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Abstract 

 

Our study provides empirical answer that verifies increase in productivity, if any, through 

promotion of improved agricultural technologies among smallholder food crop farmers in 

Africa. We specifically examined Root and Tuber Improvement and Marketing Programme 

(RTIMP) technology effect on improving the production efficiency of cassava farmers in 

Ghana. we stratified RTIMP cassava farmers into above average adopters and below average 

adopters based on their adoption intensity scores and further examined differences in their 

efficiency levels which we estimated by employing the stochastic frontier production model 

(SFA). In order to empirically establish if RTIMP technology has actually had effect in 

improving productivity of the cassava farmers, we estimated an adjusted regression model 
(average treatment effect and average treatment effect on the treated models). Our results 

show that the potential outcome mean technical efficiency of about 69% achieved by the above 

average RTIMP technology adopters is significantly higher than that of the below average 

technology adopters which was found to be about 64%. Our Average Treatment Effect on the 

Treated (ATET) estimates confirm that there has been significant increase in the technical 

efficiency of cassava farmers attributable to the adoption of the RTIMP cassava technology.   

Key words: Average treatment effect model, technical efficiency, technology adoption, 

cassava farmers, Ghana 

Jel Codes: C21, D13, D24, Q12, Q16 

 

1. Introduction 
 

In many developing countries agriculture is a major contributor to the gross domestic 

product and export earnings. However, majority of the labour force found within the 

agricultural sector, especially rural farmers are often described as being in a low-income or 

poverty trap as result of the persistent low farm level productivity (Schneider, & Gugerty, 
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2011; Amare, Cissé, Jensen, & Shiferaw, 2017; Hasselberg, 2017; De Janvry, & Sadoulet, 

2010; Gassner, et al., 2019). This suggests that addressing the issue of low farm level 

productivity could significantly move farmers out of the low-income or poverty trap. Premised 

on this, several policies and programmes to foster higher productivity growth at the farm level 

has been proposed. However, one that has been asserted to have a direct impact on productivity 

growth at the farm level is the adoption of new and improved agricultural technologies by rural 
farmers (Acheampong, et al., 2017; World Bank, 2008; Muzari, Gatsi, & Muvhunzi, 2012; 

Haregewoin, et al., 2018; Gebeyehu, 2016; Abdullahi,  Mahieddine, & Sheriff, 2015; Rehman, 

Jingdong, Khatoon, Hussain, & Iqbal, 2016). In the Ghanaian economy, the goal of improving 

agricultural productivity has been a major policy focus by the central government acting 

through relevant state institutions. As food security and poverty reduction concern, substantial 

emphasis has been placed on food crop production; key among them is the root and tuber 

subsector. Evidences suggests that the adoption and continuous use of improved agricultural 

technologies is one thing that could generate significant growth in agricultural productivity; 

moving national economies from low productivity subsistence agriculture to a high 

productivity agro-industrial economy (Acheampong, et al., 2017; World Bank, 2008). In 

response to this, several efforts have been initiated by national government to developed and 

disseminate new and improved agricultural technologies to farmers. For instances,  as effort 
towards achieving significant increases in farm productivity, income and food security status 

of food crop farmers in rural areas of Ghana, the government of Ghana in partnership with 

International Fund for Agricultural Development [IFAD], instituted the Root and Tuber 

Improvement and Marketing Programme [RTIMP] to introduced and trained farmers in the 

adoption and use of improved technologies (Ministry of Food and Agriculture [MoFA], 2018). 

RTIMP as an intervention package introduced improved planting materials of recommended 

varieties of cassava, yam, cocoyam and sweet potato to farmers. In addition to this, farmers 

were also introduced to technologically enhanced agronomic practices for a more sustainable 

root and tuber crops production. Credit to the RTIMP intervention, several rural farming 

communities across the regions of Ghana have received technical supports in terms of 

provision and distribution of improved crop varieties and agronomic practices in root and tuber 
crops production (MoFA, 2018). As with every agricultural intervention, the success of it lies 

in the ability of the programme to significantly change the status quo situation of farmers, by 

moving them out of poverty and food insecurity. Achieving this, lies in the ability of the 

technologies introduced to farmers through the intervention to significantly moved farmers 

from low productivity to high productivity potential on a more sustainable basis. This is 

because increasing farm productivity enables farm households to generate more income and 

food stock which consequently could move them out of poverty and food insecurity. This of 

course requires that the technological intervention is target specific as well as goal specific.  

To lend empirical support to the needs for more target based agricultural technological 

innovations, several studies has been conducted to evaluates the impact of technology adoption 

on the productivity and income of farm households. However, the literature shows that 

majority of the studies mostly relied on the comparison of average incomes and outputs 
between the adopters and non-adopters, and the use of before and after analytical procedures, 

especially within the African context (see for example Bimpeh, 2012; Wiredu, Mensah-Bonsu, 

Andah, & Fosu, 2010; Kasamoko, 2004; Afidjah, 2004). These approaches however, have 

been found to give bias estimate of true welfare gain of technology adoption under a non-

experimental survey context (Kassie, Zikhali , Pender, & Köhlin, 2010; Nabasirye, Kiiza, & 

Omiat, 2012; Acheampong et al., 2017; Acheampong, 2015). This is because the evaluation of 

welfare gains of technology adoption using a non-experimental or survey data is characterised 

with selection problem (Acheampong et al., 2017; Tesfaye, Bedada, & Mesay, 2016; 

Dandedjrohoun, Diagne, Biaou, & N'Cho, 2012). In view of this challenges, to be able to have 



E. W. Inkoom, S. K. N. Dadzie and J. Ndebugri 

273 
 

a direct  and true impact assessment of any agricultural intervention on the productivity and 

livelihood of farmers using a survey data, treatment effect modelling is considered much 

appropriate and offers better policy benefit (Haregewoin, et al., 2018; Acheampong, et al., 

2017; Tesfaye, et al., 2016; Dandedjrohoun, et al., 2012). The approach presents an opportunity 

to know if the new technological innovation did present some benefits to adopters of the 

innovation as compared to non-adopters of the innovation. Additionally, the use of treatment 
effect model help strengthens causal argument in survey data by minimising selection and 

endogeneity biases. Although some studies have used treatment effect models (TEM) to assess 

the impact of technology adoption in Ghana, empirical evidences on the use of TEM to assess 

the effect of technology adoption on technical efficiency remains rare, even though technical 

efficiency is a better prediction of productivity gains.  For instances, Acheampong and Owusu, 

(2015) using a treatment effect model, evaluated the impact of adoption on farm income and  

reported that the adoption of improved cassava varieties by cassava farmers in Ghana increased 

total crop incomes of women by GH¢3173  and men by GH¢ 149 per hectare respectively. In 

a similar study by Acheampong, et al. (2017), it was found out that, the adoption of improved 

sweetpotato variety by farmers in Ghana resulted in total income increases of GH¢1267 per 

hectare.  

Despites these efforts, we find the use of income and yield as outcome variables in the 
TEM  by these studies as quiet straight forward target of potential impact from the used of  the 

technology. This is because the outcomes variables considered in these studies fails to tell 

whether farmers are opertating at their optimum potentials or not and to what extent that could 

be attributed to adoption. Thus there is the needs for the use of an outcome variables that is 

able to tell the defferentials between the potential performance and actual performance of the 

farm units and how technology adoption can contributes to addressing the performance 

differentials. In this regard, we find the use of technical efficiency as the outcome variable to 

give added advantage in establishing empirical evidence of technology adoption impact. 

Furthermore, a surf of literature suggest that not much adoption impact studies within the 

Ghanaian context have followed this estimation approach thereby leaving substantial 

knowledge gap on the appropriateness of the use of TEM in assessing adoption impact on farm 
productivity, especially on technical efficiency. To butress the claim that the use of TEM is 

much robust and accurate in impact assessment of techology adoption in Ghana given the huge 

investment in the development and distribution of technologies, there is the need for more 

independent studies focusing on key project initiatives such as RTIMP. As effort to contributes 

to literature on the use of TEM in assessing the impact of technology adoption on farm 

productivity in a developing country context, we adopts the average treatment effect (ATE) 

and average treatment effect on the treated (ATT) models to assess the direct impact of the 

adoption of RTIMP cassava technologies on technical efficiency using cross-sectional data 

from cassava farmers in the Techiman Municipal Assembly in the Bono East Region of Ghana. 

This we believe will provide the national government solid empirical evidence on the actual 

welfare gain from the development and distribution of agricultural technology, and on how to 

have a more pragmatic policies to effect desired change in the agricultural sector through 
technology adoption.   

 

2. Methodology   

 

2.1. Study Setting and Data Collection Process  

 

The study was conducted in the Techiman Municipal Assembly, located in Brong Ahafo 

Regions of Ghana. The area was selected because of its significant role in the root and tuber 

crops commodity chain, particular in crops such as yam and cassava (MoFA, 2016). It was 
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also one major area where the RTIMP programme technology was promoted and implemented 

among cassava farmers. The area is located in the northern part of the Region between 

longitudes 1°49’ East and 2°30' West and latitudes 8°00' North and 7°35' South. The area is 

characterized by a bimodal rainfall pattern. The mean annual rainfall ranges between 1250mm 

and 1650mm. The average temperature ranges between 30°C and 20°C. The study area is 

characterized by three main vegetation zones; which are the guinea savanna woodland, the 
semi-deciduous zone and the transitional zone. These agro-ecological zones extend to many 

parts of the Sub-Saharan Africa making the choice of the study location and the farming 

conditions therein a good representation to study in the African farm settings. The Ghana’s 

2010 population and housing census puts the population of the Municipality at 206,856 with a 

population density of 343 people per square kilometres. The Techiman Municipality is one of 

the agricultural areas in Ghana where agriculture accounts for about 57% of the labour force. 

The study location is the home of the famous agricultural Market, which happens to be the 

largest food crops market in Ghana and one of the major commercial centres.  

(GhanaDistrict.com, accessed: January, 2017). Due to its significant contribution to 

agricultural production, the Municipality has seen a lot of agricultural interventions including 

the RTIMP programme intervention (MoFA, 2016).  The target population for our study was 

all cassava farmers in the operational areas of RTIMP in the Techiman Municipality. These 
are farmers among whom the RTIMP technology was promoted to and implemented with 

based on the comparative advantage they have for cassava production which is one of the major 

food crop RTIMP targeted in Ghana.    

We sampled 450 farmers through multi-stage sampling technique to partake in our survey. 

The determination of the sample size was done following the Yamane’s statistical sample size 

determination formula. This helped to estimate the appropriate sample size for the study as 

well as maximize the degree of representativeness (Yamane, 1967). The formula adopted to 

compute the sample size is as follows:   

 

 𝑛 =
𝑁

1+𝑁(𝑒2)
 

 

Where “n” represents the suitable sample size to be used for the study; “N” is sample frame 

obtained from the target population and “e” is the precision {a precision of 0.05, that is 95 
percent confidence interval, was assumed. With the assistance of the Techiman Municipal 

Department of Agriculture, the sample frame was obtained to be about 3000 active cassava 

farming households in the study area. Substituting this into the Yamane’s formulae, gives an 

estimated sample size of about 375 farmers. This suppose that any sample size equal to or 

greater than 375 would be sufficient for our study. With assistance from Municipal Department 

of Agriculture and RTIMP offices, we identified forty-five (45) communities as operational 

areas where the RTIMP intervention had covered in the study location and treated each of the 

operational areas as separate clusters. We then applied the simple random sampling technique 

to select ten (10) famers from each cluster to be part of the study resulting in obtaining 450 

selected farmers. This sampling approach helped us to cover the entire study location in terms 

of the coverage of the RTIMP intervention and to have good representation of our study 

population. The selected individual farmers were then contacted and interviewed one-on-one 
using a structured interview schedule as research instrument. The instrument consisted of both 

open and closed ended questions. This was to ensure that sufficient responses are obtained. In 

addition, the choice of the instrument was to ensure that each respondent was presented with 

exactly the same questions/items in an order manner. The instrument also gave room for further 

probing by the interviewer so that reliable responses were obtained. 
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2.2. Analytical Methods 

 

Following the quantitative research approach, we collected cross-sectional data which was 

subjected to the appropriate analytical estimation to arrive at our study results. With our chosen 

research approach, we are able to be precise knowing what we wanted to measure (technology 

adoption quantitative effect on technical efficiency level). Further the research approach helps 
us to achieve the research objective through covering of large and representative data with 

which we could conduct robust and efficient statistical analysis based on which we make valid 

inferences about our study population. Analytically, the average treatment effect and the 

average treatment on the treated effect models were used to investigate the effect of RTIMP 

technology adoption on improving productivity (efficiency) of smallholder cassava farmers. 

To measure the production efficiency of the cassava famers, we estimated the stochastic 

frontier model.    

 

2.2.1.  Formal Presentation and Empirical Specification of the Treatment Effect Model 

 

Programme evaluation efforts have had to battle with issues that concerns the nature of 

intervention or treatment. Especially with socio-economic programme interventions, random 
assignment of treatment is hardly ever since people usually chosen to be eligible can and in 

fact sometimes do opt out (Agula et al 2018; Acheampong and Owusu 2015). Accordingly, 

there is a potential component of self-selection that makes it important to recognise and deal 

with selection bias between treatment and comparison groups in programme evaluation. This 

suggests that estimating intervention impacts based on simple difference between treatment 

and comparison groups might fail to capture the actual intervention’s effect (Agula et al 2018; 

Acheampong and Owusu 2015). This possible evaluation problem that could arise can be 

addressed by estimating the regression adjustment average treatment effect model (consistent 

with Agula et al 2018; Akudugu et al 2016; Acheampong and Owusu 2015; Wooldridge 2009; 

Li, Racine and Wooldridge 2008). We note also that employing average treatment effect 

estimation technique is useful when there is presence of treatment heterogeneighty as the case 
in our study. Here, assuming a binary treatment and an outcome variable of interest (which in 

our study case is technical efficiency of cassava farmers) for each population unit, there would 

be two possible outcomes: Y(0) (i.e. the outcome without treatment and Y(1) (i.e. the outcome 

with treatment). Given the binary treatment indicator, W; W=1 denotes “treatment”. The nature 

of Y(0) and Y(1), which in our is a continuous measure of technical efficiency levels, could 

also be discrete or some mix ((Wooldridge 2009). Now for each population unit i, the causal 

effect of the treatment is measured as below: 

 

                  𝑌𝑖(1) − 𝑌𝑖(0)                                                                                                 (1) 

 

Here, the problem could be simplified by just averaging the gains across the random sample 
if these gains could be observed from the random sample. However, since for each population 

unit i, only one of 𝑌𝑖(0) and 𝑌𝑖(1) can be observed in a cross-sectional data like ours, we would 

have a missing data problem even though there had been random sampling of units. This 

become the case since it is impossible to assign same units to both treatment and control 

groups. Accordingly, it becomes vital to estimate the average treatment effect in the total 

population. Therefore, given the treatment indicator and the counterfactual outcomes, we 

estimate the population average treatment effect (ATE) in the total population which can be 

formally defined as follows: 

 

        𝑌𝐴𝑇𝐸 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)]                                                                                           (2) 
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In economics and evaluation studies, given the fact that it is not always possible to have 

randomized experiment, it is critical to ensure absence of selection bias and thus preferable to 

estimate average treatment effect on the treated, ATET (i.e. units who actually received the 

treatment). This gives the implicit quantifiable effect of intervention on only those who have 

received the intervention (Verbeek 2008; Wang, Nianogo and Arah 2017) given a vector of 

individuals socio-economic characteristics, 𝑋𝑖. The formal mathematical definition of ATET 

to be estimated is given as follows:  

 

           𝑌𝐴𝑇𝐸𝑇 = 𝐸[𝑌𝑖(1) − 𝑌𝑖(0)⎹ 𝑋𝑖;  𝑊𝑖 = 1]                                                                (3) 

 

Where in the empirical context of our current study, 𝑌𝐴𝑇𝐸𝑇  is average treatment effect on 

the treated, given 𝑌𝑖(1) - as potential outcome of technical efficiency estimates for 𝑖𝑡ℎ  farmers 

if above average RTIMP technology adopter and 𝑌𝑖(0) – as potential outcome of technical 

efficiency estimates for 𝑖𝑡ℎ farmers if below average RTIMP technology adopter, 𝑋𝑖 – as 

characteristics of the 𝑖𝑡ℎ  farmer, and 𝑊𝑖 – define the treatment category (i.e. whether 𝑖𝑡ℎ farmer 

is above average RTIMP technology adopter, 𝑊𝑖 = 1 or otherwise). The specific variables that 

we specified to estimate through maximum likelihood estimation of the empirical model to 

arrive at our study findings are: Sex, Age (years), Household size, Years of experience, Years 
of formal education, Membership to association, Frequency of access to extension service, 

Revenue from sale of farm output (GHS), and Credit access. These farmers’ socio-economic 

variables were chosen to be captured in our model estimation because they are being 

considered to also influence farmers’ productivity capacity and production outcomes 

consistent with empirical literature (see for example Guo, Li, McAleer, and Wong 2018; Osun, 

Ogundijo and Bolariwa 2014; Dadzie and Dasmani 2010; Battese and Coelli 1992). 

 

2.2.2.  Estimation of Cassava Farmers’ Technical Efficiency Levels Using Stochastic 

Frontier Analysis (SFA) 

 

2.2.2.1.  Theoretical Specification of the Stochastic Frontier Model 
 

In the agricultural industry, performance evaluation of production unit is aimed at 

addressing bottlenecks to productivity growth and improvement. Theoretically, the estimation 

of farm-level productivity has followed the application of technical efficiency. Estimation of 

technical efficiency dates back to the scholarly work of Koopmans (1951) and Debreu (1951). 

However, Farrell in building on the work of Koopmans and Debreu provided a sound 

theoretical and empirical measure of productive efficiency (Farrell, 1957). Technical 

efficiency estimation generally assumes that production units are able to increase output at 

existing technology without absorbing additional resource (Inkoom & Micah, 2017).  In 

estimating technical efficiency of farm units, two different approaches under the rubric of 

mathematical programming approach (Data Envelopment Analysis [DEA]) and econometric 

approach (Stochastic frontier Analysis [SFA]) have been used by researchers (Guo, Li, 
McAleer, & Wong, 2018; Inkoom & Micah, 2017; Osun, Ogundijo,  & Bolariwa, 2014). DEA 

is non-parametric and deterministic ascribing all deviation from the efficient frontier to 

technical inefficiency effect. As Greene (2007) and others have pointed out, the non-stochastic 

nature of DEA leads to findings that are considered incomprehensive and unsustainable, thus 

motivating researchers to often opt for the econometric method (i.e. SFA). Theoretically, the 

SFA is often favoured because of its ability to distinguish in efficiency estimation the effect of 

technical inefficiency and stochastic effects. Thus, in the context of production estimations, 

the stochastic frontier model was proposed to account for the impact of technical inefficiency 
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by accommodating random or stochastic errors (Guo, et al., 2018; Wang, 2008; Inkoom & 

Micah, 2017). The preference for SFA has also been significantly enhanced due to the 

possibility of obtaining producer-specific output estimates (Coelli, Prasada, O'Donnell, & 

Battese, 2005; Kumbhakar, & Lovell, 2000). In the efficiency literature, the stochastic frontier 

model is attributed to the combined effort of Meeusen and Van der Brock (1977) and Aiger, 

Lovell, and Schmidt (1977). Given the stated advantage of the SFA over the DEA and the 
inherent stochastic characteristics that are associated with agricultural production activities, 

the current study employed the standard stochastic production frontier which is considered as 

the appropriate SFA techniques for estimating technical efficiency. Following Meeusen and 

Van der Brock (1977) and Aiger, Lovell, and Schmidt (1977), we specify the standard 

stochastic production frontier for estimating technical efficiency as follow: 

 

                  𝑦𝑖 = 𝑓(𝑥𝑖 , 𝛽) + 𝜀𝑖               {𝜀𝑖 = 𝑣𝑖 + 𝑢𝑖;  𝑖 = 1,2, . . . , 𝑛}                            (4) 

 

                𝑦𝑖𝑗 = 𝑓(𝑥𝑖𝑗 , 𝛽𝑗) + 𝑣𝑖 − 𝑢𝑖                                                                               (5) 

 

The variables in equation 4 and 5 are explained as follows. The 𝑦𝑖  represent output level 

for the ith cassava farmer using  𝑥 amount of inputs. The 𝑥𝑖 represent vector of inputs used by 

the ith cassava farmer. The  𝛽 s represent unknown parameters to be estimated. The  𝜀𝑖 stands 

for the composed error term consisting of two independent factors. The  𝑣𝑖 term denotes the 

stochastic noise and other factors outside the control of the farmer; 𝑢𝑖 term denotes the non-

negative technical inefficiency term (Coelli, Rao, O’Donnell & Battese, 2005). Fundamentally, 

the estimation of the production frontier assumes that the boundary of the production function 

is defined by the “best practice” firm. Thus the stochastic frontier production function as 

expressed in equations 4 and 5 differentiates the observed output ( iy ) from the frontier output 

(𝑦𝑖
∗). Accordingly, we estimated the measure of technical efficiency of the ith farm relative to 

the production frontier with the specification below: 

 

                  𝑇𝐸𝑖 =
𝑦𝑖

𝑦𝑖
∗ =

𝑥𝑖𝛽+𝑣𝑖−𝑢𝑖

𝑥𝑖𝛽+𝑣𝑖
= 𝑒𝑥𝑝( − 𝑢𝑖)                                                             (6)             

 

 

From theory, technical efficiency score depends on the value of the unobservable −𝑢𝑖 (i.e. 

the technical inefficiency term) being estimated.  The estimated value of TE is thus expected 

to lie between the value between 0 and 1. A value of 1 implies the production is technically 

efficient, hence operating on the optimal frontier. A value 0 suggest that the production unit is 

technically inefficient, hence operating below the optimal frontier. Given, this the level of 
technical efficiency or inefficiency of the production unit (i.e. the cassava farmer) is described 

by extent of point deviation (radial distance) below its production frontier at the existing 

technology; all other things being equal.  

Under the SFA estimation technique, the composed error terms are assumed to have a 

distributional assumption where 𝑣𝑖 ∼ 𝑖𝑖𝑑 𝑁(0, 𝜎𝑣
2) and 𝑢𝑖~𝑖𝑖𝑑𝑁+(0, 𝜎𝑢

2).  Also 𝑣𝑖 and 𝑢𝑖 are 

assumed to be distributed independently of each other and the regressors (Kumbhakar & Lovell 

2000; Battese, Malik, and Gill, 1996). Hence, in estimating firm-specific technical efficiency, 

the correct estimator must be based on the conditional expectation of the exponential of 𝑢𝑖 

(Battese & Coelli, 1992). Following Battese and Corra, (1977), the firm-specific technical 

efficiency cab be reparametrized and expressed as:  
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                   𝛾 =
𝛿2𝑢

𝛿2 =
𝛿2𝑢

(𝛿2𝑣+𝛿2𝑢)
                                               (7)

       

Where the gamma parameter (𝛾) is bounded between zero and one. A value of 𝛾 = 1 means 
that the deviations from the frontier are entirely due to technical inefficiency effect.  On the 

other hand, if 𝛾 = 0, it indicates that the deviation from the frontier is entirely due to noise 

effects. Hence, 0 < 𝛾 < 1 indicates that the variability in output is characterized by the 

combined effect of technical inefficiency and statistical noise. 

 

2.2.2.2.  Empirical Specification of the Stochastic Frontier Model 

 

The analytical use of SFA models in literature relies primarily on two functional form 

specifications (i.e. Cobb-Douglas functional form and Translog functional form). Here, there 
is no universal consensus in the literature as to which of the two is better. The choice of which 

functional form depends largely on the suitability of the model to data sets and its consistency 

with the theoretical basis of the research objectives (Coelli et al., 2005; Kumbhakar & Lovell, 

2000; Greene, 2007). Thus, in deciding on the best functional forms, it has been suggested that 

one takes into consideration the strengths and weakness of the two models to efficiently fit 

available data. For instance, the Cobb-Douglas functional form exhibits strong algebraic 

tractability and as well has the ability to explain the substitution between inputs. However, one 

weakness of the Cobb-Douglas model is its restrictive nature which in any way does not 

sacrifice the empirical efficiency of the analysis. The Translog functional forms is also known 

to exhibit strong empirical flexibility and adaptability. The Translog model also permits the 

assessment of the interactive effects between the inputs and how this impacts output level. One 
key weakness of the Translog model is, however, the complexity in the model specification 

and the potential multicollinearity situation.  It therefore, becomes appropriate to always 

subject the data set to the two-modelling estimation approaches to verify which of them 

efficiently fit the datasets. Taking into consideration the strengths and weaknesses associated 

with the two models, we decided to subject our dataset analysis to the estimation of the two-

functional models and further tested to check which of them best fit out data set in line with 

the theoretical disposition on which model to choose. To compute the technical efficiency of 

our sampled cassava farmers, the maximum likelihood estimation approach of the stochastic 

production frontier model was followed. The empirical model specifications for the Cobb-

Douglas (equation 8) and Translog (equation 9) functional forms that we estimated are given 

as follow: 

 

𝐼𝑛𝑦 = 𝛽0 + 𝛽1𝐼𝑛(𝑐𝑎𝑝)1 + 𝛽2𝐼𝑛(𝑙𝑎𝑏)2 + 𝛽3𝐼𝑛(𝑓𝑚𝑠)3 + 𝑣𝑖 − 𝑢𝑖                                 (8) 

 

𝐼𝑛𝑦 = 𝛽0 + 𝛽1𝐼𝑛(𝑐𝑎𝑝)𝑖 + 𝛽2𝐼𝑛(𝑙𝑎𝑏)𝑖 + 𝛽3𝐼𝑛(𝑓𝑚𝑠)𝑖 + 𝛽4(𝐼(0.5*𝐼𝑛(𝑐𝑎𝑝𝑖)2) +
            𝛽5(𝐼(0.5*𝐼𝑛(𝑙𝑎𝑏𝑖)

2 + 𝛽6(𝐼(0.5*𝐼𝑛(𝑓𝑚𝑠𝑖)
2) + 𝛽7(𝐼(𝐼𝑛(𝑐𝑎𝑝𝑖) ∗ 𝐼𝑛(𝑙𝑎𝑏𝑖)) +

            𝛽8(𝐼(𝐼𝑛(𝑐𝑎𝑝𝑖) ∗ 𝐼𝑛(𝑓𝑚𝑠𝑖)) + 𝛽9(𝐼(𝐼𝑛(𝑙𝑎𝑏𝑖) ∗ 𝐼𝑛(𝑓𝑚𝑠𝑖)) + 𝛽10(𝐼(𝐼𝑛(𝑐𝑎𝑝𝑖) ∗
            𝐼𝑛(𝑙𝑎𝑏𝑖) ∗ 𝐼𝑛(𝑓𝑚𝑠𝑖)) + 𝑣𝑖 − 𝑢𝑖                                                                         (9) 

 
Where y  denotes the monetary value of the total output of cassava (GH¢) produced. 𝑓𝑚𝑠𝑖 

represents total land under cultivation (hectares); 𝑙𝑎𝑏𝑖 stands for cost of labour employed per 

hectare (GH¢); 𝑐𝑎𝑝𝑖 denotes the cost of other capital inputs per hectare (GH¢). Composite 

capital input cost consists of ploughing cost, cost of cutlass, cost of hoes, cost of spraying 

machines and the cost of agrochemical if any. The cost of cutlass, hoes and spraying machines 

was computed based on their annual depreciation values. We followed the conventional 

straight-line depreciation method in computing the depreciation values, assuming a salvage 
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value of zero for each of the items. The 𝛽𝑠 denote unknown parameters to be estimated. 𝑣𝑖 and 

𝑢𝑖 denote composite error term (i.e. random noise effect and technical inefficiency effect 

respectively) whiles the i notation indicates the individual farmer case.   

In the estimation of the two models, we assumed that both Cobb-Douglas and Translog 

equally fit our data set efficiently and subsequently hypothesised a null that there is no 
significant difference between the two models with respect to the model goodness of fit and 

estimation power given our data set. We, therefore, employed the log-likelihood ratio post 

estimation test to determine which of the Cobb-Douglas and Translog models best fit our data 

set and gives us the most efficient estimates.   

 

3.  Root and Tuber Improvement and Marketing Programme (RTIMP) in Ghana 

 

The RTIMP programme is joint partnership programme that was initiated by the Ghana 

government and the International Fund for Agricultural Development. The first phase of the 

programme started in 1999 with the goal of developing the Root and Tuber subsector.  The 

programme implemented initially was the Root and Tuber improvement programme (RTIP) 
which run from 1999-2005. The focus was essentially on developing root and tuber crop 

production capacity. Due to some shortfall identified in the RTIP, the programme was 

packaged to incorporate marketing concept, hence the new name RTIMP. The programme 

became effective on the 8th November, 2006 and ended in December 2014.The goal of the 

RTIMP was to enhance income and food security in order to improve livelihood of the rural 

poor. The programme sought to build a competitive market-based Root and Tuber Commodity 

Chain (RTCC) supported by relevant, effective and sustainable services that are available to 

the rural poor. RTIMP works with a wide cross section of stakeholders in order to achieve 

maximum economic and social impact at all stages of the R&T commodity 

chains.  Its   interventions focus especially on improving the outputs, incomes and hence living 

standards of small-scale R&T farmers, processors and traders, particularly women. 

Additionally, as a strategic objective, RTIMP aimed at building a competitive and market-
based R&T commodity chains supported by relevant, effective, and sustainable services that 

are easily accessible to the rural poor. The focus of the intervention has been on establishing 

and consolidating the services on which the rural poor will rely on to ensure effective 

participation in the commodity chains. At the local farmers’ level, the programme aims to 

achieve economic growth, improve access of the poor to social services and carry out 

intervention measures to protect poor and vulnerable groups. At the national level, the 

programme was designed to achieve food security and stimulate demand for cheaper staple 

food such as cassava, yam, cocoyam, and sweet potato (Adeniyi, 2009). In all, the programme 

had as an objective of facilitating the commercialization of roots and tuber production, 

improving the living conditions, income, food security and nutritional health of poor 

smallholder households in across the country.  
As a result of the programme implementation, most farmers, took advantage to expand 

their farm sizes to gain high economic benefit. Since its implementation, the programme has 

introduced improved technology for storage of fresh cassava and yam, improved cassava 

planting materials and improved seed yam through yam mini sett technology, among others. 

In addition, action strategies to strengthen downstream activities, check incidences of low 

prices in producing communities, bridge income disparities, and enhance employment were 

also incorporated into the programme. The section that follows discusses our respondent 

farmers’ adoption of the four main components of the RTIMP cassava technology in the study 

area. 
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3.1.  Adoption of Individual Components of the RTIMP Cassava Technology by Farmers 
 

To better evaluate the performance of the RTIMP technology intervention, we considered 

that, first and foremost the extent of adoption of the technologies introduced to farmers through 

the intervention is assessed. Table 1 therefore present results on the extent of adoption of the 

individual components of the RTIMP cassava technology introduced to the farmers. As shown 
in the table, the RTIMP cassava technology introduced to farmers had four main components. 

The information as presented in Table 1 reflects the adoption of the individual technology 

components by the farmers. Here, if a farmer has adopted a particular component, he/she is 

classified as an adopter of that component. On the other hand, if he/she has not adopted that 

component, he/she is referred to as a non-adopter of that components.  

 

Table 1. Distribution of Farmers Based on Adoption Level of Individual Technology 

Components  

Technology component Adopters  Non-

Adopters 

Freq.  %  Freq. %  

Land preparation technology 

Slash and burn 305 81.3 70 18.7 

Stumps and stock removal 375 100 0 0 

Ploughing  375 100 0 0 

Improved planting material (high yielding varieties) 

Plant only the RTIMP cassava planting material: 365 97.3 10 2.7 

Tekbankye 193 51.5 182 48.5 

Bankye afisiafi 305 81.3 70 18.7 

Bankyehemaa 325 86.7 50 13.3 

Essam bankye 305 81.3 70 18.7 

Planting Technology 

Planting in roll  372 99.2 3 8.0 

Use appropriate planting distance of 1 x 1m 373 99.5 2 5.0 

Improved Cultural practices 

Early weeding – three weeks after planting 367 97.9 8 2.1 

Effective Scouting – three to four time 348 92.8 27 7.2 

Effective Rogueing – immediately after identifying 

disease situation  

288 76.8 87 23.2 

Spraying with recommended pesticides to control pest 

and disease infestation  

75 20.0 300 80.0 

Adopt IPM to control pest and diseases 93 24.8 282 75.2 

Cutting planting material nine months after planting for 
further distribution  

207 55.2 168 44.8 

Do you apply fertilizer  9 2.4 367 97.6 

If yes do you follow the recommended rate 7 77.8 2 22.2 

 

The results in Table 1 shows that, among the land preparation techniques, farmers had 

adopted stumps and stock removal completely. It can thus be deduced that the adoption rate 

for land preparation technology is around 93.8 % and this indicates a high level of adoption. 

In terms of improved cassava varieties, the results show that farmers were growing more than 

one variety on their farmers. This probably could be considered as a risk coping strategy to 

mitigate against potential risk due to yield and revenue lost. Bankyehemaa variety saw the 
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highest level (86.7 %) of adoption, which could be attributed to it superb qualities such as early 

maturity period (9-12months), high yielding (40-50ton/ha), varied uses (fufu, gari and flour) 

and high resistance to pest and diseases. The results further reveal that, majority of the farmers 

had adopted row planting (99.2%) and the appropriate planting distance of 1x1m2 (99.5%).  

This implies that, per hectare of land the farmers have the recommended and appropriate plant 

population density which guarantee effective and proper plant growth and high crop yield. 
Furthermore, it was realised that majority of the farmers had adopted the appropriate cultural 

practices such as early weeding, effective scouting and rogueing, spraying with recommended 

pesticides among others. Given this trend one could say that the cassava industry in the study 

area is doing quite well in enhancing good and hygienic farm environment which is key to 

output qualities. With this, farmers stand the chance of commending good market price for 

their products. It was however noted that few (24.8%) of the farmers had adopted the IPM 

concept in pest and disease control and this could be attributed to the associated cost in 

effectively implementing the IPM on one’s farm. In all we observed that the average farmer 

had adopted some components of the technology introduced. This therefore suggest that the 

technology has seen some level of penetration among the farmers.  

 

3.2.  Estimating the Adoption Intensity of RTIMP Technology by Cassava Farmers  
 

As can be seen from Table 1, the average farmer had at least adopted some components of 

the RTIMP cassava technology presented to them. With this it become necessary for us to 

focus on exploring the extent to which these RTIMP cassava technologies package has been 

adopted by each respondent-farmers which enabled us to compute individual farmers’ adoption 

intensity scores. The adoption intensity scores were expected to fall between 0 and 1 (where 

the farmers’ intensity of adoption increasing from 0 to 1). This was computed by taking the 

ratio of actual counts of the RTIMP technology components adopted by 𝑖𝑡ℎ farmer to the total 

count of technology components expected to be adopted by the 𝑖𝑡ℎ farmer. As could be seen 
in the Table 2 above, the total count of technology components expected to be adopted by the 

𝑖𝑡ℎ farmer was 17 which are spread under four broad component areas (i.e. land preparation 
component, improved planting material or high yielding varieties component, planting 

technology component, and improved cultural practices component). Using the distribution of 

the farmers’ intensity of adoption scores, we grouped farmers into above average adopters and 

below average adopters (see Figure 1). Above average adopters were farmers with adoption 

intensity score greater or equal to the mean adoption intensity score. Below average adopters 
were farmers with adoption intensity score less than the mean adoption intensity score.  

The estimated average adoption intensity score in percentage was found to be about 74% 

on a range of about 20% to 100% adoption intensity.  Our result suggests that on average 

farmers uptake of the RTIMP cassava technology in totality is around 74 percent. Accordingly, 

we resolved that the average adoption intensity become a threshold minimum score for 

adoption of RTIMP technology in the study area based on which to judge and categorised 

farmers according to their adoption decisions. As the figure 1 portrays, majority (about 67%) 

of our sampled farmers were found to be above average adopters and the remaining few (about 

33.1%) were found to be below average adopters. Here, we consider the above average 

adopters to have had an appreciable technology adoption intensity necessary enough to 

generate a higher impact gains on farm productivity; whereas the below average adopters are 

considered not to have had an appreciable intensity of adoption necessary enough to generate 
a higher impact gains on farm productivity. From the mean adoption intensity, it could also be 

inferred that the diffusion rate of the complete RTIMP cassava technology among the farmers 

stands at about 74% and that there is still significant (i.e. about 26%) marginal fall below the 

optimum adoption intensity. By implication, there is still about 26 percent adoption gap with 
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respect to the RTIMP cassava technology among the farmers. This adoption gap, we consider 

to be substantive enough to warrant concern by stakeholders, especially to policy makers in 

fashioning out appropriate policies to address this gap so as to achieve a higher and a more 

acceptable productivity and livelihood improvement. 

 

 
 

Figure 1.  Distribution of Farmers Based on RTIMP Technology Adoption Intensity 

Scores 

 

3.3. Socio-Economic Characteristics of RTIMP Cassava Farmers  

 

Table 3 presents results on selected socio-economic characteristics of respondents which 
were used in the predictive models in this study. Here, we compare characteristics of below 

average technology adopters and above average adopters to verified the extent of heterogeneity 

in the two identified groups of the technology adopters. As shown in the table, the average age 

of farmers in the pooled data was 43.9years, with a range of 20 to 74years. The mean age of 

the below average adopters was 44.8 years compared to 43.7 years for the above average 

adopters These results show that on the average, sampled farmers were within the active labour 

force and as expected have the potential to effectively manage their farm business. 

Additionally, there is the potential for productivity improvement, all other things being equal. 

The results in the Table 3 also show that more than half (68.0 %) of the cassava farmers were 

females while 32% were males. Consistent with the distribution found in the pooled data, more 

females than males were in both below average adopters and above average adopters of the 
RTIMP technology (i.e. 71.8 compared with 28.2 of below average adopters; and 66.1 

compared with 33.9 of above average adopters for females and males respectively). The results 

therefore suggest that more females than males in the study area were into cassava production. 

From this, women empowerment policy can target cassava production as the key to addressing 

poverty eradication in the study area.  

 

  Below average adopters      Above average adopters 

        124 (33.1%)          251 (66.9%) 
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Table 3: Description of Demographic Variables of Respondents Used as Explanatory 

Variables (Univariate Analysis) 

 Pooled Data  

(n=375) 

Below average 

adopters 

(n=124) 

Above average 

adopters 

(n=251) 

t-test for Equality 

of Means 

Continuous 

Variables  

Mean  Std. 

Dev 

Mean  Std. 

Dev. 

Mean  Std. 

Dev. 

t-value p-value 

Age (years) 43.9 9.9 44.8 10.3 43.7 9.1 1.031 0.303 

Household size  6.0 3.0 5.8 2.5 5.97 2.8 -0.557 0.578 

Years of experience 7.9 2.3 7.98 3.3 7.8 3.5 0.408 0.684 

Years of formal 

education 

8.1 4.4 8.4 4.4 7.9 4.5 1.048 0.295 

Frequency of access 
to extension service 

5.0 2.2 4.5 2.0 5.2 2.5 -2.648 0.009 

Revenue from sale of 
farm output (GHS) 

6202 473
2 

5159 3574 6719 5139 -3.417 0.000 

Categorical 
Variables 

Sex Membership to 

association 

Credit access 

Respondents 
Pooled data 

 Male Female Yes No Yes No 

Frequency 120 255 325 50 329 46 

Percent  32 68 86.7 13.3 87.7 12.3 

Below average 
adopters  

Frequency 35 89 112 12 110 14 

Percent  28.2 71.8 90.3 9.7 88.7 11.3 

Above average 
adopters 

Frequency 85 166 212 39 219 32 

Percent  33.9 66.1 84.5 15.5 87.3 12.7  

Chi-square test  Pearson Chi-

Square 

1.213  2.426 0.164 

Asymp. Sig. 0.271 0.119 0.685 

 

In terms of education, the results showed that on the average, cassava farmers in the study 

area had attain about 8years (also, average years of education of 8.4 years and 7.9 years 
respectively for below average and above average adopters) of formal education with a range 

of 0 to 16 years. Further probing from the results indicates that 85.9% of the farmers have had 

formal education whiles 14.1% have had no formal education. The above results on education 

stands to reason that there is an acceptable level of literacy among the cassava farmers in 

general. This therefore implies that, the probability of the average farmer’s ability to 

understand and appreciate technical information passed on to them is quite substantial. 

Furthermore, the average household size was found to be 6 members with a range of 1 to 16 

members in the pooled data. The average household size of the below average adopters was 

found to be 5.8 and that of the above average adopters was about 6; all converges to about 6, 

same as the general average household size.  This suggest that, on the average all other things 

being equal, the household labour capacity of the farm household stands at about 6. The study 

also revealed that the cassava farmers had an average farming experience of 7.9 years (pooled 
data) where the average for the two adoption categories were 8 and 7.8 years respectively for 

below average and above average adopter. This implies that the average farmer has acquire 

enough experience and therefore the high potential of productivity improvement through 

effective and efficient ways of carrying out production activity and decision-making.  

From the Table 3, it could be seen that majority (i.e. 86.7% of pooled data, 90.3% of below 

average adopters, and 84.5% of above average adopters) of the cassava farmers belong to a 

farmer-based organisation and this is very essential to technology adoption. In the 

circumstance, the promotion and facilitation of technology transfer among farmers would be 
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better enhanced. Furthermore, the results revealed that on the average, cassava farmers were 

able to realise a gross revenue of GHȼ 6,202 from the sale of their farm produce within the 

production period under review. This therefore stands to reason that all things being equal, 

farmers generally have the average potential of being able to meet their operating expenses 

from their most liquid asset. Our comparison of the incomes of the two adoption categories 

shows that the above average adoption group has an average income of GHȼ 1,560 more than 
that of the below average adopters. For technology adoption to ensure progress in every 

business, access to financial resources is very important to the liquidity status of the enterprise 

that determines capacity to commit the needed inputs. Hence, we sought to find out whether 

cassava farmers have access to credit to finance their farm business. Our results showed that 

more than half of the farmers (i.e. about 88% from the pooled data as well as 89% of the below 

average adopters and 87% of the above average adopters) do have access to credit. This 

therefore means that majority of the farmers would have the ability to readily meet their 

operating expenses for better productivity growth.   

The tests of the differences in the socio-economic characteristics of the two adoption 

categories suggest that there is no significant differences in the socio-economic characteristics 

of the below average technology adopters and above average technology adopters except in 

the cases of differences in income and that of extension contacts (see the results for the t-test 
for Equality of Means p-values and Pearson Chi-Square Asymp. Sig. values in Table 3). We 

therefore fail to reject the null that the distribution of the socio-economic characteristics of the 

respondents is the same across the two adoption categories; exception, however, can be said 

of the mean difference in income and number of extension contacts in which cases that of the 

above average adopters were found to be significantly higher than that of the below average 

adopters. By implication, the sampled cassava farmers were generally homogeneous across the 

two adoption categories in terms of farmer and farm characteristics. The significant higher 

income of above average adopter than below average adopters is not surprising. This is because 

as people who have had high adoption of technology, they were expected to reap the improved 

productivity and production benefit that is reflected in their higher income gains compared to 

their low adopter-counterparts.    
 

4.  Results and Discussion  

 

4.1.  Technical Efficiency Level of Farmers  

 

Using the stochastic production frontier model, the technical efficiency levels of farmers 

were estimated and the results presented subsequently in Table 4. We employed the frontier 

package by Coelli and Henningsen (2017) in R to run the stochastic frontier analysis. In the 

table are the results from the estimations of Cobb Douglass function (Model 1) and the 

Translog production frontier (Model 2) are presented. These two models’ estimations were 

subjected to test of model fitness using the log likelihood ratio test which empirically helps us 

to verify which of the two models has superiority in given robust and efficient results for our 
data set. he log likelihood ratio test provides estimates for odd ratio in favour of one model 

over its counterpart where the larger log likelihood value implies stronger evidence for 

empirical support a model has over its competitor (Balcombe, Chalak and Fraser 2009 cited in 

Dadzie 2016). The log likelihood ratio test results in the Table 4 depicts that the Translog 

specification model has the larger log likelihood value of -227.77 compared with log likelihood 

value of -243.96 for the Cobb Douglass function model. This implies that flexibility in the 

Translog specification model estimation has resulted in increasing empirical support to make 

the model superior to the Cobb Douglass function model. Accordingly, we proceed to rely on 

the Translog model estimates to discuss the efficiency results. The estimated sigma square of 
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0.39845 was found to be significantly different from zero at an alpha level of 1 percent. This 

by inference, further suggests a good fit of the model as well as the correctness of the specified 

distributional assumption. Also, the gamma value of 0.7634 was found to be significant at 1 

percent alpha level and this indicates the presence of technical inefficiency. With the estimated 

gamma being 0.7634, we can conclude that both inefficiency effect and noise effect are 

important in explaining the deviation from the production frontier but that inefficiency is more 
important than noise.  This by implication means that any policy support system targeting 

managerial abilities of farmers and technical aspects of production will yield a significant 

impact in improving the production performance of farmers.  

 

Table 4. Maximum Likelihood Estimates from the Stochastic Production Frontier 

Model  

 Model 1: Cobb Douglass Model 2: Translog 

Variables  Coefficient  Standard 

error 

Z-

value 

Coefficient  Standard 

error 

Z-value 

Intercepts   5.7378 *** 0.6847 8.3797 -42.1402***   12.4066  -3.3966 

log(cap)    0.2353* 0.1002 2.3477 9.8895*** 2.3951 4.1290 

log(lab)                             0.1703** 0.0529 3.2191 5.8153***    1.7359   3.3500 

log(fms)                           0.4325*** 0.0906 4.7761 -11.6936***    2.7888  -4.1931 

0.5 *log(cap)2     -0.8503***    0.204497  -4.1578 

0.5*log(lab) 2    -0.277659*    0.127228  -2.1824 

0.5*log(fms) 2    -1.0832***    0.274735  -3.9426 

log(cap)*log(lab)    -0657282**    0.251935  -2.6089 

log(cap)*log(fms)     1.1067***    0.3294   3.3596 

log(lab)*log(fms)    1.0249**      0.3530   2.9036 

log(cap)*log(lab)* 
log(fms)   

   -0.032612     0.0466  -0.6997 

SigmaSq 0.4587*** 0.0488 9.4003 0.39845***      0.0441   9.0260 

Gamma  0.7999** 0.0438 18.281 0.7634***     0.0531  14.365 

Log likelihood 
value 

-243.9626 -227.7672 

Log likelihood ratio test for fitness of Cobb Douglass and Translog functions to the data 

Model Df Log 

likelihood 

Df Chi Square P-Value 

1: Cobb Douglass  6 -243.96     

2: Translog  13 -227.77 7 32.391 3.437e-05 

Signif. codes: “0.01 = ***”; “0.05=**”; “0.1 = *”    

 

From the production frontier, with the exception of the interaction effect of all the variables 

in the model (capital, labour and farm size), the beta coefficients in the models all tested 

significant.  The coefficient results suggest that a marginal increased in either capital or labour 
or farm size will lead to a corresponding increase in output of most farmers; exception 

however, can be said of farm size which increases rather leads to decreasing output. It can thus 

be inferred that when it comes to cassava production, effective use of labour and capital inputs 

is critical for productivity improvement; as such the importance of increasing such inputs 

productivity to the production process should be held in high esteem as also suggested by 

Abdul-kareem and Isgin, (2016). Thus, policy supports that target enhancing financial capacity 

of farmers by addressing bottlenecks to credit access to farmers will impact positively on farm 

productivity of farmers with a resultant effect on their livelihood improvement. Our findings 

collaborate the preposition by researchers like Sebastian, (2013) that inputs productivity 
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functions as a compact measure of general status of the agricultural industry. The result for the 

land factor coefficient implies that any marginal increase in farm size will leads to a 

corresponding marginal decrease in the output of most farmers. We therefore explain that there 

was a possibility of an inappropriate allocation of land resource, thus contributing negatively 

to farm productivity. Accordingly, a radial reduction in land factor allocation in cassava 

farming will rather have a positive contribution to farm productivity. Furthermore, though not 
significant, the interaction between capital, labour and land showed negative relationship with 

output, suggesting a lack of optimal input-combination. Thus, to achieve positive impact, the 

optimal combination of inputs should be directed at a radial increase in capital and labour 

against a radial reduction of land input in the appropriate proportions. 

Figure 2 presents results (see A, B and C) for the distribution of farmers’ technical 

efficiency estimates. Figure 2A presents efficiency estimates distribution for the pooled data 

whiles Figures 2B and C entails efficiency estimates distribution for below average and above 

average technology adopters respectively. In general, the results show that farmers were not 

fully efficient in production. The technical efficiency estimates for the pooled data ranged from 

0.0946 (9.5%) to 0.9342 (93.4%) with a mean of 0.6766 (67.7%). The distribution of the 

farmers’ efficiency estimates in the histogram suggest that most of the farmers operate at 

technical efficiency level above the average. The results further show that although none of 
the farmers was found to be fully efficient in production, a cursory look at the results suggests 

that majority of the farmers operate at efficiency levels between 0.5 and 0.93 (i.e. 50-93% 

efficient). This therefore suggests, the operational and managerial ability of most of the farmers 

can be said to be okay and that any small technical supports in terms of training will yield a 

significant impact on the production activity of most farmers; making them realised optimal 

productivity improvement. The results from our study confirms the findings of previous studies 

involving cassava farmers (see for example, Abdul-kareem & Isgin, 2016; Taiwo, Dayo, & 

Bolariwa, 2014; Okeke & Emaziye, 2017). Our results generally imply that the most efficient 

farmer was operating at about 7 percent below the frontier output and the average least efficient 

farmer was operating at about 90 percent below the frontier output. The average farmer is said 

to be operating at about 33 percent below the frontier output. We therefore concluded that the 
average farmer is generally experiencing about 33 percent productivity gap, which we consider 

to be quite substantial enough to impact negatively on the livelihood of the farmer by reducing 

potential income. In following Inkoom and Micah (2017), if the average farmer moves to be 

efficient as that of his most efficient colleague, he could achieve about 28 percent cost saving 

{i.e. [1-(67/93)]}. In the same manner, if the least efficient farmer moves to be efficient as his 

most efficient colleague, he could achieve about 90 percent cost saving {i.e. [1-(9/93)]}. 

Furthermore, the mean technical efficiency of 67 percent suggests that about 33 percent of 

output level is lost to technical inefficiency. It further implies that at the existing technology, 

farmers could increase their output level by 33 % without additional employment of resources.  

The distribution of the efficiency estimates of the above average adopters (see Figure 2B) 

compared with that of below average adopters (see Figure 2C) reveals that most of the above 

average adopters have efficiency estimates above the general average of 67% with a group 
efficiency average of 69%. On the other hand, relatively smaller number of the below average 

adopters have efficiency estimates above the general sample average of 67% with a group 

efficiency of 62%. This suggests that an above average technology adopter on average is about 

7% technically efficient than his below average technology adopter counterpart. We further 

subjected this efficiency mean difference to statistical test of significance (independence 

sample t-test statistic) in order to enable us to draw conclusion on the null that there is no 

significant difference in the mean technical efficiency level of above average adopters and that 

of below average adopters; the results for the independence sample t-test are presented in the  
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Figures 2A-C: Distribution of Farmers Based on Their Technical Efficiency Scores 

Figure 2A 

Figure 2B 

Figure  2C 
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Table 5. As shown in the table, the test of equality of means resulted in a significant difference 

in the mean technical efficiency level of above average technology adopter and below average 

technology adopters (i.e. t-value =4.36; sig. p-value= 000). This provide empirical basis to 

reject the null hypothesis to conclude that on average the technical efficiency level of above 

average technology adopter is significantly higher than the technical efficiency level of below 

average adopter in the study area. This by implication means that above average technology 
adopter on average is technically efficient than the below average technology adopter in the 

study location.   

 

Table 5.  Independence Sample T-Test for Equality of Mean Efficiency Levels for 

Above and Below Average Adopters of RTIMP Cassava Technology 

 

Respondent 

Category  

Statistics t-test for Equality of Means 

Mean  Std. Dev. Mean 

Difference 

T-value DF p-value 

Below average 

adopters (n=124) 

0.62 0.18  

-0.07 

 

 

-4.36 

 

373 

 

0.000 

Above average 

adopters (n=251) 

0.69 0.12 

 

4.2.  Impact of the Technology Adoption on Technical Efficiency 

 

It has been hypothesised that the introduction of any agricultural innovation is to causes a 
positive change in the status quo. In line with this sought to assess if any, whether there are 

significant differences in welfare gains of adoption between adopters and non-adopters of the 

various components of the RTIMP cassava technology, and whether the observed difference 

is attributable to the adoption intensity of the RTIMP cassava technology among the farmers. 

This enable us to test the potential impact of full adoption of the RTIMP cassava technology 

on the productivity gains. To do, we used the ATE and ATT models to explore the impact of 

the intensity of technology adoption on the technical efficiency level among farmers. The use 

of the treatment effect models, enabled us to predict the direct causal effect of adoption on the 

productivity of farmers. In running the treatment effect analysis, we used the ATE package by 

Haris and Chan , (2015) in R. In this study we based on farmers’ adoption intensity scores to 

group our farmers into above and below technology adopters as indicator of treatment or 
otherwise (i.e. treatment variable); our outcome variable in the model estimation was technical 

efficiency estimates of farmers. We considered technical efficiency as an important outcome 

variable that best captures welfare gains in terms of productivity improvement as it highlights 

the productivity differential or gap among the farmers. We assigned above average adopters 

to be the treatment group as they exhibited a high level of adoption intensity and below average 

adopters to be the control group as they exhibit a low level of adoption intensity. The treatment 

group were assigned a code of 1 [i.e. Y (1)] and the control group were assigned a code of 0 

[i.e. Y (0)]. The model outputs were estimated at two levels, average treatment effect model 

and average treatment effect on the treated model as presented in Table 5.   
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Table 5. Average Treatment Effect and Average Treatment Effect on the Treated 

Estimation Results 

Average treatment effect (ATE) 

Variables  coefficient  Standard error Z-value 

E [Y (1)] 0.6934*** 0.0075 92.1797 

E [Y (0)] 0.6421*** 0.0155 41.4705 

ATE 0.0513** 0.0173 2.9621 

Average treatment effect on the treated (ATT) 

Variables  coefficient  Standard error Z-value 

E [Y (1) |W=1] 0.6898*** 0.0073 94.0617 

E [Y (0) |W=1] 0.6559*** 0.0204 32.1526 

ATT 0.0339*** 0.0022 15.531 

Signif.codes: “0.01 = ***”; “0.05=**”; “0.1 = *” 

 

The coefficients of E [Y (1)] and E [Y (0)] in the Table 5 are estimates of the potential 

outcome means (POM) for the above and below average technology adopters respectively 

which indicate predicted averages of the potential technical efficiency of farmers based on 

their respective adoption categories. These helped us in the estimation process to be able to 
estimates the causal difference in outcomes under the treatment (i.e. above average adopters) 

and under the control (below average adopters). Our results show a coefficient of 0.6934 and 

0.6421 respectively for POM for the above and below average RTIMP cassava technology 

adopters; all of which are significant at 0.01 alpha levels. The coefficient of the POM for the 

above average technology adopters suggests that if all farmers decide to adopt components of 

RTIMP cassava technology above the average adoption intensity score, then they would have 

achieved about 69.3% increase in their productivity. On the other hand, the coefficient of the 

POM for the below average adopters also suggests that if all farmers decide to adopt 

components of the technology introduced to them below the average adoption intensity score, 

they would have rather achieve a relatively lower increase in their productivity level (i.e. about 

64.2%). The result further revealed that there exists a significant difference in the welfare gain 
from the adoption intensity on the technical efficiency. Further from the table, the average 

treatment effect (ATE) coefficient of 0.0513 was found to be significant at 5 percent and this 

implies that the average causal effect of RTIMP technology adoption was about 5.1 percent. It 

can thus be deduced that farmers on the average were able to increase their technical efficiency 

by 5.1 percent with respects to the increasing intensity of adoption. The positive and significant 

ATE coefficient further suggest that the increasing intensity of technology adoption has a 

casual effect or significant impact on technical efficiency among farmers; which consequently 

is expected to impact positively on productivity and livelihood improvement. This is because 

increases in technical efficiency enhances farmers ability in producing optimum output level 

that help generate higher income. We further went on to estimate the average treatment effect 

on the treated (ATET) in order to access the actual mean difference between farmers with 

above average adoption intensity and their counterfactual. As can be seen in Table 5, the ATET 
coefficient was found to be 0.0339 and siginicant at 1 percent.  By inference, it can thus be 

said that with an above average adoption intensity, farmers were able to significantly increased 

their technical efficiency level by a margin of  about 3.4 percent as against their counterfactual. 

Here, we consider the ATET as the true effect of RTIMP cassava technology adoption because 

the effect is analysed only on farmers who are above average adopters. Accordingly, following 

from the observation made from our study results, we can confidently say that the potential 

performance differential (Technical efficiency differential) observed among the farmers can 

be attributed to the increasing adoption intensity of the RTIMP cassava technology. The results 

emphasise the importance of adopting more of RTIMP technology components by farmers and 



Promoting Improved Agricultural Technologies to … 

290 
 

how that contributes to improve the technical efficiency and for that matter the productivity of 

smallholder farmers. This therefore suggest that any policy supports that can direct and induced 

farmers to increase their adoption intensity level will consequentially leads to improvement in 

technical efficiency and subsequently productivity and livelihood of the farmers. Our study 

could be buttressed with previous studies findings (see for example, Abdulai, Zakariah, & 

Donkoh, 2018; Owusu, 2016; Asante, Villano, & Battese, 2014).   

 

5.  Conclusions and Policy Implications 

 

This study employed stochastic frontier analysis and treatment effect models to estimate 

the technical efficiency of cassava farmers and the causal effect of adoption intensity of 

RTIMP cassava technology on technical efficiency respectively. The analysis of the data 

obtained from the study revealed that the average farmer in the study area had adopted some 

components of the RTIMP cassava technology that had been introduced to them. In addition, 

we also found out that the mean adoption intensity was found to 29.93 percent, suggesting a 

70.07 percent adoption intensity gap among the farmers. Furthermore, the mean technical 

efficiency estimates for above average adopters and below average adopters were found to be 

0.69 and 0.66 under the ATE model and 0.68 and 0.65 under the ATT model respectively. The 
ATE and ATT were found to be 0.0319 and 0.0244 respectively. From the results we observed 

that there was a positive and significant impact of adoption intensity of RTIMP cassava 

technology on farmer’s levels of technical efficiency. Our study result is therefore in line with 

the predicted role of agricultural technology in improving efficiency and ultimately 

productivity and livelihood. This efficiency gains from RTIMP technology adoption has 

important policy implications. It suggests that an above average adoption intensity is effective 

in improving technical efficiency and subsequently farm level productivity. As such we 

recommend that any policy intervention by the government through its relevant agencies in the 

food crop sector to yield desire impact, it should try to provoke high adoption intensity. This 

means that there is the need for enhancing the capacity of the extension division of the Ministry 

of Agriculture for efficient information and technology dissemination to farmers. Again, given 
that our results highlight the importance of extension activities in technology adoption and 

their impact on farmers’ performance, a continuous provision of training to farmers is thus 

recommended to enhance the smooth transformation of adoption efforts into efficient cassava 

production thereby improving productivity. It can also be gleaned that enhancing access to 

extension services and programmes can be strengthened, possibly through the establishment 

of good practice centres in the districts. In the long run, an improvement in cassava technology 

to make it more cost effective by using locally available materials that are relatively cheap will 

go a long way to improving adoption and hence efficient production. Furthermore, given that 

membership of association affected adoption of improved varieties, farmers must be 

encouraged and induced to join associations especially farmer-based organizations and 

innovation platforms. With an effective extension service delivery coupled with membership 

to farmer- based association, the importance of awareness creation in improved technology 
dissemination will greatly be enhanced to trigger high technology adoption rate among farmer. 

This consequently as evident from our study findings will impact positively on productivity 

growth. Again, our study findings give indication for the need to have well-coordinated and 

efficient research-extension machinery. The implication is that with more efforts by research 

and extension improved varieties would occupy a large area in Ghana. Government and non-

governmental organization should therefore, support the research-extension system to increase 

their efforts in the development and dissemination of improved agricultural technologies. 

Additionally, there is the needs for both technology developers and promoters to develop 

appropriate monitoring and evaluation mechanism to continually access the extent of adoption 
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and as well as identification of the bottlenecks to effective and efficient adoption of the 

technology. In view of the fact that our findings support the general knowledge of productivity 

increases of technology adoption, we further recommend that root and tubers farmers should 

be encourage to adopt more of the RTIMP technology in order to improve their technical 

efficiency levels and subsequently improve farm productivity and livelihood. In summary, 

since research and extension are the main body for dissemination of information on improved 
agricultural technologies, the need for policy to strengthen and leverage research institutions 

and extension services to promote and create awareness about the existing improved cassava 

production technology is important. 
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