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Abstract: This study examines the effect of previous price and climatic variables on maize supply in Ghana. 
For this purpose, two separate approaches are used: (i) a lag model using the OLS technique and (ii) a 
quantile regression approach. Results from the lag model indicates that an increase in previous year maize 
price and previous growing season temperature positively affect current year maize supply. However, an 
increase in previous growing season rainfall negatively affects current year maize supply. The quantile 
regression results show that maize supply responds differently to previous maize price and climatic variables 
across the different quantiles of crop area distribution. 
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1. Introduction 
 
The economies of most countries in Sub-Saharan Africa depend heavily on agriculture which provides the 
main source of food income and employment especially to the rural population. In Ghana, agriculture plays an 
important role in the economy as it employs about 60% of the population and contributes to about 30% of 
the Gross Domestic Product (GDP) (Ghana Business News, 2011). Therefore, achieving higher growth in the 
agricultural sector is of utmost concern especially in the face of rising incomes and increasing population 
growth.  Furthermore, formulating agricultural policies targeted at increasing production is critical to meet 
this rising demand. However, agricultural growth in the recent past has been declining. For instance in 2011, 
agriculture recorded the lowest growth of 0.8% compared to other sectors. It is therefore important to 
understand farmers' production decisions in order to inform policy. According to Mamingi (1996) 
agricultural supply mainly in the form of area expansion is determined by agricultural price and non-price 
factors. Price is very important in determining farmers planting decisions as it provides incentives for them to 
increase production. Hence in order to meet the rising demand and bring about sustained and balanced 
economic growth, it is paramount to understand the effect of prices on production. Also, non-price factors 
such as good weather conditions and improving technological and institutional frame leads to shifts in the 
supply function. This is particularly so, for developing countries where various studies (Patel and Singh, 1994, 
Dixit, et al., 1998) have shown that farmers response behaviour are influenced more by non-price factors. 
Among the staples grown in Ghana, maize has been identified as one of the most important within the grains 
and cereals family. It is cultivated on more than, 991,661 hectares and across all agro ecological regions in 
Ghana (Statistics, Research and Information Directorate [SRID], 2010).  
 
The crop is widely consumed (94%) by human and the poultry industry across the country and therefore 
contributes significantly to food security (Environmental Protection Agency [EPA], 2000). It also contributes 
over 20% of the incomes earned by smallholder farmers in Ghana. Although maize supply plays an important 
role in promoting food security, the factors that determine the supply has not been extensively investigated in 
Ghana and is not well understood. The basic issue is that the magnitude and direction of the relationship 
between previous climatic variables, previous price and maize supply is not clearly understood. Furthermore, 
the issue of how maize supply responds to previous price and climatic factors across various quantiles of crop 
area distribution has not been examined. How much of the variation in maize supply is explained by previous 
price and climatic factors across the various quantiles of crop area distribution.  In order for policy to be able 
to predict maize supply response and achieve self sufficiency in maize production in Ghana, it is critical to 
empirically understand the relationship between maize supply and its determinants such as price, rainfall 
and temperature. Against this background, this study empirically estimate the effect of previous maize price 
and climatic variables on maize supply response (maize crop area) using a lag model. Also, to further 
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understand how maize supply across the different quantiles of crop area distribution responds to previous 
price and climatic variables, we employ a quantile regression analysis.  
 
2. Review of Literature   
 
Numerous studies have employed different response variables and methods to study agricultural supply.  
Blanc (2011) estimates the effect of weather and climate on farmers’ cropping decisions. He noted that 
farmers’ supply decisions are influenced by weather and climate. Additionally, the regressions show a 
negative effect of precipitation variability and temperature variability on area allocated to some crops, 
indicating that, as climate risk increases, farmers participate in other activities or diversify toward other 
crops. Abdulai and Rieder (1995) empirically investigated the supply of cocoa in Ghana using an error 
correction model. The model was employed to avoid the familiar partial adjustment model's unrealistic 
assumption of a fixed target supply based on stationary expectation. The results reveal that cocoa supply is 
significantly influenced by the real producer price of cocoa, real price of maize, the supply of manufactured 
goods and the real exchange rate. The supply of cocoa was found to be inelastic both in the short and long 
runs. However, the elasticities obtained in the study suggest that supply of cocoa is more responsive in a 
shorter time than thought previously. Jain et al., (2005) considered the Nerlovian lag adjustment model to 
study the supply response function of oilseeds in the Indian state of Rajasthan. The oilseed crops selected for 
the study were: groundnut, soybean, rapeseed & mustard, sesamum and taramira. The final model specified 
by the authors was of the form; 
At = b0 + b1LPSC + b2LASC + b3LYSC + b4YRSC + b5PRSC + b6LYCC 
+ b7LPCC + b8RF_IRR + b9 DD+……….+Vt      (1) 
 
where, At = Current year area under study crop; LPSC = One year lagged price of the study crop deflated by 
CPI for agricultural labour ; LASC = One year lagged area of the study crop;  
LYSC = One year lagged yield of the study crop; 
YRSC = Yield risk of the studied crop measured by standard deviation of three preceding years; 
PRSC = Price risk of the studied crop measured by standard deviation of three preceding years; LYCC = 
Lagged yield competing crop; LPCC = One year lagged competing crop price deflated by CPI for agricultural 
labour; RF_IRR = Seasonal rainfall and/or irrigated area under study crop; DD = District dummy; Vt = Error-
term.  
 
Ordinary least square method was used to estimate the above acreage response function. The authors found 
the lagged price variable to be positive in all crops except soybean. The short-run elasticity for the crops 
ranged from -0.32 in the case of soybean to 0.832 in Taramira. Groundnut and sesamum showed very high 
long-run elasticities of 1.59 and 1.57 respectively. Also, non-price factors such as yield risk, yield of own and 
competing crops, rainfall and irrigation facilities considered was found to be relevant explanatory variables. 
Using an error correction model, Townsend and Thirtle (1997) empirically investigated the production 
response of small scale producers of maize and cotton crops for communal agriculture in Zimbabwe. The 
model was employed to avoid spurious regression which arises when variables are cointegrated. According to 
the authors "most agricultural variables experience a trend over time and a regression of the level of these 
variables may produce significant results with a high R2 value when indeed no relationship exists". The 
results of the study showed that the price of maize relative to seed, the number of marketing depots 
established in the communal areas and the number of loans provided to these farmers are the major factors 
affecting maize output. Also, the weather was found to have played a significant role in determining the 
quantity of maize sold. 
 
Using the Nerlovian lagged adjustment model, Madhavan (1972) adopted the acreage as well as yield 
response to prices for different cereals and cash crops in Tamil Nadu. The author found that the cereal crops 
responded to variations in yield, while the cash crops were more responsive to variations in prices. Acreage 
elasticities of commercial crops were higher and hence he suggested the positive price policy to influence the 
cash crops’ acreage and there by the production. However, he posited that the limited supply of land makes it 
difficult to increase the acreage in response to price increase and hence he was in favour of increasing the 
output through increasing the yield rather than the acreage. Singh (1998) investigated the supply response of 
oilseeds in Uttar Pradesh and proxied output decisions of farmers to area under the crop rather than its yield. 
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According to the author, the area enjoyed by the crops can be considered as a barometer of the farmers land 
allocation decision. Furthermore, the area allocation under a crop is a function of several endogenous factors, 
whereas, the yield is influenced by several exogenous factors. But, he also believed that the farmer could keep 
area constant and increase output by varying yield level. 
 
3. Methodology 
 
Desk research was used to obtain secondary data from the Statistical, Research and Information Directorate 
(SRID) of the Ministry of Food and Agriculture (MoFA) and the Metrological Services Department of Ghana. 
The data from SRID included average national maize crop area and yearly maize producer price (per 100Kg 
bag). Observed average growing season rainfall and temperature values were obtained from the Metrological 
Services Department of Ghana. The data set was available over time for the period 1970 to 2010. The most 
popular and widely used method to estimate supply response functions in developing countries is the 
Nerlovian model. The basic Nerlovian model is a three equation model. These are  
At

* = a0 + a1 Pt
e + a2 Zt +ut          (2) 

Pt
e - Pt-1

e = B (Pt-1 - Pt-1
e)         (3) 

At - At-1 = r (At
* - At-1)                     (4) 

where At
* is the desired planted area in the year t, Pt

e is the expected price in the year t, Zt is a vector of 
exogenous variables in year t, At and Pt are the actual planted area in the year t and the actual price in the 
year t respectively. 
 
Equation 2 captures a behavioural relationship where the desired planted area is a function of the expected 
future price and a set of exogenous variables. Equation 3 shows that current expectations are formed by 
adapting previous expectations given actual achievements (adaptive expectation). B is the expectation 
coefficient and its value lies between 0 and 1. Equation 4 is a partial adjustment model implying that desired 
acreages can differ from the actual area under cultivation due to adjustment lags. r is the Nerlovian coefficient 
of adjustment which lies between 0 and 1. For equation 2 to be estimated, it is important to eliminate the 
unobservable variables (At

* and Pt
e) . By substitution and algebraic manipulations, the Nerlovian supply 

function reduces to the form: 
At = a0 + a1 At-1 + a2 At-2 + a3 Pt-1 + a4 Zt + a4 Zt-1 - ut     (5) 
 
where the a coefficients are composites of adjustment and expectation coefficients. However, estimation of 
the Nerlove model comes with some problems. According to Nerlove, 1958a when both partial adjustment 
and adaptive price expectations are included in the model, it is not possible to estimate the long-run 
elasticities unless certain restrictions are applied. Notwithstanding, some of the estimation problems can be 
addressed by modifying the original model (Leaver, 2004). 
 
In this study we employ a lag model which relates maize supply response to previous maize price and 
previous climatic variables. The supply response variable used is maize crop area.  The general form of the 
model is: 

1 1 1Prt t t t tY ice Rain Tempt              (6) 

 
where Yt is the maize supply response variable at year t, Pricet-1 is previous years maize price,  Raint-1 and 
Temptt-1 represent previous years weather (Rainfall and Temperature) and  t is the residual term. These two 

climatic variables are considered in the model since they are the only climatic variables observable by 
farmers. Therefore, this two measures are the most likely weather variables to influence farmers' decisions to 
grow a certain crop and the area allocated to it (Blanc, 2011). Maize crop area and maize price are logged to 
improve their distributions but the climatic variables are not in order to produce semi-elasticities. Some 
variables are not considered in the model because of data limitations and estimation problems. A time series 
analysis is used since the data set was available over time. The presence of unit root is tested using the unit 
root test proposed by Elliott-Rothenberg- Stock (ERS) (Elliott et. al, 1996).  This test is preferred because of 
its greater power and because it performs better with small samples. The ERS test has a null hypothesis of a 
unit root and an alternative hypothesis of stationarity. The maximum lag length was first chosen according to 
the proposal of Schwert (1989). To deepen our understanding on how maize supply across the different 
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quantiles of crop area distribution responds to previous price and climatic variables, we employ a quantile 
regression analysis. Quantile regression was first introduced by Koenker and Bassett (1978; 1982) as a 
robust alternative to least-squares regression. In quantile regression, quantiles of the conditional distribution 
of the dependent variable are expressed as a function of observed covariates. Quantile regression offers a 
number of advantages over least-squares methods. For instance, quantile regression does not require the 
restrictive assumptions of least-squares regression (assumes that the error terms are iid, normally 
distributed, and homoskedastic). Furthermore, since quantile regression estimates quantiles of the 
conditional distribution rather than the mean, it is more resistant to outliers than least-squares methods 
(Leider, 2012). The general form of the quantile regression function is specified as: 

1t tY X        With Quantτ (Yt |Xt-1) = Xt-1β   (7) 

 
where Quantτ (Yt |Xt-1) represents the τth conditional quantile (for this study we consider 0.10, 0.25, 0.50, 
0.75 and 0.95) of crop area and Xt-1 represents the set of independent variables lagged once. With this 
specification, quantile regression provides a flexible way for us to explain how a given quantile of crop area 
changes as a result of changes in previous maize prices and climatic variables.  
 
4. Results and Discussion 
 
ERS unit root test was conducted to examine the time series properties of the variables of study. The null 
hypothesis of a unit root is rejected for the climatic variables and the first-differenced price and crop area 
variables. Table 1 and Table 2 displays the results of the unit root tests for the price and crop area variables 
and climatic variables respectively. 
 
Table 1: ERS unit root test (with constant and trend) for price and crop area   

Variable Level Critical value First difference Critical value 
Price -0.155 (3) -3.166 -3.785 (2) -3.254 * 

Crop area -1.949 (3) -3.166 -3.467 (3) -3.170* 

Notes: values in parenthesis indicate the optimum lag length based on SBIC; "*" denote significance at the 5%. 
 
Table 2: ERS unit root test (with constant and trend) for rainfall and temperature  

Variable Level Critical value 

Rainfall -4.679 (3) -3.166* 

Temperature -2.741 (3) -3.166* 

Notes: values in parenthesis indicate the optimum lag length based on SBIC; "*" denote significance at the 5%. 
 
Table 3 displays the results of the acreage response function of maize. The R2 value explains about 46% of the 
variations in crop area per hectare. The test result of F-statistic shows the function to be well-behaved. The 
results show that the first lags of maize price and rainfall are significant in explaining the variations in crop 
area. This means that previous year maize price and previous growing seasonal rainfall has a significant 
impact on current year planting decisions. The results show that, if maize prices are to increase by 1% in the 
previous year, farmers will increase their current crop area by 0.29%. However, an increase in growing 
seasonal rainfall by 10mm in the previous year is expected to decrease crop area by 0.37%. Previous year 
temperature was found to have insignificant impact on current year planting decisions. A 1oC increase in 
growing season temperature last year causes a 5.6% increase in maize acreage planted this year. The positive 
effect of temperature on crop area indicates that farmers increase areas allocated to maize if temperature 
increases in order to compensate for yield losses and obtain the desired quantity. This result is consistent 
with the findings of Blanc, 2011. The author investigated the impact of climate change on crop production in 
Sub-Saharan Africa (SSA) and found that previous year average temperature has a positive and significant 
relationship with current cassava acreage planted.   
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Table 3: Acreage response function of maize in Ghana 
Response variable: log (crop area) in Ha   

Variable Coefficient P-value 
Intercept -1.074 (1.052)  0.314 

Log (crop price-1) 0.294 (0.074)  0.000* 

(Temperature-1) 0.056 (0.039)  0.161 

(Rainfall-1) -0.0037 (0.0017)  0.037* 

R2 0.46  

F statistic 9.79  0.000* 
Number of observation: 39 
Notes: standard errors in parentheses; * denotes significance at 1% level 
 
Table 4 displays the quantile regression results of crop area. The results show that maize supply responds 
differently to previous prices and climatic variables across the different quantiles of crop area distribution. 
Maize supply in the 10th quantile responds more to previous price changes compare to supply at the 95th 
(upper) quantile. At the median quantile (50th), 1% rise in previous maize price will increase maize supply by 
10% within that quantile. Furthermore, the effect of previous seasonal rainfall is positive at the lower 
quantile (10th) but negative at the upper quantile (95th). Across the different quantiles of crop area 
distribution, a 1oC rise in previous seasonal temperature will increase maize supply from 2% to 13%.  The 
quantile regression results show that, the positive effect of price increase is more profound for maize supply 
in the lower quantiles as compared to supply at the upper quantiles. Furthermore, the sensitivity of maize 
supply to changes in climatic variables differs across the different quantiles of crop area distribution. 
Similarly, Barnwal and Kotani (2010) using yield as a proxy for supply finds that rice supply to changes to 
temperature and rainfall differs significantly across the quantiles of yield distribution. 
 
Table 4: Quantile regression results using crop area as the dependent variable 
Variable Quantile regression results for crop area 

q10 q25 q50  q75 q95 
Intercept -2.79 (2.44) -0.10 (1.48) -0.19 (2.24) -1.54 (2.83) -2.29 (3.50) 
Log (crop price-1) 0.33 (0.17) 0.19 (0.18) 0.10 (0.17) 0.28 (0.17) 0.25 (0.12)* 
(Temperature-1) 0.08 (0.10) 0.02 (0.06) 0.01 (0.09) 0.07 (0.11) 0.13 (0.13) 
(Rainfall-1) 0.001 (0.004) -0.005 (0.003) -0.001 (0.003) -0.003 (0.002) -0.007 (0.002)* 
R2 0.17 0.13 0.06 0.18 0.59 
Number of observations: 39 
Notes: standard errors in parentheses; * denotes significance at 1% level. 
 
5. Conclusion 
 
The objective of this study is to study the effect of previous maize price and climatic variables on maize 
supply in Ghana. A lag model using the OLS technique and the quantile regression approach were employed in 
the study. The results of the lag regression model using the OLS technique reveal that previous maize price 
and rainfall significantly influences farmers maize supply decisions in Ghana.  Previous seasonal temperature 
was found to positively influence maize supply though insignificant. The quantile regression approach 
indicates that maize supply responds differently to supply determinants across the various quantiles of crop 
area distribution. In summary the mean effects obtained in the lag model using the OLS estimation, as well as 
the quantile effects tends to differ. Given the differences in response across the quantiles as well as the lag 
model using the OLS estimation technique, a holistic view of maize supply can only be obtained if the quantile 
regression is used together with the lag model using OLS estimation. The study recommends that major 
stakeholders and policy makers should establish price support policies in the agricultural sector. Future 
research will consider the sensitivity of the findings of this research to alternative estimation techniques and 
also extend our investigations to other crops. 
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APPENDIX  
Figure A: Graphical presentation of the Unit root test for maize crop area at level and first difference.  

 

 
 
Figure B: Graphical presentation of the Unit root test for maize price at level and first difference.  
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Figure C: Graphical presentation of the Unit root test for rainfall at level  

 
 
Figure D: Graphical presentation of the Unit root test for temperature at level  
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