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ABSTRACT

My motivation to embark on this project work was triggered by the academic
performance of the students in St. Joseph Senior High Secondary/Technical. The main
objectives of this study were to compare the performance of male and female students,
use principal components to determine indices for ranking the students in descending
order.

The Data used in the analysis were sourced from the students’ of St. Joseph Senior
High Secondary/Technical third term terminal examination results. Hotelling’s T-squared

test and Principal Component Analysis were the main statistical tools used in the study.

The test revealed that the males outperformed the females in the examination. The
first principal component of the unrotated component matrix, was found to be the most

suitable index that was used to determine the performance of students by ranking.
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CHAPTER ONE
INTRODUCTION
Background of the study

Academic achievement is a crucial ingredient of learning during a course
of study. It is directly related to students’ performance. Invariably, teachers are
confronted with the assessment of students’ performance from time to time or
from term to term. In higher education, the term “assessment” has taken on a
rather broad dimension. It has been defined by Rowtree (1977) as “getting to
know our students and the quality of their learning”. Ramsden ( 1992) describes it
as a way of teaching more effectively through understanding exactly what
students know and do not know. Thus, assessment enables the teacher to
understand the processes and outcomes of the student learning. It helps to
determine what students actually achieve in their study. Such meaningful
information on student learning can be useful for academic improvement.
Assessment plays a key role in determining the quality of student learning.

The performance of students varies in every subject and the academic
performance of students in school can never be the same. In effect, the obvious
variation in academic performance of students is of interest to teachers,
institutions, organizations and governments to determine and reward overall best
students with the single purpose for motivation and recognition for outstanding
academic performance. Many schools put in place an award schemes to reward

outstanding performances of their students mostly, on Speech and Prize Giving



Days. Institutions give awards for many disciplines, especially for academic
excellence among others. Universities all over the world also have various forms
of award schemes, which are awarded students that distinguish themselves for
academic excellence in various fields during graduation ceremonies. Therefore,
many governments, for instance the Ghana Government instituted an award
scheme known as the Presidential Awards. It is a yearly award given to
outstanding students who excel in Basic Education Certificate Examination
(BECE) and the May/June West African Senior Secondary Certificate
Examination (WASSCE), selected from each of the regions in the country by the
President on the eve of 6™ March, Independence Day. Other institutions such as
West African Examinations Council (WAEC) also initiated yearly awards scheme
to reward outstanding candidates in the May/June WASSCE. International
institutions like University of Cambridge International Examinations (CIE), the
world’s largest provider of international qualifications for 14 to 19 year old male
and female students, also rewards its students for academic excellence.

This research work was highly motivated by the desire of the researcher to
study the academic performance of students in St. Joseph Secondary /Technical
school. It is one of the catholic institutions established by the Marist Brothers of
the Catholic Church in 1991 in Ahwiren near Ashanti-Bekwai. It was started with
thirty (30) students; however, the school currently has an enrolment of about 500
students.

The researcher was challenged by the average performance of the students

in this school, and was motivated to determine whether there is any difference in



the performance of both male and female students. On the other hand, the
researcher was interested in identifying the overall best student in one of the
classes, using the end of the term examination scores. Many at times, we rank
students in descending order of performance to determine the overall best student
in classes. Simple methods like summing of individual scores in the various
courses and arranging them in order of magnitude from biggest to lowest are
applied manually to achieve the same goal. Nevertheless, we are highly motivated
to use principal component method, so that the scores/marks are standardized
such that a model is formulated to estimate indices for the students. The indices
can then, be used to rank every member of the class. In effect, we are going to
apply one of the multivariate methods (PCA) to analyze the data in this way and
find out the outstanding student in the class. It would have been important to
determine the overall best student by considering other areas of school life in its
entirety. The ultimate goal of the research was to determine an index from the
scores obtained by the students. Then use it to rank the students in order of
performance to come out with the overall best students in the Senior High School

(SHS) 2.

Objectives of the study
These are to:
(1) compare the performance of male and female students
(2) use principal components to determine the best index for ranking the students

in descending order



(3) identify subjects that are influential in forming the principal components

(4) determine the order of performance of students using the index

Research Questions
The study seeks to answer the following questions:
(1) Is there any difference between the performance of male and female students?
(2) Is it possible to use the students’ scores to determine an index for ranking the
students according to performance?
(3) What subjects are influential in forming the principal components?

(4) What is the order of students by performance?

Literature Review

The desire of world leaders and stakeholders in many countries
including Ghana to promote gender development and empowerment cannot be
over emphasized. Besides, the widespread belief that males do well in academic
fields than the females has been the concern of social researchers and the public.
In view of these, many studies have been conducted to find out how the females
are fairing in various fields of endeavour alongside their male counterparts.
Similar and related studies by Felson (1991) stated that the widespread belief that
males outperform females in Mathematics is apparently a myth. Besides, it was
revealed in another study that states that, Gender differences in mathematics
performance that favour males are usually attributed to gender socialization

(Boswell 1980; Brush 1980; Linn and Peterson, 1986).



It also came to light and was reported that, basically, girls are taught that they
have low aptitude for mathematics and that they will not need skills in advance
mathematics as adults (Chipman and Thomas, 1985). Halpern (1986) concluded
that, the finding that males outperformed females in tests of quantitative or
mathematics ability is robust. She stated that the differences emerge reliably
between 13 -16 years of age. Further, other researchers like Sells (1973) and
Chipman and Thomas (1985) did similar studies. An article written by Agyei and
Eyiah-Bediako (2008) which was published in the Journal for Gender and
Behaviour, was on gender differences in Mathematics performance. In this study,
it was found that there is no difference between Mathematics performance of male
and female students of the Mathematics and Statistics Department of University
of Cape Coast.

In another development, determination of overall best student is done in
many institutions across the world depending on the motivation and the goal that
is being pursued. In most schools in the United States of America (USA), Asia
and Africa, the overall best student is considered according to his or her academic
performance, behavior at home and other extra-curricular activities he or she
participates at school. West Africa Examinations Council (WAEC) instituted an
award scheme in 1984 to reward students for outstanding performance in West
African Senior Secondary Examination Certificate (WASSCE). WAEC opens this
award scheme for all students in senior secondary school for all the West African
countries that are members of the council. They award only three students who

emerge as the overall best candidate in the May/June WASSCE every year. In this



regard, several students across the member countries in West Africa have received
awards since the inception of the scheme in 1984. In 2007 West African Senior
Secondary Examination, Kwame Akoi, a medical student at Kwame Nkrumah
University of Science and Technology (KNUST) was adjudged the overall best
candidate (GNA, Friday, 5 December 2008).WAEC also moved a step further to
award the schools for producing excellent students. There are also awards for the
second and the third overall best students or candidates. The selection criteria as
outlined by Patience Ayensu, Head of the National Office at WAEC in Accra
explained that to be eligible to receive an award from WAEC, candidate must
obtain a minimum of eight grade Al. These awards are in three categories
namely, the Excellence Awards, Distinction Awards and the Merit Awards.

In line with the award scheme, an 18-year-old former student of King’s
High School, Satellite Town, Lagos, Master Maduka David Immanuel, has been
adjudged the overall best candidate with a total score of 718.43. He recorded Al
in eight subjects and A2 in Biology. Remarkably, that was the first time since
1984 when the award was initiated by WAEC that only one candidate emerged
the winner of the National Distinction Award for May/June 2008 WASSCE. This
was because unlike previous awards that attracted the three candidates in the
May/June WASSCE, Master Emmanuel was alone as other candidates did not
meet the laid down criteria for the honour (Prince Education, Feb 16, 2010).

University of Cambridge International Examinations (CIE) is the world’s
largest provider of international qualifications for students of 14 to 19 years old.

CIE is recognized internationally and provides courses, examinations and



qualifications to over 170 different countries. CIE examination results are
expressed as grades and percentages and are internationally benchmarked. CIE
also in its quest to motivate and give recognition to outstanding students initiated
an award scheme in this direction. For this purpose, the CIE in association with
the Knowledge and Human Development Authority (KHDA) in recent times
awarded the Shaikh Maktoum Bin Mohammad Bin Rashid Al Maktoum
Cambridge Outstanding Achiever Awards 2010 to two students of the Oxford
School of Dubai, one of the leading British curriculum institutions in the United
Arab Emirates (UAE). The awards which are endorsed and supported by HH
Sheikh Maktoum Bin Mohammad Bin Rashid Al Maktoum, Chairman of the
Dubai Technology and Media Free Zone were awarded in recognition of the
students academic excellence in year 2009. The two students of The Oxford
School, Tanvir Sajed and Syed Zeyd Abduraman at the AS Level were awarded in
recognition of their outstanding performance in the Examinations held in 2009.
Both Students had four As in their Science subjects, Biology, Chemistry, Physics
and Mathematics.

Another prominent award is Sir John Monash Medal for Outstanding
Achievement. This award is awarded to a student who has completed the
academic requirements for the degree of Bachelor of Law in 2009 and is eligible
to graduate and is adjudged to have an excellent academic record and to have
demonstrated a significant commitment while at Monash to advancing the
University’s goal of social justice, human rights and a sustainable environment.

The medal was first awarded in 2009, to a student who completed in 2008. Hugh



Evans was the first winner of the medal for the year 2008-09
(www.law.monash.edu/prize/sir-joh-monash).

Assessment of students is an integral part of education, teaching and
learning. It plays a very important role in the academic performance of students. It
enables the teacher to assess his or her methods of teaching, by taking stock of his
interactions with the class, effective communication, efficient use of instructional
time, handling of students challenges appropriately and reinforcement of skills
taught among others. Students are able to identify their weaknesses and their

strengths through assessment.

Data

The subjects taken in the examination by the students were Integrated
Science, Core Mathematics, English Language, Economics, Elective
Mathematics, Government, Geography and Frecnh and constituted the variables
for the study. Where, Integrated Science, Core Mathematics and English
Language and then Economics, Elective Mathematics, Government, Geography
and Frecnh constituted the core and elective subjects respectively for the class.
Principal component analysis technique is appropriate for analyzing the data,
since the measurements obtained on these variables for each student in the class,
constitute multivariate data. The PCA therefore, can provide an index for ranking
the students. The data were obtained from third term terminal report of 2008/09

academic year, for 47 SHS General Arts 2A students’ of St. Joseph



Secondary/Technical School. This was made up of the actual scores for 28 male

and 19 female students.

Outline of study

In this study, Chapter One dwells on the background, objectives,
research questions, and the literature review of the study and then the variables
used in the analysis. Chapter Two reviews the methods applied in the study such
as Hotelling’s T- squared and Principal Component Analysis. Chapter Three also
dwells on preliminary analysis, which mainly outlines the descriptive statistics of
the data. Chapter Tour dwells on further analysis of the data in which advance
techniques reviewed in Chapter Two were employed. Finally, Chapter Five

captured the summary, discussion and conclusions of the study.



CHAPTER TWO
REVIEW OF METHODS

Introduction

We are interested in analyzing whether there is significant difference
between academic performance of both male and female students using
Hotelling’s T-squared test. For this purpose, the Hotelling’s T-squared test is
briefly reviewed. Besides, the concept of basic theory and methods of principal
component analysis which is the main technique used in this research is also

reviewed in this Chapter.

Hotelling’s T- squared

Hotelling’s T-squared is a statistic for testing the equality of vector means
from two multivariate populations. It is an analogue of the univariate student’s t-
test. For a random sample of size nydrawn from population 1 and a sample of

size n, drawn from population 2, the observations on p- variables can be arranged

as:
Population 1 Population 2
X1 X21 o Xp X11 X21 - Xp1
X2 X2 - sz X112 Xz2 - sz (2.1)
X1n, Xon, Xpny X1n, Xom, Xpn,
where Xq1, X12,-, X1n,» X221, X22,°, Xan,, - are  observations

involved in variables 1, 2,-+- ,p respectively for population 1 and X1, Xjq2,°*",
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Xiny X210 X22,°+, Xap,, -+ are observations in variables 1, 2,- ,p
respectively for population 2.

In comparison of vector means of the two populations using the
Hotelling’s T-squared, these assumptions must be followed; both populations are
independent, multivariate normally distributed with means p; and p, and
variance-covariance X, and X, respectively. There are two types of this test and
each is used depending on first, when the variance-covariances are equal and the
second is when the variance-covariances are not equal. However, for the purpose
of this study, the researcher has chosen to use the test for the unequal variance-
covariance matrix, since the population involved in the study has two variance-
covariance that are not equal.

Thus, for unequal £; and X, the test statistic is given as:

T?=[(X1 — X3) - (01 — m2)]'[( ni51 +L52)]_1[()_(1 —X3) - (1 —H2)]

1 2

(2.2)

.. . . n—1 . .
This is distributed as T? = (n—Dp F _,, .The sample variance-covariance can
p) P, mp p

(n—-p)

be calculated using:

-1
-1

A) Z?:i1(Xij - X )X;—X,)'

(2.3)
Hypothesis Test

We can test the hypothesis,

11



H, : there is no difference between the vector means of the populations 1 and 2
(i.e. uq — pp = 0) against the alternative hypothesis,

H: There is a difference between the vector mean of the populations 1 and 2

( ie. Hi1— Uy F 0)

Principal Component Analysis

PCA is one of the techniques used widely with large multidimensional
data sets. Its use allows reduction in the number of variables in multivariate data,
whilst retaining as much as possible the variation present in the data set. It is
concerned with explaining the variance-covariance structure through a few linear
combinations of the original variables. The formation of the maximum number of
new variables is equal to the number of correlated original variables; nevertheless,
the new variables are uncorrelated among themselves. Hence, PCA is most useful
if one simply wants to reduce relatively large number of variables into a smaller
set of variables that captures the same or the original information (Sharma, 1996).
The results of a PCA are usually discussed in terms of component scores and

loadings (Shaw, 2003)

Objectives of Principal Component Analysis
The objective of PCA is to determine a new set of orthogonal axes such that:
1. The coordinates of the observations with respect to each of the axes give the

values for the new variables. The new axes or variables are called principal

12



components and the values of  the new variables are called principal
component scores.

2. Each new variable is a linear combination of the original variables.

3. The first new variable (PC;) accounts for the maximum variability or
variance in the data.

4. The second new variable (PC,) that is formed is such that its variance is the
maximum amount of the remaining variance, which is orthogonal to the first
principal component.

5. The P""new variable is such that its variance is the maximum amount of the
remaining variance that is orthogonal to p-1 variables.

6. The p new variables are uncorrelated.

Concept of Principal Component Analysis

Principal component analysis entails a mathematical procedure that leads
to the transformation of p-correlated variables into a set of p-new orthogonal or
uncorrelated variables. Each principal component is a weighted linear
combination of the original variables.
Mathematically, Consider the original random vector X’ = (X1, X5, X3, ..., Xp)'
with the variance-covariance matrix 2 with eigenvalues 44,45, 43,...4, = 0. If
we let the variables Y1,Y,, Y3, ..., ¥, represent the linear combination of the
original variables X7, X3, X3,--+, X,

Then,

Y1: a11X1+a12X2 + a13X3 + -+ a,lep

13



Y

2)

3)

YZZ a21X1+a22X2 + a23X3 + -+ aszp

(2.4)

Yy=a,1X1tayX; + ay3Xz + -+ ap, X,
where a;; is the weight of the j™ (j = 1,2,---p) variable for the i**(i =1,2,:--,p)
principal component. In matrix notation, this can be written as ¥;= a'X.
The weights are estimated such that,
The first principal component accounts for the maximum variability of the
p —variables of any linear combination of the data set; the second principal
component that is formed is such that its variance is the maximum amount of the
remaining variance that is orthogonal to the first principal component. It follows
that each succeeding component accounts for as much variance that has not been
accounted for by the preceding components.
Generally, the p™ principal component accounts for the maximum
variability that the first p-1 components do not accounted for.
The sum of squares of the weights is equal to one.
Thus,
ajtap+ +aj,=1 (i=1,2,p) and (2.5)
The sum of the products of the weights of the j®™* variable and it* principal
component is zero:
apaj; + apap; + o tapag, = 0 (for all i # )

(2.6)

14



These three conditions bring about maximization problem requiring an
eigenanalysis of the variance-covariance structure. This is attainable by

examining the eigenstructure of the covariance-matrix.

Analysis of the Eigenstructure of the Covariance-Matrix.

Let X be a p-component random vector where p is the number of
variables. The covariance matrix, 2, is given by E(XX").

Let y= (V1,¥V2-¥p) be a vector of weights to form the linear
combination of the original variables, and y =y’ X be the new variable, which is a
linear combination of the original
The variance of the new variable is given by the E(yy’) and is equal to
E(y' XX'y) or y'2y. The problem now reduces to determining the weight vector,
Y, such that the variance, y' 2 of the new variable is maximum over the class of
linear combinations that can be formed subject to v r=1

To maximize, the problem solution is obtained as follows:
Let Z=y'2y—-Ay'y-1) 2.7)

where A is the Lagrange’s multiplier.

The p-component vector of the partial derivative is given by

z _ 23y 24y (2.8)
oy

setting the above vector of partial derivative to zero results in the final solution

(Z-AD) y=0 (2.9)

15



In order to ensure that the system of homogeneous equations have a
nontrivial solution, the determinant of (X' — A ) ¥ should be zero. Thus,

| z-a1|=0 (2.10)

Equation 2.7 is a polynomial in A of order p, and therefore has p- roots. Let 44

= Ay =...2 Ay be the p- roots. That is Equation. 2.7 results in p values for 4, and

each value are called the eigenvalue or the root of the 2 matrix. Each value of A is

a result of set of weights or loadings given by the p-component vector Y by

solving the follow equations:

(2111, =0 (2.11)
subject to
y'y=1 (2.12)

hence, the first eigenvector, y; corresponding to the first eigenvalue, y4, is

obtained by solving equations

(2=A411) ¥1=0
(2.13)
subject to
Y1¥1=!1
(2.14)

Pre-multiplying Equation. 2.11 by y4 gives
Y1 (24D =0

149 =M Y1Y1

16



(2.15)

Y12v1 =4, since y1y1=1

Hence, the left hand side of Equation 2.15 is the variance of the new variable, y4
and is equal to the eigenvalue 4;. The first principal component is, therefore,
given by the eigenvector, y,, corresponding to the largest eigenvalue, ;.

Let y, be the second p-component vector of weights to form another linear
combination. The next linear combination can be found such that the variability of
72X is the maximum variance subject to j =0 and y3 y,=1. It can be
illustrated that y, is the eigenvector of A, the second largest eigenvalue of X
Similarly, it can be shown that the remaining principal components, y3, 74,...,
¥ p» are the eigenvectors corresponding to eigenvalues, A3, A4,...,4,, of the matrix
2. Thus, the problem of finding the weights reduces to finding the eigenstructure
of the covariance matrix. The eigenvectors give the vectors of weights and the
eigenvalues represent the variances of the new variables or the principal

component scores.

Conditions under which Principal Component Analysis is Applicable
Correlation

With PCA, there is the need for critical examination of correlations, but, not
necessarily the means for a set of variables. The acceptable correlation between
two or more variables could be greater than or equal to 0.30 within variables of
the same dimension. Correlation among variables from different dimensions

should be close to zero, if dimensions are expected to be orthogonal

17



(uncorrelated) though some nonzero correlations are acceptable, particularly with
dimensions that are expected to be oblique (correlated).

Although, the issue of collinearity is not as much a problem as with other
methods, it still needs to be investigated. Variables within the same dimension are
often seen as similar ways of expressing the correlation in the same dimension
and thus can exhibit substantial correlation (for example, between (0.30-0.90).
Nevertheless, if correlation exceeds 0.90, there could be problems associated with
collinearity (i.e. instability of the weights or loadings). Should collinearity be
suspected, then there is the need to consider collapsing the two variables involved
into an average, summed composite, or even dropping one of the variables.

As regards most multivariate methods, it is vital to have access to a large
data matrix with continuous variables. Unlike many methods, there will be less
emphasis on meeting statistical assumptions, particularly when making
descriptive summaries of the data. Certainly, interferences beyond a specific
sample would be strengthened when meeting linear model assumptions (that is
normality and linearity) in large and relevant sample, (Harlow, 2005). A number
of assumptions such as normality, independence and linearity limit the
applicability of PCA. Hence, the data set must meet these assumptions for PCA to

be strictly applicable (Gorsuch, 1983).

Normality
Principal component analysis assumes that the underlying structure of the

data is multivariate normal. Geometrically, a multivariate normal distribution

18



exists when the data cloud is hyper ellipsoidal with normality varying density
around the centroid. Such a distribution exists when each of the original variables
has a normal distribution about fixed value on all others. For this reason, we test
for normality of each original variable to detect whether the data set is
multivariate normal. Though multivariate normality implies univariate normality;
the reverse is not always factual. Therefore, to detect multivariate normality
appropriately, there is the need to test for the normality of each principal
component. Besides, normally distributed principal component scores do not

guarantee a multivariate normal distribution.

Independence

The independent random sample and the effect of outliers is also a vital
condition that needs to be met. In PCA, it is assumed that the random observation
vectors have been drawn independently from a p-dimensional multivariate normal
population. To ensure independence, consideration needs to be given to it in the
design of the study because there is no perfect means of determining whether a
data set is independent. We can achieve this by constructing a univariate stem and
leave, box and normal probability plots for each variable and checking for
suspected outliers. Outliers in most cases exert unexpected pull on the direction of
the component axes and therefore affect the efficacy of the ordination. However,
it is extremely necessary to distinguish between extreme observations and
outliers. Subsequently, we must take caution in discarding suspected points, so

that there is no substantial loss of information.
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Linearity

Lastly, PCA assumes that variables change linearly along underlying
gradients and that linear relationship exists among variables such that the
variables can be combined in a linear fashion to create principal components,
(Johnson, 1981and Gorsuch, 1983).

Conveniently, statistical packages such as SPSS have provided for tests
that are used to check whether a data set meets the above assumptions. The
Kaiser-Mayer-Oklin (KMO), test and Bartlett’s test of sphericity are both test of
multivariate normality and sampling adequacy.

KMO tests is a measure of whether or not the distribution of values is
adequate for conducting principal component analysis. It indicates levels of
values with their respective interpretations or recommendations as follows; a
measure greater than or equal to 0.90 is marvelous, a measure of 0.80+ is
meritorious, a measure of 0.70+ is middling, a measure of 0.60+ is mediocre, a
value less than or equal to 0.50 is miserable. The Bartlett test on the other hand
measures the multivariate normality of the set of distributions. Besides, it tests for
the linearity in the data set by checking whether the correlation matrix is an
identity matrix. A value significantly less than 0.50 is an indication that the data
set does not produce an identity matrix and is thus approximately multivariate

normal, and is acceptable for PCA.

20



Principal Component as an Index

PCA is extensively used as dimensional reduction technique because it
enables us to represent a p-dimensional data set in a lower dimensional space,
where m < p. It follows that the first few components may still be sufficient to
represent most of the information in the original data.

Most principal components are interpretable, especially the first few
ones. The first principal component, for instance, is in most cases the weighted
sum of the original variables. Thus, given that this component accounts for a
reasonably large proportion of the variability in the data, then it can be used as an
index. To use the principal component as an index requires the determination of
principal components scores and the factor loadings.

Analytically, the first principal component score for the first set of
observations is the value obtained by substituting into the equation Y;=aq1xq +
A12X7 +...+aypX,, the estimated weights and values of the first observations on
the p original variables.

Similarly, the first principal component scores for the second set of
observations is the value obtained by substituting into the equation

Y= az1x1 + azx; +...+ay,x,,
the estimated weights and values of the first observation on the original variables
and so on. The remaining principal components scores are similarly obtained.

Factor loadings measure the simple correlation between the original and
the new variables. They give an indication of the extent to which the original

variables are influential or important in forming new variables. The higher the
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loading the more influential the variable is in forming the principal component

score (or in this case the index) and vice versa. The loadings are given by
L.=2% [
ij — 5; i,

where l;; is the loading of the jt* variable for the i*® principal component, a;;j is
the weight of the j®* variable for the i** principal component, /; is the eigen
value or variance of the i*" principal component and §]- is the standard deviation

of the j* variable. Statistical packages such as SPSS, SAS and Minitab are
available for wuse to perform principal component analysis, including

determination of scores and loadings.

Deciding on the Number of Principal Components to use

The percentage of variance in the variables that is accounted for by the
components is useful index for assessing the variability of the components. Since
the dimensions might not be expected to explain all the variation and covariation
among the variables, it is reasonable that the dimensions account for at least 50%.
We get an indication of the proportion of variation explained by the dimension by
forming a ratio of an eigenvalue over the sum of all the eigenvalues.

The number of eigenvalues greater than 1.0 is often used as an upper
bound estimate on the number of underlying components in PCA. Guttmann
(1954) and Kaiser (1970) advocated suitable method that helps in deciding on the
correct number of dimensions, but the true number may well be less than this. The
rationale was that the variance of a single, standardized variable would be 1.0. If

an underlying dimension were to be worth examining, then it needs to have at
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least the same amount of variance as a single variable, nevertheless, ideally it
should have much more variance.

Deciding on the number of PCs to be used depends largely on: the
proportion of variance accounted for. The decision of enough variation explained

k o
by few PCs is subjective. Ideally, if % > 80 then it could be satisfactory.

=17
However, this may depend on the experimental requirement.

Another method of assessing the number of dimensions (PCs) is to
examine the eigenvalues whenever they appear to be dropping off to a trivial and
inconsequential size. In a scree graph, a plot of the number of components are on
the x-axis and the values of the eigenvalues on the y-axis. The point at or before
the elbow in a scree plot provides another estimation as to the number of
underlying dimensions to use. Although this technique in most cases may lead to
the inclusion of too many components compared with for example Kaiser

Criterion, the scree graph or plot is often practical for data exploration.

Interpretation of Principal Component

PCA dwells much on the weight attached to specific variables. The
loading or structure coefficient is the most interpretable component. We rotate
component loadings in order to increase the interpretability, eliminate cases of
bipolar factors, remove negative loadings and make the sizes of the negative
loadings negligible of the dimensions (PCs). Several rotation procedures are
available but the most common ones are Varimax and Quartimax. The major

objective of Varimax rotation is to have a factor structure in which each variable
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loads highly on one and only one factor. This means that a given variable should
have high loadings on one factor and near zero loadings on the other factors.
Varimax rotation destroys or suppresses the general factor and should be used
when the presence of general factor is suspected

In addition, the major objective of the Quartimax rotation technique is to
obtain a pattern of loading such that: (1) all the variables have a high loading on
one factor. (2) Each variable should have a high loading on one other factor and
near zero loadings on the remaining factors. Even though most computers use the
varimax orthogonal rotation as a default option, yet it is essential to consider an
oblique rotation, if we expect the dimensions to be related. In either case, we
usually strive to rotate the weights so that each dimension has several variables
that load highly with the remaining variable loading close to zero. This kind of
partten is referred to as “Simple Structure” (Thurstone, 1985).

The loadings range between -1 to +1 irrespective of the structure used. It
reveals how correlated a variable is with an underlying dimension (component).
In PCAs, the same criterion is used as with other methods that rely on loadings;
variables with loadings of 0.30 or greater are interpreted as having a meaningful
impact on overall dimension. However, this is subjective to what goal one seeks
to achieve. In trying to describe the nature of each dimension, it is worth noting
the kind of variables that highly load on the component.

As regards other methods that focus on weights, the sign appended to
the loading provide information about the nature of the relationship. A positive

value indicates that a variable is very similar to the underlying dimension,
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whereas a negative loading connotes the higher score on the dimension on which
the variables loads. There are several guidelines in evaluating the variables, thus,
those with loading greater than or equal to 0.30 would be retained as marker
variables for a dimension. Also, variables loading less than 0.30 on all dimensions
could be ignored.

This would certainly mean that the variables do not have enough in
common with other variables. In fact, variables with loadings greater than or
equal to 0.30 on more than one dimension would be classified as complex
variables. Since it would not be clear as to which dimension the variable might be

describing, the complex variable would be discarded.
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CHAPTER THREE

PRELIMINARY ANALYSIS

Introduction

This chapter and the next present the analysis of the data. This chapter
dwells on the preliminary analysis, which mainly outline the descriptive statistics
of the data. The second part dwels on further analysis of the data in which
advanced techniques are applied to determine the overall best student and to find

out if differences exist between the performance of male and female students.

Descriptive Statistics
Table 3.1 shows the Age Distribution of the Students who took part in
the examination.

Table 3.1: Age frequency distribution of students

Ages (x) Frequency(f) Percent
17 7 14.89

18 14 29.79

19 18 38.30

20 5 10.63

21 3 4.26

22 1 3.13
Total 47 100
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There are 47 students who took part in the examination, which is made
up of 28 males and 19 females. This represented 59.6% for the males and 40.4%
for the females.

From Table 3.1, it can be seen that the minimum and the maximum
ages of the students are 17 and 22 respectively. The range of their ages is 5
indicating the age difference between the oldest and the youngest student. The
mean age of the students is 19 years. The modal age of the distribution is 19. This
indicates that students of 19 years of age constitute the majority in the class with
the highest percentage of about 38. Those of 18 years of age were the second
highest constituting about 30%. The highest age 22, recorded just about 2% of the
distribution.

Table 3.2 shows the overall mean score and the mean scores for the

males and the females by subjects respectively.

Table 3.2: The Mean Scores for Males and Females in the Examination

Subject Male (X 1) Female (E'z )
English Language 46.857 51.895
Core Mathematics 59.857 60.105
Integrated Science 56.750 57.000
ICT 49.893 53.579
French 45.571 42.579
Geography 51.321 40.947
Government 60.964 52.842
Economics 51.250 46.053
Mathematics 52.179 51.053
Grand Mean X,= 52738 A5250.673
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From Table 3.2, it can be observed that the females out-performed the
males in English Language with the mean score of about 52 to that of males of
about 47. Interestingly, the mean score for the females in Core Mathematics,
Integrated Science and Information and Communication Technology (ICT) are all
slightly higher than that of the males. It can be seen that the females performed
better than their male counterparts in this subjects. However, comparing the mean
scores of French, Geography, Government, Economics and Elective Mathematics
for the males and that of the females, it can be seen that the males did better in
these subjects than the females. When the overall mean score of about 53 is
compared to that of the females of about 51. We can realize that the males
performed better than the females in the examination.

These comparisons did not give us enough evidence to draw a valid
conclusion that there is difference between the performances of both sexes. In
view of these, it is necessary to go further to find whether there exist any
significant difference between the performances of both males and females. In
this case, the appropriate test to be used is the Hotelling’s T-squared test, since
there are two groups involved in the study. This will be done in Chapter Four.

Table 3.3 shows a brief descriptive statistics of the data set of scores
obtained by students. It consists of the mean score, median score, mode, minimum

score, maximum score, and standard deviation.
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Subjects Mean Median  Mode Min. Max. Std.Dev.

Englang 48.894 51 52 18 74 10.797
CMaths 59.957 61 55 38 82 9.374

Intsc 56.851 57 56 17 77 10.960
Ict 51.383 50 40 25 73 11.850
French 44362 43 38 18 71 12.737
Geog 47.128 47 40 20 78 13.074
Govt 57.681 56 67 21 88 17.105
Econs 49.149 49 50 15 83 14.430
EMaths 51.723 52 48 28 73 9.675

Table 3.3: Descriptive Statistics of scores obtained in the examination

It can be observed from Table 3.3, that the mean score for English
language is around 49. The mean scores for Core Mathematics, Integrated
Science, ICT, French, Geography, Government, Economics and Elective
Mathematics are about 60, 57, 51, 44, 47, 58, 49 and 52 respectively. Relatively,

it can be observed that students did better in Core Mathematics, which has the
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highest mean score. Economics was found to have the smallest minimum score
whereas Core Mathematics has the highest minmum score with the smallest
standard deviation as compared to other subjects. It can also be seen from the
table that the mean score for French was the smallest with quite higher standard
deviation indicating that students’ performance was not too good. Government
has the highest modal score of 67 with the minimum and maximum scores of 21

and 88 respectively.

Comparing English Language and French, it can be observed from the
table that the mean score of English is relatively higher than that of French. The
median score, which divided the whole set of scores for English into two halves is
also relatively higher than the median for French. Similarly, the standard
deviation of the two courses indicated that the students did better in English than
they did in French. The performance of students in both Core Mathematics and
Elective Mathematics indicated that students mean score of the former is higher
than that of the latter. This means that the students did better in the Core
Mathematics than in Elective Mathematics. The median, mode and the standard
deviation of the two courses suggest that the performance of students in the Core
Mathematics is relatively better than in Elective Mathematics.

Furthermore, if we consider the performance of the students in the
courses offered under the sciences like Integrated Science, Core Mathematics,
Information and Communication Technology (ICT) and Elective Mathematics, it
can be realized that the mean scores for all of them were within the range 51-60.

This indicated that the students did relatively well in the sciences as compared to

30



the Social sciences like Economics, Geography and Government which have
their means within the range 47-58. So also is the mean scores of the Languages
(English and French) were within the range 44-49. This is supported by the value
of their standard deviations; this is because the Sciences recorded the highest

range of the mean scores as compared to the Social Sciences and the Languages.

Distribution of Scores in Percentages (%) in each Subject

In this section, we discuss the data using histogram to assess whether the
data set of each subject meet the condition of normality. Since principal
component analysis assumes that, the underlying structure of the data is
multivariate normal.

Figure 3.1, is a histogram of English Language scores in percentages (%)
obtained by students in the examination. The y-axis shows the number of students
possessing the range of the scores listed on the x-axis (frequency) whereas the x-

axis shows the range of the scores or the marks in percentages.

31



12

[Ekewness =-0.614
[Eid. Dev.=10.787

1077

Frequency
1
\
.--'"/
/

. y \

20 40 &0 &0
Marks

Figure3.1: Distribution of scores in English Language

From Fig. 3.1, it can be observed that there are two scores that appeared to
be a bit away to the left and another one to the right. In this case the median
mark can be estimated to be around 51%, indicating that relatively half of the
students scored marks less than or equal to 51%. The graph also shows that the
highest peak was around 50%. This indicates that more students have marks
around 50% in the examination. The standard deviation of the distribution is
around 11. This implies that the individual marks are relatively wide spread
around the center (mean). From the graph, it can again be seen that the scores
are not normally distributed. Therefore, the curve of the distribution is
asymmetrical and negatively skewed. This can be supported by the coefficient

of skewness (-0.618).
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Figure 3.2, is a histogram of Core Mathematics scores in percentages (%)

obtained by students in the examination.
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Figure 3.2: Distribution of scores in Core Mathematics

From Fig. 3.2, it can be observed that there was an observation or a
score, which is quite large but not quite close to the majority of the scores in the
distribution. The graph of the distribution shows that the highest peak is around
55%. This represents the modal mark for the distribution indicating that more
students have scores around 55%. It can be seen from the graph that the median
mark of the distribution is around 60%. This means that about half of the
students have marks less than or equal to 60%. The distribution has a standard
deviation of around 9. This indicates that the individual marks are relatively
closely spread around the mean score of the data set. It can be deduced from the

graph, that the marks are approximately normally distributed. However, the
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coefficient of skewness (-0.014) indicated on the graph is quite close to zero.

Therefore, the curve of the distribution is approximately normal.

Figure 3.3, is a histogram showing the distribution of the marks obtained

in Integrated Science.
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Figure 3.3: Distribution of scores in Integrated Science.

From Figure 3.3, it can be seen that there was an observation or a score
which is at a distance from the rest of the scores. This extreme observation or
score can be described as an outlier. The distribution of the scores shows that
more students have scores between 55% and 60%. The standard deviation
indicates that the individual marks are relatively wide spread around the mean of
the data set. The curve of the distribution indicates that the scores are not
normally distributed. Therefore, the distribution is negatively skewed. This can
be supported by the value of coefficient of skewness (-0.918).
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Figure 3.4, is a histogram depicting the distribution of the marks obtained

by students in ICT.
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Figure 3.4: Distribution of scores in ICT

From Figure 3.4, it can be seen from the graph that the distribution shows
the highest peak to be around 40%. The standard deviation of the distribution is
about 13. This means that the individual scores are relatively wide spread around
the mean of the data set. The curve of the distribution, indicates that the scores are
not normally distributed. Therefore, the distribution is negatively skewed. This

can be supported by the value of coefficient of skewness (-0.093).
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Figure 3.5, is a histogram that depicts the distribution of the marks

obtained by students in French.
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Figure 3.5: Distribution of scores in French

From Fig.3.5, it can be observed that the graph shows the highest peak of
the distribution to be around 35%. This indicates that more students have marks
around 35% representing the modal score in the examination. The standard
deviation of the distribution of the scores is around 13. This shows that the scores
are relatively wide spread around the center of the data set. A critical look at the
curve of the distribution revealed that the scores are not normally distributed.
Hence, the distribution is positively skewed. This can be supported by the value

of coefficient of skewness (0.057).
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Figure 3.6, is a histogram showing the distribution of marks obtained by
students in

Geography.
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Figure 3.6: Distribution of scores in Geography

From Fig.3.6, it can be observed that one of the observations in the
distribution is quite at a distance to the right side from the others. It appears to
be the largest score, and unusual. The graph shows that the highest peak of the
distribution is around 45%. This indicates that a lot more of the students have
marks around 45%, which represents the modal mark. The distribution has a
standard deviation to be around 13. This indicates that the scores were quite
scattered. It can be realized from the graph that about 50% of the students have

marks less than or equal to 47%. The curve of the distribution indicates that the
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scores are not normally distributed. Therefore, the distribution is positively

skewed. This can be supported by the coefficient of skewness (0.015).

Figure 3.7, is a histogram showing the distribution of marks obtained by

students in Government.
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Figure 3.7: Distribution of scores in Government.

From Fig.3.7, it can be observed that equal number of students have
marks between 40% and 60%. The standard deviation of the distribution is
relatively high around 17. This indicates that the scores were quite scattered.

From the graph, about 50% of the students have marks very close to 60%. The
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curve of the distribution shows that the scores are not normally distributed. It is

negatively skewed.

Figure 3.8, is a histogram, which shows the distribution of marks obtained

by the students in Economics.
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Figure 3.8: Distribution of scores in btained Economics.

From Fig. 3.8, it can be observed that there is equal number of students
that have scores between 40% and 60%. It can be realized that the median mark
of the distribution is around 60%. This implies that about 50% of the students
have scores less than or equal to 60%. Further, the standard deviation of the
distribution is relatively high around 14. This indicates that the scores were

relatively quite scattered. The curve of the distribution is approximately normal.
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This can be supported by the value of the coefficient of skewness, which is close

to zero (-0.009).

Figure 3.9, is a histogram showing the distribution of marks obtained by the

students in Elective Mathematics.
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Figure 3.9: Distribution of scores in Elective Mathematics.

From Fig. 3.9, it can be seen that the highest peak of the distribution is
around 48 %. This implies that more of the students have marks around 48%. The
standard deviation of the distribution is around 10. This indicates that the
individual scores are relatively closely scattered. Further, the curve of

thedistribution indicates that the scores were not normally distributed. It is
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negatively skewed. The value of the coefficient of skewness (-0.279) supports

this.

Correlation Analysis

Table 3.4 is a correlation matrix showing the degree of association
between a pair of courses. The courses involved are English Language, Core

Mathematics, Integrated Science,

Information and Communication Technology (ICT), French, Geography,
Government, Economics and Elective Mathematics. Marks obtained by students

in the various courses are used in running the correlation coefficients.

Table 3.4: Correlation Matrix of marks obtained by Students

Var. Englis CMat IntSc. ICT Frenc Geo Gov Eco EMat

Englis 1

ICMat  0.44 1

tIntSc.  0.63 0.38 1

ICT 0.52 0.31 039 1

drenc  0.53 0.17 0.63 045 1

45eog.  0.33 0.44 0.52 033 0.53 1

foovt.  0.52 0.40 0.55 0.50 0.53 0.61 1
Econs. 0.59 0.46 0.64 0.50 0.62 027 0.73 1

EMat  0.42 0.89 047 042 0.35 0.50 048 053 1
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It can be observed from Table 3.4, that there is a strong relationship between
Core Mathematics and Elective Mathematics since the two subjects have a high
correlation coefficient of 0.888. This implies that a very good performance in
one can relatively reflect very good performance in the other. The correlation
coefficient for Economics and Government is 0.734, which is relatively high. It
indicates that there is a strong relationship between them. The coefficient for
French and Elective Mathematics is 0.174, which is the lowest. It indicates that
there is weak relationship between the two. It can be observed from the table
that the association between the science courses like Integrated Science,
Elective Mathematics, ICT and Core Mathematics is relatively weak since
majority of their correlation coefficients are below 0.5. However, there is a
strong association between the social science courses like Economics,
Geography and Government. Further, it can be estimated that about 60% of the
correlation coefficients are around 0.5, which is quite significant and acceptable.
This indicates that the necessary condition for the principal component analysis,

a linear dependence, appears to have been adequately met.

Table 3.5 indicates the KMO and Bartlett's Test for multivariate

normality and sampling adequacy.

Table 3.5: KMO and Bartlett's Test

Kaiser-Meyer-Olkin Measure of Sampling Adequacy. 0.801183005
Bartlett's Test of Sphericity ~Approx. Chi-Square 259.9485964
Df 36
Sig. 9.94716E-36
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From Table 3.5 we can observe that the KMO measures about 0.80,
which indicates that the distribution of the values is adequate for conducting the
PCA and can be labeled meritorious. This also indicates that the set of
distributions is approximately multivariate normal and linear since the data set

does not produce an identity matrix.

Eigen Analysis

Figure 3.10 is a scree plot indicating the number of principal
components that can be used for the analysis. The vertical axis is represented by

the eigenvalue and horizontal axis by the component number.

Scree Plot
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Figure 3.10: Plot of Principal Components against Eigenvalues of the scores.

It can be observed from Fig.3.10, that the elbow of the scree plot has

indicated that two principal components are feasible or could be used in the
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analysis. These two PCs are enough to explain the variation in the data. This can
be supported by the percentage of the cumulative total variability of about 69%,

which is explained by the two PCs. This is shown in Table 4.1 on next page.

Table 3.6 shows the initial eigenvalues for the nine components
corresponding to the number of subjects that are used in the study. It consists of
the component number, total amount of variation explained by each of the
components, the percentage of the variation explained by each component, and

cumulative percentage of variation.

Table 3.6: Total variance explained by the principal components

Initial Eigenvalues

Component Eigenvalue % of Cumulative
Variance %
1 5.022 55.796 55.796
2 1.202 13.351 69.147
3 0.790 8.774 77.921
4 0.628 6.976 84.897
5 0.445 4.946 89.843
6 0.307 3.416 93.259
7 0.293 3.260 96.519
8 0.241 2.673 99.192
9 0.073 0.808 100.000
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From Table 3.6, we can observe that first and the second principal
components have eigenvalues respectively exceeding 1. The percentage of
variance accounted for by the first component is 55.796, which is quite high.
Thus, PC1 alone explains more than half of the total variation in the data.
Further, the second component explained 13.351% of the total variation in the
data. On this score, the two components explained quite a significant percentage
of about 69 of the total variation. This revelation supported that of the scree plot

in Figure 3.10.
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CHAPTER FOUR

FURTHER ANALYSIS

Introduction

The previous chapter dealt with the exploratory analysis of the data. It was
noted that the scores obtained by the students in the various courses vary from
student to student. Similarly, it was found that there is variability in the
performance of both males and females. This was revealed in the analysis of their
mean scores. Nevertheless, these observations do not provide us with enough
evidence to determine the differences in the performance between the male and
female students in the class as well as the overall best student for an award. For
these issues to be comprehensively addressed, we conducted T-squared test to
find whether differences exist in the performance between both males and
females. Subsequently, the data were subjected to further analysis using principal

components in effects to determine the best index for identifying the best student.

As mentioned in Chapter Two, Hotelling’s T-squared test statistics is used
to find whether there is significant difference between vector means of two
populations. The principal component analysis technique is used to determine an
appropriate index that can be used to rank the students performance. The
statistical software used in dealing with the Hotelling’s T-squared is the

MINITAB and that of the principal component was the SPSS.
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Analysis of Data

The data is subjected to further analysis in order to draw the necessary

inferences.

Test for Differences in Performance of Male and Female Students

We realized that the variance-covariance of the two samples are not equal,
hence the Hotelling’s T-squared test appears to be appropriate for unequal

variances.

Testing whether or not the mean marks of the males are the same as that
of the females is equivalent to conducting a Hotelling’s test, therefore the

hypotheses of interest are:

H,: There is no difference between the marks of males and females.

H;: There is difference between the marks of males and females.

We obtained the vector means for males and females as

746.857 ) Ce1ass )
59.857 60.105
56.750 57.000
49.893 53579
. 45.571 5. _ | 42579
1 51.321 2 40.947
60.964 52.842

51.250 whess Xl; is the mean score for males and X, is the mear
(52.179 51053

47



and the variance-covariance matrix for males and is

\

(119.1

45.5
76.3
67.9
75.2
47.1
97.1
93.6
44.7

45.5
88.0
40.0
34.1
23.0
532
64.2
61.9
80.8

76.3
39.1
122.8
51.3
89.9
75.4
104.7
103.6
51.1

67.9
34.1
51.3
143.3
89.9
52.0
102.5
86.3
48.4

75.0
23.0
90.0
90.0
164.0
91.0
119.0
118.0
46.0

47.1
53.2
75.4
52.0
91.1
174.0
140.0
125.0
63.3

and then variance-covariance matrix for females is

(843
26.5
44.5
55.5
76.3
59.0
60.6
71.2
37.2

26.5
79.0
33.9
46.1
21.9
54.8
51.5
60.7
75.4

44.5
33.9
88.2
543
73.7
54.8
82.1
68.8
46.1

55.5
46.1
543
194.0
84.9
79.1
135.0
135.0
76.3

76.3
21.9
73.7
84.9
171.2
82.0
18.8
115.1
53.1

59.0
54.8
54.8
79.1
82.0
116.9
09.3
84.8
57.8
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109.0
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97.1
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105.0
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140.0

298.0

184.0

80.5

71.2
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68.8
134.9
115.1
84.8
111.4
164.1
83.3

93.6
61.9
104.0
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118.0
125.0
184.0
212.0
74.5

37.2
75.4
46.1
76.3
53.1
57.8
81.8
8.3

92'9)
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With reference to Equation 2.2, we multiplied the vector means by the inverse of
the sum product of the variance-covariances matrix and the sample sizes to obtain

the TZ2.

The test statistics T? yielded 21.4915 from the Minitab output, while the

table value [)(3 (0.05] is 16.92

Since the T? (21.4915) is more than x3 (0.05) (16.92), there is enough
evidence against the null hypothesis at 5% significant level. We therefore reject
the null hypothesis and conclude that, there is a significant difference between the
mean scores obtained by males and females in the examination. This has
confirmed, the result in Table 3.2 which indicated that the approximated overall
mean score (53) for males is more than the overall mean score (51) for females.

This suggested that males out-performed females.

Principal Component

The correlation matrix in Table 3.4 revealed the correlation coefficients
between pairs of subjects. It can be observed from the table that a good number of
coefficients are around the accepted value of 0.5. This suggests the presence of
linear dependence, a necessary condition for using principal component analysis.
From Appendix Al, we can see that the KMO value is approximately 0.8
indicating that the data is ideal for PCA. In addition, Bartlett’s Test of sphericity

approached statistical significance. Hence, it can be concluded that the data can be

49



analyzed using the principal components. On this score, two principal components
were used in the analysis. This can be supported by the revelation from the scree
plot of Figure 3.10 and the total variation explained by the first two principal

components as revealed in Table 3.4 all in Chapter Three.

Interpretation of the Principal Components
The loadings of a variable on a principal component tell us how influential

the variable is in the formation of the component.

Table 4.1, is a table that shows the value for the eigenvectors of the scores
obtained in the examination. The variables are the subjects taken in the exam.
There are two components having their individual eigenvectors, which correspond
to each of the variables (subjects).

Table 4.1: Unrotated principal components matrix of eigenvectors

Variable Component
1 3
English Language 0.742 -0.142
Core mathematics 0.659 0.720
Integrated Science 0.783 -0.205
ICT 0.646 -0.138
French 0.721 -0.458
Geography 0.735 -0.009
Government 0.801 -0.135
Economics 0.863 -0.139
Elect. Mathematics 0.747 0.596
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From Table 4.1, it can be observed that all the variables loaded
substantially quite high above 0.5 on the first principal component. Economics
has the highest loading of about 0.86 followed by Government and Integrated
Science with about 0.80 and 0.78 respectively. This indicates that Economics,
Government and Integrated Science are influential in forming the first component.
It is evident that all the subjects that do not require mathematical ability loaded
quite significantly It is quite interesting to observe that Core Mathematics and
Elective Mathematics have high loadings of 0.66 and 0.75 respectively on the first
principal component with corresponding relatively high loadings on the second
component.

This indicates that PC2 is mathematically skewed since only the Core and
the Elective Mathematics loaded significantly on it. This has not indicated clear
distinction as to which PC to described, since both are influential in forming the
second principal component as well. It is therefore necessary to rotate the
components to ensure that each variable loads high on one component and loads
close to zero on the other component. The rest of the variables have relatively low
and negative loadings on the PC2. French has negative loading of about -0.5
whereas Geography has a loading, which is near zero (-0.009).

Although, all the variables loaded substantially high on the first principal
component, the second principal component was found to have about 75% of the
variables having negative loadings. To this end, the component loadings were
rotated in order to remove these negative loadings and make the sizes of the

negative loadings negligible on the second principal component. Further, to
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increase the interpretability of the principal components, we have also used the
unrotated principal components and the rotated principal components to check if
there is consistency in the indices with regard to ranking of the students by order
of performance. Thereafter, the best index can be determined. Varimax and
quartimax rotations were used. The varimax rotation (Table 4.2) was used
specifically to remove the negative loadings and make their sizes negligible on
PC2 to increase its interpretability, whereas the quartimax rotation (Table 4.3)
was used in order to obtain a pattern such that all the variables have a high
loadings on one factor or component.

Table 4.2, shows the varimax rotated component matrix of the variables
(subjects) loadings. There are two components having eigenvectors corresponding
to the individual subjects.

Table 4.2: Varimax Rotated principal component matrix of eigenvectors

Component

Variable 1 3
English Language 0.706 0.270
Core Mathematics 0.182 0.959
Int. Science 0.733 0.238
ICT 0.622 0.222
French 0.854 -0.010
Geography 0.630 0.380
Government 0.753 0.307
Economics 0.807 0.336
E. Mathematics 0.322 0.900
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From Table 4.2, we can see that French, Economics and
Government have high loadings of about 0.85, 0.80 and 0.80 respectively. This
indicates that French, Economics and Government are influential in forming the
first component. Considering that, the cut of point is 0.5 then this suggests that
Core Mathematics (0.182) and Elective Mathematics (0.322) have relatively very
low values of loading. However, on the second component Core Mathematics and
Elective Mathematics are found to have quite high loadings of 0.96 and 0.90
respectively, indicating that they are influential in forming the component. French

alone has the lowest and near zero loading of -0.01.

Table 4.3, shows the quartimax rotated component matrix of the variable
(subject) loadings.

Table 4.3: Quartimax rotated principal component matrix of eigenvectors

Variables Component

1 2
English Language 0.753 0.067
Core Mathematics 0.435 0.874
Integrated Science 0.809 0.019
ICT 0.659 0.045
French 0.820 -0.241
Geography 0.709 0.194
Government 0.808 0.091
Economics 0.868 0.105
Elect.Mathematics 0.554 0.779
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On PC1 of Table 4.3, it can be seen that all the variables (subjects) have
substantial loadings above 0.5 except Core Mathematics (0.435) on the first
component. However, Economics, Government, French and Integrated Science
loaded quite high with values 0.868, 0.808, 0.820 and 0.809 respectively. This
suggested that they are influential in forming the first principal component. The
subjects that do involve a little or no mathematical ability all have loadings that
are close to zero on the second component. Core Mathematics and Elective
Mathematics have substantial loadings of values 0.874 and 0.779 respectively.
This suggested that they are influential in forming the second component. French
subsequently was the only subject that loaded negatively on the second principal

components with a value -0.241.

Ranking of Students by Order of Performance Based on PCs (Index)

The ranking of the students was carried out using all the individual’s first
principal component of the unrotated principal components (Table 4.1), varimax
rotated component (Table 4.2) and quartimax rotated components (Table 4.3).
The unrotated principal component was found to have all the variables loading
substantially quite high on its PC1 as compared to the other two but majority of
the variable loaded negatively on PC2 except Core and Elective Mathematics.
The quartimax rotated components matrix indicated PC1 having the variables
with quite high loadings, whereas PC2 indicated very low loadings by some of the

variables (subjects) except Core and Elective Mathematics. Similarly, the varimax

54



rotated PC has relatively high loadings by most of the variables on PC1 and quite
low loadings on PC2 except Core and Elective Mathematics with quite high

loadings.

The fitted models for the individual PCs were used to obtain the indexes
by substituting the scores for each student in the nine subjects. The value of the
index determine whether or not the performance of a student in relation to others
is better or worse. That is, the higher the score for the index the better the
performance. In effect, resultant scores from the indexes were compared with
each other in order to assess the consistency of the PCs. It was found that all the
principal components were very consistent when the students were ranked except
that of varimax. On this basis, the PC1 of unrotated principal component was
identified to be the best index and was used for the ranking to determine the

outstanding overall best student in the examination.

It can be concluded that the overall best student that deserved to be given
the ultimate award is the student with number 042, followed by 029 and 011 as
second and third best runners up. The scores of the PCs used for the ranking can

be found in Appendices B, C and D.
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CHAPTER FIVE

SUMMARY, DISCUSSION AND CONCLUSIONS

This chapter presents a summary of the study, its findings and the main

conclusion of the study.

Summary

The researcher was challenged by the average performance of the students
in the school, and therefore gets inspired and motivated to find out whether males
perform better than the female students do. Further, many people have the
perception that males perform academically better than the females in school. In
view of this, the researcher was highly motivated to compare the performance of
the male and female students. Again, the researcher was interested in identifying
the overall best student in the class chosen for the study. Many at times, students
are ranked using a simple method by summing their individual scores in the
various subjects and arrange them in descending order of magnitude to find the
best student. However, the researcher was motivated to employ principal
component method, to standardize the scores such that a model was formulated as

an index for the ranking.
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The study aims at, first to compare the performance of male and female
students, second to use principal components to determine the best index for
ranking the students in descending order. The best index obtained by PC1 was
used for ranking the students in descending order of performance for the
identification of the overall best student.

The study revealed that the males performed better than their female
counterparts in the examination. The overall best student was revealed by the
ranking to be a male followed by the second best who was also a male. However,
a female emerged the third best.

Discussion

The study analyzed the scores obtained by the students in the various
subjects in the third term examination at St. Joseph Senior High
Secondary/Technical School. The relevant data were sourced from the students’
terminal report. It covers only third term examination results for 2008/09

academic year for students in SHS 2A.

There were two sections of the analysis. The first section, which is the
preliminary, looked at the variability in the scores obtained by the students for
every subject in the examination. In addition, the normality of the individual
subject scores was assessed and it was revealed that the scores of some subjects
were approximately normally distributed. The results revealed that the pattern of
the scores among the students was irregular. It varied from one subject to the

other.
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The subjects did satisfy the conditions discussed in Chapter Two for the
factorability of the correlation matrix and therefore the objective of ranking the
students was pursued. It was identified that the value of the various subjects on

the principal components indicates or reflects the performance of the students.

Researchers have carried out several studies to find out how females are
fairing in various fields of endeavour alongside their male counterparts. Similar
and related studies discussed in Chapter One stated that the widespread belief that
males out-perform females in mathematics is apparently a myth. Besides, it was
revealed in another study that was stated in Chapter One that, Gender differences
in mathematics performance that favour males are usually attributed to gender
socialization. Further, it was revealed in another study which was indicated in the
literature that, there was no difference between mathematics performance of male
and female students. Similarly, when nine (9) subjects were considered in this
study to find out if there is differences between male and female performance in
the examination. It was revealed that males out-performed females.

Principal component analysis technique was used to further analyze the
data of this study. Principal components were used to determine indices to rank
the students in order of performance. It appears that the result of PCA coincides
with the simple sum of scores in all subjects. However, this technique is preferred
since it allowed or permitted the researcher to standardize the scores and examine
the degree of influence of each subject in forming the respective principal
components. It also enabled the researcher to determine the proportion of

variability that was explained by the components and identify the subjects in
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which students perform better or worse. The first principal component of the
unrotated component matrix was identified to be the most suitable for fitting the
index model that was used for the ranking of the students. Thus, the fitted model
was given as:
Y1=0.742x,+0.659x,+0.783x3+0.646x,+0.721x5+0.735x¢+0.801x7+0.863xg+
0.747x4

(5.1)

where x1, X3, X3, X4, X5, Xg, X7, Xg, X9 represent the respective subjects.
The outstanding overall best student in the examination was determined by using
the PCI1 of the unrotated component matrix. With this model it implies that we
can determine the best student in the class under study from term to term to some

extent ascertain its consistency.

Conclusions

The results obtain from this study revealed that, males outperformed
females in the examination. The actual scores were used to determine an index for
ranking the students in order of performance. PC1 of the unrotated component,
was found to be the most suitable index, which has Economics, Gorvenment and
Integrated Science being highly influential in forming it.

The rankings based on PCI1 of unrotated component matrix and that of
quartimax rotated component matrix appeared to be consistent, since each
revealed that student with serial number 042 was the overall best, followed by
student with serial number 029 and then student with serial number 011 as the
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second and third runners up respectively. To conclude, it was identified that the
overall best student was a male, the second best was also a male followed by the

third best who was a female.

Suggestions for Further Research

This research was conducted for only one class of the whole form two.
Therefore, it will be of interest to conduct this similar research on the three terms
of the academic year. Another area of much interest would be to discover another
robust technique to develop an index that could account for a greater percentage

of the total variance in the sample used.
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Appendix Al: Data set of scores obtained by students in the examination.
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Appendix B: Ranking of students based on Unrotated PC1 (index) scores

Ranking Serial No. Relative Indices
1 042 482.771
2 029 482.454
3 011 468.844
4 020 426.299
5 024 414.083
6 006 408.661
7 027 407.499
8 019 406.024
9 022 392.605
10 035 390.508
11 007 390.109
12 003 384.902
13 045 383.474
14 009 379.403
15 010 378.278
16 002 370.612
17 021 370.585
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18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

047

046

005

032

041

034

016

028

036

001

018

039

043

040

015

004

037

030

033

017

008

023

031
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365.382

363.889

363.777

357.909

357.547

355.034

350.316

346.625

344.612

342.890

334.834

333.423

332.478

328.692

324.291

321.780

318.098

317.870

316.465

315.190

312.791

305.089

300.057



41

42

43

44

45

46

47

038

044

026

025

013

012

014
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268.805

266.050

258.780

231.655

229.701

213.555

212.056



Appendix C: Ranking of students on Quartimax rotated PC1 (index ) scores

Rank Serial Number Relative Indices
1 042 462.212
2 029 457.900
3 011 452.430
4 020 405.674
5 024 397.515
6 006 394.034
7 027 393.697
8 019 388.560
9 022 377.057
10 035 375.467
11 007 374.929
12 009 365.763
13 045 363.767
14 003 360.885
15 010 359.251
16 002 355.780
17 046 350.632
18 005 348.921

73



19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

047

021

034

032

041

016

028

001

036

018

039

043

040

015

004

033

037

017

008

030

023

031

038
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346.977

345.805

342951

340.104

337.621

332.045

331.175

328.713

321.319

315.828

315.338

312.346

309.555

309.552

309.240

304.796

303.498

296.671

294.296

293.902

285.333

282.471

258.389



42

43

44

45

46

47

044

026

013

025

014

012
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250.635

246.802

223.530

212.982

200.817

194.669



Appendix D: Ranking of students on Varimax rotated PC1 (index ) scores

Ranking Serial No Relative Index
1 042 406.786
2 011 401.811
3 029 398.892
4 020 354.491
5 024 350.945
6 027 350.773
7 006 348.975
8 019 341.784
9 007 335.496
10 035 332.070
11 022 328.982
12 045 320.486
13 003 315.292
14 009 315.188
15 002 314.109
16 010 313.198
17 005 310.970
18 041 302.475
19 047 302.450
20 046 301.690
21 021 301.044
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22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41
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44
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032

028

016

036

001

043

004

018

015

030

039

033

040

008

017

037

023

031

038

026

044

025
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299.524

291.961

290.764

288.782

288.046

275.643

275413

273.342

272.143

271.490

268.719

267.837

267.640

267.151

258.232

251.362

247.739

244.181

243.685

228.454

223.519

209.086

198.503
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46

47

013

012

014
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180.350

172.992

162.760
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