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ABSTRACT 

The Minimum Description Length (MDL) provides an attractive basis for 

statistical inference and model selection. However, little is known about the 

relative performance of its different formulations in Asymmetric Price 

Transmission (APT) modelling framework. To explore these issues, the study 

investigates different formulations of the MDL against commonly used 

alternatives (AIC and BIC) in terms of their ability to recover the true 

asymmetric data generating process (DGP) under various models, error sizes, 

asymmetric adjustment parameters and sample size conditions. Monte Carlo 

simulations results indicate that the performance of model selection method 

depend on sample size, level of asymmetry, noise levels and model 

complexity. The results further indicate that the different formulation of MDL, 

AIC and BIC all points to the true data generating process and clearly 

identifies the true model. In larger samples, rMDL is comparable to BIC and 

outperforms gMDL, nMDL, eMDL and AIC. At higher noise levels, AIC is 

comparable to eMDL and  outperforms gMDL, nMDL, rMDL and BIC. AIC 

is comparable to nMDL and outperforms rMDL, gMDL, eMDL and BIC at 

strong levels of asymmetry. Empirically, application of a more complex model 

or increase in the number of asymmetric adjustment parameters improves the 

recovery of the true data generating process by the model selection methods. 

These results suggest that MDLs are very reliable and useful criteria in 

Asymmetric Price Transmission modelling. To achieve optimal APT linear 

models, one should always aim at stronger levels of asymmetry, lower noise 

and moderate to large samples.  
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CHAPTER ONE 

INTRODUCTION 

Model selection uses information criteria to achieve its goal and some 

new or different formulations of the old and popular methods are making great 

strides as researchers continue to find ways to choose the best model. This 

chapter seeks to provide guidance through the subject matter, emphasize the 

need for this study and states the objectives that will be worked on so as to 

make a meaningful contribution to knowledge.   

 

The Background of the Study  

Breiman (2001) explained that the extraction of information about a 

principal structure producing the data and the prediction of responses for 

future regressor variables are the two goals of analysing data. Modelling 

statistical data is a step in achieving these goals and so that the pattern in the 

observed data are revealed. Sampling is done from statistical populations from 

which data are drawn across a wide variety of disciplines. 

Every population is distinctly associated with a probability distribution 

and an underlying method is estimated from data based on the specified family 

of distribution models. The performances of the competing models are then 

assessed and the best one selected. “The best model would have high 

prediction performance, and could illustrate which predictor variables are 

important and how these predictors affect the response of the underlying 

system” (Breiman, 2001). Stability, efficiency and consistency are used to 

evaluate the performance of the selection methods. To select the models, an 

algorithm is developed to create candidate models and also find a criterion for 
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classifying the contending models. Thus, the answer lies in information 

theory.  

Information theory is a basic data communication tool which relates to the 

methodological methods that encode a signal for transmission, and the code 

gives a statistical description of the message produced. In reference to the 

work of the American electrical engineer Claude Shannon in the mid-twentieth 

century, information theory is also defined as a mathematical representation of 

the parameters and conditions affecting the processing and transmission of 

information. Information theory makes statistical inference and model 

selection very attractive (Markon & Krueger, 2004). However, not much is 

known in relation to the comparative performances of different Information-

Theoretic Fit Criteria (ITFC) in certain areas of research such as linear models 

of econometric price transmission and asymmetric price adjustments. 

Asymmetric Price Transmission (APT), informally called "rockets and 

feathers" occurs in price analysis when a decrease in price responds differently 

to an increase in price change, and this behaviour is dependent on the 

characteristics of changes in those prices (Meyer & Von Cramon-Taubadel, 

2004). A typical example is when transportation fares increase quickly 

whenever prices of fuel increase, but the fares take time to decrease after fuel 

price decreases. 

APT is said to occur when the regulation of prices is not consistent with 

respect to external or internal characteristics to the system (Tappata, 2008). 

Other examples explaining this asymmetric phenomenon include: 

 Increases in prices of raw materials or farm produce lead to immediate 

increases in processed good or by-product prices, but decreases in 
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prices of raw materials slowly or do not equally translate into decrease 

in prices of processed goods. This asymmetry is referred to by 

Wlazlowski (2003) as time asymmetry, or 

 The combination of the time asymmetry and the size asymmetry such 

that, in a situation when increases in prices of raw materials lead to 

bigger changes (in absolute values) in prices of finished goods than 

decreases. Notably, size asymmetry cannot occur on its own, otherwise 

price increases and price decreases would drift apart (GAO, 1993). 

The consequences of the aforementioned (Peltzman, 2000) are that, the 

issue of APT has serious considerations in economic works. This is because it 

violates the theory of perfect competition and monopoly, and also market 

dynamics such as size, worldwide reliance on some products (e.g. oil) and the 

average household expenditure on some products. APT is therefore an 

important welfare problem and this has serious political and social 

implications. 

Evidently, asymmetry is a subject of concern for linear econometric 

models and the way forward is to solve the problem with information criteria. 

Some information-theoretic fit criteria have been used extensively (the popular 

and widely used ones and their various extensions), yet other numerous 

information criteria exist and are yet to be explored. Thus, the relative neglect 

of some (effective but not popular) ITFC in research is especially relevant to 

asymmetric price transmission (APT) modelling, where ITFC have 

conventionally played an essential role in selecting models. In price analysis, 

different methods identify asymmetry at alternate rates which results in 

unrelated inferences and conclusions (Meyer & Von Cramon-Taubadel, 2004; 
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Capps & Sherwell, 2007). Nonetheless, the aim of APT modelling is to choose 

a particular model which best identifies the underlying asymmetric DGP 

among contending models (Acquah & Von Cramon-Taubadel, 2009). This 

stimulates the interest in model selection methods. A commonly used criterion 

today is the Akaike’s Information Criterion (AIC), which in some sense has 

become the “standard” (Akaike, 1973). However, another criterion is Bayesian 

Information Criterion (BIC) (Schwarz, 1978, Acquah & Von Cramon-

Taubadel, 2009), which also proved to be a good model selection tool. These 

two aforementioned criteria are built on the premises of crediting models that 

explains the data well, while penalizing complex models.  

The field of information theory has recently developed a new model 

selection technique, called the Minimum Description Length (MDL) principle. 

MDL is a principle of data compression. The basic idea is that understanding 

data is the same as finding a structure in it and thus being able to compress it. 

The reasoning behind this is that there is a one-to-one correspondence between 

code lengths in MDL and probabilities. In other words, there is no difference 

in maximizing a probability and minimizing a code length (Grünwald, 2007). 

The main idea behind this criterion, though much like the two others, is to find 

a simple, but best model that describes the data well. Consequently, there is a 

relationship between this goal and that of Asymmetric Price Transmission 

modelling mentioned earlier (i.e. selection of a particular model that best 

captures the true DGP among a group of  contending models which leads to  

proper strategic deductions).  

This idea of parsimony is not new; it can at least be traced back to the late 

thirteenth to early fourteenth century to scholar William of Ockham and the 
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more popular Ockham’s razor principle that has been named after him. He has 

been said to have stated that “it is vain to do with more what can be done with 

fewer.” (Li & Vitányi, 1997, p. 317) Ockham’s razor is a philosophical 

principle of parsimony. It, roughly speaking, states that when deciding 

between two equally plausible theories of how something works, one should 

settle for the one that is simpler (Britannica, 2016). Implicitly, the principle of 

parsimony inspires the method of data analysis and statistical modelling, and it 

is also the soul of model selection. In the past, the need for selecting a model 

arises when researchers have to choose among the model classes based on 

data. MDL stems from an algorithmic or descriptive complexity theory of 

Kolmogorov, Chaitin and Solomonoff (Li & Vitanyi, 1997). The new 

classification of probability based on the length of the shortest binary 

computer program that describes an object (the descriptive complexity of the 

object) came about due to the desire to study the association between 

“mathematical formulations of randomness and their application to real world 

phenomena” (Li & Vitanyi, 1997). 

MDL is based on the same kind of philosophy, where a short description 

of a phenomenon is preferred to a long description. In the words of Rissanen 

(2007) “the principle is very general, somewhat in the spirit of Ockham’s 

razor, although the latter selects the simplest explanation among equivalent 

ones, while the MDL principle applies to all explanations of data whether 

equivalent or not”. 

There are several ways of modelling the data at hand, but in MDL, one is 

interested in the model generating the shortest code length (Grünwald, 2007). 

The model that provides the shortest code length is considered to be the “best” 
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model. Whether or not this is done using the “true” distribution is irrelevant 

(Grünwald, 2007). It is important to remember that, as Grünwald eloquently 

expresses it: “MDL is a methodology for inferring models from data, not a 

statement about how the world works!”  

One major challenge is the inadequate knowledge of ITFC in APT 

modelling and this is coupled with poor understanding of how they work 

within econometric models. Emphasis is on criteria that use software or 

programming language to develop the algorithms. The underlying principle of 

ITFC is to choose the simplest statistical model that gives the true description 

of the data and model. Precisely, ITFC accentuate the amount of information 

required to be the most minimal. Thus, the most efficient and simplest model 

is selected.  

 

Statement of the Problem 

Price transmission and asymmetric adjustment analysis has come a long 

way in areas of model testing, specification and estimation (Acquah & Von 

Cramon-Taubadel, 2009) and econometric models of APT are no exceptions. 

Among these models are Wolfram’s specification econometric model (1971) 

which was later improved by Houck (1977), the error correction model (Von 

Cramon-Taubadel, 1998) and models with a threshold (Cook, 2003; Goodwin 

& Serra, 2003; Cook & Holly, 2002; Abudulai, 2002; Goodwin & Piggott, 

2001; Goodwin & Harper, 2000; Goodwin & Holt, 1999; Enders & Granger, 

1998; Balke & Fomby, 1997; Tsay, 1989;). Although, these models have been 

applied extensively in APT modelling framework, there is still the discrepancy 

in determining which is most suitable and under which conditions. 
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The variant of the Houck’s model, restricted to the pre-cointegration 

setting, contains description in first and recursive sum of first differences. The 

post-cointegration approaches identify modifications of the Error Correction 

Models (ECM) which comprises the Standard ECM (Von Cramon-Taubadel, 

1996, 1998; Granger & Lee, 1989) and a Complex ECM (Von Cramon-

Taubadel & Loy, 1996). Furthermore, various authors (Cook, 2003; Meyer, 

2003; Hansen & Seo, 2002; Abdulai, 2002; Goodwin & Piggott, 2001) also 

stipulated variants of the threshold model. 

Despite the aforementioned, different methods or models are constantly 

used to analyse price dynamics and test for asymmetric adjustments in 

deriving policy conclusions; they remain discordant with each other which 

might lead to differences in interpretation and conclusions. Von Cramon-

Taubadel and Loy (1999) thus extended the application of the asymmetric 

ECM for cointegrated data and established that the ECM was more suitable 

than using the conventional Houck approach. Subsequently, Capps and 

Sherwell (2007) in a related work found that the inference and conclusions 

derived from the Von Cramon-Taubadel and Loy ECM approach were 

different from the conventional Houck’s approach and their empirical 

application. This supports the assertion that variant selection methods do point 

to different deductions.  

Furthermore, another challenge is that researchers use uncommon 

objectives in choosing the different approaches under different conditions. 

Consequently, the absence of arduous and mutual objectives of criteria used in 

selecting the models is insufficient in deriving solutions of problems of APT. 

In a related study, Meyer and Von Cramon-Taubadel (2004) also 
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demonstrated that different methods detect asymmetry at different rates. 

Accordingly, this study uses artificial data to demonstrate that different 

methods detect asymmetry at different rates to support Meyer and Von 

Cramon-Taubadel (2004), Acquah and Von Cramon-Taubadel (2009) among 

others.   

Another issue raised by Manera and Frey (2007) was that no attempt has 

been made (specifically using MDL principle and perhaps some less known 

information criteria) to solve the problem of which of the various APT models 

are mostly consistent or better fits a given dataset, notwithstanding numerous 

empirical studies carried out. This implies, very little basis exists for selecting 

the alternate approaches. Also, different predispositions to data irregularities 

(that is the impact of structural break on the measures of asymmetry) 

meticulously explained in the work of Von Cramon-Taubadel and Meyer 

(2000) exist.  

Amid several contending existing models and the ability to develop new 

ones and not giving account of choice of the statistical model, it is obvious 

that the issue of choosing a credible process from different asymmetry tests 

using model selection criteria is an important methodological issue within the 

econometric models of APT.  

This study fills the gap by addressing the methodological issues of model 

comparison and selection of the different econometric models of APT. The 

contribution of the study to knowledge lies in theoretically introducing and 

developing the MDL principle in the analysis of the APT models and 

establishing their use across different APT methods or model specifications 

during model selection. This entails the establishment or use of MDL criterion 
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as efficient model selection criterion to decide between the different methods 

of testing for asymmetry. Verifiably, this study estimates and compares the 

performance of model selection algorithms in an APT modelling framework.  

Although, AIC and BIC have been widely used and are popular among 

Asymmetric Price Transmission modelling framework, other ITFC (e.g. KIC, 

RIC, etc.) clearly outperform them. Variants of the MDL principle (nMDL, 

rMDL, eMDL, gMDL) were extensively reviewed and they are performing 

better than AIC, BIC and their extensions in other areas of research. 

Empirically, MDLs have been applied in areas of regression, non-parametric 

curve estimation, cluster analysis, time series analysis, structural equation 

modelling, and graph theory, among others.  

Theoretically, the MDL principle measures codes instead of probabilities 

by generating the shortest code length which implies that the best model, 

irrespective of whether a true distribution exists (BIC) or the estimated model 

fits well (AIC), is irrelevant. Fowler et al. (2011) established that the MDL 

principle is robust and does not follow any distributional assumptions. Thus, 

the MDL principle provides a criterion for selection of models, regardless of 

their complexity, without the restrictive assumption that the data is a sample 

from a “true” distribution. Furthermore, the MDL principle aside removing 

noise is also a natural safeguard against overfitting. The aforementioned 

evidently emphasize the various contributions that MDLs can make in the 

advancement of model selection in any discipline. 

Thus, the research contribution is not restricted to the introduction and 

application of the MDL principle, but extends the empirical comparison of 
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some model selection methods (AIC, BIC to MDL) in an asymmetric price 

transmission modelling framework for which no studies have been undertaken.  

 

Research Objectives 

The general aim of this study is to introduce and demonstrate the 

usefulness of MDL principle in model selection across asymmetric price 

transmission models. This involves evaluating the performance of the 

formulations of MDL in comparison to AIC and BIC in the APT modelling 

framework. 

 

Specific Objectives 

Specifically, this research seeks:  

1. To develop and implement the MDL principle to asymmetric price 

transmission linear model. This involves the development of MDL 

(rMDL, eMDL, nMDL and gMDL) computational algorithms using R 

programming language. Thus, the R-functions were developed for the 

various formulations of the MDL in the context of APT models. 

2. To submit selected econometric models of asymmetric price 

transmission to an MDL model selection technique by:  

(a) Evaluating the performance of Information Criteria (Various types 

of MDL, AIC, BIC) in identifying the true asymmetric data generating 

process.  

(b) Demonstrating the conditions which improve the ability of 

information criteria to recover the true asymmetric data generating 

process in a Monte Carlo Experimentation under various conditions. 
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Thus, (a) and (b) will be examined under conditions of sample size, 

difference in asymmetric adjustment parameters, model complexity and 

stochastic variance across all study samples using 1000 Monte Carlo 

Simulations.  

 

Limitations and De-limitations 

 Essentially, simulation method is used in generating data which is 

based on parameters used from experimental designs of renowned researchers 

(Acquah & Von Cramon-Taubadel, 2009; Holly et al., 2003). The objective of 

this simulation is brought to bear in the concept of “repeated samples” and this 

is important because this study is generally interested in the inference (like 

most researchers all over the world). That is, one does not simply want to 

describe what is going on in the one sample data we have at hand, rather one 

wants to be able to generalize the patterns found in sample data to all of the 

observations that could have been in the sample. 

The concept of “repeated samples” is just theoretical or hypothetical 

and with limited resources, we cannot administer the same survey many times 

to different sample. In fact, if sufficient funding to field surveys to multiple 

samples was available, most researchers would either just increase their 

sample size initially to avoid repetition and use different questions (Carsey & 

Harden, 2014). However, in other cases, collecting another sample may be 

impossible (for instance, we cannot create a new set of regions to collect 

economic data from 1957). 

Monte Carlo simulation solves this problem in that, it allows the 

analyst to easily create many samples of data in a computing environment, and 
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then assess patterns that appear across those repeated samples. Hence, this 

research used simulated data and Monte Carlo simulation to help us examine 

the extent to which the correct model is selected since the true data generating 

process is known in the repeated samples. 

  

Organisation of the Study 

The research is contained in five chapters. Chapter One, the 

introduction of the study comprises the background, research problem and its 

significance, research objectives, limitation and de-limitation of the study. 

Scholarly literature was reviewed in the second chapter which looked at 

contributions so far made with information criteria (AIC, MDL, BIC and a few 

others) used as tools of model selection. Emphasis was laid on MDL though 

not popular, yet gaining grounds in other disciplines and performing better. 

The third chapter discussed the theoretical overview of concepts employed in 

this study. Firstly, an empirical comparison of the overview of information 

theoretic criteria and how they are related structurally was emphasised.  Then, 

the theory behind the minimum description length was also discussed and 

linked to statistical model building and model selection in linear regression. 

The last section gave an overview of asymmetric price transmission (APT) 

linear models and examined the econometric models of APT and their 

different methods or formulations employed in practise. Subsequently, in the 

fourth chapter, R-functions were developed for the MDL algorithms (first time 

ever) and the remaining model selection criteria and all APT models that 

would be used in this research. Further, R-codes were written for all 

computation and simulations that were carried out to achieve the objectives of 
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this study. Then, finally the results of all analysis were presented and 

discussed. The last chapter, Chapter Five, presented the summary of all 

chapters in this work, conclusions drawn to that effect and some useful 

recommendations given.  

 

Chapter Summary 

An extensive background to the study was discussed across the 

dimensions of the goal of statistical modelling, information theory and 

asymmetric price transmission. Specifically, emphasis was laid on 

characteristics of price input and output amid welfare considerations in the 

light of price asymmetry. 

AIC and BIC were identified as commonly used Information-Theoretic 

Fit Criteria in the field of econometric APT modelling framework. It is also 

emphasized although not popular with APT models, the Minimum Description 

Length (MDL) criterion, based on the principle of data compression and 

parsimony, were extensively used in other areas of research. 

The study mentioned problems of discordancy in alternative methods 

constantly used to analyse and test APT models and hence leading to 

differences in interpretations and conclusions. Also researchers do not appear 

to use a common objective set of criteria to choose the different approaches 

employed in different settings. Therefore, this research introduces MDL and 

compares it with common alternatives to address the methodological issues of 

model comparison and selection in the alternative econometric models of 

APT. 
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The problem of “repeated samples” will be solved by generating data 

through simulation. Thus, the researcher is able to create many samples of data 

in a computing environment and then assess patterns that appear across those 

repeated samples. The study is organized into five chapters.  
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CHAPTER TWO 

LITERATURE REVIEW 

Introduction 

This chapter discusses the contributions of other researchers regarding 

the introduction and performance of information theoretic fit criteria with 

emphasis on Minimum Description Length Principle (MDL) in areas of 

modelling.  

 

Information Theoretic Fit in Model Selection 

Research is the pillar of problem solving through the collection of 

information in the form of data which is analysed for further inference. The 

question is how does one decide among competing explanations of data given 

limited resources? This is the problem of model selection. It stands out as one 

of the most important problems of inductive and statistical inference. 

Mathematically, a statistical model is defined as a set of probability 

distributions on the sample space (Cox & Hinkley, 1974). The practice of 

statistical modelling undergoes continual transformation as a result of both 

methodological developments and progress in the computing environment. 

The high-performance computers facilitate widespread advances in the 

development of statistical modelling theory to capture the underlying nature of 

a phenomenon. It is evident that the amount of information has been 

increasing both in size and variety, thanks to recent advancement in science 

and technology. With the advancement of computers and the information age, 

the challenge of understanding vast amounts of complicated data has led to the 

development of various types of statistical models.  
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Myung (2000) in his research entitled, ‘the importance of complexity 

in model selection’, highlighted the fact that model selection should not only 

be based on goodness-of-fit, but must also consider model complexity. The 

author argued that in cognitive psychology, the goal of mathematical 

modelling is to select one model from a set of competing models that best 

captures the underlying mental process but choosing the model that best fits a 

particular set of data will not achieve this goal. He explained further that a 

highly complex model can provide a good fit without necessarily bearing any 

interpretable relationship with the underlying process. The study showed that 

model selection based solely on the fit to observed data will result in the 

choice of an unnecessarily complex model that overfits the data, and thus 

generalizes poorly. He also used artificial data to explain selection methods. 

The study concluded that, to avoid selecting a powerful model, with little 

scientific significance, model selection should not be based solely on a 

model’s ability to fit a particular sample data but instead should be based on 

its ability to capture the characteristics of the population; that is, its ability to 

generalize, and this leads to the correctness of the model. 

There has been widespread use of information theoretic fit criteria, also 

known as information criteria, over many decades which take care of model 

complexity. Most researches do prefer information criteria (like AIC, BIC, 

DIC, MDL, etc. and their various extensions) in model selection. Comparison 

tests (such as the likelihood ratio, Lagrange multiplier, or Wald test, etc.) are 

only appropriate for comparing nested models, whilst, information criteria are 

model selection tools that can be used to compare any model fit to the same 

data. Despite their theoretical appeal and widespread use, there has been few 
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empirical investigations of the performance of information-theoretic criteria 

(especially) in most areas of research (e.g. structural equation modelling and 

asymmetric price transmission analysis). Even fewer investigations have 

compared the performance of different information-theoretic criteria, or 

examined the performance of information-theoretic criteria with regards to 

price models in particular. Most comparisons of information-theoretic criteria 

have focused on their use with generalized linear models (Acquah, 2010), and 

have focused on comparisons between AIC, BIC, Deviance Information 

Criterion (DIC), CAIC, Kullback Information Criterion (KIC), Residual 

Information Criterion (RIC), and many others.  

 

Contributions of Information Criteria in Research 

Investigations regarding the two (AIC, BIC) most popularly used 

criteria have generally demonstrated that BIC is consistent, that is, it tends to 

choose the true model with probability equal to one in large samples but 

performs poorly in small samples (Bickel & Zhang, 1992; Hurvich & Tsai, 

1990). AIC, in contrast, is not consistent, but performs relatively well in small 

samples.  

In addition, theoretical work has illustrated that, with reference to 

general linear models, AIC should theoretically converge faster to a limiting 

distribution than BIC, but that the limiting distribution of AIC should result in 

less than perfect model selection (Zhang, 1993). Zhang further suggested that, 

at least with regard to general linear models, BIC is nearly optimal in its rate 

of convergence for a criterion that depends on sample size.  
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Subsequently, Markon and Krueger’s (2004) empirical investigations 

of the performance of information-theoretic fit criteria with factor analytic 

models have generally been consistent with existing work on generalized 

linear models. Ichikawa (1988), for example, examined the performance of 

AIC in selecting the number of factors in exploratory factor analysis. 

Simulation results indicated that the ability of AIC to select a true model 

rapidly increased with sample size. However, at the largest sample sizes, AIC 

continued to exhibit a slight tendency toward selecting overfitted models.  

Hui et al. (2011) similarly investigated the performance of BIC in the 

context of blind source separation (which can be treated as a form of factor 

analysis). Their results suggested that BIC performs poorly for small sample 

sizes, but improves with increasing sample size to eventually choose the 

correct model with perfect probability.  

Various studies suggested that the relative performance of information-

theoretic fit criteria may be strongly influenced by distributional 

misspecification. Ichikawa and Konishi (1999), for example, treated AIC as an 

estimate of expected log-likelihood in the presence of cross-validation. Their 

results indicated that, when distributions are correctly specified, AIC performs 

relatively well. When distributions are misspecified, however, the 

performance of AIC decreases substantially.  

Simulations by Fishler et al. (2002) suggested that the performance of 

BIC is relatively robust to distributional misspecification. Overall, existing 

work on information-theoretic criteria suggests that AIC performs relatively 

well in small samples, but is inconsistent and does not improve performance in 

large samples. BIC, in contrast, appears to perform relatively poorly in small 
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samples, but is consistent and improves in performance with sample size. 

There is some evidence to suggest that the relative performance of AIC and 

BIC is affected by distributional misspecification, such that the performance 

of AIC decreases substantially with misspecification, but BIC is robust to such 

effects.  

Few studies have examined the performance of different information-

theoretic criteria in a structural equation modelling context. Most 

investigations into the performance of information theoretic criteria with latent 

variable models have been limited to studies of latent class modelling, where 

likelihood-ratio tests are not appropriate. These studies have generally 

suggested that BIC outperforms AIC, in that it often exhibits lower error rates 

and greater power.  

Information theoretic fit criteria (AIC, BIC, etc.) have also been 

applied extensively to asymmetric price transmission modelling framework 

but no work has been done using MDL and its extensions. These articles 

helped to show how the methods worked and also compares two or more 

criteria in selecting the best model given some conditions.  

A typical example was a research on the comparison of AIC and BIC 

criteria in selection of asymmetric price relationship (Acquah, 2010). The 

study evaluated the performance of the two commonly used model selection 

criteria, AIC and BIC in discriminating between asymmetric price 

transmission models under various conditions. Monte Carlo experimentation 

indicated that the performance of the different model selection criteria are 

affected by the size of the data, the level of asymmetry and the amount of 

noise in the model used in the application. They concluded that BIC is 
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consistent and outperforms AIC in selecting the suitable asymmetric price 

relationship in large samples.   

In recent times, ‘the effect of outliers on the performance of AIC and 

BIC criteria in the selection of an asymmetric price relationship’ was explored 

by Acquah (2017a). He argued that the goal of APT modelling, which is to 

select one model that best captures the asymmetric data generating process 

from a set of competing models, was affected by the presence of outliers in the 

data and this had a disproportionate impact on model ranking. The effect of 

outliers on the commonly used AIC and BIC in the selection of asymmetric 

price relationship were evaluated under conditions of different sample sizes. 

Monte Carlo experimentation revealed that the ability of the model selection 

methods to identify the true asymmetric price relationship decreased with 

increase in outliers in moderate and large samples. However, the effect of 

outliers on the performance of AIC and BIC in the selection of correct 

asymmetric model remain unclear with small samples. 

Similarly, the Kullback’s direct divergence (AIC and AIC corrected, 

AICc) was used extensively in APT model selection when it comes to 

choosing the optimal model among candidate models in econometrics 

(Acquah, 2017b). His article, ‘criteria for APT model selection based on 

Kullback’s symmetric divergence’, emphasized alternative criteria that targets 

Kullback’s symmetric divergence (KIC and KIC corrected, KICc) remains 

unexplored. Therefore, the article through Monte Carlo study evaluated the 

relative performance of the recently developed selection criteria based on KIC 

and KICc against commonly used alternatives; AIC and AICc in terms of their 

ability to recover the true asymmetric data generating process. The study 
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revealed that the performance of the model selection methods were influenced 

by the sample size, level of asymmetry and the amount of noise in the model 

used in the application. KICc was comparable to KIC and they both 

outperformed AIC and AICc in both small and large samples. Regarding the 

noise levels and difference in asymmetric adjustment parameters, again, KICc 

was comparable to KIC and they both outperformed AIC and AICc. The study 

concluded that the criteria based on Kullback’s symmetric divergence were 

very reliable and useful criteria in asymmetric price transmission model 

selection. 

However, these studies have also generally concluded that neither 

criteria AIC and BIC with their various extensions were completely 

satisfactory, and that other fit criteria exhibited greater power to select true 

models (Celeux & Soromenho, 1996; Lin & Dayton, 1997; Yang & Barron, 

1998). Interestingly, Monte Carlo evidence suggests that early MDL 

approximations (Rissanen, 1978), essentially corrected forms of BIC, 

performed well in selecting latent class models (Yang & Barron, 1998).  

 

Contributions of MDL in Research 

Research has been done to explain the usefulness of the Minimum 

Description Length (MDL) Principle and its various formulations in model 

selection in some disciplines. The method has been explained from data 

compression’s (computational statistics) point of view and how this basic 

principle, coming from information theory can be linked directly with 

information theoretic fit methods and statistical deduction. 
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Theoretical advancements 

The fundamental idea behind the MDL principle is that any regularity 

in a given dataset can be used to compress the data, which is to describe it 

using fewer symbols than needed to describe the data literally (Grünwald, 

2007). Generally, in Rissanen’s formulation of MDL, any probability 

distribution is measured from a descriptive point of view and that it is not 

essentially the underlying data-generating mechanism (although it does not 

exclude such a possibility). Thus, MDL extends the more traditional random 

sampling approach to modelling. Many probability distributions can be 

compared in terms of their descriptive power and if the data in fact follow one 

of the models, then Shannon’s celebrated source coding theorem (Cover & 

Thomas, 1991) states that this ‘true’ distribution gives the minimum 

description length of the data (on the average and asymptotically). Theoretic 

research has illustrated the usefulness of MDL:  

A study conducted by Sewell (2007) used the MDL principle to 

minimize the sum of the length, in bits, of an effective description of the 

model and the length, in bits, of an effective description of the data when 

encoded with the help of the model.  

Subsequently, in a seminal paper: “Modelling by shortest data 

description’ (Rissanen,1978), the number of digits it takes to write down an 

observed sequence nxxxx ,...,,, 321  of a time series which depended on the 

model with its parameters that one assumes to have generated the observed 

data was investigated. Accordingly, by finding the model which minimizes the 

description length, one obtains estimates of both the integer-valued structure 

parameters and the real-valued system parameters”. The author further 
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indicated that MDL (Rissanen, 1978) uses an information theoretic measure 

known as Kolmogorov complexity. Kolmogorov complexity of a dataset is 

defined as the shortest description of the data.  

Alpaydin (2004) also reveals that “if data is simple, it has a short 

complexity; for example, if it is a sequence of “0”s, we can just write “0” and 

the length of the sequence. If the data is completely random, then we cannot 

have any description of the data shorter than the data itself. If a model is 

appropriate for the data, then it has a good fit to the data, and instead of the 

data, we can send/store the model description. Out of all the models that 

describe the data, we want to have the simplest model so that it lends itself to 

the shortest description. So, we again have a trade-off between how simple the 

model is and how well it explains the data."  

 Further, Christianini and Shawe-Taylor (2000), noted that "as an 

example, the MDL principle proposes to use the set of hypotheses for which 

the description of the chosen function together with the list of training errors is 

shortest." "It is sometimes claimed that the minimum description length 

principle provides justification for preferring one type of classifier over 

another; specifically, “simpler” classifiers over “complex” ones. Briefly 

stated, the approach purports to find some irreducible, smallest representation 

of all members of a category (much like a “signal”); all variation among the 

individual patterns is then “noise.” The argument is that by simply fitting 

recognizers appropriately, the signal can be retained while the noise is 

ignored."  

Duda, Hart and Stork (2001) also explained that, “MDL principle states 

that we should minimize the sum of the model’s algorithmic complexity and 
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the description of the training data with respect to that model”. "Intuitively, 

MDL principle can be thought of as “recommending the shortest method for 

re-encoding the training data, where we count both the size of the hypothesis 

and any additional cost of encoding the data given this hypothesis" (Mitchell, 

1997). 

Further, the minimum description length principle is a formalization of 

Ockham's Razor in which the best hypothesis for a given set of data is the one 

that leads to the largest compression of the data. MDL was introduced by 

Rissanen in 1978; it is important in information theory and learning theory. 

Subsequently, according to Mackay (2003), “The MDL principle (Wallace and 

Boulton, 1968) states that one should prefer models that can communicate the 

data in the smallest number of bits”. 

Grünwald compiled some works on The Minimum Description Length 

Principle and Reasoning under Uncertainty (Grünwald, 2007). Firstly, Poland 

and Hutter, (2005) researched into Asymptotic of Discrete MDL for Online 

Prediction. Minimum description length (MDL) is an important principle for 

induction and prediction, with strong relations to optimal Bayesian learning. 

This paper dealt with learning processes which were independent and 

identically distributed (i.i.d.) by means of two-part MDL, where the 

underlying model class is countable. They considered the online learning 

framework (observations come in one by one, and the predictor is allowed to 

update its state of mind after each time step). They also identified two ways of 

prediction by MDL for this setup, namely, a static and a dynamic one. Where 

they proved that under the only assumption that the data is generated by a 

distribution contained in the model class, the MDL predictions converge to the 

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



25 

 

true values almost surely. This was accomplished by proving finite bounds on 

the quadratic, the Hellinger, and the Kullback–Leibler loss of the MDL 

learner, which are, however, exponentially worse than for Bayesian prediction. 

They demonstrated that these bounds are sharp, even for model classes 

containing only Bernoulli distributions and showed how these bounds imply 

regret bounds for arbitrary loss functions. The results apply to a wide range of 

setups, namely, sequence prediction, pattern classification, regression, and 

universal induction in the sense of algorithmic information theory among 

others.  

Secondly, Poland and Hutter (2005) did another work on Convergence 

of Discrete MDL for Sequential Prediction where the study concentrated on 

the properties of the Minimum Description Length principle for sequence 

prediction, considering a two-part MDL estimator which is chosen from a 

countable class of models. This applies in particular to the important case of 

universal sequence prediction, where the model class corresponds to all 

algorithms for some fixed universal Turing machine (this correspondence is by 

enumerable semi-measures; hence the resulting models are stochastic). They 

proved convergence theorems similar to Solomonoff’s theorem of universal 

induction, which also holds for general Bayes mixtures. The bound 

characterizing the convergence speed for MDL predictions is exponentially 

larger as compared to Bayes mixtures. They observed that there are at least 

three different ways of using MDL for prediction. One of these had worse 

prediction properties, for which predictions only converge if the MDL 

estimator stabilizes and hence they established sufficient conditions for this to 
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occur. Finally, some immediate consequences for complexity relations and 

randomness criteria were proven.  

Hansen and Yu (2001) reviewed the minimum description length 

(MDL) for problems of model selection. They viewed statistical modelling as 

a means of generating descriptions of observed data, and thus the MDL 

framework discriminates between competing models based on the complexity 

of each description. Previous studies have confirmed that the aforementioned 

approach began with Kolmogorov’s theory of algorithmic complexity, 

matured in the literature on information theory and has recently received 

renewed attention with the statistics community. Their research reviewed both 

the practical and theoretical aspects of MDL as a tool for model selection, 

emphasizing the rich connections between information theory and statistics. 

They argued that the boundary between these two disciplines were many 

interesting interpretations of popular frequentist and Bayesian procedures. 

Hence, MDL provides an objective umbrella under which rather desperate 

approaches to statistical modelling can co-exist and be compared. They 

illustrated the MDL principle by considering problems in regression, non-

parametric curve estimation, cluster analysis and time series analysis. They 

emphasized in their work that since model selection in linear regression was 

an extremely common problem that arises in many applications, they derived 

several MDL criteria in this context and discussed their properties through a 

number of examples using real datasets. Classical problems in model selection 

were examined and also tried to apply MDL to more exotic modelling 

situations in engineering. In general, they concluded that as a matter of 
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principle for statistical modelling, the strength of MDL was that it can be 

intuitively extended to provide useful tools for new problems.  

Pitt et al. (2002) also asked the unavoidable question ‘how one should 

decide among competing explanations of data’ in their article entitled “Toward 

a method of selecting among computational models of cognition”. They 

argued that computational model of cognition are increasingly being advanced 

as explanations of behaviour and that the success of this line of inquiry 

depended on the development of robust methods to guide the evaluation and 

selection of these models. Their article introduced ‘a method of selecting 

among mathematical methods of cognition’ known as MDL, which provided 

an intuitive and theoretical well-grounded understanding of why one model 

should be chosen. The application of the adequacy of MDL was demonstrated 

in cognitive modelling in the areas of psychophysics, information integration 

and categorization. 

The method of MDL (specifically, predictive MDL and Bayesian 

method of selection) from a theoretical point of view is also used by some 

researchers as bases to develop new methods. A typical example is the 

research conducted by Wagenmakers et al. (2006), which is entitled 

“accumulative prediction error and the selection of time series models”. They 

devised the accumulative one-step-ahead prediction error (APE) as a data-

driven method for model selection for very complex models. ‘The APT 

method automatically takes the functional form of parameters into account, 

and the “plug-in” version and does not require the specification of priors. It 

was applied to data with natural ordering (time series) where they explored the 

possibility of using it to discriminate the short-range ARIMA (1, 1) model 
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from the long-range ARIMA (0, d, 0) model. They also applied it to model 

selection, which allows one to choose between different model selection 

methods. 

Empirical Comparison 

Research has proved that AIC and BIC (and their various extensions) 

are widely used criteria in various disciplines and some disciplines have 

introduced MDL, though less known, which is making great strides in 

contributing to the field of model selection. "The MDL principle is thus a 

relatively recent method for inductive inference. There is evidence of work 

done to compare the performance of the various types of MDL with some 

common and widely used information theoretic fit criteria (AIC, BIC, AICc, 

BICc, DIC, etc.) in some disciplines. 

 Sund (2001) in his lectures on statistical modelling (presented to 

research and development centre for welfare and Health [STAKES]), explored 

the minimum description length based on model selection in linear regression. 

He emphasized the fact that the soul of model selection is the principle of 

parsimony and this principle is in line with the rationale behind the MDL 

principle. He also emphasized that MDL has its roots in information theory 

and in the invariance theorem of Kolmogorov complexity but added 

computability challenges so arbitrary class of models should be used and do 

the coding with the help of model class. To achieve this, one must employ the 

most straightforward description length which is based on two-stage coding 

scheme by calculating the code length required to discretize model’s 

parameter space and communicate the estimated parameter. Then in the 

second stage, the actual data string is coded using the distribution indexed by 
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the communicated parameter. He mentioned the various formulations of MDL 

(gMDL, nMDL, eMDL, PMDL) and then compared them to some criteria 

based on information theory (AIC, BIC, and their various extensions) in the 

linear regression modelling framework. Illustrating with a practical example, 

two linear regression models (y dependent variables) were built of ordinary 

model and hermit polynomial transformations of x regressors. He found some 

kind of functional dependency between the variables but the residuals were 

not normally distributed. However, proceedings with the analyses using 

straight forward computations via statistical package SURVO (SAS 

programming language), the results showed that all the selection criteria 

suggested the models were of fourth degree polynomials. Moreover, the 

ordinary and hermit polynomials gave the same description length for all 

criteria and according to the geometric interpretation of the exact MDL criteria 

are essentially just different parameterisations of the same model. Specifically, 

all formulations of MDL outperformed AIC and BIC in selecting both the 

ordinary and the hermit models using the given data. 

Related studies also emphasize the fact that information theory offers a 

coherent, intuitive view of model selection. This perspective arises from 

thinking of a statistical model as a code, an algorithm for compressing data 

into a sequence of bits. Stine (2003) in his paper entitled “information theory 

and the MDL principle” explained that the description length is the length of 

this code for the data plus the length of the model to the data, whereas the 

length of the code for the model measures its complexity. He further explained 

that the minimum description length (MDL) principle picks the model with 

smallest description length, balancing fit versus complexity. Thus, Stine thinks 
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the conversion of a model into a code should be flexible; in that, one can 

represent a regression model, for example, with codes that reproduce the AIC 

and BIC as well as motivate other model selection criteria. Additionally, 

information theory allows one to choose among various types of non-nested 

models, such as tree-based models and regression identified from different sets 

of predictors.  The results of analysis revealed that using AIC and BIC, the 

lurking problem of the best criterion depends on how many predictors that are 

‘useful’ or work best for us. Recent research attempted to remove this ‘need to 

know’ by offering adaptive criteria that work almost as well if not better. So 

he concluded that MDL (also based on information theory) allows one to 

construct a wide range of model selection criteria, rewards theory and allows 

searches of large collection of models, hence providing an important heuristic 

guide to the development of customized criteria suited to the problem at hand. 

More importantly, MDL does not ask of the existence of a true model. 

Markon and Krueger (2004) also emphasized the importance of further 

research into theory and computation of information-theoretic fit criteria in 

their paper entitled ‘an empirical comparison of information-theoretic 

selection criteria for multivariate behaviour genetic models’. Thus, a particular 

condition or method (any criteria whether well-known or less known) shows 

strengths and weaknesses which needs investigation. Results indicated that 

performance depends on sample size, model complexity and distributional 

specifications. The Bayesian information criterion (BIC), is more robust to 

distributional misspecification than Akaike’s information criterion (AIC) 

under certain conditions, and outperforms AIC in larger samples when 

comparing more complex models. Also, the study investigated the domain of 
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an approximation to the minimum description length (MDL) criterion, 

involving the empirical Fisher information matrix exhibited variable patterns 

of performance due to the complexity of estimating Fishers information 

matrices. Results showed that, Draper’s information criterion (DIC) which 

shares features of the Bayesian and MDL criteria, performs similarly to or 

better than BIC. He argued that, MDL which is less used or explored was also 

competing very well in all specifications. He concluded that in the context of 

estimating information matrices based on MDL, NML and MDL estimators 

that do not rely on sample based estimates of the Fisher information matrix, 

although much more challenging to compute, may be more robust and 

efficient than the MDL estimators examined in their study. Other studies too 

have exhibited greater selection power of MDLs than that of AIC and BIC 

(Hansen & Yu, 2001). Additionally, the relative superior performance of DIC 

in this current study also suggested that other MDL estimators hold promise as 

model selection criteria. 

Again, Myung et al. (2005) continued to support the fact that the 

minimum description length (MDL) principle is an information theoretic fit 

approach to inductive inference that originated in algorithmic coding theory. 

In their paper (which provided a tutorial review on the latest developments 

with special focus on NML) entitled, ‘model selection by normalized 

maximum likelihood’, data was viewed as codes to be compressed by the 

model. In their approach, models are compared on their ability to compress a 

dataset by extracting useful information in the data apart from random noise. 

They also emphasized the fact that the goal of model selection was to identify 

the model from a set of candidate models, which permits the shortest 
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description length (code) of the data. Further, they pointed out aside the 

original formalized problem by Rissanen who used the ‘crude two-part-code’ 

method in 1970s, many significant formulations of MDL have been derived  

especially in the 1990s with the culmination of the development of the refined 

‘universal code’ method called the Normalized Maximum Likelihood (NML). 

The paper also provided an application example of the NML in cognitive 

modelling. 

The last decade has seen some continuous use of different MDLs in 

various areas of research. Li et al. (2012) in their thesis work, entitled ‘model 

selection via Minimum Description Length’ emphasized the purpose and use 

of MDL. The study accentuated that MDL originated from data compression 

literature and has been considered for derivation of statistical model selection 

procedures and in the context of linear regression, most existing methods 

utilize the MDL principle focusing on models consisting of independent data. 

They considered data in the form of repeated measures using the MDL to 

focus on classical linear mixed-effect models. Their research objective was in 

two fold namely; concerns with population parameters and the other concerns 

with cluster/subject parameters.  Regarding population level, they proposed a 

class of MDL procedures which incorporated the dependence structure within 

individual or cluster with data-adaptive penalties and enjoyed the advantages 

of BIC. When the number of covariates is large, the penalty term is adjusted 

by data-adaptive structure to diminish the under selection issue in BIC and try 

to mimic the behaviour of AIC. Theoretical justifications were provided from 

both data compression and statistical perspective and extensive numerical 

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



33 

 

experiments conducted to demonstrate the usefulness of the proposed MDL 

procedure on both population level and cluster level. 

Fade et al. (2011) also addressed an original statistical method for 

unsupervised identification and concentration estimation of spectrally 

interfering gas components of unknown nature and number. They showed that 

such spectral minimizing can be efficiently achieved using information criteria 

derived from the MDL principle which outperformed the standard information 

criteria such as AICc and BIC. Their study emphasised within the context of 

spectroscopic applications that the most efficient MDL technique implemented 

showed good robustness to experimental artefacts. 

Another study of statistical performance analysis using MDL source 

enumeration in array processing was carried out by Haddadi et al. (2010). 

Their study revealed that unfortunately, available theoretical analysis 

exhibited deviation from their simulation results. They then used the MDL 

source enumeration technique to present an accurate and insightful 

performance analysis for the probability of missed detection. They also 

showed that the statistical performance of the MDL is approximately the same 

under both deterministic and stochastic signal models. Their simulation results 

showed the superiority of the proposed analysis over available results. 

In a related study in array response modelling, Costa et al. (2012) 

proposed a method for order selection using calibrated data. This method 

allowed for one to find the optimal number of basic functions for describing 

array steering vectors, according to the manifold separation principle. They 

argued that the proposed solution does not require heuristic design parameters 

and achieves asymptotically optimal (in the MSE sense) modelling of array 
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non-idealities from calibration measurements. They extended the normalized 

minimum description length (nMDL) to complex-value data and employed to 

choosing the optimal number of modes in the orthogonal decomposition of the 

array steering vector. BIC and the more recent exponentially embedded family 

(EEF) rules were employed as well. Extended simulations were carried out 

using a real-world antenna array and the various order selection rules were 

compared. The results indicated that the nMDL was consistent estimator of the 

optimal number of modes and its performance was close to the minimum 

MSE. 

Relating to stochastic complexity-based model selection, Fade (2015) 

worked on false alarm rate control in optimal spectroscopy. He explained that 

stochastic complexity-based penalization criteria can prove efficient and 

robust in spectroscopy applications for unsupervised identification and 

concentration estimation of spectrally interfering chemical components. His 

paper showed how nMDL can be tailored to provide control of the detection 

performances in terms of probability of false alarm.  Numerical experiments 

conducted on realistic simulated optical spectroscopy signals proved that the 

nMDL approach outperformed the standard information criteria (AIC, BIC) in 

terms of model selection performances. Moreover, the ability to control false 

alarm rates with the proposed modified nMDL criterion was demonstrated 

through simulations. 

Likewise, Han et al. (2014) demonstrated how MDL plays a role in 

selection of one dependency estimators in Bayesian Network and overfitting 

criterion. The study explained that the Averaged One Dependency Estimator 

(AODE) integrated all possible Super-Parent-One-Dependency Estimators 
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(SPODEs) and estimated class conditional probabilities by averaging them. 

They argued that in an AODE network some redundant SPODEs may result in 

some bias of classifiers, as a consequence, it could reduce the classification 

accuracy substantially. So in their research a kind of MDL metrics was used to 

select SPODEs in whole or part and hence three classifiers were presented. 

The study revealed that the performance comparisons between them and 

AODE have shown not only the theoretical analyses were reasonable, but also 

efficient and effective. Experimental results indicated that the classifier using 

MDL score metrics had better performance than the original AODE, and at the 

same time, less overfitting.  Additionally, further discussions and verifications 

of some properties of overfitting were also presented in the paper. 

Similarly, another variant of MDL (gMDL) was proposed by Jiao et al. 

(2011) to source number estimation. In this paper, a source number estimator 

using the peak-to-average power ratio modified by Gerschgorin radii was 

proposed. The eigenvectors of the sample covariance matrix were first 

employed to calculate the peak-to-average power ratio and then a Gerschgorin 

transform was taken to the sample covariance matrix. Next, the new peak-to-

average power ratio values modified by Gerschgorin radii were introduced to 

minimum description length criteria (PGMDL). Simulation results indicated 

that the proposed method shows better performance than the conventional 

detection methods such as AIC and MDL especially at lower signal to noise 

ratio (SNR), and has no affectedness by the intensity difference between the 

multiple sources. 

MDL has seen its usefulness across various disciplines with various 

research areas and prediction is no exception. Harremoes and Brock (2018) in 
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their paper entitled Horizont Independent MDL, used conditional normalized 

maximum likelihood predictor to predict the future given the past. The authors 

explained that this strategy was however computationally involving and in 

general, depended on how many future symbols one want to predict. But for 

special exponential family models, the conditional normalized maximum 

likelihood predictor does not depend on the number of symbols that one wants 

to predict. In this case, the prediction strategy equals a Bayesian strategy based 

on Jeffrey’s’ prior. These special exponential families  

(Gaussian location family, the Gamma family and the inverse Gaussian 

family) can be characterized as those for which the conjugated exponential 

family has a saddle-point approximation, that is, exact after renormalization. 

They concluded that this approach can be used to construct exponential 

families with Horizont Independent MDL in higher dimensions. 

Last but not least, application of MDL has also been extended to graph 

theory. Graph analytics was explained by Velampalli and Jonnalagedda (2017) 

as a useful tool for finding hidden patterns, relationships, similarities and 

anomalies in graphs. These tasks are useful in many application areas like 

protein analysis, fraud detection, health care, computer security, financial data 

analysis and many more. Therefore, MDL’s property of universal coding or 

universal modelling is brought to bear in SUBstructure discovery (SUBDUE) 

algorithms to discover substructures. This paper applied MDL encoding to 

various graph datasets and in particular graph matching was solved using 

MDL. Further, comparative analysis was done to show how MDL value 

changed with respect to varying graph properties. A tool called subgen was 
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used to generate the graph datasets and statistical tests were applied to know 

which MDL values changed significantly. 

 

Chapter Summary 

The preview show widespread use of Information-Theoretic Fit 

Criteria (ITFC) in research. These include the AIC, BIC, MDL, DIC, RIC, 

SBIC, etc.  They have been examined in their ability to recover the true 

asymmetric data generating process. The interest appears to stem from the fact 

that a good fit could be attained, especially using highly complex models, 

when in fact it lacks interpretable relationship with underlying process which 

leads to poor generalizations. 

The literature appears unanimous on the performances of AIC and 

BIC. Results show that AIC has the tendency to select the true model over 

smaller samples size but fails in larger samples whilst the BIC rather performs 

better in larger samples. They have been examined in their ability to recover 

the true asymmetric data generating process. 

It is also established that AIC and BIC are affected by extent of 

distributional misspecifications. As BIC is robust, performance of AIC 

decreases substantially with misspecifications. Sample size and model 

complexity are other influential conditions of performance. It points out that 

although ITFC is extensively applied to APT modelling framework, no work 

has been done using MDL and its extensions in comparing performance of 

types of MDL with commonly used ITFC. It is observed that the various 

methods are affected by sample size, level of asymmetry and amount of noise 

in the models used in the applications. It is clearly known that various methods 
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outperform the commonly used AIC and BIC in their ability to select true 

models. These are the KIC and KICc.  

Then MDL was extensively reviewed. Various descriptions of the 

techniques are provided which basically explains the technique as a way of 

obtaining the simplest model that meets the shortest description. Various ways 

of application of the MDL have been explored and provides bases for 

developing new methods. It is widely applied in regression, non-parametric 

curve estimation, cluster analysis, time series analysis and graph theory. 

The aforementioned contributions evidently emphasize the various 

contributions that MDL criterion can make in the advancement of model 

selection in any discipline, especially (in this study) to asymmetric price 

transmission analysis framework and adds on to knowledge in information 

theoretic fit model selection.  

Thus, this research fills the gap by addressing the methodological 

issues of model selection and comparison in the alternative econometric 

models of asymmetric price transmission. The contribution to knowledge lies 

in theoretically introducing and developing the nMDL, rMDL, eMDL and 

gMDL to analysis of the asymmetric price transmission models within the 

context of a model selection and demonstrating their application across 

alternative asymmetric price transmission methods or model specifications 

during model selection. This entails the provision or application of Minimum 

Description Length algorithms as efficient model selection strategies to decide 

between the alternative approaches of testing for asymmetry. Empirically, the 

research evaluates and presents comparisons of the relative performance of the 
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model selection algorithms in an asymmetry price transmission modelling 

framework.  

This will be the first incident of application of MDL in price analysis 

(especially the asymmetric price transmission) and perhaps other disciplines 

which have not been explored yet in research. 
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CHAPTER THREE 

RESEARCH METHODS 

Introduction 

This chapter introduces and explains the underlying concepts that 

guide this study namely: Information Theoretic Fit Criteria, Linear Models 

and Asymmetric Price Transmission. Emphasis is placed on MDL which is 

less known but gaining grounds in the area of model selection. Specifically, its 

development and introduction to linear models of Asymmetric Price 

Transmission (APT) against the backdrop of commonly used information 

theoretic fit criteria (AIC, BIC, etc.) is of utmost concern in this research. 

According to Sund (2001), the purpose of all scientific studies is to 

search answers for the problem which is induced by inquisitiveness, practical 

need or the purposes of theory development keeping in mind that knowledge 

about our world is partial. Thus, one can state that the aim of statistical model 

fitting is to "understand" the system behind the studied phenomena via the 

observed data. Thus, the question of how one should decide among competing 

explanations of data is at the heart of the scientific enterprise. Over the 

decades, scientists have used an assortment of statistical tools to select among 

alternative models of data. However, there has not been an underlying 

theoretical framework to guide the enterprise and evaluate new developments. 

Implicitly the principle of parsimony (or Ockham's Razor) has been the 

soul of model selection. To implement the parsimony principle, one has to 

quantify "parsimony" of a model relative to the available data. Applying this 

measure to a number of candidate models, the goal is to find a model, which is 
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a compromise between desirable yet conflicting properties: goodness-of-fit, 

generalizability and concision. 

 

Overview of Information-Theoretic Criteria-An Empirical Comparison 

 

Markon and Krueger (2004) argued that the basic principle of 

information theoretic model selection is to select statistical models that 

simplify description of the data and model. Specifically, information-theoretic 

methods emphasize minimizing the amount of information required to express 

the data and the model. This results in the selection of models that are the most 

parsimonious or efficient representations of the observed data.  

There has been suggestion of a diversity of information criteria. In 

general, nonetheless, most information criteria can be considered as special 

cases of what Barron and Cover (1991) has called minimum complexity 

density estimators. Minimum complexity density estimators have the general 

form 

     ( .i X m i m                                    (1) 

The first term represents the amount of information i required to express the 

data X , given the model of interest m with parameter . The second term 

represents the amount of information required to express the model itself. 

Generally, the first term is equivalent to the negative log-likelihood of the data 

calculated at the maximum likelihood estimate of the parameter. The second 

term can be thought of as a penalty for model complexity; it differs between 

different information-theoretic fit criteria, and usually uniquely defines a given 

criterion.  
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As the goal of information-theoretic fit model selection is to select 

parsimonious models, models with the least criteria are selected. Information-

theoretic inference is associated with likelihood-based inference, but has 

desirable properties that likelihood-based inference does not. Equation (1) 

shows that, comparing two models of the same class, the second term is the 

same for both models, and can be eliminated. Minimizing information thus 

coincides with maximizing likelihood for comparisons of nested models. 

Nevertheless, unlike likelihood-based procedures, information-theoretic 

methods can be applied to non-nested models as well. Barron and Cover 

(1991) further demonstrated that, minimum complexity density estimators 

satisfying certain general conditions are generally asymptotically consistent, 

that is, they will recover the true model in large samples, if the true model is 

one of the models under consideration (literature shows that AIC is an 

important example of an estimator that is not generally consistent). 

Akaike’s Information Criterion (AIC) 

Akaike information criterion (AIC) (Akaike, 1974) is a penalized 

technique grounded on in-sample fit to estimate the likelihood of a model to 

predict or estimate future values (Mohammed et al., 2015). A good model is 

the one that has minimum AIC among all the other models. The AIC can be 

used for example to select between Standard Error Correction Model (SECM) 

and Complex Error Correction Model (CECM). AIC is the most popular and 

widely used information-theoretic criteria. Hypothetically, AIC derives from 

consideration of the Kullback–Liebler distance between a given model and the 

true model. Explicitly, AIC is an estimate of the relative expected Kullback-

Liebler distance (The Kullback–Liebler distance is a function of the ratio of 
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two distributions, and can be thought of as reflecting the efficiency with which 

one distribution is approximated by another (Cover & Thomas, 1991) of a 

given model from the true model. It is defined as 

  ln ,AIC L k  X             (2)  

where, the first term is the negative maximum log-likelihood of the data X

given the model parameter estimates, and k  is the number of parameters in the 

model. As an estimate of relative Kullback–Liebler distance, AIC can be 

thought of as measuring the relative inefficiency of approximating the true 

model by the model of interest. Models producing smaller values of AIC can 

thus be thought of as more efficiently approximating the true model, where the 

true model is unknown. Another variant of AIC (CAIC/AICc) have also been 

extensively engaged in research since AIC is said to be bias in small samples 

(Takeuchi, 1976; Hurvich & Tsai, 1989; Sugiura, 1978; Burhnam &  

Anderson, 1998, Fujikoshi & Satoh, 1997). 

Bayesian Information Criterion (BIC) 

Bayesian information criterion (BIC) (Stone, 1979) is another criterion 

for model selection that measures the trade-off between model fit and 

complexity of the model. A lower AIC or BIC value indicates a better fit. AIC 

and BIC are currently among the most widely used information-theoretic fit 

criteria. BIC is usually explained in terms of Bayesian theory, especially as an 

estimate of the Bayes factor, the ratio of the posterior to the prior odds for two 

models, in comparisons of a model to a saturated model (Raftery, 1993; 

Schwarz, 1978). BIC is defined as  

  ˆln ln ( ),
2

k
BIC L N  X    (3) 
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where N is again the sample size and k is the number of parameters in the 

model. As an estimate of the Bayes factor for the comparison of a model to the 

saturated model, BIC favours the saturated model when positive, and the 

alternative model when negative. If maximum likelihood is used to estimate 

parameters and the models are non-nested, then the Akaike information 

criterion (AIC) or the Bayes information criterion (BIC) can be used to 

perform model comparisons. The two criteria are very similar in form but arise 

from very different assumptions. The AIC is derived from information theory 

and it is designed to pick the model that produces a probability distribution 

with the smallest discrepancy from the true distribution (as measured by the 

Kullback–Liebler discrepancy). The BIC is derived from a large sample 

asymptotic approximation to the full Bayesian model comparison (Jerome et 

al., 2014). Research (Pauler, 1998; Draper, 1995) continues to explore further, 

various modifications of BIC or Schwarz information criterion (also known as 

SIC, SBC, SBIC) and many of these modifications have been typically 

incorporated into Deviance information criterion (DIC). 

Minimum Description Length (MDL) 

Although BIC is generally formulated in terms of Bayesian theory, it 

has another interpretation that is currently less well known. In addition to its 

Bayesian interpretation, BIC can be interpreted as an asymptotic estimate of 

the normalized maximum likelihood (NML) or minimum description length 

(MDL) criterion and was originally described by Rissanen (1983, 1986, 1989, 

1996, 2001). The goal of MDL model selection is to minimize the amount of 

information (e.g., in bits) required to describe the data and the model. In a 

series of papers, Rissanen (1996, 2001) has demonstrated that the code length 
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of a dataset – the amount of information required to describe the data using a 

given model – can be expressed as the logarithm of the normalized maximum 

likelihood. 

The normalized maximum likelihood is given by  

 
 

ˆ ( )
,

ˆ ( )

L
NML

L dX








X X

X X
   (4) 

where the numerator is the maximum likelihood and the integral in the 

denominator is taken over the sample space. The normalized likelihood can be 

thought of as the likelihood divided or ‘‘normalized’’ by the sum of the 

possible likelihoods. As an index of complexity, the denominator is consistent 

with intuitive notions of model complexity, in that more complex models will 

fit a large number of datasets equally well, producing large possible 

likelihoods. When all possible datasets are equally likely under a given model, 

the denominator will be large, and the normalized maximum likelihood will be 

small. Relationships between BIC and NML are made apparent when 

approximations to the NML are considered. The negative logarithm of the 

NML can be approximated using sum of squares by 

^

ln ln ln ( ) ,
2 2

k N
MDL L I d  



    
       

   
X  (5) 

where )(I  is the expected Fisher information matrix and the integral in the 

third term is evaluated over the parameter space (Barron et al., 1998; Myung, 

et al., 2000; Rissanen, 1996, 2001). As mentioned above in the criteria, the 

first term is the negative log-likelihood of the data evaluated at the maximum 

likelihood estimates. The second and third terms are measures of model 

complexity and do not depend on observed data. The second term reflects 
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what might be thought of as ‘‘parametric complexity,’’ or model complexity 

associated with number of parameters. The third term reflects what might be 

thought of as ‘‘structural complexity,’’ or model complexity associated with 

features beyond the number of parameters. The second term of Equation (5) 

can be expanded to produce an equation comprising BIC plus two terms that 

does not depend on sample size and become negligible in large samples.  

Comparing this form of Equation (5) to Equation (3), it is evident that 

BIC is therefore asymptotically equivalent to MDL. Thus, in addition to its 

Bayesian interpretation, BIC can be thought of as an asymptotic estimate of 

the shortest description of the data given a model of interest. Comparisons 

between DIC which can be thought of as a more accurate version of BIC—and 

the MDL estimate in Equation (5) further reinforce relationships between the 

Bayesian and NML paradigms, as DIC approximates MDL even more closely 

than BIC. The negative logarithm of the NML and its MDL approximation 

given in Equations (4) and (5) are computationally challenging, given that the 

integrals are computed over the sample and parameter spaces, respectively. A 

more computationally tractable approximation to MDL (Rissanen, 1989; see 

also Hansen & Yu, 2001) is given by  

   1ˆ ˆln ln ( ) ,
2

MDL L I   X     (6) 

 

where the first term is the negative logarithm of the maximum likelihood, and 

the second term includes the observed Fisher information matrix evaluated at 

the maximum likelihood estimates. It has been demonstrated that this 

formulation of MDL, like other MDL approximations, converges to the same 

value as BIC as sample size increases (Hansen & Yu, 2001). The observed 
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Fisher information matrix in the second term can be calculated from the 

covariance matrix of parameter estimates. 

There are various extensions of the MDL principle such as to achieve 

simplicity or rather improve them to achieve the best model. The next section 

delves into the basic theory of the MDL principle and tries to explain the key 

concepts underlying them. 

 

Overview of Minimum Description Length Principle 

 In order to understand where MDL and its various extensions come 

from and thus why it is a reasonable criterion for model selection, a brief 

theoretical background on MDL and where it comes from is needed.  

The principle of MDL draws heavily from data compression in terms of 

amount of information that is required usually in bits to describe the data and 

the model. Data compression is reducing the number of bits needed to 

represent data. This is achieved through a process of modifying, encoding or 

converting the bits structure of data in such a way that it consumes less space 

on disk. It enables reduction of the storage size of one or more data instances 

or elements. Data compression is also known as source coding or bit-rate 

reduction. Compressing data can save storage capacity, speed up file transfer, 

and decrease costs for storage hardware and network bandwidth. 

Data Compression 

Compression is performed by a program that uses a formula or 

algorithm to determine how to shrink the size of the data. For instance, an 

algorithm may represent a string of bits or 0s and 1s with a smaller string of 0s 

and 1s by using a dictionary for the conversion between them, or the formula 
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may insert a reference or pointer to a string of 0s and 1s that the program has 

already seen. An algorithm is a procedure or formula for solving a problem, 

based on conducting a sequence of specified actions. A computer program can 

be viewed as an elaborate algorithm. In mathematics and computer science, an 

algorithm usually means a small procedure that solves a recurrent problem. 

There is a one-to-one correspondence between maximizing 

probabilities and minimizing code lengths (Grünwald, 2007). Since in linear 

models we are interested in finding a model that, with high probability, can 

predict future observations of the data well, this is synonymous to finding a 

way to compress the data such that the total code length is short. To 

understand what a code length is, however, one first needs to understand what 

a code is. After all, it is difficult to measure the length of something unless one 

knows what to measure. Codes can be created in an infinite number of ways, 

and if we are to compare models based on code lengths instead of 

probabilities, it is important to ensure that the codes are all constructed in 

accordance with some kind of objective rule and not by subjective thought.  

A code is a one-to-one matching of symbols to another set of symbols 

and where a symbol is a sign that holds information of some sort. The 

evolution of codes (uniform codes, see Appendix A) became necessary since 

researchers are looking for ways to make their algorithms more efficient. This 

leads to the more desirable prefix-free codes when given a sequence (or 

pattern in the data) and no code word is a prefix of another code word. This 

removes ambiguity in a given message or information in the dataset and 

provides us with the length of the code that is desirable (shortest). It then 

makes intuitive sense to select a short code word to symbols that have a high 
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probability of occurrence in the sequence. Kraft’s inequality provides the 

means to find out if shorter codes can be achieved (Kraft, 1949; Rissanen, 

2007) but it should be noted that it only measures the excessive length of the 

code word in the code. Kraft’s inequality is silent on how well the code is 

expected to work. Thus, according to Fowler and Linblad (2011), Kraft’s 

inequality provides us with a limit for the minimum amount of redundant bits 

in code words but Shannon’s code (heavily draws from the principle of 

entropy) gives such a limit when it comes to expected code length (see 

Appendix C for more on Kraft’s inequality and entropy). Although, the 

Shannon code fulfils the Kraft inequality (see Appendix D for proof), it can 

still in some cases lead to non-optimal codes (Shannon, 1948; Cover & 

Thomas, 2006). This implies there is more information in the data that could 

be used to compress the data further. Therefore, another more efficient and 

optimal way of choosing a prefix-free code given a relative frequency of 

symbol is by Huffman’s algorithm (Roos, 2009a and Cover & Thomas, 2006 

given in appendix B). Also, arithmetic coding is another common method used 

in both lossless and lossy data compression algorithms. It is an entropy 

encoding technique, in which the frequently seen symbols are encoded with 

fewer bits than rarely seen symbols. But Nelson (2014) states that, “Arithmetic 

encoders are better suited for adaptive models than Huffman coding, but they 

can be challenging to implement”.  

Linear models are interested in finding a model that with a high 

probability can predict future observations of the data well, and this is 

synonymous to finding a way to compress data such that the total code length 
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is short. This brings a relationship between MDL and the problem of model 

selection and data compression.  

 

Building a Statistical Model 

This section of the study, talks about how the MDL principle can be 

used in statistical modelling. It starts with a theoretical “ideal” solution and 

continues to a discussion about the two most common model selection criteria 

used today, namely: AIC and BIC, and finally ends up in the renormalized 

maximum likelihood criterion (NML- an extension of MDL). 

Code processing 

Since data compression, in MDL terms, is equivalent to probability 

maximization, compression is also highly relevant for statisticians. It would 

therefore be interesting, from a statistical point of view, to be able to find a 

way to compress a data sequence as much as possible.  

The Kolmogorov complexity is defined as the length of the shortest 

program that, when run on a Turing machine (see Appendix E), takes the 

binary code, prints the uncompressed data and then stops (Grünwald, 2007). 

The idea behind this is that if the shortest program producing the data can be 

found, then the best way of compressing the data at hand has been found too.  

The problem with Kolmogorov Complexity is two-fold, namely, 

1) Depends on the programming language chosen  

2) Is non-computable.  

The first of these two problems is usually trivial since the difference in 

length of code between programming languages is just a constant. However, 

for short sequences of data, this constant term might not be negligible. This is 
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due to the fact that each programming language that is Turing-complete can 

translate all other Turing-complete programming languages via a compiler. A 

language is said to be Turing-complete if it can simulate a Universal Turing 

machine (Burgin, 2007). In layman terms, if the programming language can do 

everything a Universal Turing machine can do, then it is a compiler (a 

complier is a program that can translate code from a programming language 

into another programming language; Bornat, 2008).  Thus, the length of the 

shortest program for each language differs only at most by the length of the 

code needed to create the compiler (Solomonoff, 1964; Rissanen & Tabus, 

2005).  

The Kolmogorov complexity is non-computable hence it is a non-

trivial issue; it can never be used directly to evaluate code lengths. Other 

measures, which can be thought of as approximations of the Kolmogorov 

complexity, are instead needed (Rissanen, 1983). One such solution is the so-

called two-part code. 

Rissanen (1978) published two-part code for model encryption which 

was also known as “Crude MDL” (Grünwald, 2007). The basic idea behind it 

is the following: given a dataset  

 1 2, , , nx x xD L , 

it is desirable to compress the data as much as possible. Other authors, 

including Rissanen (2007) and Grünwald (2007), used the notation 
nX  

instead of D for the data. Their approach avoids confusion with the so-called 

Kullback-Leibler divergence, that often is denoted D(P||Q), as well as makes it 

clear that the set is full of x’s, but Roos (2009a, 2009b), use D instead, because 

we find it more intuitive as it avoids confusion with mathematical power 
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notation.  The best way of compressing the data would be to use the Huffman 

code, described earlier, which is based on the relative frequencies in the data. 

The problem with this approach, however, is that the decoder needs to know 

beforehand which code has been used to compress the data. Without this code, 

it is impossible to decode the encoded message.  

Rissanen’s solution to this dilemma was to create a two-part code, 

where the first part of the code contains the code used and the second part is 

the message that has been compressed with the said code. 

2( , ) : log ( ) ( )L P L    D D  

where ( , )L D  is the total length needed to describe the data, ( )P D  is the 

likelihood of the data, given the model, and )(L  is the number of bits needed 

to define the code (Rissanen, 1983). The idea, in model selection, is to pick the 

model that minimizes ( , )L D .  

While this approach may be intuitively appealing, it can be shown that 

more advanced versions of MDL, such as normalized maximum likelihood, 

are strictly better; that is, they never achieve longer total code length than the 

two-part code and sometimes perform better (Rissanen & Tabus, 2005). In 

other words, better model selection criteria can be found. 

Optimal Codes 

By now it should be clear that not all ways of encoding symbols are 

equally optimal. It is not possible, however, in advance to predict exactly the 

future sequences of strings that are to be encoded and thus the code that have 

been created may not be, in hind-sight, the optimal one (Turing, 1937; Sipser, 

2006; Grünwald, 2007). A process called Regret was seen to help achieve 

optimality.  
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According to Grünwald (2007), given that ( )q D  is in hind-sight, the 

optimal way of encoding a data sequence and that 
^

( )MLP D is the method 

actually used to encode it. The Regret is defined to be 

   2 2
ˆlog ( ) log ( )MLREG q P    

 
D D  

In other words, the Regret can be thought of as the extra number of bits 

needed to encode a sequence if ˆ ( )MLP D is used instead of ( )q D  (Grünwald, 

2007).  ˆ ( )MLP D is the maximum likelihood estimate of the probability of the 

data and ( )q D  is, in hind-sight, the optimal way of encoding D . Hence, it is a 

form of error measurement. The lower the Regret, the better the model is. 

Thus, a code with low Regret, relative to sample size, will yield an 

asymptotically optimal model. This brings us to the universal code. 

A universal code (Grünwald, 2007), is a code for which the increase in 

Regret goes to infinity slower than the sample size does. Fowler and Lindblad 

(2011) explained that despite the name (universal) implying otherwise, the 

model is not universal in regards to all model classes, and it is only the one 

that it belongs to. 

This implies that, in the long run, the model (a model and a code are in 

essence the same thing in MDL) that one is working with converges to the 

optimal model (Roos, 2009b). In other words, it is finding a model that fits the 

true model very well. 

 A code is said to be universal if   

 
1

lim 0,
n

REG
n

  
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Two-part codes are universal codes (Roos, 2009b; Grünwald, 2007), 

which might bring up the question why are criteria like Normalized Maximum 

Likelihood-NML (an extension is RNML, etc.) needed? Since in most 

practical applications one does not have an infinite amount of observations, so 

the rate at which the universal code approaches the limit is of high interest. 

The quicker it approaches the limit, the less dependent it is on having a large 

sample at hand.  

The Normalized Maximum Likelihood Criterion  

In order to select a model that can compress data as much as possible, 

we wish to find the model that minimizes 

2( , ) : log ( ) ( )L P L    D D  

There are various ways to estimate ( / )P D  , though it is, according to 

Grünwald (2007), preferable to estimate it by maximizing the following 

formula: 

 

 

where Ω is the population of possible values that can be observed. That is, the 

numerator of NMLP  is the maximum likelihood estimate of the distribution, 

given the model. The denominator is the integral of the maximum likelihood 

estimates of the distribution over all possible datasets (Roos et al., 2005). The 

reason the maximum likelihood estimator is normalized is to make it a density 

function (Grünwald, 2007).  

The NML criterion would thus favour the model minimizing 

ˆ ( )
: ,

ˆ ( )

ML

NML

ML

f
P

f d









D Ω

D

D D
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2 2
ˆ ˆ( , ) log ( ) log ( ) ( )ML MLL f d f d L   

 

 
      

 
 

D Ω D Ω

D D D D D  

The first term of this criterion rewards models that describe the data well, 

while the second term penalizes complex models, similar to the criteria AIC 

and BIC. The last term is usually negligible (Grünwald, 2007). The problem 

with NMLP  is that the integral over all possible datasets is almost always 

infinite, resulting in a measurement that cannot be calculated. To get around 

this problem, the integral needs to be restricted to an interval, that ensures that 

the integral is finite (Roos, 2004). This leads to the following approximate 

form of  NMLP  in linear regression modelling: 

2

2

ˆ( , )

ˆ ˆ ˆ; , ( ), ( )

,

ˆ ˆ ˆ; , ( ), ( )

o

ML

NML

ML

f

P

f d



 

 

 
 
 
 
 
 


Ω R

D β D D

z β z z z

 

where   is a subset of all possible variables that could be included in the 

model (Rissanen & Tabus, 2005).   2 ,o RΩ  means that we integrate over all 

possible data, Z  , such that the estimated residual variance ( R̂ ) is greater than 

or equal to some value, 2 ,o  so as to exclude saturated and overly overfitted 

models, and that  

1 ˆ ˆˆ T T TR
n

 β X Xβ  

is less than or equal to R . This is to make the number of possible data under 

consideration countable and thus limits the integral to an area that is not 

infinitely large. 
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The integral can now be calculated, but a problem arises, namely: the 

resulting formula cannot be interpreted correctly from an MDL standpoint due 

to the fact that the last term depends on the data (Grünwald, 2007). The 

problem is solved by a second normalization. That is, after some rather tedious 

calculations was done to simplify the integration and the criterion was then 

called the Renormalized Maximum Likelihood criterion. The proof can be 

found in Roos et al. (2005). 

 

 
1

2 2
2 2 2

2 2

1

ˆ: ln ;

ˆˆln ln ln ln ln ln ln ln ,
2 2 2 2 2

RNML f y

Rn k k n k k n
R n

R




 



  

      
                     

 

where k is the number of parameters in the model, n is the number of  

observations and is described as the estimated residual variance 

1 ˆ ˆˆ ,T T TR
n

 β X Xβ  

which in non-matrix notation can be written as 

2

1

1ˆ ˆ ,
n

i

i

RNML R y
n 

    

the variation in ŷ  expressed by the model. Furthermore, since the variance 

cannot be estimated directly, due to yet another 2 2

1 2and  integral over a range 

that is most often infinite, it is bounded within the interval, as is R between 

2 2

1 2andR R  (Roos, 2004). These values are arbitrarily chosen to be reasonable 

values that the data can obtain. That is, variance close to zero, or very high, is 

excluded. As can be shown, as long as the intervals are not too narrow, they do 

not greatly affect the criterion’s approximation.  
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By the use of the Stirling’s approximation of the gamma functions (see 

Appendix F), as well as the fact that  

 
2

22

2

2 2

1 1

ln ln ln ln
2

Rn
n

R






  
    

   

 

does not depend on k (and thus does not affect the value for which the function 

is minimized with regard to k), the formula can be simplified. The 

approximation has also been multiplied with two, since such a multiplication 

does not affect the value for which the function is minimized (Roos 2004). 

This gives the simplified form: 

     2 1ˆˆln ln 1 ln 1 lnRNML n k k R n k k k
n k


 

        
 

  

from which the following alternative form follows by simple algebra (The 

derivation can be found in Appendix G): 

   
2 ˆˆ

ln ln ln
R

RNML n k k k n k
n k k


  
              

   

 

By minimizing the aforementioned function, the code length is 

minimized and thus the probability is maximized (though strictly speaking this 

is only an approximation), and thereby the best model is selected. It should be 

noted that from an MDL perspective, a good model does not necessarily need 

to be the same as the “true” model. Since this approximation of the RNML 

criterion is just an approximation, the correct notation for the criterion should 

thus be something in the line of ·[ ]RNML . However, to simplify the notation 

the hat will be dropped throughout this thesis. 

The RNML criterion is developed for linear regression analysis and is 

as such, not directly applicable to logistic cases. However, according to 
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Arnoldsson (2011), the criterion could be adapted to the exponential family by 

adding the weight function, W, to R  . Such an adaption might prove to 

perform well. 

 

Sum of Squares Representation of Criteria 

The basic problem of model selection (e.g. linear least squares 

regression) is how to choose between competing linear regression model. One 

battles with whether the model is too small (“underfit” the data; poor 

predictions; high bias and low variance) or the model being too big (“overfit” 

the data; poor predictions; low bias and high variance) or how one chooses a 

model to be just right (balance bias and variance to get good predictions). This 

study will apply the derivation of exact formulas for the different Minimum 

Description Length (MDL) criteria to Asymmetric Price Transmission (APT) 

linear models using the method of least squares. 

The simplest linear regression model to be fit is of the form 

y = Xb+e,  

where  y is a vector corresponding to the dependent variable, X is a matrix of 

regressors, b is the vector of regression coefficients and e is the vector of error 

terms. 

The idea is to find a linear combination of regressor variables, which 

explains the systematic variation in the dependent variable. The ordinary least 

squares (OLS) technique is used to estimate the regression coefficients in that 

the error sum of squares is to be minimised. If normality with mean zero and 

constant variance is assumed for the error terms, the OLS estimates coincide 

with the maximum likelihood estimates. The main problem is to choose 
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appropriate regressors for the model. In practice, Sund (2001) argues that the 

domain knowledge is usually the best criteria to find interesting models, but 

sometimes a kind of "objective" assistance can be very helpful. As a matter of 

fact there are lots of different model selection criteria available. 

This study gives a practical view of model selection based on MDL 

and the exact derivation for the special case of RNML, which forms the basis 

of all the MDLs presented, is shown in Appendix G. For generality and 

comparison purposes, some popular non-MDL-based model selection 

formulas are given in their least squares expressions. In the following formulas 

various authors have suggested other multipliers which keep the general form 

of these criteria. In other words, the numerical values obtained from the 

formulas are not directly comparable (the "scale" is not same for all formulas). 

However, in every case the smaller value means the better model. 

In the following Equations (7, 8, 9, 10, 11, 12, 13), y, X, b and e are as 

in the regression model, SSE is the error sum of squares, 
2̂ is the variance 

estimated from fitting the full model, k is the number of parameters, n is the 

number of observations, S = SSE / (n-k), F = (y'y - SSE) / kS and R
2
 is the 

coefficient of determination. 

 

Akaike's Information Criteria (AIC): 

k
n

SSE
nAIC 2log 








        (7) 

Bayesian Information Criteria (BIC): 

  



























SSE

nn
k

n

SSE
nBIC

2

2
222log




    (8) 
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Rissanen’s MDL (basic) = 2log
2

n SSE
rMDL

n

 
  

 
    (9) 

 

Schwarz's Bayesian Information Criteria SBIC (two-stage MDL devised by 

Rissanen): 

nk
n

SSE
nSBIC loglog 








       (10) 

 

G-prior mixture MDL (gMDL): 

2log log log , /
2 2

log log ,otherwise
2

n k
S F n R k n

gMDL
n

n
n


  

 
   

  

y y
   (11) 

 

 Normalised Maximum Likelihood MDL (nMDL): 

 

  kknF
k

S
n

nMDL log
2

3
log

2

1
log

2
log

2
    (12) 

 

 

Exact Normalised Maximum Likelihood MDL (eMDL): 

 

 

     1 1log log 1 log 1 log
SSE n

eMDL n k k n k k k
n n k

 
            
b x xb

         (13) 

 

 

In the following predictive Equations (14, 15), iy  and iX  correspond 

to the values of the response and regressor variables on the i
th

 observation, 1ib  

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



61 

 

and 𝜎̂2
𝑖−1 are the estimates based on (𝑖 − 1) first observations, m is the first 

integer so that ib  is uniquely defined and n is the number of observations. 

 

Predictive MDL (PMDL): 

 






























n

mi
i

iii
i

bxy
PMDL

1

2

2

1

1

2

1log



     (14) 

 

Predictive Least Squares (PLS): 

 
2

1

1



n

mi

iii bXyPLS       (15)

 

 

In summary, research emphasizes the fact that, understanding the data 

means the ability to remove redundancies in the data. Hence to discover 

regular statistical features, the ultimate measure of the success of 

understanding must be the length with which the data can be described 

(principle of Parsimony). Indeed, if such a shortest description of the data, to 

be called stochastic complexity, is found in terms of the models of a selected 

class, there is nothing further anyone can teach us about the data; we know all 

there is to know (Sund, 2001). This is the rationale behind the MDL 

(minimum description length) principle.  

The minimum description length principle epitomizes a significantly 

different basis for model selection and generally statistical inference. One of 

such distinctive features is that there is no need to assume anything about the 

data generation mechanism. Sund (2001) argues that in particular, unlike in 

traditional statistics, it is not needed that the data form a sample from a 
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population with some probability law. Hence, the objective is not to estimate 

an assumed but "unknown" distribution, be it inside or outside the proposed 

class of models, but to find good models for the data. Most essentially, the 

principle permits comparison of any two models, regardless of their type. It is 

also important to realise that the MDL principle has nothing to say about how 

to select the suggested family of model classes. In fact, this is a problem that 

cannot be adequately formalised. In practise the selection of models is based 

on human judgement and prior knowledge of the kinds of models that have 

been used in the past, perhaps by other researches. In addition, the application 

of the principle requires the calculation of the stochastic complexity, which 

can sometimes be a difficult task.  

The MDL has its roots in information theory and in the invariance 

theorem of Kolmogorov Complexity. The Kolmogorov Complexity of a 

sequence is defined to be the length of the shortest computer program that 

prints the sequence and then halts (halting makes the code a prefix code, i.e. 

none of the code words is a prefix of another). Unfortunately, the Kolmogorov 

Complexity is not computable. The idea behind the MDL is to scale things 

down in a way that it becomes possible to compute the complexity: instead of 

using a code based on a universal computer language, we should use an 

arbitrary class of models and do the encoding with the help of this model 

class. However, there are different forms of description length based on a 

model, even in that sense that they achieve the universal coding lower bounds. 

The most straightforward description length is the one based on two-stage 

coding scheme. The idea in the first stage is to calculate the code length 

required to discretize model's parameter space and communicate the estimated 
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parameter. In the second stage the actual data string is coded using the 

distribution indexed by the communicated parameter. In more complicated 

situations more than two stages of coding might be required. 

In the mixture form of description length we base our description of a 

data string on a distribution that is obtained by taking a mixture of the 

members in the family with respect to a probability density function on the 

parameters. The mixture description length results in integral formula, which 

has closed form expression only in special cases. An analytical approximation 

to the mixture can be in certain situations obtained by Laplace's expansion and 

essentially results in a two-stage description length which is called the 

stochastic information complexity. 

Hansen and Yu (2001) explained that the recent form of description 

length bases on the normalised maximum likelihood (NML) coding scheme. 

In general, the NML description of a data string works by restricting the 

second stage of coding to a data region identified by the parameter estimate. 

This criterion is not only sensitive to functional form and the number of 

parameters but also invariant under re-parameterisation. From the differential 

geometric point of view, these criteria select the model that gives the highest 

value of the maximised likelihood per distinguishable distribution, which may 

be called the "normalised maximised likelihood". In other words, the model 

complexity is related to the number of (distinguishable) probability 

distributions that a model can generate, not to the functional form of a model 

or its number of parameters. 

Moderately, a method is to consider the description length from a 

predictive coding point of view. Predictive coding according to Sund (2001) 
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means that modelling the conditional density for the possible values of the 

"next" observation using the part of the data which is already "seen". This 

means the joint distribution of a data string can be written as a product of 

conditional distributions. He further explains that if each of the conditionals 

shares the same parameter, then the joint distribution based on the particular 

model class is free of unknown parameters and the cost of encoding a data 

string can be directly seen from the joint distribution. This method of 

description length is called predictive description length and it is used 

especially in situations where the data is sensibly ordered. 

 

Overview of Asymmetric Price Transmission Linear Models 

This section delves into literature on asymmetric price transmission 

and theories. Empirical literature is discussed to demonstrate how the different 

econometric models which measure these asymmetrical behaviours detect 

asymmetries at different rates or culminates in different inferences and 

conclusions. Subsequently, the MDL principle and its various extensions 

discussed above which provides a better and simple (though from a different 

background than the popular AIC and BIC) framework for comparing 

competing models is proposed to guide the rigorous comparison of the 

alternative methods of testing for asymmetry.  

Asymmetric price transmission (sometimes abbreviated as APT and 

informally called "rockets and feathers") refers to pricing phenomenon 

occurring when downstream prices react in a different manner to upstream 

price changes, depending on the characteristics of upstream prices or changes 

in those prices. 
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The simplest example is when prices of ready products increase 

promptly whenever prices of inputs increase, but take time to decrease after 

input price decreases.  

Over the years, the analysis of price transmission and asymmetric 

adjustment have matured with many developments in model specification, 

estimation and testing. Some developments are the construction and 

application of various econometric models of asymmetric price transmission. 

Asymmetric Price Transmission  

The relationship between two prices ( AP and BP )  at different levels of 

the marketing chain can be estimated as follows: 

, 1 ,A t o B t tP P          (16) 

where 1 2,   are regression coefficients; and  the random error for a give 

price series with time t . 

Recent empirical studies analysing whether prices rise faster than they 

fall, have categorised the price dynamics into symmetric and asymmetric
 

processes and denoted as 

      
1 1, , ,A t o B t B t tP P P             (17) 

Thus, inference on price whether symmetric or asymmetric is achieved 

through hypothesis testing using an F-test as follows: 

Test for Symmetric Adjustment 

      








11

11

:

:





A

o

H

H
      (18) 

 

According to Gauthier and Zapata (2001), asymmetry is defined as an 

un-reciprocal relationship between rises and falls in prices, and an example is 
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farm and retail prices.  Researchers are keenly interested in those processes for 

which the transmission differs according to whether the prices are increasing 

or decreasing (i.e. asymmetric price transmission). Several empirical 

researches show that the price transmissions are asymmetric and studies of 

various products and services (including gasoline, agriculture products and 

bank deposit rates) reveal that prices are more likely to rise to input price 

increases than they are to decrease in the wake of cost reduction. Peltzman 

(2000) significantly broadens the evidence for this asymmetrical price 

behaviour. In a study of 77 consumer and 165 producer goods, Peltzman found 

that on the average, the immediate response to a cost increase is at least twice 

the response to a cost decrease. This phenomenon presents an interesting 

empirical constancy that needs to be explained. 

The issue of APT continues to receive significant attention in the 

economic literature for two prominent reasons. First, its presence is not in line 

with predictions of the conventional economic theory (e.g. perfect competition 

and monopoly) which postulates that under some regularity assumption (such 

as non-kinked convex or concave demand functions) prices should respond 

symmetrically to cost increases and cost reductions. The forgoing discussion is 

consistent with Peltzman (2000), who finds asymmetric price transmission to 

be the rule, rather than the exception and argues that it poses a real challenge 

to standard economic theory, since it does not predict or explain the existence 

of asymmetries. Hence, APT reveals gaps in economic theory. 

Secondly, APT also presents important welfare and policy implications 

(Von Cramon-Taubadel & Meyer, 2000). ‘It implies a different distribution of 
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welfare than would be obtained under symmetry, since it alters the timing and 

size of welfare changes’.  

Von Cramon-Taubadel and Meyer (2000) added that the presence of 

asymmetric price transmission was often considered to be evidence of market 

failure (for example exercise of market power), ‘signalling in addition to 

redistribution, the associated net welfare losses’. This means the redistribution 

and net welfare loss provide ‘a prima facie’ case for policy intervention.  

Von Cramon-Taubadel (1998) and Meyer (2003) provided a concise 

discussion of the definition of asymmetry in the context of price transmission 

under three main groupings namely: a) asymmetry with reference to the speed 

and magnitude, b) asymmetry affecting vertical or spatial price transmission 

and, c) positive or negative asymmetry.  

Particularly, positive asymmetry defines a set of reactions in which any 

price movement that squeezes the margins is transmitted more rapidly than an 

equivalent that stretches the margin. On the other hand, asymmetric price 

transmission is negative, when any price movement that stretches the margin 

is transmitted more rapidly than those that squeeze the margin. Figure 1 shows 

asymmetry with respect to the speed and magnitude with price P on the 

vertical axis and time t on the horizontal axis. 
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Figure 1: Example of type of Asymmetry (speed and magnitude) 

It is evident from Figure 1 that a decrease in the input price  inP  takes 

three periods and is not fully transmitted to the output price  outP . While an 

increase in the input price  inP  takes only two periods and is fully transmitted 

to the output price  outP . 

Problem of Asymmetric Price Transmission  

Numerous factors which contribute to asymmetric price transmission 

have been projected in research. Firstly, a frequently cited source of APT is 

market power (Kinnucan & Forker 1987; Miller & Hayenga, 2001; 

McCorrisston, 2002; and Lloyd et al., 2003). “Oligopolistic processors, for 

example, might react collusively more quickly to shocks that squeeze their 

margin than to shocks that stretch it, resorting in asymmetric short run 

transmission in an attempt to hide the exercise of market power behind the 

‘confusion’ created by major shocks, processors could also react less 

completely to the shocks that stretch their margins leading to asymmetric long 

run transmission”. 
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In the same way, asymmetric price transmission could result if traders 

in the local market believing that competitors will follow an increase in the 

local market prices as price in the central market rise, but that they will not 

respond to falling prices in the central market by granting an equivalent 

reduction. It is however important to mention that concentration of price is 

probably a necessary but certainly not a sufficient condition for the exercise of 

market power, as the theoretical and empirical evidence on the relationship 

between these two phenomena is inconclusive (Goodwin and Serra, 2003). 

Arguing from the oligopoly perspective, both positive and negative 

asymmetries are conceivable depending on the market structure and conduct. 

Thus, several studies of market power and asymmetry that focus on specific 

markets deserve to be mentioned. In support of the aforementioned line of 

thought, Borenstein et al. (1997) analysed vertical price transmission for crude 

oil to gasoline prices, and concluded that downward stickiness of retail prices 

for gasoline in an oligopolistic environment will lead to positive asymmetry.  

Then again, Ward (1982) points out that market power can lead to 

negative asymmetry if oligopolists are reluctant to risk losing market share by 

increasing output prices.  A firm facing a kinked demand curve that is either 

convex or concave to the origin was also considered by Bailey and Brorsen 

(1989). They argued that if a firm believes that no competitor will match a 

price increase but rather match a price cut (concave), negative asymmetry will 

result. On the other hand, if the firm assumes that all firms will match an 

increase but none will match a price slash (convex), positive asymmetry will 

result. Hence, it is not clear a priori whether market power will lead to positive 

or negative asymmetry (Bailey and Brorsen, 1989).  
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Secondly, price asymmetry can be to a certain extent credited to 

adjustment cost that arises when firms change their quantities and prices of 

inputs and outputs. Accordingly, positive or negative asymmetric price 

transmission results if these costs are symmetric with respect to increase or 

decrease in quantities or prices. In an analysis of the US beef market, Bailey 

and Brorsen (1989) argued that firms may face different adjustment cost 

depending on whether prices are rising or falling. Consequently, they noted 

that the competition between meat packers faced with a high fixed cost and 

excess capacity, for example, might result in farm prices that are bid up 

rapidly, in response to increased demand for meat products, but fall more 

slowly as demand weakens. Ward (1982) thought that retailers of perishable 

products may be cautious to raise prices for fear that they could end up 

holding spoiled stocks, leading to negative asymmetry. Heien (1980) disputed 

this assertion and noted that changing prices is less of a problem for perishable 

products than it is for those with a long shelf life, because for the latter, 

changing prices incur higher time cost and loss of good will. Thus, echoing the 

so called menu cost hypothesis proposed by Barro (1972), (i.e. a change in 

nominal price induces cost for example, the reprinting of price list or 

catalogues and the cost of informing market partners). Later in 1994, Ball and 

Mankim developed a model based on menu cost (the cost involved in 

changing nominal prices such as the cost of reprinting catalogues etc.) in 

combination with inflation that leads to asymmetry. In their model, positive 

nominal input price shocks are more likely to lead to output price adjustment 

than negative price shocks. This they argued was due to the fact that in the 

presence of inflation, some of the adjustment made necessary by an input price 
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reduction is automatically carried out by inflation, which reduces the real 

value of the margin. Thus, in situations where firms face menu cost and 

inflation, shocks that bring upward price adjustment are rapidly responded to 

than those that reduce it, as inflation in this respect would have automatically 

affected some of the adjustments made necessary by the downward adjustment 

shocks (Kuran, 1983). Alternative to Bailey and Brorsen (1989) idea, 

Peltzman (2000) makes a case for positive asymmetry affirming that it is 

easier for firms to disemploy inputs in the case of an output reduction than it is 

to recruit new inputs to increase output. This recruitment will lead to search 

cost and price premier increasing phases. They added that additional 

explanation for price asymmetry which has been proposed cannot be 

considered directly under market power or adjustment cost.  

Kinnucan and Forker (1987) suggested that asymmetry could result 

from government intervention. This indicated that such political intervention 

can lead to asymmetric price transmission if it makes wholesalers or retailers 

to believe that a reduction in farm prices will only be temporary because it will 

only trigger government intervention, while an increase in farm prices is more 

likely to be permanent. 

Modelling Asymmetric Price Transmission  

Asymmetric price transmission modelling (See Von Cramon-Taubadel 

(1998) for detailed discussion)
 
may be categorized into pre-cointegration and 

cointegration approaches (Meyer & Von Cramon, 2004). The pre-

cointegration and the cointegration approaches draw heavily from Houck 

(1977) and Von Cramon-Taubadel (1998), respectively.  
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Deductions from Houck’s (1977) pre-cointegration approaches lead 

numerous authors to develop a test for asymmetric price transmission that is 

based on the segmentation of prices into increasing and decreasing phases 

(Kinnucan & Forker, 1987; Bailey & Brorsen, 1989; Zhang, Fletcher & 

Carley, 1995; Mohanty, Peterson & Kruse, 1995; Boyd & Brorsen, 1998; Shin 

et al., 2014). These applications were considered as modifications of the 

Houck’s model and denoted by Houck’s approaches. The pre-cointegration 

methods require data to be stationary in order to avoid spurious regression. 

Thus, cointegration methods are fortified due to the fact that the Houck’s 

approaches are not consistent with cointegration between the prices series 

involved. Fervidly, this sparked the motivation for the asymmetric error 

correction modelling (Von Cramon-Taubadel, 1998; Von Cramon-Taubadel & 

Loy, 1999). 

Variants of Houck’s Specification  

A wide variety of agricultural markets have tested Asymmetric Price 

Transmission and a study conducted by Appel (1992) found that both speed 

and degree of price transmission from the producer to the retail level for 

broilers in Germany is asymmetric. However, Boyd and Brorsen (1998) also 

studied the US pork market and found no evidence of asymmetric price 

transmission. Then the result was challenged by Hahn (1990) who found that 

prices at all levels of the US pork and beef marketing chains are rather more 

sensitive to price increasing shocks than to price decreasing shocks. 

Subsequently, Hansmire and Willett’s (1992) indicated that farm-retail price 

transmission for New York state apples is asymmetric and Kinnucan and 

Forker (1987) came to the same conclusion regarding dairy product 
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transmission in the United States. Pick et al. (1990) finds evidence that short-

run but not long-run vertical price transmission on the US citrus market is 

asymmetric. Again, Ward (1982) found both short and long run asymmetries 

in vertical price transmission for fresh vegetable in the United States, while 

Zhang et al. (1995) noted that price transmission for peanut to peanut butter 

prices in the US is asymmetric in the short-run, but symmetric in the long-run. 

In general, each of these studies used some different econometric 

technique for estimating irreversibility that was introduced by Wolfram (1971) 

which was a response to work on irreversible supply reaction by Tweeten and 

Quance (1969). Investigating the relationship between an output price
AP  and 

input price
BP , Tweeten and Quance (1969) used an indicator variable to split 

the input price into two parts: one variable includes only increasing input 

prices


BP  and another includes only decreasing input prices


BP . From this, two 

input price adjustments coefficients (i.e. 


1  and


1 ) can be estimated as  

      ttBtBotA PPP    ,,,
11

   (19) 

Symmetric price transmission is rejected if the coefficients 


1 and 


1 are 

significantly different from one another. Based on Tweeten and Quance’s 

(1969) work, Wolffram (1971) proposed a variable splitting technique that 

unambiguously included first difference of prices in the equation to be 

estimated which was later modified by Houck (1977). Deductions from 

Wolfram-Houck’s (W-H) method revealed that the response of price
AP  to 

another price
BP  is estimated with the 

      ttBtBotA PPP    ,,,
11

   (20) 
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where P and P are the positive and negative changes in 
BP , respectively, 



11
,, o  are coefficients and t  is the current period. Several studies 

estimated a dynamic variant of the Houck’s static model. Again, some analysts 

distinguish between short-run and long-run asymmetries by introducing lagged 

terms in tBP ,  and, tBP , into Equation (20), in which case 
 and 



become lag polynomials. Long-run symmetry was tested by determining 

whether the sums of the coefficients in these polynomials are identical. Ward 

(1982) extended the Houck’s specification by including lags and Brorsen’s 

group was also the first to use lags to differentiate between magnitude and 

speed of transmission. Similarly, Hahn (1990) attempted to generalize the 

methods discussed so far by referring to them as the pre-cointegration 

methods. 

Further modification by Mohanty, Peterson and Kruse (1995) 

improved Equation (20) by taking the sum of both sides to derive the equation 

t

T

t

tB

T

t

tBo

T

t

tA PPP   








 111

,,,
21

   (21) 

which can be rearranged as follows: 

tt

DOWN

Bt

UP

BoAtA PPPP   ,,,, 210    (22) 

where 
UP

BP is the sum of all positive changes in price B and 
DOWN

BP is the sum 

of all negative changes in price B. Thus, a formal test for symmetry using an 

F-test or t-statistic is rejected when the coefficients
1 and 

2  are unequal. 

The Houck’s model is sometimes used without sufficient regards to 

time series properties of the data but Von Cramon-Taubadel (1998) had 

demonstrated that the model is fundamentally incompatible with cointegration 
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between two price series. In order to demonstrate this point, Von Cramon-

Taubadel (1998) considered two I (1) processes, 
AP  and 

BP , in the model 

below as previously defined in Equations (19) and (20) 

ttBtBotA PPP     ,,,
21

   (23) 

which can be reparametrized using the identity: 

0,,,, BtBtBtB PPPP   
    (24)  

to yield 

ttBBtBtBoAtA PPPPPP  












   ,,,,,, 0110  (25) 

or 

    ttBtBBoAtA PPPPP     ,,,,, 111010  (26) 

This reparameterization of Equation (23) was proposed by Ward (1982) who 

tested whether the coefficient    11   differs from 0 in order to test whether 

price transmission was asymmetric. Von Cramon-Taubadel (1998) asserts that 

the estimation of Equation (26) can lead to four basic results depending on the 

significance of the term    11   and the stationarity of the error term t : 

Case 1: 011     (asymmetry) and    I(0) is t  

Case 2: 011     (symmetry)   and   I(1) is t  

Case 3: 011     (asymmetry) and   I(1) is t  

Case 4: 011     (symmetry)   and    I(0) is t  
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Case 1 implies that
B P ,AP , and  tBP  ,  are cointegrated, which precludes 

cointegration between
 AP and

BP  alone. Case 2 and 3 are spurious regressions 

(Granger & Newbold, 1974), while case 4 implies that 
 AP and

BP  are 

cointegrated. Notably, if Houck’s method points to asymmetry, then either the 

results reflect spurious regression (Case 3), or the prices in question are not 

cointegrated (Case 1). 

Presentation of the Asymmetric Error Correction Model  

Primarily, the asymmetric error correction model (ECM) approach was 

motivated by the fact that all the variants of the aforementioned Houck’s 

approach are not consistent with cointegration between the price series. If the 

prices 
 AP and

BP  are cointegrated, then an error correction representation 

exists (Engle & Granger, 1987). Granger and Lee (1989) proposed a 

modification to reflect the error correction representation that makes it 

possible to test for asymmetric price transmission between cointegrated 

variables. This can be achieved by the segmentation of the error correction 

term into positive and negative components (Wolffram, 2005).  

Von Cramon-Taubadel and Fahlbusch (1994) made the first attempt to 

draw on cointegration technique in testing for asymmetry in vertical price 

transmission and later improved by Von Cramon-Taubadel and Loy (1996) 

and Von Cramon-Taubadel (1998). They suggested that in the case of 

cointegration between the price series, an error correction model extended by 

the incorporation of asymmetric adjustment terms provides a more appropriate 

specification for testing for asymmetric price transmission. In effect, when 

Equation (27) was estimated, the test proved to be non-spurious regression and 
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then 
 AP and 

BP   was referred to as being cointegrated, and Equation (27) was 

now considered as an estimate of the long-run relationship between the prices. 

  , 1 ,  A t o B t tP P         (27) 

The Error Correction Model (ECM) then relates changes in
 AP  to changes in

BP  as well as the so called Error Correction Term (ECT); the lagged residuals 

derived from estimation of Equation (27). The ECT measures the deviation 

from the long-run equilibrium between the 
 AP and

BP  , and including it in the 

ECM allows not only 
 AP to respond to changes in

BP  but also to correct any 

deviations from the long-run equilibrium that may be left over from previous 

periods. Splitting the ECT into positive and negative component (i.e. positive 

and negative deviation from the long-run equilibrium; 
ECT and

ECT ) makes 

it possible to test for asymmetric price transmission as follows: 

  











141312121   , , , , tAtBtttBotA PPECTECTPP  

(28) 

Von Cramon-Taubadel and Loy (1996) also segmented the concurrent 

response term in Equation (27). This led to the following specification in 

which concurrent and short–run responses to departures from the cointegrating 

relation are asymmetric if 
  11   and

  22   respectively, that is: 

,  , 1 1 , 2 1 2 1 3 , 1 4 , 1   A t o Bt B t t t B t A tP P P ECT ECT P P              

               

(29) 

Conspicuously, Equation (29) is equivalent to the Houck approach 

given by Equation (20), except that Equation (29) also contains

14131212  , , 









  tAtBtt PPECTECT  . In effect, the asymmetric 
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ECM with complex dynamics nests the Houck’s model in first difference or 

has the structures of the Houck’s model. 

Submissions so far have emphasised the use of the Granger and Lee 

asymmetric error correction model by Von Cramon-Taubadel (1998). 

Subsequently, other researchers (Acquah & Von Cramon, 2009; Acquah, 

2010; etc.) also implemented it. Specifically some studies employed variants 

of these approaches. For instance a recent approach proposed by Chavas and 

Mehta (2004) appears to nest a variety of earlier approaches. 

Many price transmission studies implemented Von Cramon-Taubadel 

and Loy (1996) testing procedure for asymmetric price transmission or some 

variants of their proposed ECM approach. For example, Von Cramon-

Taubadel and Loy (1996) used an ECM to study the spatial price transmission 

on world wheat markets. Similarly, Capps and Sherwell (2007) analysed the 

behaviour of spatial test of asymmetric price transmission according to the 

Von Cramon-Taubadel and Loy ECM’s approach and the conventional 

Houck’s approach. Scholnick (1996) also used an asymmetric ECM to test for 

asymmetric adjustment of interest rates, while Borenstein et al. (1997) 

employed an ECM specification where the error correction terms are not 

segmented. Von Cramon-Taubadel (1998) demonstrates that transmission 

between producer and wholesale pork prices in northern Germany is 

asymmetric. Balke et al. (1998) and Frost and Bowden (1999) also employ 

variants of the asymmetric ECM. FAO (2003) provided a review of the 

application of time series techniques (cointegration, ECM) in testing market 

integration and price transmission for a number of cash and food crop markets 

in developing countries. 
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Threshold Models  

Other researchers continue to work on how to improve the already 

existing approaches. Drawing from the threshold approach introduced by Tong 

(1983), it was possible to consider an intuitively appealing type of ECM in 

which deviation from the long-run equilibrium between 
 AP and

BP  will lead to 

a price response if they exceed a specific threshold level. Many studies 

measuring asymmetric price transmission using the threshold approach 

estimates variants of the following simplified equation. 

Standard Threshold Cointegrated Model is given by 

  , 1 , 2 1 2 1  A t o B t t t tP P ECT ECT       

       
   (30) 

Given a threshold (γ), where 

1tECT 

  and 

1tECT     (31) 

The Error Correction Term (ECT) is segmented into 

1tECT and



1tECT according to whether it is greater or less than a defined threshold 

value, respectively. Detailed discussion on the threshold modelling is provided 

in numerous studies including Enders (2004), Balke and Fomby (1997) and 

Tsay (1989). Balke and Fomby (1997) presented a model that allows for non-

linear adjustment to equilibrium by introducing the concept of threshold 

cointegration. The relationship between symmetry and threshold is 

systematically developed in Meyer and Von Cramon-Taubadel (2004). The 

authors noted that thresholds allow for different types of asymmetry. 

The first type refers to a two symmetric threshold model (i.e. three 

regime model) with asymmetric responses in the outside regimes, reflecting 

asymmetry with respect to speed of transmission. In contrast, a two symmetric 
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threshold model with three regimes and symmetric responses in the outside 

regimes need not be asymmetric. On the other hand, a one threshold model is 

asymmetric if the threshold parameter (γ) differs from zero. 

The second type of asymmetry refers to the fact that the two thresholds 

need not be equal. If this type of asymmetry holds then the deviations in the 

positive and negative directions must reach a different magnitude before a 

price response is triggered. 

Following the development of the threshold model, a number of 

applications have estimated asymmetric adjustments using threshold error 

correction models. Abudulai (2002) draws on Enders and Granger (1998) to 

test for asymmetric price transmission in a methodology in which the 

threshold parameter (γ) is set to zero. Alternatively, Goodwin and Harper 

(2000) and Goodwin and Piggott (2001) use a grid search to find optimal 

thresholds in price transmission analysis. Hansen and Seo (2002) developed a 

test for the significance of a single threshold in an error correction model 

where the ECT is segmented not according to whether it is greater or less than 

zero but rather according to whether it is greater or less than a threshold value 

that might differ from zero. In an empirical application, Aguero (2004) uses a 

threshold error correction model to estimate price adjustments under risk in 

the Peruvian agricultural markets.  

 

Review of Empirical Applications 

As discussed by Acquah (2010), the review of empirical application is 

based on thorough literature survey of asymmetric price transmission which 

draws heavily from Meyer and Von Cramon-Taubadel (2004). The survey 
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documentation by Meyer and Von Cramon-Taubadel (2004) consists of 40 

publications estimating asymmetric price transmission in samples of different 

products including fuel and gasoline, interest rates, and agricultural products.  

Most of these applications are based on monthly and weekly price data 

while daily, fortnightly and quarterly data are each used once. Nearly half of 

the test for asymmetric price transmission employs some type of pre-

cointegration procedure (i.e. 19 out of 40). Post cointegration methods such as 

the error correction mechanisms and the threshold approaches are employed in 

11 publications (i.e. 4 ECM and 7 threshold applications). The remaining 

studies implemented a variety of other approaches. Table1 presents the 

outcome of a Meta-analysis based on the results of all published individual 

tests derived by Meyer and Von Cramon-Taubadel (2004). 

 

Table 1: Asymmetry Test of the Different Econometric Models 

 Test Methods 

All 

methods 

Methods 

using first 

difference 

Methods 

using 

summed 

difference 

ECM 

methods 

Threshold 

methods 

Misc 

methods 

Total cases 205 93 53 31 10 18 

Symmetry 

maintained  

106 30 40 17 2 17 

Symmetry 

rejected 

99 63 13 14 8 1 

Symmetry 

rejected (%) 

48 68 25 45 80 6 

 

Source: Meyer and Von Cramon-Taubadel (2004, pp. 22) 

 

 

Inferring from the reviewed literature (Meyer & Von Cramon-

Taubadel 2004), it is increasingly evident that the different methods appear to 

lead to different rates of rejection of the null hypothesis of symmetry. The fact 

that the literature to date contains few rigorous comparison and analysis of the 
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strengths and weaknesses of the available methods is a hurdle to the 

advancement of asymmetric price transmission analysis. If researchers knew 

which method is appropriate, they could focus on this and gather insight and 

knowledge more rapidly in the future. 

On the other hand, Meyer and Von Cramon-Taubadel (2004) noted 

that the available methods are not all simply reparameterization of one another 

and that they cannot all be equally appropriate in all cases. Emphatically, the 

survey by Meyer and Von Cramon-Taubadel (2004) showed that the different 

methods detect asymmetry at different rates (but this could be because 

different methods applied to different data in each case). Subsequently, a 

simple experiment with simulated data implemented in research conducted by 

Acquah and Von Cramon (2009) produced a similar result consistent with the 

findings of the survey by Meyer and Von Cramon-Taubadel (2004) that the 

different methods detect asymmetry at different rates. 

Research and the discussions so far have established that a different 

econometric model of asymmetric price transmission detect asymmetry at 

different rates or culminates in differences in inferences and conclusion.  It 

therefore remains indispensable to select one model from the set of competing 

models that best captures the true underlying asymmetric data generating 

process. 

 

Chapter Summary 

The methodology examines various techniques used for model 

selection. These include AIC, BIC and MDL. Various specifications of the 

MDL have been reviewed. It explains the notion of data compression. It has 

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



83 

 

explained the code compression presented by various authors. In line with this, 

it has explained the concepts of optimal codes, Normalized Maximum 

Likelihoods criterion and Renormalized Maximum Likelihood criterion. 

Various measures of information criteria have been stated. These are 

AIC, BIC, rMDL, gMDL, SBIC, nMDL and eMDL. The concept of 

Asymmetric Price Transmission (APT) has been discussed quite extensively 

and illustrated.  It points out the factors to APT. Various models for APT have 

also been reviewed that suggest the manner for testing for price asymmetry. It 

then presents Asymmetric Error Correction models and threshold models. 

The review asserts that for rigorous comparisons and analysis of the 

strength and weaknesses of the methods pose a challenge of determining the 

most appropriate method that has optimal rates of correct identifications of 

asymmetry. 

In the light of selecting one model from the set of econometric 

asymmetric price transmission models, this research however, introduces yet 

another criteria; the Minimum Description Length Principle (MDL) discussed 

earlier, which will help capture the true data generating process among others. 

The MDL principle represents a drastically different foundation for model 

selection and, in fact, statistical inference in general. It has a number of 

distinctive features: There is no need to assume anything about the data 

generation mechanism and in particular, unlike traditional criterion (AIC, BIC, 

etc.), it is not needed that the data form a sample from a population with some 

known probability law. Hence, the objective is not to estimate an assumed and 

"unknown" distribution, whether inside or outside the proposed class of 

models, but to find good models for the data. Most essentially, the principle 
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permits comparison of any two models, regardless of their type (Sund, 2001 

Lecture series).  
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CHAPTER FOUR 

RESULTS AND DISCUSSIONS 

Introduction   

In this chapter, the R-functions for the various formulations of MDL 

will be developed since no such functions have been built in available 

software yet. This will enable us apply them to the various formulations of 

APT models which have been in use in econometric modelling over the years. 

Further, artificial data will be used to simulate the behaviour of the models to 

find out their long term behaviour in determining the true data generating 

process of our APT econometric models. This will help to determine the best 

MDL criteria in selecting the best APT linear model even in several iterations 

and under various conditions.     

 

Overview on Transforming MDL Equations into R Functions 

This study has established four formulations of the MDL in our 

theoretical review in Chapter Three. These have to be converted into R-

functions (since R is the statistical programming language employed 

throughout this study and no such functions exist yet in R) from scratch using 

the AIC criterion already developed in R. The reason is, it was established 

from our previous chapter that, most information-theoretic fit criteria can be 

considered as special cases of what Barron and Cover (1991) referred to as 

minimum complexity density estimators;      ( .i X m i m   It was 

explained that the first term is equivalent to the negative log-likelihood of the 

data calculated at the maximum likelihood estimates of the parameter and the 

second term is the penalty for model complexity and this second part differs 
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for different information-theoretic fit criteria and uniquely defines a give 

criterion. Therefore, one can use, say, AIC to find maximum log likelihood 

and then re-write MDL; such that the maximum likelihood is common to both 

criteria. To make derivation of the MDL’s easier and understandable, the 

study employ the sum of square versions of the MDL as discussed in Chapter 

Three [also further explained by Hansen and Yu (2001) and further broken 

down with examples by Stine (2003)]. 

 

Statistical Programming Language: The R-software 

R is an object oriented programming language. It is a command-line-

based language that requires all commands are entered directly into the 

console. It has some inbuilt functions already pertaining to information criteria 

like AIC and BIC. The goal of this research is to re-write the four formulations 

of MDL (Rissanen, Normalized Maximum Likelihood, Exact Maximum 

Likelihood and G-Prior Mixture) into R-functions. In order to write all the 

four we must start with the very simple one which is similar to AIC; that is 

Rissanen’s approach (see Appendix J1).  

 

Derivation of MDL (Rissanen’s approach) from AIC using R-Software 

We start with setting or defining an arbitrary response variable, and its 

predictor variables from a set of random numbers. We also need to ascertain 

the same set of random numbers are generated each time we call for our 

parameters and response variable and this is achieved by the following 

command ‘set.seed ()’ (see Appendix J2 for an example and derivation of 

MDL from AIC using the R-software.  
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Also note that this research used the random normal distribution and 

the distribution can change depending on the researcher’s interest. Arbitrary 

predictor and response variables for our model are defined using a sample size 

of 1000 which can also change. Let 1, 2, 3 4andx x x x be arbitrary predictor 

variables and y the dependent variable, and then the following equations can 

be defined in R console as  

lm_fit1 <- lm(y ~ x1 + x2 + x3 + x4) 

lm_fit2 <- lm(y ~ x1 + x2 + x4) 

lm_fit3 <- lm(y ~ x2+ x4) 

lm_fit4 <- lm(y ~ x1 + x2) 

Calling AIC to determine which of the following models (fit1, fit2, fit3, and 

fit4) is the true data generating process is as follows: 

AIC(lm_fit1) 

AIC(lm_fit2) 

AIC(lm_fit3) 

AIC(lm_fit4) 

As expected in Table 2, lm_fit4 yielded the least AIC since the least 

error is preferable. Thus, the better model. We now calculate AIC manually in 

order to find the maximum likelihood ratio and use that to re-write the formula 

for minimum description length (MDL). Along the way, BIC will be 

introduced for comparison. 

Using the formula: 

AIC = k*npar - 2ln(L)  

 where, 

 npar = number of parameters (which includes the constant) 
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 L = Maximized Likelihood 

 k -> this is 2 for AIC and log(#data points) for BIC 

 

Here, the Log-Likelihood value can be extracted using R function logLik(). 

Redefining the AIC formula, we have 

AIC_gid <- function(model=fit){ 

    AIC_g <- 2*(length(model$coefficients)+1) - 2*as.numeric(logLik(model)) 

    return(AIC_g) 

} 

 

Redefining the BIC formula; 

 

BIC_gid <- function(model=fit){ 

  BIC_g <- log(nrow(model$model))*(length(model$coefficients)+1) - 

2*as.numeric(logLik(model)) 

  return(BIC_g) 

} 

Comparing AIC and BIC inbuilt functions to the manually calculated 

one will ensure the manual manipulations that were used to develop the MDL 

holds. 
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Table 2: Criteria Comparison of Inbuilt verses Manual Calculation 

Functions   Value  

Inbuilt  AIC(lm_fit4) 8538.276 

 BIC(lm_fit4) 8557.907 

Developed  AIC_gid(lm_fit4) 8538.276 

 BIC_gid(lm_fit4) 8557.907 

 

Table 2 confirms that manually calculating the criteria in R and using the 

already inbuilt function is the same. This paves the way for us to confidently 

calculate the maximum likelihood value from AIC formula and use this to 

develop the MDL function from scratch. No such inbuilt functions exist yet 

but other programming languages may have some work on MDL. 

Developing the Minimum Description Length Criteria 

As established, the AIC formula given as 

AIC = k*npar - 2ln(L) 

 is key in deriving the MDL formula in terms of maximum likelihood,  

where   

npar = number of parameters (this includes the constant), 

L = Maximized Likelihood, 

k = this is 2 for AIC and log(#data points) for BIC, 

Thus, the Log-Likelihood value can be extracted using R function logLik().  

 Minimum Description Length 

Rissanen’s minimum description length (MDL) principle (Rissanen, 

1978) formalizes the two-part codes which compresses data optimally by 

maximizing its likelihood and at the same time how data was encoded 
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(knowing the model associated with the data). To convey the model to the 

receiver, one must include the parameter estimates as part of the message to 

the receiver. Thus, the MDL of a fitted model is the sum of two parts; the first 

part of the description length represents the complexity of the model and this 

encodes the parameters of the model itself – it grows as the model becomes 

more complex. The second part of the description length represents the fit of 

the model to the data; as the model fits better, this term shrinks.  The choice of 

a code for the rounded estimates is equivalent to the dilemma faced by a 

Bayesian who must choose a prior distribution. A large-sample approach leads 

to the association between MDL and BIC. Comparisons of these two criteria 

in Chapter Two showed that the complexity term of BIC may appear 

equivalent to MDL (they are equivalent under the spike-and-slab prior but for 

other priors it gives different results). 

The concept of universal code as against the optimal priors in 

developing codes is the way forward now since it is tailored to specific 

problems and works well over a wide range of distributions. Analogous to 

robust estimates in statistics, universal priors encode as well as the best prior, 

but they do not require that one knows the “true” model and based on its 

robustness, universal priors are well suited for model selection than the 

former. Thus, the idealized length of the universal code is calculated (more 

suited for regression models) and it shows that the description length leads to a 

version of MDL that resembles AIC (Forster & Stine, 1999) in structure and 

this gives us a basis for comparison as suggested by Barron and Cover (1991). 

Calculating the Idealized Length in R  

t.values <- as.numeric(summary(lm_fit1)$coefficients[,3]) 
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Idealized length of universal code for an integer j != 0 

 l(j) = 2 + log2(abs(j)) + 2*log2log2(abs(j)) where the logs are the positive 

side such that log2(x)=0 for |x|<= 1 

The function that calculates the Idealized length which is the penalty of 

using a complex model is based on the t values from the model. 

IDl_len <- function(z){ 

  x <- round(z) 

  frst_log <- ifelse(abs(x)<= 1, 0, log2(abs(x))) 

  scnd_log <- ifelse(abs(frst_log)<=1, 0, 2*log2(frst_log)) 

  id_len <- 2 + frst_log + scnd_log 

  return(id_len) 

} 

Example: IDl_len(3)  is approximately 4.92 

Sum of Idealized length for a vector 

sum(sapply(t.values,IDl_len))  

The function for the MDL using the Residual Sum of Squares (RSS) and 

Idealized Length is given as 

MDL = (n/2)*log2(RSS/n) + sum(Idealized_length)  

The formula holds after eliminating constants that do not affect selection. 

Writing a function for MDL 

MDL <- function(fit = model){ 

 t.values <- as.numeric(summary(fit)$coefficients[,3])  

That is to extract t-statistic value from the model including the intercept. 

 RSS <- sum((fit$residuals)^2) – Sum of Squares residual 

 n <- nrow(fit$model) – The number of data points 
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 log_lkl <- (n/2)*log2(RSS/n) – calculating the log likelihood  

 unv_cdlen <- sum(sapply(t.values,IDl_len)) – Calculates the universal codes 

 Mdl <- log_lkl + unv_cdlen 

 return(Mdl) 

} 

Functions for calculations of AIC and BIC (both full version and when 

constants are eliminated) can be found in Appendix H1.  The value of MDL 

criteria for all our models (fit1, fit2, fit3 and fit4) is called for and compared. 

The least value (lm_fit4) is therefore the best model. 

MDL(lm_fit1) =  4124.467 

MDL(lm_fit2) = 4122.47 

MDL(lm_fit3) = 4128.291 

MDL(lm_fit4) = 4121.984 

Hence, model 4 is the best in describing the data generating process.  

This concept is extended to AIC and BIC since we have now developed an 

MDL function in R. This gives us a basis to write more program codes to 

calculate all test statistics to help us use big data through simulation. The 

algorithms will confirm or otherwise after the long run a model’s ability to 

retrieve the data generating process of a particular distribution and find out if 

the former model will still be the best. After this, we now compare MDL to 

the other criteria and evaluate their efficiency.  

Developing R-Functions for all four formulations of MDL 

Our task now is to develop codes in R for some formulations of MDL 

used in this study. The sums of squares versions of these equations [the 

formulations or equations which are extensions of rMDL (see Chapter Two)] 
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were used. The study developed codes and idealized lengths based on our 

initial rMDL algorithm for the remaining extensions (gMDL, nMDL, eMDL) 

and each converted into R-functions. The house-style is to write all codes as 

simple as possible so that when they are introduced into the iteration loop, the 

computations will be fairly easy for the computer and less time will be used in 

arriving at the results (see Appendix H2 for the R – functions for the four 

MDL’s).  

Developing R-Functions for the Asymmetric Price Transmission (APT) 

Linear Models 

 

The study looked at three APT models in theory; the Houck’s 

Specification Model denoted as Houck’s_L (fit_3), Standard Error Correction 

Model denoted as SECM (fit_2) and Complex Error Correction Model 

denoted as CECM (fit_1) which were discussed in the second chapter. R codes 

were also developed for the three price models basically based on the work of 

Acquah and Von Cramon-Taubadel (2009). Some modifications (optimized by 

making it shorter) were made to suit this current study (see Appendix H3).  

The study compares all criteria under study (MDL, AIC and BIC) for the three 

price models.  

Simulation and Results of Computations 

This research has found simulation as a very useful technique for 

building models that can be simulated and for solving modelling problems 

involving huge observations. This research specifically used Monte Carlo 

simulation to solve the problem of getting repeated samples and able to use 

huge data. Simulation allows analysts to easily create many samples of data in 

a computing environment which allows us to assess patterns that appear across 

those repeated samples. This research emphasizes the point that Monte Carlo 
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simulation is a powerful tool for assessing new methods and comparing 

competing methods. This was done with the R-programming language. Data 

was drawn from the random normal distribution in all our computations. One 

of the tasks for all the information theoretic fit criteria was to be able to 

identify the true data generating process. 

All codes developed for the computations of the various criteria (AIC, 

BIC, MDLs) can be found at Appendix H4. The package ‘Hmisc’ was 

installed to help with R-codes used in calculating ‘lags’ or differencing of time 

series (our price models). In order to load package ‘Hmisc’ it is necessary to 

also load the other packages (see Appendix J3).   

The ‘actual’ R-codes developed for computations in this research 

basically stem from the hypothetical scenario illustrated earlier in this section. 

All codes for Idealized length which was used in developing the MDL 

formulations were calculated and then the R-functions of rMDL, gMDL, 

nMDL and eMDL were developed. The four formulations of the MDLs were 

also combined together into one function named the ‘combo’, which is useful 

during simulations (for optimization). 

The simulation was started by first of all creating empty matrices [fit_1 

<- data. frame ( )] to hold output from calculations of averages and output of 

simulations.  This function creates data frames, tightly coupled collections of 

variables which share many of the properties of matrices and of lists, used as 

the fundamental data structure by most of R modelling software framework. 

The number of iterations (Niter) was set to 1000; this number can be 

varied depending on the purpose of study and in our case for purposes of 

comparison. The sample size n  was set to 1000 (this can also change). A seed 
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was also set to maintain the exact random numbers generated for consistency. 

R-functions for both the predictor and response variables of interest were then 

developed based on the asymmetric price transmission linear models denoted 

as follows: 

 

Complex Error Correction Model (CECM) 

lm_fit1 <- lm(Dyt ~ dxxpos + dxxneg + LECTpos + LECTneg-1 )   

 

Standard Error Correction Model (SECM): 

lm_fit2 <- lm( Dyt ~ Dxt + LECTpos + LECTneg-1)           

    

 Houck's Model in Summed Difference: 

 lm_fit3 <- lm(dyy ~ dxxpos + dxxneg-1 )                      

 

The arbitrary model of interest (data generating process) whose 

parameters were based on Holly et al. (2003) and others is denoted in R-codes 

as follows: 

 

dyt <- 0.7*dxt + 0.25*lECTpos + 0.75*lECTneg + rnorm(n-1, 0, 1) 

(SECM) 

dyt <- 0.95*dxxpos + 0.20*dxxneg - 0.25*lECTpos - 0.75*lECTneg + 

rnorm(n-1, 0, 1)       (CECM) 

 

It is recalled that: 

 𝑑𝑦 = 𝑑𝑦𝑡 = 𝑐hange in output price = change in response variable 
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𝑑𝑥 = 𝑑𝑥𝑡 = change in input price = change in predictor variable 

𝑑𝑥𝑥𝑝𝑜𝑠 = positive change in input price 

𝑑𝑥𝑥𝑛𝑒𝑔 = negative change in input price 

𝐸𝐶𝑇 = 𝐼𝐶𝐸𝑇 = error correction term = residuals 

𝐼𝐶𝐸𝑇𝑝𝑜𝑠           = 𝐿𝐸𝐶𝑇𝑝𝑜𝑠 = positive lag residuals       

= positive deviations from long − run equilibrium   

𝐼𝐶𝐸𝑇𝑛𝑒𝑔          = 𝐿𝐸𝐶𝑇𝑛𝑒𝑔 = negative lag residuals  

= negative deviations from long − run equilibrium 

The random normal distribution was chosen as the data generating 

process for this study (AIC and BIC were actually build on the random normal 

distribution too) hence it is just ideal to use it as the basis of comparison.  

The following outputs are the R-functions for the three APT models 

the study employed: 

> lm_fit1 

Call: 

lm(formula = Dyt ~ dxxpos + dxxneg + LECTpos + LECTneg - 1) 

Coefficients: 

 dxxpos   dxxneg  LECTpos  LECTneg   

 0.6887   0.7989   0.2658   0.6746   

> lm_fit2 

Call: 

lm(formula = Dyt ~ Dxt + LECTpos + LECTneg - 1) 

Coefficients: 

      Dxt  LECTpos  LECTneg   

 0.7447   0.2323   0.7129   
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> lm_fit3 

Call: 

lm(formula = dyy ~ dxxpos + dxxneg - 1) 

Coefficients: 

dxxpos  dxxneg   

0.5634  0.9551   

Therefore, our three models for consideration are generated and 

matrices are then created to receive the average calculated criteria using the 

data.frame code for the models.  

 

Data Analysis and Results  

The study now looks at the performance of the three APT linear 

models vis-à-vis the performance of all six criteria. Firstly, we will examine 

the performance of all criteria against the three models using the number of 

observations (n) to be equal to 50 (small), 150 (moderate), and 500 (large) 

which is consistent with previous researches. Also, the number of iteration 

(niter) is 1000. This study will also look at the performance of the model 

selection methods in selecting the true data generating process (CECM, 

SECM, HOUCK’S) within conditions of sample size, stochastic variance and 

level of asymmetry. 

General performance of models and criteria 

Previous studies, in econometric APT modelling, considered sample 

sizes of cases between 100 and 300 to be moderate, below 100 to be small and 

above 500 to be large (Holly et al., 2003; Acquah & Von Cramon, 2009, Von 

Cramon & Meyer, 2000). The study will first of all consider a general case 
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where we look at the mean performance of the models across all criteria 

(rMDL, nMDL, eMDL, gMDL, AIC, BIC) and the ability of the criteria to 

predict the models to select the Data Generating Process {standard random 

normal distribution = rnorm (0, 1)} for every 1000 Monte Carlo Simulations 

and a sample size of 1000.  

This gives us a general overview of what is happening to both the 

criteria and the models. In all analysis, the average criteria for each model and 

the number of times (in percentages) each criterion was able to predict (select) 

the data generating process (DGP) were calculated and tabulated. The three 

models of APT were used in the analysis for purposes of comparison. In all 

simulations, a particular data generating process was used as the ‘starting 

model’ and all three models were explored but the Houck’s model performed 

very poorly. Thus, due to non-competitive nature of the Houck’s model the 

actual competition was between the Standard Error Correction Model and 

Complex Error Correction Model and so they were used as the starting models 

for each comparison across conditions of varying sample size, stochastic 

variance and difference in asymmetric adjustment parameters.  

General overview of performance of criteria and models when data 

generating process is SECM and CECM 

 

This section looked at how the various criteria performed and also how 

they are able to predict the number of times the original data generating 

process of all models are selected. The study employed 1000 Monte Carlo 

simulations throughout the entire work. Although, subsequent analysis looked 

at the effect of sample size on performance, which were varied based on 

previous works of some economists (Holly, Turner and Weeks, 2003; Meyer 

and Von Cramon, 2004; Acquah, 2010), and in some cases a moderate sample 
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size was used for purposes of comparison. A sample size of 1000 was used in 

this general overview of the performance of each criterion and how they are 

able to select the true DGP. 

Tables 3 and 4 compare the grand averages across each model in the 

cases when the original DGP is SECM and CECM, respectively. 

Table 3: Criteria Averages when DGP is SECM 

 rMDL gMDL nMDL eMDL AIC BIC 

CECM 33.41405 18.13018  12.59736 21.06456 2830.934 2855.448 

SECM 26.64921 15.89862   10.79782   16.89012 2829.915 2849.526 

HOUCK’S 199.73897    138.44222 133.95012 262.38379 3080.173 3094.881 

Sample size (1000)    1000 Monte Carlo Simulations  

 

Table 4: Criteria Averages when DGP is CECM 

 rMDL gMDL nMDL eMDL AIC BIC 

CECM 30.20129 18.35132 12.81850 21.50684 2830.934 2855.448 

SECM 78.47769 55.12114 50.02034 95.33516 2908.553 2928.164 

HOUCK’S 192.48686 137.68654 133.19444 260.87244 3078.316 3093.024 

Sample size (1000)    1000 Monte Carlo Simulations  

  

Table 3 revealed that, with a sample size of 1000 observations in a 

1000 simulations and when the data generating process is SECM,  all criteria 

recorded lower values for the standard model, then followed by complex 

model and Houck’s model. Thus, when the true data generating process was 

SECM, all criteria were able to identify the true data generating process with 

lower average values for the standard model (SECM) than for any of the other 

two. Table K1 (see Appendix K) which provides information on the criteria 

and model rankings reveals that there are differences in the performances of 

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



100 

 

criteria regarding selected alternative models and this forms the basis for their 

different rankings indicated in Table K1. Evidently, all criteria selected the 

true data generating process (SECM) indicated by a ranking of one (1), 

followed by CECM with a ranking of two (2) and finally Houcks with a 

ranking of three (3). This implies that the MDLs (rMDL, gMDL, nMDL and 

eMDL) can be used as alternatives to AIC and BIC when choosing which set 

of models point to the true data generating process or which model among 

competing models is reliable. 

In Table 4, given the same conditions but with the true data generating 

process being CECM (complex model), all criteria selected the complex 

model as the true data generating process with the lowest values. Similarly, 

Table K2 in Appendix K reveals that, all criteria performances are consistent 

in choosing the true data generating process with a ranking of one (1) for 

CECM, two for SECM and finally Houcks, a ranking of  three (3). Also, 

Houcks model provided the poorest fit (Table 3 and Table 4) to the data and 

this is due to the fact that the Houcks model does not incorporate the 

equilibrium relationships of cointegration in price series like the standard and 

complex error correction models (SECM and CECM) and this affects the 

performance of selecting the true data generating process. This confirms the 

assertion that in the presence of cointegration of the data, an error correction 

mechanism exists (see discussion provided in Chapter Three). 

 In general, irrespective of which model (SECM or CECM) is used as 

DGP and given the same conditions (sample size of 1000 and 1000 

simulations), the criteria values seems to be almost the same for the Complex 

Error Correction Model and the Houck’s Model. But the criteria values for the 
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Standard Error Correction Model are dependent on what the initial DGP is. 

Subsequently, given the six criteria, the normalized maximum likelihood 

MDL (nMDL) recorded the minimum means value across the three models for 

the two simulations. Therefore, the nMDL tends to be doing better compared 

to all criteria followed by G-prior mixture MDL (gMDL). AIC and BIC 

recorded very high averages.  

The study continued to verify after 1000 simulations what percentage 

of time a particular criteria is able to select each model (under consideration) 

to follow a particular DGP. The SECM and CECM data generating processes 

were chosen for the first and second experiment, respectively, and are shown 

in Table 5 and Table 6. 

 

Table 5: Percentage of Time Criteria Correctly Select Model to Predict 

               the SECM-DGP 

(%) CECM SECM HOUCK’S 

rMDL 0.2 99.8 0 

gMDL 2.0 98.0 0 

nMDL 3.2 96.8 0 

eMDL 2.4 97.6 0 

AIC 14.7 85.3 0 

BIC 0.9 99.1 0 

Sample size (1000)    1000 Monte Carlo Simulations 

 

 

Table 6: Percentage of Time Criteria Correctly Select Model to Predict the 

                CECM- DGP 

(%) CECM SECM HOUCK’S 

rMDL 100 0 0 

gMDL 100 0 0 

nMDL 100 0 0 

eMDL 100 0 0 

AIC 100 0 0 

BIC 100 0 0 

Sample size (1000)    1000 Monte Carlo Simulations 
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The results showed that each time the DGP is SECM or CECM, all 

criteria are able to select the true data generating process to a very large 

extent. Consistently, if the DGP is CECM, all criteria selected the CECM to be 

the true DGP 100% of the time although, for SECM, percentage of prediction 

was above 90% except for AIC which recorded 85% recovery rate. In both 

cases, all criteria consistently do not identify the Houck’s model 100% of the 

time. In other words, all criteria identifies 0% of the time the Houck’s model 

as it is rightly not the DGP. Thus, it is very easy for all ITFC to rightly detect 

the Houck’s model as the wrong model. Specifically, rMDL outperformed 

(99.8) all criteria with BIC being comparable (99.1%). The remaining MDLs 

(gMDL, eMDL and nMDL) outperformed AIC. The Houck’s model records 

0% rate of recovery all the time by all criteria as expected.  

As a matter of emphasis, data simulation employed in this research 

means generating data from asymmetric data generating process and exploring 

the analysis in repeated sample. This research designed a Monte Carlo 

experiment using 1000 simulations to test whether Minimum Description 

Length criteria on the average identifies a true asymmetric DGP out of 

competing models. Also, the Monte Carlo simulation emphasizes the relative 

performance of the model selection procedures in a price transmission 

modelling framework of which no studies have been undertaken so far.  

To make comparisons realistic and to be able to generalize in our 

subsequent analysis, this research draws on the experimental designs of Cook 

et al. (1999), Cook and Holly (2002), Holly et al. (2003) and Acquah and Von 

Cramon-Taubadel, (2009). Estimates of the coefficients are used to generate 

artificial data for the Granger and Lee (1989) asymmetric error correction 
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model (SECM) and the Von Cramon-Taubadel and Loy (1996) asymmetric 

error correction models. A moderate sample size of 150 observations was used 

for purposes of comparison regarding discussions on level of asymmetry and 

stochastic variance. Further, varying sample sizes of 50, 150 and 500 was 

employed to determine its effect on the performance of both criteria averages 

and the number of times they could predict a model as the specified DGP as 

demonstrated in later results. 

Comparison of Criteria Model Recovery Rates of the Tests of Asymmetry 

when True Model is SECM 

In this section, the relative performance of the model selection criteria 

in recovering the true DGP is evaluated by simulating the effects of sample 

size, the amount of noise in the model (stochastic variance) and level of 

asymmetry on model selection. That is, the three competing models are fitted 

to the simulated data and the criteria ability to recover the true model was 

measured (Model Recovery Rate). The model recovery rates define the 

percentage of time samples in each competing model provides a better model 

fit than the other competing models. The derivation of recovery rates is done 

using 1000 Monte Carlo simulations. In other words, the number of samples 

for which each model fits better among competing models, is measured out of 

1000 samples and expressed as a proportion/percentage. The proportions 

derived from each model by selection methods are the arithmetic mean based 

on 1000 samples. 
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Monte Carlo Simulation of Effect of Sample Size on Model Selection-

SECM 

The study compares the relative performance of model selection across 

sample sizes of 50 (small), 150 (moderate) and 500 (large) in Table 7. 

Generally, all model selection criteria correctly recovered the true DGP 

(SECM) and lower percentages were recorded for CECM but the Houck’s 

model which is included in all simulations performed poorly for all model 

selection methods (rMDL, gMDL, nMDL, eMDL, AIC, BIC) and was never 

or was least (0% for large and moderate samples and below 10% for small 

samples) recovered due to poor fit. This may be due to the fact that Houck’s 

model is not consistent with cointegration between price series.  

The recovery rate for SECM in the case of small sample size for all 

model selection criteria ranged between 64% and 86%. Two MDL criteria 

(gMDL- 86%, and eMDL- 84 %) competed very well with BIC whose rate of 

recovery was 86% (highest). Recovery rate in the case of moderate sample 

size, increased to 91-98% except for AIC that recorded 86%. Also, the 

performance of rMDL (97%) again was similar to BIC (98%).  

Although, BIC did better than rMDL in small to moderate samples, 

rMDL approximately reached full recovery (100%) in large sample and 

outperformed BIC (99%) and BIC in turn outperformed the remaining MDLs. 

rMDL and BIC are comparable in moderate to large samples whereas gMDL 

and BIC are comparable in small samples. 
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Table 7: Relative Performance of Model Selection across Sample Size 

Sample Size Model Fitted (%) 

50  CECM SECM (DGP) HOUCK’S 

Methods    

rMDL 29.9 63.5 6.6 

gMDL 9.0 85.8 5.2 

nMDL 20.6 78.0 1.4 

eMDL 12.2 84.2 3.6 

AIC 17.7 79.5 2.8 

BIC 5.0 86.3 8.7 

     

150  CECM SECM (DGP) HOUCK’S 

Methods    

rMDL 3.3 96.7 0 

gMDL 4.6 95.4 0 

nMDL 8.3 91.7 0 

eMDL 5.8 94.2 0 

AIC 13.9 86.1 0 

BIC 2.1 97.9 0 

     

500  CECM SECM (DGP) HOUCK’S 

Methods    

rMDL 0.5 99.5 0 

gMDL 3.3 96.7 0 

nMDL 5.2 94.8 0 

eMDL 3.6 96.4 0 

AIC 16.4 83.6 0 

BIC 1.3 98.7 0 

    

Based on 1000 Monte Carlo Simulations 

 

This may be suggestive that although the MDLs do very well, the 

various formulations’ performances are also affected by change in sample 

size. Specifically, gMDL and eMDL do well with small samples whiles rMDL 

(highest), nMDL and gMDL have strength in moderate to large samples. 

Houck’s model was never recovered (0%) for moderate to large samples. 

There was an improvement in recovery rate for all model selection criteria in 

choosing the true DGP in all sample categories except for AIC that decreased 

in the large samples.  

The general pattern of effect of sample size on recovery rate of the 

model selection criteria when the DGP is SECM is clearly depicted in Figure 

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



106 

 

2; Appendix L. Irrespective of the sample size being small or large, MDLs 

perform very well. In general, all criteria recovery rate improved with 

increasing sample size although AIC’s performance decreased in large 

samples. Specifically, with a sample size of 50, all criteria (except rMDL and 

nMDL) tend to do better than the AIC, though not consistent, it is known to 

perform relatively well with small sample sizes. BIC’s performance is also 

consistent with literature where it does very well with large samples. Thus, the 

performances of the formulations of MDL in selecting the true data generating 

process has a wide range of uses whether we are dealing with small or large 

sample sizes. Also, the similar results of MDLs to BIC and sometimes to AIC 

stem from our discussions (Chapter Three) in the derivation of information 

criteria having a basic structure of what Barron described as minimum 

complexity density estimators. Their differences only come as a result of their 

penalty for complexity and MDLs specifically are moderations of BIC. 

Monte Carlo Simulation of Effect of Stochastic Variance on Model 

Selection-SECM 

In order to simulate the effect of noise level on model selection, this 

study considered three different standard deviations from the mean (noise 

levels) and categorized as  small, moderate and  large which corresponds to 

1.0, 2.0 and 3.0, respectively.  

A sample size of 150 was used to generate the models with the 

different error sizes. Essentially, the data fitting abilities of alternative models 

are compared in relation to the true model as the error in the data generating 

process was increased systematically. The results of 1000 Monte Carlo 
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simulations comparing the performance of the model selection methods as 

error size (σ) increased are displayed in Table 8. 

Generally, recovery rates of the true asymmetric data generating 

process (i.e. SECM) declined for all model selection methods as the error 

increased. A moderate sample size of 150 and an error size (σ) of 3 and 2 

recorded between 1 – 52% of ability to select the DGP for Houck’s model for 

all criteria, whereas nothing was recorded for error size of 1.0. However, for 

the criteria recovery rates for the CECM when the true DGP is SECM range 

between 0.5 – 43% for noise levels of 2 – 3 and between 2.1 – 1.4% for lower 

noise levels. 

The percentage of the simulated data in which the correct model (i.e. 

SECM) was selected or recovered among competing models by the model 

selection criteria as the amount of noise in the DGP increased. The recovery 

rate for the SECM model, at lower noise level (1), revealed that BIC 

outperformed all criteria and all the MDLs outperformed AIC.  rMDL (97%) 

can be used alongside BIC (98%) whilst gMDL (95%) was comparable to 

nMDL (94%) Alternatively, when noise increased to 2, gMDL (85%) and 

eMDL (84%) outperformed all criteria but AIC (82%) did slightly better than 

BIC (81%), thus comparable to each other. Subsequently, with much higher 

noise (3), AIC (68%) outperformed all criteria but comparable to eMDL 

(68%) and this is followed by gMDL (67%). Thus, eMDL and gMDL show 

stronger recovery rate in noisy data.  All MDLs except rMDL outperformed 

BIC. 
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Table 8: Relative Performance of Model Selection across Noise Levels Based 

              on Sample Size of 150-SECM 

Error Size Model Fitted (%) 

3   CECM SECM (DGP) HOUCK’S 

Methods    

rMDL 21.2 38.9 39.9 

gMDL 11.9 66.9 24.1 

nMDL 42.8 53.7 3.5 

eMDL 18.8 67.5 13.7 

AIC 10.0 68.1 21.9 

BIC 0.5 47.5 52.0 

     

2  CECM SECM (DGP) HOUCK’S 

Methods    

rMDL 29.2 60.3 10.5 

gMDL 8.8 84.9 6.3 

nMDL 21.0 77.1 1.9 

eMDL 11.5 84.2 4.3 

AIC 13.1 82.0 4.9 

BIC 1.0 80.6 18.4 

     

1  CECM SECM (DGP) HOUCK’S 

Methods    

rMDL 3.3 96.7 0 

gMDL 4.6 95.4 0 

nMDL 8.3 91.7 0 

eMDL 5.8 94.2 0 

AIC 13.9 86.1 0 

BIC 2.1 97.9 0 

Based on 1000 Monte Carlo Simulations 

 

Notably (see Figure 3; Appendix L), the MDLs (gMDL, eMDL, 

nMDL) performed similarly to one another with their recovery rates 

decreasing substantially as noise levels increased. Interestingly, when error 

size increases, rMDL and BIC drastically decreased but gMDL, AIC, eMDL 

and nMDL were steady.   

The MDLs continue to perform comparatively whether the noise is 

high or low thus making them to be robust given any situation. This means 

whatever the noise level; rMDL performs well (alongside BIC) with lower 
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noise levels whiles eMDL perform very well (alongside AIC) at higher noise 

level. Moderate noise levels sees gMDL and eMDL outperforming the 

traditional AIC and BIC.  

Comparison of the different selection methods showed a general trend 

in which recovery rates decreased with increasing error sizes. In effect, the 

performance of all model selection algorithms analysed deteriorated with 

increasing amount of noise in the true asymmetric price transmission data 

generating process.   

Concurrent effect of sample size and stochastic variance on model 

selection-SECM 

 It will also be of interest if we now take a look at the concurrent effect 

of sample size and stochastic variance on the model selection criteria ability to 

effectively recover the data generating process of the true distribution.  

Simulating the effects of sample size and stochastic variance 

concurrently affirms that a small error and large sample improves recovery of 

the true asymmetric data generating process and vice. 

Thus, with a small sample of 50 and an error size of 2.0 (unstable 

condition), the true data generating process was recovered at least 26 percent 

to 49 percent of the time by all the model selection criteria as illustrated in 

Table 9. On the other hand, with a relatively large sample of 150 and error size 

of 0.5 (stable condition), at least 86 percent to 100 percent of the true data 

generating process was recovered across all the model selection methods. 

Additional information is provided in Appendix I 1.  

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



110 

 

Specifically under stable conditions, the rMDL (99.5%) outperformed 

all criteria with BIC (97.9%), eMDL (97.3%) and gMDL (97.7%) in turn 

performing similarly. 

 

Table 9: Stable and Unstable Conditions of Asymmetry-SECM 

Difference 

 

Selection Criteria                 Model Fitted (%) 

Stable   

Rmdl 99.5 

gMDL 97.7 

Nmdl 96.4 

Emdl 97.3 

AIC 86.1 

BIC 97.9 

   

Unstable 

 

  

rMDL 26.1 

gMDL 49.1 

Nmdl 27.1 

Emdl 44.7 

AIC 45.2 

BIC 30.7 

Based on 1000 Monte Carlo Simulations 

  

Evidently, all MDLs outperformed AIC in recovering the true data 

generating process. On the other hand, with unstable conditions, AIC (45.2%) 

naturally improved in recovery rate but the gMDL (49.1%) outperformed AIC 

and all other criteria. Generally, all criteria recovery rates were generally low 

(under 49%) when study conditions are unstable.  
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Monte Carlo Simulation of the Effects of Difference in Asymmetric 

Adjustment Parameters on Model Selection-SECM  

This research also took into consideration the probable effect of 

difference in asymmetric adjustment of parameters on the ability of the model 

selection criteria to recover the true data generating process.  

Simulated data of sample size 150 with an error size of 1 from the 

standard asymmetric price transmission model and asymmetry values 

(𝛽1
+ , 𝛽2

+ ) ∈ (−0.25, −0.50) or (−0.25, −0.75) were considered for the 

coefficients of the asymmetric error correction terms. Subsequently, 

examination of the effect of the increase in difference of asymmetric 

adjustment parameters on model recovery was investigated. Different model 

selection methods exhibit different relative performance in recovering the true 

model at different levels of asymmetry.  

 

Table 10: Varying Levels of Asymmetry When n=150 

Difference 

 

Selection Criteria                 Model Fitted (%) 

0.50 

(Strong) 

  

  

rMDL 96.7 

gMDL 95.4 

nMDL 91.7 

eMDL 94.2 

AIC 86.1 

BIC 97.9 

   

0.25 

(Weak) 

  

  

rMDL 96.2 

gMDL 94.1 

nMDL 90.8 

eMDL 93.5 

AIC 86.1 

BIC 96.3 

Based on 1000 Monte Carlo Simulations 
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In the moderate samples, an increase in the difference between the 

asymmetric adjustments parameters from 0.25 to 0.5 led to improvement in 

the model recovery rates of the model selection methods (see Table 10).  

Specifically, when the level of asymmetry was weak, BIC (96.3%) and 

rMDL (96.2%) were comparable and outperformed all other criteria. Though 

the pattern was similar for strong asymmetry, BIC (97.9%) recovered slightly 

better than rMDL (96.7%). Meaning, all criteria performance increased when 

the difference in asymmetric adjustment on model selection also increased. 

Comparatively, BIC responded stronger than all criteria to increase in 

asymmetric adjustment. This is followed by the MDLs and lastly AIC. 

The experiment was repeated for small sample size and large sample 

size to ascertain if there might be a concurrent effect of different asymmetric 

adjustment levels across sample sizes (n= 50 and 500) on model selection. The 

difference in sample size had an effect on the level of asymmetry across the 

different sample sizes and performance of all criteria increased with increasing 

sample sizes. That is, an increase in the difference between the asymmetric 

adjustments parameters from 0.25 to 0.5 led to improvement in the model 

recovery rates of the model selection methods but this improvement becomes 

almost comparable as the sample size increases for some criteria. 

Specifically, for a small sample size, gMDL (73.4%) and eMDL 

(73.3%) outperform all criteria at weak levels of asymmetry and AIC and 

nMDL are comparable. Then at the same sample size but a stronger level of 

asymmetry, BIC out performed all criteria but comparable to gMDL with 

rMDL recording the least. The MDLs and AIC increased steadily with 

increased in asymmetric adjustment but although BIC did not fare well in 
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weak levels of asymmetry (small samples) it responded stronger (68.8% to 

86.3%) than all criteria in strong levels of asymmetry. Also, gMDL (85.8%) 

recovered similarly well in stronger asymmetry. 

Lastly, for large samples and a weak level of asymmetry, rMDL 

outperformed all criteria but BIC did better than remaining MDLs and AIC. 

The same pattern was revealed for stronger level of asymmetry for large 

samples but the performance of BIC and AIC remained the same for both 

weak and strong levels of asymmetry. Thus, the MDLs improved in their 

ability to recover the true DGP with increased asymmetric adjustment but that 

of BIC and AIC did not improve. Evidently, rMDL recovery was the strongest 

as asymmetric adjustment increased by 0.25. 

The MDLs continue to make a huge contribution even in the 

examination of the effect of increase in asymmetric adjustments across sample 

sizes. Thus, although all MDLs improved with increase in asymmetric level of 

adjustment across all sample sizes, gMDL improves with small samples and 

rMDL improves in both moderate to large samples. 

 

Overview of the Performance Analysis of the Different Asymmetry Test 

using Simulated Data generated from the Complex Asymmetric ECM 

This research empirically evaluated and compared the performance of 

the model selection methods in an asymmetric price transmission modelling 

context when the true data generating process was complex.  

Previous research (Acquah & Von-Cramon-Taubadel, 2009; Gagne & 

Dayton, 2002; Markon & Krueger, 2004) continue to emphasize that the 

performance of model selection methods improve when the true model is 
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complex and this study will want to find out if that will be the same for variant 

of the minimum description length principle. As a matter of comparison this 

study repeats all analysis when the DGP is SECM for the CECM as well so as 

to have a common ground for objective inferences and validate literature. 

Monte Carlo Simulation of the Effects of Sample Size on Model Recovery 

The overall trends in performance across the different model selection 

criteria as the sample size increases are similar to those observed when the 

data was simulated from the SECM. 

  

Table 11: Relative Performance of Model Selection across Sample 

                Size- CECM 

Sample Size Model Fitted (%) 

50  CECM(DGP) SECM  HOUCK’S 

Methods    

rMDL 63.9 19.2 16.9 

gMDL 49.1 40.5 10.5 

nMDL 69.8 26.7 3.5 

eMDL 55.1 37.0 7.9 

AIC 62.6 31.0 6.4 

BIC 34.0 48.0 18.0 

     

150  CECM (DGP) SECM  HOUCK’S 

Methods    

rMDL 90.1 9.9 0.0 

gMDL 92.3 7.6 0.1 

nMDL 95.0 5.0 0.0 

eMDL 93.3 6.6 0.1 

AIC 96.8 3.1 0.0 

BIC 87.0 12.8 0.2 

     

500  CECM (DGP) SECM  HOUCK’S 

Methods    

rMDL 100 0 0 

gMDL 100 0 0 

nMDL 100 0 0 

eMDL 100 0 0 

AIC 100 0 0 

BIC 100 0 0 

    

Based on 1000 Monte Carlo Simulations 
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In that, all model selection criteria were able to recover the true DGP 

(CECM). The recovery rate increased with increasing sample size (see Table 

11) such that, for large samples, all criteria recorded a recovery rate of 100 

percent. However, performance is poor for all ITFC in small samples. 

Furthermore, for small samples, nMDL (70%) outperforms all criteria 

and followed by rMDL (64%), AIC (62%) with BIC being the least. 

Interestingly, in the moderate sample size case scenario, the AIC (97%) 

outperformed all MDLs and BIC given the complex asymmetric data 

generating process but nMDL (95%) performed similarly. The percentage of 

the simulated data in which the correct model (i.e. CECM) was selected or 

recovered by the model selection criteria across different sample sizes is 

examined. Notably, all criteria recovered the CECM fully (100%) for large 

samples and nMDL and AIC tend to select complex model for small to 

moderate samples. Thus, the ability of selection methods to recover the true 

DGP improves with complexity for APT models. This is because, complex 

models usually have many parameters and the combination of parameters is 

powerfully connected by nonlinear equations and this enables the data 

structure (not single) to change as a function of the parameter values of the 

model.  Hence, the data structure is finely tuned so that the model fits a wide 

range of data patterns making it able to be easily recovered as the true data 

generating process.   

Monte Carlo Simulation of the Effects of Noise levels on Model Recovery-

CECM 

The effects of noise on the recovery of the true model and model fit are 

detailed in this section. The data fitting abilities of alternative models are 

compared in relation to the true model as the noise level in the data was 
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decreased systematically from 3.0 to 1.0. The results of 1000 Monte Carlo 

simulations using a moderate sample size of 150 was used to compare the 

performance of the model selection methods as error size (σ) increased are 

displayed in Table 12. Generally, recovery rates of the true asymmetric data 

generating process (i.e. CECM) declined for all model selection methods as 

the noise level increased as expected. Thus, the SECM and Houck’s model 

recorded an inverse relationship instead of an increase in recovery rate as the 

noise level increases.  

Table 12: Relative Performance of Model Selection across Noise 

                Levels –CECM When n = 150 

Error Size Model Fitted (%) 

3   CECM (DGP) SECM  HOUCK’S 

Methods    

rMDL 33.3 24.8 41.9 

gMDL 23.3 50.8 27.2 

nMDL 60.2 33.6 6.2 

eMDL 32.9 47.4 19.7 

AIC 23.1 50.8 26.1 

BIC 2.0 39.8 58.2 

     

2  CECM (DGP) SECM  HOUCK’S 

Methods    

rMDL 62.7 19.6 17.7 

gMDL 44.1 44.2 11.7 

nMDL 63.8 32.1 4.1 

eMDL 51.5 40.9 7.6 

AIC 53.0 39.0 8.0 

BIC 16.0 55.7 28.3 

     

1  CECM (DGP) SECM  HOUCK’S 

Methods    

rMDL 90.1 9.9 0.0 

gMDL 92.3 7.6 0.1 

nMDL 95.0 5.0 0.0 

eMDL 93.3 6.6 0.1 

AIC 96.9 3.1 0.0 

BIC 87.0 12.8 0.2 

    

Based on 1000 Monte Carlo Simulations 

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



117 

 

Notably, with an error size of 1, AIC (97%) outperformed all other criteria and 

nMDL (95%) did very well and the remaining MDLs outperformed BIC. On 

the other hand, as the error size increased (2-3), the recovery rate of AIC 

drastically declined (53%-23%) but the nMDL consistently outperformed all 

criteria for higher noise levels (error sizes of 2-3) and nMDL was comparable 

to rMDL at noise level of 2.  

Furthermore, an important point one needs to note is that at lower 

noise levels, for the complex model, AIC performs the best and however for 

moderate noise levels, the nMDL is most reliable. On the other hand, as the 

noise level increases, the performance of AIC decreased as compared to 

nMDL and rMDL. Also, BIC consistently performs poorly with noise levels 

for complex models.  

Thus, MDLs (in this particular case rMDL and nMDL) are affected by 

the various conditions regarding selecting the true model since whatever the 

situation; you will always find a formulation of MDL to give desired results 

consistently. Specifically nMDL has the propensity to select complex models 

with a lot of noise. 

Concurrent effect of sample size and stochastic variance on model 

selection 

Model recovery rates of the model selection methods are derived under 

combined conditions of a small sample (50) and large error size (2); known as 

unstable conditions and a relatively large sample (150) and a small error (0.5); 

which is also referred to as stable condition.  

Deduction on the unstable conditions revealed that nMDL 

outperformed all criteria and generally recovery rate was relatively poor. Thus, 
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the true data generating process was recovered 66.9 percent of the time by the 

nMDL model selection criterion and below 31% for the rest of the criteria 

with BIC recording the least (3.8%) given the true DGP as illustrated in Table 

13. 

 

Table 13: Stable and Unstable Conditions of Asymmetry-CECM 

Difference 

 

 Selection Criteria                Model Fitted (%) 

Stable   

rMDL 100 

gMDL 100 

nMDL 100 

eMDL 100 

AIC 100 

BIC 100 

   

Unstable   

rMDL 18.6 

gMDL 18.8 

nMDL 66.9 

eMDL 31.3 

AIC 15.2 

BIC   3.8 

Based on 1000 Monte Carlo Simulations 

 

This confirms from our earlier deduction that nMDL has the tendency 

to select unstable complex models. On the other hand, exploration of stable 

conditions revealed that all model selection criteria fully (100%) recovered the 

true DGP. Thus, under stable conditions, all criteria naturally select complex 

models. Notably, one may say that, all selection criteria tend to select complex 

models of asymmetric price transmission under large samples and minimal 

noise levels. 
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Monte Carlo Simulation of the Effects of Difference in Asymmetric 

Adjustment Parameters on Model Selection  

In order to assess the effect of difference in the asymmetric adjustment 

parameters on the ability of the different selection methods to recover the true 

data generating process (CECM), this study simulated data of sample size 150 

(50 and 500 were considered for more emphasis in Appendix I); and error size 

1(Holy et al., 2003) and asymmetry values of  

(𝛽2
+ , 𝛽2

+ ) ∈ (−0.25, −0.50) or (−0.25, −0.75) which were considered for 

the coefficients of the asymmetric error correction terms. Subsequently, the 

effect of the increase in difference of asymmetric adjustment parameters on 

model recovery was examined. 

 

Table 14: Varying Levels of Asymmetry when n=150-CECM 

Difference 

 

Selection Criteria           Model Fitted (%) 

0.50 

(Strong) 

  

  

rMDL 90.1 

gMDL 92.3 

nMDL 95.0 

eMDL 93.3 

AIC 96.9 

BIC 87.0 

   

0.25 

(Weak) 

  

  

rMDL 88.3 

gMDL 90.5 

nMDL 94.4 

eMDL 92.3 

AIC 96.4 

BIC 80.9 

Based on 1000 Monte Carlo Simulations 
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Regarding the moderate sample size, an increase in the difference in 

the asymmetric adjustment parameters from weak (0.25) to strong (0.5) 

asymmetric adjustment revealed an increase in model recovery of the true 

asymmetric data generating process as depicted in Table 14.  

Also, graphical representation of results depicted in Figure 9 

(Appendix L) shows that there is not much difference in performance of all 

criteria under both weak and strong levels of asymmetry. Specifically, the 

change in asymmetric adjustment in selecting the true DGP by AIC increased 

slightly (96.4% to 96.9%) from weak to strong level of adjustments (see Table 

14). 

Also, AIC outperformed all model selection criteria when the true 

DGP was CECM. The MDLs performed similarly but nMDL (95%), whose 

performance was similar to AIC, outperformed the rest of MDLs and BIC.  

This study stated earlier that the experiment was repeated for small and 

large samples as well (see Appendix I 3). The general trend for the CECM 

data generating process saw an increase in model recovery rate as the 

asymmetric adjustment increased from weak to strong in the case of small 

sample size (n = 50). Especially, eMDL (84%) outperformed all criteria 

followed by AIC (80%) and AIC did better than the rest. In the large sample 

size scenario, all criteria recovered fully (100%) in both the weak and strong 

levels of asymmetry when the true DGP was complex. This makes them have 

an equal chance in selecting the original model completely. Deductively, the 

influence of large samples is necessary to achieve high recovery of 

asymmetric adjustments for linear econometric models of APT with complex 

dynamics. 
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Discussion 

Firstly, we take a look at inferences made when the true data 

generating process is the Standard Error Correction Model whilst the second 

section looks at the Complex Error Correction Model. 

Effect of Sample Size on Model Selection-SECM 

The Monte Carlo simulation on the effect of sample size on model 

selection when the data generating process is the standard error correction 

model has so far been consistent with past research in econometric modelling 

framework of asymmetric price transmissions. 

Generally, inspection of the recovery rates for the different model 

selection criteria illustrated the extent to which the true model (SECM) was 

recovered by each selection criteria across the different sample sizes. In 

comparison, a model’s recovery rate of the true model improved significantly 

with increasing sample size (Acquah, 2017; Acquah and Von Cramon-

Taubadel, 2009; Bickel and Zhang, 1992). Despite differences in performance 

among the model selection criteria, trends holding across the different criteria 

were evident in the simulation results (Myung, 2000; Markon and Krueger, 

2004). In effect, the performance of the model selection methods to select the 

true model (i.e. recovery rates of SECM) generally increased with increased in 

sample size from small to large (50 to 500).  

However, some distinct patterns were identified. The rMDL, gMDL, 

eMDL and nMDL performed better than AIC in their ability to recover the 

true GDP across all sample sizes except for sample size of 50 where AIC 

actually performed better than rMDL and nMDL by a small margin. Thus, 

gMDL and eMDL also outperformed AIC. Secondly, the MDLs’ 
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performances among each other were not the same. That is, rMDL 

outperforms the remaining MDLs in moderate to large samples whilst gMDL 

outperforms the rest of the MDLs but was comparable to eMDL. This implies 

the rMDL, gMDL and eMDL performed extremely well. The BIC on the other 

hand, outperformed all criteria in small to moderate samples but did better 

than all MDLs except rMDL in large samples. All criteria recovery rates 

improved with increasing sample size although AIC’s performance does not 

improve for moderate to large samples. 

 Therefore, the gMDL and eMDL can be used instead of AIC and 

rMDL can be used alongside BIC in moderate samples whilst rMDL can be 

used instead of BIC in large samples for recovering and selecting Standard 

Error Correction Models of APT. This is consistent with some work in 

structural equation modelling and even in Markon and Krueger’s work (2004) 

that stated that although AIC performs relatively well in small samples (so is 

gMDL or eMDL and they do better) it is inconsistent and does not improve in 

performance in large samples.  BIC in contrast appears to improve in 

performance relatively from small to large samples and is consistent and some 

variant of MDL (gMDL, rMDL and nMDL) also behave similarly. Thus, 

depending on a particular variant of MDL, they boast of strengths, whether the 

sample is small or large and hence this research confidently presents the 

various formulations of MDL as alternative and sometimes better model 

selection criteria as compared to AIC and BIC (these tend to have one-sided 

performance behaviours as stipulated in Hurvish and Tsai, 1990; Bickel and 

Zhan, 1992). 
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The model selection methods performed reasonably well in identifying 

the true model and their ability to recover the true asymmetric data generating 

process increased with increase in sample size. Intuitively, the results point to 

the fact that the sample size is important in the selection of the true 

asymmetric data generating process during price transmission analysis. 

Generally, larger sample sizes do improve the ability of the model selection 

methods to make correct inferences about asymmetric price transmission 

models.  

Effect of stochastic variance on model selection-SECM  

In the 1000 Monte Carlo simulation of the effect of stochastic variance 

on model selection, some distinct observations were made. Generally, 

comparison of the different selection methods shows a general trend in which 

recovery rates decreased with increasing error sizes on all information 

theoretic fit criteria with emphasis on the MDLs which have not been explored 

yet in APT model selection framework. In effect, the performance of all model 

selection algorithms analysed deteriorated with increasing amount of noise in 

the true asymmetric price transmission data generating process. This is 

consistent with works (Acquah, 2017;  Roos et al., 2005; Hui et al., 2011; 

Yang, 2003; Gheissari and Bab-Hadiashar, 2004, Myung, 2000; Rissanen et 

al., 2010) on comparisons using other information criteria (AIC, BIC, RIC, 

KIC, GAIC, CAIC, GBIC, CP, SSD, G-CP, MAIC, SSC). 

Also, rMDL, gMDL, nMDL and eMDL performed similarly to one 

another with their recovery rates decreasing substantially as noise levels 

increased. Although, BIC and rMDL decreased drastically when noise level 

increased rMDL decline faster than BIC. Whereas, gMDL and eMDL 
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performed creditably with increasing noise and recovers the true model better 

than rMDL and nMDL in small to moderate samples, AIC outperformed all 

criteria in small samples but did better than only rMDL, nMDL and BIC in 

moderate samples. AIC performance is consistent with previous linear 

regression analysis framework when MDL was not included (Chen et al., 

2007; Yang, 2003).  

However, as error size decreased from 3 to 1, the Minimum 

Description Length criteria (i.e. rMDL, gMDL, nMDL and eMDL) and BIC 

outperforms the AIC in recovering the true model with recovery rates of near 

to 100 percent.  

Thus, MDLs also behave like the Bayesian criteria and in some cases 

better for some of the MDL formulations. gMDL and eMDL also behave like 

the AIC. The MDLs continue to be a better alternative for model selection 

with its numerous advantages. Intuitively, higher noise levels make it difficult 

for the model selection methods to identify the true asymmetric model or 

alternatively the performance of the model selection methods deteriorates with 

high levels of noise in the asymmetric price transmission modelling 

framework.  

These results are generally consistent with those obtained by experts 

who studied the effects of noise levels on model selection in other applications 

such as linear regression models and computer vision applications (See 

Myung, 2000; Gheissari and Bab-Hadiashar, 2004; Yang, 2003). Importantly, 

Yang (2003) finds that the recovery rates of the true data generating process 

decreases with increasing noise levels in linear regression models. In 

conclusion Yang notes that selection can yield the wrong model at higher 
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noise levels. Additionally, this study using MDLs has confirmed that recovery 

rates of model selection criteria in recovering the true DGP decreases with 

higher noise levels.  

Concurrent effect of sample size and stochastic variance on model 

selection-SECM 

Again, the effect of noise and varying sample size was explored on the 

information criteria’s ability to recover the true DGP. Thus, small sample sizes 

with a big error create an unstable condition while large sample sizes with a 

small error create a stable condition.  

Stable conditions boost the performances of model selection criteria in 

recovering the true data generating processes as compared to unstable 

conditions. This is supported by other researches on AIC, BIC, KIC (Acquah, 

2017, 2010; Hui et al., 2011) and this research has proved that all the MDLs 

behaved in similar manner. Specifically, under stable conditions rMDL with a 

near full recovery (99.5%), outperformed all criteria and BIC in turn did better 

than the remaining MDLs with above 97% recovery rates whilst AIC was the 

least. Under unstable conditions, though the performance of model selection 

criteria dropped drastically (below 49% to 26%), gMDL outperformed AIC 

(which is known generally to have strength when it comes to unstable 

conditions – Hui et al., 2011; Acquah, 2010) and AIC (although comparable to 

eMDL) in turn outperformed remaining criteria. The results indicated that it is 

always desirable to go for stable conditions (large samples with lower noise) 

when comparing standard APT models and lower noise levels for all criteria 

(except for AIC) but gMDL (best) and AIC are favourable in unstable 

conditions. 
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Finally, this research notes that model selection methods may have 

difficulty in identifying the true asymmetric model at higher noise levels and 

lower samples. Alternatively, the performances of all model selection methods 

in recovering the true model deteriorated with increasing noise levels within 

the Asymmetric Price Transmission modelling framework. 

Monte Carlo Simulation of the Effects of Difference in Asymmetric 

Adjustment Parameters on Model Selection-SECM 

This study has revealed that an increase of the asymmetric adjustments 

parameters from 0.25 to 0.5 led to improvement in the recovery rates of the 

model selection methods.  Importantly, another factor which influences model 

selection or the recovery of the true data generating process is the difference in 

asymmetric adjustment parameters (Acquah 2010, 2017; Cook et al., 1999). 

Remarkably, difference in asymmetric adjustment parameters or speeds is 

important in the performance of the model selection methods in recovering the 

true DGP.  

Generally, recovery rates of the BIC and Minimum Description Length 

criteria respond more strongly to increases in the difference between the 

asymmetric adjustments parameters (see also Han et al., 2014) for the true 

model than AIC. Concurrent effect of sample size on asymmetry was also 

explored. Within a small sample size, gMDL and eMDL outperformed all 

criteria with AIC and nMDL being comparable and rMDL and BIC 

performing poorly for weak asymmetry. Although, all criteria improved in 

terms of strong asymmetry, BIC did better than all but comparable to gMDL 

and eMDL in turn outperformed AIC. For moderate samples, although all 

criteria improved from weak to strong levels of asymmetry, BIC though 

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



127 

 

comparable to rMdL was the best and AIC the least. Subsequently, as sample 

size became relatively large (500 and above) rMDL consistently outperformed 

all criteria and was comparable to BIC. On the other hand, rMDL’s 

performance reached approximately 100 percent in large samples whilst the 

performance of AIC remained unchanged from weak to strong asymmetry 

across moderate to large sample sizes.  

Hence the improvement in recovery rate due to a strong or weak level 

of adjustment increased as sample size also increases. In other words, with 

small samples the difference in improvement in model recovery rate due to a 

strong level of adjustment was higher than the weak level of asymmetry. But 

as sample size increases, this difference was small. Thus, large samples can 

nullify the effect of the difference between weak and strong level of 

asymmetry in the selection criteria’s ability to recover the true data generating 

process. 

One can confidently say that, within the asymmetric price transmission 

modelling framework, this study has not only confirmed empirical work on the 

relative performance of the model selection (AIC, BIC) algorithms but has 

also established that the Minimum Description Length Criteria (MDLs) 

correctly identifies the true asymmetric data generating process similarly or 

sometimes better than AIC and BIC given that the data generating process is 

the standard error correction model.  

The study now takes a look at what inferences one can draw if we 

change the true data generating process to be the complex error correction 

model (CECM). 
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Monte Carlo Simulation of the Effects of Sample Size on Model Recovery-

CECM 

On the whole, model recovery rates by all criteria, increased with 

increasing sample size when the data generating process was complex. Thus, 

the MDLs (nMDL, rMDL) persistently outperform AIC and BIC criteria 

across small samples whiles across moderate sample sizes, AIC outperformed 

MDLs and BIC but was comparable to nMDL. In large samples the behaviour 

of all model selection criteria drastically changed and recovered the true DGP 

100 percent which is in contrast to the pattern exhibited given the standard 

asymmetric data generating process.  

The aforementioned pattern of increase in performance being affected 

by increase in sample size for all model selection criteria is consistent with 

literature (Markon and Krueger, 2004; Acquah, 2010, 2017; etc.), yet the 100 

percent recovery by all information criteria in selecting the complex APT 

model in this study ( given 1000 monte Carlo simulations) is of particular 

importance. Markon and Kruger in 2004 had a few cases of 100% recovery in 

large samples (1000 and above) for some criteria (BIC and DIC).     

Obviously, the discussions so far point to the fact that another factor 

that may influence the performance of the model selection methods is model 

complexity (Harremoes and Brock, 2018; Fade, 2015; Han et al., 2014; 

Wagenmakers et al., 2006; Stine, 2003; Markon and Krueger, 2004; Sund, 

2001; Pitt et al., 2002; Myung et al., 2005; Myung, 2000; Rissanen et al., 

2010). Specifically, the MDL criteria achieve full recovery in a large sample 

size of 500 when the true model is complex. Overall this study notes that when 

the true model is complex, nMDL and rMDL performs better than AIC when 
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sample size is small. However, AIC does better than BIC and some 

formulations of the MDL only in moderate sample sizes (150) but all criteria 

have similar performance in large sample sizes of 500 and above. Similarly, 

previous studies (Lin and Dayton, 1997) found that AIC was superior to BIC 

when the true model was complex in mixed models. Gagne and Dayton (2002) 

also observed that AIC are more successful when the true model was relatively 

complex in multiple regression analysis. In small samples, the nMDL and 

rMDL outperforms AIC, and thus, making them more successful when the 

model is complex and the sample is small. The various formulations of the 

MDL can suit any condition within the econometric asymmetric prices 

transmission modelling framework. Thus, emphasizing the fact that the MDL 

criteria (rMDL, nMDL, eMDL and gMDL) are a very useful alternative. 

Results from this study support Li et al. (2012) emphasis on the ability of 

some variants of MDL to mimic the behaviour of AIC or BIC. Also, this study 

adds on to say that some variants of MDLs sometimes perform better and this 

is consistent with other researches (Haddadi et al., 2010; Fade et al., 2011; 

Sund 2001; Costa et al., 2012; Jiao et al., 2011; Velampalli and Jonnalagedda, 

2017). 

An important point is that comparatively, the model selection methods 

performed similarly or better in  moderate to large samples when the true 

asymmetric data generating is relatively complex (CECM) than when the 

standard asymmetric data generating process (SECM) was used under the 

same conditions with AIC and MDLs having recovery strengths. Then with 

small sample size the criteria recovery rate was better for SECM with BIC, 

gMDL and eMDL holding strengths.   
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Generally, larger sample sizes improve the ability to make correct 

inferences about the true asymmetric price transmission model. This research 

notes that an additional factor that may influence the performance of the 

model selection criteria in addition to sample size is model complexity (i.e. 

number of asymmetric adjustment parameters included) or the number of 

informative variables in the model (Myung, 2000; Stine, 2003; Wagenmakers 

et al., 2006; Acquah, 2010; Markon and Krueger, 2004; Acquah, 2017; etc.).  

Monte Carlo Simulation of the Effects of Noise levels on Model Recovery-

CECM 

Comparison of the different selection methods in Figure 8 shows a 

general trend in which recovery rates decreased with increasing error sizes. In 

effect, the performance of the model selection algorithms in recovering the 

true model deteriorates with increasing amount of noise in the true asymmetric 

price transmission data generating process (CECM). Alternatively, the risk of 

selecting the false asymmetric model increased at higher noise levels. 

Findings in this research echo the results of previous studies by Jiao et 

al., 2011 which emphasized the fact that not only did all criteria do better at 

lower noise but gMDL outperformed AIC (see also Acquah, 2010 and 2017 

where criteria performed better at lower noise) with regards to the relationship 

between the noise levels and the recovery of the true asymmetric data 

generating process. Yang (2003) also found that the recovery rates of the true 

data generating process decreases with increasing noise levels in linear 

regression models and concludes by noting that selection can yield the wrong 

model at higher noise levels. 
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Another interesting discovery for this study was that whereas AIC is 

susceptible to performing well when noise level is increasing (noise = 2 or 3), 

some formulations of MDL even did better although generally the overall 

performance decreased with increasing noise levels. In contrast, under the 

same conditions, when the true data generating process was the SECM, the 

BIC and MDLs outperformed AIC at noise level of 1 but for CECM, AIC and 

MDLs outperformed BIC. Chen et al. (2007) in factorial data analysis notes 

the tendency of BIC to perform worse than AIC at high noise levels. Also, in a 

comparison of model selection methods, Yang (2003) demonstrated that AIC 

outperforms BIC as noise levels increased in linear regression models. In the 

context of comparing mixture models, Lin and Dayton (1997) found that AIC 

was superior to BIC when the true model was relatively complex (i.e. 

complexity is based on the number of parameters included). Yet all the 

formulations of MDL (rMDL, gMDL, nMDL and eMDL) outperformed AIC 

when noise level is very high (𝜎 = 3). MDL continues to prove as a useful 

alternative for AIC and BIC no matter the conditions presented. 

Importantly, this research notes that the performances of the model 

selection methods in selecting the true asymmetric price transmission model 

deteriorates with high levels of noise (as found in Roos et al., 2005; worked on 

denoising where good performance is associated with low variance). Also, the 

performances of some formulations of the MDLs (gMDL, nMDL and eMDL) 

are similar to the popular AIC when noise level increases for recovering 

SECM but for recovery of CECM, the MDLs outperformed both AIC and BIC 

at higher noise levels. Intuitively, complexity and higher noise levels 

deteriorates the performance of the model selection methods in an asymmetric 
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price transmission modelling framework (but interestingly nMDL was robust 

to this effect for CECM).  

Concurrent effect of sample size and stochastic variance on model 

selection-CECM 

Simulating the effects of sample size and noise levels concurrently 

affirms that a small error and large sample improve recovery of the true 

asymmetric data generating process and vice versa. 

Obviously the improved performance of the model selection methods 

can be partly attributed to the fact that the true model is complex 

(Wagenmakers et al., 2006, Stine, 2003; Hansen and Yu, 2001; Sund, 2001; 

Markon and Krueger, 2004; etc.). When the true model is complex, all the 

model selection methods recovered fully (100%) the true data generating 

process under stable conditions. However, under the same stable conditions 

when the true model is not complex (i.e. SECM) all the model selection 

methods recover at least 86 percent and at most 99.5 percent of the true data 

generating process.  

This observation suggests that increase in the number of asymmetric 

adjustment parameters or variables used to model asymmetry (i.e. complexity 

of the true model) may have influenced the improved performance or model 

recovery rate. Similarly, Markon and Krueger (2004) noted that the number of 

variables used to model a phenomenon generally improves the ability to make 

correct inferences in structural equation modelling. Gagne and Dayton (2002) 

asserted that the performance of model selection methods improve when the 

true model is complex in multiple regression analysis (see others- Han et al., 

2014; Fade, 2015; Harremoes and Brock, 2018; Stine 2003; Fade et al., 2011). 
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Additionally, AIC has an edge over BIC but not the MDLs, in their 

ability to select the true asymmetric data generating process in complex 

models with stable conditions having a recovery rate of 100 percent. 

Furthermore, for unstable conditions all criteria recovered between 4 and 70 

percent and nMDL recovered the strongest. In standard models BIC and 

MDLs (rMDL almost recovered fully) far outperformed AIC under stable 

conditions but under unstable conditions, although AIC and eMDL was 

comparable, gMDL outperformed all criteria. Overall, MDLs are doing very 

well and some cases (gMDL and rMDL) outperform both AIC and BIC in 

both the standard and complex model scenarios. This study also emphasizes 

that some variants of MDLs are good alternatives to both BIC and AIC under 

both stable and unstable conditions. 

Monte Carlo Simulation of the Effects of Difference in Asymmetric 

Adjustment Parameters on Model Selection-CECM 

This study implements a modest modification in the error correction 

terms of the error correction model with complex dynamics. Generally, 

recovery rates improved from weak to strong level of asymmetry across all 

model selection criteria for increasing sample size (consistent with literature 

when the DGP was SECM and the model selection criteria are AIC, BIC, KIC, 

RIC). Recovery rates of the AIC, for the moderate sample size (n = 150), 

responded better to increases in the difference between the asymmetric 

adjustments parameters although the difference between that of SECM and 

CECM is very small or insignificant. The MDLs on the other hand 

outperformed BIC but among themselves, their performance was somewhat 

similar. 
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Similarly, Cook et al. (1999) in their study on the concept of the 

marginal likelihood and information criteria noted that the increases in the 

difference in asymmetric adjustments parameters (that is the adjustment 

speeds or positive and negative component of the error correction terms)
 
from 

0.25 to 0.50 have positive effects on the test for asymmetry. Subsequently, this 

study revealed similar trends. The ability of all criteria to recover the complex 

asymmetric error correction model (CECM) was higher than the recovery rate 

for the standard asymmetric error correction model. The asymmetric 

adjustment parameters for small sample sizes (n = 50), saw a general decrease 

in performance for all model selection criteria in selecting the true DGP. 

Unlike, in the moderate (n = 150) case scenario, eMDL outperformed all 

criteria and AIC in turn outperformed remaining MDLs and BIC for strong 

asymmetric level. Also, a similar pattern was observed in weak asymmetric 

adjustment but nMDL rather outperformed all criteria.  

Thus MDLs do well (even in small samples) generally as compared to 

the traditional AIC and BIC irrespective of the sample size and this 

improvement in their ability to select the true DGP increase with increasing 

sample size. For all model selection criteria, a full recovery rate was achieved 

for large samples (n = 500 and above). Thus, for large samples, all criteria 

have the same chance in selecting the true DGP and the recovery rate was 100 

percent when the original model was CECM. See Appendix I 3 for outputs. 

Thus, an increase in the level of asymmetric adjustment saw an improvement 

in criteria recovery rate for large samples. Although, the rate of recovery was 

the same when true DGP was CECM for all criteria that of SECM improved 

but varied in their performances across increasing sample size. 
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Importantly, the performance of the model selection methods in 

recovering the true data generating process depends on the difference in 

asymmetric adjustment parameters or speeds. Also, the effect of sample size is 

paramount in determining the recovery rates of model selection criteria in 

APT models although this effect is insignificant (full recovery rate for all 

criteria) when dealing with large sample sizes of 500 and above when the true 

DGP is complex. 

 

Chapter Summary  

The chapter developed R-functions for various formulations of the 

MDL in R-software. It uses Monte Carlo simulation to obtain repeated 

samples that are used to assess the ability of the ITFC to identify the true data 

generating process. The random normal distribution was used as the data 

generating process which generated the APT models for the study. The 

performances of the models were examined for all ITFC using samples of size 

50, 150 and 500 with 1000 iterations.  

It is found that among three DGP, all ITFC recorded lowest average 

values for SECM if the DGP is SECM. Over all DGP, the MDLs performed 

much better than the AIC and BIC. Criteria values for SECM are versatile to 

underlying DGP. However, if the underlying DGP is CECM, all ITFC are able 

to select it 100% of the time. If the DGP is SECM, the percentage of correct 

identification is generally above 90% and all ITFC surely detect the Houck’s 

model poorest. 

Assessment of model selection performance is also determined based 

on the percentage samples (1000) for which the model fits better than any 
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competing model. Generally, for all ITFC, recovery rate is higher in large 

samples. Traditional criteria performed equally well as the MDLs irrespective 

of the sample size. In large samples, the rMDL is particularly highest in 

performance if the underlying DGP is SECM. If the underlying DGP is 

CECM, then for large samples, all criteria surely identifies the model. In this 

case, performance is poor for small samples for all IFTC. Assessment of 

model selection performance was studied along three dimensions of average 

criteria values, the percentage of correct selection of the underlying DGP and 

recovery rate. The recovery rate was assessed across conditions of effect of 

varying samples size, stochastics variance, combined effect of sample size and 

noise and difference in asymmetric adjustment parameter on model selection.  

Generally, recovery rate is constrained by larger error in DGP for all 

criteria. No single ITFC is consistent in performance in model recovery in the 

presence of error (noise). However, over small error (1.0), the BIC performs 

the least whilst AIC was most reliable with presence of large noise (3.0). The 

study also assessed the model recovery in the presence of noise levels for all 

criteria with a specific underlying DGP. With CECM as DGP, all ITFC 

performed abysmally in the presence of substantial noise. For large noise (2 

and 3) of noise, the BIC was most affected in performance with AIC the best 

performing. However, the nMDL is most reliable under moderate to large 

noise. 

A more complex model with combined effect of sample size and level 

of noise has been studied. The combined effect is categorized under stable   

(large sample with small error) and unstable (small sample with moderately 

large error). It is found that under unstable condition for complex models, 
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nMDL is most reliable whilst all others perform rather abysmally. Generally, 

under these conditions, performances of selection criteria are poor. Under 

stable conditions, all criteria fully records 100% recovery.  Thus, high 

recovery for complex models can be ensured under large sample size and 

small error, for any criteria. Effect of difference in Asymmetric Adjustment 

parameter was not too visible for all criteria for both weak and strong 

asymmetry under moderately large samples. There was even full recovery for 

all criteria under complex models. However, the AIC is most reliable (97%) 

under this condition although all the other criteria also performed quite well 

(>82%). 
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 CHAPTER FIVE 

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS 

 

Overview   

This chapter summarizes all the various chapters and conclusions are 

drawn from the findings of the research. Based on the conclusions, relevant 

recommendations were provided. 

 

Summary 

This study, in general, sought to introduce and demonstrate the 

usefulness of the MDL principle in model selection for econometric models of 

asymmetric price transmission. This involved the evaluation of the 

performance of the formulations of MDL in comparison to AIC and BIC 

across sample sizes, stochastic variance and difference in asymmetric 

adjustment parameters. 

An extensive review of literature showed the emergence of a less 

known but effective and competitive information criteria; the Minimum 

Description Length (MDL), was making great strides in model selection in the 

midst of already existing and widely used criteria (AIC and BIC). The MDL 

has seen some work in structural equation modelling, latent class models, 

method of inductive interference, regression analysis, etc. Several studies have 

concluded that neither AIC or BIC is completely satisfactory and that other fits 

exhibit greater power to select the true models. Interestingly, Monte Carlo 

evidence suggested that early MDL approximations, essentially corrected 

forms of BIC, perform well in selecting latent class models. Hence, this 
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research sought to introduce and demonstrate the usefulness of MDL in APT 

modelling framework and evaluate its performance against the popular AIC 

and BIC.  

Subsequently, the underlying concepts that guided this study, namely 

information theoretic fit criteria, linear models and asymmetric price 

transmission was introduced and explained. More importantly, the concept 

behind the MDL principle was explained and emphasis put on how the 

algorithms were developed in connection with the price models under 

consideration using Monte Carlo simulation.  

Basically, the R-functions for the various formulations of MDL were 

developed since no such functions have been built in R yet. This enabled its 

application to the various formulations of APT models which have been in use 

in econometric modelling over the years. Further, artificial data were used to 

simulate the behaviour of the models to find out their long term behaviour in 

recovering the true data generating process of our APT econometric models. 

Subsequently, the selected econometric models of asymmetric price 

transmission were submitted to MDL model selection technique and their 

performance was evaluated and compared to the traditional AIC and BIC in 

identifying the true data generating process (CECM and SECM).   

This helped to recommend the best (MDL) criteria in selecting the best 

APT linear model under various conditions of varying sample size, stochastic 

variance and difference in asymmetric adjustment parameters.  

Finally, the findings of our 1000 Monte Carlo simulations on the 

ability of all model selection criteria to recover the DGP, especially MDL, 

were discussed and conclusions drawn based on the objectives of this study. 
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Conclusions 

  In the asymmetric price transmission framework, the present study has 

empirically developed and implemented the Minimum Description Length 

(MDL) principle to Asymmetric Price Transmission (APT) linear models and 

evaluated the relative performance of the model selection algorithms of which 

little is known. The MDLs, (rMDL, gMDL, nMDL and eMDL) were 

developed using R-functions (built from scratch) and all data analysis and 

Monte Carlo simulations were also performed using R programming language. 

The study showed that, for the selected econometric models of 

Asymmetric Price Transmission (APT) that is, Complex Error Correction 

Model (CECM) and Standard Error Correction Model (SECM), overall, the 

MDL criteria generally do point to the true asymmetric data generating 

process. Comparatively, some variants of MDL (rMDL, nMDL) criteria 

generally outperformed, or were comparable (depending on which condition 

was being examined) to the traditional AIC and BIC in recovering the true 

data generating process (DGP) across some sample sizes, stochastic variance 

and difference in asymmetric adjustment parameters. In some cases, AIC and 

BIC also outperformed some variants of MDLs if not all. In a general case 

where the average performance of all criteria was examined in their ability to 

select the true GDP using a sample size of 1000, all MDLs outperformed BIC 

and AIC in both the standard and complex case scenarios.  

Alternatively, performance of all model selection criteria in their 

ability to recover the true DGP improved with increasing sample size. BIC 

outperformed all criteria in small to moderate samples whilst gMDL and 

eMDL outperformed AIC which in turn did better than nMDL and rMDL in 

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



141 

 

small samples (SECM). All MDLs in the moderate samples outperformed AIC 

whilst in large samples rMDL outperforms all criteria. Also, generally, the 

performance of the criteria was better when the true data generating process is 

CECM (most times full recovery) than that of the SECM. In small samples, 

nMDL recovered strongest followed by AIC with BIC being the least. In 

moderate samples, AIC rather performed better than all criteria and the MDLs 

in turn performed better than BIC. Finally, all criteria recorded a 100 percent 

recovery when the DGP is complex and sample size was large. 

Regarding the effect of stochastic variance on model recovery rates, 

the general performance of all model selection algorithms analysed 

deteriorated with increasing amount of noise in the true asymmetric price 

transmission data generating process. This general trend was similar for both 

the CECM and SECM asymmetric price models but some criteria (gMDL, 

AIC, and eMDL) performed better under CECM and the others (rMDL, 

nMDL, gMDL and eMDL) performed better under SECM. The MDLs have a 

wide performance range, in that, depending on the true data generating process 

and the condition under investigation, one or more variants of the MDL can be 

used alongside the traditional AIC and BIC. Specifically, though BIC 

outperformed all criteria in recovering the standard model, rMDL can be used 

alongside at lower noise levels. At higher noise levels AIC was comparable to 

eMDL and at moderate noise levels gMDL and eMDL were comparable and 

outperformed all other criteria. Also, all criteria ability to recover complex 

models generally decreased as compared to standard models. At higher and 

moderate noise levels, the nMDL outperformed all criteria while at lower 
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noise levels AIC outperformed all criteria and all MDLs in turn outperformed 

BIC. Hence the robustness of MDLs is emphasized.  

Furthermore, simulating the effect of sample size and stochastic 

variance concurrently affirm that stable conditions improve model recovery 

rate of the true asymmetric data generating process and vice versa. The MDLs 

continue to do well under both unstable (gMDL, eMDL, nMDL) and stable 

(rMDL) conditions but of course rMDL outperformed AIC and BIC under 

stable and gMDL outperformed AIC and BIC under unstable conditions in the 

SECM and nMDL under unstable for the CECM. Relatively speaking, some 

variants of MDL can be used as alternatives or used alongside AIC and BIC 

given the same conditions under study. 

Subsequently, an increase in the difference in the asymmetric 

adjustment parameters from weak (0.25) to strong (0.5) culminates in an 

increase in model recovery of the true asymmetric data generating process 

(CECM or SECM) across all sample sizes. More specifically, the 

performances improved for the SECM steadily but CECM recorded a full 

recovery rate when the sample size was large. In small samples, BIC which 

was comparable to gMDL selected the standard model strongest whilst eMDL 

selected the complex models strongest. In moderate samples, BIC again 

outperformed all criteria for standard models while AIC outperformed all 

criteria for complex models. Lastly, in large samples, rMDL was the only 

criteria that fully recovered (approximately) the standard model when the 

asymmetric adjustment level was increased while all criteria fully recovered 

the complex model respectively even in weak and strong levels of asymmetry.  
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The major contribution to knowledge in this study is the development 

of the minimum description length using R-functions derived from scratch and 

its evaluation of econometric models of asymmetric price transmission for the 

first time ever. The formulations of the MDL principles were compared to the 

traditional AIC and BIC. Notable under all study conditions the MDLs have 

proved to be very useful in model selection and model recovery and should be 

used as alternatives to both AIC and BIC. This is because though comparable 

among themselves and within their own strength, some variants sometimes 

outperformed these traditional and popular information criteria within the 

asymmetric price transmission linear models.  

 

Recommendations 

The MDL criteria (rMDL, nMDL, gMDL and eMDL), first of all, are 

very useful (robust, wide performance range, no distributional assumption 

required) in the model selection especially with issues dealing with 

econometric price modelling.  The performance of rMDL is consistent with 

standard error correction model of APT while nMDL is consistent with 

complex error correction models of APT therefore, they can be a good 

substitute to BIC and AIC, respectively. The rest of the formulations of MDL 

(like predictive MDL) not discussed may be further studied. 

Importantly, the procedures implemented in this study may apply in a 

broader sense to a wide range of applications within agricultural sciences, 

mathematical or statistical sciences, etc., when the researcher is confronted 

with a problem of model selection and comparison, rate of recovery of the true 
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data generating process and model performance under standard and complex 

conditions in asymmetric price transmission modelling framework. 

In matters of choosing appropriate samples for research in the light of 

financial constraint, time, and non-availability of other resources, a moderate 

sample size of 150 (or better) is adequate in making sound decisions on 

asymmetric price models. Researchers should also aim at higher asymmetric 

adjustment levels, lower noise levels and stable conditions to achieve the best 

results in asymmetric price transmission linear modelling. 

Probably in the future, a study will be conducted to examine MDL’s 

performance regarding other distributions as well as to buttress the criteria’s 

wide range of application.  
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APPENDICES 

APPENDIX A 

 READING A TREE DIAGRAM 

 

Reading a tree diagram  

The easiest way to visualize how a code is formed is by constructing a 

so-called tree diagram. Consider the code (a = 0, b = 10, c = 11). It is 

presented in a tree diagram (Figure 1).  

 

 

Figure 1: A tree diagram over a prefix-free code for (a, b, c) 

 

The start of a tree diagram is called “the root”. From the root two paths run, 

both ending up in a so-called node. A node can be two things. Either it is a 

junction that splits the path in two, or it is an endpoint of the path that leads 

down to it. In the latter case, the node is called a “leaf”. It should be noted that 

all leaves are nodes, though not all nodes are leaves.  The process of splitting 

paths in two is continued until there is as many leaves in the tree as there are 

symbols, ix  , in the code. Once this is accomplished, each symbol is assigned 

to a unique leaf. Each path below the root or a node is given the symbol 0 or 1, 

making sure that for each pair of paths, 0 or 1 appears no more than once.  
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The code word assigned to each symbol ix  can then be read by tracing the 

paths from the root, down through all the nodes leading to the leaf 

corresponding to the code word of interest. By reading the junction of the 

binary symbols at each node and joining them together in chronological order, 

one gets the code word for symbol ix .  

 

For example, consider the symbol “b” in figure 1. If one is interested in 

finding out which code word is assigned to it, one starts at the root and work 

one‟s way downwards to leaf “b”. One starts by going right and thus add a 1 

to the code. At the first node, one turns left and adds a 0 to the code. It can 

now be seen that the final node, or leaf, has been reached, and the process 

halts. Thus the code is 10 for “b”, which is in agreement with what was seen 

earlier.  

 

Note that it does not matter how the 0‟s and 1‟s are assigned to the various 

paths in the tree diagram, one would still end up with a prefix-free code. It is 

common practice, however, to be consequent in assigning all zeros to either 

the left or the right path connected to each node. 
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APPENDIX B 

HUFFMAN’S ALGORITHM 

  

Huffman’s algorithm  

Huffman‟s algorithm works by sorting symbols, ix  , that are to be encoded 

after their probabilities in increasing order. The two symbols with least 

probabilities are then defined as leaves of a, for now, disjoint node; a root if 

you wish. One of the branches between that node and the leaf gets a 0 attached 

to it, while the other gets a 1. (Cover and Thomas, 1999. p. 118)  

 

Next, the node is assigned a probability equal to the sum of the two symbols’ 

respective probabilities, and then put back into the sorted list where it now is 

treated as an element that can be selected and grouped. The procedure is then 

repeated until there is only one element left. That element forms the prefix-

free binary tree for the symbols. Code word for symbol ix  is then traced from 

the root down to the corresponding leaf as usual (Cover and Thomas, 1999; p. 

118).  

 

It can be shown that Huffman‟s algorithm results in an optimal expected code 

length. However, the proof is beyond the scope of this paper, but can be found 

in (Cover and Thomas, 2006, pp. 123-127). For a more visual representation 

of how the algorithm works, see (Roos, 2009a).   
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APPENDIX C 

KRAFT INEQUALITY 

 

 

 Proof of Kraft inequality  

The proof is given only for the binomial case, though it can easily be extended 

to the general case by simply changing the base 2, to the base   .  

 

Assume a tree diagram representing a prefix-free code. Note that the length of 

each code word is equal to the number of nodes, including the leaf that 

connects the corresponding leaf to the root. In other words, the further down in 

the tree a leaf is, the longer a code word is associated to it.  

 

The length of the longest code word can be defined as maxL  . Note that there 

can be at most m ax2
L

code words of that length, which occurs in the special case 

where all code words have equal length.  

 

At each leaf that is not at maxL  level, the number of possible code words that 

could have been generated from it, if the leaf had been a non-leaf node instead 

is, for each leaf, 
)(max2 ixLL 
 .  
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Figure 2: An illustrative tree-diagram over the Kraft inequality 

 

This gives us that the sum of all leaves in the tree diagram is the following:  


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Clearly this sum cannot be greater than in the case where all the code words 

are of maximum length.  
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It can then be seen that this is equivalent to  
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which proves the Kraft inequality (Cover and Thomas, 2006, p. 108). 
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APPENDIX D 

THE SHANNON CODE 

 

Proof that of the Shannon code fulfils the Kraft inequality  

The Kraft inequality states that 
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
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Q.E.D 

In other words, the Shannon code fulfils the Kraft inequality (Cover & 

Thomas, 2006, pp 112-113) 
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APPENDIX E 

THE TURING MACHINE 

 

 Definition of a Turing machine  

A Turing machine is a theoretical machine that, given a logical problem, either 

runs until it solves it and then stops, or never stops at all. (Turing, 1937, pp. 

240-241) All logical problems that can be solved at all can be solved by a 

Turing machine. (Sipser, 2006, p. 139) This means that if a Turing machine 

cannot solve the problem, the problem cannot be solved with logic.  

 

A problem with the Turing machine is that there is no way to know if the 

problem has a solution or not since some problems might just take a very, very 

long time to be computed. The problem is, of course, that one in advance 

cannot know if the problem is unsolvable since it is impossible to tell if the 

calculations ever will halt. In fact, Alan Turing proved in 1936 that it is 

impossible to know in advance if a problem is solvable or not. (Turing, 1937, 

p.247). This is known as the “Halting problem”. (Sipser, 2006) and (Cover and 

Thomas, 2006, pp. 482-483).  

 

A Universal Turing Machine is “[…] a single machine which can be used to 

compute any computable sequence.” (Turing, 1937, p. 241). In other words, 

such a machine can do everything any specific Turing machine can do. 
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APPENDIX F 

THE STIRLING APPROXIMATION 

The Stirling approximation of the gamma function  

The Stirling approximation states that:  

)2ln(
2

1
)ln(

2

1
)!ln()1(ln 








 nnnnn  

(Roos 2004, p.8)  

A quick look at the Stirling approximation indicates that it is a good one, with 

an error very quickly approaching zero as n grows. 

 

Figure 4: The error caused by the Stirling approximation for values of n=1 to 

170 

For the convenience of the reader, the R code used to produce figure 4 is 

presented below.  

 

R code for the illustration of the Stirling approximation  

# The following script generates the Stirling approximation of  

# ln(n!)  

# It is used by typing "Stirling(n)" for any given positive value of n.  

Stirling <- function(n) { (n+1/2)*log(n)-n+(1/2)*log(2*pi) }  

y <- c(1:170)  

# The reason that we let y range from 1 to 170 is that 170  

# is that 170 is the highest number that R lets us calculate  

# the factorial of, at least on the computer we used.  

truval <- log(factorial(y))  

appval <- Stirling(y)  

plot(truval-appval, ylab="Error of approximation", xlab="n") 
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APPENDIX G 

ALTERNATIVE RNML 

 

Alternative form of RNML 
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APPENDIX H 

DEVELOPMENT OF CODES IN R 

 

Appendix H1: Full version and when constants are eliminated 

#### AIC -- Removing constants that does not affect selection 

AIC_gid <- function(fit = model){ 

  RSS <- sum((fit$residuals)^2) # Sum of Squares residual 

  n <- nrow(fit$model) # The number of data points 

  log_lkl <- n*log(RSS/n) 

  npar <- length(fit$coefficients) 

  calc <- 2*npar + log_lkl 

  return(calc) 

} 

AIC_gid(lm_fit1) 

AIC_gid(lm_fit2) 

AIC_gid(lm_fit3) 

AIC_gid(lm_fit4) 

 

#### BIC -- Removing constants that does not affect selection 

BIC_gid <- function(fit=model){ 

  RSS <- sum((fit$residuals)^2) # Sum of Squares residual 

  n <- nrow(fit$model) # The number of data points 

  log_lkl <- n*log(RSS/n) 

  npar <- length(fit$coefficients) 

  calc <- log(n)*npar + log_lkl 

  return(calc) 

} 

 

BIC_gid(lm_fit1) 

BIC_gid(lm_fit2) 

BIC_gid(lm_fit3) 

BIC_gid(lm_fit4) 

 

################# AIC full Versions ############### 

AIC_full <- function(fit=model){ 

  RSS <- sum((fit$residuals)^2) # Sum of Squares residual 

  n <- nrow(fit$model) # The number of data points 

  log_lkl <- n*(log(2*pi)+1+ log(RSS/n)) 

  npar <- length(fit$coefficients) 

  calc <- 2*(npar+1) + log_lkl 

  return(calc) 

} 
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AIC_full(lm_fit1) 

AIC_full(lm_fit2) 

 

### R built in AIC 

 

AIC(lm_fit1) 

AIC(lm_fit2) 

 

## We notice the formula I wrote gives the same result as R's built in AIC 

 

### Now let's simplify by removing constants 

AIC_gid <- function(fit = model){ 

  RSS <- sum((fit$residuals)^2) # Sum of Squares residual 

  n <- nrow(fit$model) # The number of data points 

  log_lkl <- n*log(RSS/n)  # Here we removed log(2*pi)+1     --------------------

---------------------- 

  npar <- length(fit$coefficients) 

  calc <- 2*npar + log_lkl # Also removed the +1 by changing 2*(npar+1) to 

2*npar ------------------ 

  return(calc) 

} 

 

AIC_gid(lm_fit1) 

AIC_gid(lm_fit2) 

 

# Now we realize the numbers are about ~3000 less than R's Built in AIC 

# However, we will notice that when comparing, the differences are the same 

AIC(lm_fit1) - AIC(lm_fit2) 

AIC_gid(lm_fit1) - AIC_gid(lm_fit2) 

 

 

Appendix H2: R – functions for the four MDL’s 

# Minimum Description Length (Rissanen's method = rMDL) 

IDl_len <- function(z){ 

  x <- round(z) 

  frst_log <- ifelse(abs(x)<= 1, 0, log2(abs(x))) 

  scnd_log <- ifelse(abs(frst_log)<=1, 0, 2*log2(frst_log)) 

  id_len <- 2 + frst_log + scnd_log 

  return(id_len) 

} 
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### R MDL 

rMDL <- function(fit = model){ 

  t.values <- as.numeric(summary(fit)$coefficients[,3]) # Extract t-statistic 

value from the model including the intercept 

  RSS <- sum((fit$residuals)^2) # Sum of Squares residual 

  n <- nrow(fit$model) # The number of data points 

  log_lkl <- (n/2)*log2(RSS/n) 

  unv_cdlen <- sum(sapply(t.values,IDl_len)) # Calculates the universal codes 

  Mdl <- log_lkl + unv_cdlen 

  return(Mdl) 

} 

 

### G MDL 

gMDL <- function(fit = model){ 

  smmry <- summary(fit)                                   # Summary of the lm function 

or the equation 

  X <- as.matrix(fit$model[, -1])                         # Matrix of predictors 

  td <- data.frame(smmry$coefficients)                    # matrix with coefficients 

  b <- as.matrix(td[rownames(td) != "(Intercept)", 1])    # vector of coefficients 

excluding intercept 

  k <- nrow(b)                                            # Number of parameters excluding 

the intercept 

  SSE <- sum((fit$residuals)^2)                           # Sum of square errors 

  n <- nrow(X)                                            # Number of data points used in the 

model 

  S <- (SSE/(n - k) )                                     # mean square error or standard 

error 

  dep <- fit$model[ ,1] 

  F <- as.numeric(( dep%*%dep - SSE)/(k*S))               # F statistic 

  Rsq <- smmry$r.squared                                  # R squared value 

   

  vl <- ifelse(Rsq >= k/n,(n/2)*log(S) + (k/2)*log(F) + log(n), 

(n/2)*log((dep%*%dep)/n) + .5*log(n) ) 

  return(vl) 

} 

 

## Normalized Maximum Likelihood MDL 

nMDL <- function(fit=model){ 

  smmry <- summary(fit)                                   # Summary of the lm function 

or the equation 

  X <- as.matrix(fit$model[, -1])                         # Matrix of predictors 

  td <- data.frame(smmry$coefficients)                    # matrix with coefficients 
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  b <- as.matrix(td[rownames(td) != "(Intercept)", 1])    # vector of coefficients 

excluding intercept 

  k <- nrow(b)                                            # Number of parameters excluding 

the intercept 

  SSE <- sum((fit$residuals)^2)                           # Sum of square errors 

  n <- nrow(X)                                            # Number of data points used in the 

model 

  S <- (SSE/(n - k) )   

  dep <- fit$model[ ,1] 

  F <- as.numeric(( dep%*%dep - SSE)/(k*S))               # F statistic 

  Rsq <- smmry$r.squared                                  # R squared value 

   

  vl1 <- (n/2)*log(S) + (k/2)*log(F) + .5*log(n-k) - 1.5*log(k) 

  return(vl1) 

} 

 

## Exact Normalised Maximum Likelihood MDL 

eMDL <- function(fit=model){ 

  smmry <- summary(fit)                                   # Summary of the lm function 

or the equation 

  X <- as.matrix(fit$model[, -1])                         # Matrix of predictors 

  td <- data.frame(smmry$coefficients)                    # matrix with coefficients 

  b <- as.matrix(td[rownames(td) != "(Intercept)", 1])    # vector of coefficients 

excluding intercept 

  k <- nrow(b)                                            # Number of parameters excluding 

the intercept 

  SSE <- sum((fit$residuals)^2)                           # Sum of square errors 

  n <- nrow(X)                                            # Number of data points used in the 

model 

  S <- (SSE/(n - k) )   

  dep <- fit$model[ ,1] 

  F <- as.numeric(( dep%*%dep - SSE)/(k*S))               # F statistic 

  Rsq <- smmry$r.squared                                  # R squared value 

   

  vl2 <- (n-k)*log(SSE/n) + k*log(as.numeric(t(b)%*%crossprod(X)%*%b)) + 

(n-k-1)*log(n/(n-k)) - (k+1)*log(k) 

  return(vl2) 

   

} 
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## Combine gMDL, nMDL and the Exact MDL into one function. This will 

be useful during simulations 

 

MDL <- function(fit=model){ 

  smmry <- summary(fit)                                   # Summary of the lm function 

or the equation 

  X <- as.matrix(fit$model[, -1])                         # Matrix of predictors 

  td <- data.frame(smmry$coefficients)                    # matrix with coefficients 

  b <- as.matrix(td[rownames(td) != "(Intercept)", 1])    # vector of coefficients 

excluding intercept 

  k <- nrow(b)                                            # Number of parameters excluding 

the intercept 

  SSE <- sum((fit$residuals)^2)                           # Sum of square errors 

  n <- nrow(X)                                            # Number of data points used in the 

model 

  S <- (SSE/(n - k) )   

  dep <- fit$model[ ,1] 

  F <- as.numeric(( dep%*%dep - SSE)/(k*S))               # F statistic 

  Rsq <- smmry$r.squared                                  # R squared value 

  t.values <- as.numeric(summary(fit)$coefficients[,3]) # Extract t-statistic 

value from the model including the intercept 

  RSS <- sum((fit$residuals)^2) # Sum of Squares residual 

  n <- nrow(fit$model) # The number of data points 

  log_lkl <- (n/2)*log2(RSS/n) 

  unv_cdlen <- sum(sapply(t.values,IDl_len)) # Calculates the universal codes 

   

  rMDL <- log_lkl + unv_cdlen         #Rissanen MDL 

  eMDL <- (n-k)*log(SSE/n) + 

k*log(as.numeric(t(b)%*%crossprod(X)%*%b)) + (n-k-1)*log(n/(n-k)) - 

(k+1)*log(k) 

  gMDL <- ifelse(Rsq >= k/n,(n/2)*log(S) + (k/2)*log(F) + log(n), 

(n/2)*log((dep%*%dep)/n) + .5*log(n) ) 

  nMDL <- (n/2)*log(S) + (k/2)*log(F) + .5*log(n-k) - 1.5*log(k) 

   

  aic <- AIC(fit)  # AIC 

  bic <- BIC(fit)  # BIC 

  combo <- data.frame(Rissanen.MDL = rMDL, G.Prior.MDL = gMDL, 

Norm.MDL = nMDL, Exact.MDL = eMDL, AIC = aic, BIC = bic) 

  return(combo) 

} 
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Appendix H3: R-codes for econometric asymmetric price models 

xt <- cumsum(rnorm(n)) 

  et <- rnorm(n) 

  yt <- xt + et 

   

  dxt <- diff(xt) 

  dxtpos <- (dxt + abs(dxt))/2 

  dxtneg <- dxt - dxtpos 

   

  reg <- lm(yt ~ xt) 

   

  ECT<-reg$res 

  ECTpos<-(ECT+abs(ECT))/2 

  ECTneg<-ECT-ECTpos 

  lECTpos<-(Lag(ECTpos,1)) 

  lECTneg<-(Lag(ECTneg,1)) 

   

  lECTpos<-lECTpos[-c(1,1)] 

  lECTneg<-lECTneg[-c(1,1)] 

   

  dyt <- 0.7*dxt + 0.25*lECTpos + 0.75*lECTneg + rnorm(n-1) 

   

  dyy <- dyt[c(6:n-5)] 

  dxxpos <- dxtpos[c(6:n-5)] 

  dxxneg <- dxtneg[c(6:n-5)] 

   

  Dyt <- dyt[c(6:n-5)] 

  Dxt <- dxt[c(6:n-5)] 

   

  LECTpos <- lECTpos[c(6:n-5)] 

   

  LECTneg <- lECTneg[c(6:n-5)] 

 

 

Appendix H4: Final script for analysis (changes are made per objective of 

study) 

 

packages <- c("Hmisc") 

new.packages <- packages[!(packages %in% 

installed.packages()[,"Package"])] 

if(length(new.packages) > 0) {install.packages(new.packages)} 
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for(i in packages){ 

  require(i, character.only = TRUE ) 

} 

 

# Minimum Description Length (Rissanen's method = rMDL) 

 

IDl_len <- function(z){ 

  x <- round(z) 

  frst_log <- ifelse(abs(x)<= 1, 0, log2(abs(x))) 

  scnd_log <- ifelse(abs(frst_log)<=1, 0, 2*log2(frst_log)) 

  id_len <- 2 + frst_log + scnd_log 

  return(id_len) 

} 

 

### R MDL 

 

rMDL <- function(fit = model){ 

  t.values <- as.numeric(summary(fit)$coefficients[,3]) # Extract t-statistic 

value from the model including the intercept 

  RSS <- sum((fit$residuals)^2) # Sum of Squares residual 

  n <- nrow(fit$model) # The number of data points 

  log_lkl <- (n/2)*log2(RSS/n) 

  unv_cdlen <- sum(sapply(t.values,IDl_len)) # Calculates the universal codes 

  Mdl <- log_lkl + unv_cdlen 

  return(Mdl) 

} 

 

### G MDL 

gMDL <- function(fit = model){ 

  smmry <- summary(fit)                                   # Summary of the lm function 

or the equation 

  X <- as.matrix(fit$model[, -1])                         # Matrix of predictors 

  td <- data.frame(smmry$coefficients)                    # matrix with coefficients 
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  b <- as.matrix(td[rownames(td) != "(Intercept)", 1])    # vector of coefficients 

excluding intercept 

  k <- nrow(b)                                            # Number of parameters excluding 

the intercept 

  SSE <- sum((fit$residuals)^2)                           # Sum of square errors 

  n <- nrow(X)                                            # Number of data points used in the 

model 

  S <- (SSE/(n - k) )                                     # mean square error or standard 

error 

  dep <- fit$model[ ,1] 

  F <- as.numeric(( dep%*%dep - SSE)/(k*S))               # F statistic 

  Rsq <- smmry$r.squared                                  # R squared value 

   

  vl <- ifelse(Rsq >= k/n,(n/2)*log(S) + (k/2)*log(F) + log(n), 

(n/2)*log((dep%*%dep)/n) + .5*log(n) ) 

  return(vl) 

} 

 

## Normalized Maximum Likelihood MDL 

 

nMDL <- function(fit=model){ 

  smmry <- summary(fit)                                   # Summary of the lm function 

or the equation 

  X <- as.matrix(fit$model[, -1])                         # Matrix of predictors 

  td <- data.frame(smmry$coefficients)                    # matrix with coefficients 

  b <- as.matrix(td[rownames(td) != "(Intercept)", 1])    # vector of coefficients 

excluding intercept 

  k <- nrow(b)                                            # Number of parameters excluding 

the intercept 

  SSE <- sum((fit$residuals)^2)                           # Sum of square errors 

  n <- nrow(X)                                            # Number of data points used in the 

model 

  S <- (SSE/(n - k) )   

  dep <- fit$model[ ,1] 
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  F <- as.numeric(( dep%*%dep - SSE)/(k*S))               # F statistic 

  Rsq <- smmry$r.squared                                  # R squared value 

   

  vl1 <- (n/2)*log(S) + (k/2)*log(F) + .5*log(n-k) - 1.5*log(k) 

  return(vl1) 

} 

 

## Exact Normalised Maximum Likelihood MDL 

 

eMDL <- function(fit=model){ 

  smmry <- summary(fit)                                   # Summary of the lm function 

or the equation 

  X <- as.matrix(fit$model[, -1])                         # Matrix of predictors 

  td <- data.frame(smmry$coefficients)                    # matrix with coefficients 

  b <- as.matrix(td[rownames(td) != "(Intercept)", 1])    # vector of coefficients 

excluding intercept 

  k <- nrow(b)                                            # Number of parameters excluding 

the intercept 

  SSE <- sum((fit$residuals)^2)                           # Sum of square errors 

  n <- nrow(X)                                            # Number of data points used in the 

model 

  S <- (SSE/(n - k) )   

  dep <- fit$model[ ,1] 

  F <- as.numeric(( dep%*%dep - SSE)/(k*S))               # F statistic 

  Rsq <- smmry$r.squared                                  # R squared value 

   

  vl2 <- (n-k)*log(SSE/n) + k*log(as.numeric(t(b)%*%crossprod(X)%*%b)) + 

(n-k-1)*log(n/(n-k)) - (k+1)*log(k) 

  return(vl2) 

   

} 
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## Combine gMDL, nMDL and the Exact MDL into one function. This will 

be useful during simulations 

 

MDL <- function(fit=model){ 

  smmry <- summary(fit)                                   # Summary of the lm function 

or the equation 

  X <- as.matrix(fit$model[, -1])                         # Matrix of predictors 

  td <- data.frame(smmry$coefficients)                    # matrix with coefficients 

  b <- as.matrix(td[rownames(td) != "(Intercept)", 1])    # vector of coefficients 

excluding intercept 

  k <- nrow(b)                                            # Number of parameters excluding 

the intercept 

  SSE <- sum((fit$residuals)^2)                           # Sum of square errors 

  n <- nrow(X)                                            # Number of data points used in the 

model 

  S <- (SSE/(n - k) )   

  dep <- fit$model[ ,1] 

  F <- as.numeric(( dep%*%dep - SSE)/(k*S))               # F statistic 

  Rsq <- smmry$r.squared                                  # R squared value 

  t.values <- as.numeric(summary(fit)$coefficients[,3]) # Extract t-statistic 

value from the model including the intercept 

  RSS <- sum((fit$residuals)^2) # Sum of Squares residual 

  n <- nrow(fit$model) # The number of data points 

  log_lkl <- (n/2)*log2(RSS/n) 

  unv_cdlen <- sum(sapply(t.values,IDl_len)) # Calculates the universal codes 

   

  rMDL <- log_lkl + unv_cdlen         #Rissanen MDL 

  eMDL <- (n-k)*log(SSE/n) + 

k*log(as.numeric(t(b)%*%crossprod(X)%*%b)) + (n-k-1)*log(n/(n-k)) - 

(k+1)*log(k) 

  gMDL <- ifelse(Rsq >= k/n,(n/2)*log(S) + (k/2)*log(F) + log(n), 

(n/2)*log((dep%*%dep)/n) + .5*log(n) ) 

  nMDL <- (n/2)*log(S) + (k/2)*log(F) + .5*log(n-k) - 1.5*log(k) 
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  aic <- AIC(fit)  # AIC 

  bic <- BIC(fit)  # BIC 

  combo <- data.frame(Rissanen.MDL = rMDL, G.Prior.MDL = gMDL, 

Norm.MDL = nMDL, Exact.MDL = eMDL, AIC = aic, BIC = bic) 

  return(combo) 

} 

 

## -------------------------------------------------------------------------------------------

---------------------------------- 

 

## The Simulation starts here 

 

 

# Create Empty Matrices to hold output from simulation 

 

fit_1 <- data.frame(Rissanen.MDL = numeric() , G.Prior.MDL = numeric(), 

Norm.MDL = numeric(), Exact.MDL = numeric(), AIC= numeric(), BIC = 

numeric()) 

fit_2 <- data.frame(Rissanen.MDL = numeric() , G.Prior.MDL = numeric(), 

Norm.MDL = numeric(), Exact.MDL = numeric(), AIC= numeric(), BIC = 

numeric()) 

fit_3 <- data.frame(Rissanen.MDL = numeric() , G.Prior.MDL = numeric(), 

Norm.MDL = numeric(), Exact.MDL = numeric(), AIC= numeric(), BIC = 

numeric()) 

 

## Set the number of Iterations 

 

niter <- 1000         ## 1000 Iterations 

 

## Set the size of the data 

 

n <- 50 ## Number of rows in sample generated 

# if we take lag or difference of 1 then this may affect the sample size. take 

note 
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### Loop begins here 

set.seed(1231) 

 

for(i in 1:niter){ 

   

  xt <- cumsum(rnorm(n)) 

  et <- rnorm(n) 

  yt <- xt + et 

   

  dxt <- diff(xt) 

  dxtpos <- (dxt + abs(dxt))/2 

  dxtneg <- dxt - dxtpos 

   

  reg <- lm(yt ~ xt) 

   

  ECT<-reg$res 

  ECTpos<-(ECT+abs(ECT))/2 

  ECTneg<-ECT-ECTpos 

  lECTpos<-(Lag(ECTpos,1)) 

  lECTneg<-(Lag(ECTneg,1)) 

   

  lECTpos<-lECTpos[-c(1,1)] 

  lECTneg<-lECTneg[-c(1,1)] 

   

  dyt <- 0.95*dxxpos + 0.20*dxxneg - 0.25*lECTpos - 0.75*lECTneg + 

rnorm(n-1, 0, 1)## can't change bcos these are the parameters in research. 

   

  dyy <- dyt[c(6:n-5)] 

  dxxpos <- dxtpos[c(6:n-5)] 

  dxxneg <- dxtneg[c(6:n-5)] 

   

  Dyt <- dyt[c(6:n-5)] 

  Dxt <- dxt[c(6:n-5)] 
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  LECTpos <- lECTpos[c(6:n-5)] 

   

  LECTneg <- lECTneg[c(6:n-5)] 

 

    ## Build Linear Regression Model 

   

  lm_fit1 <- lm(Dyt ~ dxxpos + dxxneg + LECTpos + LECTneg-1 )  

##Complex Error Correction Model = CECM 

   

  lm_fit2 <- lm( Dyt ~ Dxt + LECTpos + LECTneg-1)             ## Standard 

Error Correction Model=SECM 

   

  lm_fit3 <- lm(dyy ~ dxxpos + dxxneg-1 )                   ##Houck's Model in 

Summed Difference= HOUCKS_L 

     

  ## Append the 1-line output to the Matrix created above 

   

  fit_1 <- rbind(fit_1, MDL(lm_fit1))   

  fit_2 <- rbind(fit_2, MDL(lm_fit2)) 

  fit_3 <- rbind(fit_3, MDL(lm_fit3)) 

   

   

} 

 

 

## Average of the Matrices 

 

Criteria_Averages <- rbind(sapply(fit_1, mean ),  

                           sapply(fit_2, mean ),  

                           sapply(fit_3, mean ) 

) 

 

# Rename the rows of the matrix 
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rownames(Criteria_Averages) <- c("lm_fit1", "lm_fit2", "lm_fit3")  # Rename 

rows to indicate the model 

 

rownames(Criteria_Averages) <- c("CECM", "SECM", "HOUCKS_L") 

 

### Data Frames for the models -- A matrix for each MDL prediction (how 

often each type of MDL is able to predict the data generating process) 

 

Rissanen_df <- data.frame(fit_1 [,1], fit_2[,1], fit_3[,1]) 

colnames(Rissanen_df) <- c("CECM", "SECM", "HOUCKS_L") 

 

G.Prior_df <- data.frame( fit_1[,2], fit_2[,2], fit_3[,2]) 

colnames(G.Prior_df) <- c("CECM", "SECM", "HOUCKS_L") 

 

Norm_df <- data.frame( fit_1[,3], fit_2[,3], fit_3[,3]) 

colnames(Norm_df) <- c("CECM", "SECM", "HOUCKS_L") 

 

Exact_df <- data.frame( fit_1[,4], fit_2[,4], fit_3[,4]) 

colnames(Exact_df) <- c("CECM", "SECM", "HOUCKS_L") 

 

AIC_df <- data.frame( fit_1[,5], fit_2[,5], fit_3[,5]) 

colnames(AIC_df) <- c("CECM", "SECM", "HOUCKS_L") 

 

BIC_df <- data.frame( fit_1[,6], fit_2[,6], fit_3[,6]) 

colnames(BIC_df) <- c("CECM", "SECM", "HOUCKS_L") 

 

## Calculate  the Minimum MDL for each iteration for each MDL for the four 

models 

 

Rissanen_df$Minimum <- apply(Rissanen_df, 1, min) 

G.Prior_df$Minimum <- apply(G.Prior_df, 1, min) 

Norm_df$Minimum <- apply(Norm_df, 1, min) 

Exact_df$Minimum <- apply(Exact_df, 1, min) 
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AIC_df$Minimum <- apply(AIC_df, 1 , min) 

BIC_df$Minimum <- apply(BIC_df, 1, min) 

 

### Test Each iteration to the Minimum of the MDLs for each iteration -- This 

will be true or false 

 

Rissanen_df_boolean <- data.frame(Rissanen_df[ ,-ncol(Rissanen_df)] == 

Rissanen_df[ ,ncol(Rissanen_df)] ) 

G.Prior_boolean <- data.frame(G.Prior_df[ ,-ncol(G.Prior_df)] == G.Prior_df[ 

,ncol(G.Prior_df)] ) 

Norm_df_boolean <- data.frame(Norm_df[ ,-ncol(Norm_df)] == Norm_df[ 

,ncol(Norm_df)] ) 

Exact_df_boolean <- data.frame(Exact_df[ ,-ncol(Exact_df)] == Exact_df[ 

,ncol(Exact_df)] ) 

AIC_df_boolean <- data.frame(AIC_df[ ,-ncol(AIC_df)] == AIC_df[ 

,ncol(AIC_df)]) 

BIC_df_boolean <- data.frame(BIC_df[ ,-ncol(BIC_df)] == BIC_df[ 

,ncol(BIC_df)]) 

 

## Percentage of the time an MDL chooses a model 

Criteria_Choose_Pcntage <- rbind(sapply(Rissanen_df_boolean, mean), 

                                 sapply(G.Prior_boolean, mean), 

                                 sapply(Norm_df_boolean, mean), 

                                 sapply(Exact_df_boolean, mean), 

                                 sapply(AIC_df_boolean, mean), 

                                 sapply(BIC_df_boolean, mean) 

) 

 

rownames(Criteria_Choose_Pcntage) <- c("Rissanen.MDL", "G.Prior.MDL", 

"Norm.MDL", "Exact.MDL", "AIC", "BIC") 

#### # Print the MDL Averages 

Criteria_Averages 

### Print the number of times an MDL chooses model 

Criteria_Choose_Pcntage  
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APPENDIX I 

DATA ANALYSIS AND SIMULATION RESULTS 

 

I 1.  Results for SECM DGP 

Comparison of all six criteria across the following dynamics: 

 

1. Data generating process (DGP) is SECM {dyt <- 0.7*dxt + 0.25*lECTpos + 

0.75*lECTneg + rnorm(n-1, 0, 1)} 

Varing Sample Sizes of n = 50, 150, and 500. The number of Monte Carlo 

simulations are 1000 throughout the comparison. 

 

Start with n= 50 

 

 Criteria_Averages 

         Rissanen.MDL G.Prior.MDL Norm.MDL Exact.MDL      AIC      BIC 

CECM         12.16307    7.874018 3.844700  6.655327 132.5745 141.6078 

SECM         11.30761    7.142498 3.556752  5.504065 131.6881 138.9148 

HOUCKS_L     15.29472   11.328300 8.362517 14.304666 142.2828 

147.7028 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.299 0.635    0.066 

G.Prior.MDL  0.090 0.858    0.052 

Norm.MDL     0.206 0.780    0.014 

Exact.MDL    0.122 0.842    0.036 

AIC          0.177 0.795    0.028 

BIC          0.050 0.863    0.087 

 

##Table 3a: Criteria Averages Per Model 
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##Table 3b: Percentage of Time Criteria Predicts Data Generating Process  

 

 

n = 150 

 

#### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL  Norm.MDL Exact.MDL      AIC      BIC 

CECM         19.99147    11.35449  6.772699 11.341253 416.6468 431.5305 

SECM         16.33678    10.03636  5.889626  8.999743 415.5806 427.4875 

HOUCKS_L     37.37689    26.01201 22.476973 41.363506 450.7932 

459.7234 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.033 0.967        0 

G.Prior.MDL  0.046 0.954        0 

Norm.MDL     0.083 0.917        0 

Exact.MDL    0.058 0.942        0 

AIC          0.139 0.861        0 

BIC          0.021 0.979        0 

 

 

n =500 

 

#### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL  Norm.MDL Exact.MDL      AIC      BIC 

CECM         27.99848    15.25561 10.069836  16.70770 1410.462 1431.485 

SECM         22.41974    13.39023  8.636989  13.26664 1409.476 1426.295 

HOUCKS_L    104.92220    72.62824 68.484218 132.15017 1532.417 

1545.030 
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>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.005 0.995        0 

G.Prior.MDL  0.033 0.967        0 

Norm.MDL     0.052 0.948        0 

Exact.MDL    0.036 0.964        0 

AIC          0.164 0.836        0 

BIC          0.013 0.987        0 

 

 

 

 

2. When stochastic variance (noise) in data increases as against the 

standardized conditions 

compared at n = 150 

 

rnorm (n-1, 0, 1) 

 

#### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL  Norm.MDL Exact.MDL      AIC      BIC 

CECM         19.99147    11.35449  6.772699 11.341253 416.6468 431.5305 

SECM         16.33678    10.03636  5.889626  8.999743 415.5806 427.4875 

HOUCKS_L     37.37689    26.01201 22.476973 41.363506 450.7932 

459.7234 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.033 0.967        0 
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G.Prior.MDL  0.046 0.954        0 

Norm.MDL     0.083 0.917        0 

Exact.MDL    0.058 0.942        0 

AIC          0.139 0.861        0 

BIC          0.021 0.979        0 

 

rnorm (n-1, 0, 2) 

 

 

 #### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL Norm.MDL Exact.MDL      AIC      BIC 

CECM         156.3295    109.1940 104.6122  207.0203 617.6595 632.5432 

SECM         155.5390    108.5067 104.3600  205.9404 616.5933 628.5002 

HOUCKS_L     159.0446    112.1920 108.6569  213.7235 625.5506 634.4808 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.292 0.603    0.105 

G.Prior.MDL  0.088 0.849    0.063 

Norm.MDL     0.210 0.771    0.019 

Exact.MDL    0.115 0.842    0.043 

AIC          0.131 0.820    0.049 

BIC          0.010 0.806    0.184 

 

rnorm (n-1, 0, 3) 

 

#### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL Norm.MDL Exact.MDL      AIC      BIC 

CECM         237.8408    166.4827 161.9558  321.7075 735.2444 750.1280 

SECM         237.2629    166.1235 162.0072  321.2348 734.1782 746.0851 
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HOUCKS_L     237.7474    167.4120 163.9777  324.3650 737.7201 746.6503 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.212 0.389    0.399 

G.Prior.MDL  0.119 0.669    0.241 

Norm.MDL     0.428 0.537    0.035 

Exact.MDL    0.188 0.675    0.137 

AIC          0.100 0.681    0.219 

BIC          0.005 0.475    0.520 

 

3. Varing Levels of asymmetry of n (50, 150, 500) 

 

-Strong level of asymmetry (0.25, 0.75) when n = 50 

 #### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL Norm.MDL Exact.MDL      AIC      BIC 

CECM         12.16307    7.874018 3.844700  6.655327 132.5745 141.6078 

SECM         11.30761    7.142498 3.556752  5.504065 131.6881 138.9148 

HOUCKS_L     15.29472   11.328300 8.362517 14.304666 142.2828 

147.7028 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.299 0.635    0.066 

G.Prior.MDL  0.090 0.858    0.052 

Norm.MDL     0.206 0.780    0.014 

Exact.MDL    0.122 0.842    0.036 

AIC          0.177 0.795    0.028 

BIC          0.050 0.863    0.087 
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-Strong level of asymmetry (0.25, 0.75) when n = 150 

#### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL  Norm.MDL Exact.MDL      AIC      BIC 

CECM         19.99147    11.35449  6.772699 11.341253 416.6468 431.5305 

SECM         16.33678    10.03636  5.889626  8.999743 415.5806 427.4875 

HOUCKS_L     37.37689    26.01201 22.476973 41.363506 450.7932 

459.7234 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.033 0.967        0 

G.Prior.MDL  0.046 0.954        0 

Norm.MDL     0.083 0.917        0 

Exact.MDL    0.058 0.942        0 

AIC          0.139 0.861        0 

BIC          0.021 0.979        0 

 

 

-Strong level of asymmetry (0.25, 0.75) when n = 500 

#### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL  Norm.MDL Exact.MDL      AIC      BIC 

CECM         27.99848    15.25561 10.069836  16.70770 1410.462 1431.485 

SECM         22.41974    13.39023  8.636989  13.26664 1409.476 1426.295 

HOUCKS_L    104.92220    72.62824 68.484218 132.15017 1532.417 

1545.030 

>  

>  

> ### Print the number of times an MDL chooses model 
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> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.005 0.995        0 

G.Prior.MDL  0.033 0.967        0 

Norm.MDL     0.052 0.948        0 

Exact.MDL    0.036 0.964        0 

AIC          0.164 0.836        0 

BIC          0.013 0.987        0 

 

 

 

-Weak level of asymmetry (0.25, 0.50) when n = 50 

#### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL Norm.MDL Exact.MDL      AIC      BIC 

CECM        10.994543    7.475542 3.448125  5.862177 132.5745 141.6078 

SECM         9.870371    6.835296 3.249550  4.889662 131.6881 138.9148 

HOUCKS_L    12.099759    8.885587 5.921708  9.423047 137.2567 142.6767 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.217 0.634    0.149 

G.Prior.MDL  0.086 0.734    0.180 

Norm.MDL     0.229 0.701    0.070 

Exact.MDL    0.124 0.733    0.143 

AIC          0.158 0.710    0.132 

BIC          0.039 0.688    0.273 

 

 

-Weak level of asymmetry (0.25, 0.50) when n = 150 

#### # Print the MDL Averages 

> Criteria_Averages 
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         Rissanen.MDL G.Prior.MDL  Norm.MDL Exact.MDL      AIC      BIC 

CECM         18.45466   10.937248  6.355453 10.506760 416.6468 431.5305 

SECM         14.91338    9.720577  5.573839  8.368168 415.5806 427.4875 

HOUCKS_L     26.30927   18.000260 14.465227 25.340016 434.6182 

443.5484 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.037 0.962    0.001 

G.Prior.MDL  0.055 0.941    0.004 

Norm.MDL     0.092 0.908    0.000 

Exact.MDL    0.062 0.935    0.003 

AIC          0.139 0.861    0.000 

BIC          0.017 0.963    0.020 

 

-Weak level of asymmetry (0.25, 0.50) when n = 500 

 

#### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL  Norm.MDL Exact.MDL      AIC      BIC 

CECM         26.82988    14.82394  9.638165  15.84436 1410.462 1431.485 

SECM         21.29252    13.06554  8.312300  12.61727 1409.476 1426.295 

HOUCKS_L     65.28723    44.92147 40.777448  76.73663 1476.853 

1489.467 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.007 0.993        0 

G.Prior.MDL  0.036 0.964        0 

Norm.MDL     0.058 0.942        0 
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Exact.MDL    0.042 0.958        0 

AIC          0.164 0.836        0 

BIC          0.013 0.987        0 

 

 

4. Stable and unstable conditions of asymmetry (small sample size vrs large 

noice and large sample size vrs small noise) 

 

Stable (n = 150, noise = 0.5) 

 

 #### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL  Norm.MDL Exact.MDL      AIC      BIC 

CECM       -117.62811   -86.83157 -91.41336 -185.0309 215.6341 230.5178 

SECM       -123.45086   -88.72146 -92.86820 -188.5159 214.5679 226.4748 

HOUCKS_L    -81.25335   -57.72025 -61.25528 -126.1010 281.0656 

289.9958 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.005 0.995        0 

G.Prior.MDL  0.023 0.977        0 

Norm.MDL     0.036 0.964        0 

Exact.MDL    0.027 0.973        0 

AIC          0.139 0.861        0 

BIC          0.021 0.979        0 

 

 

Unstable (n = 50, noise = 2) 

 

#### # Print the MDL Averages 

> Criteria_Averages 
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         Rissanen.MDL G.Prior.MDL Norm.MDL Exact.MDL      AIC      BIC 

CECM         51.62390    36.18907 32.31139  63.58870 194.9578 203.9911 

SECM         50.78374    35.99887 32.56002  63.51060 194.0714 201.2980 

HOUCKS_L     50.26096    36.28984 33.51287  64.60537 194.9734 200.3934 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.112 0.261    0.627 

G.Prior.MDL  0.194 0.491    0.451 

Norm.MDL     0.656 0.271    0.073 

Exact.MDL    0.306 0.447    0.247 

AIC          0.112 0.452    0.436 

BIC          0.016 0.307    0.677 

 

 

General case senerio for n = 1000, niter = 1000 

 

#### # Print the MDL Averages 

> Criteria_Averages 

         Rissanen.MDL G.Prior.MDL  Norm.MDL Exact.MDL      AIC      BIC 

CECM         33.41405    18.13018  12.59736  21.06456 2830.934 2855.448 

SECM         26.64921    15.89862  10.79782  16.89012 2829.915 2849.526 

HOUCKS_L    199.73897   138.44222 133.95012 262.38379 3080.173 

3094.881 

>  

>  

> ### Print the number of times an MDL chooses model 

> Criteria_Choose_Pcntage 

              CECM  SECM HOUCKS_L 

Rissanen.MDL 0.002 0.998        0 

G.Prior.MDL  0.020 0.980        0 

Norm.MDL     0.032 0.968        0 
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Exact.MDL    0.024 0.976        0 

AIC          0.147 0.853        0 

BIC          0.009 0.991        0 

 

 

I 2.  Results for SECM DGP (other tables and charts) 

 

1. Varying Sample Size of n=50, 150, 500 

Sample  

Size 

                             Model Fitted 

50  SECM  

Selection Criteria  

Rissanen. MDL 0.635 (63.5%) 

G. Prior. MDL 0.858 (85.8%) 

Norm. MDL 0.780 (78.0%) 

Exact. MDL 0.842 (84.2%) 

AIC 0.795 (79.5%) 

BIC 0.863 (86.3%) 

   

150  SECM 

Selection Criteria  

Rissanen. MDL 0.967 (96.7%) 

G. Prior. MDL 0.954 (95.4%) 

Norm. MDL 0.917 (91.7%) 

Exact. MDL 0.942 (94.2%) 

AIC 0.861 (86.1%) 

BIC 0.979 (97.9%) 

   

500  SECM 

Selection Criteria  

Rissanen. MDL 0.995 (99.5%) 

G. Prior. MDL 0.967 (96.7%) 

Norm. MDL 0.948 (94.8%) 

Exact. MDL 0.964 (96.4%) 

AIC 0.836 (83.6%) 

BIC 0.987 (98.7%) 
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2. When Stochastic Variance (noise) in the data increasing as against the 

standardized conditions 

Compared at n=150 

Stochastic  

Variance(noise)  

                             Model Fitted 

1  SECM  

Selection Criteria  

Rissanen. MDL 0.967 (96.7%) 

G. Prior. MDL 0.954 (95.4%) 

Norm. MDL 0.917 (91.7%) 

Exact. MDL 0.942 (94.2%) 

AIC 0.861 (86.1%) 

BIC 0.979 (97.9%) 

   

2  SECM 

Selection Criteria  

Rissanen. MDL 0.603 (60.3%) 

G. Prior. MDL 0.849 (84.9%) 

Norm. MDL 0.771 (77.1%) 

Exact. MDL 0.842 (84.2%) 

AIC 0.820 (82.0%) 

BIC 0.806 (80.6%) 

   

3  SECM 

Selection Criteria  

Rissanen. MDL 0.389 (38.9%) 

G. Prior. MDL 0.669 (66.9%) 

Norm. MDL 0.537 (53.7%) 

Exact. MDL 0.675 (67.5%) 

AIC 0.681 (68.1%) 

BIC 0.475 (47.5%) 
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3. Varing Levels of asymmetry of n=50 

 

Difference 

 

                                          Model Fitted  

0.50 

(Strong) 

 SECM 

Selection Criteria  

Rissanen. MDL 0.635 (63.5%) 

G. Prior. MDL 0.858 (85.8%) 

Norm. MDL 0.780 (78.0%) 

Exact. MDL 0.842 (84.2%) 

AIC 0.795 (79.5%) 

BIC 0.863 (86.3%) 

   

0.25 

(Weak) 

 SECM 

Selection Criteria  

Rissanen. MDL 0.634(63.4%) 

G. Prior. MDL 0.734 (73.4%) 

Norm. MDL 0.701(70.1%) 

Exact. MDL 0.733 (73.3%) 

AIC 0.710 (71.0%) 

BIC 0.688(68.8%) 

 

 

 

4. Varing Levels of asymmetry of n=150 
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Difference 

 

                                          Model Fitted  

0.50 

(Strong) 

 SECM 

Selection Criteria  

Rissanen. MDL 0.967 (96.7%) 

G. Prior. MDL 0.954 (95.4%) 

Norm. MDL 0.917 (91.7%) 

Exact. MDL 0.942 (94.2%) 

AIC 0.861 (86.1%) 

BIC 0.979 (97.9%) 

   

0.25 

(Weak) 

 SECM 

Selection Criteria  

Rissanen. MDL 0.962 (96.2%) 

G. Prior. MDL 0.941 (94.1%) 

Norm. MDL 0.908 (90.8%) 

Exact. MDL 0.935 (93.5%) 

AIC 0.861 (86.1%) 

BIC 0.963 (96.3%) 

 

 

 

5. Varing Levels of asymmetry of n=500 

 

Difference 

 

                                          Model Fitted  

0.50 

(Strong) 

 SECM 

Selection Criteria  

Rissanen. MDL 0.995 (99.5%) 

G. Prior. MDL 0.967 (96.7%) 

Norm. MDL 0.948 (94.8%) 

Exact. MDL 0.964 (96.4%) 

AIC 0.836 (83.6%) 

BIC 0.987 (98.7%) 

   

0.25 

(Weak) 

 SECM 

Selection Criteria  

Rissanen. MDL 0.993 (99.3%) 

G. Prior. MDL 0.964 (96.4%) 

Norm. MDL 0.942 (94.2%) 

Exact. MDL 0.958 (95.8%) 

AIC 0.836 (83.6%) 

BIC 0.987 (98.7%) 
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6. Stable and unstable conditions of asymmetry 

Difference 

 

                                          Model Fitted  

Stable  SECM 

Selection Criteria  

Rissanen. MDL 0.995 (99.5%) 

G. Prior. MDL 0.977 (97.7%) 

Norm. MDL 0.964 (96.4%) 

Exact. MDL 0.973 (97.3%) 

AIC 0.861 (86.1%) 

BIC 0.979 (97.9%) 

   

Unstable  SECM 

Selection Criteria  

Rissanen. MDL 0.261 (26.1%) 

G. Prior. MDL 0.491 (49.1%) 

Norm. MDL 0.271 (27.1%) 

Exact. MDL 0.447 (44.7%) 

AIC 0.452 (45.2%) 

BIC 0.307 (30.7%) 
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I 3.  Results for SECM DGP (other tables and charts) 

2. Varying Sample Size of n=50, 150, 500 

 

Sample  

Size 

                             Model Fitted 

50  CECM 

Selection Criteria  

Rissanen. MDL 0.639 (63.9%) 

G. Prior. MDL 0.491 (49.1%) 

Norm. MDL 0.698 (69.8%) 

Exact. MDL 0.551 (55.1%) 

AIC 0.626 (62.6%) 

BIC 0.340 (34.0%) 

   

150  CECM 

Selection Criteria  

Rissanen. MDL 0.901 (90.1%) 

G. Prior. MDL 0.923 (92.3%) 

Norm. MDL 0.950 (95.0%) 

Exact. MDL 0.933 (93.3%) 

AIC 0.969 (96.9%) 

BIC 0.870 (87.0%) 

   

500  CECM 

Selection Criteria  

Rissanen. MDL 1.000 (100%) 

G. Prior. MDL 1.000 (100%) 

Norm. MDL 1.000 (100%) 

Exact. MDL 1.000 (100%) 

AIC 1.000 (100%) 

BIC 1.000 (100%) 
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2. When Stochastic Variance (noise) in the data increasing as against the 

standardized conditions 

Compared at n=150 

Stochastic  

Variance(noise)  

                             Model Fitted 

1  CECM  

Selection Criteria  

Rissanen. MDL 0.901 (90.1%) 

G. Prior. MDL 0.923 (92.3%) 

Norm. MDL 0.950 (95.0%) 

Exact. MDL 0.933 (93.3%) 

AIC 0.969 (96.9%) 

BIC 0.870 (87.0%) 

   

2  CECM 

Selection Criteria  

Rissanen. MDL 0.627 (62.7%) 

G. Prior. MDL 0.441 (44.1%) 

Norm. MDL 0.638 (63.8%) 

Exact. MDL 0.515 (51.5%) 

AIC 0.530 (53.0%) 

BIC 0.160 (16.0%) 

   

3  CECM 

Selection Criteria  

Rissanen. MDL 0.333 (33.3%) 

G. Prior. MDL 0.233 (23.3%) 

Norm. MDL 0.602 (60.2%) 

Exact. MDL 0.329 (32.9%) 

AIC 0.231 (23.1%) 

BIC 0.020 (2.0%) 
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7. Varying Levels of asymmetry of n=50 

 

Difference 

 

                                          Model Fitted  

0.50 

(Strong) 

 CECM 

Selection Criteria  

Rissanen. MDL 0.639 (63.9%) 

G. Prior. MDL 0.491 (49.1%) 

Norm. MDL 0.698 (69.8%) 

Exact. MDL 0.551 (84.2%) 

AIC 0.626 (79.5%) 

BIC 0.340 (34.0%) 

   

0.25 

(Weak) 

 CECM 

Selection Criteria  

Rissanen. MDL 0.446 (44.6%) 

G. Prior. MDL 0.358 (35.8%) 

Norm. MDL 0.652 (65.2%) 

Exact. MDL 0.455 (45.5%) 

AIC 0.511 (51.1%) 

BIC 0.198 (19.8%) 
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8. Varying Levels of asymmetry of n=150 

Difference 

 

                                          Model Fitted  

0.50 

(Strong) 

 CECM 

Selection Criteria  

Rissanen. MDL 0.901 (90.1%) 

G. Prior. MDL 0.923 (92.3%) 

Norm. MDL 0.950 (95.0%) 

Exact. MDL 0.933 (93.3%) 

AIC 0.969 (96.9%) 

BIC 0.870 (87.0%) 

   

0.25 

(Weak) 

 CECM 

Selection Criteria  

Rissanen. MDL 0.883 (88.3%) 

G. Prior. MDL 0.905 (90.5%) 

Norm. MDL 0.944 (94.4%) 

Exact. MDL 0.923 (92.3%) 

AIC 0.964 (96.4%) 

BIC 0.809 (80.9%) 

 

 

 

 

9. Varing Levels of asymmetry of n=500 

 

Difference 

 

                                          Model Fitted  

0.50 

(Strong) 

 CECM 

Selection Criteria  

Rissanen. MDL 1.000 (100%) 

G. Prior. MDL 1.000 (100%) 

Norm. MDL 1.000 (100%) 

Exact. MDL 1.000 (100%) 

AIC 1.000 (100%) 

BIC 1.000 (100%) 

   

0.25 

(Weak) 

 CECM 

Selection Criteria  

Rissanen. MDL 1.000 (100%) 

G. Prior. MDL 1.000 (100%) 

Norm. MDL 1.000 (100%) 

Exact. MDL 1.000 (100%) 

AIC 1.000 (100%) 

BIC 1.000 (100%) 
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10. Stable and unstable conditions of asymmetry 

Difference 

 

                                          Model Fitted  

Stable  CECM 

Selection Criteria  

Rissanen. MDL 1.000 (100%) 

G. Prior. MDL 1.000 (100%) 

Norm. MDL 1.000 (100%) 

Exact. MDL 1.000 (100%) 

AIC 1.000 (100%) 

BIC 1.000 (100%) 

   

Unstable  CECM 

Selection Criteria  

Rissanen. MDL 0.186 (18.6%) 

G. Prior. MDL 0.188 (18.8%) 

Norm. MDL 0.669 (66.9%) 

Exact. MDL 0.313 (31.3%) 

AIC 0.152 (15.2%) 

BIC 0.038 (3.8%) 
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APPENDIX J 

DERIVATION OF R-FUNCTIONS AND PACKAGES 

 

Appendix J1: Brief Introduction to R 

 

In order to understand what R is doing for us, there are a few fundamentals 

about the language and how it operates. Readers should download and install 

R and read the help file inbuilt or any R basic book to catch up with the pace. 

The following might be helpful: 

Prompts 

 When R is waiting for us to tell it what to do, it begins the line with  

>   

and this is called the prompt. 

 

If we give it an incomplete command and it cannot finish the task 

requested it provides: 

+ or other versions (R-studio) will show a stop sign. 

 

To get out of R we use the command:  

> q () 

 The R software can be downloaded at: 

https://www.rstudio.com/products/rstudio/download/ 

Note: download R first, install it, then download R studio and install that as 

well. The order is important and the instructions are in the link. If it doesn't 

work, please Google "how to install R". 
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Appendix J2: Derivation of Rissanen MDL (rDML) from AIC 

set.seed(189) 

Note that the R codes come with its alphanumeric characters or its own 

language. 

.............................................................................................................................. 

x1 <- rnorm(1000) 

We obtain the following values:  

0.53897541, 0.21970589, -0.74246202, -0.25227473, -0.05193457, 

1.01742024, ..., etc 

x2 <- rnorm(1000) 

We obtain the following values:  

0.3542655, -1.6688001, -0.2104529, 0.9828985, -0.5264001, -0.5318512, ..., 

etc 

We obtain the following values:  

x3 <- rnorm(1000) 

0.1662904,  -1.2096978,  -1.3239037,  0.8006888,  1.8387752, -1.2672122, ..., 

etc 

x4 <- rnorm(1000) 

We obtain the following values:  

-0.96014053, 0.75370303, -0.03409247, -0.54589023, -1.15223634, 

 -0.76674984, ..., etc 

y <- 2*x1 + 4*x2 + 17*rnorm(1000) 

............................................................................................................................. 
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Appendix J3: Other packages associated with “HMISC” 

All codes developed for the computations of the various criteria (AIC, 

BIC, MDLs) can be found at Appendix H4. The package ‘Hmisc’ was 

installed to help with R-codes used in calculating ‘lags’ or differencing a time 

series (our price models). In order to load package ‘Hmisc’ it is necessary to 

also load the following packages:  lattice, survival, Formula, ggplot2, from the 

R-domain before package ‘Hmisc’ was attached. The following objects were 

masked from ‘package: base’: format.pval, round.POSIXt, trunc.POSIXt, 

units. Note that,  

1: package ‘survival’ was built under R version 3.2.5  

2: package ‘Formula’ was built under R version 3.2.3  

3: package ‘ggplot2’ was built under R version 3.2.5 
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APPENDIX K 

ADDITIONAL TABLES 

Supplementary Tables for Table 3 and Table 4 

Table K1: Criteria Averages & Rankings when DGP is SECM 
 rMDL Ranking gMDL Ranking nMDL Ranking eMDL Ranking AIC Ranking BIC Ranking 

CECM 33.41405 2 18.13018 2 12.59736 2 21.06456 2 2830.934 2 2855.448 2 

SECM 26.64921 1 15.89862   1 10.79782   1 16.89012 1 2829.915 1 2849.526 1 

HOUCK’S 199.73897    3 138.44222 3 133.95012 3 262.38379 3 3080.173 3 3094.881 3 

Sample size (1000)    1000 Monte Carlo Simulations  

 

Table K2: Criteria Averages & Rankings when DGP is CECM 
 rMDL Ranking gMDL Ranking nMDL Ranking eMDL Ranking AIC Ranking BIC Ranking 

CECM 30.20129 1 18.35132 1 12.81850 1 21.50684 1 2830.934 1 2855.448 1 

SECM 78.47769 2 55.12114 2 50.02034 2 95.33516 2 2908.553 2 2928.164 2 

HOUCK’S 192.48686 3 137.68654 3 133.19444 3 260.87244 3 3078.316 3 3093.024 3 

Sample size (1000)    1000 Monte Carlo Simulations  
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APPENDIX L 

 GRAPHICAL REPRESENTATION OF MODEL SELECTION CRITERIA 

UNDER STUDY CONDITIONS 

Appendix L1: Graphical representation of model selection criteria for SECM 

analysis 

 
Figure 2: Effect of Sample Size on Model Selection-SECM 

 

 
Figure 3: Effect of Stochastic Variance on Model Selection-SECM 
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Figure 4: Effect of Stochastic Variance and Sample Size on Model Selection-

SECM 

 

 
Figure 5: Effect of Asymmetric Adjustment Parameters on Model Selection 

(SECM for n = 150) 
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Appendix L2: Graphical representation of model selection criteria for CECM 

analysis 

 
Figure 6: Effect of Sample Size on Model Selection-CECM 

 

 

Figure 7: Effect of Stochastic Variance on Model Selection-CECM 
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Figure 8: Effect of Stochastic Variance and Sample Size on Model Selection-

CECM 

 

 
Figure 9: Effect of Asymmetric Adjustment Parameters on Model Selection 

(CECM for n = 150) 
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