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ABSTRACT 

Malaria Rapid Diagnostic Tests (RDT’s) have improved malaria diagnosis in highly endemic 

rural settings. However, the increasingly high false negative rates of Plasmodiumfalciparum 

histidine-rich protein II (PfHRP2) based RDT kits (PfHRP2-RDT) is a major obstacle to the 

rapid and reliable diagnosis of malaria. This study was aimed at determining the rate of false 

negative RDT as well as the prevalence of P. falciparum parasites with pfhrp2 deletions in 

selected communities in the Southern Ghana. Whole blood was collected from volunteers living 

in Obom (high transmission) and Asutsuare(low transmission) and separated into plasma and 

cell pellet. Genomic DNA was extracted from 310 cell pellets from both sites using the 

ZymoDNA Kit®. Species-specific 18srRNAPCR was used to identify P.falciparum positive 

samples. Pfmsp2 and glurp genotyping was used to determine recrudescence or new infection. 

Good quality DNA samples were then subjected to pfhrp2 exon 1 and 2 PCR as well as pfhrp3 

exon 2 PCR. PfHRP2 antigen level was determined using a pfhrp2 Malaria Ag CELISA kit. 

Microscopy estimation of malaria parasites were 3.3 % of samples from Asutsuare against 39.8 

% of Obom samples. The RDTs had 1.7 % of samples from Asutsuare while Obom had 53.4 %. 

Using 18srRNAPCR for P. falciparum speciation, 59.1 % of the Asutsuare samples tested 

positive for the malaria parasite whereas 65.8 % of the Obom samples tested positive. 

Plasmodiumfalciparumparasites with deletions of both pfhrp2 and pfhrp3 gene were 1.7 % in 

Obom and 4.8 % in Asutsuare. An R-square value of 0.997 and 0.994 were obtained for Obom 

and Asutsuare Regression Analysis of ELISA respectively. Deletions of pfhrp2 and pfhrp3 

genes were identified in the two study sites and there were higher quantities of PfHRP2 

antigens in Obom than in Asutsuare. 
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   CHAPTER ONE 

INTRODUCTION 

Background 

Malaria is a disease of the poor, which significantly affect endemic 

countries’ economies (Kumar et al., 2013). For complete eradication of malaria to 

be achieved, all forms of the disease need to be diagnosed and treated. Malaria 

diagnosis is expensive when specificity and accuracy is desired for prompt 

treatment. Microscopy has been the gold standard for malaria diagnosis for many 

years following various staining procedures (WHO, 2010). There are other tests 

which have also been used in the diagnosis for the infection. Recently, prompt 

treatments of malaria have largely been due to the introduction of Rapid 

Diagnostic Tests (RDTs). The use of RDT has been a very essential component of 

malaria diagnosis (Hanscheid, 1999; Kumar et al., 2013; Wongsrichanalai, 

Barcus, Muth, Sutamihardja & Wernsdorfer, 1999; Wongsrichanalai, 2001), and 

has improved diagnosis in endemic and resource constraint settings (Makler, 

Palmer & Ager, 1998). In areas where there are no microscopists, RDTs are the 

major diagnostic tool for malaria infection diagnosis. 

The malaria RDT principle is based on antigens or antibodies for 

detection. The most widely used diagnostic RDT for Plasmodium falciparum is 

based on detection of the histidine rich protein II (HRP2) antigen. Plasmodium 

falciparum has several hrp genes but only hrp2 is used in RDTs. The P. 

falciparum hrp (pfhrp2) gene is heat stable, abundant in the host’s blood and can 
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persist for 28 days or more after parasite clearance (Iqbal, Siddique, Jameel & 

Hira, 2004; Kumar et al., 2012). The P. falciparum histidine-rich protein III 

(PfHRP3) antigens are known to have similar structure as the P. falciparum 

histidine-rich protein II (PfHRP2) antigens. Thus, they are recognised by the 

PfHRP2 antibodies. The PfHRP2 based RDT kits have the highest detection rate 

(World Health Organization-Foundation for Innovative New Diagnostics, 2015), 

but are also known to give inaccurate results with false positives and false 

negatives (Gamboa et al., 2010). One main demerit in malaria RDT diagnosis 

without the confirmation of microscopy and its related parasite density is false 

negative results. This may be due to low parasite densities or P. falciparum 

histidine-rich protein II (pfhrp2) gene deletions which have not been compensated 

for by the P. falciparum histidine-rich protein III (pfhrp3) gene (Bartoloni & 

Zammarchi, 2012). Adaptation of the Plasmodium parasite to fit in the constant 

environmental changes has led to certain P. falciparum strains having their entire 

pfhrp2 and pfhrp3 gene deleted (Cheng et al., 2014) or others having varying 

amounts of PfHRP2 antigen (Houze, Hubert, Le Pessec & Clain, 2011; Ho et al., 

2014)). This, affects the test accuracy (Baiden et al., 2014; Houze, Boly, Le Bras, 

Deloron & Faucher, 2009; Kattenberg et al., 2012; World Health Organization, 

2015; Wurtz et al., 2013). 

Current trends in the use of RDT has resulted in significant improvements 

in infection rate reporting from different countries in Africa. However, to date, a 

number of all these countries, including Democratic Republic of Congo, Kenya, 
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Mali, Senegal and Zambia have reported pfhrp2/3 gene deletions (Deme et al., 

2014; Kabayinze et al., 2008; Parr et al., 2016; Wurtz et al., 2013). 

The demand for malaria RDT kits in malaria diagnosis have increased 

since the WHO recommended its usage in 2009 (WHO, 2015). Presently, most 

National Malaria Control Programs (NMCPs) in endemic countries are using 

RDTs as the initial step of disease diagnosis. To monitor the use of RDTs, WHO 

instituted the Foundation for Innovative New Diagnostics (FIND) for quality 

assurance of RDT, which includes Lot Testing (WHO-FIND, 2015). This has 

helped in taking out most of the unapproved RDTs from the health system 

(Cunningham, 2013). There are many different tests which can be used for 

diagnosis of malaria infection aside RDTs. However, improvement of RDTs is 

very essential for clinical diagnosis in the communities where there are no 

microscopists and good equipment for infection diagnosis.  

The basis of any disease control scheme for community and individual 

level is the availability of suitable diagnostic tools, which are highly sensitive 

(200 p/µL) and 99 % specific (WHO, 2010). Without these, interventions put in 

place cannot be tracked and suitable treatment not provided. PfHRP2 RDTs have 

been used in recent times as the most readily available and fast diagnostic method 

for malaria infections (Cohen, Dupas & Schaner, 2015; Baker et al., 2010). 

However, their false negative and positive rates have given much room for 

criticisms (Kumar et al., 2013). It has also brought about treatment burdens 

(Cohen, et al., 2015), since most false positives may be given treatment for 

malaria where there is actually no infection. This can cause hepatotoxicity leading 
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to liver damage from drug burden. False negatives also bring about no treatments 

of the disease and so persons living with the infection become reservoirs for the 

spread of the parasite as well as give the parasite more time for building drug 

resistance. This could be the reason why deaths of malaria are still recorded in 

this age when Artemisinin-based Combination Therapies (ACTs) have proven to 

be more effective for the treatment of malaria. This can cause low productivity 

and thus affect economies where pfhrp2/pfrhp3 deletions are higher.  

Low transmission areas have very few malaria cases as well as more 

clonal parasite infections and so other diseases which present similar symptoms 

are looked at and treated when PfHRP2 RDTs are negative for individuals living 

in the area. However, the results may be false negative which may be due to 

pfhrp2/pfhrp3 gene deletions or low antigen levels of the PfHRP2 (Gamboa et al., 

2010). As a result, studies on gene deletions in low transmission areas are 

necessitated. On the other hand, high transmission areas were often seen as 

malaria prone and thus individuals presenting symptoms of malaria were still 

treated for malaria even when there were no parasites in the body (WHO, 2010). 

However, the current standard treatment guidelines require treatment only after 

individuals have tested positive for malaria RDT or microscopy (WHO, 2017).  

In rural health facilities, malaria is often ruled out after RDT is tested 

negative, however, the patient may still be harbouring the parasites in his/her 

body. A study in Uganda determined that while 73% of febrile patients received 

antimalarials, only 35% had positive RDT results, and overall appropriate 

treatment was only 34% (Mbonye, Lal, Cundill, Hansen, Clarke & Magnussen, 
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2013). This may be due to gene deletions and false positives which made the RDT 

unable to capture the P. falciparum infection at the time as well as antigen 

persistence in the blood. These pfhrp2/pfhrp3 deletants should be extensively 

studied in low transmission and high transmission areas to be able to find 

appropriate diagnostic method for high and low transmissions alike. 

Statement of the Problem 

Misdiagnosis of malaria due to false negatives and positives of RDT 

results is a menace to clinical patients and affected the setting of prevalence used 

for policy making and policy implementation. Although PfHRP2 RDTs are 

cheaper, faster and easier to use compared to molecular tests and ELISA, they 

cannot be relied on to set the community prevalence of malaria (Laban et al., 

2015). 

There is very little information about the extent of pfhrp2/pfhrp3 deletions 

among P. falciparum isolates in Ghana, although there is a global increase in the 

prevalence of P. falciparum parasites with deletions in the pfhrp2 gene. Due to 

the implications of the use of RDTs in Ghana for case managements and malaria 

elimination programmes, it is highly important to use reliable methods to 

determine the present prevalence of pfhrp2 negative parasites in Southern Ghana.   

Aim of the Study 

To determine the presence of P. falciparum parasites with pfhrp2 and 

pfhrp3 genes deletions in Obom (high transmission area) and Asutsuare (low 

transmission area) in Southern Ghana. 
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Specific Objectives 

1. To compare the clinical efficiency of 18s rRNA species specific PCR with 

RDT and microscopy in P. falciparum infections in Obom and Asutsuare.  

2. To identify and confirm the existence of pfhrp2 and pfhrp3 deletant P. 

falciparum isolates circulating in the two study sites.  

3. To compare parasite positivity using PfHRP2 antigen levels in the plasma and  

PfHRP2 RDT. 

Hypothesis of the Study 

1. Clinical efficiency of microscopy and RDTs are very low in 

determining the prevalence of malaria in low malaria areas.  

2. Low transmissions areas have few gene deletions while high 

transmission areas will have a higher number of pfhrp2/pfhrp3 

deletions due to higher diversity that may exists in the area.  

3. Lower PfHRP2 concentrations may cause false negative RDT results 

due to low parasite density. Hence parasite positivity for RDT may be 

reduced though the parasite may be present in the sample. 

Significance of the Study 

RDTs have been used in health surveys and epidemiological studies for most 

diseases in recent years (Gitonga et al, 2012; Plucinski et al., 2017; Donald et al., 

2016). However, RDTs have limitations of producing false negative and false 

positive results and thus false information. The PfHRP2 RDT may provide a false 
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estimate of the prevalence of P. falciparum infection in a community as such 

RDT results should be confirmed by PCR if available or by microscopy before the 

prevalence of the area is established for policy making.  

Only a few parasites with pfhrp2 gene deletions have been found in areas 

of low transmission (Watson et al., 2017). This study sets out to determine pfhrp2 

gene deletions existing in Asutsuare, a low transmission area of Ghana as well as 

determine the extent to which pfhrp2 deletant parasites exist in Obom, a high 

transmission area. 

There are inconsistencies in reporting parasite prevalence based on 

microscopy and RDT data provided by the National Malaria Control Programmes 

to the WHO. This has led to the WHO reporting a zero prevalence of Plasmodium 

malariae and Plasmodium ovale in Ghana for the past three consecutive years 

(WHO, 2015; WHO, 2016; WHO, 2017), but this has been proven to be false 

when molecular based assays were used to determine the prevalence of these 

other Plasmodium species (Owusu, Brown, Grobusch & Mens, 2018). Owusu et 

al (2018) reported an 18 % prevalence of P. malariae among 142 samples which 

were used for an HIV and sickle cell study. This highlights the need for additional 

specific and sensitive molecular methods including conventional PCR and 

quantitative PCR which should be used for disease monitoring and case 

management in malaria elimination reports.  
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Limitations 

The use of qPCR as a reference standard to determine the parasite densities was 

not done because there were not enough samples for tests on gene deletions in 

these two study sites. 
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    CHAPTER TWO 

LITERATURE REVIEW 

Malaria overview 

The most clinically important of all protozoan diseases is malaria 

(Andrews, Fisher & Skinner-Adams, 2014). The disease is known to cause more 

harm to majority of infected people compared to all other infectious diseases 

(Gavazzi, Herrmann & Krause, 2004; Bernstein, 2014). In humans, five 

Plasmodium species are known to cause malaria. These are P. falciparum, P. 

ovale, P. malariae, P. vivax and the zoonotic form P. knowlesi (Rosenblatt, Reller 

& Weinstein, 2009).  

Malaria parasites are transmitted to man from the bite of an infected 

female Anopheles mosquito during its blood meal. Plasmodium parasites are 

known to be transmitted nine to seventeen days after the female Anopheles 

mosquito picks up the Plasmodium parasite from the blood of an infected person 

and then transmits the parasite to naïve individual. Infections could be 

symptomatic or asymptomatic between eight and thirty days after mosquito bites 

depending on the Plasmodium species (Engleberg, DiRta & Dermody, 2007;  

Snow, Craig, Newton & Steketee, 2003).  

The mosquito introduces the Plasmodium sporozoites during blood meal. 

After a time of pre-erythrocytic stage advancement within the hepatocytes, the 
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erythrocytic stage infection which causes the infection fever starts. The symptoms 

of the infection becomes apparent when the infection and fever reach the point 

where a minimum blood parasite density is attained. In non-susceptible 

individuals, the "pyrogenic density" is pegged at a normal of 10,000 p/µL with 

respect to P. falciparum and 200 p/µL for P. vivax, in spite of the fact that, people 

with much lower densities might be symptomatic (White, Dondorp & Paris, 

2003).  

Global Epidemiology of Malaria  

Nearly 250 million individuals are affected by malaria resulting in nearly 

half a million deaths every year (WHO, 2017). Most tropical locales of the world 

are affected by malaria with P. falciparum prevailing in Haiti, Africa and Papua 

New Guinea while P. vivax is more typical of the Indian subcontinent and the 

Central Americas (WHO, 2016). The P. malariae is mostly endemic in all regions 

particularly all through sub-Saharan Africa. However, it is substantially less 

known than the other species. The P. ovale is moderately recorded outside Africa 

and it is less than 1% of the isolates in areas where it is found (White et al., 2003). 

More than a quarter of all malaria deaths that occur are found in Africa. 

One to three thousand children are killed by malaria every day in Africa. The one 

million deaths of malaria in Africa every year have 90% coming from sub-

Saharan Africa are largely children under age five (WHO, 2016). In 2007, most 

pregnant women and their unborn children were vulnerable to malaria because of 

low birth weight and maternal anaemia. Children born to mothers who had 
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malaria were most likely to die in their first few months (UNICEF, 2007). 

However, this has improved in recent years (WHO, 2017). The global distribution 

of malaria has been presented in Figure 1. 

 

Figure 1: Global distribution of malaria, (WHO, 2017).  

Source: World malaria report, 2017. 

Epidemiology of Malaria in Ghana 

Malaria is a public health issue in Ghana so much that, in the first quarter 

of 2016, the Ghana Health Service (GHS) and Ministry of Health (MOH) through 

the District Health Information Management System (DHMIS) platform recorded 

35.8 % of all Out Patient Department (OPD) cases were suspected to be malaria 
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in the first quarter of 2016 (DHMIS, 2016). In 2016, 79,822 out of the 356,209 

OPD cases that were admitted into the wards were as a result of malaria, with 

majority of the malaria admission being children under age five (MOH, 2016). 

Figure 2 shows the parasite prevalence of P. falciparum infections in Ghana. 

 

Figure 2: Map of P. falciparum Malaria prevalence in Ghana (WHO, 2016) 

 

The total number of deaths that occured during the first quarter of 2016 

was 8,134 of which 4.7 % were caused by malaria (DHIMS, 2016). In the first 

quarter of 2017, the total number of OPD cases were 6,066,431 and 2,270,774 of 

these cases were suspected to be malaria. Out  of the suspected malara cases, 83.9 

% of them were tested cases while 956,123 of these tested cases were actually 

positive for malaria by RDT and/or microscopy. The total number of deaths 
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recorded were 7,966 showing a 2.1 % reduction compared to the same period in 

the previous year (National Malaria Control Programme Bulletin, 2017).  

Out of the first quarter hospital admissions of 2017, 69,467 cases were as 

a result of malaria. All deaths recorded in hospitals had 148 of them to be malaria 

and 74 of all malaria deaths were children under-five (Ghana Health Service, 

2017). The case fatality rate of malaria in children under-five decreased from 0.39 

to 0.22 during the first quarter of 2017. This showed a higher decrease of 105.4 % 

malaria deaths (DHIMS2, 2017).  

Malaria testing rate in the first quarter of 2017 had increased compared to 

the same period in 2016 from 75.3 % to 83.9 %. However, microscopy positivity 

rate decreased from 21.7 % in 2016 to 21.4 % in 2017. RDT positivity increased 

from 20.6 % in the first quarter of 2016 to 21.5 % in 2017 (GHS, 2017). 

 Global Malaria Control 

Various efforts to control malaria have been supported in the recent couple 

of years with expanded worldwide financing and more noteworthy political 

commitment. The burden of malaria is being reduced in various nations all 

through the world, amongst them are some nations in tropical Africa where the 

burden of the disease is most prominent (WHO, 2016).  

These accomplishments have raised new hopes for the eradication of 

malaria. The WHO experts meeting pointed out the likelihood of attaining the 

objective of the Global Malaria Eradication Programme of the 1950s and the 
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1960s giving the recent insight on the effectiveness of intervention programmes 

as well as antimalarial tools which are being utilized worldwide (WHO, 2010).  

The United States of America through the use of 

Dichlorodiphenyltrichloroethane (DDT) was able to eradicate female Anopheles 

mosquito and as a results the disease in the late 1940s and early 1950s. The world 

is still struggling to control the disease largely due to the ban on the usage of the 

DDT in recent times which has shown to be more poisonous. However, the world 

has witnessed a significant reduction in the huge morbidity and mortality that 

used to be associated with malaria (WHO, 2015).  

Eradication of malaria requires a re-orientation of control measures, 

moving far from a populace based scope of interventions, to one in view of a 

program of compelling reconnaissance and reaction (Mendis, Rietveld, Warsame, 

Bosman & Greenwood, 2009). 

 More efforts will be required to prevent the resurgence of malaria from 

places where it has been eliminated. Eliminating malaria from nations where the 

intensity of transmission is high and stable, for example tropical Africa, will 

require more powerful tools  such as vector eradication mechanisms and vaccine 

production and more grounded health frameworks than are accessible today 

(WHO, 2015). At the point when malaria is on the verge of eradication, the 

accomplishments should be solidified before a program re-introduction towards 

malaria disposal is considered. Malaria control and disposal are under the 

consistent danger of the parasite and vector mosquito creating resistance to drugs 
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and bug sprays, which are the foundations of current antimalarial medications. 

The prospects of malaria elimination, in this manner, lay vigorously on the results 

of research and advancement for better tools. Malaria control and eradication are 

complementary goals in the worldwide fight against malaria (Global Malaria 

Program, 2016; Mendis et al., 2009). 

Reports according to the GHS indicated that funding for malaria control in 

Ghana was provided by the Government, the Global fund, the World Bank, the 

United States President’s Malaria Initiative and certain individual non-

governmental organizations (NGOs) (GHS, 2013; 2014). 

 Life cycle of the Malaria Parasite P. falciparum 

The life cycle of P. falciparum is known to consist of two hosts which are 

the human and the female Anopheles mosquito. The parasite revolves between 

these two organisms with the mosquito being a vector and human being host. This 

is because the mosquito is known to be only a carrier while man is known to be 

infected. The parasites reside in the female Anopheles mosquito’s salivary gland 

as sporozoites (Ho, et al, 2014) and are released through a person’s skin and into 

the bloodstream. It then migrates into the liver and the parasite then matures into 

schizonts within the liver’s hepatocytes. In the liver and red blood cells (RBCs), 

they multiply asexually by binary fission. PfHRP2 is made by the parasite during 

the asexual stage and expressed on the surface of the infected RBCs (iRBCs) and 

is released into circulation during schizogony (Marquart, Butterworth, McCarthy 
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& Gatton, 2012). The schizonts get into the bloodstream as merozoites by which 

they can invade the RBCs. 

           Once in the RBCs, the parasites divide and mature within 2 days after 

which they cause the cells to burst releasing another generation of infective 

merozoites that can infect new RBCs (Engleberg et al., 2007). Few mezeroites 

then develop in the blood into male and female gametocytes, the sexual forms of 

the blood stage parasite. A mosquito picks male and female gametocytes during a 

blood meal for further transmission of the disease (White et al., 2003). 

        Within the mosquito mid gut, male gametocytes lose their flagellum to 

become male gametes (haploid), which fertilize the female gametes (haploid) to 

produce the zygote (diploid). The zygote in the mid gut develops into an oocyst. 

Developed oocysts separate by meiosis to create sporozoite which migrates into 

the salivary glands and the cycle continues as shown in Figure 3 (Engleberg et al, 

2007). 
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Figure 3: Life cycle of the malaria parasite P. falciparum showing the human 

phase and the vector female Anopheles mosquito phase. (Source: 

https://i.pinimg.com/originals/f3/36/7e/f3367ec1f26cf6e34723402688b1ff8e.jpg).  

Clinical Symptoms and Infection Outcome 

          Pathological procedures in malaria relate completely to the intravascular 

erythrocytic disease (Winstanley et al., 1992). The main side effects are not 

specific. There is frequently a prodrome stage where the patient feels unwell 

exhibiting symptoms of anorexia, fatigue, muscle throbbing and migraine. The 

fever and the compounding effects are non-specific so they resemble a flu-like 

sickness. In a few patients, stomach upset is noticeable and, albeit as a rule, the 

inside propensity is ordinary, at times looseness of the bowels might be an 

exhibiting highlight. The normal sharp increase of the fever and rigors, 

unmistakable in early portrayals of malaria, once in a while are observed today. 
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For the most part, the underlying fever, mostly, is sporadic. The clinical signs of 

malaria rely upon the level of background immunity (White et al., 2003).  

In zones of high transmission, clinical manifestations and signs are more 

likely to happen to children since mosquito bites are more likely to be a frequent 

occurance. At lower transmission areas, a more extensive age range are easily 

susceptible, and insecure levels of transmission, or in non-immune travellers, 

malaria is suggestive and P. falciparum is largely fatal at all ages (Lacroix, 

Mukabana, Gouagna & Koella , 2005). 

Pathogenesis of Malaria 

         Pathological processes in malaria relate entirely to the intravascular 

erythrocytic infection (White, 1999). The first symptoms are non-specific. These 

worsening symptoms and the accompanying fever are non-specific and resemble 

an influenza-like illness. In some patients abdominal pain is prominent. Although 

the bowel habit is usually normal, occasional diarrhoea may be a presenting 

feature (White et al., 2003). 

Severe Malaria 

          The P. falciparum is highly the most dangerous species amongst the 

Plasmodia, which can cause severe malaria. Severity of malaria is present with a 

single or more of the severe signs. These signs include severe anaemia which is 

less than 20 % Hb with parasite count greater than 100,000 parasites/ mm3), coma 

or severe prostration, severe jaundice (which is bilirubin greater than 2.5 mg/dl, 

acute renal failure which has greater than 3 mg/dl with urine less than 400 ml/day, 
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hypoglycaemia, shock of systolic pressure less than 80 mmHg with extremities, 

hyperparasitaemia, respiratory failure, hypoglycaemia (venous glucose less than 

40 mg/dl), shock (systolic blood pressure less than 80 mmHg with extremities), 

(peripheral asexual stage parasitaemia greater than 10 %) or metabolic acidosis 

(peripheral venous lactate greater than 72 mg/dl, peripheral venous bicarbonate 

less than 270 mg/dl). (White et al., 2003; CDC, 2016) 

Uncomplicated Malaria  

         Uncomplicated malaria occurs barely affects people between 6-10 hours of 

infection and has been considered to have three stages. The cold stage with chills 

and shivering as the main symptoms, the hot stage with fever, headaches and 

vomiting as the main symptoms and the sweating stage which is mainly 

characterized by sweats, tiredness and return to normal temperatures.  

          This attack classically occurs on the second day of infection of the “tertian” 

parasites which are the P. falciparum, P. vivax and P. ovale) and the “quartan” 

parasite, P. malariae the third day of infection. During this stage, diagnosis can be 

done by microscopy with additional lab findings being mild anaemia, slightly 

decreased platelet counts and slightly high amounts of bilirubin. During this time, 

RDTs can also be used for its diagnosis (CDC, 2015). 

Cerebral Malaria (CM)  

           Celebral malaria according to the WHO has been given a strict definition 

for the sake of clarity and it is supposed to have the nearness of unarousable 

trance like state, prohibition of different encephalopathies and affirmation of the 
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P. falciparum infection. (WHO, 2007a). There should be P. falciparum 

parasitaemia of the patient and to be equal to Glasgow Coma Scale point 9 or less, 

with other causes such as hypoglycemia, bacterial meningitis and viral 

encephalitis ruled out.  

         To differentiate between CM and transient postictal coma, the patient should 

be unconscious for more than 30 minutes preceding a convulsion. A worse 

prognosis shows a deeper coma. In necessity, a lumbar puncture can be performed 

to rule out the possibility of a meningitis caused by a bacteria. However, all P. 

falciparum malaria patients with neurological symptoms of any sort have to be 

treated as CM cases (Trampuz et al. (2003).  

         Celebral malaria is the type of malarial complication considered to cause 

death in severe falciparum infections. More than 80 % of all malaria deaths are 

because of the involvement of the central nervous system (CNS). Malaria fairly 

brings forth manifestations in the CNS and these could be attributed to the 

infection or its related high-grade fever and antimalarial drugs administered. 

Cerebral dysfunction may be manifested through any level of impaired 

consciousness, convulsions, delirium and overboard neurological characteristics.  

        In severe falciparum malaria infections, sudden manifestations of 

neurological disorders can happen following a seizure over a period of time. What 

causes neurological signs in malaria is mainly attributed to high level fever from 

the infection of falciparum malaria which can cause febrile convulsions in 

children and psychosis. Antimalarial drugs like quinine and mefloquine can cause 

© University of Cape Coast

Digitized by Sam Jonah Library



21 
 

hallucinations and even altered behaviour during malaria treatments. 

Hypoglycaemia due to severe malaria or the effect of the drugs used to treat 

malaria can also present neurological manifestations. This is mostly common in 

pregnancy. Severe anaemia from an infection of falciparum malaria can cause 

cerebral dysfunction mostly in children. (WHO, 2007a). 

Diagnosis 

           In the past, doctors used the physical symptoms of malaria to diagnose and 

prescribe treatments for patients presumed to have malaria. This was done without 

any tests performed. Eventually, confirmation of the presence of parasites by 

Giemsa stained microscopic slides was added onto the presumptive diagnosis. 

However, microscopy was only performed where there was an expert 

microscopist and resources available. Health experts still diagnose malaria 

basically using clinical assessment of side effects where microscopy is 

unavailable (Baker et al, 2010).  

            Presently, RDTs for malaria diagnosis has taken over thick and thin film 

blood smears (light microscopy). In villages and semi urban areas, which lack 

microscopes, trained work force and experience frequent power outages, RDTs 

have become essential diagnostic tools.  

            Varying patterns of internationally accepted morphological appearances of 

Plasmodium species, conceivably because of medication pressure, strain variety, 

or ways to deal with blood collection, have made diagnostic issues very difficult 

to be settled just by reference to an atlas of parasitology (Moody, 2002). This, 
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however, has led to difficult diagnosis in malaria. As a result of the restrictions of 

microscopy for malaria determination, worldwide malaria control programs have 

concentrated on the improvement of other diagnostic tests that can be utilized as a 

part of field diagnosis (Wilson, 2012). 

Microscopy 

This is known as the “Gold Standard” for the identification of species 

specificity and all the different stages for the Plasmodium parasite. It is by far the 

most widely used method of diagnosis for malaria (Azikiwe, Ifezulike, 

Siminialayi, Amazu, Enye & Nwakwunite, 2012; Falade et al., 2016). In 2014, 

the WHO report showed the use of microscopy for diagnosis hit a maximum high 

of 203 million cases (WHO, 2016). 

It is a recommendation of WHO that at least microscopy or RDT should 

be used in the diagnosis of malaria (WHO, 2015). However, there are some 

limitations to how accurate a microscopy diagnosis could be in primary health 

care levels. Some of these limitations can range from the low limit of detection (~ 

50 parasite/ microliter) deficiencies in personnel (inadequate training of 

personnel) to substandard equipment and inadequate flow of reagents and 

materials with good shelf life (Payne, 1988). 

To address the impediments of microscopy, PCR-based procedures are 

used and different strategies are being investigated. To be approved, these 

techniques must be benchmarked against microscopy or PCR investigation and 

against reference strains (Mouatcho & Dean Goldring, 2013).  
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Serology  

Serology distinguishes antibodies against malarial parasite antigens, 

utilizing either indirect immunofluorescence (IFA) or enzyme-linked 

immunosorbent assay (ELISA). Serology allows for the pickup current infection 

and also measures past exposures to the disease. This normally detects the 

exposure to the organism but not its presence (Rosenblatt et al., 2009).  

Babesia bovis antigen studies showed positive RDTs even though it was 

negative from PCR and other tests. These samples were later found to have recent 

malaria past infection. The IgM and IgG subclasses of the malaria infection were 

still in the blood sample used (Rios, Alvarez & Blair, 2003). This brought to light 

the cross reactivity of Babesia and P. falciparum. In other Babesia studies, 

malaria was found to be positive in IFA test but was negative in ELISA. The 

sample used were samples which have been confirmed to have current infection 

with very low parasitaemia. This reiterates that IFA may not be reliable for 

current infection diagnosis (James et al., 1987). 

 Gel Diffusion Tests 

 Gel diffusion tests entails diffusing malaria antigens which are soluble into 

an agar gel against a serum containing antibodies. Immunoprecipitation occurs 

when an antigen chances upon its specific precipitation antibody and forms a 

precipitin line. Mostly, antigens from the asexual stage of the P. falciparum are 

used.  

 The use of gel diffusion test is advantageous because it does not require 

complex equipment in its use. Also very large numbers of antiseras can be 

© University of Cape Coast

Digitized by Sam Jonah Library



24 
 

diagnosed in a day for the presence or absence of precipitins. It can also be used 

to detect the presence of soluble malaria antigens in different sera. This method is 

best used in high endemic areas because the test may give poor results in lower 

transmission areas where antibody concentrations in the serum are generally very 

low (Balows, William Jr., Ohashi & Turano, 2012; Claessens, Affara, Assefa, 

Kwiatkowski & Conway, 2017; Druilhe & Monjour, 1975; Srivastava et al., 

1989). 

Indirect Haemagglutination Tests (IHA) 

 Indirect haemagglutination test may be likened to an ELISA, however, 

agglutination of cells are expected in the wells instead of colorations. Control 

antigens and antigens prepared are added to sensitized cells which have been 

fixated (fixated RBCs). These fixated cells are then treated with tannic acid and 

antigentitrations are done. Samples are examined by doing various dilutions with 

intermittent shaking. Results are read looking for agglutination in wells of 

positive control and compared with that of the samples (Bulletin of WHO, 1974). 

Indirect haemagglutination test is highly sensitive and scarcely produce false 

positives and is easily done without any complex equipment. Ealry infection, 

however, may produce false negatives though the parasite may be present 

(Ambroise-Thomas, 1978; Sulzer, Glosser, Rogers, Jones & Frix, 1975; Mathews 

et al.,1975).   

 Immunofluorescence Assay (IFA) 

The immunofluorescent antibody test is an appropriate and reproducible 

method for looking at antibody levels for malaria infections, both past and present 
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infections (Sulzer, Wilson & Hall, 1969). Immunofluorescence antibody assays 

has been used around the world for malaria diagnosis. 

Duo-Quan and the colleagues in 2009 in the China Yangtze Three Gorges 

Project (TGP) used IFA to ascertain the presence of malaria in the Gorge Dam 

area, however, there was no history of malaria in the area prior to the project. For 

instance, in France, IFA is combined with donor questionnaire as part of a 

targeted screening strategy (Tangpukdee, Duangdee, Wilairatana & Krudsood, 

2009; Duo-Quan, Lin-Hua, Zhen-Cheng, Xiang & Man-Ni, 2009). In Stockholm 

University, Department of Immunology, IFA was done on glutaraldehyde-fixed 

monolayers of F32 P. falciparum-infected erythrocytes. (Iqbal, Sher & Rab, 

2000).  

Enzyme-Linked Immunosorbent Assay (ELISA)  

ELISA has been used to quantify parasite biomarkers such as Plasmodium 

Topoisomerase I and Tyrosyl-DNA Phosphodiesterase I in whole blood (Hede et 

al., 2018). A parasite biomarker of choice is used to estimate the level of infection 

that can be found in whole blood or serum or plasma. This can be done 

irrespective of the parasites’ location in the body. The best biomarkers used are 

mostly the markers used for RDTs (Moody, 2002). Evidence available shows that 

PfHRP2 based assays are the most sensitive in the P. falciparum detection. Some 

studies have also showed that pfhrp2 have been used in detecting the presence of 

the parasite in placental malaria cases (Leke et al., 1999). ELISA is mostly used 

to detect very low levels of infection that is undetectable in RDTs and because of 
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the high throughput nature, it can be very useful in epidemiological studies 

(Kifude et al., 2008). 

Rapid Diagnostic Tests (RDTs) for Malaria 

The RDT for malaria, also known as “dipstick/malaria rapid diagnostic 

device” detects particular antigenic proteins that Plasmodia produce. These 

proteins can be found in the body fluids (mostly blood or saliva) of infected 

individuals. The RDTs function by the lateral flow method or the 

Immunochromatographic Strip (ICS) method which shows availability of the 

antigenic proteins by changing colour on the absorbent nitrocellulose strip (Figure 

4).  There are RDTs which detect antibodies of antimalarial proteins, however, 

they are mostly used in case management. For instance, during blood donation, it 

can be used to screen donated blood to prevent introduction of malaria into 

transfused patients (Moody, 2002). RDTs are mostly useful in rural healthcare 

areas where there is lack of trained personnel for microscopy as well as 

unavailability of microscopes. Diagnosis becomes easy in these areas.  
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Figure 4: PfHRP2 and PfHRP2/Pan specific RDTs positive for P. falciparum or mixed 

infection Source: http://www.malwest.gr/en-

us/malaria/informationforhealthcareprofessionals/laboratorydiagnosis.aspx  

Mechanism of action of Rapid diagnostic tests  

1. Dye-labelled antibody, specific for target antigen, is present on the lower 

end of nitrocellulose strip or in a plastic well provided with the strip.  A 

specific antibody for the target antigen is bound to the strip in a thin (test) 

line. Either an antibody specific for a labelled antigen or an antigen for a 

labelled antibody is bound at the control line (Figure 5). 

2. Blood and buffer, which have been placed on strip or in the well, are mixed 

with labelled antibody and are drawn up strip across the lines of bound 

antibody 

3.  If antigen is present, some labelled antibody will be trapped on the test 

line. The excess labelled-antibody binds to the control line. 
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Figure 5: Malaria Rapid Diagnostic Test Performance Results of WHO product 

testing of malaria RDTs: Round 3 (2010-2011) Source: WHO/FIND/CDC/TDR 

(2011) 

 

Types of malaria RDTs  

    Rapid diagnostic tests kits are mostly categorized into two. The dipstick 

(test strips) put in tubes having unclotted blood and/or buffer and the 

nitrocellulose strips which are mostly put in cards or cassettes. Even though cards 

1 

2 

3 
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and cassettes are expensive, they are quite easier to use. These two types basically 

work on the principle of capillary flow motions. 

The Dipstick RDT strips 

 The dipstick format have been reported to have binding sites to test for 

multiple antigens by placing the dipstick in the sample within a tube Jelinek et al., 

1999). Jelinek and other colleagues also reported dipsticks to have the potential of 

enhancing P. falciparum diagnosis in nonspecialized labs. They also reiterated 

that, travelers should only use dipstick if they had been trained and appropriately 

instructed on the performance of the test procedure (Jelinek, Grobusch & 

Nothdurft, 2000). They are not common in these days since their specificity and 

sensitivity was not as the lateral flow type (Maltha, Gillet & Jacobs, 2013). This 

made the nitrocellulose membrane strips more prominent and produced by many 

companies recently.   

The nitrocellulose membrane RDT strips  

   The nitrocellulose membrane RDT strips is the most widely used strip with 

over 60 companies producing them (Wongschangarai et al., 2007). On one end of 

the nitrocellulose strip, one or two indicator-labeled antibodies, one specific for 

each target antigen, are placed. A second antibody specific for a different epitope 

of each of the target antigens is bound to the strip in a thin line. Another antibody 

specific for the indicator-labeled antibody complex is bound to the control line. 

Blood and buffer are added to the strip where the lysing agent and labeled 

antibody are located and are drawn up the strip. If antigen is present, some 
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indicator-labeled antibody-antigen complexes will be trapped on the test line and 

become visible. Additional indicator-labeled antibody is trapped on the control 

line and becomes visible as shown in Figure 6.  

 

Figure 6: Schematic diagram of a nitrocellulose Membrane RDT. Source: 

https://www.creative-diagnostics.com/Immunochromatography-guide.htm 

    Basically, RDTs that are commercially made detect three main types of 

antigens. These are the Plasmodium histidine-rich protein II (PfHRP2), 

Plasmodium Lactate Dehydrogenase (pLDH), Plasmodium Aldolase (pAldo) 

which is pan-specific and the Plasmodium glutamate dehydrogenase (pGluDH) 

which is not widely used. 

Plasmodium histidine-rich protein II (PfHRP2) 

    Histidine-rich protein II is specific to P. falciparum and is the one known to 

be heat stable antigen and highly abundant soluble protein found within 

membrane and cytoplasm of iRBCs. This type of protein is the most used because 

of its qualities. It is known to be still active over long travels (WHO, 2004; 

Hänscheid, 2003). The antigen is expressed on the surface of the RBC membranes 
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and are produced by the parasite’s asexual stage and gametocytes. They are the 

most persistent antigen known to remain in the blood for a minimum of 28 days 

(Beshir et al., 2017; Dorado et al., 2016; Hendriksen et al., 2011). This brings 

about false positives even after parasite clearance. There are some parasite strains 

which lack the pfhrp2 gene and thus do not produce this antigene of interest. This 

produces false negatives. The mere presence of the pfhrp2 deletants affect RDT 

accuracy in endemic regions and these would pose significant implications on 

RDT implementation, clinical case managements and efforts to control malaria 

(Gatton et al., 2017).  

Plasmodium Lactate Dehydrogenase (pLDH)  

         Plasmodium Lactate Dehydrogenase (pLDH) is produced by the trophozoite 

stage and gametocyte stage of all the Plasmodia. It is only present and released in 

iRBCs. The most readily available pLDH RDTs are the P. falciparum specific and 

the pan-specific for all the common human infective Plasmodia. Some pLDH 

RDTs are also P. vivax specific (Manjula, Soumya & Majigoudar, 2014). Since 

pLDH is produced by living parasites, the test is used to differentiate between 

treated and untreated malaria infections. Due to this, they are mainly used for 

follow up malaria cases. These RDTs are more expensive and less stable at high 

humidity and temperature (Simpalipan, Pattaradilokrat & Harnyuttanakorn, 2018). 

These have greatly been used in recent times but have issues in the P. vivax 

specific types. According to a study, pLDH and pAldo antigens RDTs worked 

differently in P. vivax samples. This could bring about misdiagnosis (Dzakah et 
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al., 2014). Combination of the antigens into one RDT for diagnosis is preferred 

for all the species of Plasmodium. 

Plasmodium Aldolase (pAldo is pan-specific) 

 Plasmodium Aldolase are antigens which are major enzymatic proteins 

conserved in malaria parasite’s glycolytic pathway and are soluble as well as 

abundantly found within the parasite (WHO, 2006). These pAldo antigens are 

mostly seen produced together with the HRP2 on the same test kit. BinaxNOW® 

in the US mostly produce the most efficient malarial pan-specific RDT kits  

(Rosenblatt et al., 2009). Though this is pan-specific, studies have shown it to be 

more accurate in sensitivity and specificity than the PfHRP2 but also has an issue 

with detecting limit (Dzakah et al., 2013). 

Plasmodium glutamate dehydrogenase (pGluDH) 

The pGluDH is an enzyme given as a marker enzyme for Plasmodium 

species which cannot be found in the host RBC (Picard Maureau et al., 1975).  

It was discovered to be very appropriate for routine and standard malarial testing. 

The existence of pGluDH has been reported to be parasite viable and are therefore 

suitable for rapid diagnostic testing. The antigen is said to have the ability to 

distinguish between live and dead malaria parasites. A pGluDH RDT was 

developed in China in the early 2000s (Li et al., 2005). 

GluDHs are ubiquitous enzymes that occupy an important branch-point 

between carbon and nitrogen metabolism. Both nicotinamide adenine dinucleotide 

(NAD) and nicotinamide adenine dinucleotide phosphate (NADP) dependent 
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GluDH enzymes are present in all the Plasmodium species, however, the NAD-

dependent GluDH is relatively unstable and not useful for diagnostic purposes. 

Glutamate dehydrogenase provides an oxidizable carbon source used for the 

production of energy as well as a reduced electron carrier, NADH. Glutamate is a 

principal amino donor to other amino acids in subsequent transamination 

reactions. The multiple roles of glutamate in nitrogen balance make it a gateway 

between free ammonia and the amino groups of most amino acids (Jain et al., 

2014).  

Though pGluDH has been known to be a good RDT candidate, its RDTs 

for malaria detection have not been easily accessible (Ishengoma et al., 2016). 

Importance of RDTs on malaria diagnosis 

Within the last 10 years, malaria diagnosis has been evolving rapidly 

mostly because of the introduction of RDTs in malaria diagnosis (McMorrow, 

Aidoo & Kachur, 2011). Very accurate diagnosis is fast becoming an all-

important venture in disease surveillance and case managements. The WHO 

recommended all malaria suspected cases to be confirmed by the use of a 

diagnostic assay of the parasites (WHO, 2010). It was a sharp contrast to the 

earlier policy that recommended the universal treatment of children under-five in 

endemic areas and empirical treatment for adults in non-laboratory testing areas 

(WHO, 2006). Expansion capacity of malaria diagnosis over the years have 

shown that there are possibilities of reducing the inappropriate use of antimalarial 

drugs (McMorrow et al., 2011).  
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Rapid diagnostic tests have many advantages over microscopy and clinical 

diagnosis. Rapid diagnostic tests in field trials, have shown to have greater than 

90 % specificity and sensitivity for P. falciparum infection with ≥200 

parasites/μL (Hopkins, Kambale, Kamya, Staedke, Dorsey & Rosenthal, 2007). 

Among all the malaria diagnostic tests, RDTs are the simplest. This is because 

they do not need the use of any sophisticated equipment nor electricity. Their 

results are made ready in less than 20 minutes. They are relatively cheaper with 

price range of $0.60 to $1.2 per a single test (Moody, 2002). Since RDTs are the 

most simple to use, clinicians, health workers and volunteers in the community 

can be taught to perform them within a few hours of practical training. Correct 

interpretation of RDTs results is less subjective than that of microscopy which 

requires a lot of skill. On a RDT, there is a line present or absent on the test kit 

(Proux et al., 2001). 

The RDTs on the market now can recognize one or more of the target 

antigens. HRP2-based tests are highly specific and sensitive for P. falciparum. 

The pLDH-detected tests are specific for P. falciparum or P. vivax and/or pan-

specific for the detection of all malaria species. Very few commercially available 

RDTs use Plasmodium aldolase as a pan-species target antigen. Malaria RDTs 

have shelf-life of  18 – 24 months, which allows enough time for delivery, 

distribution, and use in almost all settings (Moody, 2002). 

Combining accurate and early diagnosis using RDTs, fast treatments with 

the ACTs by Community Health workers have shown great importance in 

reducing the incidence and death rate of malaria in low transmission areas 
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(Hopkins et al., 2007). However, there are few limitations of the RDTs. These 

include the level of capture (greater than or equal to 200 parasites per microliter), 

storage in temperate conditions, parasite densities determination and deletions of 

the pfhrp2/pfhrp3 gene segments which cause negative results in some cases even 

when the parasite is present (WHO, 2016). 

Molecular Diagnostics 

 Molecular techniques in diagnostics have been known to have higher 

sensitivities than the RDTs and the best microscopist. Averagely, microscopists, 

detect 50 parasites per microliter (p/µL) of blood while an expert may identify 

≥20 regular infections (Chiodini, 2014). The detection limit of RDTs are mostly 

100p/µL while PCRs have detection limits of <5 p/µL (Erdman & Kain, 2008) 

and RT-PCR less than 1 p/µL. A number of different molecular diagnostic tools 

can be used for malaria diagnosis, such as PCR, which have many different types, 

the loop-mediated isothermal amplification and the quantitative or realtime 

nucleic acid-based amplification. . 

Polymerase Chain Reaction 

 Even though microscopy is the gold standard for malaria diagnosis and 

species identification in clinical settings (Makler, Palmer & Ager, 1998; Warhurst 

& Williams, 1996), PCR has been reported to have 100 times greater sensitivity 

and specificity (Milne, Kyi, Chiodini & Warhurst, 1994; Snounou et al., 1993). 

Compared with microscopy, PCR is more sensitive and can be used in low 

transmission settings and to detect subclinical infections. However, reagent and 

equipment costs as well as quality assurance have made PCR-based diagnostics 
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limited to research labs, (Coleman et al., 2006; Roshanravan et al., 2003). Gal and 

the colleagues reported that serum and plasma give better DNA yield for PCR 

than whole blood (Gal et al., 2001). This was confirmed in another study on 

stored serum samples (Bharti et al., 2007). This allowed testing stored sera 

samples to determine malaria infection rates in a sensitive manner. Though whole 

blood was used, test sensitivity is still seen to be high (Amoah et al, 2016; 

Kattenberg et al, 2012; Snounou et al., 1999). 

Nested PCR 

 Nested PCR is a modified PCR designed to improve on the sensitivity and 

specificity of reaction outcomes. This requires two primer sets in two consecutive 

PCR reactions. The first set of primers used in an initial PCR reaction are 

designed to anneal to sequences upstream from the second set of primers. 

Amplicons from the first PCR reaction are used as the template DNA for the 

second set of primers and its second PCR amplification step (Haddad et al., 

1999). 

Sensitivity and specificity of DNA amplification are significantly 

enhanced with this technique. Nonetheless, there is a risk of contamination from 

carryover amplicon products. To be able to reduce carryover contaminations, the 

two processes can be done in two separate rooms or areas. Amplicons from nested 

PCR assays are viewed in the same manner as in conventional PCR (Buttler, 

2012; Carr, William & Hayden, 2010).  
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 In areas where other species apart from P. falciparum are present, nested 

PCR is very useful for malarial diagnosis to complement microscopy (Zakeri, 

Najafabadi,  Zare & Djadid, 2002).  

Real time Quantitative PCR 

 Quantitative polymerase chain reaction (qPCR) is a method by which the 

amount of the PCR product can be determined, in real-time. It is very useful for 

investigating gene expression. The process is often referred to as real-time PCR or 

real-time quantitative PCR (qRT-PCR) (Heid, Stevens, Livak & Williams, 1996), 

or depending on the application, quantitative reverse-transcriptase PCR (both of 

which are abbreviated to RT-PCR) (Lobert, Hiser & Correia, 2010). 

Quantitative PCR does not rely on any downstream analysis such as 

electrophoresis or densitometry. It is very versatile, allowing multiple PCR targets 

to be assessed concurrently. This can be a little trickier to set up than “normal” 

PCR. However, familiarity with “normal” PCR makes one able to successfully 

undertake Q-PCR (Maddocks & Jenkins, 2016); Brazeau & Brazeau, 2013).  

Some specimens were identified by sequencing pan-plasmodium 18s 

rRNA PCR products and two of these samples were seen to have mixed infection 

after a real-time PCR assay was done. This assay could therefore be integrated 

into malaria testing algorithm in low transmission areas. This will give way for 

definitive species identification after microscopy (Lefterova, Budvytiene, 

Sandlund, Färnert & Banaei, 2015). This is an easy parasite identification 

procedure but highly expensive with sophisticated equipment. 

© University of Cape Coast

Digitized by Sam Jonah Library



38 
 

Multiplex PCR 

Multiplex PCR (M-PCR) is a variation of the conventional PCR. The basic 

principle of multiplex PCR is the same as that of the conventional PCR, except 

that more than one pair of primers are required in the same reaction. The primers 

can specifically combine with their corresponding DNA template, and more than 

one DNA fragment will be amplified in one reaction simultaneously. The faster 

and more economic multiplex PCR has similar specificity and sensitivity as 

simplex PCR and shows greater flexibility in the design of primers and PCR 

reaction conditions (Shang, Xu, Wang, Xu & Huang, 2017). Multiplex PCR could 

provide internal controls and appreciation of the quantity and quality of amplified 

templates (Xu, Huang, Wang, Zhang & Luo, 2006). 

Though multiplex PCR has a lot of merits, its limitations cannot be 

overlooked. The self-inhibition among different sets of primers, low amplification 

efficiency and no identical efficiency on different templates are worrying. These 

reasons would restrict its further development and broad application (Nikiforova, 

LaFramboise & Nikiforov, 2015). 

In comparing realtime PCR to PlasmoNex Multiplex PCR Kit and MSP-

multiplex PCR, the MSP-multiplex PCR assay performed slightly better than real-

time multiplex PCR and the PlasmoNex Multiplex PCR Kit with regard to P. 

ovale in terms of detection limit. P. falciparum detection in both multiplex were 

however, poorly sensitive as compared to real-time PCR (Lau et al., 2015). This 

showed that multiplex could not be used in large diagnostic settings where P. 

falciparum is endemic. 
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Comparing qPCR to microscopy, Reller et al (2013) used a high-

throughput multiplex 5’ nuclease qPCR assays to distinguish between the five 

human infective Plasmodium species. This yielded a good result since the assay 

was able to identify all the confirmed microscopy positives. This showed that 

multiplex PCR is a good method for malarial species identification in large 

studies.  

Loop-mediated isothermal amplification (LAMP) 

One main set back of PCR for malaria diagnosis, despite its high 

sensitivity is that it requires very sophisticated equipment, laboratory 

infrastructure and training and also a long time to obtain results. This makes the 

techniques more expensive and challenging to do in field work and clinical labs, 

(Lucchi et al., 2010). To be able to better control malaria and eventually eradicate 

it, very sensitive inexpensive diagnostic tools are required to detect very low 

levels of parasitaemia in asymptomatic persons. For this reason, other molecular 

techniques for field use needed to be developed to complement or replace the 

existing methods for malaria diagnosis and control.   

Loop-mediated isothermal amplification is a relatively simpler and field 

adaptable alternative to PCR (Notomi et al., 2000). In this technique, parasite 

DNA is amplified with strand displacement properties under isothermal 

conditions, therefore, no sophisticated equipment and thermal cyclers are 

required. Amplified DNA forms magnesium pyrophosphate which appears as a 
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precipitate during the progression of the reaction and serves as an indication of 

parasite positivity. 

Loop-mediated isothermal amplification exhibits high efficiency in DNA 

amplification, amplifying 109 copies in less than an hour.  Four different primers 

are required for LAMP, however, in malaria diagnosis six are used. These primers 

are specific to six sites of of P. falciparum, making them highly specific. The 

addition of two loop-primers accelerates the time for product formation 

(Nagamine, Hase & Notomi, 2002), which shortens the reaction time. Since this 

method does not need a thermocycler or any sophisticated equipment and training, 

it could be used as a point-of-care (POC) molecular diagnosis in field works. 

LAMP has been used in the diagnosis of other infectious diseases like the 

Legionella bacteria, West Nile Virus, severe acute respiratory syndrome, avian 

influenza virus and norovirus (Annaka, 2003; Parida, Posadas, Inoue, Hasebe & 

Morita, 2004; Imai et al., 2006; Fukuda, Takao, Kuwayama, Shimazu & 

Miyazaki, 2006).    

Within the last fifteen years, LAMP method have been used for the 

detection of Plasmodium infection with the 18s rRNA gene as target gene (Zheng, 

Xie & Chen, 2002; Han et al., 2007; Paris et al., 2007; Yamamura, Makimura & 

Ota, 2009). The first time LAMP was reportedly successful in the diagnosis of 

malaria was in 2006 (Poon et al., 2006). They detected P. falciparum from heat-

treated clinical samples which had their packed red cells boiled at 99oC for 10 
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minutes. The cells were then pelleted by centrifugation the supernatant were then 

used in the LAMP assay.  

Lucchi et al (2010) reported LAMP sensitivity of 95 % and specificity of 

99 % compared to nested PCR. Han et al (2007) used conventional DNA 

extraction method before a species specific LAMP diagnosis and reported 98.5 % 

sensitivity against 94.3 % specificity compared to microscopy and nested PCR. 

The limits of detection of the target 18s rRNA genes for P. ovale and P. malariae 

were 10 copies while that of P. falciparum and P. vivax were 100 copies (Han et 

al).  

In others studies, when LAMP was compared with both microscopy and 

HRP2 RDT, LAMP had 100 % specificity relative to both (HRP2 RDT and 

microscopy) and sensitivity of 73.1 % and 77.6% relative to microscopy and RDT 

respectively. Nested PCR-based on primers designed by Singh et al (1999)  

showed that LAMP had sensitivity of 79.1% against 58.3% specificity (Poon et 

al., 2006; Paris et al., 2007). This was after heat treatment for DNA extraction 

was used (Singh et al., 1999). Zheng and others used P. vivax primers to detect 

microscopy positive clinical samples using LAMP assay. The detection limit of P. 

vivax showed 30 parasites per microliter (30p/µL) with 100% specificity and 

98.3% sensitivity compared to microscopy (Zheng, Xie & Chen, 2002).  This 

shows that there are other equally important and good methods for malaria 

diagnosis, each with their own set of limitations. The LAMP can be used in field 

studies to confirm PfHRP2 RDT negatives and positives.  
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Nucleic Acid Sequence-based Amplification (NASBA) 

Nucleic acid sequence-based amplification is a new technique which uses 

isothermal processes and RNA polymerase to amplify RNA. It has been reported 

as sensitive, transcription-based amplification system specifically designed for the 

identification of RNA targets. However in other NASBAs, some DNA may be 

amplified but is highly inefficient when compared to that of the RNA (Fakkrudin, 

Mazumdar, Chowdhury & Mannan, 2012). 

 Nucleic Acid sequence-based amplification is primer-dependent and 

amplicon detection is based on probe binding, primer and probe design rules are 

included. For the isolation of nucleic acids prior to NASBA, the method, based on 

the denaturing properties of guanidine isothiocyanate and binding of nucleic acid 

to silica particles, is preferred. At the moment, electro-chemiluminescence (ECL) 

is used to detect the amplicon at the end of amplification. In an HIV-1 quantitaive 

NASBA, 48 samples were detected in 90 minutes (Deiman, van Aarle & 

Sillekens, 2002; Yoo et al., 2005). 

Schallig et al (2003) used NASBA to diagnose malaria and reported that 

NASBA could be helpful in areas of low parasitaemia. Comparison of the parasite 

densities obtained by microscopy and QT-NASBA with 120 blood samples from 

Kenyan patients with clinical malaria revealed that for 93% of the results were 

within a 1-log difference. QT-NASBA is there a very useful tool for the detection 

of low parasite levels in patients with early-stage malaria and for the monitoring 

of the efficacy of drug treatment (Schoone, Oskam, Kroon, Schallig & Omar, 

2000). 
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Plasmodium Genes and Antigens for malaria diagnoses 

Plasmodium falciparum hrp2 gene 

Histidine-rich protein II gene (pfhrp2) is a gene located sub telomerically 

on the eigth chromosome of the malaria parasite (Iqbal et al., 2004). The PfHRP2 

is a P. falciparum-specific water-soluble protein, localized in the parasite 

cytoplasm and on the surface membrane of infected erythrocyte. It is found on 

protruded knobs which is known to account for the sequestration of the 

trophozoites and schizonts in post capillary venules (Pain et al,, 2014).  

The genes have hydrophobic signal peptides (brown), an intervening 

intron, and an extensive region of tandem repeats (pink). The high homology (85–

90%) between the tandem repeat domains and the flanking regions of the repeats 

of hrp II and hrp III genes is shown in Figure 7  (Sullivan, Ayala & Goldberg, 

1996; Jain et al., 2014). This explains why the pfhrp3 gene substitutes for the 

pfhrp2 gene when it has been deleted. Their high homology gives room for 

overlapping and replacement functions. 

 

Figure 7: Schematic alignment of hrp II and hrp III genes including 5′ and 3′ 

untranslated region (UTRs), (Source: Pain et al., 2014). 

NB* INT = intron, SEC = secretory leader.  
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The various ways by which pfhrp2 deletions are possible have been 

presented in Figure 8. The entire gene of pfhrp2 can be deleted while part of it 

may be deleted as well. There can be deletion of exon 1, deletion of exon 2, 

deletion of the flanking genes and deletion of any two of these genes as well as 

deletion of the entire pfhrp2 gene. 

 

Figure 8: Schematic presentation of various breaking and rejoining points of the 

pfhrp2 gene to show how pfhrp2 is deleted (Source: Chenq et al., 2014). 

The PfHRP2 antigen concentrations increase as the parasite grows from 

the ring stage to the trophozoite stage and it easily diffuses into the plasma. 

(Howard et al., 1986; Rock  et al., 1987). These PfHRP2 antigens are mostly 

found in the asexual stages, but are also found in young gametocytes of P. 

falciparum. This could be the reason why detection is possible at lower parasite 

densities and also its detectability even after 28 days of clinical presentations and 

total clearance of the parasite from the patients system (Murray & Bennett, 2009). 

The pfhrp2 mutants can escape recognition by monoclonal antibodies and may be 
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responsible for false negative tests (Baker et al., 2005; Lee et al., 2006). Findings 

about PfHRP2 from 19 different countries have revealed that only 84% of P. 

falciparum have been detected (Murray & Bennett, 2009).  

Many reports have shown that the main function of hrp2 is heme binding 

and that its role is linked to the heme detoxification in malaria parasites. Pfhrp2 is 

also known to initiate hemozoin formation. PfHRP2 has been suggested to play an 

important role of a buffering protein since it helps the parasite to stabilize the 

changes to the cytoskeleton induced by other released parasitic proteins.  (Jain, 

Chakma, Patra & Goswami, 2014) 

Plasmodium falciparum hrp3 gene  

Histidine-rich protein III (pfhrp3) also known as small histidine-alanine-

rich protein (SHARP) is a smaller protein and has been reported to be as abundant 

as the hrp2 protein. The hrp3 gene is located subtelomerically on the thirteenth 

chromosome of the P. falciparum malaria parasite genome. The known pfhrp3 

sequence was taken from FC27 strain of the P. falciparum isolates from Papua 

New Guinea (Stahl et al., 1985).  

The pfhrp3 gene has however been reported to be similar in structural 

homology with the pfhrp2 and as a result, it cross reacts with pfhrp2 antibody 

coated RDTs. These pfhrp3 genes have therefore been seen to contribute to the 

diagnosis of P. falciparum malaria (Kumar et al., 2012). Many studies have been 

done to show that there are similarities in both function and structure of both 

pfhrp2 and pfhrp3. As a result, the two have also been shown to have much 
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diversity. However, pfhrp3 has been shown to have lesser diversity (Jain et al., 

2014).  

Since the discovery of pfhrp2/pfhrp3 gene deletions in the late 1980s, 

many studies have been done in many different countries but Peru, India and 

Cambodia are the most studied countries. In the 2016 Global malaria information 

note of the WHO, pfhrp2 deletions have been reported in four different countries 

in Africa with Ghana and Eritrea being the most recent and ongoing. Aside all the 

other procurement, storage and management of RDT factors, false negative results 

of RDTs have been attributed to these deletions in these reported countries. 

Reports by Amoah et al (2016) in Ghana showed the presence of the deletions of 

pfhrp2 exon 2 in Ghana. Baker et al  (2010) showed various genetic variations in 

the pfhrp2 gene. Similar studies have also been done in Senegal, Mali and Eritrea 

(Baker et al., 2005; Baker et al., 2010).  

Plasmodium lactate dehydrogenase gene 

The P. falciparum gene which encodes for lactate dehydrogenase activity pfLDH 

is a single copy gene found on the 13th chromosome. This gene has no introns and 

are expressed as 1.6 kb mRNA in all the parasite’s asexual blood stage. All 

malarial pLDH sequences share common epitopes (Hurdayal et al., 2010) and 

therefore pLDH-based RDTs using mAbs against a common epitope can detect all 

human Plasmodium species, including mixed infections in circulating blood 

(Mayxay et al., 2004). RDTs based on ‘pan-malarial’ LDH probably use mAbs 

against common epitopes. 
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The pfLDH shows high similarities between P. falciparum and vertebrates and 

bacteria (50 – 57 % similarity) Escherichea coli from which the gene was first 

synthesized but does not have the amino terminal extension found in all 

vertebrates. The pfLDH has most of its amino acid residues implicated in in 

substrate and coenzyme binding and catalysis of other LDH are conserved in 

pfLDH ( Bzik, Fox & Gonyer, 1993). This gene produces the pLDH glycolytic 

enzyme responsible for parasite glycolysis (Hurdayal, Achinolou, CHoveuax, 

Coetzer & Dean Golring, 2010). 

 The parasite and erythrocytic cells (human host) lack a complete citric 

acid cycle for mitochondrial ATP production and depend on anaerobic glucose 

metabolism, making pLDH an important enzyme for energy production in the 

parasite (Mouatcho & Goldring, 2013). This anaerobic activity of the enzyme is 

essential to the parasite and thus inhibition of this enzyme could kill the parasite 

(Sessions, Dewar, Clark & Holdbrook, 1997). The pfLDH has peculiar properties 

like inability to inhibit other enzymes pyruvate concentrations and is very active 

with coenzyme 3-acetylpyridine (APAD) at 0.5 M lactate (Markwalter et al., 

2018).    

Plasmodium falciparum Aldolase gene 

Fructose bisphosphate aldolase of P. falciparum is a gene with two exons 

and an intron (Knapp, Hundt & Kupper, 1990). The first exon codes for a single 

amino acid while the second exon cones for 368 amino acids. The gene is 

represented in the genome once which gets transcribed as a 2.4kb mRNA during 
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the blood stage of P. falciparum. The pAldo gene has a weight of 41 kDa with 61-

67 % homology with eukaryotic aldolases. The pAldo gene produces a major 

enzyme involved in glycolysis of Plasmodia and is released into the blood during 

infection. The gene is localized in the cytoplasm of the parasite in an active and 

soluble form.  The P. falciparum and P. vivax have one aldolase isoenzyme 

(Knapp et al., 1990; Cloonan, Fischer, Cheng & Saul, 2001). The gene has a 

highly conserved region in all the Plasmodia making it the pan-specific for 

Plasmodia detection (Dzakah et al., 2013; Kim et al., 1998; Lee et al., 2006). 

Genetic Diversity 

Knowing the DNA sequence variations and patterns for the P. falciparum 

surface antigens is very important in the ability to predict host immune responses. 

There are a lot of studies done to ascertain the fact that there have been multiple 

infections of genetically distinct strains of the P. falciparum.  The WHO in 

accordance with these variations have put out a recommendation and stipulated a 

protocol which is used in the genotyping of all P. falciparum strains (WHO, 

2007b). 

The genetically diverse nature of the parasites provides proteins with 

multiple effective evasion and drug resistance mechanisms for the parasite. 

Merozoite surface proteins (pfmsp1, pfmsp2 and pfmsp3) and glutamate rich 

protein (glurp) are commonly used markers for identifying P. falciparum in 

populations with diverse parasites genomes (Barry, Schultz, Buckee & Reeder, 

2009).   
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CHAPTER THREE 

MATERIALS AND METHODS 

 Study Design  

The samples used for this study were randomly selected from archived 

blood cells and corresponding plasma samples collected during a multiple cross 

sectional community survey in January/February (Dry season) and July/August 

(Rainy season)  of 2016.   

Study Area  

The parent study was conducted in Obom within the Ga South Municipality and 

Asutsuare within the Shai Osudoku District, both of the Greater Accra region of 

Ghana.  

Greater Accra Region 

The region has the smallest land area of 3,245 square kilometres, 

compared to the other 9 regions, which represents 1.4 % of the total land area of 

Ghana. It is the second most densely populated after region with a population of 

4,010,054 (15.4 % of Ghana’s total population) as at 2010 (Ghana Statistical 

Service (GSS), 2010). It is the region with the most widely internationally diverse 

ethnicity, however, the main natives are the Gas (GSS, 2014).  
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Ga South Municipality  

The Ga South Municipality is a youthful community (Population and 

Housing Census, 2010) with a population of 411,377 persons representing 10.3 % 

of the region’s population. (Ghana Statistical Service, 2014).  

Obom  

Domeabra Obom (Obom) is a rural farming community with about 22,360 

children below 14 years (Amoah et al., 2016), is found in the Ga South 

Municipality. (Ghana Statistical Service, 2014) (Figure 9). Malaria is perennial 

with the highest infections recorded in the rainy seasons from June to August. In 

2014, it was estimated using microscopy that 35% of Obom clinic outpatient 

visits were falciparum malaria infections According to some mapping studies 

done in the area, malaria parasite prevalence was estimated at 41 % during the 

peak transmission period in 2014 (Amoah et al., 2016).  

  

Figure 9: A map showing Obom. The red indicator shows the health center where 

the sampling took place. High transmission site of malaria.  
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Shai Osudoku District 

Asutsuare in the Shai Osudoku District (Figure 10) representing a low 

transmission area of malaria. Shai Osudoku district is situated in the south-eastern 

part of Ghana in the Greater Accra Region.  The  district  has  a  total  land  area  

of  about  968.36  square kilometres,  representing  29.84%  land  space  of  the  

Greater  Accra  Region  (The  Composite Budget of the Shai Osudoku District 

Assembly, 2015). The population of the district was 51,913 (GSS, 2010).  

 

Figure 10:  A map of Shai Osudoku District.  Red arrow indicates Asutsuare, the 

study site. 

Asutsuare 

Asutuare is a town located in Shai Osudoku district found in the Greater Accra of 

Ghana (Figure 10). The population consists of a small satellite village typically 

scattered along the Volta Lake with about 2000 people (GSS, 2010).  
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The population is mostly a fishing community. Malaria transmission has 

been reported to be low but perennial, and peaks slightly during and immediately 

after the major rainy seasons and is lowest during the dry seasons. The incidence 

of the disease has been reported to be 8.9 % with about 98 % of these infections 

caused by the P. falciparum (Adu et al., 2016). 

Sampling Procedure 

Sample Size  

This study was a pilot study which utilized 310 participants selected from 

the two study sites (161 from Obom and 149 from Asutsure). The number of 

samples used was also limited by the availability of paired plasma and blood cell 

pellets/dried filter paper blood blots   

Inclusion Criteria 

All samples with paired whole blood and corresponding plasma samples 

with available PfHRP2 RDT data were included.  

Exclusion Criteria 

Paired blood and plasma samples without RDT data or samples with RDT 

data but no matching plasma and blood cell pellet/dried blood spot samples were 

excluded from the study. 
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Ethical Approval/ Clearance 

Ethical clearance was obtained from the Noguchi Memorial Institute for 

Medical Research (NMIMR) before the study was conducted. Approval was also 

sought from the chiefs and elders of the various communities. Before sample 

collection, the study was explained to the participants in comprehensible language 

after which they were given the chance to ask questions prior to being made to 

endorse age appropriate consent forms.  

Materials  

The Ethylene diamine tetra-acetic acid (EDTA) tubes and the Whatman 

filter paper (BD, UK) were used for the blood collection. Microscope slides 

(Fisher Scienfific, USA) were used for processing the blood for microscopy. 

Malaria Ag (HRP2) CELISA Kit (Cellabs, Australia) for P. falciparum infection 

was used for the ELISA. The list of all primers used in the various PCR 

amplifications are contained in appendix V. 

Reagents 

The reagents for DNA extraction, Polymerase Chain Reaction and Gel 

electrophoresis were Zymo® Research Kit (Quick-gDNA™ Mini Prep), obtained 

from Inqaba Biotec West Africa Limited. Trizma base, Agarose powder, 

Ethidium bromide solution (10 mg/ml) (Sigma Aldrich, USA) , Calcium Chloride, 

Saponin, Chelex, Acetic acid, Sodium chloride and Absolute ethanol (Sigma, 

USA) were used. A 100 bp DNA ladder was obtained from Promega (U.S.A).   
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Methods 

Genomic DNA (gDNA) samples were used to assess the presence of the 

P. falciparum histidine-rich protein II (pfhrp2) gene in DNA and P. falciparum 

histidine-rich protein II (PfHRP2) antigen in the plasma. The presence of the P. 

falciparum small subunit ribosomal RNA (18s rRNA) gene was used to ascertain 

the presence of P. falciparum in the samples. The integrity of the extracted DNA 

was confirmed by the presence of pfmsp2 or glurp genes. Then the existence of 

pfhrp2 and pfhrp3 gene deletions were determined for samples that were P. 

falciparum and pfmsp2/glurp positive. All PCRs were repeated on samples that 

did not produce an amplicon. Samples that were consistently negative for any 

gene product were considered to be negative. The microscopy, hematocit (HB) 

and PfHRP2 RDT status of the samples were previously determined. 

Genomic DNA Extraction 

Deoxyribonucleic acid was extracted from frozen whole blood cells using 

the Quick-gDNA Mini Prep- Zymo Research Kit according to manufacturer’s 

instructions and from dried blood blots using a modified Chelex method of 

extraction as described by Arez et al. (2000). 

PCR amplification of isolates of P. falciparum  

Small Subunit ribosomal RNA (18s rRNA) 

 Genomic DNA from the 3D7 strain of P. falciparum was used as positive 

control and double-distilled water used as negative control in all PCR the 

amplification reactions. Amplifications were carried out in 15 µL volumes 
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containing 1X Onetaq® PCR buffer (50 mM KCl, 10 mM Tris-HCl), 2.5 mM 

MgCl2, 200 nM deoxynucleoside triphosphate mix (dNTPs) and 250 nM each of 

forward and reverse primers (rPU5 and rPlu6 for the primary PCR and rFAL1 (F) 

and rFAL2 (R) for nested PCR) and 1U of Onetaq™ DNA polymerase. This was 

done using the S1000™ Biorad Thermal cycler, Veneendaal, Netherlands. 

Four microliters (>20 ng) of each extracted gDNA was used as the 

template for the primary reaction and 2 μL of the primary reaction product was 

used a template for the secondary reaction. The thermal cycle reaction conditions 

were 94 °C for 5 minutes (initial denaturation), followed by 30 cycles of 94 °C for 

30 seconds, 58 °C (annealing temperature) for 1 minute and 68 °C for 1 minute. 

The final extension was performed at 68 °C for 5 minutes. .  

Parasite Genotyping (pfmsp2 and glurp)  

Amplification of region II of the Glutamate rich protein 2 gene (glurp) and 

the central polymorphic region of the Merozoite rich protein 2 gene (pfmsp2) 

(3D7 and FC27 allelic families), were performed as described by Ayanful-Torgby 

et al (2017). PCR amplifications for the pfmsp2 were multiplexed but GLURP 

was semi-nested.  

All pfmsp2 amplifications were carried out in a 15 μL reaction volume, 

containing 200 nM dNTP, 2 mM MgCl2, 200 nM of each forward and reverse 

primer, and 1 U of Onetaq™ DNA polymerase (New England BioLAB, UK). 

Four microliters (>20 ng) of gDNA were used as the template for the primary 

reaction and 2 μL of the primary reaction product was used a template for the 

secondary reactions. Two separate secondary reactions from Falk et al (2006), 
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both utilizing S1w primer paired with either the N5 primer (for the IC3D7 family) 

or M5 primer (for the FC27 family). The reaction cycling conditions were: initial 

denaturation at 94 °C for 5 minutes, followed by 30 cycles of 94 °C for 30 

seconds, 55 °C (annealing temperature) for 1 minute, and 68 °C for 1 minute. The 

final extension temperature was 68 °C for 5 minutes. The same conditions except 

annealing temperature of 58 oC were used for the secondary reaction. 

 The glurp amplification were carried out in 15 μL for the primary and 20 

μL primary reactions volumes, containing 1X reaction buffer, 200 nM dNTP, 

2.5 mM MgCl2, 300 nM of each primer, and 1 U of Dream Taq DNA polymerase 

(Thermo Scientific, UK). Four microliters of gDNA was used as the template for 

the primary reaction and 0.5 μL of the primary reaction product was used a 

template for the secondary reaction using the outer and the primary primers. The 

reaction cycling conditions were initial denaturation at 94 °C for 2 minutes, 

followed by 30 cycles at 94 °C for 30 seconds, 58 °C (annealing temperatures) for 

1 minute and 72 °C for 1 minute with a final extension at 72 °C for 5 minutes. 

The primary reaction conditions were same as the outer, however, the annealing 

temperature was set at 59 oC. 

Plasmodium falciparum Histidine-Rich Protein Amplification 

All pfhrp amplification reations were done in a 15 µL reaction volume. All 

P. falciparum hrp PCR amplifications were performed on Nexus Gradient Master 

Cycler (Eppendorf, Germany) and positive (laboratory strain parasites 3D7) and 

negative (double distilled water and Dd2) controls were used in all amplifications. 
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The pfhrp2 exon 2 and pfhrp3 exon 2 amplifications 

The pfhrp2 exon 2 PCR was done using a nested reaction. The 300 nM 

oligonucleotide primer sets used were 2.1 (F) and 2.2 (R) for the outer reaction 

while 2.3 (F) and 2.4 (R) for the primary reaction. 2.5 mM MgCl2 was used for 

both primary and outer reactions. 5 µl of gDNA was used with 1 U working 

concentration per reaction of Onetaq™ Polymerase for both outer and primary 

reactions. The initial denaturation step for both reactions were 94 
o
C for 2 

minutes, followed by 35 cycles  94 
o
C for 30 seconds, at 54.8 

o
C (annealing 

temperature) for 30 seconds for the primary PCR and 62 oC (annealing 

temperature)  for secondary with extension temperature of 68 
o
C for 1 minute. The 

final extension temperature was 68 
o
C for 5 minutes. The pfhrp3 amplifications 

were done using the same conditions as pfhrp2 with the outer reaction 

oligonucleotide primers set 3.1 (F) and 3.2 (F) and primary primer set 3.3 (F) and 

3.4 (R). 

Plasmodium falciparum hrp1-2 gene amplification 

The pfhrp1-2 PCR amplification was done using a nested reaction. The 

300 nM oligonucleotide primer sets used were 2e12F and 2e12R for the reaction 

and 2 mM MgCl2 for the reaction. Five microliters of gDNA was used with 1U 

working concentration per reaction of Onetaq™ Polymerase. The initial 

denaturation step for both reactions were 94 
o
C for 2 minutes, followed by 35 

cycles  94 
o
C for 30 seconds, 57 

o
C (annealing temperature) for 30 seconds and 
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extension temperature of 68 
o
C for 1 minute. The final extension temperature was 

68 
o
C for 5 minutes.   

Agarose Gel Electrophoresis 

Polymerase Chain Reaction amplicons were analysed. The gels were 

subjected to electrophoresis using 1X TAE as running buffer and ran at 100 V for 

45 minutes to 1 hour. After electrophoresis, the gel was visualized and the image 

was captured with a Toyobo TM-20 UV Trans illuminator fitted with a camera or 

a Vilber Lourmat Gel Dock Systems® (Wielandstrasse, Germany).  

Measurement of PfHRP2 antigen concentration  

The PfHRP2 antigen levels were assessed using the malaria antigen 

CELISA kit (Cellabs, Sydney), which employs a sandwich enzyme-linked 

immunosorbent assay (ELISA) according to manufacturers instructions with 

slight modifications.  

Recombinant HRP2 antigen (Standard/positive control antigen) was 

diluted three fold with Roswell Park Memorial Institute medium (RPMI)  at a 

starting concentration of 110 ng/ml for 6 additional dilutions. 100 µL of the 

plasma samples together with the positive and negative controls (RPMI) were 

plated in duplicate onto a plate pre-coated with anti-P. falciparum monoclonal 

antibody. The plates were incubated in a humidified chamber for 1 hour at room 

temperature. This step was followed by extensive washing of the plate with 

PBS/Tween (0.1 %). 100 µL of the anti-P. falciparum conjugated antibody in a 
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1:200 dilution was added the plate and allowed to incubate in a humidified 

chamber for 1 hour at room temperature.  

The conjugate was extensively washed off and 100 µL chromogen 

substrate at a 1:20 dilution was plated. The assay was kept in the dark for 15 

minutes at room temperature after which a visible colour was noticed. 50 µL of 2 

M sulfuric acid was added to stop the reaction. The plate was read 

spectrophotometrically at an optical density (OD) of 450 nm using Bio-Tek ELX 

808 TM plate reader.  

Readings from the plasma samples were compared to the recombinant 

HRP2 curve to assess the HRP2 levels from the unknown samples. Optical 

density values that fell outside the linear range of the recombinant HRP2 were 

further diluted at 1:5 and repeated. Optical density values that remained off scale 

(low) upon further dilution were given a value corresponding to the least possible 

detection value.  

A limit of 1.5 for defining a reading as positive was set for the absorbance value 

of the negative control plus 0.2 units, as the kit manufacturer suggested. A 

positive reading for PfHRP2 antigen was defined as an absorbance value above 

the cut-off level. A positive result indicate the presence of P. falciparum. 

Statistical Analysis 

Storage of data  and generation of graphs were done using Microsoft Excel 

version 2013 and Graphpad prism version 6. ELISA analysis was done using 

Adamsel FPL b039 software by Ed Remarque (BPRC, Netherlands) which 
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converts  OD values into concentrations and Graphpad prism version 6 statistical 

software. A standard curve was obtained from the recombinant HRP2 antigen 

standard using adamsel 309b. Analysis was done using t-test and One-way 

Anova‘s Dunn’s post hoc test in Graphpad prism.  
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                       CHAPTER FOUR 

RESULTS  

Details of Study Participants  

Although 310 samples were processed, the study focused on two sites, which are 

Asutsuare and Obom and the two major seasons in Ghana (Rainy and Dry 

seasons). One hundred and forty eight individual samples were used for the 

analysis, of which 60 (27 males & 33 females) were from Asutsuare and 88 (49 

males & 39 females) from Obom. The mean age of the individuals in Asutsuare 

was found to be 21 years, ranging from 8 – 61 years while Obom recorded a mean 

age of 18 years, ranging from 6 – 45 years. During the period of study, Asutsuare 

and Obom recorded an average temperature of 31 and 35 oC respectively as seen 

in Table 1. 

With respect to the haemoglobin (HB) concentration of the two sites, it was 

realized that the rainy and dry seasons of Asutsuare had mean HB of 12.47 g/dL 

and 12 g/dL respectively. Obom rainy season and dry season had mean values of 

11.44 g/dL and 12.93 g/dL respectively. It can be seen that there is only a slight 

difference in Haemoglobin concentration between the two sites and the 

corresponding seasons (Table 1). There was significant difference between the 

means of HB from each season in each site after Kruskal-Wallis One-way 

analysis of variance (p=0.0024, α=0.05). Comparison of parasite density between 

the two sites and their corresponding seasons showed that Asutsuare rainy and dry 

seasons had an average density of 32 p/µL and 40 p/µL respectively, while Obom 
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rainy and dry had 1600 p/µL and 221 p/µL respectively (Table 1). Parasite density 

was slightly statistically significant between the two sites using Kruskal-Wallis 

one-way analysis (p=0.0491, α=0.05). Parasite density is the number of asexual 

parasites relative to a microliter of blood. 

When RDT positivity was compared between the two study sites, using Kruskal-

Wallis analysis, it was realized that there was a significant difference in RDT 

positivity between both sites. However, there was no difference between that of 

the seasons within each site (Figure 11). 
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Figure 11: A Kruskal-Walis comparison between seasons in Asutsuare (AS) and  

Obom (OB). p-values of each graph is indicated on top of  it. 
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Parasite Identification 

Using nested PCR (nPCR) for P. falciparum identification, 59.1 % of the 

149 Asutsuare samples tested positive whereas 65.8 % of the 161 Obom samples 

tested positive (Figure 12). Excluding genotyping (pfmsp2/glurp) negative 

samples and using RDT positivity as a proxy for parasite prevalence, Asutsuare 

had a significantly lower (t-test: p=0.0001, α=0.05) prevalence of P. falciparum, 

1.7 % (1/60) while Obom had 53.4 % (47/88). Plasmodium falciparum infections 

prevalence difference between the study sites by microscopy (t test: α<0.05 at 95 

% CI - 0.4719 to 0.3059, p=0.0001) were 39.8% (35/88) in Obom and 3.3 % 

(2/60) in Asutsuare.  

Table 1:  Characteristics of the study population at enrolment  

                  Asutsuare Obom 

Parameter Rainy season Dry season Rainy season Dry season 

Sex 

Male N 10 17 19 30 

Female N 8 25 9 30 

Age (Years) 
 

Mean  21 21 18 17 

SEM  1.834 1.948 1.782 1.040 

Range (11-35) (8-61) (10-45) (6-44) 

 N 18 42 28 60 

Temperature 0C  

Mean 36.2 36 35.8 35.5 

SEM 0.1751 0.1050 0.1492 0.1863 

Range (33.8-37.2) (34.30-37.6) (33.8-37.2) (30.20- 37.5) 

 N 18 42 28 60 

Haemoglobin (g/dL) * 

Mean 12.47 12 11.44 12.93 

SEM 1.512 1.528 1.814 2.164 
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Range (9.7-15.7) (6.6-14.5) (7.9-14.9) (6.0- 17.7) 

  N 18 42 28 60 

Parasite density/µL of blood * 

Mean  32 40 1600 221 

SEM 0 0 3640 166 

Range (0-32) (0-40) (160-13970) (32-555) 

  N 18 42 28 60  

  n  1 1 17 15 

HRP2 (RDT) % * 

Positive 5.56 0 53.57 53.33 

N 18 42 28 60 

* - statistically significant by t-test analysis, n- number positive , SEM- 

standard deviation, N- population tested 

 

 

 

Figure 12: Comparison of RDT, microscopy and PCR between the study sites 

samples. PCR used was based on the pre-inclusion population of Obom (161) and 

Asutsuare (149) whereas the RDT and microscopy were based on the genotyped 

(pfmsp2/glurp) positive samples 

 

For PCR amplification of 18s rRNA, a band size of 205 bp was expected 

for each amplicon from both study sites and an image was recorded in Figure 13. 
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This showed prominent bands for 1, 8, 9 and 10. Samples 11 and 12 showed faint 

bands hence were also counted as positive for 18s rRNA gene amplification. 

 

Figure 13: A gel image after PCR amplification of 18s rRNA speciation for P. 

falciparum. Negative control (N), 3D7- Positive control (P), 1-7: 7 different 

samples  

Plasmodium falciparum speciation in Obom and Asutsuare 

Among the 18s rRNA positive samples within the study sites, the 

percentage positives of Pfmsp2/glurp genotypes were 75.0 (60/88) and 83.02 

(88/106) for Asutsuare and Obom respectively. Gels images showing amplicons 

of different band sizes for 3D7 allelic regions of the Pfmsp2 has been presented in 

Figure 14. 
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Figure 14: A gel image of Pfmsp2 (Primers: M2-OF, M2-OR, S1fw, M5rev and 

N5rev) showing different band sizes. PCR amplification of Pfmsp2 showing 

different band sizes where 3D7 and K1 are positive controls, N; H2O (negative 

control) representing double distilled DNAse free water, M is 100 bp DNA ladder 

and 1-16: 16 different gDNA samples 

 

Out of the genotyping positive samples from Asutsuare, 96.6 % were RDT 

and microscopy negative.  Also, 3.4 % were RDT negative but microscopy 

positive. One sample was RDT positive and microscopy negative representing 

100 percent for the positive RDTs and none was recorded positive for microscopy 

and RDT. Obom had 78 % which were RDT and microscopy negative. Obom also 

had 22 % which were microscopy positive but RDT negative. A total of 44.7 % 

were RDT positive but microscopy negative for Asutsuare while 55.3 % were 

RDT positive but microscopy negative for Obom (Table 2).   
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Table 2: Prevalence of genotyping positive samples for RDT and microscopy  

Study site RDT Microscopy 

Negative Positive 

Obom Negative (41) 78.0 22.0 

Positive (47) 44.7 55.3 

 Asutsuare Positive (1) 100.0 0.0 

Negative (59) 96.6 3.4 

(n) represents number of samples tested 

The pfhrp2 and pfhrp3 percentage positives  

        All gDNA samples that tested positive for both 18s rRNA species specific 

PCR as well as Pfmsp2/glurp (genotyping) were considered to be of good quality, 

for which pfhrp2 and pfhrp3 amplifications can be performed on (WHO 2010). 

The PCR results for all the hrp2 genes involved in this study have been reported 

in Figure 13. The rainy season of Asutsuare recorded 66.7 %, 11.1 and 77.8 out of 

18 samples to be positive for pfhrp1-2, pfhrp2 and pfhrp3 respectively. However, 

the dry season out of 60 samples recorded 64.3 %, 14.3 % and 66.7% of pfhrp1-2, 

pfhrp2 and pfhrp3 respectively. The rainy season of Obom recorded 78.6 %, 60.7 

% and 53.6 % out of 28 samples to be positive for pfhrp1-2, pfhrp2 and pfhrp3 

respectively. The dry season, however, out of 60 samples recorded 88.3 %, 60.0 

% and 45.0 % of pfhrp1-2, pfhrp2 and pfhrp3 respectively (Figure 15).  
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Figure 15: Comparison of pfhrp1-2, pfhrp2 and pfhrp3 PCR. This compares rainy 

season and dry season distribution of pfhrp genes between Obom and Asutsuare..  

The exon 2 of the pfhrp2 was amplified using the primers described in 

Appendix IV.  Figure 16 shows PCR result of the amplification of 305 nucleotides 

of pfhrp2 exon 2.  

   

Figure 16: A gel image of pfhrp2 exon 2 amplification showing two different 

bands. PCR amplifications of a (pfhrp2) exon 2. 100 bp marker (M), Negative 

control (N) was DNAse free double distilled water, Positive control (P) was 3D7 

parasite culture DNA and 1-10 are 10 different samples 
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The pfhrp3 amplifications yielded PCR products of 205 nucleotides which 

have been described in Figure 17. Sample 11 had more than one amplicon 

showing presence of multiple different pfhrp3 genes.  

 

 Figure 17: A gel image of pfhrp3 exon 2. An image of pfhrp3 gel showing the 

expected band size. Where P: 3D7 Positive control, N: negative control, 1-14: 

samples 

 The pfhrp1-2 was positive for almost all the genotyping positive samples 

in Asutsuare and Obom. The exons was however amplified with introns in them. 

This amplified 420 bp and were viewed using UV light in a gel documentation 

system. A gel image of pfhrp1-2 has been used to represent positivity in Figure 

18. 

 

Figure 18: A gel image of pfhrp1-2 showing bands for different samples. A PCR 

amplification of pfhrp1-2 gene. M (100 bp DNA ladder), N (ddH2O-negative 

control), 1 – 7 (Samples) and P (3D7-positive control). 
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Analysis of Deletions of pfhrp2 and pfhrp3 

Samples were considered positive for pfhrp2 if any/both of the genes for 

pfhrp2 and pfhrp1-2 was positive after PCR. The total number of positives and 

negatives for pfhrp2 and pfhrp3 have been summarized in percentages. Also, the 

total number of negatives representing deletions of these genes are represented in 

Figure 19. Double negatives for pfhrp2/pfhrp3 depicted deletions for the pfhrp2 

and pfhrp1-2 genes and pfhrp3 exon 2 gene. Therefore, Obom had 1.7 % 

pfhrp2/pfhrp3 deletions while Asutsuare had 4.8 % both in the dry season. 

However, these deletions were all recorded in the dry (low malaria) season with 

no deletions occurring during the rainy (peak malaria) season. This showed higher 

deletions in low transmission area, Asutsuare during the low malaria season than 

in the high transmission area, Obom during the low malaria season (Table 3). 

Table 3: Analysis of pfhrp2 and pfhrp3 deletions 

  pfhrp2 pfhrp3 pfhrp2/pfhrp3 

Seasons Study sites Pos 

(%) 

Neg 

(%) 

Pos 

(%) 

Neg 

(%) 

Double 

Pos (%) 

Double 

Neg 

(%) 

Rainy Asutsuare (18) 72.2 27.8 77.8 22.2 50 0 

 Obom (28) 100 0 53.6 46.4 53.6 0 

Dry Asutsuare (42) 71.4 28.6 66.7 33.3 42.9 4.8 

 Obom (60) 95 5 45 55 35 1.7 
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Figure 19: Deletions of individual genes. The chart shows the percentage of 

deletions of pfhrp2 (this includes pfhrp2 and pfhrp1-2), pfhrp3 and both pfhrp2 

and pfhrp3   

There were 15 samples from Asutsuare which were pfhrp1-2 and pfhrp2 

negative but pfhrp3 positive and 2 samples from Obom. Thus, they are seen to 

substitute for the pfhrp2 deletions. In Obom, all the pfhrp3 substitution was found 

in the dry season with none in the rainy season. Asutsuare had 33.3 % of the 15 

samples in rainy season but 66.7 % in dry season (Table 4.) 

Table 4: pfhrp3 positive but pfhrp1-2 and pfhrp2 negative   

 

 

 

Sites Season Pfhrp3+ve /pfhrp2-ve (%) 

Obom (2) Rainy 0 

Dry 100 

Asutsuare (15) Rainy 33.3 

Dry 66.7 
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Serological Confirmation and Quantitation of the PfHRP2 Antigen by 

ELISA 

A total of 92 plasma samples from Obom and 49 samples from Asutsuare 

that were randomly selected and used for the PfHRP2 CELISA sandwich ELISA.  

Most PfHRP2 RDT negative samples were also negative for ELISA in Asutsuare 

whilst Obom had most PfHRP2 RDT negatives being ELISA positive. A higher 

number of RDT and pfhrp2 PCR positives were identified in Obom relative to 

Asutsuare (Figure 20). 

Figure 20: Distribution of ELISA samples according to their RDT results. 

Samples that were positive for RDT which were also positive for the ELISA  

 

The mean concentrations of PfHRP2 in Obom and Asutsuare samples 

according to their microscopy and RDT results are summarized in Table 5. There 
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were no samples which was positive for both RDT and microscopy in Asutsuare. 

However, there were 26 samples of such in Obom. 

Out of the 92 samples from Obom, 28.3 % of them were positive for both 

microscopy and RDT and had an average PfHRP2 antigen concentration of 214.8 

ng/ml. Samples which were negative for both microscopy and RDT were 32.6 % 

with an average PfHRP2 concentration of 3.2 ng/ml. Samples which were positive 

for RDT but negative for microscopy were 21.7 % and had average PfHRP2 

concentration of 181.1 ng/ml. Those that were positive for microscopy but 

negative for RDT were 15.2 % with 21.3 ng/ml PfHRP2 concentrations. None of 

the 49 samples from Asutsuare was positive for both RDT and microscopy. A 

large number, 83.7 % of the Asutsuare samples were negative for both RDT and 

microscopy. This recorded a very low average PfHRP2 concentration of 8.4 

ng/ml. Samples from Asutsuare that were positive for RDT but negative for 

microscopy were 4.8 % and had an average PfHRP2 concentration of 550.0 

ng/ml. Samples that were positive for only microscopy were 12.2 % with an 

average PfHRP2 concentration of 7.4 ng/ml (Table 5).  

Table 5:  Mean PfHRP2 antigen concentrations in relation to microscopy and 

PfHRP2 RDT results. 

 

Sites 

 

Tests 
SD 

PfHRP2 

antigens 

(ng/ml)  

Number 

of 

Samples  

 

 

RDT+/Microscopy 

+ve 
3930.45304 

5584.5 26 
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Obom  RDT-ve/Microscopy –

ve 
18.9504617 

3.2 30 

Only RDT +ve 113.914902 181.1 20 

Only Microscopy +ve 5.86898628 21.3 13 

 

 

Asutsuare 

RDT+ve/Microscopy 

+ve 
0 

0.0 0 

RDT-ve/Microscopy –

ve 
23.0516811 

8.4 41 

Only RDT +ve 387.494516 550.0 2 

Only Microscopy +ve 0.98994949 7.4 6 

 +ve = positive ; -ve= negative,  

The highest PfHRP2 concentration in Asutsuare was 1099.97 ng/ml while 

the lowest recorded was 0.085 ng/ml. In Obom the highest PfHRP2 concentration 

was 2001.95 ng/ml and 0.005 ng/ml was the lowest.  About 78% of the Asutsuare 

samples had low concentrations while it was 23.9 % in  Obom 
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CHAPTER FIVE 

              DISCUSSION 

False RDT negative results are very derogatory to malaria control 

(Kozycki et al, 2017; Ranadive et al., 2017) as the main diagnosis practices in 

most health facilities confirm RDT positive tests by microscopy (Aregawi,  

Cibulskis, Otten & Williams, 2009). This leaves all RDT negative cases untreated 

for malaria. One of the major causes of false negative PfHRP2 RDT is the 

presence of deletions in pfhrp2 and pfhrp3 genes which also consequently 

influence test kit sensitivity (Msellem et al, 2009; Maltha et al., 2014; Ranadive et 

al., 2017). Seasonal changes play an important role in malaria transmission. This 

is mainly due to the survival rate of the vector during these climatic conditions. 

The vectors tend to multiply more in the rainy season than in the dry season 

because stagnant waters become rampant for easy breeding of the mosquito. 

Rainy and dry seasons in Ghana therefore determine the rate of the disease’s 

infections.  

This study sought to compare the use of microscopy, RDT and PCR to 

determine the clinical efficiency of malaria among the two communities and 

seasons and to determine pfhrp2 gene deletions in P. falciparum parasites 

circulating in the two transmission settings (Figure 11). In most field and 

epidemiological studies, microscopy and RDT are mainly used to determine 

malaria prevalence (Azikiwe et al, 2012), whereas, PCR or ELISA are used to 

determine prevalence on policy based programmes of National Malaria Control 

Programmes (Msellem et al, 2009).  
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Comparing the use of RDTs and PCR in detecting the presence of the 

Plasmodium parasites in a low transmission area in Zambia, Laban et al (2015) 

recorded very low parasitaemia in many parts with few gene deletions in the area. 

However, this study showed that the low transmission area had more gene 

deletions than the high transmission area and thus contradicts their earlier studies. 

The low transmission area in this study have been known to produce very few 

malaria positives and also hardly produce any positives during the off-peak 

malaria seasons. This may give more room for the parasite’s mutations, as a 

result, finding a way to escape been seen. Gene deletion may be the most 

appropriate mutation for the parasite.  

Determination of the prevalence of the P. falciparum parasite through the 

use of RDTs, microscopy and PCR gave different results. Most studies which 

PCR/ microscopy and PCR/RDTs showed high differences (Mogeni et al, 2017; 

Boonman, Christensen, Suwanarusk, Price, Russell and Lek-Uthai, 2007). Malaria 

microscopy and RDTs in both study sites followed the similar results with high 

difference between the microscopy in Obom (High transmission zone) and that of 

Asutsuare (Low transmission zone) as shown in Figure 11. The main reason why 

these differences are so wide have been attributed to the detection limits of 

microscopy set at ≥ 50 parasites/µL (Azikiwe et al., 2012) and PCR detection 

limit of as low as 10 parasites/µL (Wangai et al., 2011). 

The PfHRP2 RDT and microscopy showed high difference between the 

two sites in percentage of positives. However, in PCR, Obom showed slightly 

higher percentage postives than Asutsuare (Figure 11). This showed high 
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positivity in the area but the PfHRP2 iRBCs were in very low quantities and thus 

could not easily be captured by either microscopy or RDT (Assumpcao, 2016, 

Unpublished). This confirms the fact that there must be PCR confirmation of 

prevalence before it is considered as low or high (Fançony, Sebastião, Pires, 

Gamboa & Nery, 2013). Also, the RDTs should be made more sensitive to 

capture very low amount of proteins in the blood.   

The prevalence of P. falciparum infections in Obom through the use of 

PCR showed higher percentage positives in Obom compared to Asustuare. 

Infection prevalence using pfmsp2 or glurp specific primers in PCR was lower in 

Asutsuare than Obom. Obom showed  higher pfhrp2 and pfhrp3 PCR gene 

amplifications but lower amplifications in Asutsuare as shown in Figure 14. This 

implied that P. falciparum infection is higher in the Asutsuare (low transmission 

zone) than earlier reported (Adu et al., 2016). This is the reason why WHO P. 

falciparum genotyping protocol requires that either pfmsp1, pfmsp2 or pfmsp3 

and/or glurp be used to determine the quality of the parasite DNA before doing 

the pfhrp2 PCR (WHO, 2010).  

This study recorded some deletions of pfhrp2 and deletions of pfhrp3 

(Table 3). This confirms the presence of pfhrp2/pfhrp3 gene deletions in Ghana as 

reported earlier by Amoah et al (2016). However, gene deletions were more 

prevalent in the low malaria season than in the peak malaria season (Figure18). 

The study by Amoah et al (2016) reported on only the exon 2 of the pfhrp2 and 

pfhrp3 but this present study reports on pfhrp1-2, pfhrp2 and pfhrp3. Plasmodium 

falciparum HRP2 RDTs have been used to improve malaria diagnosis in many 
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countries but false negative results in Ghana has made malaria difficult to 

eradicate (Msellem et al., 2009; Koita et al., 2012). Since Ghana is known to be 

an endemic country with high prevalence rate in the peak seasons, treatment may 

often be given even when RDTs test negative results are recorded. Thus, parasites 

may not get enough chances for mutations. In Eritrea, deletions were highly 

reported during peak malaria seasons (Berhane et al., 2018). However, this 

present study showed that deletions were more prevalent during the low malaria 

seasons (off-peak season) in both study sites.   

In Yemen, isolates with very low parasitaemia of 98 parasites/µl which 

were diluted with a 100 µL O+ blood were still positive through the use of RDT 

but concentrations of 65 parasites/µl recorded negative (Atroosh et al., 2015). In 

this study, a similar finding was obtained when parasite density at Asutsuare was 

lower than 65 paraites/µL confirming the results of the current study that most 

samples from the low transmission area were negative through the use of RDT 

(Table 1).   

In Democratic Republic of Congo, deletions of pfhrp2 among children 

under 5 years were few at 6.4 % (Parr et al., 2016), similar to what this study 

reavealed in Obom at 1.7 % (Table 4). Parr et al (2016) found very few 

pfhrp2/pfhrp3 deletions between the Kinshasa and Kivu provinces though both 

were earlier reported to be high transmission areas. However, this was attributed 

to the fact that RDTs had earlier been introduced into the regions and had had the 

highly prevalence reduced as a result of early treatment. This was done in 

comparison to other places where RDTs were lately introduced (Parr et al). RDT 
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negative samples were becoming high in the area causing a reduction in 

prevalence set for the two provinces. This could mean that gene deletions 

contributed to the RDT negative rates in these regions just as earlier studies 

showed high prevalence and low prevalence lately in Asutsuare (Adut et al., 

2016; Attu & Adjei, 2018).   

The pfhrp2 and pfhrp3 exon 2 deletions have mostly been reported to be 

many in different areas (Amoah et al., 2016; Kumar et al., 2013; Okoth et al., 

2015; Viana Rahid et al., 2017). However, pfhrp1-2 deletions have not been 

reported in earlier studies in Ghana. In this study, it was discovered that some 

pfhrp2 genes had the exon 1 deleted. These deletions were prominent in 

Asutsuare than in Obom just as it was for the pfhrp2 and pfhrp3 deletions (Figure 

18), so this could affect the concentrations of PfHRP2 proteins in the samples. 

Laban et al (2015), showed that there were few gene deletions and low 

false positives in the low transmission areas in the region of study. Thus, this 

study came out with a similar finding of low false negatives of 4.8 % in Asutsuare 

and 1.7 % false negatives in Obom (Table 3). All deletions were reported in the 

dry season (low malaria season). This indicates that studies in high transmission 

areas may not necessarily show high percentage of false negatives if there have 

not been much mutations.   

Okoth et al (2015) found out that PfHRP2 RDT could still be useful in 

Guyana (French Guiana) since 249 samples collected between 2009 and 2011 

showed no pfhrp2/pfhrp3 deletions. In Suriname on the other hand, few 
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pfhrp2/pfhrp3 deletions were recorded raising concerns for the use of PfHRP2 

RDTs in the country (Okoth et al., 2015). It was reported that most migrant 

miners rotated between the closer countries and so gene deletions could be seen in 

later years.  

Despite the prevalence of 42% in Guyana, there was no pfhrp2/pfhrp3 

deletions in the country (Okoth et al., 2015). The findings of Okoth and the 

colleagues support the results of the present study since the high transmission area 

(Obom) had low pfhrp2/pfhrp3 deletions of 1.7 % as compared to  53.4 % of 

RDTs positive and 39.8 % microscopy positives. The use of PfHRP2 RDTs 

should therefore not be the major diagnostic tool within the lower transmission 

areas. However, they could still be of help in malaria diagnosis in high 

transmission areas.   

In this study, it was found out that pfhrp2 and pfhrp3 deletions did exist in 

these study sites, however, some of the pfhrp2 deletions were compensated for by 

the pfhrp3 gene (Table 4). Though there was a 1.7 % total pfhrp2/pfhrp3 gene 

deletions from Obom, another 2.3 % of the samples was pfhrp2 gene deleted but 

was compensated for by the pfhrp3 gene in RDT (Table 3). Asutsuare also had 

27.8 % pfhrp2 deletion in the dry season and 42 % in the rainy season and 4.8 % 

pfhrp2/pfhrp3 deletions in the dry season. Nearly 24 % showing pfhrp3 positive 

but pfhrp2 negative. This confirms earlier reports that pfhrp3 gene may 

compensates for pfhrp2 when the later is deleted (Gamboa et al., 2010; Pain et al., 

2014; Okoth et al., 2015). This possibly accounted for the positivity of the RDT 

knowing that when the pfhrp2 gene is deleted, pfhrp3 can substitute for it.  
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         This study showed that the total pfhrp2/pfhrp3 gene deletion was higher in 

the low transmission area, Asutsuare than in the high transmission area, Obom. 

This is contrary to what was found in Columbia by Abeku et al (2008). It was as 

well revealed that during low malaria seasons there are more gene deletions than 

during high malaria seasons. This implies that gene deletions may not necessarily 

be due to high transmission but probably mutations of parasites in the area. There 

may also be high transmission but low parasite mutations whereas low 

transmission may have high mutations due to migration of individuals (Okoth et 

al., 2015; Laban et al., 2015).  

Fourteen of the plasma samples from Asutsuare were negative for pfhrp2 

through PCR. One sample showed positive for ELISA and this was among the 

four samples which were microscopy positive. Though PCR was negative for 

three out of four microscopy positives, one sample was positive for ELISA. This 

one ELISA positive sample recorded PfHRP2 concentration of 45 ng/ml showing 

higher concentrations in the plasma (Table 5). This could be that the parasite had 

been with the individual for a longer time while the other three could be early 

stage infection or lower parasitaemia (Pava, Echevery, Diaz & Murillo, 2010). As 

a result, the later group of samples may not easily be detected by either RDT or 

ELISA. Ten samples from the low transmission area tested negative for pfhrp2 

through PCR, RDT and ELISA. This shows that the area has low infection rate 

since 20.4% were confirmed negative by ELISA just as other studies have used 

ELISA to confirm positivity in epidemiological studies (Dondorp et al., 2005; 

Martin, Rajasekariah, Awinda, Waitumbi & Kifude, 2009) 
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CHAPTER SIX 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

Summary 

The study was conducted mainly to determine pfhrp2 and pfhrp3 gene 

deletions in P. falciparum parasites circulating in Obom (high transmission area) 

and Asutsuare (low transmission area) in the Greater Accra Region of Ghana. 

One-hundred and sixty two participants were selected from each site based on the 

availability of samples’ plasma. Ethical clearance was obtained from NMIMR and 

GHS ethical review committee before the study was conducted. Approval was 

also sought from the administrators of the various health facilities before sample 

collection. 

Samples from both communities which have been confirmed by 

microscopy and/or RDTs to be malaria positive or malaria negative were 

randomly selected and used to assess the presence of the PfHRP2 antigen. The 

presence of the 18s rRNA P. falciparum gene was used to ascertain the presence 

of the P. falciparum species. The percentage positives for pfmsp2/glurp and 

pfhrp2 were also determined on the same samples to determine the  P. falciparum 

genotypes and pfhrp2 deletions respectively. Deletions of pfhrp2 and pfhrp3 

genes were identified in both settings. 
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Conclusions 

Based on the results obtained in the study, the following conclusions were drawn.  

1. There were differences in the clinical efficiency of PCR, RDT and 

microscopyi in malaria parasites detection between the low transmission 

area, Asutsuare and the high transmission area, Obom. 

2. Deletions of pfhrp2 and pfhrp3 genes were identified and confirmed in the 

two study sites during the dry season which is low malaria transmission 

season. 

3. The levels of PfHRP2 proteins in the higher transmission area, Obom was 

higher than in the low transmission area, Asutsuare. RDTs are generally 

useful in malaria endemic regions but is not appropriate for areas of low 

transmission.  

Recommendations  

1. Further studies should be done nationwide among symptomatic 

individuals in order to ascertain the prevalence of pfhrp2/pfhrp3 deletions 

and which types of deleted pfhrp2 and pfhrp3 genes are present in 

different areas.  

2. Gene sequencing should be done for all alleles present in the areas to be 

able to determine the various wild types of pfhrp2 and pfhrp3 deletants in 

Ghana. 
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APPENDIX I 

Supplementry Table 1: Speciation, Genotyping pfmsp2 and glurp positive with 

hrp2 results  

sample ID 18s rRNA PFMSP2 GLURP hrp2 1-2 hrp2 Ex2 hrp3 Ex2 

AS 14 + - + - - - 

AS 23 + - + + - + 

AS 37 + - + - - - 

AS 41 + - + + - - 

AS 44 + - + + - + 

AS 45 + - + + - - 

AS 49 + - + - - + 

AS 53 + - + + - - 

AS 74 + - + - - + 

AS 78 + - + - + - 

AS 81 + - + + - - 

AS 84 + - + - - + 

AS 85 + - + - + + 

AS 89 + - + + - + 

AS 95 + - + - - + 

AS 100 + - + - - + 

AS 110 + - + - - + 

AS 133 + - + + - + 

AS 185 + - + + - - 

AS 196 + - + + - + 

AS 215 + - + + + - 

AS 235 + - + + - - 

AS 254 + - + - - + 

AS 260 + - + - - + 

AS 262 + - + - - + 

AS 266 + - + - - + 
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AS 269 + - + + - + 

AS 260 + - + - - - 

AS 263 + + + + - - 

AS 264 + - + - - + 

AS 267 + + - - - + 

AS 268 + - + + + + 

AS 281 + - + - + + 

AS 282 + - + + - + 

AS 284 + - + - + + 

AS 285 + - + + - + 

AS 286 + - + + + + 

AS 287 + - + + - + 

AS 288 + - + + - + 

AS 290 + + - + - + 

AS 291 + - + - - + 

AS 292 + - + + + + 

AS 294 + - + - - + 

AS 307 + + - + - + 

AS 308 + - + + - + 

AS 309 + - + + - + 

AS 310 + - + - - + 

AS 315 + - + + - + 

AS 317 + - + + - - 

AS 318 + + - + - + 

AS 320 + + + + - + 

AS 325 + - + + - + 

AS 342 + - + + - + 

AS 344 + - + + - + 

AS 350 + - + + - - 

AS 353 + - + + - - 

AS 402 + - + + - + 

AS 408 + + - + - + 
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AS 424 + + - + - - 

AS 477 + - + - - + 

AS 500 + - + - - + 

AS 521 + - + + - + 

AS 530 + - + + - - 

AS 537 + - + + - + 

AS 550 + - + + - + 

AS 562 + + + + + + 

AS B + - + + - + 

AS C + - + - + - 

AS E + - + + - + 

AS F + - + + + + 

AS K + - + + - + 

AS Q + - + + - - 

AS S + - + - + - 

TOTAL 73 9 67 47 12 53 
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APPENDIX II 

 

Apendix 2: A graph of Regressional analysis of standards of PfHRP2 extracted 

from Adamsel.  
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APPENDIX III 

Supplementary Table 2: Regressional Analysis of ELISA using Adamsel 

Regression 

 Rsquare 0.99401 

Mean Sq x 1000 0.6065 

Max OD 0.39677 

Scale 0.90288 

Xmid 2.26092 

Blank 0.059 

Blank CV (%) 2.6 

High cut off OD 0.397 

Low Cut off OD 0.061 

Calculated [Std] 123.15 

N Std. incl. 12 

Od = 1 + blank @ Nc 
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APPENDIX IV 

 

Appendix 4 is an image showing how an Pfmsp2 gel image depicted for each gel. 

Each band in the image showed that the sample was positive for Pfmsp2 while 

wells without bands were shown be negative. Some samples had two or three 

bands showing there were two or three different parasite strains in each sample 

respectively. Numbers on top of the wells were sample IDs while M was the DNA 

marker. K1 and 3D7 were positive controls while H2O was negative control. 
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APPENDIX V 

Supplementary Table 4: List of all primers used for the study. 

 

PCR 

Reaction 

Nest and 

Product 

size 

Primer Neucleotide sequence Annealing Temperature  

 

 

18s rRNA  

Nest 1 

 

rPlu6 (F) 5’–

TTAAAATTGTTGCAGTTAAAAC

G–3’ 

55 oC  

rPlu5 (R) 5’–

CTTGTTGTTGCCGTTAAACTTC–

3’ 

 

Nest 2 

205 bp 

rFAL1 

(F) 

5'-

TTAAACTGGTTTGGGAAAACCA

AATATATT-3' 

 

58 oC 

 

rFAL2 

(R) 

5'-

ACACAATGAACTCAATCATGAC

TACCCGTC-3' 

 

pfmsp2 

Primers are 

semi-nested 

family-

specific 

(Falk et al., 

2006) 

Nest 1 

280 bp 

M2-OF 5'-

TGAAGGTAATTAAAACATTGTC

TATTATA-3' 

 

54 oC 

 

M2-OR 5'-

CTTTGTTACCATCGGTACATTCT

T-3' 

 

Nest 2 

380 bp 

S1fw 5'- GCT TAT AAT ATG AGT ATA 

AGG AGA A -3’ 

 

55 oC 

 

M5rev 5' - GCA TTG CCA GAA CTT 

GAA-3’ 

 

N5rev 5' - CTG AAG AGG TAC TGG TAG 

A-3’ 

 

Glurp Primary GF3 5’ –   
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(Semi-

nested with 

GF4 

common to 

both) 

600 bp ACATGCAAGTGTGATCCTGAA – 

3’ 

 

54 oC 

GF4 5’–

TGTAGGTACCACGGGTTCTTGT

GG – 3’ 

 

Secondry1

2400 bp 

GNF 5’–

TGTTCACACTGAACAATTAGAT

TTAGATCA–3’ 

 

 

pfhrp2 

(PF3D7_08

31800) 

Nest 1 

245-308 

bp 

2.1 5’- 

GGTTTCCTTCTCAAAAAATAAA

G-3’ 

 

54.8 oC 

 

2.2 5’- 

CGAAACTCAAGCACATGTAGA-

3’ 

 

Nest 2 

245-700 

bp 

2.3 5’-

GTATTATCCGCTGCCGTTTTTGC

C-3’ 

 

60 oC 

 

2.4 5’-

TTCCGCATTTAATAATAACTTG

TGTAG-3’ 

 

pfhrp1-2 

(PF3D7_08

31800) 

Primary 

228-809 

bp 

2e12F 5’-

CAAAAGGACTTAATTTAAATAA

GAG-3’ 

 

57 oC 

 

2e12R 5’-

TGCCTACGCCATTAAATTTATT-

3’ 

 

Upstream 

(PF3D7_08

31700) 

Primary 

201-220 

bp 

MAL7P1

.228F 

5′-

AGACAAGCTACCAAAGATGCA

GGTG-3′ 

 

60 oC 

 

MAL7P1

.228R 

5′-

TAAATGTGTATCTCCTGAGGTA
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Oligonucleotide primers and nuclease free water for the nested PCR assay were 

obtained from Inqaba Biotec West Africa Limited (Ghana). These primers were 

designed based on the Plasmodium small subunit ribosomal RNA (18s rRNA) 

gene.  

 

 

 

GC-3’ 

Downstrea

m 

(PF3D7_08

31900) 

Primary 

301-405 

bp 

MAL7P1

.230F 

5′-

GATATCATTAGAAAACAAGAG

CTTAG-3′ 

 

58 oC 

 

MAL7P1

.230R 

5′-

TATCCAATCCTTCCTTTGCAAC

ACC-3’ 

 

pfhrp3-exon 

2 

(PF3D7_13

72200) 

Nest 1 

311 bp 

3.1 5’-

GGTTTCCTTCTCAAAAAATAAA

A-3’ 

 

54.8 oC 

 

3.2 5’- TAAGTCAAGCACATGCAGG -

3’ 

 

Nest 2 

201 bp 

3.3 5’- 

AATGCAAAAGGACTTAATTC-3’ 

 

62 oC 

 

3.4 5’- ACTACGCATCACTTACACCA 

-3’ 
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APPENDIX VI 

ETHICAL CLEARANCE AND CONSENT FORMS  
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Volunteer Agreement Form  

Protocol (1) 2014-15                        version 1.0                      14/8/2014 

Parental Consent for children with Malaria 

Title:   Plasmodium falciparum gametocytogenesis 

Principal Investigators: Dr Linda Eva Amoah 

Address: Department of Immunology, NMIMR, Box LG581, Legon  

General Information about Research  

Malaria is common in Ghana. When you have malaria, it is important that we treat 

you and kill all the malaria parasites in your blood. It is also important to make 

sure that other people do not get sick with malaria. In order to do this, we want to 

study how the malaria parasites grow and move from one person to the other. We 

will take a small drop of blood (100 µL) from your child’s finger to see if you 

have malaria parasites by microscopy. If you do, we will ask for an additional half 

a teaspoon (2.5 ml) of venous blood for children under 6 years or one teaspoon (5 

ml) of venous blood for children over 6 years will be collected for further 

analysis. We would also like to know if your child is better after a week or still 

have some malaria parasites. So we will request you come back for free screening 

for malaria in 7 days. In addition to the routine laboratory tests that you do when 

you go to the hospital with malaria, we will take some of your blood back to the 

NMIMR for more tests including sickling, blood typing and measuring your 

immune response against malaria parasites  

 

Possible Risks and Discomforts 

Your child may experience mild discomfort and bruising is possible at the site 

where the fingerpick and venous blood samples will be obtained. This will 

however resolve within an hour or two.  

 

Possible Benefits 

There are no direct benefits to your child.  However, your participation may help 

us develop better malaria treatment.  
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Confidentiality 

All information gathered would be treated in strict confidentiality. We will protect 

information about your child taking part in this research to the best of our ability. 

The child will not be named in any reports. However, Dr. Linda Eva Amoah may 

sometimes look at her research records.  If you have any questions, please feel 

free to ask the clinician in charge.  

 

Compensation 

Your child will not be paid for participation in this study but your transportation 

to the follow up visit will be refunded. 

 

Voluntary Participation and Right to Leave the Research 

We would like to stress that this study is strictly voluntary. Should your child 

decide not to participate; it will have no consequences for him/her. Should your 

child, at any point during the study, decide that he/she does not wish to participate 

any further, participation will be terminated immediately. Any such decision will 

be respected without any further discussion. The decision to end participation will 

not affect the health care your child would normally receive. 

 

Contacts for Additional Information 

If you ever have any questions about the research study or study-related problems, 

you may contact Dr. Linda Amoah of the Noguchi Memorial Institute for Medical 

Research (0279271632) at any time.  

 

Your rights as a Participant 

This research has been reviewed and approved by the Noguchi Memorial Institute 

for Medical Research Institutional Review Board (NMIMR-IRB).  If you have 

any questions about your child’s rights as a research participant you can contact 

the IRB Office between the hours of 8am-5pm through the landline 0302916438 

or email addresses: nirb@noguchi.mimcom.org.   
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VOLUNTEER AGREEMENT 

 

The above document describing the benefits, risks and procedures for the research 

title (Plasmodium falciparum gametocytogenesis) has been read and explained to 

me. I have been given an opportunity to have any questions about the research 

answered to my satisfaction. I agree to allow my child to participate as a 

volunteer. 

 

_____________________              _____________________________________  

Date                                                                 Signature or mark of parent or 

guardian 

 

If volunteers cannot read the form themselves, a witness must sign here: 

 

I was present while the benefits, risks and procedures were read to the volunteer. 

All questions were answered and the volunteer has agreed to take part in the 

research. 

 

---------------                                                      ------------------------------------ 

Date                                                                               Signature of Witness 

 

I certify that the nature and purpose, the potential benefits, and possible risks 

associated with participating in this research have been explained to the above 

individual. 

 

-----------------                                          --------------------------------------------- 

Date                                                      Signature of Person Who Obtained Consent
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Parental Consent for children with Malaria 

 

Title:   Plasmodium falciparum gametocytogenesis 

 

Principal Investigators: Dr Linda Eva Amoah 

Address: Department of Immunology, NMIMR, Box LG581, Legon  

 

General Information about Research  

Malaria is common in Ghana. When you have malaria, it is important that we treat 

you and kill all the malaria parasites in your blood. It is also important to make 

sure that other people do not get sick with malaria. Sometimes people have a lot 

of malaria parasites but are not sick, these people help spread malaria without 

knowing. We want to understand how people who are not sick help spread 

malaria. We will take two drops (200μl) of blood from your finger every other 

week to see if you have malaria parasites by microscopy. If you do, we will ask 

for an additional quarter teaspoon (1 ml) of venous blood for laboratory analysis. 

We will take your blood back to the NMIMR for testing, including sickling, blood 

typing and measuring your immune response against malaria parasites  

 

Possible Risks and Discomforts 

You may experience mild discomfort and bruising is possible at the site where the 

fingerpick and venous blood samples will be obtained. This will however resolve 

within an hour or two.  

 

Possible Benefits 

There are no direct benefits to you.  However, your participation may help us 

develop better malaria treatment.  

 

Confidentiality 
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All information gathered would be treated in strict confidentiality. We will protect 

information about you taking part in this research to the best of our ability. You 

will not be named in any reports. However, Dr. Linda Eva Amoah may sometimes 

look at her research records.  If you have any questions, please feel free to ask the 

clinician in charge.  

 

Compensation 

You will not be paid for participation in this study. 

 

Voluntary Participation and Right to Leave the Research 

We would like to stress that this study is strictly voluntary. Should you decide not 

to participate; it will have no consequences for you. Should you, at any point 

during the study, decide that you does not wish to participate any further, 

participation will be terminated immediately. Any such decision will be respected 

without any further discussion. The decision to end participation will not affect 

the health care you would normally receive. 

 

Contacts for Additional Information 

If you ever have any questions about the research study or study-related problems, 

you may contact Dr. Linda Amoah of the Noguchi Memorial Institute for Medical 

Research (0279271632) at any time.  

 

Your rights as a Participant 

This research has been reviewed and approved by the Noguchi Memorial Institute 

for Medical Research Institutional Review Board (NMIMR-IRB).  If you have 

any questions about your child’s rights as a research participant you can contact 

the IRB Office between the hours of 8am-5pm through the landline 0302916438 

or email addresses: nirb@noguchi.mimcom.org.   
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VOLUNTEER AGREEMENT 

 

The above document describing the benefits, risks and procedures for the research 

title (Plasmodium falciparum gametocytogenesis) has been read and explained to 

me. I have been given an opportunity to have any questions about the research 

answered to my satisfaction. I agree to participate as a volunteer. 

---------------    --------------------------------------------  

Date                                                             Signature or mark of volunteer 

 

 

If volunteers cannot read the form themselves, a witness must sign here: 

I was present while the benefits, risks and procedures were read to the volunteer. 

All questions were answered and the volunteer has agreed to take part in the 

research. 

 

 

---------------------------                                           --------------------------------------- 

Date                                                                               Signature of Witness 

I certify that the nature and purpose, the potential benefits, and possible risks 

associated with participating in this research have been explained to the above 

individual. 

 

-----------------------------                      ---------------------------------------------------- 

Date                                                     Signature of Person Who Obtained Consent 
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