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Abstract: The role of model complexity in asymmetric price transmission model selection is not well 
understood. In order to appreciate the role of model complexity in model selection performance, this study 
fits alternative asymmetric price transmission models that differ in complexity to simulated data and 
evaluates the ability of the model selection method to recover the true model. The results of Monte Carlo 
experimentation suggest that in general BIC, CAIC and DIC were superior to AIC when the true data 
generating process was the Manning Error Correction model (MECM). However, AIC was more successful 
when the true model was the Complex Error Correction Model (CECM). The tendency of the complex model 
(CECM) to over fit the relatively simpler true asymmetric data generating process (MECM) is minimized in 
larger samples. The research findings demonstrate the role of model complexity in asymmetric price 
transmission model comparison and selection. 
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1. Introduction 
 
Dynamics in price transmission has attracted considerable research interest among agricultural economists. 
Of particular interest is the issue of asymmetric price transmission. This recognition has led to the 
formulation of variants of econometric models to describe the phenomena. The various model specifications 
include Houck (1977), Manning (1991) and Von Cramon-Taubadel and Loy (1996). Fundamentally, these 
competing specifications differ in model complexity. The problem of selecting a model that best captures the 
underlying asymmetric price transmission process arises as more competing models become available. This 
issue of model selection has been investigated using information criteria. For example, Acquah (2010), Monte 
Carlo comparison of model selection methods finds that though the selection criteria points to the true model, 
their performance improved with increase in sample size and decrease in error variance. However, Acquah 
(2010) did not consider the influence of model complexity in asymmetric price transmission model selection 
analysis. Though the influence of model complexity in the selection of an asymmetric price relationship is not 
well understood, the issue has not received considerable attention. For instance, the issue of whether a 
complex asymmetric price transmission model will provide a better fit when the true data generating process 
is a simplier model remains unaddressed. Myung (2000) in a study of mathematical models of cognitive 
psychology asserts that the ability of the model selection methods to select the true model out of a set of 
competing models is influenced by model complexity and sample size. In effect he notes that the model 
selection methods are sensitive to model complexity. However, very little work has been done in the 
asymmetric price transmission modeling framework to ascertain the role of model complexity in asymmetric 
price transmission model selection. The thrust of this paper is to support the claim that, the model selection 
methods are sensitive to model complexity and demonstrate the role of complexity in asymmetric price 
transmission model selection. Specifically, asymmetric price transmission models which differ in complexity 
are used to investigate how model selection criteria are sensitive to complex models with the aid of simulated 
data. 
 
2. Literature Review 
 
Alternative models have been developed to study the asymmetric price transmission (APT) process.  Some of 
the commonly used asymmetric price transmission model includes those developed by Houck (1977), 
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Manning (1991), and Von Cramon-Taubadel and Loy (1996). Houck (1977) applies a simple but rigorous 
model to study irreversible supply functions. In the Houck’s approach, asymmetries are specified to affect the 
direct impact of price increases and decreases and do not take into account adjustments to the equilibrium 
level. Manning (1991) extended the Houck’s approach to include equilibrium relationship. The contribution 
by Manning (1991) emerged as he studied the relationship between retail price, excise duties and crude oil 
prices in the UK using monthly data over a period of 1973-1988. Retail prices were expressed as a function of 
crude oil prices and taxes. He suggested that in the presence of cointegrated variables, the residuals from the 
regression are stationary and can be introduced as an additional regressor. While Manning’s methodology 
test for asymmetries in the direct impact of a price increase and decrease, Von Cramon-Taubadel and Loy 
(1996) developed a method that focused on asymmetries in the adjustment to the equilibrium. The authors 
studied the relationship between retail and wholesale prices of pork in the German market, using weekly data 
over the period January 1990–October 1993.  Capps and Sherwell (2007) notes that though the alternative 
methods or models are continually used in analyzing price dynamics and testing for asymmetric adjustments 
to derive policy conclusions, they remain incompatible with one another and may result to differences in 
inference and conclusions. This necessitates the need to apply an objective set of criterion to choose amongst 
the different models given a particular data. In support, Manera and Frey (2007) assert that no attempt has 
been made to address the issue of which of the various asymmetric price transmission models is most reliable 
or fits a given data set better, despite the numerous empirical research undertaken. In effect, there has been 
very little basis for choosing between the different methods. However, model selection methods such as 
Akaike and Bayesian Information Criteria (Akaike, 1973 and Schwarz, 1978) and their analytical extensions 
provide a basis for choosing between asymmetric price transmission models. Acquah (2010) notes that the 
model selection methods do points to the true data generating process in asymmetric price transmission 
analysis. However, Acquah (2010) fails to examine the effect of complexity on model selection performance in 
asymmetric price transmission analysis. 
 
3. Methodology 
 
The methodology describes the asymmetric price transmission models employed in the study, the model 
selection methods and the simulated data generating process of the study.  Asymmetric price transmission 
models such as the Manning’s model, Von Cramon-Taubadel and Loy Model and the Houck’s model are 
emphasized. The model selection technique emphasizes the Akaike and Bayesian Information Criteria and 
their analytical extensions. 
 
Asymmetric Price Transmission Models (APT): The Manning (1991) Error Correction Model (ECM) data 
generating process (DGP) can be specified as follows:  
 

, 1 , 1 , 1A t B t B t tP P P ECT    

             
2(0, )N                            (1) 

 

,B tP  and ,B tP   are the positive and negative changes in ,B tP . Asymmetric behavior is then measured by 

allowing the speed of adjustment to differ for the positive and negative components of ,B tP . Symmetry in 

equation (1) is detected using an F-test of the null hypothesis that the coefficients ( 1

 and 1

  ) are identical 

(i.e. 0 1 1:H    ). Noticeably, Manning (1991) does not segment the Error Correction Term into positive 

and negative components. 
 
Von Cramon-Taubadel and Loy (1996) propose a complex asymmetric Error Correction Model data 
generating process which can be specified as follows:  
 

 , 1 , 1 , 1 2 1A t B t B t t tP P P ECT ECT        

             
2(0, )N      (2)                                                    

 



159 

 

where ,B tP  and ,B tP   are the positive and negative changes in ,B tP  . The Error Correction Term (ECT) is 

partitioned into positive and negative deviations resulting in the asymmetric error correction model defined 
in equation (2) .    Where,                                                   

1 1t tECT ECT

     if    
1 0tECT     and 0 otherwise, and 

1 1t tECT ECT

   if     
1 0tECT      and 0 otherwise. 

 
Asymmetric behavior is then measured by allowing the differing speed of adjustments for the positive and 
negative components of the Error Correction Term (ECT) since the equilibrium relationship captured by the 
ECT was implicitly symmetric, Cook, Holly and Turner (1999).  
 

Noticeably, a formal test of the asymmetry hypothesis using equation (2) is: 
0 1:H  

   and  

2

 

   . In effect, asymmetric behavior is assessed by a joint F-test. 

 
The Houck’s data generating process can be written as follows: 
 

, 1 , 1 ,A t B t B t tP P P                                  
2(0, )t N              (3) 

where ,B tP  and ,B tP   are the positive and negative changes in ,B tP . Symmetry is tested by determining 

whether the coefficients (
1


 and  
1


 ) are identical (i.e. 0 1:H  

  ). 

 
Model Selection Criteria: In asymmetric price transmission applications, multiple models are often 
considered. The aim of asymmetric price transmission is to choose one of the models based on information 
criteria. Information criteria provide an attractive basis for model selection. Various information criteria have 
been developed. Generally, these model selection methods adjust for a variation in the number of parameters 
among models, essentially penalizing models with additional parameters. They include the Akaike 
information criterion (AIC; Akaike, 1973); Consistent Akaike information criterion (CAIC; Bozdogan, 1987); 
the Bayesian information criterion (BIC; Schwarz, 1978); and the Draper's Information Criteria (DIC; Draper, 
1995). The model selection methods are specified as follows: 
 

2log( ) 2AIC L p                                                                 (4)         

2log( ) [(log ) 1]CAIC L p n                                                     (5)        

2log( ) log( )BIC L p n                                                      (6)       

2log( ) log( / 2 )DIC L p n                                        (7)                 

                                                                                                                                                      

Where L  refers to the likelihood under the fitted model, p  is the number of parameters in the model and n  

is the sample size. Models that minimize the AIC, BIC, CAIC and DIC are selected. AIC differs from CAIC, BIC 
and DIC in the second term which now takes into consideration sample size n . Thus CAIC, BIC and DIC allows 

for asymptotic consistency. 
 
Data Generating Process: The study uses artificial data. This study draws from the experimental design of 
Holly et al  (2003) and Acquah (2010) and specifies the Manning ECM (MECM) and complex Von Cramon-
Taubadel and Loy ECM (CECM)  data generating process as follows and with an error variance of  1. 
 
 

, , , 10.25 0.75 0.50A t B t B t tP P P ECT 

                                                         (8) 
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, , , 1 10.95 0.20 0.25 0.75A t B t B t t tP P P ECT ECT   

                            (9) 

 
The variables in the model remain as defined previously under the asymmetric price transmission models. 
 
4. Results and Discussion 
 
In order to simulate the effects of sample size and model complexity on model selection, this study considers 
three sample sizes ranging from small to large corresponding to 50, 150 and 500. Using an error size of 1, the 
data was generated from the Manning Error Correction Model (MECM) specified in equation (8). The results 
of the Monte Carlo simulations comparing the performance of the model selection methods are displayed in 
Table 1. It is essential to note that all recovery rates are derived using 1000 Monte Carlo simulations. In effect, 
the amount of samples in which each model fits better than the other competing models is measured out of 
the 1000 samples and expressed as a percentage. In this context, the values derived from each model by 
selection methods are derived as the arithmetic mean based on 1000 samples. For the purpose of brevity, the 
Manning asymmetric error correction model, the complex asymmetric error correction model and the 
Houck’s model are denoted by MECM, CECM and HKD respectively. 
 
Table 1: Relative Performance of Model Selection Methods across Sample Size 

Sample Size            Model Fitted   

50   CECM HKD MECM(DGP) 

  Methods       

  AIC 118(18.6%) 125 ( 5.8% ) 117   (75.6%) 

  BIC 126 (5.9%) 130 (15.1%)  124 (79 %) 

  CAIC 129 (3.2%) 130 (20.9%) 125   (75.9%) 

  DIC 129 (4.6%) 131(14.1%) 126   (81.3%) 

150   CECM HKD MECM(DGP) 

  Methods       

  AIC 402      (15%) 431 (0%) 401   (85 %) 

  BIC 416      (2.7%) 440 (0 %) 412   (97.3%) 

  CAIC 417      (1.6 %) 439 (0.2%) 413   (98.2%) 

  DIC 419      (2 %) 441 (0.1%) 414   (97.9%) 

500   CECM HKD MECM(DGP) 

  Methods       

  AIC 1396     (14.9%) 1503 (0%) 1395 (85.1%) 

  BIC 1417     (0.9 %) 1515 (0%) 1411 (99.1%) 

  CAIC 1416     (0.5%) 1513 (0%) 1410 (99.5%) 

  DIC 1419     (0.7%) 1517 (0%) 1413(99.3%) 
Based on 1000 Replications 
 
Generally, inspection of the recovery rates for the different model selection criteria illustrates the extent to 
which the true model (MECM) is recovered by each selection criteria across the different sample sizes. In the 
small sample size of 50, at least 75.6 percent of the true model was recovered across the model selection 
methods in the top part of Table 1. At a sample size of 500, at least 85.1 percent of the true model was 
recovered by the model selection methods. The results also indicates that though the data generating process 
was the Manning error correction model, the model selection methods demonstrated a tendency to select the 
complex model even in large samples as indicated in Table 1. This may be partly due to its flexibility.  For 
example, in large samples, AIC, CAIC, BIC and DIC demonstrated a tendency to select the complex model with 
recovery rates of 0.5 to 14.9 whilst the relatively simple Houck’s model was not selected. However, the over 
fitting effects of the comparatively complex model (i.e. CECM) was greater in small samples but became less 
dramatic as sample size increases from 50 to 500. Similarly, in an application of model selection methods in 
cognitive psychology, Myung (2000) notes that the tendency of relatively complex models to over fit a simple 
true data generating process completely disappears in larger samples. An inference drawn here is that the 
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tendency of relatively complex models to over fit a simple true asymmetric data generating process will be 
minimized in larger samples.  
 
In comparison with the small sample recovery rates, model recovery of the true model improved significantly 
when the sample size was large. Despite differences in performance among the model selection criteria, 
trends holding across the different criteria were evident in the simulation results. In effect, the performance 
of the model selection methods to select the true model (i.e. recovery rates of MECM) generally increased 
with increases in sample size from 50 to 500. However, some distinct patterns can also be identified in Table 
1. First, the model selection methods which takes into consideration sample size (CAIC, BIC, and DIC) 
performed similarly to one another with their recovery rates varying strongly as a function of sample size. 
Second, AIC did not make substantial gains in model recovery as sample size increased from small to large. At 
large sample size, AIC exhibited a stronger propensity to select complex models. This tendency is observed in 
the bottom part of Table 1 above where CECM is selected with a recovery rate of 14.9 percent whilst the CAIC, 
BIC, DIC selected the most complex model with a range of (0.5-0.9 percent). These observed patterns in the 
current study are consistent with previous studies on model selection. For example, Ichikawa (1988)’s 
simulation results in a factor analysis indicated that the ability of AIC to select a true model rapidly increased 
with sample size but at larger sample sizes it continued to exhibit a slight tendency to select complex models. 
Similarly, in a review of existing work on factor analysis, Markon and Krueger (2004)  notes that AIC 
performs relatively well in small samples but is inconsistent and does not improve in performance in large 
samples whilst  BIC in contrast appears to perform relatively poorly in small samples, but is consistent and 
improves in performance with sample size. Fishler et al. (2002) also investigated the performance of BIC in a 
factor analysis and their results suggest that BIC performs poorly at small sample sizes, but improves with 
increasing sample size to eventually choose the correct model with perfect probability. Third, the CAIC, BIC 
and DIC outperformed AIC across the various sample sizes given the Manning error correction model data 
generating process. In order to simulate the effects of sample size and model complexity on model selection, 
this study employed three sample sizes ranging from small to large corresponding to 50, 150 and 500. Using 
an error size of 1, data is generated from the Complex Asymmetric Error Correction Model (CECM) specified 
in equation (9). The results of the Monte Carlo simulations comparing the performance of the model selection 
methods are displayed below in Table 2.  
 
Table 2: Performance of Selection Methods across Sample Size 

Sample Size            Model Fitted   

50   CECM (DGP) HKD MECM 

  Methods       

  AIC 118   (42.2%) 126   (4.7%)  119   (53.1%) 

  BIC 126   (25.5%) 131 (14.3%) 125   (60.2%) 

  CAIC 129   (17%) 131 (20.7%)  127   (62.3%) 

  DIC 129   (21.8%) 132 (16.8%) 127   (61.4%) 

150   CECM (DGP) HKD MECM 

  Methods    

  AIC 402   (78.8%) 435   (0%) 406   (21.2%) 

  BIC 416   (53.1%) 444   (0 %) 418   (46.9%) 

  CAIC 417   (44.4%) 443   (0 %) 418 (55.6%) 

  DIC 419   (48.3%) 445 (0%) 420 (51.7%) 

500   CECM (DGP) HKD MECM 

  Methods    

  AIC 1396 (99.8%) 1517   (0%) 1412   (0.2%) 

  BIC 1417   (95.7%) 1529   (0%) 1429   (4.3%) 

  CAIC 1416   (93.7%) 1527   (0%) 1428   (6.3%) 

  DIC 1419   (94.8%) 1531   (0%) 1431   5.2%) 

Based on 1000 Replications           
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Generally, the performance of the different model selection criteria as the sample size increases are similar to 
those observed when the data was simulated from the Manning asymmetric ECM. The ability of the model 
selection methods to recover the true model (DGP) generally increased with sample size as shown in Table 2. 
A comparison of the performance patterns of the model selection criteria illustrates that when the true model 
is complex, AIC persistently outperforms CAIC, BIC and DIC across moderate and large sample sizes.  It is 
important to note that this is not the case when the true model was the Manning asymmetric ECM. Using a 
small sample of 50, the top part of Table 2 indicates that AIC recovers 42.3 percent of the true data generating 
process whilst CAIC, BIC, and DIC recovered between 17% to 25.5% percent of the true model.  In large 
samples of 500, AIC achieve recovery of 99.8 percent whilst CAIC, BIC and DIC recovered between 93.7 to 
95.7 percent when the true data generating process is complex. These results indicate that AIC persistently 
outperforms the other model selection methods when the true data generating process is complex. This is 
consistent with previous studies. For instance, Lin and Dayton (1997) find that AIC was superior to BIC when 
the true model was relatively complex (i.e. complexity is based on the number of parameters). Improved 
performance of the model selection methods when the true model is complex suggest that model complexity 
influence the performance of the model selection methods. An essential point is that comparatively, AIC 
performed better when the true asymmetric data generating is relatively complex (CECM) and the sample 
size is large than when the true data generating process is the Manning error correction model (MECM) and 
the sample size is large. This is noted when the recovery rates of Table 1 are compared with Table 2 under 
sample size of 500. For instance, under a sample size of 500, AIC achieved 99.8 percent recovery of the true 
model when the data generating process is complex but achieves 85.1 percent recovery when the true model 
is the Manning asymmetric error correction model (MECM). In summary, the model selection methods 
performed reasonably well in identifying the true model, though their ability to recover the true asymmetric 
data generating process increases with increase in sample size as illustrated in Tables 1 and 2. Intuitively, the 
results points to the fact that the sample sizes are important in the selection of the true asymmetric data 
generating process during price transmission analysis. Generally, larger sample sizes might improve the 
ability of the model selection methods to make correct inferences about asymmetric price transmission 
models. Another factor that may influence the performance of the model selection methods is model 
complexity or the number of asymmetric adjustment parameters. In large samples, AIC outperforms, CAIC, 
BIC and DIC when the true asymmetric data generating process is the complex error correction model. 
Improved model recovery rates of AIC when the true model is complex suggest that model complexity 
influence the performance of the model selection methods.  
 
5. Conclusion 
 
The fundamental assertion of this paper is that the performance of the model selection methods may be 
sensitive to model complexity in asymmetric price transmission modeling context. This study therefore 
examined the role of model complexity in model selection performance by fitting models that differ in 
complexity to simulated asymmetric data and evaluated the ability of the model selection method to recover 
the true model. The Monte Carlo experimentation results indicated that in general BIC, CAIC and DIC were 
superior to AIC when the true data generating process was the Manning error correction model, whereas AIC 
was more successful when the true model was the complex error correction model. This result suggests that 
AIC has a tendency to select more complex asymmetric price transmission models. Furthermore, the 
tendency of the complex (CECM) model to over fit the relatively simpler true asymmetric data generating 
process (MECM) is minimized in larger samples. 
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