0y0) which is sufficiently close to (x∗, y∗) then

we should have limt→∞ x(t) = x∗ and limt→∞ y(t) = y∗.

That is, the populations x(t) and y(t) approaches the equilibrium pop-

ulations x∗ and y∗ as t → ∞.

Stability of Linear Systems

The linear system ẋ = Ax, given by







ẋ

ẏ






=







a b

c d













x

y






(2.8)
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has only one critical point, (0, 0). The stability of this critical point

depends on the nature of the eigenvalues of the coefficient matrix. The

eigenvalues λ1 and λ2 of the coefficient matrix

det(A − λI) =

∣

∣

∣

∣

∣

∣

∣

a − λ b

c d − λ

∣

∣

∣

∣

∣

∣

∣

= 0 (2.9)

Definition 2.4 (Isolated Critical Point). A critical point is called iso-

lated if some neighbourhood of it contains no other critical point.

Example 2.2. Consider the linear system







ẋ

ẏ






=







−1 2

2 −4













x

y






(2.10)

It can be verified that the critical point (0, 0) of the system is not an

isolated critical point. In fact, every point of the form (2s, s), s ∈ R, is a

critical point of the system. Thus, every neighbourhood of (0, 0) contains a

critical point of the system. For the linear system in 2.8 to have an isolated

critical point, the determinant ad− bc 6= 0. That is, both eigenvalues must

be nonzero.

Nature of the Critical Point of a Linear System

The nature of the isolated critical point (0, 0) depends on whether the

two nonzero eigenvalues λ1 and λ2 of A are

1. real and unequal with the same sign

2. real and unequal with opposite signs

3. real and equal

4. complex conjugates with nonzero real parts, or
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5. pure imaginary

We examine these five cases separately.

Unequal Eigenvalues with the Same Sign

In this case the matrix A has linearly independent eigenvectors v1 and

v2, and the general solution of 2.8 is of the form x(t) = [x(t) x(t)]T where

x(t) = c1v1e
λ1t + c2v2e

λ2t (2.11)

where λ1 and λ2 are either both positive or both negative.

Case 1: λ1 < λ2 < 0

Then x(t) → 0 as t → ∞ regardless of the values of c1 and c2. In other

words, all solutions approach the the critical point (0, 0) as t → ∞. If a

solution starts with an initial point on the line through v1, then c2 = 0;

the solution remains on that line t, and approaches the origin as t → ∞.

similarly, if a solution starts on the line through v2, then it approaches the

origin along that line.

Suppose that the initial starting point (x0, y0) does not lie on either of

the vectors v1 and v2. Then we can express Equation 2.11 in the form

x(t) = eλ2t
[

c1v1e
(λ1−λ2)t + c2v2

]

(2.12)

Then, since λ1−λ2 < 0, the term c2v2 dominates the term c1v1e
(λ1−λ2)t

if c2 6= 0. Therefore, as t → ∞, the trajectory not only approaches the

critical point (0, 0) but also tends towards the line through v2. Hence, all

solution curves approach the critical point tangent to v2 at the origin,

except those that start on the line through v1.
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Example 2.3. The matrix

A =







−4 3

0 −1







has eigenvalues λ1 = −4, λ2 = −1 (λ1 < λ2 < 0), with corresponding

eigenvectors v1 = [1 0]T and v2 = [1 1]. The solution of the linear system

is x′ = Ax is given by

x(t) = c1v1e
−4t + c2v2e

−t = e−t
[

c1v1e
−3t + c2v2

]

and x(t) → v2 as t → ∞. Trajectories starting from any initial point

(apart from lines through v1) tends towards v2 = [1 1]T as t increases. The

critical point (0, 0), is therefore a nodal sink.

Example 2.4. Case 2: λ2 > λ1 > 0.

The matrix

B = −A =







4 −3

0 1







has eigenvalues λ1 = 1, λ2 = 4, with the same eigenvectors v1 = [1 1]T

and v2 = [1 0].

The solution of the corresponding linear system x′ = Bx is given by

x(t) = c1v1e
t + c2v2e

4t = e4t
[

c1v1e
−3t + c2v2

]

Trajectories starting from any initial point (apart from lines through v1)

move away from the origin (0, 0) towards lines parallel to v2 = [1 0]T as t

increases.

The critical point (0, 0) of the linear system x′ = Bx is therefore a nodal

source.

Unequal Real Eigenvalues with Opposite Signs

The general solution is

x = c1v1e
λ1t + c2v2e

λ2t (2.13)
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where λ2 < 0 < λ1. If the solution starts at an initial point on the line

through v1 then it follows that c2 = 0. Consequently the solution stays on

the line through v1 for all t. Since λ1 > 0, ‖x‖ → ∞ as t → ∞. On the

other hand, if the solution starts at an initial point on the line through v2

then it stays on that line for all t, however in this case, ‖x‖ → 0 as t → ∞

since λ2 < 0.

The positive exponential term is the dominant term in 2.13 the expres-

sion A solution starting from other initial points follow a trajectory that lie

on a hyperbola asymptotic to the lines through the lines determined by v1

and v2. The only solution that passes through the critical point (0, 0) are

those that start on the line determined by v1. Figure 2 shows some typical

trajectories.

Example 2.5. The matrix

A =







2 1

1 2







has eigenvalues λ1 = −1, λ2 = 3, with corresponding eigenvectors

v1 = [1 1]T and v2 = [−1 1]. The system x′ = Ax has only one critical

point (0, 0).

A phase portrait of the system in Figure 2 shows that the linear trajecto-

ries point in the same direction of the two eigenvectors, while the non-linear

trajectories are hyperbolas in the v1v2-coordinate system.
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Figure 5: A saddle point at (0, 0) for the system x′ = Ax of Example 2.5

Equal Real Roots

Here, we have λ1 = λ2 = λ. The nature of the critical point (0, 0)

depends on whether or not the matrix A has two linearly independent

eigenvectors.

(a) Two linearly independent eigenvectors: The general solution in

this case is

x = c1v1e
λt + c2v2e

λ2t (2.14)

where v1 and v2 are the two linearly independent eigenvectors. The

ratio x2/x1 is independent of t, but depends on the components of v1

and v2 and on the arbitrary constants c1 and c2. Thus every trajectory

lies on the straight line through the origin. The critical point in this

case is called a proper node or sometimes called a star point.
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Example 2.6. The matrix

A =







−1 0

0 −1







has eigenvalues λ1 = −1 = λ2, with two linearly independent eigenvec-

tors v1 = [1 0]T and v2 = [0 1]T . the system x′ = Ax has a nodal sink

at the critical point (0, 0).

Example 2.7. The matrix

B = −A =







1 0

0 1







has eigenvalues λ1 = 1 = λ2, with the same eigenvectors v1 = [1 0]T

and v2 = [0 1]T . The system x′ = Bx has a nodal source at the critical

point (0, 0).

(b) One independent eigenvector: If the matrix A is defective, then

the eigenvalues λ1 = λ2 = λ has only one corresponding eigenvector v.

In this case we have solution of the form

x = c1xeλt + c2

(

tveλt + ueλt
)

(2.15)

where v is the eigenvector corresponding to λ, and u is the generalized

eigenvector associated with the repeated eigenvalue. ( u is a solution

of (A − λI)u = v.)

For a large t the term c2tveλt dominates the other terms in 2.15. Hence,

as t → ∞, every trajectory approaches the origin tangent to the line

through the eigenvector v. Even if c2 = 0, then the solution x = c1veλt

lies on this line. Similarly, for large negative values of t, the term c2veλt

dominates, and so as t → ∞, each trajectory is asymptotic to the line

parallel to v.
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When a double eigenvalue has only one independent eigenvector, the

critical point is called an improper node or a degenerate node.

(i) If λ1 = λ2 = λ < 0, then the critical point is an improper nodal

sink.

Example 2.8. The matrix

A =







−2 0

1 −2







has a repeated eigenvalue λ1 = λ2 = −2, corresponding to the

eigenvector v = [0, 1]T , and a generalized eigenvector is given

by u = [−1, 1]T . The linear system x′ = Ax has only one crit-

ical point (0, 0), which is a nodal sink, since the eigenvalue(s)

are negative. The trajectories approach the critical point (0, 0)

tangent to the line through v = [0 1]T .

(ii) On the other hand if, λ1 = λ2 = λ > 0, then the critical point is

an improper nodal source.

Complex Eigenvalues with Non-zero Real Parts

Suppose that the matrix A has eigenvalues λ1 = a+ bi and λ2 = a− bi,

(a 6= 0, b > 0). Any linear system with eigenvalues a±ib can be represented

by







x′

y′






=







a b

−b a













x

y






(2.16)

In scalar form we have

x′ = ax + by, y′ = −bx + ay (2.17)
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Using polar coordinates (r, θ) where

r2 = x2 + y2, tan(θ) =
y

x
.

Taking the derivatives with respect to t give

rr′ = xx′ + yy′ (2.18)

(sec2 θ)θ′ =
xy′ − yx′

x2
(2.19)

Substituting for x′ and y′ from Equation 2.17 into 2.18 gives

r′ = ar (2.20)

with solution

r = r0e
at, (r0 a constant) (2.21)

Similarly, substituting for x′ and y′ from Equation 2.17 into 2.19 gives

θ′ = −b (2.22)

with solution

θ = −bt + θ0, (θ0 = θ(0)) (2.23)

Equations 2.21 and 2.23 are the parametric equations in polar coordi-

nates, of the trajectories of the solution of Equation 2.17. From 2.23, we

deduce that θ decreases as t → ∞, so the direction of motion is clockwise.

Similarly, from 2.21, we deduce that r → 0 if a < 0, and r → ∞ if a > 0.

Therefore, the trajectories are spirals which recede from the origin if a > 0,

and approach the origin if a < 0. The critical point (0, 0) is therefore called

a spiral sink if a < 0, and a spiral source if a > 0.
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Example 2.9. The matrix

A =







1 2

−2 1







has eigenvalues λ = 1 ± 2i with a positive real part, and so (0, 0) is a

spiral source. Figure 2 shows the direction field with typical trajectories

receding from the origin as t → ∞.

spiral source at (0, 0)
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Figure 6: A spiral source at (0, 0) for the system x′ = Ax of Example 2.9

Pure Imaginary Eigenvalues

Suppose the matrix A has eigenvalues λ = ±bi Then Equation 2.16

with a = 0 becomes







x′

y′






=







0 b

−b 0













x

y






(2.24)

Then Equations 2.20 and 2.22) become respectively,

r′ = 0, θ′ = −b (2.25)

with solutions
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r = c, θ = −bt + θ0 (2.26)

where c and θ0 are constants. The trajectories are circles with centre at

the origin, traversed in a clockwase direction if b > 0, and couter-clockwise

if b < 0. A complete cirsuit about the origin is made in the time interval

2π/b, and so all solutions are periodic with period 2π/b. The critical point

in this case is called a center. In general, when the eigenvalues a pure

imaginary, then the trajectories are ellipses centered at the origin.

Example 2.10. The matrix

A =







0 2

−2 0







has eigenvalues λ = ±2i, and so (0, 0) is a stable centre. Figure (2)

shows the direction field with typical elliptical trajectories surrounding

(0, 0).

A stable centre at (0, 0)
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Figure 7: Trajectories of the system in Example 2.10 showing a stable centre

29



Theorem 2.1 (Stability of Linear Systems). Let λ1, λ2 be the eigenvalues

of the coefficient matrix A =







a b

c d






of the two-dimensional autonomous

linear system

dx

dt
= ax + by

dy

dt
= cx + dy

(2.27)

with ad − bx 6= 0. Then the critical point (0, 0) is:

1. Asymptotically stable if the eigenvalues λ1 and λ2 are real and nega-

tive, or have negative real parts.

2. Stable but not asymptotically stable if λ1 and λ2 are pure imaginary,

that is, λ1, λ2 = ±bi.

3. Unstable if either λ1 or λ2 are real and positive of have positive real

parts.

The Routh-Hurwitz Conditions for Linear Systems

The Routh-Hurwitz conditions give the necessary and sufficient condi-

tions for all roots of the characteristic polynomial to have negative parts,

thus implying asymptotic stability.

Theorem 2.2 (Routh-Hurwitz Conditions). Let A be the coefficient ma-

trix of the linear system in 2.27. Then the critical point (0, 0) is stable

if

trace(A) < 0 and det(A) > 0 (2.28)

Otherwise, it is unstable.

The trace of an n × n matrix A, is the sum of the diagonal entries of

A. Thus, trace (A) = a11 + a22 + · · ·+ ann.
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Stability of Non-Linear Systems

We examine the behaviour of the solutions of the autonomous system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

(2.29)

near an isolated critical point (x∗, y∗) where f(x∗, y∗) = g(x∗, y∗) = 0.

The first step in investigating the behaviour of trajectories of the sys-

tem 2.29 near a critical point (x∗, y∗) is by approximating the nonlinear

system with an appropriate linear system, whose trajectories are easy to in-

vestigate. The crucial question is whether the trajectories of the linearized

system are good approximations to those of the nonlinear system.

First, we explain what is meant by a nonlinear system being close to a

linear system.

We assume that the functions f and g are continuously differentiable in a

neighbourhood of (x∗, y∗). Then the Taylor Formula for f and g about the

critical point (x∗, y∗) gives

dx

dt
= fx(x∗, y∗)(x − x∗) + fy(x∗, y∗)(y − y∗) + F(x − x∗, y − y∗)

dy

dt
= gx(x∗, y∗)(x − x∗) + gy(x∗, y∗)(y − y∗) + G(x − x∗, y − y∗)

(2.30)

Let

u = x − x∗, v = y − y∗, so that dx/dt = du/dt, anddy/dt = dv/dt.

Then, in matrix form, 2.30 becomes







u̇

v̇






=







fx(x∗, y∗) fy(x∗, y∗)

gx(x∗, y∗) gy(x∗, y∗)













u

v






+







F(u, v)

G(u, v)






(2.31)

The matrix
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J =







fx(x∗, y∗) fy(x∗, y∗)

gx(x∗, y∗) gy(x∗, y∗)






(2.32)

is the Jacobian matrix of the system in 2.29, evaluated at the critical

point (x∗, y∗).

Definition 2.5. The autonomous system 2.29 is called almost linear at

the point (x∗, y∗) provided that it can be put in the form

dx

dt
= a(x − x∗) + b(y − y∗) + F(x − x∗, y − y∗)

dy

dt
= c(x − x∗) + d(y − y∗) + G(x − x∗, y − y∗)

(2.33)

where a = fx(x∗, y∗), b = fy(x∗, y∗), c = gx(x∗, y∗),

d = gy(x∗, y∗),, F(x − x∗, y − y∗) and G(x − x∗, y − y∗)

have the property that

lim
‖(x,y)−(x∗ ,y∗)‖→0

‖F(x − x∗, y − y∗)‖
‖(x, y) − (x∗, y∗)‖

=

lim
‖(x,y)−(x∗,y∗)‖→0

‖G(x − x∗, y − y∗)‖
‖(x, y) − (x∗, y∗)‖

= 0. (2.34)

That is, in the neighbourhood of (x∗, y∗), the expressions

‖F(x − x∗, y − y∗)‖ and G‖(x − x∗, y − y∗)‖

are small in comparison with ‖(x, y) − (x∗, y∗)‖ which is itself small.

Thus, when (x, y) is near the point (x∗, y∗) the nonlinear system in 2.29

is “close” to the linearized system

dx

dt
= ax + by

dy

dt
= cx + dy

(2.35)

32



The system in 2.31 is called the linearization of 2.29 about the critical

point (x∗, y∗).

Linearisation involves approximating a complicated system of equations

with a simpler linear system. Then the behaviour of the nonlinear system

can be determined through an analysis of the behaviour of its linearisation.

We expect that the nonlinear system in 2.29 behaves at least locally at

(x∗, y∗), like its linearisation in 2.35 at (0, 0).

Example 2.11. The system

dx

dt
= x + x2 − 3xy = x(1 + x − 3y)

dy

dt
= 3y − y2 − xy = y(3 − x − y)

(2.36)

has a critical point (x∗, y∗) = (2, 1). Then a linearization of 2.36 about

the critical point (2, 1) can be obtained by evaluating the Jacobian matrix

of the system at the equilibrium point (2, 1).

Stability of Almost Linear Systems

The effects of the small nonlinear terms F(x − x∗, y − y∗) and

G(x − x∗, y − y∗) in 2.33 is equivalent to the effects of small perturbations

in the coefficients of the associated linear system in 2.35. This is stated,

without proof in the following Theorem.

Theorem 2.3 (Stability of Almost Linear Systems). Let λ1 and λ2 be the

eigenvalues of the coefficient matrix A, of the linear system in 2.35 of the

autonomous system in 2.33. Then

1. If λ1 = λ2 are equal real eigenvalues, then the critical point (0, 0)

of 2.33 is either a node of a spiral point, and is asymptotically if

λ1 = λ2 < 0, unstable if λ1 = λ2 > 0.
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2. If λ1 and λ2 are pure imaginary, then (0, 0) is either a centre or

a spiral point; It may be either asymptotically stable, stable or

unstable.

3. Otherwise (that is, unless λ1 and λ2 are either real and equal, or pure

imaginary), the critical point (0, 0) of the almost linear system in 2.33

is of the same type and stability as the critical point of the associated

linear system in 2.27.

The Routh-Hurwitz Conditions for Almost Linear Systems

The stability of a critical point (x∗, y∗) of the almost linear system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

(2.37)

can be determined from the following Theorem.

Theorem 2.4 (Routh-Hurwitz Conditions). Let

J =







fx(x∗, y∗) fy(x∗, y∗)

gx(x∗, y∗) gy(x∗, y∗)







be the Jacobian matrix of the almost linear system given in 2.37 evalu-

ated at the critical point (x∗, y∗). Then the critical point (x∗, y∗) is stable

if

trace(J) < 0 and det(J) > 0

Otherwise, it is unstable.

Qualitative Analysis: Nullclines

For most nonlinear autonomous systems, it is impossible to obtain an-

lytical solutions. We can use numerical techniques to obtain approximate
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solutions; however, qualitative analysis may provide answers to some ques-

tions much faster than numerical techniques, for example, questions related

to the long term behavior of solutions.

Definition 2.6. Nullclines Given an n-dimensional system of differential

equations

dx

dt
= f(x),

the xi nullcline is the set of points where
dxi

dt
= fi(x) = 0.

For example, in the following system

dx

dt
= f(x, y)

dy

dt
= g(x, y)

the x-nullcline consisits of the set of points satisfying
dx

dt
= f(x, y) = 0,

so called because at each point on these clines,
dx

dt
= 0. Similarly, the

y-nullcline consisits of the set of points satisfying
dy

dt
= g(x, y) = 0.

Nullclines plays a central role in the qualitative approach. The first

step in performing a qualitative analysis, (or a phase-plane analysis ) in

the case of a two-dimensional system) is to obtain the equilibrium points,

which are the intersenction of the nullclines.

Example 2.12. The following system

dx

dt
= ax − ex2 − bxy = x(a − ex − by)

dy

dt
= −cy + dxy = y(−c + dx)

(2.38)

has equilibrium points (0, 0),
(a

e
, 0

)

and

(

c

d
,

ad − ec

bd

)

. The location

and type of equilibrium points depends on the sign of (ad − ec)/bd. We

consider two cases, namely,
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1. Case 1: (ad − ec)/bd < 0 ⇒ a

e
<

c

d
: the critical is not in the first

quadrant. The only equilibrium points that a bilogically meaningful

are (0, 0) and (
a

e
, 0). The null clines are shown in Fugure 1. These

nullclines divide the first quadrant into three regions namely, I, II and

III. From the direction of the arrows we notice that solutions starting

in region I move into region II, and solutions starting in region II

move into region III, or end up at the equilibrium point (
a

e
, 0). We

note also, that region III is invariant, and all solution curves starting

from there are directed towards the equilibrium point (
a

e
, 0).

Figure 8: The nullclines for Case 1 of Equation 2.38

2. Case 2: (ad − ec)/bd > 0 ⇒ a

e
>

c

d
: the critical point is in the first

quadrant; all the three equilibrium points are of interest. The null-

clines are shown in Figure (2). We observe that solution curves move

from region I to region II to region III to region IV, and back to re-

gion I. Thus, the solution curves spirals around the the equilibrium
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point (
c

d
,

ad − ec

bd
). It can be shown that this equilibrium point is

asymptotically stable, and that all solution curves tend to this

equilibrium point. Thus, the predator and prey populations coexist.

Figure 9: The nullclines for Case 2 of Equation 2.38

The Routh-Hurwitz Criteria

The Routh-Hurwitz criteria are used to determine asymptotic stabil-

ity of an equilibrium for nonlinear sys tem of differential equation. The

Routh-Hurwitz criteria give the necessary and sufficient conditions for all

roots of the characteristic polynomial to have negative parts, thus implying

asymptotic stability.

Theorem 2.5. Routh-Hurwitz Conditions Assume the polynomial

p(λ) = λn + a1λ
n−1 + · · ·+ an−1λ + an

where the coefficients ai are real constants, i = 1, . . . , n, define the n Hur-

witz matrices using t he coefficients ai of the characteristic polynomial:
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H1 = (a1), H2 =







a1 1

a3 a2






, H3 =













a1 1 0

a3 a2 a1

a5 a4 a3













,

and

Hn =



























a1 1 0 0 . . . o

a3 a2 a1 1 . . . 0

a5 a4 a3 a2 . . . 0

...
...

...
... . . .

...

0 0 0 0 . . . an



























where ai = 0 if j > n. All of the roots of the polynomial P (λ) are

negative or have negative real part if and only if the determinants of all

Hurwitz matrices are positive:

detHj > 0, j = 1, 2, . . . , n.

When n = 2, the Routh-Hurwitz criteria simplify to detH1 = a1 > 0

and

detH2 = det







a1 1

0 a2






= a1a1 > 0

or a1 > 0 or a2 > 0. The Routh-Hurwitz criteria are summarized below for

polynomials of degree n = 2, 3, 4.













n = 2 : a1 > 0 and a2 > 0.

n = 3 : a1 > 0, a3 > 0, and a1a2 > a3.

n = 4 : a1 > 0, a3 > 0, a4 > 0, and a1a2a3 > a2
3 + a2

1a4













Corollary 2.1. Suppose the coefficients of the characteristic polynomial

are real. If all of the roots of the characteristic polynomial

P(λ) = λ2a1λ
n−1 + a2λ

n−2 + · · ·+ an

are negative or have negative real part, then the coefficients ai > 0 for

i = 1, 2, . . . , n.
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Example 2.13. Consider the linear differential equation

d3x

dt3
+ 6

d2x

dt2
+

dx

dt
+ ax = 0.

The characteristic polynomial becomes

P(λ) = λ3 + 6λ2 + λ + a.

For the roots to have negative real part and the solution to approach zero,

Routh-Hurwitz criteria indicates that the coefficients must satisfy

a1 > 0, a3 > 0, a1a2 > a3. Nonetheless, a1 = 6, a2 = 1, and a3 = a, thus a

must satisfy 6 > a > 0

Gershgorin’s Theorem

The Gershgorin’s theorem provides sufficient conditions for the eigen-

values to lie in the left halve of t he complex plane.

Theorem 2.6. Gershgorin’s Theorem Let A be an n×n matrix. Let Di be

the disk in the complex plane with centre at aii and radius ri =
∑n

j=1,j 6=i |aii|.

Then all eigenvalues of the matrix A lie in the union of th e disks,

Di, i = 1, 2, . . . , n,∪n
i=1Di.

In particular, if λ is an eigenvalue of A, then for some i = 1, 2, . . . , n,

|λ − aii| ≤ ri

Proof

Let λ be any eigenvalue of A and V = (v1, . . . , vn)T an eigenvector corre-

sponding to this eigenvalue. Then AV = λV which implies that

λvi =
∑n

j=1 aijvj or

λvi − aiivi =
∑

j=1,j 6=i

naijvi i = 1, . . . , n.
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Let vk denotes the elements of of the eigenvector V with the greatest

magnitude |vk| ≥ |vj|, j 6= k. Then | vj

vk
| ≤ 1 for all j = 1, . . . , and

|λ − akk| ≤
n

∑

j=1,j 6=i

|akj|
∣

∣

∣

∣

vj

vk

∣

∣

∣

∣

≤
n

∑

j=1,j 6=i

|akj|.

Hence, λ lies in the disk Dk. The conclusion of the theorem follows.
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Figure 10: Gershgorin’s disk in a complex plane

Gershgorin’s theorem applies to real and complex matrices A. When

the entries of A are real, it follows from Gershgorin’s theorem that the disk

lie in the left half of the complex if

ri + aii < 0 i.e. aii < −ri

for i = 1, 2, . . . , n. The strict inequality guarantees that the Gershgorin disk

lies entirely in the left half of the complex plane.

Corollary 2.2. Let A be an n×n matrix with real entries. If the diagonal

elements of A satisfy

aii < −ri, where ri =
n

∑

j=1,j 6=i

|aij|

for i = 1, 2, . . . , n, then eigenvalues of A are negative or have negative real

part.
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Example 2.14. Apply Gershgorin’s theorem to determine sufficient con-

ditions on the parameters a, b and c such that the eigenvalues of A are

negative or have negative real part.

(a)

A =













a −1 0

−1 b 1

0 −2 c













(b)

A =







a −b

c −2







Solution

(a) a11 = a, a22 = b and a33 = c. Now, r1 = 1, r2 = 2 and r3 = 2. Therefore,

the values of the parameters a, b and c for which the eigenvalues of A are

negative or have negative real part are: a < −1, b < −2 and c < −2.

(b) Similarly, a11 = a and a22 = −2 whiles r1 = b and r2 = c. Hence, for

A to have negative or negative real part, a < −|b| and −2 < −|c| or

|c| < 2.

The corollary illustrates sufficient condition but not necessary.

Example 2.15. Assume the matrix

K =













−3 1 1

1 −3 −1

2 1 −3













.

For this matrix, r1 = 2 = r2 and r3 = 3 and so a11 < −2, a22 < −2 but

a33 = −3. Nevertheless, the eigenvalues of K : λ1,2 = −2,−7

2
±

√
5

2
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Introduction to Bifurcation Theory

The qualitative structure of the flow on the vector field under investiga-

tion can change as parameters are varied: in particular, FPs can be created

or destroyed, or their stability can change. These qualitative changes in

the dynamics are called bifurcations, and the parameter values at which

they occur are called bifurcation points. The types of bifurcation under

discussion include: saddle node, pitchfork, transcritical, and Hopf bifurca-

tions. The first three types of bifurcations occur in scalar and in systems

of differential equations. The fourth, Hopf bifurcation, involves a change

to periodic solution. Scalar autonomous differential equation cannot have

periodic solution.

First-Order Equations

Firstly, we consider the first three bifurcations in the case of differential

equations. Consider the scalar differential equation

dx

dt
= f(x, r).

The value r is the bifurcation parameter and x̄ is an equilibrium solution

which depends on r. There exist three types of bifurcation. Namely,

(I) saddle-node

(II) pitchfork

(III) transcritical

At the bifurcation value r̄, it is the case that the equilibrium changes

stability. In particular for r = r̄ and x = x̄(r̄),

df(x, r)

dx

∣

∣

∣

∣

(x,r)=(x̄(̄r),̄r)

= 0. (2.39)
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In a saddle-node bifurcation, as the bifurcation parameter passes through

the bifurcation point, two equilibria disappear so that there are no equilib-

ria afterward. One of the two equilibria is stable and the other is unstable

before they disappear.

In a pitchfork bifurcation, there are two stable equilibria separated

by an unstable equilibrium. A system where there two different stable

equilibria is said to have a property of bistability. When bifurcation

point is passed, there is only one stable equilibrium. This bifurcation is

referred to as supercritical pitchfork bifurcation. On the other hand,

if the stability of supercritical pitchfork bifurcation is reversed, subcritical

pitchfork bifurcation is obtained where there are two unstable equilibria

separated by stable equilibrium, until the bifurcation point is passed.

In transcritical bifurcation, there two equilibria, one stable and the

other unstable. When the bifurcation point is passed, there is an exchange

of stability; the unstable equilibrium become stable and the stable equilib-

rium becomes unstable. As the initially negative parameter r increases the

two fixed points at (0, r) coalesce and form a half-stable fixed points when

r = 0. When further increasing r to positive values the two fixed points

split again, but now they have switched stability.
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Figure 11: Stability in the τ − δ plane.
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Figure 2 represents the bifurcation diagram corresponding to the three

bifurcation types I, II and III. Dashed curves denote unstable equilibria

and solid curves denotes stable equilibria.

The prototypical example of a saddle-node bifurcation is given by

dx

dt
= r ± x2.

For demonstration purposes, let
dx

dt
= r + x2.

1. As r < 0, there are two fixed points, stable at x = r and unstable at

x = −r.

2. As r increases the two fixed points move towards each other and

coalesce into a half-stable fixed point at x = 0.

3. This fixed point is destroyed as r increase to become positive.

Pitchfork bifurcation is related to symmetries in the system. For exam-

ple in systems having a spatial symmetry between left and right fixed points

tend to appear and disappear in symmetrical pairs (think for instance of a

buckling beam). The normal form is

dx

dt
= rx ± x3 (2.40)

The minus sign gives supercritical pitchfork bifurcation. The name

implies that there can exist a fixed point above bifurcation.

Consider, the example

dx

dt
= rx + x3 (2.41)

From the bifurcation Equations, we find that there are three branches of

equilibria: x0 = 0, x0 =
√
−r, and x0 = −

√
−r. The non-zero fixed points

(x0 = ±
√
−r) are unstable.
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Stable 

Unstable 

Unstable 

Figure 12: Pitchfork bifurcation.

Consider the transcritical bifurcation

dx

dx
= rx − x2. (2.42)

The bifurcation equation becomes rx−x2 = 0. This gives two branches

of equilibria x0 = 0; and x0 = r. For the branch x0 = 0; we have

fx(x, r) = r and thus the stability changes from stable to unstable as r

increases cross 0; and r0 = 0 is the bifurcation point. For the second branch,

x0 = r; we have fx(x, r) = r. Therefore, this branches changes stability in

the opposite direction to the first branch, and the bifurcation point is also

r0 = 0. The transcritical bifurcation can be described as two branches of

equilibria intersect and exchange stability type at the bifurcation point.

Hopf Bifurcation Theorem

One new bifurcation that can occur in a two-dimensional system is the

so-called Andronov-Hopf bifurcation, mostly just referred to as Hopf bi-

furcation, van Voorn 2006. This Hopf bifurcation theorem states sufficient

conditions for the existence of periodic solution. As one parameter is var-

ied, the dynamics of the system change from a stable spiral to center to
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an unstable spiral. The eigenvalues of the linearized system change from

having negative real part to zero real part to positive real part. Under

certain conditions, there exist periodic solutions.

Consider a system of autonomous differential Equations given by 2.43

dx

dt
= f(x, y, r) and

dy

dt
= g(x, y, r) (2.43)

where the functions f and g depend on the bifurcation parameter r.

Suppose that there is an existence of equilibrium of the system 2.43. Sup-

pose again that this equilibrium occurs at (x(r), y(r)) and the Jacobian

matrix evaluated at the equilibrium has eigenvalues ℜ(r) ± ℑ(r). Again

assume a change in stability occurs at r = r∗, where ℜ(r∗) = 0. If ℜ(r) < 0

for values of r closer to r∗ but for r < r∗ and if ℜ(r) > 0 for all values

of r closer to r∗ but for r > r∗ holding that ℑ(r∗) 6= 0, then the equilib-

rium changes from stable spiral to an unstable spiral as r passes through

r∗. The Hopf Bifurcation Theorem states that there exists a periodic orbit

near r = r∗ for any neighbourhood of the equilibrium in R2. The value r is

the bifurcation parameter and r∗ is the bifurcation value. The bifurcation

theorem is valid only when the bifurcation parameter has a value close to

the bifurcation value.

Example 2.16. Consider the linear system

dx

dt
= rx − y

dy

dt
= x + ry

(2.44)

The origin is an equilibrium. The trace and determinant of the Jaco-

biam matrix evaluated at the origin are 2r and r2 + 1 respectively. Since

the discriminant of the Jacobian matrix is negative,

[Tr(J)]2 − 4[det] = (2r)2 − 4(r2 + 1) = −4.
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The eigenvalues are r = ±i. If r < 0 the origin is a stable spiral. If r = 0

the origin is a center, and if r > 0, it is an unstable spiral. The bifurcation

value is r = r∗ = 0. In Figure 2, the stability diagram is graphed as a

function of trace τ and determinant δ. The bifurcation in this example

occurred because r crossed the δ-axis where δ > 0. A Hopf bifurcation

occurs. As the bifurcation parameter r increases through the bifurcation

value r∗ = 0, the equilibrium (0, 0) changes from stable spiral to neutral

center to an unstable spiral. There are infinitely many periodic solutions

at the bifurcation value r∗ = 0. Solutions to dx/dt = −y and dy/dt = x

are of the form x2(t) + y2(t) = C, where C is a constant that depends on

the initial conditions.

The linear example illustrate the change instability as the bifurcation

parameter r is varied. In general, at a Hopf bifurcation, as r passes through

the bifurcation value r∗, there three possible dynamics that may occur.

(i) At the bifurcation value r∗ infinitely many neutrally stable concentric

closed orbits encircle the equilibrium.

(ii) A stable spiral changes to a stable limit cycle for values of the param-

eter close to r∗ (supercritical bifurcation).

(iii) A stable spiral and unstable limit cycle change to an unstable spiral for

values for values of the parameter close to r∗ (subcritical bifurcation).

Example 2.16 illustrate a change of stability. Figure 2 illustrate a su-

percritical and subcritical bifurcation in x − y − r space. Stable solutions

are identified by solid curves and unstable unstable solutions by dashed

curves.
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Figure 13: Types of Hopf Bifurcation.

In Figure 2, (a) supercritical and (b) subcritical bifurcation in x− y− r

space. Solid curves circling or on the r axis are stable. Dashed curves are

on unstable.

First the system is transformed so that the equilibrium is at the origin

and the parameter r at r∗ = 0 gives purely imaginary eigenvalues. System

2.43 can be written as :

dx

dt
= a11(r)x + a12(r)y + f1(x, y, r)

dy

dt
= a21(r)x + a22(r)y + g1(x, y, r)

(2.45)

The linearization of the system 2.45 about the origin is given by dZ/dt =

J(r)Z, where Z = (x, y)T and

J(r) =







a11(r) a12(r)

a21(r) a22(r)






(2.46)

is the Jacobian matrix evaluated at the origin.

Theorem 2.7. Hopf Bifurcation Theorem Let f1 and g1 in the system

2.45 have continuous third-order derivatives in x and y. Assume that the

origin (0, 0) is an equilibrium of 2.45 and that the Jacobian matrix J(r),
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defined in 2.46, is valid for all sufficiently |r|. In addition, assume that

the eigenvalues of the matrix J(r) are ℜ(r) ± ℑ(r) with ℜ(0) = 0 and

ℑ(0) 6= 0 such that the eigenvalues cross the imaginary axis with nonzero

speed (transversal),

dℜ
dr

∣

∣

∣

∣

r=0

6= 0.

Then, in any open set U containing the origin in R2 and for any r0 > 0,

there exists a value r̄, |r̄| < r0 such that the system of differential Equations

2.45 has a periodic solution for r = r̄ in U (with approximate period

T = 2π/ℑ(0)).

Example 2.17. Consider the system in Example 2.16 with bifurcation

parameter r. We want to show that the conditions of Hopf Bifurcation

Theorem holds.

dx

dt
= rx − y

dy

dt
= x + ry

(2.47)

In this instance f1 = 0 = g1. The Jacobian matrix is

J(r) =







r −1

1 r







with eigenvalues equal to r ± 1. Since ℜ(0) = 0, ℑ(0) 6= 0 and

dℜ/dr = 1 6= 0. The conditions of Hopf Bifurcation Theorem hold. In fact

there exists a periodic solution for r = 0 in every neighbourhood of the

origin.

Example 2.18. Consider another example,

dx1

dt
= rx1 + x2 − x1x

2
1 + x2

2

dx2

dt
= −x1 + rx2 − x2x

2
1 + x2

2

(2.48)
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The system has one equilibrium point (0, 0). the linearized system is







ẋ1

ẋ2






=







r 1

−1 r













x1

x2






.

The characteristic equation is

λ2 − 2rλ + r2 + 1 = 0.

The eigenvalues are

λ1,2 =
2r ±

√

4r2 − 4(r2 + 1)

2
= r ± i.

(i) If r < 0, the origin is a stable spiral.

 

Figure 14: Catastrophic behaviour: r = −1 < 0.

(ii) If r = 0 then the origin is a center. It is not asymptotically stable.
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Figure 15: Catastrophic behaviour: r = 0.

(iii) If r > 0, then the origin is an unstable spiral which is surrounded by

stable limit cycle. This case is an example of Hopf bifurcation because

it generate a limit cycle.

 

Figure 16: Catastrophic behaviour: r > 0.
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CHAPTER THREE

BASIC EPIDEMIC MODELS

Introduction

Chapter three deals with basic Epidemic models. It talks about the use

of the basic of the basic reproduction number. Finally, this chapter looks

at the effect of vaccination on some of the models.

SIR Epidemic Model Without Vital Dynamics

This model was proposed by Kermack and McKendrick in 1927. This

model can be used for diseases that persist in a population for short period

of time. Examples of such diseases are measles, mumps, and chicken pox.

The disease only persists for a short period of time (usually within a year),

the vital dynamics are not taken into account.

The compartmental model for the SIR model is demonstrated in figure

3.

 

Susceptible Infectious Recovered 

Figure 17: The basic SIR model

The assumptions for this model are the same as the assumptions for the

SIR, but in addition we have the following:
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• Individuals recover from the disease at a rate proportional to the
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number of infective, with constant of variation γ. This constant is

called the recovery removal rate. 1/γ is the average period of

infectivity.

• The disease confers permanent immunity on every infected victim.

Let

• S(t)/N, be the proportion of susceptible in the population.

• I(t)/N, be the proportion of susceptible in the population.

• R(t)/N, be the proportion of susceptible in the population.

The basic SIR model for frequency-dependent transmission is given by;

dS

dt
=

−β

N
SI

dI

dt
=

β

N
SI − γI = I

(

β

N
S − γ

)

dR

dt
= γI

Where S(0) > 0, I(0) > 0, R(0) ≥ 0, and so S(0) + I(0) + R(0) = N.

Thus S(t) + I(t) + R(t) = N. Since R(t) can be obtained from S(t) and

I(t), It is sufficient to consider only the variables S and I. Note that

Equation 3.1 can now be written as Equation 3.1.

dS

dt
=

−βSI

N
dI

dt
=

βSI

N
− γI.

(3.1)

Dividing through the above Equation 3.1 by N , we obtain Equation 3.2.

dS

dt
= −βSI

di

dt
= βSI − γI

(3.2)

It is clear that when s < γ
β

and
di

dt
< 0, i(t) decreases and the disease

dies out. On the other hand, when s > γ
β

then
di

dt
> 0, i(t) increases

resulting in an epidemic.
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From the Equation 3.2, dividing
di

dt
by

ds

dt
gives

di

ds
= −1 +

γ

βs
(3.3)

Let σ denote
γ

β
then the Equation above can be integrated to obtain

i(t) + s(t) − σ ln s(t) = i0 + s0 − σ ln s0

Therefore maximum value of i occurs when s =
γ

β
. Therefore

imax = i0 + s0 −
γ

β
ln s0 −

γ

β
+

γ

β
ln

γ

β
.

Now, s <
γ

β
=⇒ β

γ
s < 1. The quantity

β

γ
s, is therefore, an important

epidemic threshold for the SIR model. It is called the replacement

number, and is usually denoted by R =
β

γ
s. It determines when an infec-

tion dies out, or when it becomes an epidemic.

The basic reproduction number R0 is the threshold quantity for

many epidemiological models. It is defined as the average number of sec-

ondary infections produced when one infected individual is introduced into

a host population where everyone is susceptible.

When R0 < then the infection will die out. On the other hand if R0 > 1,

then there is some possibility that an epidemic will occur. Thus, the basic

reproduction number R0 is often as the threshold quantity that determines

whether or not an infectious disease will spread through a population. The

basic reproduction number for the SIR model in Equation 3.1 is given by

R0 =
β

γ
.

The S − and − I nullclines of Equation 3.1 is depicted in Figure 3.
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Figure 18: S- and- I nullclines of the system in 3.1

The basic reproduction number is affected by a number of factors in-

cluding:

1. the duration of infectivity of the affected patients.

2. the infectiousness of the organism, and

3. the number of susceptible people in the population that the affected

patients get into contact with.

Remark

Note that the three quantities R0,
β

γ
, and R are all equal at the begin-

ning of the spread of the infectious disease when the entire population is

susceptible s0 = 1 except the infective invader.Although R0 is only defined

at the time of invasion,
β

γ
and R are defined at all time. For most mod-

els, the contact number
β

γ
remains constant as the infection spreads, so it

is always equal to the basic reproduction numberR0. In these models
β

γ

andR0 can be used interchangeably and invasion theorems can be stated in

55



terms of either quantity. However, after invasion, the susceptible fraction

is less than 1, so that not all adequate contacts results in a new case. Thus

the replacement number R is always less than the contact number
β

γ
after

the invasion. Combining these results leads to R0 ≥
β

γ
≥ R with equality

of the three models at the time of invasion. Note that R0 =
β

γ
for most

models, and
β

γ
> R after the invasion for all models.

Effect of Treatment Without Inoculation in Infected Population

To illustrate the effect of vaccination on an SIS model, let’s consider

the model

Ṡ = µ − βSI − µS

İ = βSI − µI − γI

Ṙ = γI − µR.

(3.4)

In this regard an attempt is made at increasing the quality of clinical

treatment. The parameter γ, which represents the treatment level is in-

creased from 20%, 40% , 60% up to 80%. The effect is demonstrated in the

Figure 3.

Figure 19: Increasing the Quality of Clinical Treatment without Inoculation
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The effect is that when there was no treatment of any form, the disease

invades the whole population. The disease in this case is malaria and

so everyone gets the disease. When there was level of treatment of γ =

0.2, the disease could affect at least 75% of the population or more. The

quality of treatment was then increased to 0.4. The resulting effect was

that about 60% become infected. This approach was continued until about

40% became infected. This result was achieved for 90% treatment level.

Thus increasing the quality of treatment can have a positive impact on the

number number of individuals who become ill. It must be emphasised that

the rate of treatment as pertained in the country may not be 40% efficient.

In addition any effort made in this direction will not eventually eradicate

the disease. Thus a more efficient approach must be found to militate the

malaria and it effects.

Treatment in addition to reducing the number of susceptibles.

Another way of controlling the disease apart from curing is to have

a programme of reducing the number of susceptibles. The SIR in this

situation is different since there is an effort at reducing the number of

susceptibles by way of inoculation. The dynamics is given by Equation 3.5.

Ṡ = µ − βSI − µS − αS

İ = βSI − µI − γI

Ṙ = γI − µR + αS.

(3.5)

This Equation has disease-free equilibrium as

DFE = (S0, I0, R0) =

(

µ

µ + α
, 0,

α

µ + α

)

.

The endemic equilibrium is also by
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






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. (3.6)

Again, we showcase the importance of control strategy in the form of

“inocuation” aimed at reducing the level of susceptibility , using the generic

SIR model. We replicate the method employed in previous subsection.

The effect will then be juxtaposed to control , by increasing the quality of

treatment rate without a reduction in susceptible class. The simulation for

model in Equation 3.5 can be found in Figure 3.

Figure 20: Clinical Treatment with Control.

In this approach, the susceptible class is reduced from 100% to 10% via

20%, 40%, 60% and 80% and maybe 90%. It can clearly be observed that

the infective class decreased with an increased rate.

The effect of mass vaccination programs can be seen in the basic epi-
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demic model above. Vaccination reduces or eliminate the incidence of infec-

tion directly or indirectly. Vaccinated individuals are removed or protected

from direct infection, and fewer susceptible individuals leads to a decreased

likelihood that an unvaccinated susceptible will come in contact with the

disease. This latter indirect effect is referred to as herd immunity.

For vaccination program to be effective, the fraction p immunised must

be such that the remaining population (1 − p)N will be less than the the

threshold level necessary for the disease to continue. To prevent an epidemic

R0(1 − p) < 1.

An estimate for the minimum value of p is found by solving R0(1 − p) = 1

or

p =
R0 − 1

R0
.

For example, in England and Wales(1956-1968), the value of R0 esti-

mated for measles was (R0 ≈ 13), May, (1983). For this value of R0, to

prevent an epidemic, it would have been necessary to vaccinate at least

p =
13 − 1

13
=

12

13
≈ 92%

Vaccination is a preventive strategy. However, during an outbreak, if

there are no vaccines or treatment available for the disease, quarantine of

suspected cases or isolation of those diagnosed with the disease are alterna-

tive strategies. Such control strategies were used of new diseases in 2003,

SARS-Severe Acute Respiratory Syndrome.

An SIS With Vital Dynamics

When a disease persists in a population for a long period of time, births

and deaths must be taken into consideration. The model will be the same

as the Basic SIS Model, with additional inflow of newborns into the suscep-

tible class, and death-removal from both the susceptible and the infected
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classes. We assume that births balances deaths, so the population size

remains constant. The following assumptions must be taken into account.

1. Susceptible and infected individuals die at a rate proportional to the

number susceptible and infected individuals, with constant of propor-

tionality µ called the daily death removal rate; the number
1

µ
is the

average lifetime or life expectancy

2. There is an inflow of newborns into the susceptible class at the rate

of µN

With the notions given above, the classic SIS model with vital dynam-

ics is given by Equation 3.7.

dS

dt
=

−βSI

N
+ γI + µN − µS S(0) = S0

dI

dt
=

βSI

N
− γI − µI I(0) = I0

(3.7)

To verify that S(t) + I(t) = N, the total population, let

1. s(t) = S(t)/N be the proportion of the of susceptibles in the popula-

tion.

2. i(t) = I(t)/N be the proportion of the infectives in the population.

Dividing through Equation 5.10 by N gives Equation 3.8.

ds

dt
= −βsi + γi + µ − µs s(0) = s0

di

dt
= βsi − γi − µi i(0) = i0

(3.8)

with s(t) + i(t) = 1 so that s(t) = 1 − i(t)

The system above has critical points

• disease free equilibrium is given by (s1, i1) = (1, 0),

• endemic equilibrium (s2, i2) = (
γ + µ

β
,−−β + γ + µ

β
)
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Let σ =
β

γ + µ
, then

• when sσ < 1 then i(t) decreases.

• when sσ > 1 then i(t) increases.

The replacement number R, is given by R = sσ

If we assume that everyone is susceptible, then at t = 0, s0 = 1, then

R = s0σ = σ, the contact number.

The contact number σ, is given by σ =
β

γ + µ
= R0, the basic produc-

tion number.

Theorem 3.1. Theorem

Let (s(t), i(t)) be a solution of Equation 3.8, and σ =
β

γ + µ
. Then

• All solution paths approach the disease-free equilibrium point(1, 0) if

σ ≤ 1.

• All solution paths approach the endemic equilibrium point (
1

σ
, 1− 1

σ
)

if σ > 1

An SIR Model With Vital Dynamics

When a disease persists in a population for a long period of time, births

and deaths must be taken into consideration. In addition to assumptions

and notation given under Basic SIR Model, we assume that susceptible

and infected individuals die at a rate proportional to to the number of

susceptible and infected individuals, with constant of proportionality µ,

called the daily death removal rate; the number
1

µ
, is the average lifetime

or life expectancy

The SIR model with vital dynamics is given by Equation 3.9.
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dS

dt
=

−βSI

N
+ µI − µS S(0) = S0

dI

dt
=

βSI

N
− γI − µI I(0) = I0

dR

dt
= µR R(0) = R0

(3.9)

This model can be used to model diseases that are endemic to the

population; those diseases that persists in the population for a long periods

of time (usually ten years or more). One such example is small pox which

was endemic until it was eradicated in 1977.

Here, s(t), i(t) and r(t) are proportions susceptible, infected and recov-

ered individuals. Since s(t) + i(t) + r(t) = 1, we can find r by putting

r(t) = 1 − s(t) − i(t), we know s(t) and i(t) from the reduced system:

ds

dt
= −βsi + µ − µs s(0) = s0

di

dt
= βsi − γi − µi i(0) = i0

(3.10)

Since, R(t) = 1 − S(t) − I(t); S(t) + I(t) ≤ 1 the equilibrium solutions

can be found by solving the Equation 3.10.

The equilibrium solutions of 3.10 are:

1. a disease-free equilibrium is at (1, 0; )

2. an endemic equilibrium is at

(

γ + β

β
,
µ[β − (γ + µ)]

β(γ + µ)

)

For the endemic equilibrium to exists
di

dt
= βsi − γi − µi > 0. This im-

plies that i(βs − γ − µ) > 0. Eventually we obtain
βs

µ + γ
> 1

At the equilibrium S = S(0) = 1. Therefore,

β

µ + γ
> 1

is the condition for endemicity to exists.
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Limitation of the Classic SIR model

The simple generic SIR models discussed above have obvious limita-

tions. They unrealistically assume that the population is uniform and ho-

mogeneously mixing. In fact, it is known that depends on many factors

including age (Children usually have more adequate contacts per unit time

than adults). Moreover, different geographic and socio-economic groups

have different contact rates. Despite these limitations, the classic SIR

model can be used to obtain some useful estimates.
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CHAPTER FOUR

VECTOR-HOST MODELS

Background

Some diseases are contracted by humans from sources such as mosquitoes,

birds, rodents other than from human to human. Example of such diseases

are malaria and dengue fever. Vector-host models are used to describe

the spread of a disease between and within two populations.

The model below is an example of a vector host model. Here S, I, R are

respectively, susceptible, Infected and recovered (with partial immunity)

humans; V, M are the susceptible and infected vectors. It is assumed that

infected vectors remain infected for life, and that the infection is not harm-

ful to them. The recruitment rates for humans and vectors are b1 and b2

respectively, γ is the rate of recovery for humans.

This model has more than one disease compartments, and so the method

for determining the basic reproduction number requires the use of the next

generation matrix, defined and described below.

Ṡ = b1 − β1SI − β2SV − dS + ρR

İ = β1SI + β2SV − dI − γI

Ṙ = γI − dR − ρR

V̇ = b2 − β3IV − dV

Ṁ = β3IV − dM

(4.1)
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The basic Reproduction number

The basic reproductive ratio, R′, is a key concept in epidemiology, and

is inarguably one of the foremost and most valuable ideas that mathemati-

cal thinking has brought to epidemic theory Heesterbeek and Dietz (1996).

The basic reproduction number (R0) of an infection is defined by Diek-

mann and Heesterbeek (2000) as the ’expected number of secondary cases

per primary case in a virgin population’. The roots of the basic reproduc-

tion concept can be traced through the work of Alfred Lotka, Ronald Ross,

and others, but its first modern application in epidemiology was by George

MacDonald in 1952, who constructed population models of the spread of

malaria. In epidemiology, the basic reproduction number (sometimes called

basic reproductive rate or basic reproductive ratio) of an infection is the

mean number of secondary cases a typical single infected case will cause in

a population with no immunity to the disease in the absence of interven-

tions to control the infection. It is often denoted by (R0). This metric is

useful because it helps determine whether or not an infectious disease will

spread through a population. The roots of the basic reproduction concept

can be traced through the work of Alfred Lotka, Ronald Ross, and others,

but its first modern application in epidemiology was by George MacDonald

in 1952, who constructed population models of the spread of malaria. If the

reproduction number (R0) < 1, then the disease free equilibrium is locally

asymptotically stable, and the disease cannot invade the population. On

the other hand, if (R0) > 1, then the disease will eventually invade the the

population, Hethcote (1975). A more recent review of the formulation, es-

timation and use of (R0) in deterministic models is attributed to Heffernan

et al. (2005). Diekmann et al. (2000) defines (R0) as the spectral radius

of of the next generation matrix.
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The Next Generation Matrix

A rich history in the literature addresses the derivation of (R0), or

an equivalent threshold parameter, when more than one class of infectives

is involved (Rushton and Mautner (1955); Hethcote (1978); Nold 1980;

Hethcote and Thieme (1985)) .

The next generation method, introduced by Diekmann et al. (1990), is

a general method for deriving (R0) in such cases, encompassing any situa-

tion in which the population is divided into discrete, disjoint classes. The

next generation operator can thus be used for models with underlying age

structure or spatial structure, among other possibilities. For typical imple-

mentations, continuous variables within the population are approximated

by a number of discrete classes. This approximation assumes that trans-

mission probabilities between states are constant, or equivalently, that the

distribution of residence times in each state is exponential. The next gen-

eration operator is fully

described in Diekmann and Heesterbeek (2000) and a number of salient

cases are elucidated in van den Driessche and Watmough (2002).

In the next generation method, (R0) is defined as the spectral radius

of the next generation matrix. The formation of the matrix involves

determining two compartments, infected and non-infected, from the model.

In this section, we outline the steps needed to find the next generation

operator in matrix notation (assuming only finitely many types), and then

employ this method for a susceptibleexposed infectiousrecovered (SEIR)

model and a model of malaria. (For a detailed explanation on the forma-

tion of the next generation operator when there are infinitely many types.

Diekmann and Heesterbeek (2000).)
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Compartmental Disease Transmission Models

For clarity we sort the compartments so that the first m compartments

correspond to infected individuals. The basic reproduction number can

not be determined from the structure of the mathematical model alone,

but depends on the definition of infected and uninfected compartments.

We define Xs to be the set of all disease free states. That is

Xs = {x ≥ 0|xi = 0, i = 1, . . . , m}.

In order to compute R0, it is important to distinguish new infections

from all other changes in population. Let

• Fi(x) be the rate of appearance of new infections in compartment i,

• V+
i (x) be the rate of transfer of individuals into compartment i by all

other means, and

• V −
i (x) be the rate of transfer of individuals out of compartment i.

It is assumed that each function is continuously differentiable at least

twice in each variable. The disease transmission model consists of nonneg-

ative initial conditions together with the following system of equations:

ẋi = fi(x) = Fi(x) − Vi(x), i = 1, . . . , n, (4.2)

where Vi = V−
i − V+

i and the functions satisfy assumptions (A1) through

(A5) described below. Since each function represents a directed transfer of

individuals, they are all nonnegative. Thus,

(A1) if x ≥ 0, then Fi,V+
i ,V−

i ≥ 0 for i = 1, . . . , n. If a compartment is

empty, then there can be no transfer of individuals out of the com-

partment by death, infection, nor any other means. Thus,
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(A2) if xi = 0 then V−
i = 0. In particular, if x ∈ Xs then V−

i = 0

for i = 1, . . . , m. Consider the disease transmission model given by

Hethcote (2000) with fi(x), i = 1, . . . , n, satisfying conditions (A1)

and (A2). If xi = 0, then fi(x) ≥ 0 and hence, the nonnegative cone

(xi ≥ 0, i = 1, . . . , n) is forward invariant; swiggins (1990).

The next condition arises from the simple fact that the incidence

of infection for uninfected compartments is zero.

(A3) Fi = 0 if i > m.

To ensure that the disease free subspace is invariant, we assume that

if the population is free of disease then the population will remain free

of disease. That is, there is no (density independent) immigration of

infectives. This condition is stated as follows:

(A4) if x ∈ Xs then Fi(x) = 0 and V+
i (x) = 0 for i = 1, . . . , m.

The remaining condition depends on the derivatives of f near

a DFE. Consider a population near the DFE x0. If the population

remains near the DFE (i.e., if the introduction of a few infective

individuals does not result in an epidemic) then the population will

return to the DFE according to the linearized system,

ẋ = Df (x0)(x − x0) (4.3)

where Df (x0) is the derivative [∂fi/∂xj] evaluated at the DFE, x0 (i.e.,

the Jacobian matrix). Here, and in what follows, some derivatives

are one sided, since x0 is on the domain boundary. We restrict our

attention to systems in which the DFE is stable in the absence of new

infection. That is
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(A5) If F(x) is set to zero, then all eigenvalues of Df (x0) have negative

real parts.

The conditions listed above allow us to partition the matrix Df (x0) as

shown by the following lemma.

lemma

If x0 is a disease-free equilibrium (DFE) and fi(x) satisfies A1 − A5 then

the derivatives DF(x0) and DV(x0) are partitioned as

DF(x0) =







F 0

0 0






, V(x0) =







V 0

J3 J4






(4.4)

where F and V and the m × m matrix is given by

F =

[

∂F(x0)

∂xj

]

and V =

[

∂V(x0)

∂xj

]

(4.5)

with 1 ≤ i ≤ m. F is non-negative and V is a is non-singular M-matrix

and all eigenvalues of J4 have positive real part.

Proof

Let x0 ∈ Xs denote disease-free equilibrium. By assumptions A3 and

A4,
∂Fi

∂xj
(x0) = 0 if either i > m or j > m.

Similarly, by A2 and A4, if x ∈ Xs then Vi = 0 for i ≤ m. Hence,

∂V
∂xj

(x0) = 0 for i ≤ m and j > m. This shows the stated partition and zero

blocks. The nonnegativity of F follows from A1 and A4.

Let {ej} be the Euclidean basis vectors. That is , ej is the jth column

of n × n identity matrix. Then, for j = 1, . . . , m,

(

∂V
∂xj

)

(x0) = lim
h→0+

(V(x0 + hej) − Vi(x0)

h

)

To show that V is nonsingular M-matrix, note that if x0 is DFE, then

by assumption A2 and A4, V(x0) = 0 for i = 1, . . . , m and if i 6= j, then the
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ith component of x0 + hej = 0 and V(x0 + hej) ≤ 0 by A1 and A2. Hence,

∂Vi

∂xj
≤ 0 for i ≤ 0 and j 6= i and V has real Z sign pattern. (For example,

if a matrix B has the Z sign pattern and s(B) > 0, then B is a nonsingular

M-matrix. s(A) be the maximum real part of the eigenvalues of A).

Additionally, by A5, all eigenvalues of V have positive real parts. These

two conditions imply that V is a nonsingular M-matrix. Finally, assumption

A5 also implies that the eigenvalues of J4 have positive real part.

What is a Generation?

In demography, R0 represents the ratio of total population size from the

start to the end of a generation, which is, roughly, the mean age of child-

bearing. R0 = erT , where r is the instantaneous rate of increase of the

population. Generations in epidemic models are the waves of secondary

infection that flow from each previous infection. So, the first generation

of an epidemic is all the secondary infections that result from infectious

contact with the index case, who is of generation zero. If Ri denotes the

reproduction number of the ith generation, then R0 is simply the number

of infections generated by the index case, i.e., generation zero. Now, these

numbers are typically small and are therefore susceptible to random sam-

pling error. Consequently, we talk about expected (i.e., averaged over many

epidemics) numbers of secondary cases produced by generation zero.

The Basic Reproduction Number

The next generation matrix, K = FV−1, is nonnegative and therefore

has a nonnegative eigenvalue, R0 = ρ(FV−1), such that there are no other

eigenvalues of K with modulus greater than R0 and there is a nonnegative

eigenvector ω associated with R0, Berman and Plemmons (1979). This

eigenvector is in some sense the distribution of infected individuals that
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produces the greatest number, R0, of secondary infections per generation.

Thus, R0 and the associated eigenvector ω suitably define a typical infec-

tive and the basic reproduction number can rigorously be defined as the

spectral radius of the next generation matrix, K. The spectral radius of a

matrix K, denoted ρ(K), is the maximum of the moduli of the eigenvalues

of K. If K is irreducible, then R0 is a simple eigenvalue of K. How-

ever, if K is reducible, which is often the case for diseases with multiple

strains, then K may have several positive real eigenvectors corresponding

to reproduction numbers for each competing strain of the disease.

Therefore,

R0 = ρ(FV−1) (4.6)

where FV−1 the next generation matrix for the model and we shall set

R0 as equal to the spectral radius FV−1 and ρ(A) denotes the spectral

radius of the matrix A.

Application of the Next Generation Matrix

The first three examples are obtained from van den Driessche and

Watmough (2002).

TB treatment Model

Consider a model where the population is divided into four compart-

ments, namely, individuals susceptible to tuberculosis (S), exposed individ-

uals (E), infectious individuals (I) and treated individuals (T). Susceptible

and treated individuals enter the exposed compartment at rates β1I/N and

β2I/N,

respectively, where N = E + I + S + T. Exposed individuals progress to the
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infectious compartment at the rate ν. All newborns are susceptible, and

all individuals die at the rate d > 0. Thus, the core of the model is an SEI

model using standard incidence. The treatment rates are r1 for exposed

individuals and r2 for infectious individuals. However, only a fraction q

of the treatments of infectious individuals are successful. Unsuccessfully

treated infectious

individuals re-enter the exposed compartment (p = 1 − q). The disease

transmission model consists of the following differential equations together

with nonnegative initial conditions:

dS

dt
= bN − dS − β1

SI

N
(4.7)

dE

dt
= β1

SI

N
+ β2

TI

N
− (d +ν +r1)E + pr2I (4.8)

dI

dt
= νE − (d + r2)I − qr2I (4.9)

dT

dt
= r1E + qr2I − dT − β2

TI

N
(4.10)

Rearranging the equations so that we start with infective classes, we

obtain

dE

dt
= β1

SI

N
+ β2

TI

N
− (d +ν +r1)E + pr2I (4.11)

dI

dt
= νE − (d + r2)I − qr2I (4.12)

dS

dt
= bN − dS − β1

SI

N
(4.13)

dT

dt
= r1E + qr2I − dT − β2

TI

N
(4.14)

In this case m = 2 (Two infected compartments). Thus from 4.11 the

following equations are obtained.
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F =



















β1
SI

N
+ β2

TI

N

0

0

0



















, V = V−
i − V+

i =



















(d + ν + r1)E − pr2I

(d + r2)I + qr2I − νE

dS + β1
SI

N
− bN

dT − r1E − qr2I + β2
TI

N



















The disease free equilibrium point of the system Equation 4.11 is

(E0, I0, S0, T0) = (0, 0, 1, 0).

Now, F and V evaluated at the disease-free equilibrium is given by

F =







0 β1

0 0






and V =







d + ν + r1 −pr2

−ν d + r2







respectively. Since R0 = ρ(FV−1), we need to find V −1.

V−1 =
1

(d + ν + r1)(d + r2) − νpr2







d + r2 pr2

ν d + ν + r1






.

Hence, the reproduction number of the model above is

R0 =
νβ1

(d + ν + r − 1)(d + r2) − νpr2

.

Multi-Strain

Consider the model

dI1
dt

= β1SI1 − (b + γ)I1 + νI1I2

dI2
dt

= β2I2S − (d + r2)I2 − νI1I2

dS

dt
= b − bS + ν1I1 + r2I2 − (β1I1 + β2I2)S

The disease-free equilibrium is calculated to be

(I1, I2, S) = (0, 0, 1)
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and the derivatives of F andV of F and V are respectively.

F =







0 β1

0 β2






and V =







b + r1 0

0 b + r2






.

Therefore,

Ri =
βi

b + βi

, i = 1, 2.

Hence,

R0 = max
i={1, 2}

Ri. (4.15)

Vector-Host Model

This example was proposed by Feng and Valesco-Hernández (1997) for

Dengue fever. An SIS model is udes for the hosts, while an SI model is

used for the vectors. The four compartments correspond to infected hosts

(I), infected vectors (V), susceptible hosts (S) and susceptible vectors (M).

Hosts are infected by contacts with infected vectors, and vectors are in turn

infected by contacts with infected hosts. These infection rates are given by

the two terms βsSV and βmMI. The dynamics of the model is as follows:

dI

dt
= βsSV − (b + γ)I

dV

dt
= βmMI − cV

dS

dt
= b − bS + γI − βsSV

dM

dt
= c − cM − βmMI

The birth and death rates are b > 0 for the host, and c > 0 for the

vector. The dynamical system has a disease-free equilibrium point as E0 =

(0, 0, 1, 1), and an endemic equilibrium point

E1 =
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(

−−βsβm + bc + cγ

(b + γ + βs)βm
,−−βsβm + bc + cγ

βs(βm + c)
,
(b + γ)(βm + c)

(b + γ + βs)βm
,
c(b + γ + βs)

βs(βm + c)

)

.

The derivatives of F and V at the disease-free equilibrium point are

F =







0 βs

βm 0






and V =







b + γ 0

0 c






,

where V is nonsingular. The basic reproduction number is given by

R =

√

βsβm

c(b + γ)
. (4.16)

Near the disease free equilibrium, each infected host produces
βm

c
new

infected vectors over its expected infectious period, and each infected vector

produces
βs

b + γ
new infected hosts over its expected infectious period. The

square rot arises from the two generations required for an infected vector

or host to reproduce itself.

The SLIAR Model

The SLIAR model for influenza consists of five compartments: suscepti-

ble (S), latent (L), infectious (I), asymptomatic (A) and removed (R). Only

the middle three of these are considered disease states, so x = (L, I, A). In-

fection and progression through the disease states is summarized in the

following diagram.

The model consists of the following system of differential equations,

together with nonnegative initial conditions:
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Ṡ = −βS(ǫL + I + δA) (4.17)

L̇ = βS(ǫL + I + δA) − κL (4.18)

İ = pκL − αI (4.19)

Ȧ = (1 − p)κL − ηA (4.20)

Ṙ = αI + ηA (4.21)

New infections occur during contacts between susceptible individuals

and individuals in any of the infected compartments, L, I or A. The

incidence term is a sum of products of S with L, I and A, with ǫ and

δ being the relative infectiousness of latent and asymptomatic infections.

Technically, the term latent only applies if ǫ = 0; otherwise, with 0 < ǫ < 1,

L represents a first, partially infectious stage, and I a later, fully infectious

stage.

The matrix V is given by

V =













κ 0 0

−pκ α 0

−(1 − p)κ 01/η













.

Now F and V −1 are given by

F =













ǫβS0 βS0 δβS0

0 0 0

0 0 0













V−1 =













1/κ 0 0

p/α 1/α 0

(1 − p)/η 0 1/η













.

Hence, the basic reproduction number is given by ρ(FV −1) that is

R0 = βS0

(

ǫ

κ
+

p

α
+

δ(1 − p)

η

)

.

The reproduction number is a sum of products of the infection rates

ǫβS0, βS0 and δβS0 and the sojourn times 1/κ, p/α and (1 − p)/η. The
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factors p and (1 − p) appear since these are the fractions of infected in-

dividuals that progress to the symptomatic and asymptomatic stages, re-

spectively. That is, the expected time an infected individual spends in the

I compartment is p/α, since a fraction p spend on average 1/α times units

in compartment I.

A simple SI Vaccination Model

Consider the following SI vaccination model proposed by Gandon et al.

(2003).

Ṡ = (1 − p)Π − µS − (βI + βvIv)S

Ṡv = pΠ − µSv − (1 − r)(βI + βvIv)Sv

İ = (βI + βvIv)S − (µ + ν)I

İv = (1 − r)(βI + βvIv)Sv − (µ + νv)Iv.

S, I, Sv and Iv denote the subpopulations in the unvaccinated suscep-

tible, unvaccinated infectious, vaccinated susceptible and vaccinated infec-

tious compartments, respectively. Susceptible individuals are recruited at

a rate Π and a fraction, p, of these recruits are vaccinated immediately. In-

dividuals leave the population at a rate µ, with additional disease-induced

host mortality at the rates ν and νv. Vaccination of infectious individuals

reduces the transmission rate from β to βv and vaccination of susceptible

individuals reduces the probability of transmission by a fraction r.

The system has a unique disease-free equilibrium, given by S0 = (1 −

p)N0 and Sv0 = pN0, where N0 = Π/µ. The disease compartments are I

and Iv, V is the diagonal matrix
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Here,

V =







µ + ν 0

0 µ + νv






,

and F is rank one matrix that can be expressed as a product of two vectors

ω = (S0, (1 − r)Sv0)
T and β = (β, βv)

T as follows:

F = ωβT =







βS0 βvS0

(1 − r)βSvo (1 − r)βvSv0






. (4.22)

Since F has rank one, the next generation matrix also has rank one.

The spectral radius of a rank one matrix is its trace. Therefore,

Rc = ρ(FV−1) = βTV−1ω =
βS0

µ + ν
+

(1 − r)βvSv0

µ + ν
.

The simplest interpretation to place on this number is that it is the

sum of the number of secondary infections of unvaccinated susceptible in-

dividuals produced by an index case in I and the number of secondary

infections of vaccinated susceptible individuals produced by an index case

in Iv. This simple interpretation is misleading. The correct, although not

immediately obvious, interpretation is that Rc is the number of secondary

infections, both vaccinated and unvaccinated, produced by an “index case”,

ω, distributed in both infectious compartments, with one part in I and

(1 − r)Sv0/S0 parts in Iv. Quite simply, Rc is the eigenvalue of K with

largest modulus and ω is an associated eigenvector.

This simple vaccination model assumes the effects of the vaccine on

susceptible and infectious individuals are separable, which leads to a rank

one next generation matrix and a simple expression for Rc. Replacing the

four incidence parameter combinations β, βv, (1 − r)β and

(1−r)βv, with the four parameters βuu, βuv, βvu and βvv respectively, leads

to the next generation matrix
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K =







βuuS0

µ + ν

βuvS0

µ + ν
βvuS0v

µ + ν

βvvS0v

µ + ν






. (4.23)

Denoting the four entries of K as Ruu, Ruv, Rvu and Rvv, the spectral

radius of K is

Rc =
Ruu + Rvv

2
+

1

2

√

(Ruu + Rvv)2 − 4RuuRvv + 4RuvRvu (4.24)

Although this expression defies interpretation as anything other than

the spectral radius of K, the threshold condition

Rc < 1

is equivalent to the pair of conditions

1

2
(Ruu + Rvv) < 1,

Ruu + Rvv + RuvRvu −RuuRvv < 1

Note that these conditions only hold for nonnegative matrices and differ

slightly from the more general Jury conditions. Several authors like Cherry

et al. (1998), Hsieh et al.,(2004) have interpreted the left hand side of the

second inequality as the reproduction number for the model. The danger

in this interpretation is that the magnitude of this expression does not give

any insight into the solutions of the model. As Roberts and Heesterbeek

(2003) point out, this distinction is important if Rc is used as a measure of

the effectiveness of disease control measures.

Conclusion

The review of the practical use of R0 has focused largely on the work

of P. van den Driessche and James Watmough, Reproduction numbers
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and sub-threshold endemic equilibria for compartmental models of disease

transmission. The number of papers included here-and our own review

was by no means exhaustive-thus testifies to the relevance of this impor-

tant concept in epidemiology. R0 was estimated by using the novel next

generation method for deterministic models.

The vector-Host Model

Since this vector-host model is based on the SIR model, it will consists

of six equations.

Assumption

We make the following assumptions:

• The population size is relatively large and constant.

• The population is constant in that we do not consider population

dynamics and emigration or immigration of species.

• There is no incubation period.

• There is homogeneous mixing between and within species.

• The recovery rate of humans and the removal rate of vectors is con-

stant.

• The recovered individual becomes immune to the disease.

• The infection rate is proportional to the number of infectives.

These assumptions imply that

NH = SH(t) + IH(t) + RH(t)

Nv = Sv(t) + Iv(t) + Rv(t)
(4.25)
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Explanation of Variables

This vector-host model is based on the SIR Model, it has a very similar

setup, but expanded for two species or populations. It thus consists of six

variables, instead of three.

• SH is the number of individuals in the human population susceptible

to the disease.

• IH is the number of infected and infectious individuals in the human

population.

• RH is the recovered individuals in the human population.

• Sv is the number of individuals in the vector population susceptible

to the disease.

• Iv is the number of infected individuals in the vector population.

• Rv is the number of individuals removed from the vector population.

Parameters Used in the Model

• NH is the human population size.

• Nv is the vector population size.

• β is the fixed number of contacts per day per individual (regardless

of species) sufficient to spread the disease (where βS(t) is the number

of new infected individuals of either species per day).

• γ is the fraction of the human infected group that will recover during

any given day.

• ρ is the proportion of infection that occurs between the human and

vector populations.
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• λ is the proportion of infection that occurs between (rather than

within) human and vector populations.

The System of Differential Equations

Since we now have two populations in our model, the rate of change of

the number of susceptibles and infectives in each population depends on

how many hosts and vectors have already been infected. We thus arrive at

the following differential equations.

ṠH(t) = −βSH(t)[IH(t)(1 − ρ) + ρIv(t)]

İH(t) = βSH(t)[IH(t)(1 − ρ) + ρIv(t)] − γIH(t)

ṘH(t) = γIH(t)

Ṡv(t) = −βSv(t)[Iv(t)(1 − ρ) + ρIH(t)]

İv(t) = βSv(t)[Iv(t)(1 − ρ) + ρIH(t)] − λIv(t)

Ṙv(t) = λIv(t)

(4.26)

It can be verified from the system of Equations 4.26 that

NH = SH(t) + IH(t) + RH(t)

Nv = Sv(t) + Iv(t) + Rv(t).
(4.27)

Solving the System of Equations 4.26

The system of Equations 4.26 presented in this system is clearly nonlin-

ear. Here the solution is difficult compared to the three state SIR model.

Mathematical software like Maple does not usually come up with an explicit

answer because it does not have enough memory. To avoid this problem,

we write a program in Maple that will use numerical methods to graph the

solution. Thereby making it possible to identify whether or not they are

asymptotically stable.
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We are finally ready to examine the solutions. For the sake of con-

ciseness, we will only look at cases in which the change of parameters

significantly influences the solution and summarize the effects of all the

parameters in the conclusion.

No Infected Humans Recover, No Infected vectors Removed

(γ = 0 = λ)

In this situation, we reduce the system of equations to the following

equations:

İH(t) = β(NH − IH)[IH(1 − ρ) + ρIv]

İv(t) = β(Nv − Iv)[Iv(1 − ρ) + ρIH]
(4.28)

Before presenting graphical solutions to the system, we will determine

its stability and critical points. We find that

(IH, Iv) = (0, 0), (NH, Nv)

are the only two critical points. We can now determine the stability of

each by linearizing the system, and looking at the determinant and trace

of the Jacobean evaluated at the critical points.

We first let J0 be the Jacobean of the system in 4.28 and evaluate it at

(0,0). This results in the equation below.

J0 =









İh(t)

dIh

İh(t)

dIv
İv(t)

dIh

İv(t)

dIv









=







βNH(1 − ρ) βNHρ

βNvρ βNv(1 − ρ)






(4.29)

The trace and the determinant are calculated as:

det(J0) = β2NHNv(1 − 2ρ)

trace(J0) = β(1 − ρ)[NH + Nv]
(4.30)
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It is clearly evident that det(J0) > 0 if ρ < 0.5 and the det(J0) < 0

if ρ > 0.5 and the trace(J0) > 0 for all values of β, ρ NH and Nv. This

indicates that there is always at least one positive eigenvalue. This means

that (0, 0) is an unstable node for all values of the parameters.

The Jacobian of the system is evaluated at (IH, Iv) = (NH, Nv) is given

by

JE =







−β[NH(1 − ρ) + ρNv] 0

0 −β[Nv(1 − ρ) + ρNH]






(4.31)

The determinant and the trace of the Jacobian matrix are:

det(JE) = β2[NH(1 − ρ) + ρNv][Nv(1 − ρ) + ρNv] > 0

trace(JE) = −β(NH + Nv) < 0
(4.32)

Since det(JE) > 0 for all values of the parameters, (NH + Nv) is a stable

critical point.

Graphical Solutions

We will now show graph the solutions to demonstrate the above results,

which predict that IH will approach NH and move away from zero, and Iv

will approach Nv and also move away from 0. In order for Maple to graph

the solutions, we must give numerical values to each of the parameters. For

the sake of this example, let:
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Table 1: Numerical Values for Parameters

Parameters Numerical Values

NH 20000

Nv 10000

β 0.05

ρ 0.5

γ 0

λ 0

Altering these parameters above will not change the stability of the

critical points. Let’s assume the following conditions: IH(0) = 2, Iv(0) = 3,

RH(0) = 0 and Rv(0) = 0. So initially, we 2000 humans infected and 3000

vectors infected. There is none recoveries for humans and vectors. The so-

lutions are plotted using Maple. The following graphs 4 and 4are attained:

 

!

Figure 21: Solutions for Human Population.
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Figure 22: Solutions for Vector Population.

It can clearly be seen that the stable critical point exists at (IH , Iv) =

(20, 10). The phase portrait at (0, 0) in 4is an unstable node.

  

Figure 23: Phase Portrait of IH vs. Iv.

As long as no humans or vectors are removed, everyone from both pop-

ulations will eventually become infected. In other words, S(t) asymptoti-

cally approaches N and I(t) asymptotically approaches zero regardless of

the size of each population, or the values of β and ρ. This is exactly what

is expected, and is consistent with the simple SI model for one population.
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Infected Humans Recover, No Infected Vectors Removed

(λ > 0, γ = 0)

The model is slightly changed here and slightly more complicated. Con-

sider the model where λ > 0, γ = 0.

∂IH
∂t

= β(NH − IH − RH)[IH(1 − ρ) + Ivρ] − λIH

∂Iv
∂t

= β(Nv − Iv)[Iv(1 − ρ) + IHρ]

∂RH

∂t
= λIH

Solving Equation 4 gives the critical solution points as

(IH.Iv, RH) = (0, 0, RH), (0, Nv, NH).

We consider the following cases.

Case I: (IH, Iv, RH) = (0, 0, RH), where RH is arbitrary

Clearly, we notice that this case can be dismissed as trivial in this

particular model. Since, in order to get this critical point, we must set Iv

equal to zero for all values of the parameters and other variables, the model

becomes almost identical to an original SIR model. In other words, this

model accounts for only one species in the system. Since we have a solution

to a very similar system looked at in Section 4.2), we simply take the limit

as n approaches infinity to get the critical points.

lim
t→∞

S(t) = lim
t→∞

S(0) exp
−β

λ
[R(t) − R(0)] = S(0) exp

−β

λ
[R(∞) − R(0)]

(4.33)

Note that the critical points depend on the stability of R(t), as well as

the values of β, λ, R(0) and S(0). It should be noted that exact stability

cannot always be determined from a simple analysis of the critical points

or even the solution of a system, because of potential dependency on other

variables and parameters.
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Case II: (IH, Iv, RH) = (0, Nv, NH)

Equation 4.34 gives the Jacobian of the system of Equations 4 evaluated

at (0, NH , Nv).

J =













−βNvρ − λ 0 −βNvρ

0 −βNv(1 − ρ) 0

γ 0 0













(4.34)

The determinant and trace of the matrix are found to be

det(J) = −λβ2N2
vρ(1 − ρ) < 0

trace(J) = −βNv − λ < 0

The trace(J) and the det(J) are less than zero for all values of the

parameters. This implies the eigevalues of this system are negative, which

again implies (0, Nv, NH) is a stable node.

Grapical Simulation

Let’s consider the following parameters.

Table 2: Numerical Values for Parameters

Parameters Numerical Values

NH 20000

Nv 10000

β 0.05

ρ 0.5

γ 0

λ 0.4

The following graphs are generated based on the initial conditions:
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IH(0) = 2, Iv(0) = 3, RH(0) = 0 and Rv(0) = 0. All these values are

in thousand.

  

Figure 24: Human Population

  

Figure 25: Vector Population

These graphs demonstrate exactly what we predicted. Because no vec-

tors are removed, all vectors eventually become infected, yet since humans

can recover and eventually become immune to the disease, the number of

human infectives goes to zero.
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To further justify these results, it is useful to display a Phase Portrait.

  

Figure 26: Phase Portrait of IH and Iv

It can be seen that the solution is an arc, with a stationary point at

(IH , Iv) = (0, 10), as we calculated above. This result is consistent with the

other figures we have examined above.

Infected Humans Recover and Infected Vectors Removed.

I.e. λ > 0, γ > 0

Let’s consider a model by assuming that a fixed proportion of the in-

fected vectors is removed and a fixed proportion of infected humans recover.

The following parameters are defined as follows.
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Table 3: Numerical Values for Parameters

Parameters Numerical Values

NH 20000

Nv 10000

β 0.05

ρ 0.5

γ 0 .5

λ 0.3

We calculate for the critical points of Equation 4.26. We find that there

is only one critical point. at

(IH, Iv, RH, Rv) = (0, 0, RH, Rv)

where RH and Rv are arbitrary. To do the stability analysis, we first find

the Jacobian of the system and evaluate at the critical point.

J =



















β(NH − RH)(1 − ρ) − λ β(NH − RH)ρ 0 0

β(Nv − Rv)ρ β(Nv − Rv)(1 − ρ) − γ 0 0

λ 0 0 0 0

0 γ 0 0



















From the Jacobian matrix J, the determinant and the trace are:

det(J) = 0 (4.35)

trace(J) = β(NH − RH)(1 − ρ) − λ + β(Nv − Rv)(1 − ρ) − γ(4.36)

The fact that the determinant of the Jacobean matrix is zero means

that there is at least one constant solution. This implies that the critical
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point is most likely stable. However, the value of the trace depends on

RH and Rv, which are arbitrary yet indirectly dependent on the values of

the other parameters. Such a critical point is very similar to those of the

original SIR model, which depended on the initial conditions as well as the

other parameters, as was shown in 4.33. We can therefore predicts that IH

and Iv will eventually go to zero, whereas RH , Rv, SH and Sv will stabilize

at some point between 0 and N, approaching constant asymptotes.

The solutions are represented graphically in Figure 4 and 4 respectively.

  

Figure 27: Human Population

  

Figure 28: Vector Population
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Although it is clear that IH and Iv approach zero, it is unclear from

the graph what asymptotes S(t) and R(t) approach. We can find them by

using Maple.

Using Maple and a sequence write out, the stationary points are found

to be RH = 16, SH = 4, Sv = 8.45, and Rv = 1.55. Figures 4 and 4 are the

phase portraits of the nodes.

  

Figure 29: Phase Portrait of RH against SH

  

Figure 30: Phase Portrait of Rv against Sv
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Changing the Boundary Conditions IH(0) = 0 and Iv(0) > 0

In this example, the boundary conditions are changed as follows:

IH(0) = 0, Iv(0) = 2, RH(0) = 0, and Rv(0) = 0.

All these values are in thousand. The parameter values are tabled below.

Table 4: Numerical Values for Parameters

Parameter Value

NH 20 (in thousand)

Nv 10 (thousand)

ρ 0.5

λ 0.5

γ 0.3

The assumption here is that there are no infected humans initially, but

there are some infected vectors. Since the disease can be spread from hu-

mans to vectors, our model should illustrate the spread of the disease from

one population to the other. As in the previous case, the solutions should

be stable, but approach a different asymptote since the initial conditions

have been changed.
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Figure 31: Human Population

  

Figure 32: Vector Population

Even though, only one species contracted the disease initially, it ulti-

mately spreads to the other species as well. Because the infected humans

can recover and the infected vectors are removed, the number of infectives

ultimately goes to zero and the other variables also stabilize. As before,

this model makes it impossible for the entire population to become infected.
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Changing the Other Parameters

It has become evidently clear that changing the parameters does not

change a stable critical point into an unstable one. However, it does change

the asymptote that the curves approach, as well as the rate at which they

approach it. When the value β is increased , or λ or h are decreased, we find

that the value R(t) approaches asymptotically increases. Consequently, the

value S(t) approaches asymptotically decreases, because of the relationship

between the two variables. This makes sense intuitively: more people have

to recover as β, the fixed number of contacts per day sufficient to spread

the disease increases and as less infectives of either population are allowd

to get better or are removed. The opposite is true when we decrease β or

increase λ or γ. Changing ρ influences the slopes of the graphs, but does

not contribute to stability. Because the systems for humans and vectors

are symmetrical, it does not matter whether NH or Nv is greater.

Conclusions

Although the vector-host model presented in this paper demonstrates

the same kind of stability one might expect after studying the original

SIR model, it is important to note that many simplifications have been

made. First, the recovery and removal rate are probably influenced by

more than the proportion of infectives in each population. Depending on

the nature of the disease, it can be difficult, if not impossible, to determine

exactly how many infectives there are in a population, especially when the

vector population is non-human. Many of the other parameters are also

unknown in real life except after the epidemic has done its damage. It

should be noted that our vector-host model, as well as the original SIR

model, assumes that no one has died from the disease as it is spreading.

This is clearly an unrealistic assumption. To further improve the model,
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one might want to add another equation to the system in order to account

for the death rate of infected individuals.

Despite these and other simplifications, this particular vector-host model

is consistent with the original SIR model and useful in predicting overall

trends. As we have shown, regardless of the value of each parameter, the

variables ultimately stabilize, demonstrating consistency in the overall pop-

ulations. Like the SIR model, our model makes it impossible for the entire

population to become infected, unless no humans recover and no vectors

are removed. However, it also demonstrates that it is enough for only one

population to possess the disease initially for it to spread to both species,

which makes it a superior model. Despite its simplicity, models such as

our vector-host model enable officials to make important decisions about

public health policy regarding some modern day diseases, such as the AIDS

epidemic in Africa. As a result, they can gain a much better understanding

of population dynamics, making it possible for something as unpredictable

as an epidemic to be controlled and stabilized.
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CHAPTER FIVE

MODEL FOR THE CONTROL OF MALARIA

Introduction

Plasmodium falciparum malaria is a major cause of mortality and

morbidity in the tropical and subtropical areas of the globe, where around

200 million persons are at constant risk of infection, with some parts of

Africa being the worst affected. WHO revealed that malaria kills at least

one million people annually in sub-Saharan Africa with the potential to

significantly increase in response to climate change (due to the role of tem-

perature and rainfall in the population dynamics of its mosquito vector).

Since malaria increases morbidity and mortality, it continues to inflict ma-

jor public health and socio-economic burdens in developing countries.

In Africa, more than one million children mostly under five years die

each year and at least one child dies every 30 second, WHO (2000). An-

other group who are particularly at risk from malaria are pregnant women.

Pregnancy lowers the mothers immunity to malaria, making them more

susceptible to infection.

Malaria slows economic growth in Africa by up to 1.3% according to

WHO (2000) each year . Its devastating impact has increased massive

research efforts to find an effective vaccine that would stop the progres-

sion and transmission of malaria. Although there is some optimism about
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developing a malaria vaccine, malaria control currently, relies heavily on

personal protection. Africa is the worst affected continent in the world.
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Malaria cases are also being exacerbated by the high levels of HIV in-

fection, that weaken the immune system rendering people with HIV more

susceptible to contracting the disease and it also increases mortality in ad-

vanced HIV patients by a factor of about 25% in non-stable malaria areas.

It’s devastating impact has increased research efforts to find an effective

solution(s) that

would stop the progression and transmission of malaria.

Personal protection measures are the first line of defense against mosquito-

borne diseases. One of the methods of personal protection is the use of

mosquito repellents. These are substances applied to exposed skin or to

clothing to prevent human mosquito contact. These only repel but do not

kill mosquitoes. The use of insecticide- treated bed nets (ITNs) for indi-

viduals against malaria has been shown to reduce morbidity of childhood

malaria (below five years of age) by 50% and global child mortality by 20-

30%. When used on a large scale ITNs are considered to represent efficient

tools for malaria vector control. There is however a limiting factor of resis-

tance in the insecticides used for impregnated nets. Resistance of the most

important African malaria vector Anopheles gambiae to pyrethroid is

already widespread in several West African countries and most especially

Ghana. Government intervention comes in many forms. Some have al-

ready been mentioned. Other attempt on the governmental level includes

mass spraying to reduce the basic reproduction number below one, and

mass spraying of endemic areas to reduce the biting rate of mosquitoes.

An adult female mosquito disperses from the water body where she was

born and begins a life cycle which is maintained throughout the rest of life,

alternating between obtaining a blood meal and ovipositing in a water

body. Transmission of the malaria parasite to human hosts involves only

adult mosquitoes since the larval stages are aquatic and do not feed on
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humans.

Human malaria is caused by one of the four species of the genus Plas-

modium a protozoan parasite transmitted by the bite of an infected fe-

male Anopheles mosquito. The following Plasmodium species are causative

agents for malaria in humans: Plasmodium falciparum, the most deadly

of the human parasites, is the most widespread in the tropics. Plasmod-

ium vivax is a major cause of clinical malaria, but rarely fatal. Plasmod-

ium malariae infrequently causes clinical malaria, especially in Africa. It

can persist as low-grade parasitaemia for several decades. Plasmod-

ium ovale causes clinically significant but non-fatal disease, but might be

found in mixed infections with other species. The infection takes place

when an infected mosquito injects sporozoites into a human host, which

are carried through the blood to the liver within 30 minutes. They in-

vade hepatocytes and undergo a process of asexual replication exoery-

throcytic schizogony to give rise to 10 − 40 thousand merozoites per

sporozoite. Up to this point, the infection is non-pathogenic and clinically

silent. After about 7 − 9 days, the liver schizonts rupture to release the

merozoites into the blood. Each merozoite invades an erythrocyte and

divides to form an erythrocytic schizont containing about 16 daughter

merozoites . These merozoites either reinfect fresh erythrocytes, giving rise

to cyclical blood-stage infection with a periodicity of 48 − 72h, depend-

ing on the Plasmodium species, or differentiate into sexual transmission

stages called gametocytes. The factors that induce gametocyte production

are unknown but it has been suggested that merozoites convert into ga-

metocytes when micro-environmental conditions become unfavourable to

parasite multiplication.

Partial immunity to malaria confers protection against severe illness

without eliminating chronic, mild infections. In endemic areas, children
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younger than five years have repeated and often serious attacks of malaria.

The survivors develop and maintain partial immunity that reduces the

severity of the disease but does not prevent subsequent infections. Thus

in these areas older children and adults often have a symptomatic par-

asitaemia, that is, presence of Plasmodia in the blood stream without

clinical manifestation. In endemic areas, some people often acquire im-

munity due to frequent exposure. Epidemiological evidence of immunity

to P. falciparum malaria comes from areas with intense transmission. In

areas of low malaria transmission, immunity develops slowly and malaria

affects all age groups. Incomplete immunity to malaria complicates dis-

ease control strategies as the partially immune individuals suffer only mild

infections and therefore might not seek medical attention but continue to

transmit the parasite in the community. Malaria parasites have different

epitopes hence partial immunity to one species does not confer immunity

to the other species. Even with the same species the various stages exhibit

different epitopes such that immunity could be partially conferred against

one stage only.

It is important to establish the transmission dynamics of an epidemic in

order to understand and predict it. Mathematical models are particularly

helpful as experimental tools with which to evaluate and compare control

procedures and preventive strategies, and to investigate the relative effects

of various sociological, biological and environmental factors on the spread

of diseases. These models have played a very important role in the history

and development of vector-host epidemiology. Several authors have used

mathematical models to analyse the transmission and spread of malaria.

Mathematical models of malaria transmission that include both mosquito

and human populations have been reviewed and discussed in detail by var-

ious authors. Nedelman (1985), did some further work on malaria model of
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Dietz et al. (1974), and showed that the “inoculation” rate depends on a

pseudoequilibrium approximation to the differential equation describing

the mosquito dynamics in the malaria model.

The aim of this study is to use mathematical modelling to gain some

insights into the transmission dynamics of malaria in the population and to

explore the various impact of intervention strategies. Details of the formu-

lation of the model are explicitly stated. A diagram of the compartmental

model which shows the dynamics of the human and mosquito populations

is also included. Conditions for the existence of an endemic equilibrium

are established is also given. The reproduction number of the model is

determined.The local and global stability of the disease-free equilibrium is

carried out. The different cases of strategies are explained in detail. Finally,

we give a summary and discuss the results of the study.

The infected humans either acquire some immunity or are suscepti-

ble again since immunity to malaria needs continuous exposure to reinfec-

tion. They may also die from the disease. Thus our model is based on

the susceptible-infective-immune SIRS in human population and SI for the

mosquito vector population. The recovery rate corresponds to how quickly

parasites are cleared from the human host due to treatment. Thus we have

an endemic model to study the dynamics of malaria over long periods as

there is a renewal of susceptible humans due to births and immunity loss.

Formulation of the Model

We formulate a model for the spread of malaria in the human and

mosquito population with the total population size at time t given by Nh(t)

and Nv(t), respectively. These are further compartmentalized into epidemi-

ological classes shown below. The vector component of the model does not

include immune class as mosquitoes never recover from infection, that is,
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their infective period ends with their death due to their relatively short

life-cycle. Thus the immune class in the mosquito population is negligible

and death occurs equally in all groups.

Our model has the following variables and parameters:

Table 1: Variables and parameters of the model

Variables and Parameters Description

Sh number of susceptible hosts

Ih the number of infected hosts

Rh the number of recovered hosts

Sv the number of susceptible mosquitoes

Iv the number of infected mosquitoes

bh host recruitment rate

bv vector recruitment rate

βh host contact rate

βv vector contact rate

δh disease-induced death rate

dh natural death rate of host

dv natural death rate of vector

ρh the rate of treatment

ω rate of loss of immunity in hosts

α the rate of ”inoculation”

Assumptions

The following assumptions are made in order to formulate the equations

of the model:

• The development of malaria starts when the infectious female mosquito

bites the human host.

103



• Longevity of the vector is unaffected by the infection.

• The infective population recovers with temporary immunity with clin-

ical treatment.

• Mosquitoes do not die from the infection.

• There is no super infection of the disease.

• All newborns are susceptible to infection.

Schematic Diagram For Malaria Transmission

Figure 1 is a schematic diagram for malaria transmission.

Sh
Ih

Rh

Sv
Iv

h
h

h

v

v

h

v

Figure 33: The Compartmental Model for Malaria Transmission.

In the schematic diagram, Sh is the susceptible humans. Susceptible

individuals become infected at certain probability when they are bitten

by infectious mosquitoes. They then progress through the infected class,

Ih, and the recovered class, Rh, before reentering the susceptible class.
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Susceptible mosquitoes, Sv, get infected at certain probability when they

bite an infectious human. They then move to the infectious, Iv, class. Both

species follow a logistic model for their population growth, with humans

having additional and disease-induced death.

Equations of the Model

Applying the assumptions, definitions of variables and parameters and

description of terms above, the differential equations which describe the

dynamics of malaria in the human and mosquito populations are formulated

below:

Ṡh = bh − βhShIv − dhSh + ωRh − αSh

İh = βhShIv − dhIh − ρhIh − δhIh

Ṙh = ρhIh − dhRh − ωRh + αSh

Ṡv = bv − βvSvIh − dvSv

İv = βvSvIh − dvIv

(5.1)

The total population sizes Nh and Nv can be determined by Sh + Ih + Rh = Nh

and Sv + Iv = Nv, or from the following differential equations:

dNh

dt
= bh − dhNh − δhIh

dNv

dt
= bv − dvNv

In the model, the term βhShIv denotes the rate at which the susceptible

host, SH become infected by infected mosquitoes, Iv and βvSvIv refers to the

rate at which the susceptible mosquitoes Sv are infected by infected human

hosts Ih. It is important to note that the rate of infection of susceptible

host, Sh by infected vector, Iv is dependent on the total number of humans

Nh available per infected vector, Ngua and Shu (2000).

105



The system of Equation 5.1 has a disease-free equilibrium given by

E0 = (S0
h, I0h, R0

h, S0
v, I0v) =

(

bh(dh + ω)

dh(dh + ω + α)
, 0,

bhα

dh + ω + α
,

bv

dv

, 0

)

.

(5.2)

and an endemic equilibrium EE = {S1
h, I

1
h, R

1
h, S

1
v, I

1
v} given by

S1
h =

A

B

I1h =
C

B
(R− 1)

R1
h =

C

B

(

G + ρ

{ R
dh + ω

− 1

dh + ω + α

})

S1
v =

D

E

I1v =
C(R− 1)

E

where

R =
βhβvbhbv(dh + ω)

dhd2
v(dh + ω + α)(dh + ρh + δh)

.

and

A = dv(dh + ρh + δ)(dhdvδ + dhdvω + dvδω

+bhβvdh + bhβvω + d2
hdv + dhdvρh)

B = (d3
hdv + d2

hdvρh + d2
hbvβh + αdvd

2
h + dhbvρhβh

+αdvdhρh + d2
hdvω + dhdvρhω + d2

hdvδ

+αdvdhδ + dhδbvβh + dhωbvβh +

ωδbvβh + dhdvδω)βv

C = dhd
2
v(dh + δ + ρh)(α + ω + dh)

D = d3
hdv + d2

hdvρh + d2
hbvβh + αdvd

2
h + dhbvρhβh

+αdvdhρh + d2
hdvω + dhdvρhω
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+d2
hdvδ + αdvdhδ + dhδbvβh

+dhωbvβh + ωδbvβh + dhdvδω

E = βh(dhdvδ + dhdvω + dvδω + bhβvdh + bhβvω

+d2
hdv + dhdvρh)

G =
α(dvδ + dhdv + βvbh)

dhdv(α + ω + dh)

Determination of Reproduction Number.

For computation of R0 , it is important to distinguish new infections

from all other changes in the population. We let Fi (x) be the rate of

appearance of new infections in compartment i, V+
i be the rate of transfer

of individuals into compartment i and V−
i (x) be the rate of transfer of

individuals out of compartment i. DF(x0) is the derivative

[

∂Fi

∂xj

]

evaluated

at Disease-Free Equilibrium, E0. In the five-states model 5.1, the disease

states are IH and Iv.

F =







βhShIv

βvSvIh






and







(dh + ρh + δh)Ih)

dvIv







The differentials of the disease states, (F) and the transfer states, V

with respect to E0 gives us

DF(E0) = F =







0
βh(dh + ω)

βh(dh + ω + α)
βvbv

dh

0







and

DV(E0) = V =







dh + ρh + δh 0

0 dv






.

The inverse of V is determined as
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V−1 =







1

dh + ρh + δh

0

0
1

dv
.






.

The matrix FV−1 is defined as the next generation matrix and usually

denoted by the letter K. The spectral radius, ρ(FV−1), is the biggest

nonnegative eigenvalue of the next generation matrix . Thus, the basic

reproduction number is given by

R0 = ρ(FV−1).

Thus,

R0 =
βhβvbhbv(dh + ω)

dhd2
v(dh + ω + α)(dh + ρh + δh)

.

The basic reproduction number, R0, is an important threshold quantity.

It is the expected number of secondary infections that one infectious in-

dividual would create over the duration of the infectious period. It is a

determining factor as to whether a disease dies out or assumes endemicity.

Existence and Stability of Equilibrium Solutions

In this section, we establish that the disease-free equilibrium E0 exists

if R0 < 1. We also establish that the endemic equilibrium, Ee exists for

R0 > 1.

Existence and Stability of Disease-Free Equilibrium

Disease-free equilibrium was calculated as

E0 = (S0
h, I0h, R0

h, S0
v, I0v) =

(

bh(dh + ω)

dh(dh + ω + α)
, 0,

bhα

dh + ω + α
,

bv

dv
, 0

)

.

(5.3)
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The disease-free equilibrium, E0 exists for all nonnegative values of its

parameters.

Theorem 5.1. The disease-free equilibrium E0 in 5.2 is locally asymptot-

ically stable if and only if, R0 ≤ 1, Li et al. (1999).

The Jacobian matrix of the system in 5.1 is given by.

J =



























−βhIv − dh − α 0 ω 0 −βhSh

βhIv −dh − ρh − δh 0 0 βhSh

α ρh −dh − ω 0 0

0 −βvSv 0 −βvIh − dv 0

0 βvSv 0 βvIh −dv



























.

(5.4)

The Jacobian,J, evaluated at the disease-free equilibrium is represented

in the array 5.5.

J(E0) =





























−dh − α 0 ω 0 − βhbh(dh + ω)

dh(dh + ω + α)

0 −dh − ρh − δh 0 0
βhbh(dh + ω)

dh(dh + ω + α)

α ρh −dh − ω 0 0

0 −βvbv

dv
0 −dv 0

0
βvbv

dv

0 0 −dv





























.

(5.5)

The stability of the disease-free equilibrium state can be obtained from

studying the eigenvalues of J(E0) . If all the eigenvalues have negative real

parts, then the equilibrium point is locally asymptotically stable.

The five eigenvalues of J(E0) are

• λ1 = λ4 = −dh < 0

• λ2 = K(−B +
√

C). This may be either negative or positive.

109



• λ3 = −K(B +
√

C) < 0

• λ5 = −dh − α − ω < 0

where

K =
1

2

1

dvdh(dh + ω + α)
, (5.6)

B = −αdvdhδh − dhdvρhω − αdvdhρh − dhdvδhω

−αdvd
2
h − d2

hdvρh − d2
hdvδ − d2

hdvω − αd2
vdh − d2

vd
2
h

−dhd
2
vω − d3

hdv

and

C =

(4d2
hdvαbvβhbhβv + 4dhdvω

2bvβhbhβv + 8d2
hdvbvβhbhβvω

+2d5
hd

2
vρh − 4d4

hd
3
vω + d4

hd
2
vω

2 + 2d5
hd

2
vδ + α2d4

vd
2
h − 2d4

hd
3
vδ

+4d3
hdvbvβhbhβv + 2αd4

vd
3
h + 2d5

hd
2
vω + 2α2d2

vd
3
hδh

−2α2d3
vd

3
h − 4αd3

vd
4
h + d4

hd
2
vρ

2
h + 2αd2

vd
5
h − 2d4

hd
3
vρh + α2d2

vd
2
hδ

2

+2d2
hd

2
vρhω

2δh + 4d3
hd

2
vρhωα + 4d3

hd
2
vρhωδh

−4d2
hd

3
vρhωα + 4αd2

vd
2
hδhρhω + d2

hd
4
vω

2 − 2α2d3
vd

2
hδ

−4αd3
vd

3
hδ + 4αd2

vd
4
hδ + d2

hd
2
vρ

2
hω

2 + 2d3
hd

2
vρ

2
hω

+4dhdvαbvβhbhβvω + 2d3
hd

2
vρhω

2 + 2αd4
vd

2
hω

+α2d2
vd

4
h + 2d4

vd
3
hω + 2α2d2

vd
2
hδhρh + 2αd2

vd
2
hδ

2ω

+4αd2
vd

3
hδhρh + 4αd2

vd
3
hδhω − 4αd3

vd
2
hδω

+2αd2
vd

3
hδ

2 + 2d4
hd

2
vρhδ − 4αd3

vd
3
hρh + 4αd2

vd
4
hρh + d2

hd
2
vδ

2ω2

+2d3
hd

2
vδ

2ω + 2d3
hd

2
vδω

2 − 4d3
hd

3
vδω − 2d2

hd
3
vδω

2

+4d4
hd

2
vδhω + 2αd2

vd
4
hω − 4αd3

vd
3
hω + 4d4

hd
2
vρhω

+α2d2
vd

2
hρ

2
h + 2α2d2

vd
3
hρh + 2αd2

vd
3
hρ

2
h − 2α2d3

vd
2
hρh − 2d3

hd
3
vω

2

+2d2
hd

2
vρ

2
hωα − 4d3

hd
3
vρhω − 2d2

hd
3
vρhω

2 + d4
hd

2
vδ

2

+d4
vd

4
h − 2d3

vd
5
h + d6

hd
2
v)

1

2

(5.7)
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The condition for λ2 to be negative is that −B +
√

C < 0, that is

B2 − C > 0. (5.8)

Equation 5.8 simplifies to

4(dh + ω + α)dhdv{dhd
2
v(dh + ρh + δh) − bvbhβhβv(dh + ω + α)} > 0.

(5.9)

Further simplification leads to

bvbhβvβh(dh + ω)

dhd2
v(dh + δh + ρh)(α + ω + dh)

< 1. (5.10)

The expression on the LHS of Equation 5.10 is R0, the basic reproduc-

tion number. Therefore,

R0 =
bvbhβvβh(dh + ω)

dhd2
v(dh + δh + ρh)(α + ω + dh)

< 1. (5.11)

From theorem 5.1, it has been proven that the disease-free equilibrium

is asymptotically stable if R0 < 1.

Existence of the Endemic Equilibrium

Theorem 5.2. The endemic equilibrium, Ee exists if R0 > 1.

Proof. The endemic equilibrium point given in Equation 5.3 from which

theorem follows. We examine the following cases to establish the existence

of the endemic equilibrium.

• Case I:

Invoking the positivity condition in the case of I1h and I1v, it can clearly

be verified that R > 1.
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• Case II:

In the case of R1
h, we have a different situation. Here

R0

dh + ω
− 1

dh + ω + α
> 0.

If R = 1,
1

dh + ω
>

1

dh + ω + α
. If R > 1, the inequality still holds.

Therefore, the endemic equilibrium exists if R > 1. Clearly, the

components of R are the same as R0. Thus, the endemic equilibrium

exists if R0 > 1.

Global Asymptotic Stability of the Disease-Free Equilibrium Point

Theorem 5.3. The disease-free equilibrium, E0 is globally asymptotically

stable if R0 ≤ 1

Given that R0 ≤ 1, then there exist only the disease-free equilibrium.

Proof

At the disease-free equilibrium, E0, the following conditions hold.

bh = βhS̄hĪv − dhS̄h + ωR̄h − αS̄h

αS̄h + ρhĪh = (dh + ω)R̄h

bh − δhĪh = dhN̄h

βhS̄hĪv = (dh + ρh + δh)̄Ih

bv = βvS̄vĪh + dvS̄v

βvS̄v Īh = dv Īv

Let’s now consider a Lyapunov function candidate

V(Sh, Ih, Rh, Sv, Iv) : R5 −→ R+ defined as
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1

2
(Sh − S̄h)

2 +
1

2
(Ih − Īh)

2 +
1

2
(Rh − R̄h)

2 +
1

2
(Sv − S̄v)

2 +
1

2
(Iv − Īv)

2.

Differentiating the Lyapunov function, V gives

V̇ = (Sh − S̄h)Ṡh + Ihİh + (Rh − R̄h)Ṙh + (Sv − S̄v)Ṡv + Ivİv + (Nh − N̄h)Ṅh.

Imposing the conditions on V̇ , gives the following equation.

V̇ = (Sh − S̄h)[βhS̄hĪv − dhS̄h + ωR̄h − αS̄h

−(βhShIv − dhSh + ωRh − αSh)]

+Ih[(dh + ρh + δh)̄Ih − (dh + ρh + δh)Ih]

+(Rh − R̄h)[(dh + ω)Rh − (dh + ω)R̄h]

+(Nh − N̄h)[dhN̄h − dhNh]

+(Sv − S̄v)[βvS̄vĪh − dvS̄v − (βvSvIh − dvSv)]

+Iv(dv Īv − dvIv)

Finally,

V̇ = S̄h(βhĪv + dh + α) − Sh(βhIv + dh + α)

−Ih(Ih − Īh)(dh + ρh + δh)

−(Rh − R̄h)
2(dh + ω)

−(Nh − N̄h)
2dh

−(Sv − S̄v)[Sv(βvIh + dv) − barSv(βv Īh + dv)]

−Iv(dvIv − dvĪv)

The following assumptions are made for the Lyapunov function, V̇ above.
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• S̄h(βhĪv + dh + α) − Sh(βhIv + dh + α) is negative provided Iv > Īv.

This condition also makes −Iv(dvIv − dv Īv) negative.

• −Ih(Ih − Īh)(dh + ρh + δh) is negative if Ih > Īh. This condition

when applied to −(Sv − S̄v)[Sv(βvIh + dv) − S̄v(βvĪh + dv)] makes it

negative.

• It is also assumed that Rh = R̄h.

Note that the quantities S̄h, Īh, R̄h, S̄v, and Īv are the disease-free

equilibrium states.

Thus, we have shown that V̇ ≤ 0 provided Sh > S̄h, Ih > Īh , Iv > Īv and

Sv > S̄v.

It is important to note that, V̇ = 0 only at the disease-free

equilibrium point E0.

Numerical Simulations

The two main strategies that will be consider for controlling the infectious

disease, malaria are:

• a reduction in the number of infected humans and

• a reduction in the number of susceptibles humans through a

program of preventative measures.

Our simulations examine the effect of different combinations of treatment

and preventative measures on the transmission of the disease.

Clinical Treatment with Control

In this section, we analyse the model formulated in terms of proportions.

We determine the effect of treatment on the infected populations. The
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diagram below, analyses the effect on increasing the treatment rate at

some level of “inoculation”.

Figure 34: Effects of different rate of treatment on Ih

From Figure 34, it can be observed that, holding the “inoculation” rate

constant at 10% and increasing treatment rate from 20% through to 80%

decreases the number of infected humans, from 0.7 to 0.175 through

0.375, 0.275, and 0.2 respectively. Let’s now consider the impact of

treatment on the infected vector.

Impact of Clinical Treatment on the Infected Mosquito

The effect of different treatment rate on the infected vector can be seen in

Figure 1.
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Figure 35: Effects of different rate of treatment on Iv.

In Figure 35, we examine the effect of increasing the treatment rate of the

infected human, on the infected mosquito, Iv . It can be observed that,

holding the “inoculation” rate constant at 10% and increasing treatment

rate from 20% through to 80% decreases the number of infectives, from

0.7 to 0.175 through 0.375, 0.275, and 0.2. The implication is that the

susceptible mosquitoes find it difficult to find an infected human to bite.

The cycle continues, thereby decreasing their population in the long run.

The end result is a malaria-free society.
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Figure 36: Effects of different rate of “inoculation” α on Ih.

The figure above, shows the effect of “inoculation” on the infected human

populatio. Holding treatment rate 10%, the “inoculation” from 0.2 to 0.4,

the infected humans population dropped from 0.5 o 0.25. Consequently

after successfully reducing the “inoculation” to 0.8, reduces the number of

infected humand to just 0.1. Another observation is that increasing the

rate of “inoculation” decreases the infected human population at an

increasing.
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Figure 37: Effects of different rate of “inoculation” on Iv.

In Figure 37, we display the effect of various rates of “inoculation” on the

infected mosquito population. The Figure shows that increasing the rate

of human “inoculation” decreases the infected mosquito population. With

an “inoculation” rate of 0.2, the number of infected mosquitoes drop to

0.975. Additionally, increasing the “inoculation” rate to 0.4 yields a

significant drop in the proportion of infected mosquitoes. This means that

there will be less infected mosquitoes and less susceptible humans to

propagate the disease.

On the other hand, if “inoculation” is carried out to cover at least 50%,

and treatment rate held at 20%, malaria cases in this country will be

brought to the barest minimum. This will mean that less infectious

humans will be available for susceptible mosquitoes to become infectious.

Thus, the existence of mosquitoes will not necessarily increase the rate of

malaria infection. There are many places in the world where mosquitoes

abound but has not yet recorded malaria cases. Such places include Cape
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Town in South Africa and Maryland in USA.
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CHAPTER SIX

SUMMARY, DISCUSSION, AND CONCLUSION

In this section, we put forward the summary, discussion and conclusion

Summary

Mathematically, we modeled malaria as a 5−dimensional system of

ordinary differential equations that depicted an epidemic model. We

proved the existence of two equilibria points : Disease-free (E0) and

Endemic equilibrium (Ee) points.

We calculated the basic reproductive number for malaria, using the

Next Generation Method . We defined the reproductive number to be R0,

and is epidemiologically accurate in that it provides the expected number

of new infections in humans from one infectious individual over the

duration of the infectious period given that all other members of the

population are susceptible. We showed that, assuming R0 < 1, then the

disease-free equilibrium point, is locally asymptotically stable; and if

R0 > 1 then DFE point is unstable. On the other hand the endemic

equilibrium is stable if R0 > 1 and unstable otherwise. When the value of

R0 gets larger it becomes more difficult to control the infection of the

population.
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Discussion

We derived and analyzed a mathematical model for the transmission and

spread of malaria. We have shown that the model has both a disease-free

and endemic equilibria. The disease-free equilibrium is locally and

globally

asymptotically stable, if R0 ≤ 1, and that the endemic equilibrium exist

provided R0 > 1.

Simulation of the model clearly shows that, with a proper combination of

treatment and a concerted effort aimed at prevention, malaria can be

eliminated.

In chapter three, we looked at the effect of “inoculation” on the

susceptible human class of a generic SIR model. It was observed that,

gradually increasing the “inoculation” rate, decreases the number of

infectives at an increasing. It was concluded that increasing “inoculation”

alone will wipe out the disease from the community.

In chapter five, we constructed an SIR host and SI vector model for

malaria disease which is different from the SIR model in chapter three.

For this model, inoculating the S class alone may not be necessary to

wipe the disease. In fact, an effective treatment offered to about 50% of

the infected population, together with about 50% prevention rate is all

that is required to eliminate the disease.

Among the parameters that we can control, the most sensitive

parameter is α and ρh. The parameter α was the “inoculation” rate.

Here, the aim was to reduce the total number of susceptible individuals

by way of “inoculation”. The effect was that a proportion of the

susceptible population was “removed” through “inoculation” against the

possible re-infection of the susceptible population. From the analysis, a

50% “inoculation” coupled with 50% treatment rate of the population
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reduced the incidence of malaria to the barest minimum.

In this dissertation, we have analyzed the qualitative relationship between

the control strategies and the parameters. A future goal is to

quantitatively relate the control strategies to the parameters and to

include the cost of the control strategies to directly relate the reduction in

disease prevalence and transmission to the cost involved. Other future

goals include improving the model to capture important features of

malaria and transmission that our model does not include. We list some

of these below.

• Seasonal effects: Seasonally varying environmental effects, such as

rainfall, temperature, and humidity, affect many of the important

factors in malaria transmission. These environment-dependent

parameters include the mosquito birth rate, µv, mosquito death

rates, different from birth rate. In this model we assumed the birth

and death rate to be equivalent. We can model these seasonal

effects by making some of these parameters periodic functions of

time. Analyzing this periodically-forced model, including changes in

the reproductive number and endemic states, would provide a more

accurate picture of malaria transmission than is currently obtained

from models using parameter values that are averaged over the

seasons.

• Interactions between mosquitoes and humans: Currently it assumed

that the number of bites per mosquito is fixed, while the number of

bites per human changes depending on the number of mosquitoes.

For a more accurate description of mosquito-human interaction, the
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total number of bites between mosquitoes and humans would need

to depend on the densities of both populations.

• Super-infection: Similar to other infections caused by

macroparasites, malaria displays some properties of superinfection

where reinfection when one is already infected can worsen the effects

of the disease. We can include this in our model by making the

recovery rate, γ, a function of the “inoculation” rate, α.

• Age structure: Age structure is important in the dynamics of

malaria, as most deaths occur in infants and the average

parasitemia levels of infected individuals decreases with age.

Immune response also changes with age. Adding age structure also

allows us to study the effects of the various control strategies on the

age strata of disease prevalence. We can model age structure, either

through discrete age groups or continuously through converting the

system of equations to partial differential equations.

• Finally, it should be possible to validate this model by applying it to

a smaller population, and then to a larger portion of the country,

Ghana. This will allow us to make informed decisions about the

level of intervention strategies ,“inoculation”, that provide the most

effective way of minimizing the incidence of malaria.

123




