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ABSTRACT 
Many development economists have perceived introduction of new agricultural technologies 
as vital for improving agricultural productivity growth in Sub-Saharan Africa. However, 
adoption and use of these technologies have not been a complete success due to slow 
adoption rates. In this paper, a socio-economic analysis of a recent technology introduced in 
Ghana is conducted to provide vital information for policy makers. Specifically, an average 
treatment effects framework is employed to simultaneously model adoption intensity and 
determinants, whiles correcting for exposure (awareness) bias. Also, the technology impacts 
on farm productivity and income are explored using an endogenous switching regression 
model. Using survey data on SDRP (sustainable development of rain-fed lowland rice 
production) adoption, the adoption intensity was estimated at 59%. Also, the empirical 
estimates show that land quality related factors and perception of technology characteristics 
drive farmers’ adoption decisions. SDRP adoption was also found to impact positively on 
farm productivity and income. 
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In recent times, many SSA governments and development partners are calling for a 
second Green Revolution (Sanchez et al. 2009) that are based on technological 
developments and favorable policies that respond to a diversity of local farming systems, and 
well-grounded in local contexts to develop locally appropriate technological solutions (Moyo 
et al. 2015). As such, most of the new technologies that are introduced in SSA incorporate 
locally generated ideas and practices that farmers are familiar with as a means of improving 
adoption. One such project is the sustainable development of rain-fed lowland rice 
production (SDRP) technology implemented in Ghana to boost domestic rice production. The 
SDRP technology is jointly funded by the Japanese Government through Japan International 
Development Agency (JICA) and the Ghana Government through Ministry of Food and 
Agriculture (Mumuni & Oladele 2012). The aim of SDRP technology was to increase 
productivity and profitability of rice producing households by addressing challenges related to 
agronomic practices and water conservation in lowland rice production system. Conservative 
estimates indicate that Ghana has over 5 million hectares of unexploited rain-fed lowlands 
which could be developed to increase local rice production and decrease imports, the reason 
for investing in the SDRP technology to boost productivity. The technology has three 
components: land development, rice cultivation and extension practices. 

It, therefore, suffices to ask whether modifications in the design and introduction of new 
agricultural technologies have improved their adoption. The answer to this question is mainly 
empirical and requires the application of robust econometric techniques to examine. It is 
considering this that this study seeks to evaluate the SDRP technology regarding the 
adoption rates, drivers of adoption and impacts on productivity and incomes. As Oster and 
Thornton (2009) posited evaluating new agricultural technologies is relevant to identify 
adoption patterns, support adopters to ensure discontinuity in adoption and to device new 
desirable methods of promoting new agricultural technologies. Most studies that have 
examined adoption rates of new agricultural technologies and impacts have mainly done so 
using standard logit and probit models, as well as propensity score matching (PSM) to 
account for selection bias (Zakaria et al. 2016). 
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Diagne and Demont (2007) argue that the standard logit and probit models applied in 
most empirical studies to derive adoption rates and examine drivers of adoption have a 
narrow theoretical base as they implicitly assume a homogenous population of potential 
adopters and no active information search (Kabunga et al. 2012). Such studies yield biased 
estimates of both adoption rates as well as determinants of adoption when applied to a 
population that is not fully aware of the technology (Simtowe et al. 2016b). In addition, the 
application of propensity score matching to account for selection bias in impact assessment 
studies, as is often applied in the impact assessment literature is inadequate because of a 
possible systematic differences between adopters and non-adopters outcomes even after 
conditioning (Abdulai & Huffman, 2014). 

In this paper, the average treatment effect framework (Diagne & Demont 2007), which 
draws from the modern evaluation theory in the treatment effects literature is employed to 
evaluate adoption rate of the SDRP technology. The average treatment effect (ATE) 
assumes that commonly used adoption rate estimators suffer from non-exposure or selection 
bias arising from the fact that farmers who have not been exposed to a new technology 
cannot adopt it and corrects for this through a simultaneous estimation of awareness and 
adoption of the technology. The approach to estimate adoption rate in this paper is in 
keeping with previous studies (Simotowe et. al. 2016a; Diagne & Demont 2007; Kathage et. 
Al 2016). In addition, an endogenous switching regression model is used to examine the 
impact of the SDRP technology (Kassie et al. 2013; Kassie et al. 2015; Manda et al. 2016; 
Awotide et al. 2015; Alene & Manyong 2007; Abdulai, 2016b). 

The endogenous switching regression (ESR) model is preferred to the PSM approach 
because systematic differences between adopters and non-adopters’ outcomes resulting 
from unmeasured characteristics are accounted for (Abdulai & Huffman 2014; Smith & Todd 
2005). In the impact evaluation literature, two approaches are often adopted to estimate the 
ESR model: The full maximum likelihood estimation (FIML) and the two-stage approaches 
(Maddala 1986). Lokshin and Sajaia (2004) argue that the two-step approach generates 
heteroscedastic residuals and therefore cannot be consistently used to estimate standard 
errors of the model parameters. The FIML approach therefore dominates the empirical 
literature (Abdulai & Huffman 2014; Di Falco et al. 2011), and that is what has been adopted 
in this study. This study contributes to providing empirical evidence of adoption rates and 
impact of agricultural technology adoption in a developing country using recent advances in 
the adoption and impact evaluation literature. 
 

ECONOMETRIC MODELLING 
 

Modelling farmer adoption rate using average treatment effects framework. Analyzing 
adoption decisions of farmers presents the question of whether every potential adopter is 
aware of or exposed to the technology. If potential adopters are not aware of the technology 
and the modelling approach does not adjust estimates for lack of awareness, observed 
sample adoption estimates may inconsistently represent true population parameters 
(Kabunga et al. 2012). Previous studies identified this potential bias in estimating an adoption 
model without accounting for exposure bias and introduced a latent variable model to 
address it. However, Diagne and Demont (2007) argued that the latent variable approach is 
inefficient because of the binary nature of the adoption outcome variable. Rather, the authors 
suggested the use of a counterfactual average treatment effects (ATE) framework to 
estimate the model. 

The ATE assumes that every farmer in a population has two potential outcomes: with 
and without exposure or awareness of the technology. Given N farmers and a binary 
treatment variable, m (awareness status and a binary outcome variable), a farmer is 
described as aware of SDRP (treated) if m=1. Again, a farmer is referred to as unaware of 
SDRP if m=0 (untreated). For the N farmers, the number of aware farmers can be denoted 
as Ne. At the same time, for each farmer, an x-dimensional column of covariates is 
observed. At the aggregate level (population level), the interest is to explain exposure rates 
(Ne/N), while at the individual farmer level, the focus is to explain adoption status (Na/N), 
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assuming a universal adoption rate and exposure among the exposed (Na/ Ne) when there is 
an incomplete exposure (Kabunga et al. 2012). 

Now, assuming an indicator variable for potential outcome, q, outcome with 
exposure, 𝑞1, and outcome without exposure, 𝑞0, q can be specified as: 
 

𝑞 = 𝑚 𝑞1 = 𝑞0 1 − 𝑚 +  𝑚 𝑞1 =  
𝑞0  𝑖𝑓 𝑚 = 0
 𝑞1  𝑖𝑓 𝑚 = 1

   (1) 

 

Under incomplete exposure, the treatment effect for each farmer i is the difference 
between adoption status if aware, and adoption status if not aware (𝑞1𝑖 − 𝑞0𝑖) or aggregated 

to the population level as E (𝑞1 − 𝑞0) and this represents the ATE (predicted adoption rate 
under the assumption of full awareness) of exposure. It is important to note that both the 
outcome and its counterfactual cannot be observed for the same farmer (Diagne and 
Demont, 2007), therefore 𝑞1𝑖 − 𝑞0𝑖  cannot be measured. However, awareness is a necessary 

condition for adoption, hence unaware equals zero (𝑖. 𝑒. 𝑞0 = 0). This implies adoption impact 
of farmer i is 𝑞1𝑖 and the average adoption impact of exposure is reduced to E (𝑞1). For the 
exposed sub-sample (m=1), the mean adoption impact of the aware sub-sample is the 
conditional expected value E (𝑞1|𝑚 = 1), which refers to average treatment on the treated 
(ATT). Similarly, for the unaware sub-sample, the mean adoption impact is E (𝑞1|𝑚 =0) and 
this refers to average treatment on the untreated (ATU)1. 

From (1), when 𝑞0 = 0, the observed adoption outcome reduces to 𝑚𝑞1 suggesting the 
observed adoption outcome variable integrates exposure and adoption outcome. This refers 
to joint awareness and adoption rate (JAA). That is the probability of exposure and adoption 
of at least one of the SDRP packages. The difference between ATE and JAA is the adoption 
gap (GAP), indicating the degree to which lack of awareness reduces adoption rate. The 
GAP (E(q)-E(𝑞1)) is usually negative and reduces with increased level of exposure (Kabunga 
et al. 2012). The difference between mean potential outcome in the aware sub-population 
and the potential mean adoption outcome in the full population is the population selection 

bias (PSB). That is the difference between ATT and ATU (PSB=ATT-ATU= E (𝑞1|𝑚 = 1) - E 
(𝑞1)). PSB indicates the extent of bias in an estimate of adoption rate under full awareness, 
based on the observed adoption rate of the aware sub-sample. 

The ATE estimator draws from the conditional independence (CI) assumption that 
postulates that a set of covariates determining exposure when controlled for renders the 

treatment status (m) independent of the potential outcomes 𝑞1 and 𝑞0. Based on the CI 
assumption, parameters of the ATE model can be estimated using parametric, non-
parametric and semiparametric methods. In this paper, following Diagne and Demont (2007), 
the parametric procedures are adopted by formulating a model for the conditional 
expectation of the observed variables, q, x, m: 
 

𝐸 𝑞 𝑥,𝑚 = 1 = 𝑔(𝑥, 𝛽)  (2) 
 

Where: g is a function of observed covariates x, determining adoption and a parameter 

vector 𝛽. 
Based on specifications of previous studies (Kathage et al. 2016; Simtowe et al. 

2016b), 𝛽 can be estimated through a maximum likelihood technique using observations in 
the awareness sub-sample with q as dependent and x as independent variable. The 
estimated 𝛽 parameters are then used to predict values for q in the non-exposure sub-
sample. The average of the predicted values indicates ATE, ATT and ATU, respectively: 
 

𝐴𝑇𝐸 =
1

𝑁
 𝑔(𝑥𝑖
𝑁
𝑖=1 , 𝛽 )   (3) 

 

𝐴𝑇𝑇 =
1

𝑁𝑒
 𝑚𝑖𝑔(𝑥𝑖
𝑁
𝑖=1 , 𝛽 )  (4) 

 

𝐴𝑇𝑈 =
1

𝑁−𝑁𝑒
 𝑔 𝑚𝑖 − 1 𝑔(𝑥𝑖
𝑁
𝑖=1 , 𝛽 )   (5) 

                                                           
1
 We have changed the notation of ATE1 and ATE0 as specified in Diagne, A. & Demont, M. 2007 to ATT and ATU to be 

consistent with the impact model estimation.  
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Where: N is the full sample size and 𝑁𝑒  is the awareness sub-sample. 
Having defined the average treatment effects model to examine adoption rates and 

determinants of adoption, the endogenous switching regression model is now specified to 
examine the impact of the technology. 

Modelling impacts of SDRP using endogenous switching regression model. The SDRP 
adoption decision and impacts on productivity and per capita income can be modelled in a 
two-stage framework. Following Abdulai and Huffman (2014) and Di Falco et al. (2011), let 

𝑊∗ be the latent variable that captures the expected benefits of adoption choice with respect 
to non-adoption. The latent variable can be specified as 
 

𝑊𝑖
∗ = 𝑍𝑖𝛾 + 𝜀𝑖  with 𝑊𝑖 =  

1 𝑖𝑓 𝑊𝑖
∗ > 0 

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 
    (6) 

 
Where: 𝑊𝑖

∗ is a binary variable indicating 1, for adoption and 0, for non-adoption. γ denote a 

vector of parameters to be estimated. The assumption here is that farmer i will choose to 
adopt if there is a positive marginal benefit of adopting the technology and not adopting it. 
That is 𝑊𝑖

∗ > 0 and zero (0), otherwise. The error term (𝜀) with zero mean and constant 
variance captures measurement errors unobserved to the researcher but observed to the 
farmer (Abdulai & Huffman 2014). The 𝑍 vector represents variables that affect the expected 
benefits of adoption and serve as adoption drivers. In the adoption literature, the Z vector has 
often been attributed to several factors. Some of these factors relate to poor adaptability of 
technologies to local conditions (Doss 2003), credit constraints (Suri 2011), infrastructure 
and institutional factors (Chirwa 2005), perceptions of technology characteristics (Adesina 
and Baidu-Forson 1995; Useche et al. 2009), among others. For a more detailed review of 
drivers of agricultural technologies, readers are referred to Foster and Rosenzweig (2010). In 
this paper, the Z vector is associated with land related factors (e.g. fertility and topography), 
farmer and technology characteristics (Adesina & Baidu-Forson 1995; Adesina & Zinnah 
1993; Abdulai & Huffman 2014). 

The effects of SDRP adoption on productivity and income per capita could be 
examined by estimating simple OLS regression of productivity and income where adoption is 
a dummy. However, Di Falco et al. (2011) noted that such an approach would bias the 
estimates because of the assumption that adoption is exogenously determined while it could 
be endogenous. Decision to adopt or not adopt an SDRP may be an issue of self-selection. 
There could also be fundamental systematic differences between adopters and non-
adopters, which must be accounted for. Previous studies (Zackaria et al. 2016; Awotide et al. 
2015) have mainly addressed self-selection bias using a propensity score matching (PSM) 
approach (Rosenbaum & Rubin 1983). Abdulai and Huffman (2014) pointed out that the PSM 
model mainly constitutes correcting for unobservables by balancing the observed 
distributions of covariates across groups of adopters and non-adopters. Therefore, the probit 
and logit estimates cannot be considered as determinants of adoption. The Endogenous 
switching regression (ESR) model is a better option as it simultaneously models drivers of 
adoption and impacts on outcome variables. Lee (1982) developed the ESR model as a 
generalisation of the Heckman’s sample selection model and accounts for unobservables by 
treating selectivity as an omitted variable problem (Abdulai & Huffman 2014). 

In the context of the SDRP adoption, observed net benefit of farmers choosing to either 
adopt or not adopt the technology can be specified as a two-regime model: 
 

𝑄𝑖𝐴 = 𝑋 ′𝛽𝑖𝐴 + 𝜇𝑖𝐴  𝑖𝑓 𝑊𝑖 = 1 (7) 

𝑄𝑖𝑁 = 𝑋 ′𝛽𝑖𝑁 + 𝜇𝑖𝑁  𝑖𝑓 𝑊𝑖 = 0  

 

Where: 𝑄𝑖𝐴  and 𝑄𝑖𝑁  are the outcome variables for adopters and non-adopters, respectively, 

𝑋′ is a vector of covariates. The vectors 𝛽 in (7) and γ (6) are associated parameters that 
should be estimated. For identification purposes, a variable in (6) need not be in (7). 
Following Abdulai and Huffman (2014) and others, we assume that the error terms are tri-
variate normal distribution with mean vector of zero and the following covariance: 
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𝑐𝑜𝑣(𝜀𝑖 , 𝜇𝑖𝑁 , 𝜇𝑖𝐴) =   

𝜎𝐴
2 𝜎𝐴𝑁 𝜎𝐴𝜀

𝜎𝐴𝑁 𝜎𝑁
2 𝜎𝑁𝜀

𝜎𝐴𝜀 𝜎𝑁𝜀 𝜎𝜀
2

   (8) 

 

Where: variance (𝜇𝐴)= 𝜎𝐴
2, variance (𝜇𝑁)= 𝜎𝑁

2, variance (𝜀)= 𝜎𝜀
2, covariance (𝜇𝐴 , 𝜇𝑁) = 𝜎𝐴𝑁 , 

covariance (𝜇𝐴 , 𝜀)= 𝜎𝐴𝜀  and covariance (𝜇𝑁 , 𝜀) =  𝜎𝑁𝜀 . Following previous studies (Kotz, 1970; 
Abdulai and Huffman, 2014), the expected values of the truncated error terms: (𝜇𝐴|𝑊 = 1) 

and (𝜇𝑁|𝑊 = 0) are given as: 
 

𝐸(𝜇𝑁|𝑊 = 0) =E (𝜇𝑁|𝜀) ≤ −𝑍′𝛾 = 𝜎𝑁𝜀

−𝜑 
𝑍 ′𝛾

𝜎  

1−𝜑 
𝑍 ′𝛾

𝜎  
≡ 𝜎𝑁𝜀𝜆𝑁   (9) 

 

𝐸(𝜇𝑁|𝑊 = 0) =E (𝜇𝑁|𝜀) ≤ −𝑍′𝛾 = 𝜎𝑁𝜀

−𝜑 
𝑍 ′𝛾

𝜎  

1−𝜑 
𝑍 ′𝛾

𝜎  
≡ 𝜎𝑁𝜀𝜆𝑁   (10) 

 
Where: 𝜑 and 𝜙 are the probability density and cumulative distribution function of the 

standard normal distribution, respectively. The ratio of 𝜑 and 𝜙 evaluated at 𝑍′𝛾 refers to the 
inverse mills ratio 𝜆𝑁 and 𝜆𝐴. The selectivity terms are incorporated to account for selectivity 
bias. The estimation of the model is implemented using full information maximum likelihood 
(FIML) (Lokshin & Sajaia 2004). The FIML method is a simultaneous estimation of (6) and 
(7). 
 

Table 1 – Summary statistics of data 
 

Variable 
Total sample 

Mean Standard deviation 

Technology adoption dummies   
Land development techniques 0.53 0.50 
Rice cultivation techniques 0.53 0.50 
Extension packages 0.24 0.24 
Explanatory variables  
Farming experience (years) 18.79 8.49 
Education (years) 1.49 1.36 
Household size 13.00 5.20 
Age 40.00 9.00 
Sex 0.14 0.35 
Total farm size (ha) 2.30 1.18 
Labour costs 1253.84 1110 
Intermediate inputs 194.72 112.7 
Soil fertility (fertile=1) 0.77 0.420 
Land topography (flat=1) 0.48 0.50 
Land tenure (ownership=1) 0.68 0.47 
Location   
Sagnarigu 0.65 0.48 
Tamale metro 0.320 0.47 
Perception of high yield (1=Yes) 0.266 0.44 
Perception of Labour requirement (1=Yes) 0.185 0.39 
Perception of lack of capital (1=Yes) 0.716 0.45 
   

 
Data descriptive statistics. The data used in this application come from a farm 

household survey conducted in the Northern region of Ghana in 2014. The aim of the survey 
was to examine adoption rate, determinants, and impact of the sustainable development of 
rain-fed lowland rice production (SDRP) on productivity and farmers’ income. The survey 
formed a part of a general study conducted to examine productivity and food security of rice 
producing households in Ghana. A multistage sampling procedure was adopted to select 222 
farmers across three districts in the 2013/2014 cropping season. In the first stage, three 
districts (Sagnarigu, East Gonja and Tamale) and communities where the SDRP technology 
was implemented were selected based on stratified random sampling technique. In the 
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second stage, simple random sampling technique was used to select farmers based on a list 
provided by project staff and extension agents from the Ministry of Food and Agriculture. 

The survey gathered information on farmers’ socio-economic characteristics, 
awareness and adoption of the SDRP technology. Data were collected on all the three 
components of the SDRP technology: land development techniques (bunds construction, 
land levelling and ploughing across slopes); rice cultivation methods (application of fertilizer, 
seed selection, row drilling and dibbling); and the extension component (farmer group 
formation, participating in farmer field days and farmer to farmer technology transfer). 

In this paper, an adopter is defined as a farmer that uses at least one of the SDRP 
technology components (Burton et al. 2003). Table 1 presents descriptive statistics of the 
variables used in the modelling. The sample descriptive statistics provided in Table 1 shows 
that the average farm size for the full sample is 2.3 hectares and both adopters and non-
adopters have similar farm sizes. The average age of farmers in the sample is 40 years, 
implying a youthful farming population. Farmers also have low educational background, and 
soil fertility is slightly higher for adopters than non-adopters. 
 

RESULTS AND DISCUSSION 
 

This paper aims at evaluating the SDRP adoption rates, determinants, and impact on 
farmer’s productivity and income using the ATE adoption framework and the FIML 
endogenous switching regression model (Lokshin and Sajaia, 2004). Table 2 reports 
estimates of the ATE model, while Tables 3-5 present the result of the ESR model2. The ATE 
framework examines the role of factors determining exposure and adoption and predicts 
adoption rates under complete exposure. The variables in both the exposure and adoption 
model are slightly different because in the ATE framework, with conditional independence 
assumption, factors in the awareness and adoption models can differ (Kathage et al. 2016). 
The discussion begins with adoption rates and conclude with the impact of the SDRP 
adoption on farmers’ productivity and income. 

Estimates from the ATE adoption model. The estimated results of the ATE model to 
predict adoption rates with and without information constraints (exposure to the technology 
as a measure of information constraint) are presented in Table 2. The upper part of the table 
shows predicted adoption rates when complete awareness is assumed, and the lower part of 
the table shows actual observed exposure and adoption rates. 

JAA is the observed adoption rate, ATT is the observed adoption rate among exposure 
sub-sample and ATE is the predicted adoption rate with complete exposure. The estimated 
results show that the ATE, which determines demand of the technology (combined 
technology3) is 59% compared to 55% actual adoption rate generated from the standard 
probit model. The difference is what is described in the GAP (non-exposure or awareness 
bias) as 4%. This implies that SDRP adoption would increase from 55% to 59% if all farmers 
were fully aware of the technology instead of the observed 90% awareness rate. The 
increase in adoption rate for awareness correction is 4% and this figure is quite consistent 
with previsous studies. For instance, Simtowe et al. (2016a) estimated an adoption rate of 
39% for pigeon pea adoption in Malawi. There was, however, a 2% improvement in the value 
when adoption was adjusted for awareness bias. Diagne and Demont (2007) also estimated 
adoption rate for NERICA in Cote Devoir as 37%, after adjusting for awareness bias. 
Furthermore, Kathage et al. (2016) estimated adoption rates for hybrid maize variety in 
Tanzania and found upon accounting for awareness bias that adoption rate was 50%. 

Considering the individual SDRP components, the results show that adoption rate of 
the land development technique (L1) is higher (58%), followed by L2-rice cultivation 
technique (56%) and lastly, extension component (L3), which is least adopted (26%). The 
corresponding population adoption gaps are 5%, 4%, and 1% for L1, L2 and L3, respectively. 
Furthermore, the results show that adoption rates for non-exposed sub-population are lower 

                                                           
2
 It is important to know that although the results are reported separately, model estimation was conducted simultaneously as 

that has been described as efficient, yielding unbiased estimates (Diagne & Demont 2007). 
3
 Choosing either one of the technology components. 
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compared with the exposed sub-population. This finding is contrary to Diagne and Demont 
(2007) study outcome where there was no difference between adoption rates for aware and 
unaware sub-population. 
 

Table 1 – Predicted adoption rate of modern rice production practices 
 

Parameters 
All technology 
components 

Individual technology components 

Total L1 L2 L3 

ATE-corrected population estimates 
Predicted adoption rate in the full population (ATE) 0.590*** 0.579*** 0.562*** 0.254*** 
Predicted adoption rate in the sub-population (ATT) 0.610*** 0.586*** 0.584*** 0.269*** 
Predicted adoption rate in the unaware population (ATU) 0.441*** 0.515*** 0.365*** 0.131*** 
Joint awareness and adoption rate (JAA) 0.548*** 0.528*** 0.526*** 0.240*** 
Population adoption gap (GAP) -0.044*** -0.051*** -0.036*** -0.014*** 
Population selection bias (PSB) 0.017*** 0.007*** 0.022*** 0.015*** 
Observed sample estimates 
Awareness rate (Ne/N) 0.909*** 0.901*** 0.901*** 0.893*** 
Adoption rate (Na/N) 0.550*** 0.527*** 0.527*** 0.239*** 
Adoption rate among aware subsample (Na/Ne) 0.610*** 0.585*** 0.585*** 0.268*** 
 

Note: *, **, *** indicate significance at 10%, 5% and 1% respectively. L1=Land development technique, L2=Rice 
cultivation techniques, L3=Extension package. 

 
Comparing the estimated adoption rate to previous rates reported in the literature 

shows an improvement in adoption of new technologies in Ghana. However, the estimated 
adoption rate (59%) is still low, suggesting low adoption may not necessarily be a function of 
information constraint. It is, therefore, important to examine the determinants of SDRP 
adoption to inform policy makers on the measures that drive adoption. 
 

Table 3 – Parameter estimates of SDRP adoption and yield per hectare equation 
 

   Endogenous switching regression  

 Selection          Adoption=1  Adoption=0 

Variable Adoption  Yield per hectare  Yield per hectare 

Constant -2.838***   15.129***  8.513***  
Farming experience (years) 0.025   0.117  -0.023  
Education (years) 0.089   -0.251  0.015  
Household size -0.003   -0.047  -0.015  
Age -0.022   0.127  0.007  
Sex 0.421   3.397***  1.073  
Total farm size (ha) 0.005   -4.929***  -1.335***  
Labour costs 0.000   0.002***  0.000*  
Intermediate inputs 0.005***   0.009  0.005  
Land tenure (ownership=1) 1.537**   2.834  -0.019  
Soil fertility (fertile=1) 0.710**   1.879  1.199  
Land topography (flat=1) 0.341   -2.151**  1.027  
Sagnarigu 0.772   -1.688  -1.306  
Tamale Metro -0.978   -2.106  -0.299  
Perception of higher yield (1=Yes) 3.333***   -  -  
Labour requirement (1=Yes) -0.394   -  -  
Lack of capital (1=Yes) -0.251   -  -  
IMR (Exposure) 1.453***   -  -  
Ln sigma 1 (adopters) -   1.786***  -  
Ln sigma 2 (non-adopters) -   -  0.936***  
Rho1 (adopters) -   -1.142***  -  
Rho2 (non-adopters) -   -  0.165  
Number of observations 222   122  100  
Log likelihood -701.07   -  -  
P>chi 0.000   -  -  
 

Note: *, **, *** indicate significance at 10%,5% and 1% respectively. IMR=Inverse mills ratio. 

 
Estimates from endogenous switching regression model. The selection equation model 

estimates reported in the second column of Tables 3 and 4 show the main drivers of SDRP 
adoption. From the estimated coefficients, farmers with very fertile cultivable lands have a 
high probability to adopt SDRP, suggesting that farmers consider land quality factors in 
technology adoption decisions. A similar finding was reported in Abdulai and Huffman (2014) 
study on adoption of water conservation technology in Ghana. The coefficient of the land 
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ownership variable is also positive and significantly different from zero, suggesting that 
farmers with outright land ownership have a high probability to adopt new technologies, 
compared to those with other ownership arrangements. This finding confirms Ogada et al. 
(2014) study outcome of the effects of tenure security on adoption of new agricultural 
technologies. 

Feder et al. (1985) pointed out that land tenure may indirectly be associated with 
access to credit, input markets, product market and technical information mainly because in 
some parts of the world, e.g. Ghana, land is deemed very valuable and may be used as 
collateral to secure a loan for production. Therefore, land ownership enables the farmer to 
secure such a facility, which otherwise may be difficult to attain. There are also other varying 
reports of the effects of land ownership on adoption, where owners have a high tendency to 
adopt new technologies compared with tenants and the finding of this study falls within this 
theme of literature (Feder et al. 1985). Also, although not all the technology characteristics 
are significant, the estimated coefficients reveal that perception of high yield affects the 
probability of SDRP adoption. Similar findings have been reported in previous studies about 
the effects of technology characteristics on farmers’ adoption decisions (Adesina & Baidu-
Forson 1995; Adesina & Zinnah 1993). 

Determinants of farm productivity (yield) and income. The estimation of the impact 
model requires that at least one variable in the selection equation does not appear in the 
outcome equation (Abdulai & Huffman 2014). In the yield and income specifications, farmers’ 
perceptions regarding yield, labour requirement, and capital requirement were excluded from 
the outcome equation. The estimates presented in the third and fourth columns of Tables 4 
and 5 accounts for the endogenous switching in the yield and income functions, respectively. 

Firstly, the estimated coefficients of the correlation terms are significant, suggesting 
that sample selection occurred in the adoption of SDRP. The negative sign (rho 1) indicates 
a positive selection bias (comparative advantage in adoption), suggesting that farmers with 
above average yields and income have a higher probability of adopting the SDRP. The 
findings are consistent with Abdulai and Huffman (2014) study outcome on adoption of water 
conservation technology in Ghana. They are, however, contrary to Suri (2011), who 
observed a negative selection bias in technology adoption. Exposure bias was also 
accounted for in the ESR model by introducing inverse Mills ratio (IMR) from a probit 
exposure model as a proxy. The estimated coefficient on the IMR is positive and significant 
indicating that exposure bias is apparent in the ESR model, failure to account for which may 
result in upward bias in estimates. 

The results also indicate that among adopters of the technology, labour usage, farm 
size and land topography explain higher yields (Table 3). However, larger farm size seems to 
have a negative effect on yield for both adopters and non-adopters. This finding indicates 
that larger farms obtain lower yield compared to smaller farms, a finding that supports 
inverse farm size productivity relationship in developing countries (Abdulai and Huffman, 
2014). The results also show among the adopters that female headed households are more 
productive compared to male headed households (Table 3). Regarding income per capita 
(Table 4), results show among adopters that farm experience increases incomes, while land 
topography (flat surface) decreases farm income. The estimated coefficients also reveal the 
effects of household size and topography on the income of non-adopters. 

Impact of SDRP on farm productivity (yield) and income. The estimates of the impact of 
adoption on yield and income per capita are reported in Table 5. The estimated yield per 
hectare of farm households that adopted the SDRP is about 13 bags, while it is 7 bags for 
non-adopters. However, the mean comparison is misleading because of the impact of other 
characteristics such as sample selection bias. The last three columns of Table 5 report 
results adjusted for selection bias arising from the fact that adopters and non-adopters may 
be systematically different. From the estimated result, adoption of the SDRP significantly 
increases yield and income per capita. Specifically, the causal effect of adoption on yield is 
5.35 bags per hectare, representing about 76% increase in the average yield per hectare of 
non-adopters. Similarly, adoption increases income per capita by 77% from 3.37 Ghana 
Cedis (GHS) to 6.23 GHS. 
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Table 4 – Endogenous switching regression results for adoption and impact of adoption on farmers’ 
income per capita 

 

   Endogenous switching regression 

 Selection   Adoption=1 Adoption=0 

Variable Adoption   Per capita income  Per capita income 

Constant -3.040***   7.19**  0.235 
Farming experience (years) 0.017   0.136*  -0.041 
Education (years) 0.101   -0.099  -0.234 
Household size -0.010   -0.040  -0.086* 
Age -0.009   -0.065  0.028 
Sex 0.272   -0.065  -0.285 
Total farm size (ha) -0.061   0.696  0.539*** 
Labour costs 0.000   0.002***  0.000 
Intermediate inputs 0.004****   0.001  0.009*** 
Land tenure (ownership=1) 1.551**   -1.202  2.066 
Soil fertility (fertile=1) 0.931***   0.120  0.479 
Land topography (flat=1) 0.382   -3.822***  -2.606*** 
Sagnarigu 0.837   -0.347  1.175 
Tamale Metro -0.976   -0.471  -0.038 
Perception of higher yield (1=Yes) 2.681***   -  - 
Labour requirement (1=Yes) 0.231   -  - 
Lack of capital -0.369   -  - 
IMR (awareness) 1.463***   -  - 
Ln sigma 1 (adopters) -   1.447***  - 
Ln sigma 2 (non-adopters) -   -  0.729*** 
Rho1 (adopters) -   -0.643***  - 
Rho2 (non-adopters) -   -  0.198 
Number of observations 222   122  100 
Log likelihood -   -271.105  - 
P>chi -   0.000  - 
 

Note: *, **, *** indicate significance at 10%,5% and 1% respectively. IMR=Inverse mills ratio. 

 
Table 5 – Impact of technology adoption on yield 

 

  Decision stage (mean outcome) Treatment effects (FIML model) 

Yield/ bags/ha  To adopt Not to adopt  ATE ATT ATU  

 
Farmers that adopted 

 
13.25 

 
7.00 

  
5.354*** 

 
5.818*** 

 
4.788*** 

 

Income/capita         
Farmers that adopted 6.23 3.37  2.600*** 2.713*** 2.463***  

Note: ATE=Average treatment effect; ATT=Average treatment on the treated; ATU=Average treatment on the untreated. 

 
These findings are consistent with previous study outcomes that adoption of 

agricultural technologies improves farm productivity and income (Abdulai & Huffman, 2014; 
Zackaria et al. 2016; Bravo-Ureta et al. 2006; Manda et al. 2016; Kassie et al. 2015; Abdulai 
2016a; Zeng et al. 2015). 
 

CONCLUSION 
 

Over the years, it has long been understood that adoption and use of new agricultural 
technologies in sub-Sahara Africa (SSA) improve agricultural productivity and welfare of farm 
households. However, adoption and use of new agricultural technologies in SSA is very low. 
This puzzle of low adoption has become a major research question for most agricultural 
economists. With several adoption drivers identified over the years, new technologies 
introduced have sought to address some of these factors. The critical question, therefore is 
to what extent has modifications in these agricultural technologies influenced adoption of 
new agricultural technologies in SSA. The objective of this paper therefore was to contribute 
to the debate on farmer adoption in developing countries through a socio-economic analysis 
of agricultural technology adoption in Ghana. Specifically, adoption rates, adoption drivers 
and effects of adoption of the sustainable rain-fed low-land rice production technology on 
farm productivity and income. The average treatment effects model that addresses exposure 
bias was employed in estimating adoption rates while the endogenous switching regression 
model was used to account for sample selection bias in the impact evaluation model. 
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The empirical results show an SDRP adoption intensity of 55 percent under exposure 
bias. After accounting for exposure bias, the value increased to 59 percent. Although this 
value gives an indication of slight improvement over previous adoption rates reported in the 
literature (Pingali, 2007), the value is still low compared with values reported in many Asian 
countries (Pingali, 2012). Therefore, the question of low adoption to some extent persists 
after accounting for information constraint. It, therefore, suffices to note that information 
constraint may not be key barrier to adoption in our sample. This finding is in keeping with 
Kathage et al. (2016) that information constraint may not be the rationale for low adoption in 
SSA. 

On the drivers of SDRP adoption, the findings indicate that among other things, land 
tenure, the perception of higher yield component of new technologies and soil fertility are the 
factors identified to drive farmer’s adoption. In the recent literature, farmers’ perception of 
technology characteristics has proved vital for adoption, and this finding confirms previous 
study outcomes of the effects of perceptions of technology characteristics (Adesina and 
Baidu-Forson, 1995; Adesina and Zinnah, 1993). Given the low adoption rate reported in this 
study and previous studies (Pingali 2012), it may suffice to consider issues relating to 
farmers cognitive, social and behavioural patterns on adoption and use of new technologies. 
Another, useful area to consider would be the application of panel adoption data, instead of 
the cross-sectional data used in most empirical studies. 

On the impact of the SDRP adoption, the results indicate a possible sample selection 
bias, therefore modelling outcome equations without considering adoption decisions, would 
affect estimated results and possible policy conclusions (Abdulai & Huffman, 2014). This is 
mainly because the SDRP may not have the same effect on both adopters and non-
adopters. In addition, the estimated results reveal a positive selection bias for both rice yield 
and income, suggesting that more productive and wealthy farmers tend to adopt the SDRP. 
On the impact of adoption on farm productivity and income, results show the causal effects of 
adoption were to increase rice yields of about 76% and income per capita of about 77%. The 
findings suggest that adoption of SDRP can significantly increase productivity and farm 
incomes. Furthermore, the findings reiterate the role of new agricultural technologies on 
agricultural productivity in developing countries (Abdulai & Huffman 2014). 

Overall, the findings of this study have policy implications for the introduction of new 
agricultural technologies in developing countries. The findings suggest improvement in land 
quality and ownership in developing countries would ensure increased adoption of new 
agricultural technologies. In addition, it is also important to consider technology 
characteristics that farmers would value to improve adoption and use of new agricultural 
technologies. This could be achieved through a stated preference approach, specifically 
discrete choice experiment. 
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