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Abstract: This study addresses the problem of model selection in asymmetric 
price transmission models by combining the use of bootstrap methods with 
information theoretic selection criteria. Subsequently, parametric bootstrap 
technique is used to select the best model according to Akaike’s Information 
Criteria (AIC) and Bayesian Information Criteria (BIC). Bootstrap simulation 
results indicated that the performances of AIC and BIC are affected by the size of 
the data, the level of asymmetry and the amount of noise in the model used in the 
application. This study further establishes that the BIC is consistent and 
outperforms AIC in selecting the correct asymmetric price relationship when the 
bootstrap sample size is large. 
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Introduction 
 

An asymmetric price relationship is useful for the assessment of the existence 
of asymmetries in agricultural markets. It can be used to answer some important 
questions such as whether prices rise faster than they fall. The asymmetric price 
transmission models are often used to derive the magnitude and direction of 
asymmetry, which are used as reference points for addressing the asymmetries in 
the markets. 

However, the determination of the asymmetric relationship is perhaps among 
the most difficult tasks in price transmission analysis. This is because of the 
existence of many competing asymmetric price transmission models. There are 
many alternative specifications of asymmetric price transmission models. 
However, the different asymmetric models can result in quite different conclusions. 
One therefore needs to have a basis for choosing among the different asymmetric 
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relationships. This simulates interest in model selection methods such as Akaike’s 
Information Criteria (AIC) (Akaike, 1973) and Bayesian Information Criteria 
(BIC) (Schwarz, 1978) which provides a basis for addressing the model selection 
problems. However, very little is understood about relative performance of AIC 
and BIC in an asymmetric price transmission modelling context. 

In an attempt to understand the relative performance of AIC and BIC in price 
analysis, Acquah (2010) presents a method for comparing asymmetric price 
transmission models and selecting the best model using the AIC and BIC in a 
Monte Carlo simulation. Acquah (2010) did not consider the use of bootstrap 
methods to analyse the relative performance of AIC and BIC. However, the issue 
of understanding the relative performance of AIC and BIC in selecting an 
asymmetric price relationship in a bootstrap simulation has not yet been 
investigated. A fundamental question previous studies have not addressed is how 
well AIC and BIC will perform when bootstrap samples are used in the asymmetric 
price transmission analysis. In the presence of bootstrap samples, will AIC and BIC 
point to the true data generating process as observed in previous Monte Carlo 
studies? Furthermore, unlike the Monte Carlo studies, the bootstrap simulations are 
based on minimal assumptions and provide more robust results. 

This study therefore aims empirically at testing and comparing the ability of 
AIC and BIC in selecting the true asymmetric price relationship using a bootstrap 
simulation procedure. A comparison of AIC and BIC will thus contribute to 
understanding information criteria modelling generally and their empirical 
performance in price transmission analysis. The true data generating process is 
known in all experiments and the bootstrap simulations are essential in deriving the 
model recovery rates of the true model. 

 
Material and Methods 

 
The bootstrap 
 
The term bootstrap was derived from the phrase “to pull oneself up by one’s 

bootstraps”. The phrase is thought to originate from one of the eighteenth century 
Adventures of Baron Munchausen by Rudolph Erich Raspe. The Baron had fallen 
to the bottom of a deep lake. Just when it looked like all was lost, he thought to 
pick himself up by his own bootstraps. The basic idea of the bootstrap as noted in 
Efron and Tibshirani (1993) involves repeated random sampling with replacement 
from the original data, to produce random samples of the same size of the original 
sample, each of which is referred to as the bootstrap sample. Each sample can be 
used to compute an estimate of the parameter of interest. ‘With replacement’ 
means that any observation can be sampled more than once in each bootstrap 
sample. It is important because sampling without replacement would simply give a 
random permutation of the original data, with many statistics such as the mean 
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being exactly the same. Repeating the process a larger number of times provides 
the required information on the variability of the estimator, since the standard error 
is estimated from the standard deviation of the statistics derived from the bootstrap 
samples. 

 
Parametric Bootstrap 
 
For model based resampling, the conventional fitted values and residuals are 

first obtained from the observed data. A bootstrap sample of the residuals is then 
drawn as outlined in step 1. These residuals are then added to the original 
regression equation (and x values) to generate new bootstrap values for the 
outcome variable as in step 2. Ordinary least squares are then used to estimate the 
new bootstrap regression coefficients for this bootstrap sample in step 3. 

1. Generate כߝ by sampling with replacement from ߝଵ̂ , … . ,  ௡̂ߝ
2. Form  כݕ ൌ መߚܺ ൅  כߝ
3. Compute ܺߚመכ from (ܺ,  .(כݕ
 
Repeat steps 1 to 3 (resampling of the residuals, adding them to the fitted 

values and estimating the regression coefficients) lots of times to estimate 
parameters of interest with the bootstrap samples. This model based on re-sampling 
is referred to as “parametric bootstrap” where residuals from a parametric model 
are bootstrapped to give estimates of interest. 

 
Asymmetries and Equilibrium Relationship 
 
The Granger and Lee (1989) Error Correction Model data generating process 

can be specified as follows: 
 

௧ݕ∆ ൌ ௧ݔ∆ଵߚ ൅ ݕଶሺߚ െ ሻ௧ିଵݔ ൅  ଶ,௧            ఌమ,೟~ேሺ଴,ఋమሻ                     (1)ߝ
 
where y and x are price series of a marketing chain. If y and x are non- 

stationary series that are cointegrated then there exists an equilibrium relationship 
between y and x which is defined by an error correction term. The long run 
dynamics captured by the error correction term are implicitly symmetric. In order 
to allow for asymmetric adjustments, the error correction term can be partitioned as 
follows: 

 

ሺݕ െ ሻ௧ݔ
ା ൌ ൤ሺݕ െ ݕሻ௧,   ݂݅ ሺݔ െ ሻ௧ݔ ൐ 0

݁ݏ݅ݓݎ݄݁ݐ݋            ݋ݎ݁ݖ
                                         (2) 

ሺݕ െ ሻ௧ݔ
ି ൌ ൤ሺݕ െ ݕሻ௧,   ݂݅ ሺݔ െ ሻ௧ݔ ൏ 0

݁ݏ݅ݓݎ݄݁ݐ݋            ݋ݎ݁ݖ
                                         (3) 
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The resulting asymmetric model is defined as  
 

௧ݕ∆ ൌ ௧ݔ∆ଵߚ ൅ ଶߚ
ାሺݕ െ ሻ௧ିଵݔ

ା ൅ ଶߚ
ିሺݕ െ ሻ௧ିଵݔ

ି ൅ ,ଷ,௧~ܰሺ0ߝ ଷ,௧ߝ  ଶሻ       (4)ߜ
 

This specification is referred to as the Granger and Lee asymmetric model. 
Asymmetry is incorporated by allowing the speed of adjustment to differ for the 
positive and negative components of the Error Correction Term (ECT) since the 
long run relationship captured by the ECT was implicitly symmetric. Symmetry in 
equation (4) is tested by determining whether the coefficients ( +

2β and 2
−β ) are 

identical (that is 0 2:H + −
2β = β ). 

An alternative but a more complex approach to test for price asymmetry is 
proposed by Von Cramon-Taubadel and Loy (1996). In this approach, asymmetries 
specified affects the price increases and decreases as well as adjustments to the 
equilibrium level. 
Where tx+∆  and tx−∆  are the positive and negative changes in tx  and the 
remaining variables are defined as in equation (5).  
 

2
1 1 2 1 2 1 4, 4,y ( ) ( ) ~ (0, )t t t t t t tx x y x y x Nβ β β β ε ε σ+ + − − + + − −

− −∆ = ∆ + ∆ + − + − +      (5) 
 
A formal test of the asymmetry hypothesis using the above equation is:

0 1:H + −
1β = β  and 2

+ −
2β = β . In this case, a joint F-test can be used to 

determine symmetry or asymmetry of the price transmission process. 
 

In contrast to Von Cramon-Taubadel and Loy (1996) model specification, 
Houck (1977) proposed a model in which asymmetries affects price increases and 
decreases and does not affect adjustments to the equilibrium level. The Houck 
method can be specified as follows: 
 

2
1 1 5, 5,y ~ (0, )t t t t tx x Nβ β ε ε σ+ + − −∆ = ∆ + ∆ +                           (6) 

 
The variables in the model are defined as in equation (5). Symmetry is tested 

by determining whether the coefficients ( 1β
+ and 1β

− ) are identical (that is

0 1:H + −
1β = β ). 

 
Model Selection 

 
The fundamental principle of information-theoretic model selection is to select 

statistical models that simplify description of the data and the model. Specifically, 
information-theoretic methods emphasize minimizing the amount of information 
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required to express the data and the model. This leads to the selection of models 
that are parsimonious or efficient representation of observed data. Numerous 
information-theoretic criteria have been developed. Generally, information-
theoretic measure has two components. The first term is equivalent to the negative 
log-likelihood of the data calculated at the maximum likelihood estimates of the 
parameters. The second term can be thought of as a penalty for model complexity; 
it differs between different information-theoretic fit criteria and usually uniquely 
defines a given criterion. As the aim of information-theoretic model selection is to 
select parsimonious models, models that minimize the criterion are selected. 
 

Akaike’s Information Criterion (AIC) 
 
A well known information-theoretic criteria is AIC, originally referred to as 

“an information criterion” (Akaike, 1973). Theoretically, AIC is derived from 
consideration of the Kullback-Liebler distance. The Kullback-Liebler distance is a 
function of the ratio of two distributions, and can be thought of as reflecting the 
efficiency with which one distribution is approximated by another (Barron and 
Cover, 1991). Specifically, AIC is an estimate of the relative expected Kullback-
Liebler distance of a given model from the true model. It can be thought of as 
measuring the relative inefficiency of approximating the true model by the model 
of interest. It is defined as: 

 
2 lo g ( ) 2A I C L p= − +                                  (7) 

 
Where the first term is the negative maximum log-likelihood of the data given 

the model parameter estimates and the second term p is the number of parameters 
in the model. Models producing smaller values of AIC can thus be thought of as 
more efficiently approximating the true model, where the true model is unknown. 
AIC has entered widespread use, especially within the domain of asymmetric price 
transmission modeling. 
 

Bayesian Information Criterion (BIC) 
 

BIC is currently among the most commonly used information-theoretic 
criteria. BIC is usually explained in terms of Bayesian theory, especially as an 
estimate of the Bayes factor for the comparison of a model to the saturated model. 
(Schwartz, 1978; Raftery, 1996). BIC is defined as: 

 
2 lo g ( ) lo g ( )B I C L p n= − +                              (8) 
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Where n is the sample size and p is the number of parameters in the model. 
Models producing smaller values of BIC can thus be thought of as more efficiently 
identifying the true model where the true model is assumed to be among the 
models being compared. 

 
A Simulation Study 
 
The aim of the bootstrap simulation study is to investigate the ability of the 

model selection methods to identify the true model. Drawing from previous studies 
(Holly et al., 2003) the value of 1β  is set to 0.5 and 2( , ) ( 0.25, 0.75)+ −

2β β ∈ − −  are 
considered for the coefficients of the asymmetric error correction terms in the true 
model. The competing models are fitted to the bootstrap samples and their ability 
to recover the true model was determined. The recovery rates were derived using 
1,000 Bootstrap samples. The data generation process is specified in equation (4) 
and the data is simulated from the standard error correction model as follows:  

 
1 10.5 0.25( ) 0.75( )t t t t t t t ty x y x y x ε+ −
− −∆ = − − − − +                   (9) 

 
ty  and tx are generated as I (1) non-stationary variables that are cointegrated. The 

error correction terms 1 1(( ) ,( ) )t t t t t ty x y x+ −
− −− −  denote the positive and negative 

deviations from the equilibrium relationship between ty  and tx . 
In order to examine the effect of the increase in the difference of asymmetric 

adjustment parameters on model recovery, the study simulated data of sample size 
150 with an error size of 1 from the standard asymmetric price transmission model 
specified in equation 4 and asymmetry values 2( , ) ( 0.25, 0.50)+ −

2β β ∈ − −  or 
( 0.25, 0.75)− −  are considered for the coefficients of the asymmetric error correction 
terms.  

 
Results and Discussion 

 
Model recovery rates of the different model selection criteria 

 
The performance of AIC and BIC in recovering the true data generating 

process (DGP) is evaluated using parametric bootstrap techniques. The bootstrap 
samples are used to investigate the effect of sample size, noise levels and the level 
of asymmetry on model selection. The performance of the two model selection 
methods are compared in terms of their ability to recover the true data generating 
process (DGP) across various sample size conditions (that is Model Recovery 
Rates) as illustrated in Table 1. In the following discussion, the standard 
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asymmetric error correction model, the complex asymmetric error correction model 
and the Houck’s model are denoted by SECM, CECM and HKD respectively. 

For each model selection method, the model recovery rate defines the 
percentages of bootstrap samples in which each competing model provides a better 
model fit than the other competing models. Thousand bootstrap samples are 
generated from the original data using random sampling with replacement. AIC 
and BIC performed reasonably well in identifying the true model, though their 
ability to recover the true asymmetric data generating process (DGP) increases 
with increase in bootstrap sample size. When the bootstrap sample size was small 
(upper part of Table 1), the model selection methods recovered at most 79.9%. In 
large bootstrap samples (lower part of Table 1), the model selection methods 
recovered at most 97.6%. AIC performs well in small bootstrap samples, but is 
inconsistent and its performance does not improve in large bootstrap samples.  BIC 
on the other hand is consistent and performance of the Bayesian criteria improves 
as bootstrap sample size increases. 

 
Table 1. Relative performance of the model selection methods across sample size. 
 
Experiment criterion 

Model fitted 
Methods CECM (%) HKD (%) SECM (DGP) (%) 

 
AIC 18.9 5.0 76.1 
BIC 6.9 13.2 79.9 

 
AIC 20.0 0 80.0 
BIC 4.0 0.1 95.9 

 
AIC 19.0 0.0 81.0 
BIC 2.4 0.0 97.6 

Note: Recovery rates based on 1,000 bootstrap replications. 
 

Noticeably, model selection performance improved as bootstrap sample sizes 
increased. Two obvious trends can be observed with regards to the recovery rates 
of the true model (DGP) in Table 1. First, recovery rates of the BIC strongly 
depended on bootstrap sample size. Second, though AIC performed well in the 
small samples, its performance did not strongly depend on bootstrap sample size. 
Previous studies on model selection (Ichikawa, 1998; Markon and Krueger, 2004) 
note that AIC performs relatively well in small samples, but is inconsistent and at 
larger sample sizes it continued to exhibit a slight tendency to select complex 
models.  BIC, in contrast, appears to perform relatively poorly in small samples, 
but is consistent and improves in performance with larger sample size. For 
example, in large samples, BIC performs better by choosing the correct model for 
97.6 % of the bootstrap samples, whereas AIC correctly chooses 81% of the 
bootstrap samples. The findings of the current study are consistent with the Monte 
Carlo Simulation experiment of Acquah (2010) which finds the AIC to be 

1σ =50n =

150n = 1σ =

1σ =500n =
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asymptotically inconsistent and the BIC to be consistent in larger samples. 
Fundamentally, these results are confirmed in the bootstrap simulation as presented 
in Table 1. 

In order to simulate the effects of noise level on model selection, this study 
considers three error sizes (σ) ranging relatively from small to large and 
corresponding to 1.0, 2.0 and 3.0. Using 1,000 bootstrap simulations, data is 
generated from equation (9) with the different error sizes and a sample size of 150. 

The data fitting abilities of alternative models are compared in relation to the 
true model as the error in the data generating process was increased systematically. 
The performance of the model selection algorithms analyzed deteriorates with an 
increasing amount of noise in the true asymmetric price transmission data 
generating process (SECM) as illustrated in Table 2. BIC outperforms AIC in 
recovering the true data generating process at lower noise levels (σ = 1 - 2) but at 
higher noise levels (σ = 3), AIC outperforms BIC. 
 
Table 2. Relative performance of the selection methods across error size. 
 
Experiment criterion 

Model fitted 
Methods CECM (%) HKD (%) SECM (DGP) (%) 

 AIC 14.1 20.7 65.2 
BIC 1.6 50.2 48.2 

 AIC 18.7 4.9 76.4 
BIC 3.1 18.7 78.2 

 AIC 20 0.0 80.0 
BIC 4.0 0.1 95.9 

Note: Recovery rates based on 1,000 bootstrap replications. 
 

The study further investigated the extent to which sample size and stochastic 
variance concurrently influenced model selection performance in bootstrap 
samples. Bootstrap simulation results reveal that a small error and large bootstrap 
sample improve recovery of the true asymmetric data generating process and vice 
versa. With a small bootstrap sample of 50 and an error size of 2.0, the true data 
generating process was recovered at least 41.1% of the time by the model selection 
criteria as illustrated in Table 3. 

On the other hand, with a relatively large bootstrap sample of 150 and error 
size of 0.5 at least 80.0% of the correct model was recovered across all the model 
selection methods as indicated in Table 3. The model recovery rates of the model 
selection methods are derived under combined conditions of a small bootstrap 
sample size of 50 and large error size of 2 (that is, Unstable conditions) and a 
relatively large bootstrap sample size of 150 and a small error size of 0.5 (that is, 
Stable conditions). Under stable conditions, model selection performance or 
recovery rates improve for the true model. 

150n = 3σ =

150n = 2σ =

150n = 1σ =
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Table 3. Effects of sample size and stochastic variance on model recovery. 
 
Experiment criterion Model fitted 

Methods CECM (%) HKD (%) SECM (DGP) (%) 
 
 

AIC 11.9 34.1 54 
BIC 2.7 56.2 41.1 

 
 

AIC 20.0 0.0 80.0 
BIC 4.0 0.0 96.0 

Note: Recovery rates based on 1,000 bootstrap replications. 
 

Table 4 illustrates how the different model selection methods exhibit different 
relative performance in recovering the true model at different levels of asymmetry. 
An increase in the difference between the asymmetric adjustments parameters from 
0.25 to 0.50 led to improvement in the model recovery rates of the true asymmetric 
data generating process by the model selection methods. Noticeably, recovery rates 
of the Bayesian criteria respond more strongly to increases in the difference 
between the asymmetric adjustments parameters for the true model.  

In short, another factor which may influence model selection or the recovery 
of the true data generating process is the difference in asymmetric adjustment 
parameters as illustrated. 

 
Table 4. Effects of the level of asymmetry on model recovery. 
 

Note: Recovery rates based on 1,000 bootstrap replications. 
 

An important characteristic of the current study is that they generally echo 
previous theoretical and empirical work on the performance of model selection 
methods in other applications. The bootstrap simulation results establish that AIC 
and BIC do identify the true asymmetric data generating process in the presence of 
bootstrap samples. This is consistent with Acquah (2010) Monte Carlo 
experimentation results which indicated that BIC and AIC clearly identify the true 
data generating process in asymmetric price transmission modeling framework.  

The recovery of the correct model using bootstrap samples declined with 
increases in noise levels. This finding suggests that the amount of noise in the 
asymmetric data generating process is influential for the purposes of model 
selection. Similarly, previous studies (Gheissari and Bab-Hadiashar, 2003; Yang, 

Experiment criterion 
Model fitted 

Methods CECM (%) HKD (%) SECM (DGP) (%) 

2 0 .2 5+ −
2β − β =  AIC 19.8 0.2 80.0 

BIC 3.8 2.2 94.0 

2 0 .5 0+ −
2β − β =  

AIC 20.0 0.00 81.0 
BIC 4.0 0.1 95.9 

2σ = 50n =

150n = 0.5σ =
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2003) also find that the performance of AIC and BIC declines with increases in the 
amount of noise in the data generating model. Within the asymmetric price 
transmission modeling context, AIC outperforms BIC when there is a high amount 
of noise in the true model. This observation is consistent with Chen et al. (2007) 
who note the propensity of BIC to perform worse than AIC at high noise levels in a 
factorial analysis. 

The results of the current study demonstrate the usefulness of parametric 
bootstrap methods in asymmetric price transmission model selection. Bootstrap 
simulation results suggested that AIC performs relatively well in small bootstrap 
samples, but is inconsistent and does not improve performance in large bootstrap 
samples. Alternatively, BIC appears to perform relatively poorly in small bootstrap 
samples, but is consistent and improves in performance with large bootstrap 
samples in the price transmission modeling framework. This is consistent with the 
Monte Carlo simulation results of Acquah (2010) which suggest that generally AIC 
should be preferred in smaller samples, whilst BIC should be preferred in larger 
samples in the price transmission modeling framework. 

With regards to the level of asymmetry, the results indicated that the ability of 
the model selection methods to identify the true data generating process depends on 
the difference in asymmetric adjustments speeds. In a Monte Carlo simulation, 
Acquah (2010), observed that the difference in asymmetric adjustment parameters 
from 0.25 to 0.50 has a positive effect on the ability of the model selection methods 
to recover the true model. Bootstrap simulation results suggest that on the basis of 
the recovery rates of the true model, BIC should be preferred to AIC in 
applications in which the data has strong levels of asymmetry. Using bootstrap 
samples in the asymmetric price transmission modeling framework, this study 
sheds light on the performance of the model selection methods. Fundamentally, I 
demonstrate that in the presence of bootstrap samples, the BIC and AIC point to 
the correct model. 

 
Conclusion 

 
The model selection criteria examined clearly point to the true asymmetric 

model out of different competing models. Fundamentally, the results demonstrate 
the usefulness of combining the use of bootstrap methods with information 
theoretic selection criteria to identify the true asymmetric price transmission 
model. The bootstrap simulation results indicate that the sample sizes, level of 
asymmetry and noise levels, are important in the selection of the true asymmetric 
model. Larger bootstrap sample sizes or lower noise levels improve the ability of 
AIC and BIC to point to the correct asymmetric price transmission model. Under 
unstable conditions such as small bootstrap sample and large noise levels, AIC 
outperforms BIC. An increase in the difference between the asymmetric 
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adjustments parameters improves model recovery rates of the true asymmetric data 
generating process by the model selection methods. The bootstrap comparison 
provided contributes to knowledge and understanding of the relative performance 
of the Akaike’s Information Criteria and the Bayesian Information Criteria in 
selecting an asymmetric price transmission model in the presence of bootstrap 
samples. Future research will depart from parametric assumptions and investigate 
model selection in asymmetric price transmission context using non-parametric 
bootstrapping. 
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BOOTSTRAP PRISTUP VREDNOVANJA PERFORMANSI AKAIKEOVOG 
INFORMACIONOG KRITERIJUMA (AIC) I BAJESOVOG INFORMACIONOG 

KRITERIJUMA (BIC) U IZBORU ASIMETRIČNOG ODNOSA CENA 
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Univerzitet u Kejp Koustu,  
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Ovaj rad se bavi problemom izbora modela u modelima asimetričnog prenosa 

cena kombinovanjem upotrebe bootstrap metoda sa informacionim kriterijumima 
za teoretski izbor. Parametarska bootstrap tehnika je korišćena kako bi se izabrao 
najbolji model prema Akaikeovom informacionom kriterijumu (AIC) i Bajesovom 
informacionom kriterijumu (BIC). Rezultati bootstrap simulacije su ukazali da su 
učinci AIC i BIC uslovljeni veličinom podataka, nivoom asimetrije i šuma u 
modelu koji se koristi u aplikaciji. Ovaj rad dalje utvrđuje da je BIC dosledan i da 
nadmašuje AIC pri izboru ispravnog asimetričnog odnosa cena kada je veličina 
bootstrap uzorka velika.  

Ključne reči: izbor modela, Akaikeov informacioni kriterijum (AIC), Bajesov 
informacioni kriterijum (BIC), asimetrija, bootstrap simulacija. 
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