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ABSTRACT 

 

This thesis considers logistic regression and discriminant analysis. 

Because the ordinary least regression requires that a dependent variable in a study 

cannot be categorical, the logistic regression and the discriminant analysis 

techniques are two major techniques that are often used to handle categorical 

dependent variable problems. This study, therefore, seeks to getting answer to the 

question of whether using the logistic regression and the discriminant analysis 

techniques, on the same data set, would yield the same result or not. 

 Since the logistic regression and the discriminant analysis methods relates 

in many ways, extensive review of the theories behind them and comparison, in 

terms of similarities and differences, were necessary and have therefore been 

captured in the study. The graphical nature of the two techniques, interpretation of 

results, in using the two techniques, and significant tests of the various aspects of 

the two techniques are also not left out. At the end, empirical comparison of the 

binary logistic regression and the two-group discriminant analysis was made and 

the result for this comparison suggests that logistic regression gives a better result 

than two-group discriminant analysis when all requirements and assumptions of 

the two techniques are met. 

Finally, summary of the findings of the research is also captured in the 

study and consideration also given to discussion and conclusion about the 

findings.  
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CHAPTER ONE 

 

INTRODUCTION 

 

 Background of the Study   

There are a number of statistical techniques available for handling 

various problems. Many of these techniques come as models such as linear, 

exponential and quadratic models. Some of these models have become integral 

components concerned with describing the relationship between a response 

variable and one or more explanatory variables. If there is a reason to believe 

that a linear relationship exists between a variable of interest (response 

variable) and other variables (predicator variables) in a study, the ordinary 

linear model is one technique that is often used for predicting outcomes.   This 

technique is mostly adopted due to its flexibility for analysing the relationship 

between multiple independent variables and a single dependant variable. Much 

of its flexible is due to the way in which all sorts of independent variables can 

be accommodated.  

However, the linear model has some limitations and can therefore not 

be used in certain situations, even if there is a linear relationship between the 

response variable and the explanatory variables. (Hosmer & Leweshow, 

2000).  
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Statement of the Problem  

A limitation of the ordinary linear models is the requirement that the 

dependent variable cannot be categorical. In many studies, however, variables 

that are of interest are usually categorical. For example, if a study is to 

determine whether a patient will recover from an ailment  or die; or whether a 

student will pass an examination or fail; and so on, are situations where the 

response variables (i.e. “recover or die” and “pass or fail”) are all categorical. 

In such situations, it is inappropriate to employ the ordinary linear model as 

the technique for finding the relationship between the variables of interest and 

the risk factors involved in order to make predictions or to make classification 

of cases.  (Statgun, n.d). 

A range of techniques have been developed for providing answers to 

this question but the two commonly adopted techniques for answering this 

question is discriminant analysis and logistic regression. Even though, these 

techniques are used for different purposes but they can sometimes be used to 

achieve a common object. (Statgun, n.d). 

 

Objectives of the Study 

The main objectives of the study are to: 

1. Compare logistic regression and discriminant analysis both 

theoretically and empirically.  

2. Find out, if analysing the same data set with the two techniques would 

yield the same result.  
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Scope of the Study 

Even though using discriminant analysis and logistic regression to analyse the 

same data set reveal the same pattern in many cases, their ways of arriving at 

results are different and they also require different assumptions. It was, 

therefore, important to have thorough review of the two techniques to know 

how results are arrived at.  

The research, therefore, reviewed some assumptions and requirements 

of each method and also the types of variables for each technique. It also 

covered methods of variable selection into the models and touched on the 

forms of the two techniques. Discussion of the graphical nature of the two 

techniques, various significant tests of the importance of independent 

variables, the reliability of the models and results interpretation in the two 

techniques were considered. The study also involved empirical analysis using 

the two techniques and a comparison of the results was made to establish the 

discrepancies in using the two techniques, if any.  

 

Significance of the Study 

The study provides differences in efficiency of the logistic regression 

analysis and the discriminant analysis techniques. It also provides insight to 

researchers on reliability of the results of their study when one technique is 

used instead of the order, under specific conditions. 

 

Outline of the Study 

The study is organised into six chapters. Chapter one of the study talks about 

the introduction of the study. The introduction consists of the background of 
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the study, the limitations of the linear regression, objectives, scope and 

significance of the study. 

The chapter two is about literature review of the logistic regression and 

the discriminant analysis techniques. In this chapter, the researcher tries to 

find some studies that have been carried out by other researchers which are in 

relation to the objectives of the study. This offers the researcher the 

opportunity to know the consistencies or disparities in using the logistic 

regression or the discriminant analysis techniques and also providing 

information on other fields of study, other than statistic, where logistic 

regression and discriminant analysis can be adopted in solving problems. 

The chapter three of the work highly concentrates on the review of the 

logistic regression. This review talks about the family of the logistic 

regression, the forms of the model, the graphical nature of the logistic model, 

the various methods of variable selection into the model, the types of the 

technique and the various significance tests. 

The chapter four also deals with the review of the discriminant 

analysis. This review covers areas such as the form of the discriminant model, 

the types of the discriminant analysis, the assumptions of the discriminant 

analysis and the significant tests of the various factors of the model. 

The chapter five of the study focuses on the comparison of the logistic 

regression and the discriminant analysis. The comparison is in two parts. The 

first part is theoretical comparison in terms of similarities and differences 

based on the theoretical background of the two techniques. The second part is 

empirical comparison of the logistic regression and the discriminant analysis 

using the same data set. 
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The sixth chapter comprises the summary, discussion, results and 

conclusion, based on the findings of the study. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 

This chapter is about review of some works or studies which have been 

carried out by other researchers in relation to the objectives of this study. It 

also aims at identifying areas that the logistic regression analysis and the 

discriminant analysis techniques can be applied. 

The relevance of logistic regression and discriminant analysis is not 

limited only to the field of statistics. Application of the logistic regression 

analysis and the discriminant analysis in the clinical medicine has been 

widespread. Betensky and Williams (2001), for example, in a study on the 

lymphocyte proliferative assay (LPA) of immune competence on 52 subjects, 

analysed the resulting clustered binary data using logistic regression analyses. 

Similarly, Clark et al. (1989), in their study on tumor progression used 

multi-variable logistic regression technique to develop a prognostic model for 

primary,
 
clinical stage I cutaneous melanoma. The model, so developed, is 

89% accurate
 
in predicting survival of tumor patients.    

 In one instance,  Gordon et al. (1984), used standard logistic 

regression analysis together with Cox hazard in their study on coronary risk 

factors and exercise test performance in asymptomatic hypercholesterolemic 

on 6850 whites to ascertain the prevalence of ischemic electrocardiographic
 
in 

whites. 
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In another instance too, Geller et al. (2009), conducted a study on 227 

males of age at least 40
 
years, who are with invasive melanoma. The aim was 

to determine the factors associated with physician
 

discovery of early 

melanoma in middle-aged and older men. Odds ratio was adapted as one of the 

techniques in the analysis. 

 Also, Ito, Nishimura, Saito and Omori (1997), in their attempt to 

determine the level of erythrocyte aldose reductase protein (AR-p) in diabetic 

patients by a two-site enzyme-linked immunosorbent assay, classified 95 non-

insulin-dependent diabetes mellitus (NIDDM) patients into two groups, based 

on the results of seven nerve function tests: Group I, without demonstrable 

neuropathy and Group II, with overt neuropathy. Multivariate logistic 

regression analysis was subsequently used to identify two independent risk 

factors for overt neuropathy in diabetic patients.  

In one occasion, Takahashi et al. (1998), in their study to investigate 

the risk factors for diabetic severe neuropathy independent of glycemic control 

and duration of diabetes, used  logistic regression analysis technique to 

establish that maximum body mass index (BMI) in the past minus present 

BMI and the level of erythrocyte aldose reductase protein together with 

measurement of erythrocyte AR level may be useful for predicting severe 

neuropathy in non-insulin-dependent diabetes mellitus (NIDDM).  

In another occasion too, Smith (2005), suggested a simple approach to 

a study conducted by Platt on gestational-age-specific mortality entitled: 

"Research to date on perinatal
 
outcomes has all but ignored the fact that 

gestational age is
 
a time-to-event variable". Smith used logistic regression

 
for 

intrapartum stillbirth and neonatal death to arrive at this simple approach. 
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Again, Kennedy et al. (1980), in their effort to better understand the 

clinical and angiographic
 

characteristics predictive of operative mortality 

(OM), used multivariate discriminant
 
analysis technique to analyse data on 

isolated coronary artery bypass grafting (CABG) operations on 6,176 patients 

carried out by “Collaborative Study in Coronary Artery Surgery” (a multi-

institutional study of the medical and surgical treatment of coronary
 
artery 

disease) to come out with the variables associated with OM.  

In a similar situation, Wright et al. (1987), conducted a study on 9,000 

patients from the operational database of Loyola Open-Heart Registry of 

those who had undergone coronary bypass or cardiac valve replacement from 

January 1970 to December 1984. The data was analysed using multivariate 

discriminant analysis to identify and quantify those factors that might predict 

operative mortality (OM) for patients undergoing coronary artery bypass 

grafts at Loyola University Medical Center. 

Additionally, Wang, Xiao, Ren, Li and Zhang (2007), tried to assess 

and confirm the risk factors for mortality after coronary artery bypass grafting 

(CABG) operations so as to map out proper guidance of surgical strategy, 

especially in patients with low left ventricular ejection fraction (LVEF) in 

domestic polyclinics in China. A data of 5048 consecutive patients who 

underwent CABG from December 1999 through August 2005 at Peking 

University First Hospital, Beijing, was analysed using univariate and 

multivariate stepwise logistic regression analysis to identify 22 candidate 

factors for their association with perioperative death. 

Another example of the use of logistic regression analysis is a study 

conducted by Abrahamowicz, du Berger
 
and Graver (1997) - They examined 
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the impact of lipids and other risk
 
factors on coronary heart disease. With a 

random sample of 2,
 
512 patients, from Lipid Research Clinics (1972–1987), 

who did not take lipid-lowering medications, logistic regression analysis was 

used to assess the potential impact of the lipids and continuous risk factors. 

 Pullinger, Seligman and Gornbein (1993), used multiple logistic 

regress analysis for common occlusal features for assumptomatic controls on 

147 patients to establish that certain features such as anterior open bite in 

osteoarthrosis were consequence rather than etiological factors for the 

disorder.   

Hirota (1999), also identified the discriminant analysis as a proper 

method to diagnose and treat liver diseases. In 1967, he applied the 

discriminant analysis by computer to diagnose liver diseases and it was, in that 

case, superior to diagnosis by physicians. He has, since 1990, applied the 

discriminant analysis in treadmill diagnosis and concluded the utility in 

prospective study.  

In one breath, Perez (2006), used clustering and discriminant analysis 

of image quality to develop a mathematical model for activity optimization in 

Nuclear Medicine Studies (NMS). The application of this method yields 

results that is consistent with the application of Received Operating 

Characteristic (ROC) analysis, and has successful results in the reduction of 

the administered activity in planar studies of nuclear medicine. 

Laika, (2003), also collected data of short-latency somatosensory-

evoked potentials (SSEPs) on 91 patients with diabetes mellitus (DM) after 

median nerve stimulation. The patients were divided into three groups: (1) 

patients without neuropathy, (2) patients with mild neuropathy, and (3) 
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patients with severe neuropathy. The data which consisted of 26 independent 

variables was subsequently analysed, using discriminant analysis, to establish 

that six of the independent factors can best differentiate the groups. 

Again, Walter, Feinstein and Wells (1987), presented a coding scheme 

for ordinal independent
 
variables useful in dose-response analyses which can 

also be used in evaluating the survival of lung cancer patients. This scheme 

uses various forms of regression analysis including logistic regression. 

Additionally, Abbott (1985), undertook a survival analysis on data 

from the Framingham Heart Study. He realised that when event times are 

grouped into intervals, logistic regression
 
can be adapted to the analysis of 

such data by modeling the
 
interval when an event occurs. It was furthermore 

shown that
 
results from such an adaptation will often lead to parameter

 

estimates close to those obtained by the proportional hazards
 
model in the 

grouped event time setting.  

Logistic regression analysis and discriminant analysis techniques have 

also found their way in social sciences. Kirschenbaum, Oigenblick and 

Goldberg (2000), conducted a study to examine the differences between two 

groups of Israeli workers. One of the groups comprised of 77 workers who had 

suffered a first-time work injury and the other comprised of 123 workers who 

had suffered work injuries on multiple occasions. It was clear that the 

multivariate relationship between independent variables and the work injuries 

were unlikely due to chance. Logistic regression analysis was used for the 

analysis to obtain a hit ratio of 70%. 
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Diehl. Elnick, Bourbeau and Labouvie-vief (1998) undertook 

classification analysis, given very different numbers. This analysis was 

executed using discriminant analysis. 

Logistic regression and discriminant analysis have also gained some 

popularity in both accounting and agriculture management. Argilés (1998), 

examined the current use of accounting in agriculture with the aim of helping 

agricultural agents in decision making. Two logit models, one with non-

financial variables and the other with financial ones, were applied to 

subsamples of viable and unviable farms in Catalonia, Spain.  

Similarly, Ahmed, K. F. Alam, and M. Alam.  (1997) conducted a 

survey on 295 students from five universities in New Zealand to examine the 

influence of intrinsic factors on whether accounting students choose to pursue 

a chartered accountancy (CA) career or a non-accounting career. The objective 

of the study was to help recruitment into the accounting profession in New 

Zealand. Discriminant analysis was employed to reveal the factors 

differentiating the two groups.  

Again, Gestel, et al. (2004), conducted financial analysis of the 

creditworthiness of a potential client. The aim was to avoid taking wrong 

decisions that may result in foregoing their valuable  clients if not given credit 

to them or, more severely, in substantial capital losses if the clients 

subsequently default.  They observed that when nonlinear kernel-based 

classifiers is applied to a real-life data set concerning commercial credit 

granting to mid-cap Belgian and Dutch firms, it  yields a better performance 

but acknowledged that many studies in this line focus on the use of financial 
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ratios in linear statistical models, such as linear discriminant analysis and 

logistic regression analysis. 
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                                  CHAPTER THREE 

 

  REVIEW OF LOGISTIC REGRESSION ANALYSIS 

.   

Introduction 

Logistic regression analysis (or simply logistic regression) is part of a 

category of generalised linear models. It is a type of multivariate regression 

that has a predictive model that can be used when the target variable is a 

categorical variable. The technique aims at modeling the relationship between 

a set of independent variables and the probability that a case is a member of 

one of the categories of the dependent variables.  

Logistic regression has many uses- It is used to predict a dependent 

variable on the basis of continuous and/or categorical independents; to 

determine the percentage of variance in the dependent variable explained by 

the independents; to rank the relative importance of independents; to assess 

interaction effects; and to understand the impact of covariate control variable.   

 (Garson, n.d)    

Generally, the dependent or response variable in logistic regression is 

dichotomous, such as presence/absence or success/failure but the multinomial 

logistic regression also exists to handle situations with more than two 

dependent variables such as low/medium/high. (McCullagh, & Nelder, 1989) 
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Purpose for conducting Logistic Regression Analysis 

The purpose of performing logistic regression analysis is to: 

1. Analyze the relationship between metric independent variables and a 

dichotomous dependent variable. 

2. Find out if there is a relationship, using the information in the 

independent variables, to improve the accuracy in predicting values for 

the dependent variable. 

3. Find the chances of an object, subject or entity to be a member of a 

particular group. 

4. To classify new objects, subjects and entities. (Luna, n.d)  

 

Types of Logistic Regression 

There are two types of logistic regression: 

1. Binary logistic regression which is used for two groups.  

2. Multinomial Logistic Regression that can be used with more than 

two groups. 

 

Binary Logistic Regression 

Binary Logistic Regression is a predictive model that can be used 

when the target variable is a categorical variable with two categories 

(dichotomous) – for example live/die, has disease/doesn’t have disease, 

purchases product/doesn’t purchase, wins race/doesn’t win, etc., and the 

independents variables are of any type. Binary logistic regression has other 

application of combining the independent variables to estimate the probability 

that a particular event will occur, i.e. a subject will be a member of one of the 
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groups defined by the dichotomous dependent variable. The variate or value 

produced by binary logistic regression is a probability value between 0 and 1. 

If the probability for group membership in the modelled category is above 

some cut point (usually 0.5), the subject is predicted to be a member of the 

modelled group.  If the probability is below the cut point, the subject is 

predicted to be a member of the other group.  

For any given case, logistic regression computes the probability that a 

case with a particular set of values for the independent variable is a member of 

the modelled category. A case is predicted to belong to the group associated 

with the highest probability. Predicted group membership can be compared to 

actual group membership to obtain a measure of classification accuracy. 

(Luna, n.d) 

 

Level of Measurements Required for Binary Logistic Regression               

Logistic regression can be used only with two types of target variables: 

1. A categorical target variable that has exactly two categories (i.e., a binary or    

    dichotomous variable) 

2. A continuous target variable that has values in the range 0.0 to 1.0    

representing probability. The dependent variable in logistic regression is 

usually dichotomous, that is, the dependent variable can take the value say, 

1 with a probability of success , or the value 0 with probability of failure 

1 . This type of variable is a Bernoulli (or binary) variable. (Statgun, 

n.d) 
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Multinomial Logistic Regression 

Multinomial logistic regression is an extension of binary logistic 

regression and it allows simultaneous comparison of more than two contrast 

(i.e. three or more contrasts are estimated simultaneously). The relationships 

between a non-metric dependent variable and metric or dichotomous 

independent variables can be analysed using the multinomial logistic 

regression.  

This method compares multiple groups through a combination of 

binary logistic regressions and the group comparisons are equivalent to the 

comparisons for a dummy-coded dependent variable with the group having the 

highest numeric score used as the reference group. For example, if one wants 

to study differences in BSc, MSc, and PhD students using multinomial logistic 

regression, the analysis would compare BSc students to PhD students, MSc. 

students to PhD students and BSc students to MSc students. For each 

dependent variable, there would be two comparisons. (Statgun, n.d) 

 

Level of Measurement for Multinomial Logistic Regression 

1. Multinomial Logistic regression analysis requires that the 

independent  variables be metric or dichotomous. 

2. If an independent variable is nominal level and not dichotomous, 

the variable is dummy coded 

3. Multinomial Logistic regression can also be applied to ordered 

categories (ordinal data), that is, variables with more than two 

ordered categories, as a dependant variable.  
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Methods for Including Variables in the Logistic Regression Analysis 

The goal of logistic regression is to correctly predict the category of 

outcome for individual cases using the most parsimonious parameters. To 

accomplish this goal, a model is created that includes all predictor variables 

that are useful in predicting the response variable. Several different options are 

available for variables selection during model creation but the three most 

commonly used methods for selecting variables into the logistic regression 

equation are:  

1. The standard or simultaneous method  

2. The hierarchical method.  

3. The stepwise method. 

 

Standard or Simultaneous Regression Method 

Standard or simultaneous regression method helps to evaluate the 

relationship between a set of independent variables and a dependent variable. 

This method enters all the independent variables into the logistic regression 

equation at the same time. Multiple R (coefficient of determination) or R² 

(coefficient of regression) is employed to measure the strength of the 

relationship between the set of independent variables and the dependent 

variable. An F-test is used to determine if the relationship can be generalised 

to the population represented by the sample. A t-test is used to evaluate the 

individual relationship between each independent variable and the dependent 

variable. 
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 Hierarchical Method  

Hierarchical method requires that the control variables are entered in 

the analysis before the predictors whose effects are the primary concern. In 

hierarchical method, the independent variables are entered in two stages. In 

the first stage, the independent variables that one wants to control for are 

entered into the regression equation. In the second stage, the independent 

variables whose relationship we want to examine, after the controls, are 

entered. A statistical test of the change in R² from the first stage is used to 

evaluate the importance of the variables entered in the second stage.  

 

Stepwise Multiple Regression 

Stepwise method attempts to identify the subset of independent 

variables that has the strongest relationship to a dependent variable. In this 

method, variables are selected in the order in which they maximize the 

statistically significant contribution to the model. Stepwise regression attempts 

to find the most parsimonious set of predictors that are most effective in 

predicting the dependent variable. Variables are added to the regression 

equation one at a time, using the statistical criterion of maximizing the R² of 

the included variables. The process is completed when none of the possible 

addition can make a statistically significant improvement in R². 

(Statgun, n.d) 

  

Assumptions of the Logistic Regression Analysis 

1. Logistic regression does not assume a linear relationship between the 

dependents and the independents. It may handle nonlinear effects even 
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when exponential and polynomial terms are not explicitly added as 

additional independents because the logit link function in the logistic 

regression equation is non-linear. However, it is also possible and 

permitted to add explicit interaction and power terms as variables in 

the logistic equation.  

2. The dependent variable in the logistic regression analysis need not be 

normally distributed (but does assume its distribution is within the 

Poisson, binomial or gamma).  

3. The dependent variable need not be homoscedastic for each level of 

the independents; (thus), there is no homogeneity of variance 

assumption:- variances need not be the same within categories.  

4. Normally distributed error terms are not assumed.  

5. Logistic regression does not require that the independents be interval. 

6. Logistic regression does not require that the independents be 

unbounded. ( Statgun, n.d) 

 

The Logistic Regression Model 

The logistic model or formula computes the probability of the selected 

response as a function of the values of the predictor variables. If a predictor 

variable is a categorical variable with two values, then one of the values is 

assigned the value 1 and the other is assigned the value 0.  If a predictor 

variable is a categorical variable with more than two categories, then a 

separate dummy variable is generated to represent each of the categories 

except for one which is excluded.  The value of the dummy variable is 1 if the 

variable has that category, and the value is 0 if the variable has any other 



  20 

category; hence, no more than one dummy variable will be 1.  If the variable 

has the value of the excluded category, then all of the dummy variables 

generated for the variable are 0.  

In summary, the logistic formula has each continuous predictor 

variable, each dichotomous predictor variable which are coded 0 or 1, and a 

dummy variable for every category of predictor variables with more than two 

categories less one category. (Statgun, n.d) 

 

Distribution of the Logistic Regression Model 

Since the response variable ( iy ) for logistic regression is always binary 

(assuming only two values), its distribution is binomial. 

 i.e. 

iy ~ ),( iinB , (i = 0 or 1), 

where the numbers of Bernoulli trials, ni, are known and i  which is unknown 

is the probability of success or being in one group(1), and ( i1 ) is the 

probability of failure to be in modelled group or being in the other group(0).    

The binomial distribution has distribution function   
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The Mean of the Distribution 

From (4), 

Differentiating )( ib  with respect to i , the mean ( i ), is given  
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The Variance of the Distribution 

The second differential of )( ib with respect to i yields the variance, iv . 

Thus,  
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Derivation of the Logistic Regression Formula 

From (2) 
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 The variable i  is given by                    

                            kki xxx 22110                                       (8) 

From (6) and (8), 

the model can equivalently be formulated as 

                                           (9) 

Also from (7) and (8), the model takes the form 

                                     (10)                                     

Equation (9) or (10) is the general logistic regression model with risk 

factors kxxxx ,,,, 321  . 

The computed value i  is a probability in the range from 0 to 1, 0  is 

the intercept and k,,, 321  are the regression coefficients of the 

variables kxxxx ,,,, 321   respectively.  

The intercept is the value of i  when the value of all the other 

independent variables are zero (i.e., the value of i  in response with no 

independent variable). Each of the regression coefficients describes the size of 
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the contribution of that risk factor. A positive regression coefficient is an 

indication that that risk factor increases the probability of the outcome, while a 

negative regression coefficient means that that risk factor decreases the 

probability of the outcome. A large regression coefficient means that that risk 

factor strongly influences the probability of that outcome; while a near-zero 

regression coefficient means that the risk factor has little influence on the 

probability of that outcome. (Wikipedia, n.d) 

 

The Logistic Regression Curve 

The relationship between the predictor and response variables is not a 

linear function in logistic regression.  

A plot o )( if against i  is as below: 

        

Figure 1: The Logistic Regression Curve 

   

            The logistic regression function is useful because it can take as an 

input, any value from negative infinity to positive infinity, whereas the output 

is confined to values between 0 and 1. The variable i  is the exposure to some 
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set of risk factors, while )( if represents the probability of a particular 

outcome, given that set of risk factors. The variable i  is a measure of the 

contribution of all the risk factors used in the model. 

(Wikipedia, n.d). 

 

Numerical Problems with Logistic Regression 

The maximum likelihood method used to estimate the logistic 

regression coefficients is an iterative fitting process that attempts to cycle 

through repetitions to find an answer. Sometimes, the method breaks down 

and will not be able to converge or find an answer. Sometimes too, the method 

produces wildly improbable results, reporting that a one-unit change in an 

independent variable increases the odds of the modelled event by hundreds of 

thousands or millions.  These implausible results can be produced by multi-

collinearity, categories of predictors having no cases or zero cells, and 

complete separation whereby the two groups are perfectly separated by the 

scores on one or few independent variables. (Luna, n.d). 

Just like linear regression, logistic regression gives each regressor a 

coefficient bi which measures the regressor's independent contribution to 

variations in the dependent variable. But there are technical problems with 

logistic regression. What one wants to predict from knowledge of relevant 

independent variables is not a precise numerical value of a dependent variable, 

but rather the probability ( ) that it is one group rather that the other. It is not 

possible to use this probability as the dependent variable in an ordinary 

regression, (i.e. as a simple linear function of regressors) due to these two 

reasons: Firstly, numerical regressors may be unlimited in range. If the idea 
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for one is to express  as a linear function of the predictors, the person may 

find himself predicting that may be greater than 1 or less that 0, which 

cannot be true, as probabilities can only take values between 0 and 1.  

Secondly, there is a problem of additivity. Imagine one tries to predict 

success at a task from two dichotomous variables, training and gender. Among 

untrained individuals, 50% of men from men population succeed and 70% of 

women from women population succeed. Among trained individuals, 90% of 

men from men population succeed and 40% of women from trained women 

succeed. If  is thought of as a linear function of gender and training, then the 

proportion of women who succeed in the study (i.e. 70% + 40% = 110%) 

would have to be estimated (which again cannot be true).  

Due to the fact that using logistic regression to generate predicted 

probabilities can produce values outside the 0 to 1 range and also forcing 

linearity on what is more likely an S-shaped relation, violates the assumption 

that the components of the composite variable are additive, and violates the 

assumptions of normality and homoscedasticity required for statistical tests. 

Therefore, there is the need to seek for an alternative strategy. (Wikipedia, 

n.d). 

 

Odds Function 

The odds function is the strategy that is often used to streamline the 

work of logistic regression. The odds function makes use of which odds of an 

event is which is defined as the ratio of the probability that an event occurs to 

the probability that it fails to occur.  

Thus,  
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Link Function 

The link function provides the relationship between the linear predictor 

and the mean of the distribution function. When the response variables, )( if , 

are binary, taking on only values 0 and 1, (as in the case of the logistic 

regression), the distribution function is generally chosen to be the  binomial 

distribution and the interpretation of μi is then the probability,  , of )( if , 

being in the modelled group. 

 

Logit Transformation of Өi 

From (1) above, taking natural logarithm on both sides gives 

                                
i

i

i
1

ln log(odds) 

but    

kki xxx 22110  

 kk

i

i xxx 22110)oddslog(
1

ln logit( ),  

which is the link function (logit link)  for the logistic regression. 

This indicates that the logistic regression requires that observations be 

independent and that the independent variables be linearly related to the logit 

of the dependent. (Menard, 2002). 
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The logistic regression strategy retains the goal of generating predicted 

probabilities when it is expressed in logit form and the problems that may 

arise, as a result of predicting a probability greater than 1 or less than 0, are 

eliminated. Thus, logistic regression involves fitting to a data an equation of 

the form:  

logit( ) = 0b + b1x1 + b2x2 + b3x3 + kk xb  

Logit( ) ranges from negative infinity to positive infinity and its scale is 

symmetrical around the logit of 0.5 (which is zero).   

An example of some probabilities ( ) and their corresponding logit 

probability values are as below.  

 

Table 1: The Relationship Between Probability of Success ( ) and 

Logit( )(  

                 0.1      0.2       0.3        0.4      0.5      0.6      0.7     0.8      0.9 

Logit( ) 20.2  39.1   85.0  41.0    0.00     0.41   0.85   1.39   2.20    

 

                  Because log(odds) take on any value between  and , the 

coefficients for logistic regression equations can be interpreted in the usual 

way. Thus, they represent the change in log(odds) of the response per unit 

change in the predictor. 

A plot of log(odds) = logit( ) = 0b + b1x1 + b2x2 + b3x3 + kk xb  is 

as below: 
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                                 Figure 2: A Plot of Log (odds) against Өi 

 

Odds are asymmetric. When the roles of the two outcomes are 

switched, each value in the range 0 to 1 is transformed by taking its inverse 

(1/value) to a value in the range 1 to . For example, if the odds of having a 

disease is 1/4, the odds of not having the disease is 4/1. When the roles of the 

two outcomes are switched, the log(odds) are multiplied by 1, since log(a/b) 

= -log(b/a). For example, if the log(odds) of passing an examination is 39.1 , 

the log(odds) of failing the examination is 1.39. As the probability of 

something increases, the odds and log (odd) too increase and vise versa. 

(Luna, n.d) 

 

Loss  Function  

A loss function is a measure of fit between a mathematical model of 

data and the actual data. The parameters chosen for models are to minimize 

the badness-of-fit or to maximize the goodness-of-fit of the model to the data. 

With least squares method, parameters are chosen such that the sum of squares 

of residual (SSres) is minimal or the sum of squares due to regression (SSreg,) is 

maximum. For logistic model, there is no mathematical solution that will 
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produce least squares estimates of the parameters.  The loss function chosen is 

maximum-likelihood. (Luna, n.d) 

 

The Maximum-Likelihood Function  

Although logistic regression finds a "best fitting" equation just as 

linear regression does, the principles on which it does so are rather different. 

Instead of using a least-squared deviations criterion for the best fit, as in the 

case of linear regression, the logistic regression analysis uses a maximum 

likelihood method to compute the coefficients for the logistic regression 

equation. The maximum-likelihood parameters are chosen to maximize the 

likelihood. The maximum likelihood is conditional probability (i.e. )/( iiP , 

the probability of being in group i given the set of risk factors in group i 

(where i = 1 or 0). 

  The techniques actually employed to find the maximum likelihood 

estimates is iterative Newton-Raphson algorithm which attempts to find 

coefficients that match the breakdown of cases on the dependent variable. The 

maximum-likelihood estimation procedure successively tries to get closer and 

closer to the correct answer and it iterates until the absolute value of the 

largest parameter change is less than the value specified for “Tolerance” on 

the logistic regression modeling. (Wikipedia, n.d). 

 

Measures and Significance Tests               

Likelihood is probability under a specified hypothesis. Logistic 

regression is considered with two hypotheses that are of interest: The null 

hypothesis which is that all the coefficients in the regression equation take the 
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value zero, and the alternate hypothesis that the model currently under 

consideration is accurate. The likelihood of observing the exact data under 

each of these alternate hypotheses is nearly always a frighteningly small 

number, and to make it easier to handle. Natural logarithm is taken to give log 

likelihood. (Wikipedia). 

 

Badness of Fit in Logistic Regression 

Customarily, the natural logs of the probability (likelihood) of the 

results are multiplied by 2  to make the result positive. The statistic 

likelihoodlog2  ( 2  multiply by the log of the likelihood) is a badness-of-

fit indicator. This indicates that a large number means a poor fit of the model 

to the data. The value Rlikelihoodlog2  is a measure of the error associated 

in trying to predict the dependent variable without using any information from 

the independent variables. 

 

Testing the Importance of Variables 

The importance of variables in the logistic regression model can be 

tested using the hypothesis 

0:0 iH     ( ix  not important in the model) 

0:1 iH    ( ix is important in the model),    for the thi   independent variable. 

The variable under consideration is first included in the model and 

the likelihoodlog2 of the full model ( Flikelihoodlog2 ) is found. The 

variable is then excluded and likelihoodlog2 of the restricted model 
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( Rlikelihoodlog2 ) of the model is again measured. The difference between 

the two results follows a 2 distribution. Thus,  

F

R2

likelihood

likelihood
ln2)likelihoodlog2(glikelhood2 FRlo          (11) 

This chi-square ( 2 ) statistic is used to statistically test whether 

including a variable reduces badness-of-fit measure. If chi-square is 

significant, the variable is considered to be a significant predictor in the 

equation. If not, the variable is considered unimportant and can therefore be 

excluded from the logistic regression model. 

 

Overall Test of Relationship (Assessing Model Fit) 

There are a number of statistics available for testing the relationship of 

the model and the variables. The null and alternative hypotheses for assessing 

overall model fit are given by 

:0H The hypothesized model fits the data 

:1H The hypothesized model does not fit for the data 

The overall measure of how well the model fits to variables under 

consideration is given by the likelihood value. The overall test of relationship 

among the independent variables and groups defined by the dependent is 

based on the reduction in the likelihood values for a model which does not 

contain any independent variables and the model that contains the independent 

variables. A model that fits the data well has a small likelihood value. A 

perfect model would have a likelihood value of zero. The difference in 

likelihood follows a chi-square distribution.  The significance test for the 

model chi-square (as in 11) is the statistical evidence of the presence of a 
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relationship between the dependent variable and the combination of the 

independent variables. (Wikipedia, n.d)  

 

Other Methods for Significance Test 

Hosmer and Lemeshow’s goodness-of-fit test 

Hosmer and Lemeshow's (H-L) goodness-of-fit test divides subjects 

into deciles based on predicted probabilities. It then computes a chi-square 

from observed and expected frequencies then a probability (p) value is 

computed from the chi-square distribution with 8 degrees of freedom to test 

the fit of the logistic model. If the H-L goodness-of-fit test statistic is greater 

than .05, (which indicates well-fitting models), we fail to reject the null 

hypothesis that there is no difference between observed and model-predicted 

values, implying that the model's estimates fit the data at an acceptable level. 

(Hosmer, et al., 1988). 

 

Omnibus Tests of Model Coefficients 

Omnibus test is an alternative to the Hosmer-Lemeshow test. It tests if 

the model with the predictors is significantly different from the model with 

only the intercept. The omnibus test is interpreted as a test of the capability of 

all predictors in the model jointly to predict the response (dependent) variable. 

Significance corresponds to the conclusion that there is adequate fit of the data 

to the model, meaning that at least one of the predictors is significantly related 

to the response variable. (Luna, n.d) 
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Wald Statistic  

 The Wald statistic is also another alternative test which can be used to 

test the significance of individual logistic regression coefficients for each 

independent variable (that is, to test the null hypothesis in logistic regression 

that a particular logit (effect) coefficient is zero). The Wald statistic is the 

squared ratio of the unstandardized logistic coefficient to its standard error.  

 

Testing for Influential Case 

It is important to determine whether a case is influential in the logistic 

model. Cook's distance statistic which is used as measure of influence of a 

case in linear multiple regressions is the technique used to measure the 

influence of a case on the solution in logistic regression. However, the criteria 

for determining that a case is an influential case in logistic regression differ 

from the criteria in multiple regressions. In logistic regression, a case is 

identified as influential if its Cook's distance is greater than 1.0.  (Hosmer and 

Lemeshow, 2000). 

 

Testing for Outliers 

Logistic regression modelling requires the inclusion of only variables 

relevant to the course of the modeling. If there is an item which can unduly 

influence the model, it must be eliminated in the modeling process. The 

elimination can be done by using the residual process. The residual in 

predicting a case is the difference between the actual probability and the 

predicted probability for a case.  For example, if the predicted probability for a 

case that actually belonged to the modelled category was 0.80, the residual 
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would be 1.00 – 0.80 = 0.20. The residual is standardised by dividing it by an 

estimate of its standard deviation. If a standardised residual is larger than 3.0 

or smaller than 3 , it is considered an outlier, and a candidate for exclusion 

from the analysis. (Wikipedia, n,d) 

 

Strength of Logistic Regression Relation 

Logistic regression computes correlation measures to estimate the 

strength of the relationship (pseudo R square measures, such as Nagelkerke's 

R² can be used). However, these correlations measures do not really tell us 

much about the accuracy or errors associated with the model. A more useful 

measure to assess the utility of a logistic regression model is classification 

accuracy, which compares predicted group membership based on the logistic 

model to the actual, known group membership, which is the value for the 

dependent variable. 

 

Testing Accuracy (Efficiency) of Logistic Model (80 and 20 Strategy) 

The accuracy of logistic regression model can be tested using the 80- 

20 strategy. In this validation strategy, the cases are randomly divided into two 

subsets: a training sample containing 80% of the cases and a holdout sample 

containing the remaining 20% of the cases. The training sample is used to 

derive the logistic regression model. The holdout sample is classified using the 

coefficients based on the training sample.  The classification accuracy for the 

holdout sample is used to estimate how well the model based on the training 

sample will perform for the population represented by the data set.  If the 

classification accuracy rate of the holdout sample is within 10% of the training 



  36 

sample, it is deemed sufficient evidence of the utility of the logistic regression 

model.  

In addition to satisfying the classification accuracy, it is required that 

the significance of the overall relationship of the dependent and the 

independent variables and the relationships with individual predictors for the 

training sample match the significance results for the model using the full data 

set. (Wikipedia, n.d) 

 

Evaluating Usefulness of Logistic Model 

Even if the independent variables had no relationship to the groups 

defined by the dependent variable, one would still expect to be correct in his 

predictions of group membership some percentage of the time. This is known 

as by chance accuracy. The estimate of “by chance accuracy” that is often 

used is the “proportional by chance accuracy rate”, and its the sum of the 

squared percentage of chances of cases in each group. To characterise a model 

as useful, the overall percentage accuracy rate compared to the proportional by 

chance accuracy is some percentage more (i.e. logistic regression model is 

classified as useful if there is some percentage (set) improvement over the rate 

of accuracy achievable by chance alone. (Garson, n.d) 
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CHAPTER FOUR 

 

REVIEW OF DISCRIMINANT ANALYSIS 

 

Introduction  

         Discriminant analysis is a technique for predicting and classifying a set 

of observations into predefined classes. It is used to determine which 

continuous variables best discriminate between two or more natural 

occurring groups. The model is built based on a set of observations for 

which the classes are known and this discriminant function is used to predict 

the class of a new observation with unknown class.  

         Discriminant Analysis may be used either to assess the adequacy of 

classification, given the group memberships of the objects under study; or to 

assign objects to one of a number of (known) groups of objects. It thus has a 

descriptive or a predictive objective.  

       It is one of the available techniques for developing a rule or model to 

enable one identify or discriminate between cases based on the rule or the 

underlying principle. This technique is used for analyzing data when 

response variables are categorical and the predictor variables are interval 

scaled. (Wikipedia, n.d) 

 

Objectives of Discriminant Analysis 

 The main objectives for performing discriminant analysis are:  
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1. Identify the variables that best discriminate between groups using the 

most parsimonious way (i.e. to determine most influential predictors).  

2.  To use the identified variables or factors to develop a good 

classification function that is linear combination of the predictor 

variables and would be reliable in classification cases. 

3. Undertake discriminant classification analysis which classifies cases 

into groups and also to assign new objects to one of a number of 

known groups thereby validating the predictive function 

4. To test theory by observing whether cases are classified as predicted. 

5. To assess the relative importance of the independent variables in 

classifying the dependent variable 

6. Examine whether significant differences exist among groups. 

7. To determine the percentage of variance in the dependent variable 

explained by the independents over and above the variance accounted 

for by control variables. (Garson, n.d) 

 

Types of  Discriminant Analysis 

There are two types of discriminant analysis namely  

1. Linear Discriminant Analysis (LDA) also known as Discriminant 

Analysis (DA) or Two-group discriminant analysis.  

2. Multiple Discriminant Analysis (MDA)/ Multiple-group discriminant 

analysis.  
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Linear Discriminant Analysis 

Linear discriminant analysis or simply discriminant analysis (DA), is 

used to classify cases into the values of a categorical dependent, usually a 

dichotomy and it also explicitly attempts to model the difference between two 

classes of data. If the discriminant function analysis is effective for a set of 

data, the classification table estimates will yield a high percentage of correct 

classification. LDA is closely related to ANOVA (analysis of variance) and 

regression analysis, which also attempt to express one dependent variable as a 

linear combination of other features or measurements. In the ANOVA and 

regression analysis, however, the dependent variable is a numerical quantity, 

while for LDA it is a categorical variable (i.e. the class label).  

LDA is also closely related to principal component analysis (PCA) and 

factor analysis in that they all look for linear combinations of variables which 

best explain the data. LDA explicitly attempts to model the difference between 

the classes of data. PCA on the other hand does not take into account any 

difference in class, and factor analysis builds the feature combinations based 

on differences rather than similarities. Discriminant analysis is also different 

from factor analysis in that it is not an interdependence technique. (Abdi, 

2007) 

 

Multiple-Group Discriminant Analysis 

Multiple discriminant analysis (MDA) is an extension of linear 

discriminant analysis and relates to multiple analysis of variance (MANOVA), 

sharing many of the same assumptions and tests. Discriminant analysis is just 

the inverse of a one-way MANOVA. The levels of the independent variable 
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(or factor) for MANOVA become the categories of the dependent variable for 

discriminant analysis, and the dependent variables of the MANOVA become 

the predictors for discriminant analysis.  

In MANOVA one asks whether group membership produces reliable 

differences on a combination of dependent variables. If the answer to that 

question is 'yes', then clearly, that combination of variables can be used to 

predict group membership. Mathematically, MANOVA and discriminant 

analysis are the same. We can compare those two matrices via multivariate F 

tests in order to determine whether or not there are any significant differences 

(with regard to all variables) between groups. This procedure is identical to 

multivariate analysis of variance or MANOVA. (Abdi, 2007). 

Multiple discriminant analysis is used to classify a categorical 

dependent which has more than two categories, using as predictors a number 

of interval or dummy independent variables. For example, the management of 

a telephone company is interested in identifying characteristics that best 

discriminate among households that have one, two and three or more phone 

lines. Here, the interest is in identifying more than two groups.  

The objectives of the multiple-group discriminant analysis are the 

same as that of  two-group discriminant analysis except that in the case of  

two-group discriminant analysis, only one discriminant function is required to 

represent all of the differences between the two groups, but in the case of 

multiple group discriminant analysis, it may not be possible to represent or 

account for all of the differences among the groups by a single discriminant 

function, making it necessary to identify additional discriminant function(s). 

Thus, an additional objective of multiple-group discriminant analysis is to 
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identify the minimum number of discriminant functions that will provide most 

of the discrimination among the groups. (Abdi, 2007) 

 

Methods for Selecting the Best Set of Variables for Discriminant Model 

In some applications of discriminant analysis, there are data 

availability on a large number of variables. In this case, it is desirable to select 

relatively small subsets of variables that would contain almost as much 

information as the original collection.  

One major objective for performing discriminant analysis is to come 

out with the best set of variables that can be used to develop a function or a 

model for future predictions and classifications. The question then is, how can 

one identify or select the best potential discriminator variables than can be 

used to form a discriminant function?  

The following techniques are mostly used to select the best set of 

discriminating variables to form discriminant function(s) for future predictions 

and classifications:  

1. The forward selection. 

2. The backward selection. 

3. The stepwise selection. 

 

The Forward Selection 

The forward selection method enters first the variable that provides the 

most discrimination between the groups as measured by a given statistical 

criterion. In the next step, the variable entered is the one that adds maximum 

amount of additional discriminating power to the discriminant function as 
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measured by the statistical criterion. The procedure continues until addition of 

new variable does not significantly change the model. (Statgun, n.d). 

 

The Backward Selection 

The backward selection begins with all the variables in the 

discriminant function. At each step, one variable is removed (that one being 

the one that provides the least amount of decrease in the discriminating power, 

as measured by statistical criterion). If the removal of that variable has no 

significant effect on the model, as revealed by the statistical criterion, it is 

excluded from the modelling. However, if its removal has a significant effect 

in the discriminating power, it is maintained in the modelling. The procedure 

continues until no more variables can be removed. (Statgun, n.d) 

 

The Stepwise Selection 

Stepwise selection is a combination of the forward and backward 

elimination procedures. It begins with no variables in the discriminating 

function, and then at each step a variable is either added or removed. A 

variable already in the discriminant function is removed if it does not 

significantly lower the discriminating power, as measured by the statistical 

criterion. If no variable is removed at a given step then the variable that 

significantly adds the most discriminating power, as measured by the 

statistical criterion, is added to the discriminant function. The procedure stops 

at a step when addition or removal of variable from the discriminant function 

does not increase the R-squared. (Statgun, n.d)  
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Criteria for Variable Selection for Discriminant Function 

Since discriminant analysis requires several assumptions for group 

membership, it is important to determine whether a specific variable is good 

enough and also important to be included in the discriminant function.  In 

other words, it is important to assess whether the variable is a member of the 

discriminant groups. 

There are a number of statistical criteria for determining the addition or the 

removal of variables from the discriminant function. The most common ones 

are: 

1. Wilks’ lambda )(  

2. Mahalanobis square distance 

3. Rao’s V 

 

Wilks’ Lambda )(  

Wilks’ lambda )( is the ratio of the within-group sum of squares to the 

total sum of squares. At each step, the variable that is included in the function 

is the one with the smallest Wilks’ lambda )( after the effect of variables 

already in the discriminant function is removed. Since the Wilks’ lambda 

)( can be approximated by the F-ratio, Wilks’ lambda )( is equal to 

entering the variable that has the highest partial F-ratio. Wilks’ lambda )( is 

thus given by  

                       
wb

w

t

w
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Where 

            wSS = sum of squares within groups  
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             tSS  = total sum of squares 

                   bSS = sum of squares between groups 

The assessment of the Wilks’ lambda is done by converting to F- ratio 

with the transformation  

p

pnn
F

11 21 , 

where p is number of variables for which the statistic is computed and  is 

the Wilks’ lambda of the distribution. F-ratio follows an F-distribution with 

121 pnn   degrees of freedom.  

Wilks’ lambda tests the significance of each discriminant function in 

DA specifically, the significance of the eigenvalue for a given function. 

Minimizing Wilks’ lambda is an indication that the within-group sum of 

squares is minimized and the between-group sum of squares is maximized. 

That is, the Wilks’ lambda selection criterion considers between-groups 

separation and within-group homogeneity. The larger the lambda, the more 

likely it is significant. (Statgun, n.d) 

A significant lambda means one can reject the null hypothesis that the 

two groups have the same mean discriminant function scores and conclude the 

model is discriminating. It is a measure of the difference between groups of 

the centroid (vector) of means on the independent variables. Wilks’ Lambda 

varies from 0 to 1, with 0 meaning group means differ (thus the variable 

highly differentiates the groups), and 1 meaning all group means are the same. 

 The Bartlett's V transformation of lambda is used to compute the 

significance of lambda. Wilks’ lambda is used, in conjunction with Bartlett's 
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V, as a multivariate significance test of mean differences in MDA, for the case 

of multiple interval independents and multiple. (Statgun, n.d) 

 

Mahalanobis Distances  

Mahalanobis distance )( 2D  is another technique that is used in 

analyzing cases in discriminant analysis. For instance, one might wish to 

analyze a new and unknown set of cases in comparison to an existing set of 

known cases. Mahalanobis distance is the distance between a case and the 

centroid for each group (of the dependent) in attribute space (n-dimensional 

space defined by n variables). A case will have one Mahalanobis distance for 

each group, and it will be classified as belonging to the group for which its 

Mahalanobis distance is smallest. Thus, the smaller the Mahalanobis distance, 

the closer the case is to the group centroid and the more likely it is to be 

classified as a member of that group. 

Mahalanobis distance for two group discriminant analysis is related to 

the squared multiple correlation coefficient )( 2R by 

                             
)1(

)2)((
2

21

2

21212

Rnn

Rnnnn
D , 

where 
1

n is the number of cases in group one and 
2

n is the number of cases in 

group two. 

 

Rao’s V 

Rao’s V is based on the Mahalanobis distance and concentrates on the 

separation between the groups, as measured by the distance of the centroid of 

each group from the centroid of the total sample. Rao’s V is used to determine 
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the extent to which the discriminant functions discriminate between criteria 

groups. A measure from this group is mostly used in stepwise discriminant 

analysis to determine if adding an independent variable to the model will 

significantly improve classification of the dependent variable. Rao’s V and the 

change in it while adding or deleting a variable is approximately 2 statistic 

and thus follows a 2 distribution.  

Although Rao’s V provides information about between-groups 

separation, it does not take into consideration group homogeneity. Therefore, 

the use of Rao’s V may produce a discriminant function that does not have 

maximum within-group homogeneity. (Statgun, n.d) 

 

The Discriminant Functions  

The discriminant functions or models (also called canonical 

discriminant functions), are the set of equations that are used to find the 

relationship between the predictor variables and the response variable. They 

are built based on a set of observations for which the classes are known 

(training set). Based on the training set, the technique constructs a set of linear 

functions of the predictors or discriminant functions which are the heart of 

discriminant analysis. The discriminant functions are the linear combinations 

of the standardised independent variables which yield the biggest mean 

differences between the groups.  

 

Number of Discriminant Functions for DA and MDA 

The discriminant function is a linear function of the form                 

kttttt xxxD
k

21 210
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where,  

tD = the predicted discriminant score for group t . 

t = the number of groups differentiated by the t discriminant functions  

ktttt ,,,,
210
  are the weights of the independent variables kxxx ,,, 21   

respectively and is the constant term in group t. 

There is one discriminant function for 2-group discriminant analysis 

(i.e. if the dependent variable is a dichotomy), but for higher order DA (k 

dependent variables), up to k-1 discriminant functions can be extracted. Thus 

the maximum number of functions is the lesser of k - 1 (number of dependent 

groups minus 1). 

 A first function is computed on which the group means are as different 

as possible. A second function is then computed uncorrelated with the first, 

then a third function is computed uncorrelated with the first two, and so on, for 

as many functions as possible. Each discriminant function is orthogonal to the 

others. The first function maximizes the differences between the values of the 

dependent variable. The second function maximizes the differences between 

values of the dependent variable uncontrolled for by the first factor, the third 

function maximizes the differences between values of the dependents 

uncontrolled for by the first two, and so on. (Luna, n.d) 

Though mathematically different, each discriminant function is a 

dimension which differentiates a case into categories of the dependent based 

on its values on the independents. The first function will be the most powerful 

differentiating dimension, but later functions may also represent additional 

significant dimensions of differentiation. (Luna, n.d) 
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Calculation of the Discriminant Function for Two-Grouped DA 

Considering two populations with observed values on p random 

variables pXXX ,,, 21  for each of the 1n  individuals selected from 

population 1 and for each of the 2n  individual from population 2. In particular, 

for the thi population ),2,1(i  supposing that we let ijkX denote the observed 

value of variable ),,2,1( pjX j  for the thk  sampled individual 

).,,2,1( ink   Thus, the set of variable values ),,,( 121 pkkiki xxx   represent 

the group of measurements obtained for the thk individual selected from 

population i. The main objective of discriminant analysis is to develop a 

model L that is a linear combination of the independent variables say 

                                      pp xxxL 2211  

with values for p,,, 21  chosen so as to provide maximum 

discrimination between the two populations (thus, the variation in the values 

of L between the two groups would be much greater that the variation in the 

values of L within the two groups). 

For any thk individual from population ,i if the s' are known, the 

associated L value would be 

ipkpkikiik xxxL 
2211 . 

In the analysis-of-variance framework, the total variation in the scores 

is measured by  

2

1 1

2)(
i

n

k

ik

i

LL  

where 
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The total sum of squares can be broken down into two interpretable 

components, a between-groups sum of squares, B, given by 

2
2

1

)( LLnB
i

ii = 2

21

21

31 )( LL
nn

nn
 

and a within-group sum of squares, W, given by 

                                                     
2

2

1 1

)(
i

n

k

iik

i

LLW .  

The ratio 
W

B
 is a measure of the discriminant power of L due to the fact that 

the larger the value of B relative to W, the more L is reflecting between-

population variation as opposed to within–population variation. 

Also, let  

                                       j

n

k ijkij nxx
j

/
1

  

be the observed mean value of variable j in the two sample of jn  individuals 

from population j  and let also  jjj xxd 21  

be the observed differences  between values of variable, then if  

S =

pppp

p

p

sss

sss

sss







21

22221

11211

...

...

...

.

 

is the covariance matrix of the sx'  so that  
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S
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is the inverse matrix of S, then the values of pbbb ,,, 21   which maximizes 

W

B
 are  given as follows: 

                                           p

pdsdsdsb 1

2

12

1

11

1   

         p

pdsdsdsb 2

2

22

1

21

2   

                                             .         .           .     .       .     .    

                                             . 

                                             .         .             .        .     .     .                          

                                            p

pppp

p dsdsdsb 2

2

1

1  

The linear combination of the sx' based on the sb'  is given by 

pp xbxbxbl 2211  

and this linear combination maximizes the quantity 
W

B
 based on the 

sample at hand. The sb'  are estimates of the s' and l  is also an estimate of 

the optimal linear combination of L. (Bartlett, 1951) 

 

Testing for Importance of Discriminant Functions  

Assessing Relative Importance 

The eigenvalue, which is the characteristic root of each discriminant 

function, reflects the ratio of importance of the dimensions which classify 

cases of the dependent variable. There is one eigenvalue for each discriminant 
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function. For two-group DA, there is one discriminant function and one 

eigenvalue, which accounts for 100% of the explained variance. If there is 

more than one discriminant function, the first will be the largest and most 

important, the second next most important in explanatory power, and so on.    

The eigenvalues assess relative importance because they reflect the 

percents of variance explained in the dependent variable, cumulating to 100% 

for all functions. That is, the ratio of the eigenvalues indicates the relative 

discriminating power of the discriminant functions. If the ratio of two 

eigenvalues is 1.4, for instance, then the first discriminant function accounts 

for 40% more between-group variance in the dependent categories than does 

the second discriminant function. (Luna, n.d) 

 

Relative Percentage of Discriminant Functions 

The relative percentage (RP) tells how many functions are important. 

The relative percentage of a discriminant function equals a function's 

eigenvalue divided by the sum of all eigenvalues of all discriminant functions 

in the model. Thus it is the percent of discriminating power for the model 

associated with a given discriminant function. The relative percentage is given 

by  

  RP =
k

i

i

i

1

, 

where i = the eigenvalue of the thi discriminant function and k is the number 

of  discriminant functions. (Luna, n.d) 
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Testing for Association between Groups and Discriminant Function 

 The association between the groups formed by the dependent and the 

given discriminant function is measured by the canonical correlation (R*). The 

canonical correlation of each discriminant function is also the correlation of 

that function with the discriminant scores .When R* is zero, it means there is 

no relation between the groups and the function. When the canonical 

correlation is large, there is a high correlation between the discriminant 

functions and the groups. R* is used to tell how much each function is useful 

in determining group differences. A canonical correlation close to 1 means 

that nearly all the variance in the discriminant scores can be attributed to 

group differences. Squared canonical correlation, (R*)
2
, is the percentage of 

variation in the dependent discriminated by the set of independents in DA or 

MDA. For two-group DA, the canonical correlation is equivalent to the 

Pearsonian correlation of the discriminant scores with the grouping 

variable.(Wikipedia, n.d). 

 

Assessing Independent Variables in the Discriminant Function 

The discriminant score, also called the DA score, is the value resulting 

from applying a discriminant function formula to the data for a given case. If 

the discriminant score of the function is less than or equal to cutoff (the mean 

of the centroids of two groups), the case is classed as 0, or if above it is 

classed as 1. (Wikipedia, n.d). 

 

Discriminant Coefficients 

There are two types of discriminant coefficients: 
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1. unstandardized discriminant coefficients. 

2. standardized discriminant coefficients 

 

Unstandardized Discriminant Coefficients 

Unstandardized discriminant coefficients are used in the formula for 

making the classifications in DA much as b coefficients are used in regression 

in making predictions. The constant plus the sum of products of the 

unstandardized coefficients with the observations yields the discriminant 

scores. That is, discriminant coefficients are the regression-like b coefficients 

in the discriminant function, in the form L = b 0 +b1x1 + b2x2 + ...+ bnxn  where 

L is the latent variable formed by the discriminant function, the b's are 

discriminant coefficients, the x's are discriminating variables, and b 0  is a 

constant. The discriminant function coefficients are partial coefficients, 

reflecting the unique contribution of each variable to the classification of the 

criterion variable.  

 

Standardized Discriminant Coefficients 

Standardized discriminant coefficients, also termed the standardized 

canonical discriminant function coefficients, are used to compare the relative 

importance of the independent variables, much as beta weights (b) are used in 

regression. The standardized discriminant coefficients are also used to assess 

the relative classifying importance of the independent variables. Importance of 

variables is assessed relative to the model being analyzed. Addition or deletion 

of variables in the model can change discriminant coefficients markedly. In 

situations where there are more than two groups of the dependent, the 
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standardized discriminant coefficients do not give any information about 

which groups the variable is most or least discriminating. For this reason, 

group centroids and factor structure are examined.   

 

Testing  Efficiency of Discriminant Functions 

The mean discriminant scores for each of the dependent variable 

categories for each of the discriminant functions in discriminant analysis are 

know as functions at group centroids. Two-group discriminant analysis has 

two centroids, one for each group. If the means of the two groups are well 

apart, it shows that the discriminant function is clearly discriminating. The 

closer the means, the more errors of classification there likely will be. 

Discriminant function plots, also called canonical plots, can be created 

in which the two axes are two of the discriminant functions (the dimensional 

meaning of which is determined by looking at the structure coefficients), and 

circles within the plot locate the centroids of each category being analyzed. 

The farther apart one point is from another on the plot, the more the dimension 

represented by that axis differentiates those two groups. Thus, these plots 

depict discriminant function space.                           
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                                                                                1X (Centroid of group 1)                                       

                                     

Figure 3: Discriminant Scatter Plot                        

                                                                             
1

X (Centroid of group 2) 

 

Wilks’ Lampda Significance Tests                                          

Models Wilks’ Lambda  

Model Wilks' lambda is used to test the significance of the 

discriminant function as a whole. The larger the lambda, the more likely it is 

significant. A significant lambda means one can reject the null hypothesis that 

the two groups have the same mean discriminant function scores and conclude 

the model is discriminating. 

 

Model Wilks' Lambda Difference Tests 

This is also used in a second context to assess the improvement in 

classification when using sequential discriminant analysis. There is an F- test 

of significance of the ratio of two Wilks' lambdas, such as between a first one 

for a set of control variables as predictors and a second one for a model 
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including both control variables and independent variables of interest. The 

second lambda is divided by the first (where the first is the model with fewer 

predictors). (Statgun, n.d) 

 

Purposes of Discriminant Analysis 

This concern for the classification ability of the linear discriminant 

function or model is even confused due to the fact that two very distinct 

purposes for conducting discriminant analysis exist. These are: 

1. discriminant analysis for predictive purposes (discriminant prediction 

analysis). 

2. discriminant analysis for classification purposes (discriminant 

classification analysis). 

 

Discriminant Analysis for Prediction  

Discriminant analysis for prediction is used to optimize the predictive 

function. The discriminant analysis for predictive purposes maximizes the 

amount of subject variance explained by the linear function. It uses a set of k 

variables with associated weights (
kt
 ) that are derived in a best fit, linear 

unbiased fashion to predict the score of the dependent variable, D. These 

discriminant scores are predictors of group membership that can be used to 

classify groups of observations that are of either known or unknown group 

membership. (Luna, n.d) 

Discriminant analysis conducted for predictive purposes formulates a 

linear discriminant function describing the importance of the independent 

variables in differentiating observations of known group membership. Given 
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two previously identified groups, predictive discriminant analysis formulate 

predictive function from the independent variables to explain differences 

between the members of the two groups. Example, a predictive analysis was 

used to differentiate a sample of purchasers of a certain product and non-

purchasers of the products, or innovators and non-innovators. In these 

situations, group membership was known prior to the analysis and the sole 

purpose was to derive the predictive function, using the set of independent 

variables, to predict consumers of unknown group membership or innovators 

and non-innovators. A predictive analysis is possible in many situations where 

prior designation of groups exists. (Statgun, n.d) 

 

Discriminant Analysis for Classification of Observations 

Discriminant classification analysis uses the predictive functions 

derived in the predictive analysis to classify fresh sets of data of known group 

membership, thereby validating the predictive function; or if the function has 

previously been validated, to classify new sets of observations of unknown 

group membership. The purpose of classification of observations of known 

grouping is merely to see how well the derived function predicts group 

membership using the subject data from which it was derived. The 

classification procedure associated with the predictive analysis may be thought 

of as a base line analysis that establishes a standard of comparison for future 

discriminant classification analysis. (Luna, n.d). 
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Classification of Two Populations 

There are several methods of actually classifying cases in MDA. The 

aims or objectives of all these methods are to classify cases with a minimum 

error. A good classification procedure should result in few misclassifications.  

In other words, the chances, or probabilities, of misclassification should be 

small. 

One aspect of classification is cost. Suppose that classifying a case 

from population one ( 1  ) as belonging to population two ( 2 ) represents a 

more serious error than classifying a 2  object as belonging to a 1 , then one 

should be cautious about making the former assignment. An optimal 

classification procedure should, whenever possible, account for the costs 

associated with misclassification. (Luna, n.d) 

 

Cost of Misclassification 

Consider probability density functions )(1 xf  and )(2 xf  associated 

with random variable x for the population 1  and 2 , respectively. If an object 

with an associated measurement x has to be assigned to either 1  or 2 , then 

consider  to be the sample space; that is, collection of all possible 

observations x. Let 1R  be the set of x for which an object is classified as 

1 and 12 RR  be the remaining x values for which an object is classified 

as 2 . Since every object must be assigned to one and only one of the two 

populations, the sets 1R  and 2R  are mutually exclusive and exhaustive. 

The conditional probability, 2(P │1), of classifying an object as 

2 when, in fact, it is from 1  is  



  59 

           2(P │1) = P(x 2R │ 1 )  = 112
fRR (x)dx                      (12) 

Similarly, the conditional probability, 1(P │2), of classifying an object 

as 1  when it is really from 2  is 

                       1(P │2) = P(x 1R │ 2 ) = 21
fR (x)dx                                (13) 

Equation (12) represents the volume formed by the density function 1f (x) 

over the region 2R . Similarly, equation (13) represents the volume formed by 

2f (x) over the region 1R . If 1p  is prior probability of 1  and 2p  is the prior 

probability of 2 , where 121 pp . The overall probabilities of incorrectly 

classifying an object is given by  

                       2(P │1)+ 1(P │2) = 112
fRR (x)dx + 21

fR (x)dx                                 

The costs are: 

 (1) zero for correct classification,  

(2) c(1│2) when an observation from  2  is incorrectly classified as 1 ,  

(3) c(2│1) when 1  observation is incorrectly classified as 2 . 

For any rule, the average, or expected cost of misclassification (ECM) 

is provided by the product of the off-entries by their probabilities of 

occurrence. Hence, 

ECM = c(2│1) P(2│1) 1p + c(1│2) P(1│2) 2p . 

A good classification rule should have an ECM as small as possible. 

The regions 1R and 2R  that minimize the ECM are defined by the values x for 

which the inequalities 
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i.e   

ratio

yprobabilit

prior

ratio

cost

ratio

density
 

and  

                                 :2R
)(

)(

2

1 x
xf

f
<

1

2

)12(

)21(

p

p

c

c
                                   (15) 

                                  

ratio

yprobabilit

prior

ratio

cost

ratio

density
 

 

Minizing the Total Probability of Misclassification (TPM) 

TMP = P(misclassifying a 1  observation or misclassifying a 2  observation) 

            = P(observation comes from 1 and is misclassified as from 2 ) 

                + P(observation comes from 2 and is misclassified as from 1 ) 

              = 121 fp R dx + 22 1
fp R dx 

This problem is equivalent to minimizing the expected cost of 

misclassification when the costs of misclassification are equal.  

A new observation xo could be allocated to the population with the 

largest “posterior” probability. Thus classifying an observation in population 

1  is given as below: 

         P( 1  xo) = 
)observe(

)observeandoccurs( 1

o

o

xP

xP
 

                         = 
)()observe()()observe(

)()observe(

2211

11
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oo

o
         (16)           
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                         = 
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Also classifying an observation xo in population 2  is given as below: 

                 1)( 2 oxP P( 1  xo) = 
)()(

)(

2211

22

oo

o

xfPxfP

xfP
                       (18) 

 

Classification with Two Multivariate Normal Populations 

Classification procedures based on normal populations is a major 

practice in statistics. Assuming )(1 xf  and )(2 xf  are multivariate normal 

densities with mean vectors µ1 and µ2, and covariance matrix 1  and 

2 respectively. 

 

Classification of Normal Population when 1 = 2 =  

Assume the joint densities of X
1
= pXXX 21,  for populations 1  and 2  

are given by  

     
1'

2
1

2

)()(
2

1
exp

)2(

1
)( iipi xxxf ,   for 2,1i      (19) 

If the population parameters µ1, µ2 and are known, then after cancellation 

of 2
1

2)2(
p

 (since it is common to both populations), the minimum 

expected cost of misclassification (ECM) are  
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Taking natural logarithm of (1) gives 
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Hence the allocation rule is given as below: 

Allocate xo to 1  if  

)()(
2

1
)( 21

11

21

1'

21 x ≥ ln
1

2

)12(

)21(

p

p

c

c
                (22) 

or  

Allocate xo to 2  if  

)()(
2

1
)( 21

1'

21

1'

21 x < ln
1

2

)12(

)21(

p

p

c

c
               (23)  

In most practical situations, the population quantity 1 , 2  and are 

not known, so, Wald A. and Anderson T.W. suggested that the sample 

counterparts of the parameters be used instead.  

Since it is assumed that the parent populations have the same 

covariance matrix ,  the sample covariance matrices 1S  and 2S  are 

combined (pooled) to derive a single unbiased estimate of .  The weighted 

average, pooledS  is given by 
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is an unbiased estimate of and the data matrices 1X  and 2X  contain 

random sample from the population 1  and 2 , respectively. 

Substituting 1X   for 1 , 2X  for 2  and pooledS  for in (11) gives the 

classification rule below: 

Allocate 0X  to 1  if  
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1
)( 21
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210
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     (24) 

Allocate 0X  to 2  otherwise. 

 

Classification of Normal Population when  1 ≠ 2    

From equations (19) and (20) above, substituting multivariate normal densities 

with different covariance matrices 1 and 2 in (1), we have 
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Hence from (14),  
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Taking natural logarithm of (20) and simplifying the results yield the below 

classification regions:  
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The allocation rule that minimizes the expected cost of misclassification is 

given by 

Allocate x0 to 1  if  
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Allocate x0 to 2  otherwise. 

From Luna, according to Wald A. and Anderson T.W for practical 

conditions, the classification rule is implemented by substituting the sample 
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quantities ,,, 121 SXX and 2S for 
121 ,,,  and 

2
,  respectively. Hence the 

allocation rule is given as below: 

Allocate x0 to 1  if  

 kXSXSXXSSX 0

1
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1
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1

1

10

1
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0 )()(
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Allocate x0 to 2  otherwise. 

 

Fisher’s Discriminant Function - Separation of Two Populations 

Fisher’s idea of linear classification was to transform the multivariate 

observation x to univariate observation y such that the y’s derived from 

population 1  and 2  were separated as much as possible.  Fisher suggested 

taking linear combinations of x to create y’s because they are simple enough 

functions of the x to be handled easily. Fisher’s approach does not assume that 

the populations are normal. It does, however, implicitly assume that 

population covariace matrix is used. (Luna, n.d) 

A fixed linear combination of the x’s takes the values 

nyyy 11211 ,,,  for the observations from the first population and the values 

nyyy 2,2221 ,,   for the observations from the second population. The 

separation of these two sets of univariate y’s is assessed in terms of the 

difference between 1y  and 2y  expressed in standard derivation units. That is, 

Separation =
ys

yy 21
, 

where 



  66 

2

)()(

21

1 1

2

22

2

11

2

1 2

nn

yyyy

s

n

j

n

j

jj

y  

is the pooled estimate of the variance. The objective is to select the linear 

combination of the x to achieve maximum separation of the sample means 1y  

and  .2y  

The linear combination xSxxxy pooled

1

21 )(̂  maximizes the ratio 

2
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)yofvariancesample(

yofmeanssamplebetween
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                                                        = 
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)ˆ( 2

pooledS

d
 

The over all possible coefficient vectors is ̂  and d = ( ).21 xx  The maximum 

of the ratio (1) is
2D )()( 21

1

21 xxSxx pooled , where
2D is the sample 

squared distance between the two means. 

 

Allocation Rule (Classification) using Fisher’s Discriminant Function 

Allocate xo to 1  if  

                                          my ˆ
0 , 

 where 

                   0

1

210 )( xSxxy pooled   and  )()(ˆ
21

1

212
1 xxSxxm pooled  
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or                          

                                                    0ˆ
0 my   

Allocate xo to 2  if  

                                                0y < m̂      or    0y       0 <  m̂    

This Fisher’s linear discriminant function was developed under the 

assumption that the two populations, whatever their form, have a common 

covariance matrix S.       

Thus  

                 xSxxw pooled

1

21 )( )()( 21

1

212
1 xxSxx pooled  

                      = 1

21 )( pooledSxx  [ )( 212
1 xxx ] which is frequently called 

Anderson’s classification function. (Luna, n.d) 

In summary, Fisher’s discriminant function says, for two populations, 

the maximum relative separation that can be obtained by considering linear 

combinations of the multivariate observations is equal to the distance D
2
. The 

D
2
 can be used to test whether the population means µ1 and µ2 differ 

significantly. Consequently, a test for differences in mean vectors can be 

viewed as a test for the “significance” of the separation that can be achieved.  

Supposing the populations 1  and 2  are multivariate normal with a 

common covariance matrix .  Then, a test of :0H  µ1 = µ2  versus 0H : µ1 ≠ 

µ2 with a corresponding test statistic  

2

21

21

21

11

)2(

1
D

nn

nn

pnn

pnn
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to an F-distribution with p1  and  1212 pnn  degrees of freedom. 

If 0H is rejected, we can conclude that the separation between the two 

populations 1  and 2  is significant. (Luna, n.d) 

 

Differences between Discriminant Predictive and Discriminant 

Classification Analysis 

The discriminant classification analysis is in sharp contrast to the 

discriminant predictive analysis.   

Discriminant analysis conducted for predictive purposes formulates a 

linear discriminant function describing the importance of the independent 

variables in differentiating observations of known group membership. 

Discriminant analysis conducted for classification purposes validates the 

predictive discriminant function as a means of classifying fresh observations 

of unknown group membership sampled from the same population. In the 

event of previous validation of the predictive function, the classification 

analysis is purely for classification purposes. The result of the classification 

analysis is evaluated in the light of the specific objectives, if optimization 

rather than maximization is to result. 

 Discriminant analysis conducted for predictive purposes uses an initial 

data set having known group membership to both derive the discriminant 

functions and predict group classification. This classification of observation is 

an extension of the predictive discriminant analysis in that the predictive 

Discriminant scores, Dit, form the basis of the decision rule used to classify 

this same set of objects into the t groups. In contrast to the classification of the 
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initial data set, where group membership is known, the same decision rule may 

be applied to other sets of data.  

However, when one classifies data sets other than the initial set from 

which the predictive analysis was conducted, the person is no longer engaged 

in predictive discriminant analysis, but rather in discriminant classification 

analysis. Predictive discriminant analysis requires no validation procedures to 

be implemented, since derivation of an optimal discriminant function is the 

only relevant issue. However, if fresh sets of data with either known or 

unknown grouping are classified, then the discriminant function must be 

validated to be generalisable to these data sets centroids. (Wikipedia, n.d) 

 

Validation of Discriminant Function 

Generalised distance functions are based on the Mahalanobis distance, 

D-square, of each case to each of the group but other methods such as the 

holdout method can also be used for validation. The holdout sample method is 

a split halves test, where a portion of the cases are assigned to the analysis 

sample for purposes of training the discriminant function, then it is validated 

by assessing its performance on the remaining cases in the hold-out sample. 

Another method that is also used for validating the discriminant 

function is the U-method. The U-method was proposed by Lachenbruch in 

1967. This method holds one observation from n samples at a time, estimates 

the discriminant function using the remaining 1n  observations, and 

classifies the held-out observation. (Wikipedia, n.d). 
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Testing Importance of Independent Variables 

The derived discriminant coefficients may be interpreted as indicative 

of the importance of the respective p independent variables entered into the 

discriminant analysis. Although these coefficients indicate importance, they 

are not appropriate for assessing the relative importance or discriminatory 

power of the variables, (i.e., the proportion of total discriminating power 

attributable to a specific variable). Relative importance of the independent 

variables entered in the predictive function is defined in part by:  

                                   RP =
k

i

i

p

I

I

1

,  

                           )(
ipptpp xxI  

Where  

           Ip = the importance of the 
thp  variable 

         p  = the unstandardized discriminant coefficient for the 
thp  variable;  

          ptx = the mean of the 
thp variable for the tht group.  

The bigger the value of the relative importance of a variable is, the more 

important that variable is in the function. (Wikipedia, n.d).  

 

Requirements and Assumptions for Discriminant Analysis  

Proper Specification 

The discriminant coefficients can change substantially if variables are 

added to or subtracted from the model. It is therefore important to specify the 

variables which are necessary to give a reliable equation. 
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True Categorical Dependent Variable 

The dependent variable is a true dichotomy. When the range of true 

underlying continuous variable is constrained to form a dichotomy, correlation 

is attenuated (biased toward underestimation). It is therefore important not to 

dichotomize a continuous variable simply for the purpose of applying 

discriminant function analysis, (the same considerations apply to trichotomies 

and higher). All cases must belong to a group formed by the dependent 

variable. The groups must be mutually exclusive, with every case belonging to 

only one group. 

 

Homogeneity of Variances (Homoscedasticity) 

Within each group formed by the dependent, the variance of each 

interval independent should be similar between groups. That is, the 

independents may (and will) have different variances one from another, but for 

the same independent, the groups formed by the dependent should have 

similar variances and means on that independent. 

 

Homogeneity of Covariances/Correlations 

Within each group formed by the dependent, the covariance/correlation 

between any two predictor variables should be similar to the corresponding 

covariance/correlation in other groups.  DA will tend to classify cases in the 

group with the larger variability. 
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Assumption of Linearity 

        Discriminant analysis does not take into account exponential terms unless 

such transformed variables are added as additional independents.  

 

 Low Multicollinearity of the Independent Variables 

  To the extent that independent variables are correlated, the 

standardized discriminant function coefficients will not reliably assess the 

relative importance of the predictor variables. Multicollinearity is looking at 

the "pooled within-groups correlation.”Pooled" is the average across groups 

formed by the dependent but this can be very different from normal (total) 

correlation when two variables are less correlated within groups than between 

groups.  

 

Assumption of  Additivity  

Discriminant analysis does not take into account interaction terms unless 

new cross-product variable are added as additional independents.  

 

For Purposes of Significance Testing  

      Predictor variables follow multivariate normal distributions. That is, 

each predictor variable has a normal distribution about fixed values of all the 

other independents. When non-normality is caused by outliers rather than 

skewness, violation of this assumption of normality would have more serious 

consequences as discriminant analysis is highly sensitive to outliers.  
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Sample Size 

     Unequal sample sizes are acceptable. The sample size of the smallest  

group needs to exceed the number of predictor variables. As a “rule of thumb”, 

the smallest sample size should be at least 20 for a few (4 or 5) predictors. The 

maximum number of independent variables is n - 2, where n is the sample size. 

While this low sample size may work, it is not encouraged, and generally it is 

best to have 4 or 5 times as many observations as the independent variables. 

 

Assumption of Normality of Distribution 

It is assumed that the data (for the variables) represent a sample from a 

multivariate normal distribution. One can examine whether or not variables are 

normally distributed with histograms of frequency distributions. However, 

violations of the normality assumption are not "fatal" and the resultant 

significance tests are still reliable as long as non-normality is caused by 

skewness and not outliers (Tabachnick, et al., 2001). 

 

Outliers 

         Discriminant analysis is highly sensitive to outliers. Lack of 

homogeneity of variances may indicate the presence of outliers in one or more 

groups and it will also mean significance tests are unreliable. A test for 

univariate and multivariate outliers for each group has to be carried out and 

transform or eliminate them.  

       If one group in the study contains extreme outliers that impact the mean, 

they will also increase variability. Overall significance tests are based on pooled 

variances, that is, the average variance across all groups. Thus, the significance 
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tests of the relatively large means (with the large variances) would be based on 

the relatively smaller pooled variances, resulting erroneously in statistical 

significance. 
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CHAPTER FIVE 

 

COMPARISON OF LOGISTIC REGRESSION AND DISCRIMINANT 

ANALYSIS 

 

Introduction 

Logistic regression and discriminant analysis share a lot of common 

characteristics but sometimes do have some differences. It is, therefore, 

important to make comparisons of the two techniques to determine the areas of 

their similarities and also where they have differences. 

 

Theoretical Differences between Logistic Regression and Discriminant 

Analysis 

Logistic regression analysis may be considered as an alternative 

technique to discriminant analysis in some cases. However, there are some 

differences between the two techniques. While the  Logistic regression 

analysis bears the same logic as ordinary least square regression, discriminant 

analysis, on the other, works in line with multiple analysis of variance 

(MANOVA).  

 

Difference in Purpose  

  Instead of classifying an observation into one group or the other, as in 

the case of discriminant analysis, logistic regression predicts the probability 
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that an object is a member of one of the groups. Thus, it predicts the 

probability )(  that an object belongs to one group rather than the other.  

 

Differences in Requirements 

The discriminant analysis situation has been a more integral part of the 

historical development of multivariate statistics when the dependent variables 

come from a normal population and the homoscedastic for each level of the 

independents. Also, discriminant analysis requires that the independent 

variables come from a normal population but the logistic regression does not 

strictly condition the independent variables to be normally distributed. 

Also, discriminant analysis requires homoscedasticity for each level of 

the independent variables or makes requirement of equal group membership 

but logistic regression analysis does not make any of such requirements. 

 

Difference in Computation of Predictor Coefficients 

Discriminant analysis tries to find coefficients for the independent 

variables that minimize the within group variability and maximize between 

group variability. Logistic regression uses maximum-likelihood estimation to 

compute the coefficients for the logistic regression equation. This method 

attempts to find coefficients that match the breakdown of cases on the 

dependent variable. But the coefficients of the independent variables for 

discriminant analysis are computed using calculations. 
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Difference in Model  

The dependent variable, for discriminant analysis, is linearly related to the 

independent variables but the response variable for logistic regression is not 

linearly related to the independent variable.  

Thus, the discriminant analysis has the linear equation of the form 

                          
kttttt xxxD

k
21 210

 

 and the logistic regression  has the equation of the form  

                

 

Differences in Assumptions 

Logistic regression usually involves fewer violations of assumptions 

(independent variables need not be normally distributed, linearly related to the 

dependent variable, or have equal within-group variances) as compared to 

discriminant analysis.  

 

Theoretical Similarities between Logistic Regression and  Discriminant 

Analysis 

Both logistic regression analysis and discriminant analysis are 

techniques for separating groups with similar characteristics. Also, both 

techniques have a similar purpose of predicting group membership and also 

classifying new cases into one of predefined groups. Again, all the two 

techniques aim at coming out with a model that can best be used to describe 

relationship between dependent and independent variables. Logit function of 

logistic regression and discriminant function attempt to express dependent 
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variable as a linear combination of other features or measurements. Also the 

two techniques estimate coefficients of independent variables that best explain 

the data.  

 

Table2: Comparison of the Errors and Different Types of the Two  

             Methods                                      

 

Logistic Regression 

Types of the technique 

1. Binary logistic regression: - is used when dependent variable involves 

two categories. 

2. Multinomial logistic regression: - is used when dependent variable 

involves three or more categories. 

 

Assumptions and requirements 

1. Does not make assumptions such as normality, linearity, equal 

variance of independents. 

2. Has disadvantage of requirement of large data set to attain stability. 

 

Discriminant Analysis 

Types of the technique 

1.  Linear discriminant analysis :- is used when the dependent variable 

involves two categories and resembles ANOVA. 

2. Multiple discriminant analysis:- is used when the dependent variable 

involves three or more categories. 
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Table 2 (Continued) 

 

Requirements and assumptions 

1. Requires that independent variables have to be linearly related to the 

dependent variable and also assume equal variance for groups formed by 

dependents. 

2. Does not require large data set to attain stability as compared to logistic 

regression. 

3. Requires that independent variables have to be linearly related to the 

dependent variable and also assume equal variance for groups formed by 

dependents. 

4. Does not require large data set to attain stability as compared to logistic  

regression. 

5. Requires that independent variables have to be linearly related to the 

dependent variable and also assume equal variance for groups formed by 

dependents. 

 

 

Advantages of Logistic Regression Analysis over Discriminant Analysis 

Logistic regression handles categorical as well as continuous 

independent variable and also the independent variables do not have to be 

normally distributed. Discriminant analysis, on the other hand, makes these 

requirements. Also, logistic regression analysis does not assume a linear 

relationship between the independent variable and dependent variable and can 

therefore handle nonlinear effects. Again, one can add explicit interaction and 
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power terms. These make logistic regression analysis flexible to use, as 

compared to discriminant analysis.  

Other advantages of logistic regression analysis over discriminant 

analysis are that it makes no assumption of homogeneity of variance and 

normally distributed error terms are also not assumed. Again, logistic 

regression does not require that the independents be interval and it does not 

also require that the independents be unbounded.  

The fewer assumptions and requirements by logistic regression 

analysis give it an advantage over discriminant analysis.  In fact, the lack of 

statistical emphasis on discriminant analysis may be due to the greater 

inherent difficulty of the technical problems associated with it.  

(Statgun, n.d) 

 

Advantages of Discriminnant Analysis over Logistic Regression Analysis 

With all the flexibility of assumptions and requirements by logistic 

regression analysis enumerated, one might wonder why anyone would ever 

use discriminant analysis rather than logistic regression analysis when 

analyzing data involving categorical dependent variable.  

The unfortunate aspect of logistic regression analysis is that all the 

advantages come at a cost: it requires much more data to achieve stable and 

meaningful results. For logistic regression, the ratio of independent variable to 

sample of at least 1 to10 is necessary to achieve stable results, while that of the 

discriminant analysis is about 4 or 5 to 20. (Wikipedia, n.d). 

Again, the discriminant analysis has more statistical power than 

logistic regression (less chance of type 2 errors - accepting a false null 



  81 

hypothesis), therefore, it is preferred to logistic regression analysis when the 

assumptions of linearity, equal within-group variances, linearity between 

dependent and independent variables are met,  

 

Choosing between Logistic Regression Analysis and Discriminant 

Analysis 

Until the development of generalized linear model by John Nelder and 

Robert Wedderburn in 1972 as a way of unifying various other statistical 

models including linear regression, logistic regression and Poisson regression 

under one framework, discriminant analysis technique, which was developed 

by A.A Fisher in 1936, was the common technique which was mostly used to 

solve problems involving categorical latent variables. 

Both logistic regression analysis and discriminant analysis are now 

often used to solve categorical dependent variable problems. However, there is 

the possibility that results produced by applying logistic regression and 

discriminant analysis for analysing the same set of data would be the same. In 

such a situation, the question of which of the two methods to use to derive the 

best results arises. The choice between the two techniques is dictated by the 

pertaining advantage(s) of one technique over the other at that instant. (Press 

& Wilson, 1978)  

 

Empirical Comparison of Logistic Regression Analysis and Discriminant 

Analysis    

This section focuses on the empirical analysis using both logistic 

regression and discriminant analysis to assess if the two techniques would 
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produce the same results so that in the absence of one of the techniques, the 

other can be used with the certainty of obtaining the same results. The 

empirical comparison analysis would be based on binary logistic regression 

and two-group discriminant analysis. 

 

The Data 

The data consists of operational performance of 47 financial industries 

in the United States of the years1968, 1969, 1970, 1971 and 1972. The data 

was collected by Moody’s Industry to assess their performance. The aim was 

to check if a financial industry would go bankrupt or not two years after 

information about its operations had been gathered. Out of the 47 financial 

institutions sampled, it was observed that 22 of the institutions went bankrupt 

and 25 survived or did not go bankrupt, two years after the data was collected 

on them. (See appendix I for the data). 

 

Statistical Tool for the Analysis 

SPSS software was used in performing both the discriminant analysis 

and the logistic regression analysis of the data. 

 

Analysis of the Data using Logistic Regression Analysis 

            Out of the 47 financial companies sampled, 45 were used as training 

sets and 2 (1 from each class) were used as holdup sample. The 45 samples 

were run with SPSS software with the simultaneous selection method. The 

dependent variable was bankruptcy status of a company. The companies 
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which went bankrupt were coded 0 and the companies which did not go 

bankrupt were coded 1. The independent variables were 

1. The ratio of Cash Flow to the total debt of the financial institution, 
TD

CF
.                           

2. The ratio of Net Income to Total Debt of the financial institution,
TA

NI
. 

3. The ratio of Current Assets of the institution to the institution’s Current 

Liabilities
CL

CA
.    

4. The ratio of Current Assets to Net Sales of the financial institution, 
NS

CA
.    

          In the analysis, the coefficients obtained for the independent variables 

TD

CF
, 

TA

NI
, 

CL

CA
  and 

NS

CA
 were 7.683,  13.4 ,  3.17 and 925.0  

respectively. The constant term was also found to be .832.5  The resulting 

logistic regression equation was therefore given by    

4321

4321

925.017.313.4683.7832.5

925.017.313.4683.7832.5

1
xxx

xxxx

x
e

e
i

, where i = 0,1  

 

and 

           
1

x =  
TD

CF
,  

2
x

TA

NI
,  

3
x =

CL

CA
  and  x4 =

NS

CA
. 
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Table 3: Output of the Analysis using Simultaneous Method 

Variable         B             S.E            Wald       D.f      Sig.        Exp(B) 

          x1            7.683          6.026            1.625          1                          2171.554 

          x2          -4.130       13.855           0.089         1         0.766              0.016 

         x3            3.170         1.159           7.473          1         0.006            23.797 

         x4           -0.925        2.682           0.119          1          0.730            0.396 

Constant      -5 .832        2.561           5.185         1          0.023             0.023 

 

          Multicollinearity among the independent variables shows that complete 

separation of the two groups of the dependent event variable can be perfectly 

done by scores on one or few of the independent variables.(See appendix I for 

correlation matrix) 

In this analysis, multicollinearity in the data was detected. This was 

due to the fact that standard errors for the beta coefficients of 
TD

CF
, 

TA

NI
, 

CL

CA
  and 

NS

CA
 were found to be 6.026, 13.855, 1.159 and 2.682 

respectively, some of which were greater than 2. This was again confirmed by 

the correlation matrix which shows a high correlation between 
TD

CF
 and 

TA

NI
 with a value of -0.872, giving an indication that the full model 

developed is not the best for prediction.  

  Due to the presence of multicollinearity in the data set, it was 

inappropriate to proceed with the analysis as it may give us misleading 

information about the data. The data was, therefore, re-run using the forward-
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stepwise method which uses the parsimonious set of variables. This time, the 

variables 
TD

CF
 and

CL

CA
 were identified as the significant variables, with 

corresponding coefficients of 6.495 and 2.978 respectively. The constant term 

was also found to be 875.5 . The resulting reduced logistic regression 

equation was therefore given by  

31

31

978.2497.6875.5

978.2497.6875.5

1
xx

xx

e

e
, where i = 0, 1. 

 

Testing the Importance of the Independent Variables 

The Log Likelihood Method   

Even though, two independent variables were identified as the best set 

of variables for the model, it was still important to test for their association 

with the dependent variables. 

The presence of a relationship between the dependent variable and 

combination of independent variables can be tested using the log likelihood 

method. This is based on the statistical significance of the model chi-square 

after the independent variables have been added to the analysis. It is obtained 

by finding the difference of likelihoodlog2 of the model without any 

independent variable )likelihoodlog2(
R

 and model with all the independents 

( )likelihoodlog2
F

.  

The hypothesis for the relationship between the dependent and the 

independent variables is given by  

Ho = There is no association between the dependent and the independent    

           variables. 
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H1 = There is an association between the dependent and the independent 

variables. 

The chi-square value for this analysis was 33.874, with a 

corresponding probability value of 0.000, which is significant at 0.05. 

Thus, the null hypothesis that there was rejected.  Hence, the significance of 

the overall relationship between the individual independent variables and the 

dependent variable supported the interpretation of the model using the 

independent variables in the data set.  

 

Classification using the Logistic Regression Model.  

 Table 4: Classification Table with no Independent Variables  

                                                Institution                        Percentage Correctly                 

Observed Values              0                           1                          Classified 

      0                                 0                           3                                           0 

1                                 1                         24                                            100 

   Overall Percentage                                                                                     53.3            

 

 

Table 5: Classification Table with Independent Variables 

                                               Institution                        Percentage Correctly                  

Observed Values                  0                         1                        Classified 

      0                                   18                          3                                          85.7 

1                                     1                        23                                            95.8 

 Overall Percentage                                                                                       91.1            
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             The classification table shows that 18 out of 21 bankrupt companies 

were correctly classified as bankrupt companies and 3 were misclassified as 

non-bankrupt companies (i.e 85.7% correct classification and 14.3% 

misclassification). Again, 23 out of 24 non-bankrupt companies were correctly 

classified as non-bankruptcy companies with 1 misclassified as a bankrupt 

company (i.e. 95.8% correct classification and 4.2% misclassification). The 

overall correct classification was found to be 91.1%.   

This means that there is a high reliability in classifying a member into 

one of the two groups. However, correct classification of a company as a non-

bankrupt company is slightly better than correct classification as bankrupt 

companies. In other words, it is slightly less to commit an error by classifying 

a non-bankrupt company as a bankrupt company than classifying a bankrupt 

company as a non-bankrupt company. 

         Also, the independent variables could be characterised as useful 

predictors which could perfectly distinguish between a non-bankrupt financial 

companies and a bankrupt financial companies if the classification accuracy 

rate was substantially higher than the accuracy attainable by chance alone.     

Operationally, the classification accuracy rate should be 25% (or more) higher 

than the proportion by chance accuracy rate. The proportion by chance 

accuracy rate is computed by first calculating the proportion of cases for each 

group based on the number of cases in each group in the classification table at 

the stage where no independent variable has been included in the modelling.   

The proportion of the bankrupt company for this analysis was 0.467 

and the proportion of non-bankrupt group was 0.533. The proportional by 

chance accuracy rate is the sum of the squares of the proportion of cases in 
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each group. And in this analysis, the proportion by chance accuracy rate is 

0.5022. The accuracy rate computed by SPSS was 91.1% which was greater 

than the proportion by chance accuracy criteria of 25% or more improvement 

in the proportion by chance accuracy rate (62.77%). The criteria for 

classification accuracy is, thus, satisfied. Therefore, some or all the 

independent variables are useful for distinguishing between a bankrupt 

company and a non-bankrupt company. 

 The exp(B) of 
TD

CF
 and

CL

CA
 were 663.272% and 19.654% 

respectively. Meaning, a unit increase in 
TD

CF
 would increase the odds that a 

company would not go bankrupt by about 663 times and vise versa, when all 

other variables are held constant. Also, a unit increase in 
CL

CA
 would 

increase the odds that a financial institution would not go bankrupt in the next 

two years by about 20 times, when all other variables are held constant.   

The constant term of 875.5  means that the log(odds) of the logistic 

model when there was no independent variable was 875.5 . 

 

Analysis of the Data using Discriminant Analysis Technique  

            The analysis was carried out using the same data set which was used in 

the case of the logistic regression analysis. Once again, out of the 47 

companies sampled, 45 were used as training sets and 2 (1 from each class) 

were used as a holdout sample. The 45 samples were run with SPSS software 

with the simultaneous selection method.  
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The variables
TA

NI
 and

CL

CA
 were identified as the most 

discriminating factors with conical coefficients of 5.41 and 0.87 respectively. 

The constant term was found to be 732.1  .  The discriminant function was, 

thus, given by  

32i
87.041.5732.1D xx , 

where  

                       
2

x
TA

NI
 

                    
3

x
CL

CA
 

          The discriminant analysis has several purposes but it is mostly used for 

separation of groups, prediction group membership of events or cases and 

above, for classification 

Below the classification table of the discriminant analysis base the analysis 

above 

 

Table 6: Classification Table of Discriminant Analysis  

                                          Institution                    Percentage Correctly                  

Observed Values                  0                        1                      Classified 

       0                                   18                        3                                85.7 

 1                                    2                        22                                 91.7 

Overall Percentage                                                                              88.9                                              

 

         The classification table shows that 18 out of 21 bankruptcy companies 

were correctly classified as bankruptcy companies and 3 were misclassified as 
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not bankruptcy companies (85.7% correct classification and 14.3% 

misclassification). Again, 22 out of 24 non-bankruptcy companies were 

correctly classified as non-bankruptcy companies with 2 misclassified as 

bankruptcy companies (91.7% correct classification and 8.3% 

misclassification). The hit ratio (overall correct classification) was found to be 

88.9%.   

In the output, variable Wilks’ s for , 
TA

NI
,   and 

CL

CA
 were found 

to be  , 0.696 and 0.627  respectively, with corresponding p-values of 0.000 

for each.   

 The eigenvalue was 0.863, indicating that 86.3% of the discrimination 

between the bankruptcy company and the non-bankruptcy companies were 

accounted for by the discriminant model. The standard deviation of the 

variables
TA

NI
 and

CL

CA
 were found to be 0.1248, 1.0170 respectively. 

This shows that there was more variability in the sample of 
CL

CA
 than the 

variable 
TA

NI
.  

The presence of a relationship between the dependent variable and 

combination of independent variables is based on the statistical significance of 

the model chi-square which is 26.9 and a corresponding  p-value of 0.000. 

This shows that there existed a relation between the dependent variable and 

the two independent variables. 
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CHAPTER SIX 

 

SUMMARY, DISCUSSION AND CONCLUSION 

 

Introduction 

In this research, so many things were observed. This chapter is to offer 

the researcher the opportunity to summarize, discuss and draw conclusions of 

his findings.  

 

Summary 

This research discussed logistics regression and discriminant analysis. 

The research showed that the logistic regression is a member of the 

exponential family while the discriminant analysis belongs to the linear 

family. Both techniques require that the response variable be categorical.  

The discriminant analysis technique is for separation and classification 

while the logistic regression is for prediction and also for classification of 

cases. The two techniques have a common purpose selecting the “best” (and as 

few as possible) set of variables for developing a model that can be used to 

separate groups and also classify new cases. 

Some major problems associated with discriminant analysis are that it 

requires that the distribution regarding the independent variables is normal. 

This makes logistic regression more flexible to use than discriminant as it goes 

with few assumptions and requirements. However, logistic regression also has 
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some disadvantages as it requires large data set for stability and also 

computationally cumbersome. It was also observed that all the techniques 

require that only independent variables that a relevant to the objectives of the 

study should be included in the selection process and the significance of these 

variables have to be tested with an appropriate statistical technique, even 

though the techniques for testing may be different.  

It was observed that the independent variable that may be important for 

the purposes of separating groups or predicting group membership or for 

classifying a case in logistic regression analysis might not necessarily be 

important for predicting or classifying a case in the discriminant analysis. This 

is inferred from the empirical analysis as in the same data set, the logistic 

regression analysis and discriminant analysis came out with differences in 

choosing between the ratio of cash flow to total debt and the ratio of net 

income to total asset.  

On the issue of classification capabilities of the two techniques, 

logistic regression can predict better than discriminant analysis. This is 

justified by correct classification of 91.1% by the logistic model and 88.9% by 

the discriminant function in the empirical analysis. 

 In the variable selection, the two techniques did not agree in choosing 

between the variable 
TD

CF
 and

TA

NI
. Since the logistic regression does not 

put any assumption of homogeneity, its basic objective is to come up with a 

model which can predict best. It noticed that dropping
TA

NI
 and going for 

TD

CF
seems to generate a model which can predict better. However, the 
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discriminant is more concerned with assumptions such as homogeneity of 

group variables. The standard deviation of the variable
TA

NI
 (i.e 0.1248) was 

less than the standard deviation of the variable 
TD

CF
 (i.e 0.2636). Meaning 

that there was less variability in data for 
TA

NI
 and this might have been the 

reason why the discriminant analysis chose the variable
TA

NI
 at the expense 

of the 
TD

CF
. This is because when logistic regression made use of the 

independent, 
TD

CF
 which was less homogeneous at the expense of

TA

NI
, it 

was able to come out with a model which can make 91.1% correct 

classification of cases as against the discriminant analysis which 

selected
TA

NI
 at the expense of 

TD

CF
, and was able to come out with a 

model which  made 88.9% correct classification of cases.. 

 

Discussion 

The logistic regression is a member of the exponential family with a 

general formula of the form  

               , 

where k,,, 21   and the coefficients of the independent variables 

kxxx ,,, 21   and 0  is the constant term of the logistic regression equation but 
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the discriminant analysis belong to the linear family with a general formula of 

the form  

pp xxxL 2211 , 

where k,,, 21   are the coefficients of the independent variables 

kxxx ,,, 21   that best discriminate between the two groups, and 0  is the 

constant term of the discriminant function. 

  Even though the two techniques have different models, the models 

are all formulated with a basic objective of showing the predictive capability 

of the individual independent variables and also classifying new cases into any 

of the two predefined groups. The coefficients of the independent variables 

determine the independents contribution in classifying a case. A high value of 

the coefficients suggests a high contribution of that independent. A positive 

value of the coefficients indicates that that independent variable contributes 

positively while a negative value indicates a negative contribution of that 

individual variable in predicting the group membership of subjects or 

classification of cases.  

A reliable or good model should be able to come up with high correct 

classification with less or few misclassification. The question of whether the 

application of logistic regression and discriminant analysis techniques on the 

same data set would yield the same result, or whether independent variables of 

the same data set would be significant in the two cases is clarified by the 

empirical analysis above which shows that logistic regression can perform 

better than discriminant analysis.  
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Validation of Empirical Results 

It is always important to assess the utility of generated logistic model. 

In this research, the validation of generated logistic model would be carried 

out using the logistic regression model developed above and the holdout 

samples from the data. 

 From the analysis above, the generated logistic regression model was 

given by  

31

3
1

978.2497.6875.5

978.2497.6875.5

1
xx

xx

e

e
i

 

In linear terms, the model was given by  

logit
31

978.2497.6875.5)( xx
i

, 

where                        

                                    
1

x = 
DebtTotal

FlowCash
 

and  

                                    
3

x = 
sLiabilitieCurrent 

AssetsCurrent
 

In the holdout sample, a financial company which went bankrupt had 

the following observed variable values: 

1. 
DebtTotal

FlowCash
07.0)(

1
x ,                             2. 

AssetsTotal

IncomeNet
 02.0)(

2
x  

3. 31.1)(
sLiabilitieCurrent 

AssetsCurrent
3

x       and       4. 
SalesNet

AssetsCurrent
25.0)(

4
x  

  The classification of this company into a bankrupt company or a non-

bankrupt company by the logistic model was given by 
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)31.1(978.2)07.0(497.6875.5

)31.1(978.2)07.0(497.6875.5

1 e

e
i

, where i = 0,1 

                = 0.18  

Since 0.18 < 0.5 it means that the company belongs to the bankrupt companies 

(0 groups). Hence the logistic model was able to correctly classify the 

company as a bankrupt company. 

Also, a financial company which did not go bankrupt two years after 

the data was collected on its operation had the following observed variable 

values: 

1.  14.0)(
DebtTotal

FlowCash
1

x ,                        07.0)(
AssetsTotal

IncomeNet
2

x  

61.2)(
sLiabilitieCurrent 

AssetsCurrent
3

x     and       52.0)(
SalesNet 

AssetsCurrent
4

x  

The classification of this company into a bankrupt company or a non-bankrupt 

company by the logistic model was given by 

         
)

(

61.2(978.2)14.0(497.6875.5

61.2978.2)14.0(497.6875.5

1

)

e

e
i

, where i = 0,1 

               = 0.9393 

Since 0.9393 > 0.5 it implies that the company belonged to the non-bankrupt 

companies. Hence the model was able to correctly classify the financial 

company as non-bankrupt two years after its operation. 

It was also important to assess the utility of the generated discriminant 

function. The model was validated by testing the two holdout samples with the 

model. The centroid of the bankrupt group and non-bankrupt group by the 

discriminant output were respectively 173.0 and 0.849.  The mean of these 

centroid was 51.0 . That meant that a financial company with a discriminant 
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score more than 51.0  was unlikely to go bankrupt two year after its 

operations, and a company with a discriminant score less than 51.0  was likely 

to go bankrupt two years.    

The formulated discriminant function was given by   

32
87.041.5732.1D xx

i
 

In the holdout sample, information about the bankrupt financial 

company which was used to cross-validate the logistic regression was also 

used to cross-validate the discriminant function. The discriminant score for 

this company was therefore given by 

)31.1)(87.0()02.0(41.5732.1D
i

 

                               4841.0D
i

 

Since 4841.0D
i

 < 0.51 it meant that the company belonged to the 

bankrupt companies. Hence the model was able to correctly classify the 

financial company as a bankrupt company. 

Also, in the holdout sample, information about the non-bankrupt 

financial company which was used to cross-validate the logistic regression 

was also used to cross-validate the discriminant function. The discriminant 

score for this company was therefore given by 

)61.2)(87.0()07.0(41.5732.1D
i

 

                               9174.0D
i

  

Since 0.9174 > 0.51 it meant that the company belonged to the non-bankrupt 

companies. Hence the model was able to correctly classify the financial 

company did not go bankrupt two years after its operation. 
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In using the holdout sample to test the efficient of the models built, 

both the logistic regression and the discriminant analysis models were able to 

make correct classification of the bankrupt companies and the non- bankrupt 

companies. 

 

Conclusion 

Based on the research, it is evident that logistic regression yields better 

classification results than discriminant analysis when there is a problem of 

multicollinearity in the independent variable. This is because empirical 

comparison of the two techniques shows that logistic regression was able to 

make 91.1% correct classification of the data as compared to 88.9% correct 

classification of the data by discriminant analysis where the data has 

multicollinearity among some of the independent variables.   

Another interesting observation, based on the analysis, was that despite 

the obvious revelation of both techniques showing very reliable model for 

prediction and classification of cases, they do not, in principle, always agree in 

variable selection for development of models. This disagreement might be due 

to consideration given to factors such as variability in the data set. Hence in 

adopting any of the two techniques for analysis, consideration has to be given 

to the assumptions, requirements and any circumstance surrounding the data at 

that moment.  

However, it is obvious that logistic regression analysis can yield better 

results than discriminant analysis.  In this wise, the researcher can conceive 

that when all the assumptions and requirements of logistic regression analysis 
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and discriminant analysis are met, logistic regression technique should be 

adopted rather than discriminant analysis.  
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APPENDIX  I 

 

Some Outputs of Logistic Regression Analysis 

 

Classification Tablea,b

0 21 .0

0 24 100.0

53.3

Observed

.0

1.0

X1

Overall Percentage

Step 0

.0 1.0

X1 Percentage

Correct

Predicted

Constant is included in the model.a. 

The cut value is .500b. 

 

 

 

 

Variables in the Equation

.134 .299 .200 1 .655 1.143ConstantStep 0

B S.E. Wald df Sig. Exp(B)

 

 

 

 

 

 

Variables not in the Equation 

15.557 1 .000 

13.688 1 .000 

16.766 1 .000 

.005 1 .943 

21.266 4 .000 

X1 

X2 

X3 

X4 

Variables 

Overall Statistics 

Step 
0 

Score df Sig. 
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Omnibus Tests of Model Coefficients

33.874 4 .000

33.874 4 .000

33.874 4 .000

Step

Block

Model

Step 1

Chi-square df Sig.

 

 

Hosmer and Lemeshow Test

4.487 7 .722

Step

1

Chi-square df Sig.

 

 

Correlation Matrix 

1.000 -.598 .518 -.837 -.427 

-.598 1.000 -.872 .473 .210 

.518 -.872 1.000 -.470 -.103 

-.837 .473 -.470 1.000 -.093 

-.427 .210 -.103 -.093 1.000 

Constant 

X1 

X2 

X3 

X4 

Step 
1 

Constant X1 X2 X3 X4 

Iteration History a,b,c,d 

37.416 -1.377 1.079 3.774 .846 -.626 

31.024 -2.902 2.706 3.179 1.704 -1.002 

28.651 -4.666 5.371 -.528 2.616 -1.052 

28.317 -5.631 7.246 -3.391 3.080 -.964 

28.309 -5.825 7.669 -4.103 3.167 -.927 

28.309 -5.832 7.683 -4.130 3.170 -.925 

Iteration 
1 

2 

3 

4 

5 

6 

Step 
1 

-2 Log 
likelihood Constant X1 X2 X3 X4 

Coefficients 

Method: Enter a.  

Constant is included in the model. b.  

Initial -2 Log Likelihood: 62.183 c.  

Estimation terminated at iteration number 6 because log-likelihood decreased by less 
than .010 percent. 

d.  
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Classification Tablea

18 3 85.7

1 23 95.8

91.1

Observed

.0

1.0

X1

Overall Percentage

Step 1

.0 1.0

X1 Percentage

Correct

Predicted

The cut value is .500a. 

 

 

 

 

 

 

 

                                

Correlation Matrix 

1.000 -.598 .518 -.837 -.427 

-.598 1.000 -.872 .473 .210 

.518 -.872 1.000 -.470 -.103 

-.837 .473 -.470 1.000 -.093 

-.427 .210 -.103 -.093 1.000 

Constant 

X1 

  X2 
  X3 

X4 

Step 
1 

Constant X1 X2 X3 X4 

Variables not in the Equation 

15.557 1 .000 

13.688 1 .000 
16.766 1 .000 

21.127 3 .000 

X1 
X2 

X3 

Variables 

Overall Statistics 

Step 
0 

Score df Sig. 

Variables in the Equation 

7.683 6.026 1.625 1 .202 2171.554 .016 2.9E+08 
-4.130 13.855 .089 1 .766 .016 .000 1.0E+10 
3.170 1.159 7.473 1 .006 23.797 2.453 230.902 
-.925 2.682 .119 1 .730 .396 .002 75.971 

-5.832 2.561 5.185 1 .023 .003 

X1 
X2 
X3 
X4 
Constant 

Step 
1 

a 
B S.E. Wald df Sig. Exp(B) Lower Upper 

95.0% C.I.for EXP(B) 

Variable(s) entered on step 1: X1, X2, X3, X4. a.  
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                                     The data for the analysis 

  X1 

               

     X2 

            

    X3 

           

      X4          P     

-0.45 -0.41 1.09 0.45 0 

 -0.56 -0.31 1.51 0.16 0 

    0.06 0.02 1.01 0.4 0 

-0.07 -0.09 1.45 0.26 0 

-0.1 -0.09 1.56 0.67 0 

-0.14 -0.07 0.71 0.28 0 

0.04 0.01 1.5 0.71 0 

-0.06 -0.06 1.37 0.4 0 

0.07 -0.01 1.37 0.34 0 

-0.13 -0.14 1.42 0.44 0 

-0.23 -0.3 0.33 0.18 0 

0.07 0.02 1.31 0.25 0 

0.01 0 2.15 0.7 0 

-0.28 -0.23 1.19 0.66 0 

0.15 0.05 1.88 0.27 0 

0.37 0.11 1.99 0.38 0 

-0.08 -0.08 1.51 0.42 0 

0.05 0.03 1.68 0.95 0 

0.01 0 1.26 0.6 0 

-0.28 -0.27 1.27 0.51 0 

0.12 0.11 1.14 0.17 0 

0.51 0.1 2.49 0.54 1 
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0.08 0.02 2.01 0.53 1 

0.38 0.11 3.37 0.35 1 

0.19 0.05 2.25 0.33 1 

0.32 0.07 4.24 0.63 1 

0.31 0.05 4.45 0.69 1 

0.12 0.05 2.52 0.69 1 

-0.02 0.02 2.05 0.35 1 

0.22 0.08 2.35 0.4 1 

0.17 0.07 1.8 0.52 1 

0.15 0.05 2.17 0.55 1 

-0.1 -0.01 2.5 0.58 1 

0.14 -0.03 0.46 0.52 1 

0.15 0.06 2.23 0.56 1 

0.16 0.05 2.31 0.2 1 

0.29 0.06 1.84 0.38 1 

0.54 0.11 2.33 0.48 1 

-0.33 -0.09 3.01 0.47 1 

0.48 0.09 1.24 0.18 1 

0.56 0.11 4.29 0.45 1 

0.2 0.08 1.99 0.3 1 

0.47 0.14 2.92 0.45 1 

0.17 0.04 2.45 0.14 1 

0.58 0.04 5.06 0.13 1 
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APPENDIX II 

SOME OUTPUTS OF DISCRIMINANT ANALYSIS 

 

 

 

 

Summary of Canonical Discriminant Functions 

Wilks' Lambda 

1 .627 1 1 43 25.535 1 43.000 .000 

2 .537 2 1 43 18.120 2 42.000 .000 

Step 
1 

2 

Number of 
Variables Lambda df1 df2 df3 Statistic df1 df2 Sig. 

Exact F 

Variables Not in the Analysis 

1.000 1.000 22.721 .654 

1.000 1.000 18.798 .696 

1.000 1.000 25.535 .627 

1.000 1.000 .005 1.000 

.890 .890 6.583 .542 

.961 .961 7.089 .537 

.981 .981 .361 .622 

.339 .339 .487 .531 

.980 .945 .396 .532 

X1 

X2 

X3 

X4 

X1 

X2 

X4 

X1 

X4 

Step 
0 

1 

2 

Tolerance 
Min. 

Tolerance F to Enter 
Wilks' 

Lambda 

Variables Entered/Removed a,b,c,d 

X2 .627 1 1 43.000 25.535 1 43.000 .000 
X3 .537 2 1 43.000 18.120 2 42.000 .000 

Step 
1 
2 

Entered Statistic df1 df2 df3 Statistic df1 df2 Sig. 
Exact F 

Wilks' Lambda 

At each step, the variable that minimizes the overall Wilks' Lambda is entered. 
Maximum number of steps is 8. a.  
Minimum partial F to enter is 3.84. b.  
Maximum partial F to remove is 2.71. c.  
F level, tolerance, or VIN insufficient for further computation. d.  

Variables in the Analysis 

1.000 25.535 

.961 12.441 .696 

.961 7.089 .627 

X3 

X3 
X2 

Step 
1 

2 

Tolerance F to Remove 
Wilks' 

Lambda 
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Classification Tablea

18 3 85.7

2 22 91.7

88.9

Observed

.0

1.0

X1

Overall Percentage

Step 1

.0 1.0

X1 Percentage

Correct

Predicted

The cut value is .500a. 

 

Eigenvalues

.863a 100.0 100.0 .681

Function

1

Eigenvalue % of Variance Cumulative %

Canonical

Correlation

First 1 canonical discriminant functions were used in the

analysis.

a. 

 

Wilks' Lambda

.537 26.129 2 .000

Test of Function(s)

1

Wilks'

Lambda Chi-square df Sig.

 

 

 

Structure Matrix 

.830 

.712 

.689 

.131 

X3 

X2 

X1 a 

X4 a 

1 

Function 

Pooled within-groups correlations between discriminating 
variables and standardized canonical discriminant functions  
Variables ordered by absolute size of correlation within function. 

This variable not used in the analysis. a.  

Standardized Canonical Discriminant Function Coefficients 

.570 

.717 

X2 
X3 

1 

Function 
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Classification Statistics 

Prior Probabilities for Groups

.500 21 21.000

.500 24 24.000

1.000 45 45.000

X1

.0

1.0

Total

Prior Unweighted Weighted

Cases Used in Analysis

 

 

 

 

 

 

 

Canonical Discriminant Function Coefficients 

5.410 

.879 

-1.732 

X2 

X3 

(Constant) 

1 

Function 

Unstandardized coefficients 

Functions at Group Centroids 

.173 

.849 

X1 
.0 

1.0 

1 

Function 

Unstandardized canonical discriminant 
functions evaluated at group means 
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