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Abstract  

 

Productivity in rain-fed and irrigated rice farming ecosystems are very important for 

Ghana’s self-sufficiency in rice. This paper, therefore, provides a synthesis of the irrigated 

and rain-fed rice farming ecosystems in Ghana using recent advances in the production 

economics literature. Specifically, the technical efficiency differential in the irrigated and 

rain-fed rice farming ecosystems are estimated using stochastic and bias-corrected data 

envelopment metafrontier methods. Technical efficiency drivers of the individual rice farming 

ecosystems are also examined. Using a sample of 381 for the modelling, the estimated results 

showed that farms under the irrigated rice farming ecosystem are more technically efficient 

(71%) compared to those under the rain-fed rice farming ecosystem (59%). However, overall 

technical efficiency falls short of about 36%, suggesting a substantial level of inefficiency in 

both rice farming ecosystems. In addition, the results revealed male farmers are more 

technically efficient compared to female farmers. Also, membership of farming associations 

has efficiency reducing effect. The study proposes that to improve rice productivity, resources 

should be invested in improving the managerial skills of farmers operating under the two rice 

farming ecosystems and in infrastructural development.  

Keywords: Irrigation, rain-fed farming, production economics, efficiency, Ghana 
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1. Introduction  

 

Over the years, the importance of the agricultural sector in the economic development of 

poor countries has been recognized (Thiam et al., 2001). For the agricultural sector to 

contribute effectively to the economic development of these countries, there ought to be higher 

productivity in the sector. Productivity growth in the agricultural sector is therefore important 

for the sector to contribute to addressing issues of food insecurity, hunger and poverty (Bravo-

Uretha & Pinhiero, 1993; Thiam et al., 2001). However, productivity growth in the 

agricultural sector in most of these countries is hindered by challenges such as inefficient 

markets, low technology adoption, and inadequate water supply for production activities, 

among others. Of critical importance is the availability of water for agricultural production, 

particularly in this era of climate change.  

Currently, in Ghana, promotion of irrigation production system is seen as a pre-requisite 

for increased productivity with suggestions of improving public investment in irrigation 

infrastructure (Anang et al., 2017; You et al., 2011; 2014).  One of the major crops under 

irrigation production is rice, which is cultivated mainly as a cash crop and is dominated by 

small-scale farmers. Rice production under irrigated ecosystem constitutes about 16% of total 
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rice produced in Ghana (Ministry of Food and Agriculture [MoFA], 2010).  On the other hand, 

rain-fed lowland rice production, which is composed of about 78% of total rice cultivable area 

is the major rice ecosystem in Ghana.  

The rain-fed lowland ecology is characterized by frequent flooding from groundwater and 

precipitation, weed control, water management, unavailability of suitable varieties and 

adverse soil conditions. Despite challenges of the lowland rain-fed ecosystem, it is still an 

important part of rice production in Ghana and has a significant role to play in the country 

becoming self-sufficient in rice production. In fact, conservative estimates indicate that Ghana 

has over 5 million hectares of unexploited rain-fed lowlands, which when exploited could 

increase local rice production.  

In Ghana, both the rain-fed and the irrigated farming ecosystems are important in ensuring 

food self-sufficiency in rice production, which will be vital in reducing rice imports that tend 

to affect the nation’s balance of payment. This paper, therefore, aims at providing a synthesis 

of the technical efficiency of irrigated and rain-fed rice farming ecosystems using an approach 

that deviates from previous studies (Al Hassan et al., 2008; 2012; Anang et al., 2017; 

Makombe et al., 2007).  

Specifically, a stochastic and bias-corrected data envelopment (hereafter BDEA) 

metafrontier approaches are employed to compare the technical efficiency of the rain-fed and 

the irrigated rice farming ecosystems in Ghana. Although there have been many empirical 

applications of the stochastic metafrontier approach in technical efficiency estimation 

(Mariano et al., 2010; Assaf et al., 2010; Mitropoulos et al., 2015; Jiang & Sharp, 2013; 

Matawie & Assaf, 2008), not many are found in the Ghanaian context. In addition, this is the 

first empirical application of the bias-corrected metafrontier application in the Ghanaian 

context.  

This paper, therefore, adds to the limited metafrontier studies in Ghana using relatively 

recent advances in the production economics literature. It also seeks to provide policy 

guidelines for improving rice production in the two ecosystems towards productivity 

improvements. The econometric modelling revealed that relative to the regional ecosystem 

frontier, the irrigated rice farming ecosystem achieved a technical efficiency of about 73%, 

suggesting efficiency could be improved by about 27% within the existing state of input use 

and technology. The rain-fed farming ecosystem, on the other hand, achieved a technical 

efficiency of 67%, indicating that efficiency could be improved at 33% within the existing 

state of input use and technology. Given the overall ecosystem efficiency, rice farms under 

the irrigated ecosystem are more technically efficient compared to rice farms under the rain-

fed ecosystem.  

The rest of the paper is organised as follows. The next section presents a discussion of the 

methods of examining efficiency with a special focus on the metafrontier technology and 

describes the data used in the empirical application. This is followed by the empirical results 

and discussion in the context of literature. Finally, the paper concludes with policy 

recommendations for productivity improvement in the rice farming ecosystems in Ghana.   

 

2. Methods  

 

This section presents the empirical model and the data description for the analysis of the 

technical efficiency differential between irrigated and rain-fed rice farming ecosystems.  

 

2.1 Stochastic Frontier Approach  

 

The stochastic frontier (hereafter SF) is a common parametric efficiency approach often 

applied in the literature. The model incorporates a composed error structure with a two sided 
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symmetric and a one sided component (Aigner et al., 1977a; Van den Broeck et al., 1994). 

The one-sided component reflects inefficiency whiles the two sided one captures random 

effects outside the control of the production unit as well as measurement errors and other 

statistical noise typical of empirical relationships. Assuming a half-normal distribution for 

inefficiencies, the model is specified as in Eq. (1):  

 

𝑦𝑖 = 𝑓(𝑥𝑖 : 𝛽) − 𝑣𝑖 + 𝑢𝑖                                                                                                  (1) 

 

where  𝑦𝑖  is a log of output variable for the farm i, 𝑥𝑖 is a vector of explanatory variables 

and 𝑣𝑖 is the stochastic random term (two sided component), which is (i.i.d.) 𝑁(0, 𝜎𝑣
2)  and 𝑢𝑖 

is the technical inefficiency term. 

 

2.2 Bias-Corrected Data Envelopment Analysis 

 

The data envelopment analysis (DEA) frontier is constructed using a mathematical 

programming technique. Although there are different returns to scale models that could be 

employed, this paper applies the variable returns to scale (VRS) model to predict the technical 

efficiency. The VRS was selected because it assumes that most farms are not operating at an 

optimal scale due to imperfect competition, government interventions and credit constraints 

(Coelli et al., 2005), which is typical of production in developing countries.  

The DEA approach specified in Eq. (2) assumes that all farms within a sample have access 

to the same technology for the transformation of a vector of N inputs denoted by 𝑥, into a 

vector of M, outputs, denoted as 𝑦. 

 

𝑀𝑎𝑥 𝜃𝑖  

𝜃𝑖 , 𝜆𝑖         

  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

 𝜃𝑖𝑦𝑖 − 𝜆𝑖𝑦
′ ≤ 0,                                 (2) 

𝜆𝑖𝑋 − 𝑥𝑖 ≤ 0,      
 j′𝜆𝑖 = 1 

      𝜆𝑖 ≥ 0,                    𝑗 = 1, … 𝑛                                                                                             
 

where; 𝑦𝑖  is the output quantity for the i-th farm, 𝜃 is the output technical efficiency 

measure having a value of 0 ≤ 𝜃 ≤ 1. If 𝜃 = 1, then the farm is efficient. 𝑥𝑖 is the 𝑁 𝑥 1 

vector of input quantities for the i-th farm, X is the matrix of input quantities for all farms, ∅𝑖 

is a scalar, 𝜆 is an 𝑁 ×  1 vector of weights which defines the linear combination of the peers 

of the i-th farm.  𝑋𝜆 and y𝜆 are efficient projections on the frontier and j is an 𝑁 ×  1 vector 

of ones. The DEA model in Eq. (2) seeks to maximize output as much as possible relative to 

the empirically constructed identical and optimal combinations of inputs and output for each 

decision-making unit (L1 & Nanseki, 2018).  

The DEA approach does not account for measurement errors (bias), which makes the 

method unsuitable for application in developing countries agriculture where data applied are 

mostly noisy. Simar and Wilson (2007) have proposed a bootstrapping technique to address 

the bias in the DEA estimator, and that is what was employed in the estimation. For detailed 

information on the bias-corrected DEA model, see Simar and Wilson (2007).  
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2.3 Stochastic Metafrontier Specification  

 

 In the case of standard stochastic frontier analysis, a key component of the formulation is 

the production frontier with composed error. For a group q, the stochastic frontier can be 

formulated as in Eq. (3): 

 

𝑌𝑖(𝑞) = 𝑓(𝑞)(𝑥𝑖 , 𝛽(𝑞)) = 𝑒𝑥𝑖𝛽(𝑞)+𝑉𝑖(𝑞)−𝑈𝑖(𝑞)                                             (3) 

 

where: 𝑥𝑖(𝑞)is the log of the input vector for observation i;  𝛽(𝑞) unknown parameters to be 

estimated relative to the q-th group; 𝑉𝑖(𝑞) is the statistical noise assumed to be independently 

and identically distributed; and 𝑈𝑖(𝑞) represents inefficiency, which is related to the standard 

measure of technical efficiency (TE) defined as the ratio of actual output to the maximum 

output possible as in Eq.(4): 

 

                     𝑇𝐸𝑖(𝑞) =
𝑌𝑖(𝑞)

𝑒𝑥𝑖𝛽𝑞+𝑉𝑖
𝑞 = 𝑒−𝑈𝑖(𝑞)                                                                          (4) 

 

The metafrontier enveloping all group frontiers is assumed to have a similar functional 

form but a different set of parameters as in Eq. (5): 

 

                      𝑌𝑖
∗ = 𝑓(𝑥𝑖 , 𝛽∗) = 𝑒𝑥𝑖′𝛽∗

                                                                             (5) 

 

where: 𝑌𝑖
∗ is the metafrontier output and 𝛽∗ is a vector of metafrontier parameters 

satisfying the constraints  𝑥𝑖 , 𝛽∗ ≥ 𝑥𝑖 , 𝛽(𝑞).  The efficiency of this actual output against the 

metafrontier output can be decomposed into group technical efficiency (GTE) and meta-

technology ratio (MRT). It is easy to show the decomposition mathematically by rewriting 

the output equation in Eq. (1) as in Eq. (6): 

 

                      𝑌𝑖(𝑞) = 𝑒−𝑈𝑖(𝑞)  𝑥 
𝑒

𝑥𝑖𝛽(𝑞)

𝑒𝑥𝑖𝛽∗ 𝑥 𝑒𝑥𝑖𝛽∗+𝑉𝑖(𝑞)                                                          (6) 

 

The group technical efficiency (GTE) measures technical efficiency of observations 

relative to the stochastic frontier that applies to the q-th group, or as in Eq. (7): 

                  

𝐺𝑇𝐸𝑖(𝑞) =
𝑌𝑖

𝑒
𝑥𝑖𝛽(𝑞)+𝑉𝑖(𝑞)

= 𝑒−𝑈𝑖(𝑞)                                                                      (7) 

 

The meta-technology ratio (MRT), on the other hand, measures group production function 

output relative to the potential output defined by the metafrontier function, and is given by 

Eq. (8):  

                  𝑀𝑅𝑇𝑖(𝑞) =
𝑒

𝑥𝑖𝛽(𝑞)

𝑒𝑥𝑖𝛽∗                                                                                            (8) 

 

The overall technical efficiency of the i-th observation or unit relative to the meta-frontier 

is referred to as meta-technical efficiency (𝑀𝑇𝐸𝑖
∗) and compares observed output relative to 

metafrontier output, adjusted for the corresponding random error as in Eq. (9): 

 

                      𝑀𝑇𝐸𝑖
∗ =

𝑌𝑖

𝑒
𝑥𝑖𝛽∗+𝑉𝑖(𝑞)

                                                                                    (9) 
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In other words, 𝑀𝑇𝐸𝑖
∗ is the product of group technical efficiency and meta-technology 

ratio given in Eq. (10): 

𝑀𝑇𝐸𝑖
∗ = 𝑇𝐸𝑖

𝑞
 𝑥 𝑀𝑅𝑇𝑖

𝑞
                                                                               (10) 

 

 

2.4 Model Estimation 

 

Although Cobb Douglas functional form is the common production function often applied 

in the empirical literature, the translog functional form is assumed for both the group and 

metafrontiers because of its flexibility. The Translog functional form may be specified as in 

Eq. (11):  

 

ln 𝑦𝑖 = 𝛽𝑜 + ∑ 𝛽𝑖𝑗 ln 𝑥𝑖𝑗 +
1

2

𝑚
𝑗=1 ∑ ∑ 𝛽𝑗𝑞𝑙𝑛 𝑥𝑖𝑗

𝑛
𝑞=1

𝑚
𝑗=1 𝑙𝑛𝑥𝑖𝑞 + 𝑣𝑖(𝑞) − 𝑢𝑖(𝑞)         (11) 

 

where: 𝛽 is a vector of parameters to be estimated; 𝑦 is output and 𝑥  is a vector of inputs;  

𝑣𝑖(𝑞) is  the symmetric noise or error term which might be distributed as half-normal or 

exponential; and 𝑢𝑖(𝑞) is a non-negative inefficiency term.  

The estimation of the metafrontier is a two-step process. In the first step, group frontiers 

are estimated, and the metafrontier with decomposition into technology gap and meta-

technical efficiency are estimated in the second step. For the stochastic metafrontier, the two 

rice farming ecosystem frontiers were estimated using a stochastic frontier approach in a 

maximum likelihood framework. After the stochastic group frontier estimations, the 

stochastic metafrontier was estimated using the average expected values of the group frontiers 

(O’Donnell et al., 2008). The standard errors of the metafrontier were generated using 

bootstrapping techniques.  

In the case of the bias-corrected DEA model, the output oriented model under variable 

returns to scale was estimated both for the group frontiers and the metafrontier using linear 

programming with bootstrapping techniques (Simar &Wilson, 2007) to correct for bias in the 

DEA estimator. The group frontiers were estimated separately for the rain-fed and irrigated 

rice farming ecosystems. The estimation of the metafrontier was done by estimating a pooled 

frontier for the two rice farming ecosystems. The technology gap was obtained by the ratio 

between the group technical efficiency and the pooled technical efficiency.  

 

 3. Data and Variable Definition  

 

The paper uses a farm household production data of rain-fed and irrigated rice farmers 

collected in 2014 from the Northern and Upper East regions of Ghana.  The selection of the 

regions was based on volume of rice produced and closeness to the major rice market, Ashanti 

region.  The study focused on irrigated and rain-fed farming ecosystems because those 

ecosystems are the major rice production systems in Ghana (MoFA, 2010).  

A multistage sampling procedure was applied in the data collection.  In the first stage, I 

used the stratified sampling method to categorize the regions into districts and later 

communities. The random sampling technique was then employed to select the farmers based 

on names provided by the Department of Agriculture. The instrument used for the data 

collection was a structured questionnaire composed of questions relating to socio-economic 

characteristics of the farm households and details of inputs and output of the production 

process. For the empirical estimation, a total of 381 observations comprising 202 rain-fed 

farms and 179 irrigated farms were used in the estimation.  
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Consistent with the production economics and efficiency literature, four inputs and a single 

output were considered. Output was measured as an amount of paddy rice produced per 

hectare of rice farm. The inputs include farm size, labour, fertilizer quantity, and other variable 

costs. Farm size (X1) was measured as the total area cultivated to rice in hectares. Labour 

(X2), total person-days committed to the production process by both family and hired. The 

family labour who counted are persons of the family unit that reside in the house and are 

actively involved in the production process. Fertilizer input (X3) is the quantity of NPK and 

sulphate of ammonia in kilograms used in the production process and other variable costs 

(X4): This is an aggregation of other production costs such as harrowing, ploughing, 

herbicides in monetary terms, and cost of water for irrigation in Ghana Cedis1.  

 

Table 1 Sample Descriptive Statistics of Data 

 Pooled Rain-fed ecosystem Irrigated ecosystem  

Variables  Mean SD Mean SD Mean SD 

Variables in the production function 

Yield (kg/ha) 1415 745 1425 774 1404 712 

Farm size (ha) 1.63 1.04 2.15 0.987 1.05 0.754 

Labour (man-

days) 

168 39 173 47 163 28.29 

Fertilizer (kg/ha) 157 94 193 103 115.45 59.35 

Other variable 

costs (GHS/ha) 

2652 104 299 84.6 226 111 

Variables in the inefficiency model 

Farmer based 

organization  

0.44 0.49 0.569 0.49 0.285 0.45 

Non-farm income  0.60 0.49 0.574 0.50 0.631 0.48 

Gender  0.17 0.37 0.173 0.379 0.162 0.369 

Farming 

experience  

10.6 5.64 11.4 5.43 9.75 5.76 

 

Table 1 presents summary statistics of variables used in the empirical model. From the 

table, the average farm size is about 2 hectares. This is indicative of the small-scale nature of 

the rice production system and typical of production in developing countries (Owusu & Hailu, 

2014; Abatania et al., 2012). Per the rice farming ecosystem, farm sizes in rain-fed farms are 

double the sizes in irrigated farms. An independent sample t-test conducted on the variables 

revealed a significant difference in all the input quantities between the rain-fed and irrigated 

farms.  

 

4. Results and discussion  
 

Prior to the estimation, standard tests for the choice of functional form and justification of 

inefficiency approach were conducted. Concerning the structure of the production, the 

translog functional form was found an adequate restriction compared to the Cobb-Douglas 

model for rain-fed and irrigated ecosystem frontiers.  A second test for the null hypothesis of 

no inefficiency effect is rejected for both groups of farms. Hence, the average production 

function is not an adequate representation of the production technology. Finally, a hypothesis 

                                                           
1,2 2.8 Ghana Cedis is equivalent to 1 USD 
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test of identical technology across farms is rejected. Therefore, the metafrontier approach is 

suitable for the sample data under consideration.  The results of the preliminary diagnostic 

tests are presented in Table A.1 in the Appendix.  

Following the justification of the method, a translog stochastic production function was 

estimated for each rice farming ecosystem-irrigated and rain-fed. The input variables were 

measured as a deviation from the means so that the estimated coefficients for the first order 

terms could be interpreted directly as production elasticity at the sample mean. The estimates 

of the empirical model are now presented and discussed starting with the group frontiers. The 

parameter estimates of the group frontiers are reported in Table 2.  For the rain-fed rice 

farming ecosystem frontier, the estimates of the production elasticities are 0.085 for land, 

0.403 for labour, 0.212 for fertilizer input and 0.315 for other variable inputs. Given the 

parameter values, labour and other variable inputs contribute greatly to the production process.  

 

Table 2 Estimated Parameters of the Group Stochastic Production Frontier 

Note: FBO, farmer-based organization; X1=Farm size, X2=labour use, X3=fertilizer input 

use; X4=other variable inputs use, SE. Standard errors 

 

For the irrigated rice farming ecosystem frontier, the input elasticities are 0.047 for land, 

0.458 for labour, -0.341 for fertilizer input, and 0.775 for other variable inputs.  

The determinants of the technical efficiency of the rice farming ecosystems were examined 

by incorporating non-farm income, gender, farming experience and farmer group membership 

 Rain-fed farming ecosystem Irrigated farming ecosystem 

Coef. SE Coef. SE 

Constant 0.372*** 0.102 0.298*** 0.069 

lnx1 0.085 0.099 0.047 0.080 

lnx2 0.403** 0.002 0.458* 0.203 

lnx3 0.212** 0.078 -0.341*** 0.092 

lnx4         0.315* 0.130 0.775*** 0.078 

0.5(lnx1)2 -0.015 0.266 0.201 0.139 

0.5(lnx2)2 0.986 0.766 1.975* 1.129 

0.5(lnx3)2 -0.417* 0.213 -0.052 0.313 

0.5(lnx4)2 -2.319*** 0.871 0.370 0.233 

lnx1.lnx2 -0.191 0.287 1.173*** 0.275 

lnx1.lnx3 0.027 0.151 -0.433* 0.182 

lnx1.lnx4 0.571* 0.347* 0.228 0.188 

lnx2.lnx3 -0.503 0.256* -0.873* 0.437 

lnx2.lnx4 0.549 0.423 -1.331** 0.430 

lnx3.lnx4 0.253 0.259 0.082 0.143 

Sigmasq 0.877** 0.276 0.725* 0.305 

Gamma  0.916*** 0.039 0.958*** 0.021 

Non- farm income -0.072 0.261 -0.199 0.406 

Gender  -0.557* 0.299 -1.203* 0.577 

Membership of 

FBO 

1.796*** 0.391 1.453** 0.504 

Farming experience  -0.103*  0.061 0.162* 0.102 

Observation  202 179                         
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variables into the modelling. Since the models were estimated in one stage, positive 

coefficients have efficiency reducing effects and negative coefficients have efficiency 

increasing effects. From the estimated parameters in the second block of Table 2, it is observed 

that membership of farmer association reduces farmer efficiency, greater farming experience 

in the case of the irrigated farming ecosystem also reduce farm efficiency. This finding is 

consistent with Danso-Abbeam and Donkoh (2017) study on technical efficiency in Northern 

Ghana.  

The gender variable gives an indication that male farmers in both ecosystems are more 

technically efficient compared to female farmers. The farming experience variable is negative 

and significant in the rain-fed farming ecosystem frontier, indicating that higher farming 

experience reduces inefficiency in the farming ecosystem. This finding is consistent with 

previous studies (Nwaru, 2007) that have identified that experienced farmers are more 

technically efficient compared to inexperienced farmers. The possible explanation for the 

efficient nature of experienced farmers could emanate from the practical knowledge they have 

gained over the years in addressing production related problems, which further suggests that 

policies and programmes aimed at improving technical efficiency of farmers in the rain-fed 

rice farming ecosystem should target experienced farmers.  

Now, I proceed to discuss the metafrontier results. Table 3 presents the metafrontier 

estimates obtained from the stochastic metafrontier (SMF) approach and the bias-corrected 

data envelopment analysis (BDEA). The results show that other variable inputs use has the 

greatest effect on the metafrontier, and this is followed by labour input use. In terms of the 

performance indices- group technical efficiency (GTE), meta-technology ratio (MRT) and 

meta-technical efficiency (MTE) are presented in Table 4. Before discussing the results in 

detail, the distributions of the technical efficiency of the farming ecosystems are compared 

using the two methodologies.  

 

Table 3 Bootstrapped Metafrontier Estimates 

Variable Mean SE  

Constant 0.348 0.001 

lnx1 0.064 0.001 

lnx2 0.221 0.015 

lnx3 0.082 0.013 

lnx4 0.581 0.013 

0.5(lnx1)2 0.036 0.020 

0.5(lnx2)2 0.140 0.036 

0.5(lnx3)2 0.077 0.017 

0.5(lnx4)2 -0.033 0.031 

lnx1.lnx2 0.476 0.075 

lnx1.lnx3 -0.044 0.036 

lnx1.lnx4 -0.189 0.053 

lnx2.lnx3 -0.057 0.024 

lnx2.lnx4 -0.057 0.031 

lnx3.lnx4 0.430 0.062 

Notes: X1=Farm size, X2=labour use, X3=fertilizer input use; X4=other variable inputs use,  

SE, Standard errors  
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Figure 1 shows the boxplot of the technical efficiency for the rain-fed and irrigated rice 

farming ecosystems from the Stochastic frontier (SF) and BDEA approaches. It can be 

observed from the figure that the technical efficiency obtained from the SF model is higher 

compared to the BDEA model. The estimates from the BDEA model are also highly variable 

compared to those obtained from the SF model. The boxplots, therefore, suggest of a variation 

in the efficiency of the two approaches used in estimating the technical efficiency of the two 

ecosystems.  

 

 
Figure 1 Boxplots of Regional Ecosystem Technical Efficiency for Rain-Fed 

Ecosystem (Left) And Irrigated Ecosystem (Right)  

 

Table 4 reveals the results for the performance indicators under the group frontiers. 

Regarding the irrigated rice farming ecosystem, the technical efficiency ranges from 0.138 to 

0.943 with an average of 0.732. The average technical efficiency for the rain-fed rice farming 

ecosystem ranges from 0.132 to 0.927 with a mean of 0.665. This implies that on average, the 

rain-fed rice farming ecosystem is producing about 67% of the output that could be produced 

from the observed input quantities. Similarly, the irrigated rice farming ecosystem is 

producing 73%.   

The results show that farms under the irrigated rice farming ecosystem could improve 

efficiency by about 27% within the existing state of resources and technology. Those under 

the rain-fed rice farming ecosystem could also improve their technical efficiency by about 

33% within the existing state of resources and technology. The results, therefore, imply that 

within the short-term, improvement upon the managerial skills of farmers operating under 

both farming ecosystems would be more beneficial with a potential higher return to 

investment. In the long run, the introduction of new technologies would be relevant in 

improving the technical efficiency of the rice farming ecosystems. 
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Table 4 Summary Statistics for Technical Efficiency and TGRS for The Rice Ecology 

Systems 

          Stochastic frontier model estimates   Bias-corrected DEA model estimates 

Group  Mean Min Max SD Mean Min Max SD 

Rain-fed farming ecosystem           

GTE1 0.665 0.132 0.927 0.216 0.492 0.066 0.904 0.202 

MRT1 0.880 0.549 1 0.100 0.435 0.063 0.926 0.207 

MTE1 0.587 0.094 0.894 0.207 0.248 0.005 0.780 0.186 

              

Irrigated farming ecosystem   

GTE2 0.732 0.138 0.943 0.184 0.587 0.123 0.961 0.215 

MRT2 0.964 0.763 1 0.034 0.570 0.122 0.941 0.212 

MTE2 0.706 0.138 0.930 0.181 0.380 0.015 0.904 0.234 

  

TE 0.696 0.132 0.943 0.204 0.537 0.066 0.961 0.214 

MRT 0.919 0.549 1 0.087 0.50 0.063 0.941 0.220 

MTE 0.643 0.094 0.930 0.204 0.310 0.005 0.904 0.220 

Note: GTE-Group technical efficiency, MRT-Meta-technology Ratio, MTE-Metafrontier 

technical efficiency 

 

As far as MRT is concerned, the values range from about 0.549 to 1 with a mean of 0.880 

for the rain-fed ecosystem, while the MRT for the irrigated ecosystem ranges from 0.763 to 1 

with a mean of 0.964. The results imply on average, irrigated farms produce 96% of the 

potential output given the technology available to the industry. The rain-fed farms, on the 

other hand, produce about 88% of the potential output. Compared to the stochastic 

metafrontier (SMF) estimates, the MRT values obtained from the BDEA model are low with 

wider variations (see Figure 2). This gives an indication that the type of frontier methodology 

used in estimating the technology gap has an effect on the magnitude of the values.  

Now as the meta-technical efficiency (MTE) estimates of the rain-fed and irrigated rice 

farming ecosystems are measured on the same production frontier, we can compare the 

technical efficiencies. The mean technical efficiency of the rain-fed ecosystem with respect 

to the metafrontier (MTE1) ranges from 0.094 to 0.894 with an average of 0.587.  The irrigated 

ecosystem (MTE 2) on the other hand ranges from 0.138 to 0.930 with a mean of 0.706 in 

respect to the meta-technology available. The findings show that for the sample under study, 

the irrigated rice farming ecosystem is more technically efficient as opposed to the rain-fed 

rice farming ecosystem. This finding is consistent with previous study outcomes (Al-Hassan 

et al., 2012; Anang et al., 2017). 

 In terms of model comparison, it is observed that the estimates from the SMF are higher 

compared to the BDEA model estimates (see Figure 3). However, both models give a 

consistent result of irrigated ecosystems being more technically efficient compared to rain-

fed ecosystems.   

The differences in the distributions of the performance indicators were further investigated 

by conducting a Kolmogorov-Smirnov test (Table 5). The null hypothesis is rejected at all the 

three conventional levels, implying that the distributions of the performance indicators vary 

for all models and therefore, the samples are not drawn from the same distribution.  
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Figure 2. Frequency Distributions of Meta Technology Gap for The Rain-Fed 

Farming Ecosystem (Top) and Irrigated Farming System (Bottom) for the SMF 

(Right) and BDEA (Left) Models 

 

 

 
Figure 3. Frequency Distributions of Meta Technical Efficiency for the Rain-Fed 

Farming Ecosystem (Top) and Irrigated Farming System (Bottom) for the SMF 

(Right) and BDEA (Left) Models 



Efficiency Differential in Rice Production Technologies … 

108 
 

 

Table 5. Results of Kolmogorov-Smirnov and Wilcoxon-Mann- Whitney Rank Sum 

Tests 

Index  Null Hypothesis  K-S value P-value 

GTE SMF Distribution MTE1= distribution MTE2 0.336 0.000 

MRT SMF Distribution MRT1 = distribution MRT2  0.489 0.000 

GTE BDEA Distribution MTE1= distribution MTE2 0.306 0.000 

MRT BDEA Distribution MRT1 = distribution MRT2  0.345 0.000 

  Z value   

GTE SMF Mean MTE1=Mean MTE2 -6.316 0.000 

MRT SMF Mean MRT1=Mean MRT2 -9.434 0.000 

GTE BDEA Mean MTE1=Mean MTE2 -5.413 0.000 

MRT BDEA Mean MRT1=Mean MRT2 -5.846 0.000 

 Note: SMF=Stochastic metafrontier, GTE=Group technical efficiency, MRT=Meta 

technology ratio 

 

I also performed a Wilcoxon-Mann-Whitney rank sum test to determine whether there is 

any significant difference in the performance indicators. The results are presented in Table 5. 

All the null hypotheses are rejected in favour of the alternatives at all three conventional 

levels, a clear indication that the rank differences in the indicators are significant and 

providing further evidence of the heterogeneity between the two ecosystems.  

Furthermore, I examined the correlation between the performance indicators using 

Spearman correlation coefficient (Table A.2 in the Appendix) and found a positive correlation 

among indicators of the same ecosystem across models. However, there is a negative 

correlation between the MRT and MTE between the ecosystems, which suggest that to be on 

the same metafrontier, as one group’s contribution increases, another’s decreases.  

 

5. Conclusion  

 

In this study, technical efficiency differential between irrigated and rain-fed rice farming 

ecosystems in Ghana was investigated using a cross sectional data collected in the 2013/2014 

production season. The study employed both parametric and non-parametric metafrontier 

approaches to examine the technical efficiency differences between the two rice farming 

ecosystems. Specifically, the stochastic and the bias-corrected data envelopment metafrontier 

approaches were employed to compare the technical efficiency of rice farms under irrigated 

and rain-fed ecosystems.  

The empirical results revealed that labour and other variable inputs use have greater effects 

on rice output. Labour is an essential part of increasing farm productivity; therefore, 

investment should be made in improving the skills of farm labour to increase their 

productivity. The factors identified to drive the technical efficiency of farmers include 

membership of farmer-based organization, farming experience and gender. Specifically, the 

findings revealed that male farmers are more technically efficient compared to female farmers. 

The less efficiency level of female farmers could be attributed to cultural norms and practices 

that ban female farmers from access to land. If some of these practices are addressed by 

policymakers, female farmers are likely to equal their male counterparts in efficiency in farm 

production.  

The results further revealed that irrigated rice farming ecosystems are more technically 

efficient compared to rain-fed rice farming ecosystem. Specifically, the efficiency of the 

irrigated rice farming ecosystem is about 15% higher than the efficiency of rain-fed rice 



R. Owusu 

109 
 

farming ecosystem. This finding suggests that more investment should be made in irrigation 

infrastructure in Ghana in improving rice production. However, since rain-fed rice farming 

ecosystem constitutes a greater percentage of land cultivated to rice, and its efficiency could 

be increased by 33% within the existing state of resources and technology, managerial abilities 

of farmers in that system of rice production should be improved. Both rice farming ecosystems 

would require new technologies to move them beyond the existing rice production frontier 

and such technology should consider farmers in the inception, planning and implementation 

to improve adoption.   
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Appendix 

 

Table A.1 Likelihood Ratio Test of Hypothesis  

Null 

hypothesis  

Model  Log 

likelihood  

   

Chisq 

P-

value  

Decision  

Ho: 𝛃𝐢𝐣 = 𝟎 Cobb Douglas -409.280 56.702 0.000 Reject Ho 

 Translog -43.63    

Ho: 𝛄 = 𝟎  There is no inefficiency   0.000 Reject Ho 

 OLS -480.230 141.91   

 Translog -409.280  0.000 Reject Ho 

 Groups nested in Pooled  101.79 0.000 Reject Ho 

 Irrigated  -87.261    

 Rain-fed  -252.137    

 Pooled  -409.280    

 

 

 Table A.2 Correlations between Performance Indicators 

Note: BDEA=Bias-corrected Data Envelopment Analysis 

 

 

 MRT Stochastic  MTE Stochastic MRT BDEA TE BDEA MTE BDEA  

       

TE Stochastic 1      

MRT Stochastic 0.1743 1     

MTE Stochastic 0.9672 0.3529 1    

MRTBDEA 0.8741 0.2457 0.8692 1   

TE BDEA 0.869 0.1069 0.8384 0.9448 1  

MTE BDEA 0.8859 0.1909 0.8705 0.9908 0.9786 1 

       


