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ABSTRACT

In this study, a novel deterministic mathematical model for the transmis-

sion and control of malaria is formulated. The main innovation in the model is

that, in addition to the natural death rate of the vector (mosquito) population, a

proportion of the prevention effort also contributes to a reduction of the vector

population. The model assumed that a proportion cα, 0≤ c≤ 1 of the prevention

effort α contributes to the death rate of the vector population. The study showed

that there exists a domain where the model is epidemiologically and mathe-

matically well-posed. The study showed that the model has a unique disease

free and an endemic equilibrium points. It was established that the disease free

equilibrium is locally and globally asymptotically stable when R0 < 1 and the

endemic equilibrium is locally and globally asymptotically stable when R0 > 1.

Parameters of the model were estimated from monthly confirmed malaria cases

obtained from the Central Region of Ghana. A sensitivity analysis was carried

out to determine the effects of each parameter on the basic reproduction number,

R0. The result from the sensitivity analysis showed that the two most sensitive

parameters in the reduction of R0 are prevention and treatment. Based on the

result from the sensitivity analysis, numerical simulations were performed us-

ing various combinations of treatment and prevention to determine an optimal

combination that reduces the incidence rate fastest. The result of the simulations

showed that, with about 40% of effective prevention coupled with about 40% of

treatment, will considerably reduce both the infected human and vector popula-

tions. The higher the prevention effort, the higher the reduction in the infected

vector population. If the prevention efforts are implemented by all contiguous

communities in the region, acting in concert, then a marked reduction should

be seen in the infected vector population leading to a complete eradication of

malaria in the region, by implication, through out Ghana.
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CHAPTER ONE

INTRODUCTION

In this chapter, we look at some background information of the study, the

statement of the problem, the purpose of this study, the significance of the study

and how the chapters of study are organized.

Background of the Study

Since the late 1950s, controlling and elimination of the organisms respon-

sible for infectious diseases has been one of the main focuses of Public health

officials. The effectiveness in the improvement in sanitation, enhanced antibi-

otics and prevention strategies brought hope in the elimination of infectious dis-

eases in the 1960s. Studies have shown that infectious disease agents adapt and

evolve over time, and as a result, new infectious diseases come forth and some

existing diseases also resurface (Hethcote, 2000). But, resistance to medicine

by the microorganisms, demographic evolution, increased urbanization and in-

creased travelling, facilitates the emergence of new infectious diseases and the

resurface of existing diseases. According to Hethcote (2000), diseases such

as Lyme disease discovered in 1975, Legionnaires disease discovered in 1976,

Toxic shock syndrome discovered in 1978, Hepatitis C discovered in 1989, Hep-

atitis E discovered in 1990, and Hantavirus discovered in 1993 are newly identi-

fied diseases. The emergence of Human Immunodeficiency Virus infection and

Acquired Immune Deficiency syndrome (HIV/AIDS) in 1981 suddenly gained

prominence in the world as a growing public health issue.

Antibiotic-resistant strains of tuberculosis, pneumonia and gonorrhea have

evolved and these diseases are reemerging. Malaria, dengue, and yellow fever

have also reemerged and are spreading into new regions because of climate

change. Diseases such as plague and cholera continue to erupt occasionally.

1
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Most recently, the reemergence of Ebola virus disease (EVD) in 2013 has per-

plexed the world. Reemergence continues to be serious medical burden for the

world because it is estimated that every year 15 million death are directly related

to reoccurrence of infectious diseases (Hethcote, 2000).

According to WHO (2016), each year, about sixteen percent of all deaths

all around the world are caused by infectious diseases with most of these deaths

in low and middle-income countries and are attributable to preventable or treat-

able diseases such as diarrhea, lower respiratory infections, HIV/AIDS, tubercu-

losis, and malaria. Even though significant advances have been made in strate-

gies toward prevention and treatment of most of these diseases, those strategies

are often unavailable to the populations most in need (WHO, 2016). Eradica-

tion of most infectious diseases could have been made possible if in the course

of the epidemic, adequate and timely steps such as prevention strategies, treat-

ment, educational and enlightenment campaigns are done. However, due to lack

of adequate policies and timely interventions to mitigate the spread of the dis-

eases many of these diseases finally become endemic in our society. Therefore,

proactive steps are needed towards controlling the spread of infectious diseases.

Since, it is cheaper to prevent the occurrence of a disease than to cure it.

Statement of the Problem

Malaria is a serious and sometimes fatal epidemic affecting nearly half of

the world’s population. In 2016, there were 217 million cases, but there were

219 million cases of malaria in 2017 (WHO, 2019). The estimated number

of death due to malaria deaths stood at 435,000 (WHO, 2019). World-wide,

malaria is the 5th leading cause of death from infectious diseases. But in Africa,

it is the 2nd leading cause of death. In 2017, children under five years of age

accounted for 61%(266,000) of all malaria deaths worldwide. The Africa Re-

2
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gion is seen as the home to 92% of malaria cases and 93% of malaria deaths in

2017 (WHO, 2019). Malaria is hyper endemic in all parts of Ghana. Ghana’s

entire population is at risk of malaria, but transmission rates are lower in the

urban areas (Naandam, Essel, Nortey, & Soderbacka, 2013). It contributes to

over a third of all outpatient cases in Ghana. Malaria contributed to 20% to 30%

of death in children under five years of age and 11% of maternal mortality (JSI

Research & Training Institute, 2013).

After the work of Ross (1911) many researcher have modelled malaria

focusing on different strategies. N. R. Chitnis (2005) modelled malaria as a 7-

staged state Ordinary Differential Equations (ODE’s) to compare intervention

strategies for malaria control for two representative areas of high and low trans-

mission focusing on the most effective prevention strategies.

Objectives of the Study

A number of studies have been carried out to combat vector-borne dis-

eases, and in most cases, they focus on vector-control. In this study, we for-

mulate malaria model considering preventive (α) and treatment (γ) parameters

since there is the need to look for best approach or strategies to eliminate malaria

from our societies, regions, countries and the world as a whole.

The main objectives of this study were:

(a) To develop mathematical models for the transmission of malaria

(i) incorporating prevention and treatment as the main control strategies.

(ii) showing that a certain proportion of the prevention strategies increases

the death rate of the mosquitoes.

(b) To estimate the unknown parameters of the model using monthly malaria

prevalence data from the Central Regional Health Directorate of the Ghana

3
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Health Service from the year 2013 to 2017 and carry-out sensitivity analysis

of the parameters that make-up the basic reproduction number.

(c) To preform several simulations of the model to determine an optimal combi-

nation of prevention and treatment that reduces the prevalence, and possibly

eliminate the disease.

Significance of the study

(a) This study will provide Health care authorities the implementation of the

appropriate strategies needed for effective control of malaria.

(b) It will help in the reduction of the number of malaria infection translates to

a marked decrease in outpatient malaria cases in our hospitals, thus easing

the congestion in our hospitals.

(c) It will help reduce morbidity and mortality due to malaria.

Organization of the Thesis

The study is organized in seven chapters. Chapter One of the thesis deals

with the background of the study, the objective of the study and the significance

of the study. Chapter Two deals with literature review (Review of Previous

Studies on malaria transmission and control). Chapter Three looks at some

mathematical concepts necessary for the study. In Chapter Four, we analyze

local stability of some selected epidemic models using a corollary of Gersh-

gorin’s circle theorem. In Chapter Five, we formulate a mathematical model for

malaria transmission incorporating prevention and treatment as the main control

4
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strategies that will help in the reduction and possible eradication malaria by in-

corporating the effect of prevention on the vector populations.we perform local

stability analysis using a corollary of Gershgorin’s circle theorem, the global

stability of the disease free equilibrium is also done. In chapter Six, we use data

to validate the malaria model and perform simulation to determine the combina-

tion of controls (prevention/treatment strategies) that will help in the reduction

of infected human and vectors populations and hopefully to contribute towards

eradication of the infectious diseases. Chapter Seven summarizes the work and

salient observations from the study are presented. Some of the observations are

discussed and appropriate conclusions drawn based on the result of the study.

Chapter Summary

Several researchers and scientists have proposed different mathematical

models for infectious diseases. Mathematical modelling holds great promise in

providing new, counter-intuitive insights into the dynamical processes intrinsic

to mechanism and control of infectious diseases. This chapter looked at the

background of infectious diseases and the implication of mathematics in the

control of infectious diseases. A brief statement of the problem was given and

the objectives and the significance of the study were stated in this chapter.

5
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CHAPTER TWO

LITERATURE REVIEW

Introduction

Mathematical models for Infectious diseases is the representation of the

dynamic transmission cycle, involving interactions between infected and sus-

ceptible hosts that are generally expressed as a set of ordinary differential equa-

tions (ODEs) (Wu, Dhingra, Gambhir, & Remais, 2013).

Mathematical modelling plays an important role in epidemiology by providing

better understanding of the underlying mechanisms for the spread of occurrence

and reoccurrence of infectious diseases and suggesting effective control strate-

gies (Hethcote, 2000).

It is an important tool that helps to understand the dynamics of infectious dis-

eases and to support the development of control strategies (Ullah, Zaman, &

Islam, 2013).

Review of Previous Studies

The mathematical modelling of malaria transmission started with the work

of Ross (1911) and Macdonald (1956) and was continued by (Anderson & May,

1992). Over a century, Mathematical models have been used to produce an

explicit framework for understanding malaria transmission dynamics in human

population. Sir Ronald Ross is seen as the originator of modern mathematical

epidemiology. In his pioneering work on malaria, he observed that it is trans-

mitted from humans and mosquitoes and vice versa while working at the Indian

Medical Service in 1911. Ross (1915) formulated a simple model, which is

called the classical ”Ross model”. This model explained the relationship be-

tween the number of mosquitoes and incidence of malaria in humans. Differ-

ent researchers Like Pampana (1969), Anderson and May (1992), Yang and

6
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Ferreira (2000) and others have formulated different models from the Ross’s

model. They incorporate different factors such as latent or exposed classes in

mosquitoes and humans, age-related differential susceptibility to malaria in hu-

man population, acquired immunity and genetic heterogeneity of host and par-

asite, In Ross first mathematical model of malaria, he used the word ”pathom-

etry” to mean “quantitative study of a disease either in the individual or in the

community”. Ross (1911) received the Nobel Prize in 1902 for his work done

on malaria. Ross’s major concentration was on prevention of malaria. Despite

his contributions, he was unable to convince his contemporaries that malaria

could be eradicated through the reduction of the number of mosquitoes. His

main advantage was his ability to provide a suitable control strategy through

the transmission threshold criterion which is based on the reproductive capacity

of the parasite, that is, basic reproductive number (R0) as used in the second

edition of his book ”The Prevention of Malaria”, published in 1911.

The idea of threshold could be traced from Fisher’s “net reproductive

value” for a parasite, ((Fisher, 1999) and (Mandal, Sarkar, & Sinha, 2011)),

even though Ross (1911) was the first to use it. George Macdonald in the 1950s,

after about 40 years reasserted the value of mathematical epidemiology based on

20 years of fieldwork. He modified Ross (1911) model by incorporating latent

period in the mosquito due to malaria parasite development, and considered the

survivorship of adult female mosquito as the weakest element in the malaria cy-

cle. His work brought about the basis for a massive World Health Organization

(WHO) coordinated campaign. The insecticide dichlorodiphenyltrichloroethane

(DDT) was used to kill mosquitoes and this resulted in the elimination of malaria

transmission among 500 million people in Africa, ((Macdonald, 1956) and (Pampana,

1969)). In (Macdonald, 1956) model the mosquito population is divided into

three compartments (SEI), and the time evolution of the exposed and infected

classes in mosquito were studied.

7
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Anderson and May (1992) estimated parameter values from compiled data

including the exposed period in mosquitoes and humans, the recovery rate for

humans, the life expectancy of adult mosquitoes and malaria prevalence data

across age distributions for humans. They discussed the effect of age structure

to the basic Ross (1911) model. This was suggested by Anderson and May in the

simple Ross (1911) model in which they consider the human population density.

Finally, they considered different control strategies, discussing the effects of a

vaccine and the reduction of transmission rates on the malaria age-prevalence

profile of the human population. Yang and Ferreira (2000) showed that the basic

reproductive number of malaria transmission changes with global warming and

local social and economic conditions. In their book, the good, intermediate and

poor model, economic conditions among human community were considered

and each condition was further divided into three temperature zones. A host of

factors controlling disease transmission rates in his model are differential immu-

nity, endemicity, resistance, economic conditions and temperature dependence

of mosquito development. These modelling results propose the requirement of

proper management of the surrounding environment, along with good health

care system, in disease transmission. According to N. Chitnis, Hyman, and

Cushing (2008), mathematical modelling of malaria can play an important role

in comparing the effects of control strategies used individually or in packages.

Comparison was done by determining the relative importance of model parame-

ters in malaria transmission and prevalence levels in their work. They compiled

two sets of baseline parameter values: one for areas of high transmission and

one for low transmission. They computed sensitivity indices of the reproduc-

tive number and the endemic equilibrium point to the parameters at the baseline

values. They found that in areas of low transmission, the reproductive number

and the equilibrium proportion of infectious humans are most sensitive to the

mosquito biting rate. In areas of high transmission, the reproductive number is

8
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again most sensitive to the mosquito biting rate, but the equilibrium proportion

of infectious humans is most sensitive to the human recovery rate.

According to Mandal et al. (2011), for all malaria model which were for-

mulated before Ngwa and Shu (2000) model, the total population sizes were

considered to be constant. In Ngwa and Shu (2000), they proposed an immu-

nity model in which disease related death rate is considered to be significantly

high and the total population not constant. TheNgwa and Shu (2000) model

comprises of four compartments in humans namely; Susceptible (Sh) , Exposed

(Eh), Infected (Ih) and Immune (Rh) and three compartments in mosquitoes

namely; Susceptible (Sm) , Exposed (Em) and Infected (Im). In the analysis of

their model, they proved that the Basic Reproductive Number, (R0), can de-

scribe the malaria transmission dynamics of the disease and a globally stable

disease-free state exists if R0 < 1, while for R0 > 1, the endemic equilibrium

becomes globally stable. This model explicitly shows the role of inclusion of

demographic effects (net population growth) in predicting the number of fatali-

ties that may arise as a result of the disease.

Also, N. R. Chitnis (2005) and N. Chitnis, Cushing, and Hyman (2006)

included constant immigration of susceptible human population in their model.

Considering immigration of people and excluding direct human recovery from

the infectious to susceptible class as considered in Ngwa and Shu (2000) model

and other models. They showed that the population approaches the locally

asymptotically stable endemic equilibrium point, or stable disease-free equi-

librium point, depending on the initial size of the susceptible class.

Yang and Ferreira (2000) divided the immune class in human population

into immune, partially immune and non-immune but with immunologic mem-

ory, with each class having differential immunity. The mathematical analysis of

Yang’s model shows that the effects of these three types of immune responses

lead to delay in the reappearance of the individuals, who already had expe-
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rienced malaria, to the susceptible population. Hence the community under

high threat of malaria (high ) shows low prevalence of individuals with asexual

blood-stage infection and without infectious gametocytes, whereas, the same

community is relatively free of severe infection due to the increase in immunity

by re-infection. Due to lack of confirmed markers of immunological protection,

different processes that determine the immunity acquisition to clinical disease

and to asymptomatic carriage of malaria parasites are poorly understood.

Filipe, Riley, Darkeley, Sutherland, and Ghani (2007) recommended an

insightful approach which is three age-specific ”immunity-functions” in their

SEI model for the human host. The infected humans are divided into three

classes - infected with severe disease, asymptomatic patent infection, and in-

fected with undetectable parasite density. The effect of mosquito density was

incorporated through the force of infection. Reducing the susceptibility to clin-

ical disease, speeding up of the clearance of detectable parasites, and increasing

tolerance to sub-patent infections are the three immunity functions introduced

in the Filipe model. These functions depend on age and disease transmission in-

tensity in a complex manner. They base their model assumptions on the fact that

the rates at which both types of immunity - clinical and anti - parasite - develop

are different. All these processes have widely varied time scales, which make

the disease transmission in this age-structured population complex. The first

two types of immune functions reproduced the epidemiological age-prevalence

curves seen in empirical data better. The third one i.e. the tolerance to sub-patent

infections, is not required to explain the empirical data.

Several mathematical models have been developed with pathogen pop-

ulation structure and heterogeneous host population to explain variable anti-

genic response, immune selection, pathogen strain structure, (Gupta and Gal-

vani (1999), Gupta and Anderson (1999) and Recker et al. (2004)). Addi-

tion of evolution of drug resistance, along with other factors, in the models
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can assist in the design of rational strategies for the control of drug resistance,

((Hastings, 1997), (Dye & Williams, 1997) and (Mackinnon, 2005)). A num-

ber of resistant-strain models have been developed based on evolution of drug

resistance through host immunity and by considering the practical implications

of the Artemisinin combination therapy (ACT) drug policies adopted by a lot of

countries. Population genetic considerations of the cost of resistance are also

included in this type of models. More recent work elaborates the complexity of

the process of drug resistance by considering the interaction of several environ-

mental, pharmacological and genetic factors, (Antao & Hastings, 2011). In gen-

eral, these resistant-Strain models divide the infected host population into two

compartments, i.e., infected by drug-sensitive strain and drug-resistant strain of

the parasite. The model proposed by Koella and Antia (2003), further divides

the host population infected by drug-sensitive strain into two compartments are

treated and untreated. So this model consists of five compartments of human:

susceptible, sensitive, infected and treated, sensitive, infected and untreated, in-

fected with the resistant strain, and the recovered . The role of mosquito vector

is included through inoculation rates of sensitive and resistant parasites. The

main prediction of this model indicates that there is a threshold proportion of

people among the infected and treated classes, below which resistance cannot

spread, and above which resistance will eventually become fixed in the popula-

tion. The model also shows that, in the absence of drug or treatment, the fitness

of resistant parasite reduces with respect to sensitive parasite; otherwise both the

parasites have identical properties. In this case, sensitive and resistant parasites

cannot co-exist.

The basic reproductive numbers for the early models depend crucially on

the parameters related to mosquito density. Environmental factors, such as tem-

perature, humidity, rainfall and wind patterns have great impact on mosquito re-

production, development and longevity and the parasite survival in its life cycle
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in mosquito. It is known that mosquito breeding is influenced by temperature - a

change in temperature from 120C to 310C reduces the number of days required

for breeding from 65 days to 7.3 days. The sporogony of the parasites in vector

is completed in 55 days at 160C, which reduces to 7 days at 280C, (Martens et

al, 1995). Influence of temperature and humidity change on the rate of transfor-

mation from juveniles to adults in the susceptible class of adult mosquitoes has

been modelled, (Li et al., 2002). Malaria typically is found in warmer regions

of the world - in tropical and subtropical countries yet malaria does not occur

in all warm climates. For example, malaria has been eliminated in some coun-

tries with warm climates, while a few other countries have no malaria because

Anopheles mosquitoes are not found there.

Several mathematical studies have been performed to simulate the effect

of environmental variability in the abundance of mosquito populations such as,

random fluctuation in the form of colour noise in infected mosquito dynamics

of Ross (1911) model, Chattopadhyay, Sarkar, Chaki, and Bhattacharya (2004),

periodic or noisy form of the force of infection, (Anderson & May, 1992). Sev-

eral studies have also included the effect of environmental fluctuations in ways

with the goal to develop realistic and validated malaria modelling frameworks

that are able to identify the crucial linkages between pathogen transmission

processes and climactic factors(Yang & Ferreira, 2000). Parham and Michael

(2010), studied the dynamics of the mosquito population by considering simul-

taneous effects of rainfall and temperature. The model consists of three com-

partments in humans with fixed duration of latency, and three compartments

in mosquitoes. Different environmental factors are introduced in this model

through parameters related to mosquitoes. The birth rate of adult mosquito is

considered to be a function of rainfall and temperature, whereas, mosquito mor-

tality rate, biting rate, duration of sporogonic cycle and survival probability of

infected mosquitoes over the incubation period of the parasite are considered
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to be dependent on temperature variation. The major finding of this model is

that changes in rainfall patterns not only influence vector abundance, but also

strongly govern malaria endemicity, invasion and extinction. However, when

sufficient rainfall exists to sustain vector development and survival, then the

temperature affects the pathogen life cycle, and has stronger influence on the

rate of disease spread (Azu-Tungmah, 2012).

The Global Malaria Control Strategy is a concerted effort meant to bring

about changes in the way malaria problem is addressed. As a result, this strategy

stresses the selective use of preventive measures wherever they can lead to sus-

tainable results. The measures are aimed at halting the deteriorating effects of

the malaria situation, minimizing the wasteful use of resources and contributing

appropriately to the development of health services, intersectoral cooperation

and community participation. Malaria affects the health and wealth of nations

and individuals alike. In Africa today, malaria is understood to be both a dis-

ease of poverty and a cause of poverty (Greenwood & Mutabingwa, 2002) and

(Sachs & Malaney, 2002). Malaria is said to have significant measurable direct

and indirect costs, and has been proven to be a main constraint to economic de-

velopment (Sachs & Malaney, 2002). This means the gap in prosperity between

countries with malaria and countries without malaria has become wider every

single year. Gallup and Sachs (2001) showed that where malaria has been elimi-

nated, economic growth has increased substantially. Hence we need to find cost

effectiveness of the intervention strategies.

In this study, we formulate malaria model similar to that of (N. R. Chitnis,

2005). We incorporate prevention strategies that move people directly from the

susceptible class to the recovered class. We also assume that a certain proportion

of the prevention strategies α increases the death rate of the mosquitoes, that is,

cα where 0 ≤ c ≤ 1. and perform numerical simulations to come up with the

combination of levels of treatment and prevention strategies needed to reduce or
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eradicate malaria.

Treatment and Preventive Strategies

It is important to combine strategies if treatment and prevention of malaria

it breaking the ”host-vector” contact cycle of transmission and curing the in-

fected individuals is our main goal. The control of malaria involves vector con-

trol, education and control of parasites in man. The breaking of ”man-vector”

contact cycle of transmission is the most efficient control measure. Interna-

tionally and nationally, the Roll Back Malaria (RBM) Initiative instigated by

WHO’s Director General in 1998 has integrated malaria into other health pro-

grammes and partnerships. There has been an increased campaign in the global

awareness of malaria and the Global Fund to Fight AIDS, Tuberculosis and

Malaria (GFATM) started operations in 2002. By mid-2004, the GFATM al-

located about 2 billion US dollars for malaria control over a five-year period.

There have a massive reduction in preventable mortality in low- and middle in-

come countries, as evidenced by the 50% reduction in childhood death, 25%

reduction in malaria cases and the World Health Organization(WHO) certifica-

tion of four countries as malaria-free. ”world free of malaria” is the main goal

of the World Health Assembly in 2015 which recently endorsed WHO’s Global

Technical Strategy for Malaria and the Roll Back Malaria Partnership’s Action

and investment to defeat Malaria (AIM ). Their agenda is to reduce malaria case

incidence and mortality rates globally by at least 90% by 2030.

Larviciding and Environmental management: It is the destruction of the lar-

val stage of the mosquito by the spraying pesticide and the destruction of breed-

ing sites with the goal of reducing the number of mosquitoes.

spraying (Space and Indoor residual spraying (IRS)): IRS is seen as the most

cost effective control method in seasonal transmission zone. It helps in increas-

ing the mosquito death rate and reduces the number of mosquitoes.
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Insecticide-treated bed nets (ITN): The use of INTs is most cost effective

method for endemic and Holoendemic zones. According to N. R. Chitnis (2005),

ITN’s have had a significant impact on disease prevalence and mortality. Man-

vector contacts is reduced with an increased number of bed nets and also in-

creases the mosquito death rates.

Insecticide-treated livestock: As stated in N. R. Chitnis (2005), studies are

underway in regions that have zoophilic mosquitoes to treat cattle and other

livestock close to homesteads with insecticides. There similarities in the effect

of Insecticide-treated livestock to IRS, treating livestock with insecticide has

been shown to be more cost effective in areas where the mosquitoes are mostly

zoophilic. Insecticide-treated livestock is also an effective strategy like IRS.

Intermittent prophylactic treatment (IPT): This is the administration of an-

timalarial drugs at regular intervals, including those who are not sick, to reduce

parasitemia load. It is similar to the treatment taken by travellers from malaria-

free regions when visiting malaria-endemic countries.This involves administer-

ing malarial medicine to pregnant women, regardless of whether or not they

have show symptoms of malaria and that is, Intermittent prophylactic treatment

in pregnancy (IPTp). There are Intermittent prophylactic treatment for infants

(IPTi).All the controls stated above together with house screening, repellents,

fumigants and long sleeved clothing are ways of reducing ”man-vector” con-

tact. However, to detect and respond are still serious operational challenges

in resource-constrained settings together with low health and information sys-

tem and uncertain funding streams. There is the meed to intensify the cam-

paign of existing intervention, which includes the early diagnose and treatment

of malaria cases with Artemisinin-based Combination Therapy (ACTs).
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Chapter Summary

Infectious diseases impose a huge economic burden to individuals, soci-

eties and political systems across the world. Mathematical modeling and anal-

ysis of infectious diseases have been central to infectious disease epidemiology

(Yusuf & Benyah, 2012). It is an important approach that helps to understand

the dynamics of infectious disease and to develop the best control strategies

(Ullah et al., 2013).

For malaria, a number of studies have been carried out to combat vector-

borne diseases, and in most cases, they focus on vector-control. In this study, we

formulate malaria models that incorporate treatment prevention strategies as the

controls. We also assume that a certain proportion of the prevention strategies

α increases the death rate of the mosquitoes, that is, cα where 0≤ c≤ 1.
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CHAPTER THREE

MATHEMATICAL BACKGROUND

Introduction

In this chapter some basic definitions and theorems in Mathematical mod-

elling are provided.

Definitions and Theorems

Stability analysis of nonlinear systems have significant differences that

complicate them. As opposed to linear systems, nonlinear systems

(a) may have many equilibrium points;

(b) rarely have closed-form solutions;

(c) stability is often only a local result (e.g., valid within some neighborhood of

the equilibrium point);

(d) phenomena like orbits, limit cycles and bifurcations can be exhibited by

nonlinear system.

We consider an autonomous system of differential equations of the form

dx
dt

= f(x), (3.1)

where x = (x1, . . . ,xn)
T , f(x) = ( f1(x1, . . . ,xn), . . . , fn(x1, . . . ,xn))

T ,

The following theorem gives sufficient conditions on the vector function f

for existence and uniqueness of solutions to initial value problems.

Theorem 3.1. Suppose f and
∂f
∂xi

for i = 1, . . . ,n are continuous functions of

(x1, . . . ,xn) on Rn. Then a unique solution exists to the initial value problem

dx
dt

= f(x), x(t0) = x0

for any initial value x0 ∈ Rn.
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The solution to (3.1), x(t) = (x1(t),x2(t), . . . ,xn(t)) describes parametri-

cally a curve lying in Rn, called a trajectory (orbit or path) of the system. The

region Rn where the solution is graphed, is called phase space when n = 3,

phase plane when n = 2, and phase line when n = 1.

Definition 3.1 (Equilibrium Points). A point x∗ ∈ Rn is an equilibrium point of

(3.1) if

f(x∗) = 0.

Example 3.1. Let n = 2 and x = (x1(t),x2(t))T . The following system

dx1

dt
= 30x1−5x2

1−3x1x2

dx2

dt
= 8x2− x2

2− x1x2

(3.2)

has equilibrium points x∗1 = (0, 0), x∗2 = (0, 8), x∗3 = (6, 0), and x∗4 = (3, 5).

Local stability

Intuitively, we say an equilibrium point x∗, is locally stable if all solutions

which start near x∗ (meaning that all initial points in a neighborhood of x∗)

remain close to x∗ for all time.

Definition 3.2 (Stability in the sense of Lyapunov). A critical point x∗, of the

first-order system in (3.1) is said to be locally stable provided that, if the initial

values x0 is sufficiently close to x∗, then x(t) remains close to x∗ for all t ≥ 0.

More precisely, the critical point x∗ is stable if, for each ε >,0 there exists

a δ > 0 such that

‖x0−x∗‖< δ ⇒ ‖x(t)−x∗‖ < ε.

The equilibrium point x = x∗ is called unstable if it is not stable.
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Definition 3.3 (Asymptotic Stability). The equilibrium point x∗ is said to be

locally asymptotically stable if x∗ is locally stable and furthermore, all solutions

starting near x∗ tend towards x∗ as t→ ∞.

That is, there exists δ > 0 such that

‖x0−x∗‖ < δ ⇒ lim
t→∞

x(t) = x∗ (3.3)

For many nonlinear systems, explicit solutions for x(t) are rarely avail-

able. Lyapunov (1892) recognized this difficulty and developed two methods

(indirect and direct methods) for assessing definitions (3.2) and (3.3).

Lyapunov’s Indirect Method

Lyapunov’s indirect method involves linearizing f at x∗, and using the

eigenvalues of the Jacobian matrix to determine the stability of the equilibrium

point x∗.

Theorem 3.2 (Lyapunov’s indirect method). Let x∗ be an equilibrium point of

the system of differential equations

dx
dt

= f(x), x(0) = x0

and let D⊂ Rn be a set containing x∗.

Let

A =
∂f
∂x

∣∣∣
x=x∗

such that the linearized system is

du
dt

= Au, u = x−x∗,

then

(a) x∗ is asymptotically stable if Reλi(A)< 0 for i = 1, · · · ,n,
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(b) x∗ is unstable if Reλi(A)> 0 for at least one i,

where Reλi(A) designates the real part of the i-th eigenvalue of A. Since A is

only defined at x∗, stability determined by the indirect method is restricted to

small neighborhoods of x∗.

The Routh-Hurwitz Conditions

Routh-Hurwitz conditions enables us to determine the stability of a equi-

libruim point without finding the eigenvalues of the Jacobian matrix, as stated

in Theorem 3.2. The Routh-Hurwitz conditions give necessary and sufficient

conditions for all roots of the characteristics polynomial to be negative or have

negative real parts thus, implying asymptotic stability.

Theorem 3.3. Given the polynomial,

P(λ) = λ
n +a1λ

n−1 + · · ·+an−1λ+an

where the coefficients ai, i = 1, . . . ,n, are real constants, define the n Hurwitz

matrices using the coefficients ai of the characteristics polynomial:

H1 = (a1), H2 =

 a1 1

a3 a2

 , H3 =


a1 1 0

a3 a2 a1

a5 a4 a3


and

Hn =



a1 1 0 0 · · · 0

a3 a2 a1 1 · · · 0

a5 a4 a3 a2 · · · 0
...

...
...

... · · · ...

0 0 0 · · · an


where a j = 0 if j > n. All of the roots of the polynomial P(λ) are negative or

have negative real part if and only if the determinants of all Hurwitz matrices
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are positive;

detH j > 0, j = i,2, . . . ,n.

For example, for n = 2, the characteristic equation is

λ
2 +a1λ+a2 = 0

and the corresponding Hurwitz matrix is

H=

 a1 1

0 a2

 ,detH2 = (a1a2−0)> 0.

The Routh- Hurwitz criteria implies that a1a2 > 0.

For example, for n = 3, the characteristic equation is

λ
3 +a1λ

2 +a2λ+a3 = 0

and the corresponding Hurwitz matrix is

H3 =


a1 1 0

a3 a2 a1

0 0 a3

 ,detH3 = a3(a1a2−a3)> 0.

The Routh- Hurwitz criteria implies that a3 > 0, a1a2 > a3.

For example, for n = 4, the characteristic equation is

λ
4 +a1λ

2 +a2λ
2 +a3λ

2 +a4 = 0

and the corresponding Hurwitz matrix is

H4 =



a1 1 0 0

a3 a2 a1 1

0 a4 a3 a2

0 0 0 a4


,detH4 = a4[a1(a3a2−a4a1)−a3a3]> 0.

The Routh- Hurwitz criteria implies that a3 > 0, a1a2 > a3.
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Gershgorin’s Theorem

When the zero equilibrium is an isolated equilibrium for the system
dX
dt

= AX , then all solutions converge to the origin if and only if the eigenvalues

of A are negative or have negative real part (lie in the left half of the complex

plane). From the Lyapunov’s indirect method, an equilibrium point is locally

asymptotically stable if the eigenvalues of the matrix (A) are negative or have

negative real part (lie in the left half of the complex plane). Since the character-

istic equation for an n− dimension system is a polynomial equation of degree n

for which it may be difficult or impossible to find all roots explicitly, the Routh-

Hurwitz criterion is widely used in analyzing the stability of the equilibrium

point. The Routh Hurwitz criteria gives necessary and sufficient conditions for

the eigenvalues to lie in the left half of the complex plane. The Routh-Hurwitz

condition also becomes intractable when the number of states exceed 3.

The Gershgorin’s Theorem provides sufficient conditions for the eigenval-

ues to lie in the left half of the complex (Allen, 2007). The Gerschgorin circle

theorem is a theorem which may be used to bound the size of the eigenvalues

of a square matrix. It was first published by Belorussian mathematician Se-

myon Aranovich Gerschgorin in 1931. Informally, the theorem says that if the

off-diagonal entries of a square matrix over the complex numbers have small

norms, then its eigenvalues are similar in norm to the diagonal entries of the

matrix. This theorem is a very useful tool in numerical analysis, particularly in

perturbation theory (Gómez, 2006).

Theorem 3.4. (Gershgorin’s Theorem). Let A be an n×n matrix. Let Di be the

disk in the complex plane with center at aii, and radius

ri =
n

∑
j=1, j 6=i

| ai j | .

Then all eigenvalues of the matrix A lie in the union of the disks Di, i= 1,2, ...,n,
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⋃n
i Di. In particular, if λ is an eigenvalue of A, then for some i = 1,2, ...,n,

aii <−ri.

Corollary 3.1. (Corollary of Gershgorin Circle Theorem)

Let A be an n×n matrix with real entries. If the diagonal elements of A satisfy

aii <−ri

where

ri =
n

∑
j=1, j 6=i

| ai j |

for i = 1, ...,n, then the eigenvalues of A are negative or have negative real parts

(Allen, 2007).

Lyapunov’s Direct Method

Lyapunov direct method is toused to determine global stability of an equi-

librium point of a non-linear dynamical system by studying how carefully se-

lected scalar functions of the state behave as the system state evolves. It involves

constructing a differentiable scalar Lyapunov function V (x) with an origin at

x∗ = O such that:

(a) V (x)> 0, V (O) = 0, V (x)> 0 for all x, and

(b)
∂V
∂x
· f(x,O)≤ 0 for all x,

Definition 3.4. (Positive definite functions)

(a) A continuously differentiable function V : Rn −→ R+ is said to be positive

definite in a region U of Rn that contains the origin if

(i) V (0) = 0, and

(ii) V (x)> 0,
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for x ∈U, and x 6= 0.

(b) V (x) is said to be positive semi-definite if V (x)≥ 0 for x ∈U.

(c) Conversely, V (x) is said to be negative definite if V (x)< 0, and

(d) V (x) is said to be negative semi-definite if V (x)≤ 0.

Definition 3.5. (Continuous differentiability) A function f (x; t) where f : U ×

[a;b]−→Rm for a domain U×Rn is said to be continuously differentiable over

on U× [a;b] if both f (x, t) and [d f
dt ](x, t) are continuous on U× [a;b]. Let

ẋ = f (x), x ∈ Rn, (3.4)

where x ∈ Rn represents the physical state of the system. If V (x) is a locally

positive definite function and V̇ (x) is its derivative with respect to time along

the trajectories of system (3.4), if V̇ (x) is locally negative semi-definite then

V (x) is called a Lyapunov function of system (3.4).

Unless otherwise stated, we shall restrict ourselves to V (x) that have con-

tinuous first partial derivatives. We shall denote the derivative of such a V (x)

with respect to time along a trajectory of system (3.4) by V̇ (x(t)). This deriva-

tive is given by:

V̇ (x) =
∂V
∂x
· f (x)

Theorem 3.5. Let x∗ = 0 be an equilibrium point for a system described by:

ẋ = f(x)

where f : U → Rn is a locally Lipschitz and U ⊂ Rn a domain that contains the

origin. Let V : U→R be a continuously differentiable, positive definite function

in U.

(a) If V̇ (x) =
∂V
∂x
· f ≤ 0, then x∗ = 0 is globally stable.
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(b) If V̇ (x) =
∂V
∂x
· f < 0, then x∗ = 0 is globally asymptotically stable.

In both cases above, V is called a Lyapunov function. Moreover, if the condi-

tions hold for all x ∈ Rn and ‖x‖ → ∞ implies that V (x)→ ∞, then x = 0 is

globally stable in case (a) and globally asymptotically stable in case (b).

Any function that satisfies the conditions of the Lyapunov stability theo-

rem is called a Lyapunov function. Although no general method for constructing

Lyapunov functions is known, the following functions or variants of them, are

commonly used as Lyapunov function candidates.

(1) Quadratic Lyapunov functions, V (x) = (x1−x∗1)
2+(x2−x∗2)

2+ · · · ,+(xn−

x∗n)
2, · · · , where the equilibrium points are given by x∗1,x

∗
2, . . . ,x

∗
n

(2) Logarithmic Lyapunov function, V (x) = (x1− x∗1− x∗1ln( x1
x∗1
))+ (x2− x∗2−

x∗2ln( x2
x∗2
))+ ...+(xn− x∗n− x∗nln( xn

x∗n
))+ · · ·

Basic Reproduction Number R0

The basic reproduction number R0 is an important concept in mathemat-

ical epidemiology as it serves as a threshold parameter that governs the spread

of infectious diseases in a population. R0 determines whether a pathogen can

become established in an area where it is introduced (Cianci et al., 2013).

Definition 3.6. The basic reproduction number R0 is defined as the secondary

expected infectives produced from just one infected individual in a susceptible

population.

For any infectious disease, one of the most important concerns is its ability

to invade a population. If R0 < 1, then each infected individual in its entire

period of infectivity, will produce less than one infected individual on average.

In Disease Free Equilibrium (DFE) case, the system is locally asymptotically
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stable, which shows that the disease will be wiped out of the population. If

R0 > 1, then each infected individual in its entire infective period having contact

with susceptible individuals will produce more than one infected individual,

which will then lead to the disease invading the susceptible population, meaning

the Endemic Equilibrium (EE) is stable and the DFE is unstable (Ullah et al.,

2013).

The Basic Reproduction Number R0 and Next Generation Matrix

There is hardly a paper on dynamic epidemiological models in the litera-

ture where R0 does not play a role (Diekmann, Heesterbeek, & Roberts, 2009).

This metric is useful because it helps determine whether or not an infectious

disease will spread through a population.

It has been shown that R0 is mathematically characterized by regarding

infection transmission as a ‘demographic process’, where producing offspring

is not seen as giving birth in the demographic sense, but as causing a new infec-

tion through transmission which is referred to as an ‘epidemiological birth’). In

a natural way this leads to viewing the infection process in terms of consecu-

tive ‘generations of infected individuals’, in complete analogy to demographic

generations. Subsequent generations growing in size then indicate a growing

population (i.e. an epidemic), and the growth factor per generation indicates

the potential for growth. Consider a population of individuals (or species) sub-

divided into n compartments, of which m are infected. Let xi represent the

proportion of the population in the ith compartment and let the vector of the

proportions in all the compartments be x. In order to compute R0, it is important

to distinguish new infections from all other changes in population. Let

• Fi(x) be the rate of appearance of new infections in compartment i,

• V+
i (x) be the rate of transfer of individuals into compartment i by all
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means,

• V−i (x) be the rate of transfer of individuals out of compartment i.

It is assumed that each function is continuously differentiable at least twice in

each variable. The disease transmission model consists of nonnegative initial

conditions together with the following system of equations:

xi = fi(x) = Fi(x)−Vi(x); i = 1....n,

where Vi =V−i −V+
i . Since each function represents a directed transfer of indi-

viduals, they are all nonnegative. We can now define the matrices,

F =

[
∂Fi

∂x j(x0)

]
(3.5)

and

V =

[
∂Vi

∂x j(x0)

]
(3.6)

where x0 denotes the disease-free equilibrium and the indices i, j = 1, ...,m. The

entries of the matrix

K = FV−1

give the rate at which infected individuals of state j generate new infections of

type i: The matrix K is called the next generation matrix (Diekmann & Heester-

beek, 2000). R0 is the spectral radius of the matrix K = FV−1: That is

R0 = ρ(FV−1)

Investigating Local Stability of Some Selected Epidemic Models

In the subsequent section, a corollary of Gershgorin’s circle theorem (3.1)

in the previous section will be used to establish the local stability of some se-

lected epidemic models including SEIR model, SEIRS model, HIV/AIDS and

tuberculosis transmission models.
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The SEIR Model

The SEIR model consists of four compartments, which are the susceptible,

S, exposed, E, infectious, I and removed, R.

Figure 1: Transition Diagram for SEIR Model

After an initial infection, the individual moves into a latent period for

some time, before becoming infectious. An infected host may die from the

disease or recover with immunity against re-infection. Let S be the proportion

of susceptible individuals, E, be the proportion of exposed individuals, (infected

but are not yet infectious), I, be the proportion of infectious individuals, and R,

is the proportion of recovered individuals, (with immunity). Furthermore, let the

contact rate be given by β, µ, is the birth rate (equal to the natural death rate), κ,

be the progression rate from E to I and γ, the recovery rate and δ is the additional

rate of disease-induced mortality. Then, using a mass action incidence, leads to

the following system of equations.

Ṡ = Λ−βIS−µS

Ė = βIS− (κ+µ)E

İ = κE− (µ+ γ+δ)I

Ṙ = γI−µR

(3.7)

with

N = S+ I +E +R,

Adding the four equations of equation(3.7) gives

Ṅ = Ṡ+ İ + Ė + Ṙ

= Λ−Nµ−δI
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In the absence of the disease induced death, that is, δ = 0, we have

Ṅh = Λ−µN

Ṅ +µN = Λ (3.8)

Solving equation (3.8) we obtain,

N(t)eµt =
Λeµt

µ
+C,

where C is the constant of integration. Thus,

N(t) =
(

Λeµt

µ
× 1

eµt

)
+Ce−µht

=
Λ

µ
+Ce−µ

Using the initial conditions, N(0) = N0:

N0 =
Λ

µ
+C

it follows that C = N0−
Λ

µ
.

so,

N(t)+
(

Λ

µt
−N0

)
e−µt =

Λ

µ
(3.9)

This means that,

Nh(t)≤
Λ

µ
, provided N(0)≤ Λ

µ
for t ≥ 0. (3.10)

For positivity of solutions, we apply the following theorem that follows

Theorem 3.6. Let the initial data be {S(0) > 0,(E(0), I(0),R(0)) ≥ 0} ∈ P).

Then the solution set {S,E, I,R} of the system (3.7) is positive for all t > 0.

Proof. From the first equation in the model (3.7), we have

dS
dt

= Λ−βSI−µS

≥ −βSI−µS
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Using separation of variables and integrating both sides gives

∫ dS
S
≥

∫
(−βI−µh)dt∫ dS

S
≥

∫
(−βIdt−

∫
µdt

lnS ≥ −
∫

(βI)dt +(−µ)t +C

⇒ S ≥ e−
∫
(βI)dt× e−(µh)t× eC

≥ (e−
∫
(βI)dt× e−(µ)t)× eC

≥ (e−
∫
(βI)dt× e−(µ)t)×M

≥ M(e(−
∫
(βI)dt−(µ)t))

using the initial conditions: t = 0, S(0)≥M

⇒ S≥ S(0)(e(−
∫
(βI)dt−(µ)t))≥ 0

Therefore,

S≥ S(0)(e(−
∫
(βI)dt−(µ)t))≥ 0

From the second equation we have

dE
dt

= βSI− (κ+µ)E

≥ −(κ+µ)E

dE
dt
≥ −(κ+µ)E

Using separation of variables and integrating both sides gives

∫ dE
E
≥

∫
−(κ+µ)dt

lnE ≥ −(κ+µ)t + c

⇒ E ≥ e−(κ+µ)t+c

≥ Qe−(κ+µ)t

≥ E(0)e−(κ+µ)t
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where Q = E(0)

E ≥ E(0)e−(κ+µ)t ≥ 0

similarly, it can be shown that the remaining equations of the system (3.7) are

positive for all t > 0, because η > 0 for all η ∈ R.

Here, it is important to note that in the absence of the disease, N(t)→ Λ

µ
.

Moreover, under the dynamics described by (3.7), the region

Φ =
{
(S(t),E(t), I(t),R(t)) ∈ R4

+,S(t)+E(t)+ I(t)+R(t)≤ 1
}

is positively invariant. Thus, the system is both mathematically and epidemio-

logically well-posed. Therefore, for an initial starting point x ∈ R4
+; the trajec-

tory lies in Φ. Hence, our analysis can be restricted to the region Φ.

Stability Analysis of SEIR Model

The system (3.7) has a disease free and an endemic equilibrium points

given respectively by

(i) P0 = {S0
∗,E

0
∗ , I

0
∗ ,R

0
∗}= {

Λ

µ
,0,0,0}

and

(ii) P∗0 = {S∗,E∗, I∗,R∗}

where

S∗ =
µ2 +(κ+δ+ γ)µ+(δ+ γ)κ

βκ
,

E∗ =−µ3 +(κ+δ+ γ)µ2 +(δ+ γ)κµ−βκΛ

βκµ+βκ2 ,

I∗ =−µ3 +(κ+δ+ γ)µ2 +(δ+ γ)κµ−βκΛ

βµ2 +(βκ+βδ+βγ)µ+(βδ+βγ)κ
,

R∗ =−γµ3 +(γκ+(γδ+ γ2))µ2 +(γδ+ γ2)κµ− γβκΛ

βµ3 +(βκ+βδ+βγ)µ2 +(βδ+βγ)κµ
.

31

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



Computation of R0 for SEIR Model

We compute the basic reproduction number of the SEIR model (3.7). The

model has two infected states, E, and I given as

Ė = βIS− (κ+µ)E

İ = κE− (µ+ γ+δ)I
(3.11)

and two uninfected states, S and R. At the infection-free steady state E0
∗ =

I0
∗ = R0

∗ = 0, and S0
∗ = (

Λ

µ
). We will refer to the system (3.11) as the infection

subsystem, as it only describes the production of new infections and changes in

the states of the already existing infecteds. We use the next-generation matrix

approach to compute the basic reproduction number R0. The vectors Fi and Vi

as defined in equation (3.5) and (3.6) are given respectively by

Fi =

 βSI

0


and

Vi =V−i −V+
i =

 (µ+κ)E

(µ+δ+ γ)I−κE


The matrices F and V are given respectively by

F =

 0 βS0

0 0


and

V =

 (µ+κ) 0

−κ (γ+µ+δ),


thus,

V−1 =


1

κ+µ
0

κ

(κ+µ)(γ+µ+δ)

1
γ+µ+δ


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The Next Generation Matrix given by

K = FV−1

=

 0 βS0

0 0




1
κ+µ

0

κ

(κ+µ)(γ+µ+δ)

1
γ+µ+δ


=

 βS0κ

(κ+µ)(γ+µ+δ)

βS0

γ+µ+δ

0 0



The eigenvalues of K are λ1 =
βS0κ

(κ+µ)(γ+µ+δ)
and λ2 = 0 The basic repro-

duction number R0 is the positive real eigenvalue of K which is at least as large

in modulus as all eigenvalues of K.

R0 =
βS0κ

(κ+µ)(γ+µ+δ)
.

But S0 =
Λ

µ
, which implies that

R0 =
βΛκ

µ(κ+µ)(γ+µ+δ)
.

The endemic equilibrium can be expressed in terms of the reproduction

number R0 as follows;

P∗ = (S∗,E∗, I∗,R∗) =
(

Λ

µR0
,
µ(µ+δ+ γ)

βκ
(R0−1),

µ
β
(R0−1),

γ

β
(R0−1)

)

Local Stability of the Equilibria

We analyse the local stability of the disease free and endemic equilibrium

points of the system (3.7).

Theorem 3.7. The disease free equilibrium is locally asymptotically stable if

R0 < 1.
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Proof. The Jacobian matrix J of the system (3.7) is

J =



−βI−µ 0 −βS 0

βI −(κ+µ) βS 0

0 κ −(γ+µ+δ) 0

0 0 γ −µ


(3.12)

Evaluating the matrix J at the disease free equilibrium gives

J0 =



−µ 0 −βΛ

µ
0

0 −(κ+µ)
βΛ

µ
0

0 κ −(γ+µ+δ) 0

0 0 γ −µ


(3.13)

The disease free equilibrium point will be asymptotically stable if the

eigenvalues of the Jacobian matrix are negative or have negative real parts. The

matrix J0 has a repeated eigenvalue −µ which are negative.

Next, we consider the sub-matrix

Js =

 −(κ+µ)
βΛ

µ

κ −(γ+µ+δ)

 .
According to the corollary of Gersgorn’s circle theorem, the matrix (Js) will

have negative eigenvalues if the following inequalities are satisfied

(i)

(κ+µ)>
βΛ

µ

(ii)

(γ+µ+δ)> κ

From (i) we have

1 >
βΛ

µ(κ+µ)
, (3.14)
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and from (ii) we have
(γ+µ+δ)

κ
> 1. (3.15)

It follows from inequalities (3.14) and (3.15) that

(γ+µ+δ)

κ
> 1 >

βΛ

µ(κ+µ)
.

This implies that
(γ+µ+δ)

κ
>

βΛ

µ(κ+µ)
.

Hence,

1 >
βΛκ

µ(κ+µ)(γ+µ+δ)
(3.16)

but
βΛκ

µ(κ+µ)(γ+µ+δ)
is the Basic Reproduction Number R0, so from (3.16),

we conclude that R0 < 1. Therefore, the disease free equilibrium is locally

asymptotically stable since R0 < 1.

Next, we use the following theorem to determine the local stability of the

endemic equilibrium point.

Theorem 3.8. The Endemic equilibrium is locally asymptotically stable if R0 >

1.

Proof. The Jacobian matrix J evaluated at the endemic equilibrium gives

J1 =



a−µ 0 −µ2 +µδ+µγ+µκ+δκ+ γκ

κ
0

−a −(κ+µ)
µ2 +µδ+µγ+µκ+δκ+ γκ

κ
0

0 κ −(γ+µ+δ) 0

0 0 γ −µ


(3.17)

where

a =
µ3 +µ2δ+µγ+µ2κ+µδκ+µγκ−Λβκ

µ2 +µδ+µγ+µκ+δκ+ γκ
.

One of the eigenvalues is−µ which is negative so we apply a corollay of the
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Gersgorin’s circle theorem to the sub-matrix Je to prove that the endemic equi-

librium is locally asymptotically stable if all the eigenvalues of J1 have negative

real part or if R0 > 1.

The sub-matrix is given by

Je =


a−µ 0 −µ2 +µδ+µγ+µκ+δκ+ γκ

κ

−a −(κ+µ)
µ2 +µδ+µγ+µκ+δκ+ γκ

κ

0 κ −(µ+δ+ γ)


According to the corollary of Gershgorin’s circle theorem, the matrix (Je) will

have negative eigenvalues if the following inequalities are satisfied

(i)

−µ3 +µ2δ+µγ+µ2κ+µδκ+µγκ−Λβκ

µ2 +µδ+µγ+µκ+δκ+ γκ
−µ <

−µ2 +µδ+µγ+µκ+δκ+ γκ

κ
,

(ii)

−(κ+µ)<

−
(µ3 +µ2δ+µγ+µ2κ+µδκ+µγκ−Λβκ

µ2 +µδ+µγ+µκ+δκ+ γκ

+
µ2 +µδ+µγ+µκ+δκ+ γκ

κ

)
,

(iii)

−(µ+δ+ γ)<−κ.

The inequalities (i) to(iii) are respectively

(i∗)

µ3 +µ2δ+µγ+µ2κ+µδκ+µγκ−Λβκ

µ2 +µδ+µγ+µκ+δκ+ γκ
+µ >

µ2 +µδ+µγ+µκ+δκ+ γκ

κ
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(ii∗)

(κ+µ) >
(µ3 +µ2δ+µγ+µ2κ+µδκ+µγκ−Λβκ

µ2 +µδ+µγ+µκ+δκ+ γκ

+
µ2 +µδ+µγ+µκ+δκ+ γκ

κ

)
(iii∗)

(µ+δ+ γ)> κ

From (i∗) we have

µ3 +µ2δ+µγ+µ2κ+µδκ+µγκ−Λβκ

µ2 +µδ+µγ+µκ+δκ+ γκ
+µ >

µ2 +µδ+µγ+µκ+δκ+ γκ

κ
.

This implies that

µ(µ+κ)(µ+ γ+δ)

(µ+κ)(µ+δ+δ)
− Λβκ

(µ+κ)(µ+δ+δ)
+µ >

(µ+κ)(µ+ γ+δ)

κ
.

Thus,

µ−R0µ+µ >
(µ+κ)(µ+ γ+δ)

κ
.

It follows that

−R0µ >
(µ+κ)(µ+ γ+δ)

κ

Hence,

R0 <
(µ+κ)(µ+ γ+δ)

µκ
.

Moreover, from (ii∗)

(κ+µ) > (
µ3 +µ2δ+µγ+µ2κ+µδκ+µγκ−Λβκ

µ2 +µδ+µγ+µκ+δκ+ γκ

+
µ2 +µδ+µγ+µκ+δκ+ γκ

κ
).

This implies that

(µ+κ)>
µ(µ+κ)(µ+ γ+δ)

(µ+κ)(µ+δ+δ)
− Λβκ

(µ+κ)(µ+δ+δ)
+

(µ+κ)(µ+δ+δ)

κ
.
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Dividing through by (µ+κ) gives

1 >
µ

µ+κ
− βκΛ

(µ+κ)(µ+κ)(µ+δ+ γ)
+

(µ+δ+κ)

κ
.

This is the same as

>
µ

µ+κ
− µβκΛ

µ(µ+κ)(µ+κ)(µ+δ+ γ)
+

(µ+δ+κ)

κ
.

>
µ

µ+κ
− µR0

(µ+κ)
+

(µ+δ+κ)

κ
.

>
µ(1−R0)

µ+κ
+

(µ+δ+κ)

κ
.

And from (iii∗)
(µ+δ+ γ)

κ
> 1. (3.18)

Combining inequalities give

(µ+δ+ γ)

κ
> 1 >

µ(1−R0)

µ+κ
+

(µ+δ+κ)

κ

This implies that

(µ+δ+ γ)

κ
>

µ(1−R0)

µ+κ
+

(µ+δ+κ)

κ

1 >
κµ(1−R0)

(µ+κ)(µ+ γ+δ)
+1

0 >
κµ(1−R0)

(µ+κ)(µ+ γ+δ)

0 > κµ(1−R0),

holds if

R0 > 1 (3.19)

We conclude from (3.19) that the Endemic equilibrium is locally asymptotically

stable if R0 > 1.
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Stability Analysis of SEIRS Model

The SEIRS model consists of four compartments, but the individual looses

immunity after some time and moves back into the S class ( that is, the individual

becomes susceptible again).

Figure 2: Transition Diagram for SEIRS Model

Let S be the proportion of susceptible individuals, E, be the proportion of

exposed individuals, (infected but are not yet infectious), I, be the proportion of

infectious individuals, and R, is the proportion of recovered individuals, (with

temporary immunity). Furthermore, let the contact rate be given by β, Λ is

the recruitment rate, µ is the birth rate (equal to the natural death rate), κ be

the progression rate from E to I, γ the recovery rate, δ is the additional rate of

disease-induced mortality, ρ is the rate of lost of immunity, α is the vaccination

rate and N is the total population.

The SEIRS model with standard incidence is given as

Ṡ = Λ− βIS
N
− (µ+α)S+ρR (3.20)

Ė =
βIS
N
− (κ+µ)E

İ = κE− (µ+ γ+δ)I

Ṙ = γI− (µ+ρ)R+αS
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The system (3.20) has two equilibrium points;

(i) a disease freee equilibrium point P0, given by P0 = (S0,E0, I0,R0)

= (
Λ(µ+ρ)

µ(α+µ+ρ)
,0,0,

Λα

µ(α+µ+ρ)
)

and

(ii) and endemic equilibrium point P∗ = (S∗,E∗, I∗,R∗), where

S∗ =
(δκ+δµ+ γκ+ γµ+κµ+µ2)

(βκ)
,

E∗ = (µ+ γ+ δ)(Λβκµ+Λβκρ−αδκµ−αδµ2−αγκµ−αγµ2−ακµ2−

αµ3−δκµ2−δκµρ−δµ3−δµ2ρ−γκµ2−γκµρ−γµ3−γµ2ρ−κµ3−κµ2ρ−

µ4−µ3ρ)/(β(δκµ+δκρ+δµ2+δµρ+γκµ+γµ2+γµρ+κµ2+κµρ+µ3+

µ2ρ)κ),

I∗= (Λβκµ+Λβκρ−αδκµ−αδµ2−αγκµ−αγµ2−ακµ2−αµ3−δκµ2−

δκµρ−δµ3−δµ2ρ−γκµ2−γκµρ−γµ3−γµ2ρ−κµ3−κµ2ρ−µ4−µ3ρ)/

(β(δκµ+δκρ+δµ2 +δµρ+ γκµ+ γµ2 + γµρ+κµ2 +κµρ+µ3 +µ2ρ)),

and

R∗ = (Λβγκ2 +αδ2κ2 + 2αδ2κµ+αδ2µ2 +αδγκ2 + 3αδγκµ+ 2αδγµ2 +

2αδκ2µ+4αδκµ2+2αδµ3+αγ2κµ+αγ2µ2+αγκ2µ+3αγκµ2+2αγµ3+

ακ2µ2 +2ακµ3 +αµ4−δγκ2µ−δγκµ2− γ2κ2µ− γ2κµ2− γκ2µ2− γκµ3)/

(βκ(δκµ+δκρ+δµ2 +δµρ+ γκµ+ γµ2 + γµρ+κµ2 +κµρ+µ3 +µ2ρ)).

E0 and E1 are the disease free and endemic equilibrium points respectively.

Computation of R0 for SEIRS Model

The SEIRS has two infected states

Ė = βIS− (κ+µ)E (3.21)

İ = κE− (µ+ γ+δ)I

and two uninfected states. At the infection-free steady state E0 = I0 = 0, hence

S0 =
(

Λ(µ+ρ)

(α+µ+ρ)

)
, and R0 =

Λα

µ(α+µ+ρ)
The vectors Fi and Vi are given
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respectively by

Fi =

 βSI

0


and

Vi =

 (µ+κ)E

(µ+δ+ γ)I−κE


The matrices F and V are given respectively by

F =

 0 βS

0 0


and

V =

 (µ+κ) 0

−κ (γ+µ+δ)


Thus,

V−1 =


1

κ+µ
0

κ

(κ+µ)(γ+µ+δ)

1
γ+µ+δ


The Next Generation Matrix evaluated at P0, is given by

K = FV−1

=

 0 βS0

0 0




1
κ+µ

0

κ

(κ+µ)(γ+µ+δ)

1
γ+µ+δ


=

 βS0κ

(κ+µ)(γ+µ+δ)

βS0

γ+µ+δ

0 0

 .

The eigenvalues of K are λ1 =
βS0κ

(κ+µ)(γ+µ+δ)
and λ2 = 0 The basic repro-

duction number R0 is the positive real eigenvalue of K which is at least as large

in modulus as all eigenvalues of K.

R0 =
βS0κ

(κ+µ)(γ+µ+δ)
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But S0 =
Λ(µ+ρ)

µ(α+µ+ρ)
, which implies

R0(α) =
Λ

µ
κ

(κ+µ)
(µ+ρ)

(α+µ+ρ)

β

(γ+µ+δ)
.

R0(α) is the basic reproduction number with effective prevention strategy. The

basic reproduction number without effective prevention strategy is

R0(0) =
Λ

µ
κ

(κ+µ)
β

(γ+µ+δ)
.

It is obvious that,

Λ

µ
κ

(κ+µ)
(µ+ρ)

(α+µ+ρ)

β

(γ+µ+δ)
≤ Λ

µ
κ

(κ+µ)
β

(γ+µ+δ)
,

that is,

R0(α)≤ R0(0)

We now express the endemic equilibrium point in terms of R0 as

S∗ =
Λ(µ+ρ)

R0(α)µ(α+µ+ρ)
,

E∗ =
(µ+ γ+δ)(R0−1)µ[(µ+κ)(α+µ+ρ)(γ+µ+δ)]

ακ(δ+µ)+µ((α+µ+ρ)(γ+µ+δ))
,

I∗ =
(R0−1)µ[(µ+κ)(α+µ+ρ)(γ+µ+δ)]

ακ(δ+µ)+µ((α+µ+ρ)(γ+µ+δ))
,

and

R∗ = [µR0κγ(α+µ+ρ)− (−δκρ−δµρ+ γκµ− γµρ−κµρ−µ2
ρ)]µ(µ+κ)

(α+µ+ρ)(γ+µ+δ)/µ(α+µ+ρ)[ακ(δ+µ)+µ((α+µ+ρ)

(γ+µ+δ))].

Local Stability Analysis for the Disease Free Equilibrium Point

The following theorem gives conditions for the disease free equilibrium

point to belocally asymptotically stable.
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Theorem 3.9. The disease free equilibrium point (P0) is locally asymptotically

stable if R0 < 1.

Proof. The Jacobian matrix J for the system (3.20) is

J =



−βI− (µ+α) 0 −βS ρ

βI −(κ+µ) βS 0

0 κ −(γ+µ+δ) 0

α 0 γ −(µ+ρ)


(3.22)

Evaluating the matrix J at the disease free equilibrium gives

J0 =



−(µ+α) 0 − βΛ(µ+ρ)

µ(α+µ+ρ)
ρ

0 −(κ+µ)
βΛ(µ+ρ)

µ(α+µ+ρ)
0

0 κ −(γ+µ+δ) 0

α 0 γ −(µ+ρ)


(3.23)

According to the corollary of Gershgorin’s circle theorem, the matrix (J0) will

have negative eigenvalues if the following inequalities are satisfied

(i)

(µ+α)>
βΛ(µ+ρ)

µ(α+µ+ρ)
+ρ,

(ii)

(κ+µ)>
βΛ(µ+ρ)

µ(α+µ+ρ)
,

(iii)

(γ+µ+δ)> κ,

(iv)

(µ+ρ)> (α+ γ).
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Combining (ii) and (iii) gives

1 >
βΛ(µ+ρ)

µ(α+µ+ρ)(µ+κ)
, (3.24)

and
(γ+µ+δ)

κ
> 1, (3.25)

From (4.21) and (3.25) we have,

(γ+µ+δ)

κ
> 1 >

βΛ(µ+ρ)

µ(α+µ+ρ)(µ+κ)

which implies that

(γ+µ+δ)

κ
>

βΛ(µ+ρ)

µ(α+µ+ρ)(µ+κ)
.

It follows that

1 >
βΛ(µ+ρ)κ

µ(α+µ+ρ)(µ+κ)(γ+µ+δ)
= R0.

Local Stability Analysis for the Endemic Equilibrium

Theorem 3.10. The Endemic equilibrium (P∗) is locally asymptotically stable

if R0 > 1.

Proof. The Jacobian matrix J evaluated at the endemic equilibrium gives

J1 =



b− (α+µ) 0 −(µ+κ)(µ+ γ+δ)

κ
ρ

−b −(κ+µ)
(µ+κ)(µ+ γ+δ)

κ
0

0 κ −(γ+µ+δ) 0

α 0 γ −(µ+ρ)


(3.26)

where b =
(α+µ+ρ)(µ(µ+κ))(µ+ γ+δ)(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))

According to the corollary of Gershgorin’s circle theorem, the matrix (J0) will

have negative eigenvalues if the following inequalities are satisfied
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(i) − (α+µ+ρ)(µ(µ+κ))(µ+ γ+δ)(R0−1)
µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))

− (α+µ)

<−
((µ+κ)(µ+ γ+δ)

κ
+ρ

)
(ii) −(κ+µ)<−

( (α+µ+ρ)(µ(µ+κ))(µ+ γ+δ)(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
+

(µ+κ)(µ+ γ+δ)

κ

)
(iii) −(µ+δ+ γ)<−κ

(iv) −(µ+ρ)<−(α+ γ)

The inequalities (i) to (iv) can be rewritten as

(i∗)
(α+µ+ρ)(µ(µ+κ))(µ+ γ+δ)(R0−1)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
+(α+µ)>

(µ+κ)(µ+ γ+δ)

κ
+ρ

(ii∗) (κ+µ)>
(α+µ+ρ)(µ(µ+κ))(µ+ γ+δ)(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
+

(µ+κ)(µ+ γ+δ)

κ

(iii∗) (µ+δ+ γ)> κ

(iv∗) (µ+ρ)> α+ γ

Dividing (ii∗) through by (κ+µ) gives

1 >
(α+µ+ρ)(µ)(µ+ γ+δ)(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
+

(µ+ γ+δ)

κ
(3.27)

and dividing (iii∗) through by κ gives

(µ+δ+ γ)

κ
> 1 (3.28)

From inequalities (3.27) and (3.28)
(µ+δ+ γ)

κ
> 1 >

(α+µ+ρ)(µ)(µ+ γ+δ)(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
+

(µ+ γ+δ)

κ
.

This implies that

1 >
(α+µ+ρ)(µ)κ(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
+1.
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It follows that

0 >
(α+µ+ρ)(µ)κ(1−R0)

µ(µ+κ)(µ+ γ+δ)+ρ(µ(µ+ γ+δ)+κ(µ+δ))
.

The above inequality holds if

0 > 1−R0.

that is, if

R0 > 1.

Remark 3.1. Thus, the disease free equilibrium point is locallyasymptotically

stable if R0 < 1, it is unstable if R0 > 1 leading to the endemic equilibrium point

being stable if R0 > 1.

Local Stability Analysis of an HIV/AIDS Model

We consider a sexually active population N(t), divided into six compart-

ments: S(t), I1(t), I2(t), I3(t), A(t), and T (t). S(t) represents the num-

ber of susceptible individuals; I1(t) represents the number of HIV-positive indi-

viduals in the asymptomatic stage of HIV infection; I2(t) represents the number

of HIV-positive individuals in the pre-AIDS stage but not receiving antiretro-

viral (ARV) treatment, I3(t), A(t) represents the number of individuals with

full-blown AIDS but not receiving ARV treatment; T (t) represents the number

of individuals who are receiving ARV treatment. The population dynamics is

given by the following equations:
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Ṡ = Λ−
(

β1I1

N
+

β2I2

N
+

β3I3

N

)
S− (µ+ρ)S

İ1 =
(

β1I1

N
+

β2I2

N
+

β3I3

N

)
S− (µ+α1)I1

İ2 = α1I1− (µ+α2 + γ2)I2

İ3 = α2I2− (µ+α3 + γ3)I3

Ȧ = α3I3− (µ+δ+ γA)A

Ṫ = γ2I2 + γ3I3 + γAA

(3.29)

where βi = cpi, i = 1,2,3, is the product of the average number of sexual

partners (c) and the probability (pi) of the infection per partner with an infected

individual in I1, I2 and I3 respectively. The total population, N(t) is given by

N = S(t)+ I1(t)+ I2(t)+ I3(t)+A(t)+T (t), (3.30)

and satisfies

Ṅ = Λ−µN−ρS−δA. (3.31)
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Table 1: Variable and Parameters Definition for HIV/AIDS

Parameters Description

β1 infection rate of primary infectious individual

β2 infection rate of asymptomatic infectious individual

β3 infection rate of symptomatic infectious individual

Λ Recruitment rate

µ Natural death rate

α1 Progression rate from the I1 to I2

α2 Progression rate from the I2 to I3

α3 Progression rate from the I3 to A

δ Disease-induced death rate

ρ Rate of removal of susceptible

α2 Treatment rate of asymptomatic infectious individual

α3 Treatment rate of symptomatic infectious individual

αA Treatment rate for advance AIDS individual

The dynamics described in (3.29) will be studied in the region Ω, defined

by Ω =
{
(S, I1, I2, I3,A,T ) ∈ R6

+|S+ I1 + I2 + I3 +A+T ≤ Λ

µ

}
Which is posi-

tively invariant.

Equilibrium Points of the Model

The model has two equilibrium points; disease free equilibrium point and

endemic equilibrium point given respectively as

(S0, I0
1 , I

0
2 , I

0
3 ,A

0,T 0 = 0) =
(

Λ

µ+ρ
,0,0,0,0,0

)
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and

S∗ =
Λ

λ+µ+ρ
(3.32)

I∗1 =
λ

µ+α1
S∗ (3.33)

I∗2 =
α1

(µ+α2 + γ2)
I∗1 (3.34)

I∗3 =
α1

(µ+α2 + γ2)

α2

(µ+α3 + γ3)
I∗1 (3.35)

A∗ =
α1

(µ+α2 + γ2)

α2

(µ+α3 + γ3)

α3

(µ+δ+ γA)
I∗1 (3.36)

T ∗ =
[

γ2

µ
α1

(µ+α2 + γ2)
+

γ3

µ
α1

(µ+α2 + γ2)

α2

(µ+α3 + γ3)

+
γA

µ
α1

(µ+α2 + γ2)

α2

(µ+α3 + γ3)

α3

(µ+δ+ γA)

]
(3.37)

where λ =
β1I1

N
+

β2I2

N
+

β3I3

N

Computation of R0 using Next Generation Matrix Approach

This model consists of five infection compartments namely; the primary

compartments I1, the asymptomatic compartment I2, the symptomatic compart-

ment I3, the advance AIDS compartment A and the treated compartment T.

Compartment A and T are assumed not to contribute to the infection transmis-

sion because the individuals in compartment A are consider to be generally very

weak and hence, could not partake in any sexual act, while those in compart-

ment T are assumed to adhere to the counselling instructions that are provided

to them. Although, we do not expect total compliance for abstinence, we assume

that the transmission rate of those individuals that fail to comply are negligible.
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The vectors Fi and Vi are given respectively by

Fi =



(β1I1

N
+

β2I2

N
+

β3I3

N

)
S

0

0

0

0

0


,

V−i −V+
i =V =



(µ+α1)I1

−α1I1 +(µ+α+ γ)I2

−α2I2 +(µ+α3 + γ3)I3

−α3I3 +(µ+δ+ γA)A

−α2I2−α3I3−αAA+µT


By evaluating the Jacobian matrix at the disease free equilibrium of F and V ,

we obtain

F =



β1I1

N
β2I2

N
β3I3

N
0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(3.38)

and

V =



β1I1

N
β2I2

N
β3I3

N
0 0

(µ+α1) 0 0 0 0

−α1 (µ+α2) 0 0 0

0 −α2 (µ+α3 + γ3) 0 0

0 0 −α3 (µ+δ+ γA) 0

0 γ2 γ3 γA µ


(3.39)
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The Next Generation Matrix is given by

K = FV−1

=



M11 M12 M13 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


(3.40)

where

M11 =
β1µ

(µ+ρ)(µ+α1)
+

α1β2µ
(µ+ρ)(µ+α1)(µ+α2 + γ2)

(3.41)

+
α1α2β3µ

(µ+ρ)(µ+α1)(µ+α2 + γ2)(µ+α3 + γ3)
,

M12 =
β2µ

(µ+ρ)(µ+α2 + γ2)
+

α2β2µ
(µ+ρ)(µ+α2 + γ2)(µ+α3 + γ3)

,

(3.42)

and

M13 =
β3µ

(µ+ρ)(µ+α3 + γ3)
(3.43)

R0(ρ,γ) is given as

=
β1µ

(µ+ρ)(µ+α1)
+

α1β2µ
(µ+ρ)(µ+α1)(µ+α2 + γ2)

+
α1α2β3µ

(µ+ρ)(µ+α1)(µ+α2 + γ2)(µ+α3 + γ3)

The basic reproduction number for the model is given by

R0 =
β1

(µ+α1)
+

α1β2

(µ+α1)(µ+α2 + γ2)
+

α1α2β3

(µ+α1)(µ+α2 + γ2)(µ+α3 + γ3)

where

(i)
β1

(µ+α1)
is the probability of an infective that progresses from I1 to I2.
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(ii)
β2

(µ+α2 + γ2)
is the probability of an infective that progresses from I3 to

I3.

(iii)
β3

(µ+α3 + γ3)
is the probability of an infective that progresses from I3 to

A.

From (3.33) we have

I∗1
S∗

=
λ

(µ+α1)

I∗1
S∗

=
1

(µ+α1)

β1I1 +β2I2 +β3I3

N
N∗

S∗
=

1
(µ+α1)

(
β1 +

β2I2

I∗1
+

β3I3

I∗1

)
N∗

S∗
=

1
(µ+α1)

(
β1 +

α1β2

(µ+α2 + γ2)
+

α1α2β3

(µ+α2 + γ2)(µ+α3 + γ3)

)
= R0.

Thus,

R0 =
N∗

S∗

=
S∗+ I∗1 + I∗2 + I∗3 +A∗+T ∗

S∗

= 1+λ
1

(µ+α1)
+λ

α1

(µ+α1)(µ+α2 + γ2)
+

λ
α1α2

(µ+α1)(µ+α2 + γ2)(µ+α3 + γ3)
+

λ
α1α2α3

(µ+α1)(µ+α2 + γ2)(µ+α3 + γ3)(µ+δ+ γA)
+

λ
α1

(µ+α1)(µ+α2 + γ2)

[
γA

µ
+

α2γ3

µ(µ+α3 + γ3)
+

α2α3γA

µ(µ+α3 + γ3)(µ+δ+ γA)

]
.

This implies that

R0−1 = λπ

λ =
(R0−1)

π
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where π is the mean infective period given by

π =
1

(µ+α1)
+

α1

(µ+α1)(µ+α2 + γ2)
+

α1α2

(µ+α1)(µ+α2 + γ2)(µ+α3 + γ3)

+
α1α2α3

(µ+α1)(µ+α2 + γ2)(µ+α3 + γ3)(µ+δ+ γA)
+

+
α1

(µ+α1)(µ+α2 + γ2)

[
γA

µ
+

α2γ3

µ(µ+α3 + γ3)
+

α2α3γA

µ(µ+α3 + γ3)(µ+δ+ γA)

]
.

By substituting λ into the endemic equilibrium point expressed in (3.33)-(3.37),

we will obtain the endemic equilibrium in terms of R0 to be

S∗ =
[

Λπ

(R0−1)+µ+ρ

]
,

I∗1 =
[ (R0−1)

π(µ+α1)

]
S∗,

I∗2 =
[

α1

π(µ+α1)(µ+α2 + γ2)

]
(R0−1)S∗,

I∗3 =
[

α1α2

π(µ+α1)(µ+α2 + γ2)(µ+α3 + γ3)

]
(R0−1)S∗,

A∗ =
[

α1α2α3

π(µ+α1)(µ+α2 + γ2)(µ+α3 + γ3)(µ+δ+ γA)

]
(R0−1)S∗,

and

T ∗ =
α1

π(µ+α1)(µ+α2 + γ2)[
γ2

µ
+

α2γ3

µ(µ+α3 + γ3)
+

α2α3γA

µ(µ+α3 + γ3)(µ+δ+ γA)

]
(R0−1)S∗.

The Jacobian matrix of the system (3.29) is given by

J =



n∗ −β1

N
S −β2

N
S −β3

N
S 0 0

m∗ q∗
β2

N
S

β3

N
S 0 0

0 α1 p∗ 0 0 0

0 0 α2 −(α3 + γ3 +µ) 0 0

0 0 0 α3 −(µ+δ+ γA) 0

0 0 γ2 γ3 γA −µ


(3.44)
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where n∗ =−β1I1

N
− β2I2

N
− β3I3

N
− (µ+ρ), m∗ =

β1I1

N
+

β2I2

N
+

β3I3

N
,

q∗ =
β1

N
S− (α1 +µ) and p∗ =−(α2 + γ2 +µ)

Local Stability Analysis at the Disease Free Equilibrium Pint

In this section, we investigate the local stability of the disease free equi-

librium.

Theorem 3.11. The disease free equilibrium point is locally asymptotically sta-

ble if R0 < 1.

Proof. The Jacobian matrix J evaluated at the disease free equilibrium point is

given as

J0 =



−(µ+ρ) − β1µ
(µ+ρ)

− β2µ
(µ+ρ)

− β3µ
(µ+ρ)

0 0

0 p∗
β2µ

(µ+ρ)

β3µ
(µ+ρ)

0 0

0 α1 t∗∗ 0 0 0

0 0 α2 −(α3 + γ3 +µ) 0 0

0 0 0 α3 q∗∗ 0

0 0 γ2 γ3 γA −µ


(3.45)

where p∗∗ =
β1µ

(µ+ρ)
− (α1 +µ), q∗∗ =−(µ+δ+ γA), t∗∗ =−(α2 + γ2 +µ)

The matrix J0 has three negative eigenvalue, λ1 = µ, λ2 = (µ+ ρ), λ3 =

(µ+δ+ γA). The sub-matrix is given as

Js
0 =


β1µ

(µ+ρ)
− (α1 +µ)

β2µ
(µ+ρ)

β3µ
(µ+ρ)

α1 −(α2 + γ2 +µ) 0

0 α2 −(α3 + γ3 +µ)

 (3.46)

We now determine the eigenvalue of the sub-matrix Js
0. According to the corol-

lary of Gershgorin’s circle theorem, the matrix (Js
0) will have negative eigenval-
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ues if the following inequalities are satisfied:

row1 : 1 >
β1µ

(µ+ρ)(α1 +µ)
+

β2µ
(µ+ρ)(α1 +µ)

+
β3µ

(µ+ρ)(α1 +µ)

row2 : 1 >
α1

(α2 + γ2 +µ)

row3 : 1 >
α2

(α3 + γ3 +µ)

where Ri, i = 1,2,3 stands for the rows in the matrix.

By multiplying the second term of the right hand side of row 1 by the term

obtained in the right hand side of row 2 and also by multiplying the third term

of right hand side of row 1 by the terms obtained in right hand side of row 1 and

row 3 gives

1 >
β1µ

(µ+ρ)(µ+α1)
+

α1β2µ
(µ+ρ)(µ+α1)(µ+α2 + γ2)

+
α1α2β3µ

(µ+ρ)(µ+α1)(µ+α2 + γ2)(µ+α3 + γ3)
,

which implies R0(ρ) < 1. Hence the disease free equilibrium point is locally

asymptotically stable.

Local Stability Analysis at the Endemic Equilibrium Pint

We now investigate the local stability of the endemic equilibrium point.

Theorem 3.12. The Endemic equilibrium (E1) is locally asymptotically stable

if R0(α)> 1.
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Proof. The Jacobian matrix evaluated at the endemic equilibrium gives

JE =



λ∗− (µ+ρ) −β1

R0
−β2

R0
−β3

R0
0 0

λ∗ b∗
β2

R0

β3

R0
0 0

0 α1 u∗ 0 0 0

0 0 α2 c∗ 0 0

0 0 0 α3 v∗ 0

0 0 γ2 γ3 γA −µ


where λ∗ =

β1I1

N
+

β2I2

N
+

β3I3

N
, b∗ =

β1

R0
− (α1 +µ),

c∗ =−(α3 + γ3 +µ), v∗ =−(µ+δ+ γA), u∗ =−(α2 + γ2 +µ) and R0 =
N∗

S∗
.

Two of the eigenvalues of JE are −µ and =−(δ+ γA +µ) which are negative.

The remaining matrix is given by

Js
E =



−λ∗− (µ+ρ) −β1

R0
−β2

R0
−β3

R0

λ∗
β1

R0
− (α1 +µ)

β2

R0

β3

R0

0 α1 −(α2 + γ2 +µ) 0

0 0 α2 −(α3 + γ3 +µ)


According to the corollary of Gershgorin’s circle theorem, the matrix (Js

E) will

have negative eigenvalues if the following inequalities are satisfied

row1 : λ
∗+(µ+ρ)>

β1 +β2 +β3

R0
,

row2 : −λ
∗+(α1 +µ)>

β1 +β2 +β3

R0
,

row3 : 1 >
α1

(α2 + γ2 +µ)
,

row4 : 1 >
α2

(α3 + γ3 +µ)
.

Adding inequalities A1 and A2 gives

(µ+ρ)+(α1 +µ)>
2(β1 +β2 +β3)

R0
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Dividing through by (µ+ρ)(α1 +µ) gives

1
(α1 +µ)

+
1

(µ+ρ)
>

2
R0

[
β1

(µ+ρ)(α1 +µ)
+

β2

(µ+ρ)(α1 +µ)
+

β3

(µ+ρ)(α1 +µ)

]
Multiplying the above inequality by µ gives

µ
(α1 +µ)

+
µ

(µ+ρ)
>

2
R0

[
β1µ

(µ+ρ)(α1 +µ)
+

β2µ
(µ+ρ)(α1 +µ)

+
β3µ

(µ+ρ)(α1 +µ)

]
.

Dividing through by 2 gives

1 >
1
2

( µ
(α1 +µ)

+
µ

(µ+ρ)

)
>

1
R0

[
β1µ

(µ+ρ)(α1 +µ)
+

β2µ
(µ+ρ)(α1 +µ)

+
β3µ

(µ+ρ)(α1 +µ)

]
Thus,

1 >
1

R0

[
β1µ

(µ+ρ)(α1 +µ)
+

β2µ
(µ+ρ)(α1 +µ)

+
β3µ

(µ+ρ)(α1 +µ)

]
. (3.47)

From the inequalities A3 and A4, it is obvious that

R0 >
[

β1µ
(µ+ρ)(α1 +µ)

+
β2µ

(µ+ρ)(α1 +µ)
∗A3 +

β3µ
(µ+ρ)(α1 +µ)

∗ (A3 ∗A4)
]
.

Hence, (3.47) holds provided R0 > 1.
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Local Stability Analysis of a Tuberculosis Model

The population of interest is partitioned into three epidemiological classes:

susceptible S, latent or exposed E, and infectious I. The incidence rate given by

βSI (using the mass action law). A portion pβSI gives rise to immediate active

cases (fast progression), while the rest (1− p)βSI gives rise to latent-TB cases

with a low risk of progressing to active TB (slow progression) (Castillo-Chavez

& Song, 2004). The progression rate from latent TB to active TB is assumed to

be proportional to the number of latent-TB cases, that is, it is given by κE. The

total incidence rate is pβSI +κE. The model is given by the following system:

Ṡ = Λ−βSI−µS

Ė = (1− p)βSI−κE−µE

İ = pβSI +κE−µI−δI

(3.48)

Table 2: The State Variables for the Tuberculosis Model

Parameters Description

S Susceptible individuals

E Latently infected individuals or exposed individuals

I Infectious individuals
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Table 3: Model Parameters and Their Interpretations for the Tuberculosis Model

Parameters Discription

Λ Recruitment rate of susceptible individuals

µ Natural death rate

β Transmission rate of active TB

κ The progression rate from latent TB to active TB

(Rate of slow progression)

δ Death rate due to TB infection

p Rate of fast progression

Figure 3: Transition Diagram for Tuberculosis

The Equilibrium Points

The equilibruim points of model (3.48) are
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1. Disease free equilibrium point (P0) given as(
S0,E0, I0

)
=
(

Λ

µ
,0,0

)
2. Endemic equilibrium point(P∗) given as(

S∗,E∗, I∗
)
=
((δκ+δµ+κµ+µ2)

(β(µp+κ))
,

− (p−1)(Λβµp+Λβκ−δκµ−δµ2−κµ2−µ3)

((µp+κ)(µ+κ)β)
,

(Λβµp+Λβκ−δκµ−δµ2−κµ2−µ3)

(β(δκ+δµ+κµ+µ2))

)
Computation of R0 of a Tuberculosis Model

The system (3.48) has two disease states, E, and I given by

Ė = (1− p)βSI−κE−µE (3.49)

İ = pβSI +κE−µI−δI

and one uninfected state, S. At the infection-free steady state E0 = I0 = 0, and

S0 =
(

Λ

µ

)
.

We use the next-generation approach to compute the basic reproduction

number R0. The vectors Fi and Vi are given respectively by

Fi =

 (1− p)βS

pβS

 ,
and

Vi = V−i −V+
i =

 (µ+κ)E

(µ+δ)I−κE


The matrices F and V are given respectively by

F =

 0 (1− p)βS

0 pβS

 ,
and

V =

 (µ+κ) 0

−κ (µ+δ)

 .
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Thus

V−1 =


1

κ+µ
0

κ

(κ+µ)(µ+δ)

1
µ+δ


The Next Generation Matrix is given by

K = FV−1

=

 0 (1− p)βS0

0 pβS0




1
κ+µ

0

κ

(κ+µ)(µ+δ)

1
µ+δ



=


(1− p)βS0κ

(κ+µ)(µ+δ)

(1− p)βS0

µ+δ

pβS0κ

(κ+µ)(µ+δ)

pβS0

µ+δ



The Basic reproduction number R0 is the positive real eigenvalue of K which is

at least as large in modulus as all eigenvalues of K.

R0 =
βS0(κ+µp)
(κ+µ)(µ+δ)

But

S0 =
Λ

µ

this implies

R0 =
βΛ(κ+µp)

µ(κ+µ)(γ+µ+δ)

The endemic equilibrium point (P∗) can now be expressed in terms of R0 as

(P∗) = (S∗,E∗, I∗) =
(

Λ

µR0
,−(p−1)(R0−1)µ(µ+δ)

(µp+κ)β
,
(R0−1)µ

β

)

Local Stability Analysis of the Disease Free Equilibrium

We analyze the local stability of the disease free Equilibrium by applying

the theorem which follows.
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Theorem 3.13. The disease free equilibrium is locally asymptotically stable if

R0 < 1.

Proof. The Jacobian matrix J of the system (3.48) is

J =


−βI−µ 0 −βS

(1− p)βI −(κ+µ) (1− p)βS

pβI κ pβS−δ−µ

 (3.50)

Evaluating the matrix (3.50) at the disease free equilibrium gives

J0 =


−µ 0 −βΛ

µ

0 −(κ+µ)
(1− p)βΛ

µ

0 κ
pβΛ

µ
− (µ+δ)

 (3.51)

The disease free equilibrium point will be locally asymptotically stable if

the eigenvalues of the Jacobian matrix are negative or have negative real parts.

The matrix J0 has one eigenvalue −µ which is negative. The remaining sub-

matrix is given by

Jr =

 −(κ+µ)
(1− p)βΛ

µ

κ
pβΛ

µ
− (µ+δ)


According to the corollary of Gershgorin’s circle theorem, the matrix (Jr) will

have negative eigenvalues if the following inequalities are satisfied:

(κ+µ)>
(1− p)βΛ

µ
(3.52a)

− pβΛ

µ
+(µ+δ)> κ (3.52b)

Dividing (3.52a) through by (κ+δ) yields

1 >
(1− p)βΛ

µ(κ+µ)
(3.53)

Also dividing (3.52b) through by κ yields

− pβΛ

µκ
+

(µ+δ)

κ
> 1
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−pβΛ+µ(µ+δ)

µκ
> 1 (3.54)

From (3.53) and (3.54) we have,

−pβΛ+µ(µ+δ)

µκ
> 1 >

(1− p)βΛ

µ(κ+µ)

⇒−pβΛ+µ(µ+δ) >
µκβΛ− pµκβΛ

µ(κ+µ)

⇒
(
− pβΛ+µ(µ+δ)

)
µ(κ+µ) > µκβΛ− pµκβΛ

⇒−pκµβΛ− pβΛµ2 +µ(µ+δ)µ(κ+µ) > µκβΛ− pµκβΛ

⇒ µ(µ+δ)µ(κ+µ) > µκβΛ+ pβΛµ2

⇒ 1 >
µ(κ+µp)βΛ

µ(δ+µ)µ(κ+µ)

⇒ 1 >
(κ+µp)βΛ

µ(δ+µ)(κ+µ)

⇒ 1 > R0

R0 < 1

Epidemiologically, if R0 < 1, the epidemic is expected to be eliminated and

should persist if R0 > 1. Therefore, we conclude that from the above proof the

disease free equilibrium (E0) is locally asymptotically stable.

Local Stability Analysis of the Endemic Equilibrium Point

We now investigate the local stability of the endemic equilibrium Point.

Theorem 3.14. The endemic equilibrium is locally asymptotically stable if

R0 > 1.

Proof. Evaluating the matrix (3.50) at the endemic equilibrium gives

Js
e =


−(R0−1)µ−µ 0 − βΛ

R0µ

−(1− p)(1−R0)µ −(κ+µ)
(1− p)βΛ

R0µ

−p(1−R0)µ κ
pβΛ

R0µ
− (µ+δ)

 (3.55)
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According to equation the corollary of Gershgorin’s circle theorem, the matrix

(Js
e) will have negative eigenvalues if the following inequalities are satisfied:

(R0−1)µ+µ >
βΛ

R0µ
(3.56a)

(κ+µ)> (1− p)(1−R0)µ+
(1− p)βΛ

R0µ
(3.56b)

− pβΛ

R0µ
+(µ+δ)− p(1−R0)µ > κ (3.56c)

Dividing (3.56b) through by (κ+µ) gives

1 >
(1− p)(1−R0)µ

(κ+µ)
+

(1− p)βΛ

R0µ(κ+µ)
.

Thus,

1 >
(1− p)R0µ(1−R0)µ+(1− p)βΛ

R0µ(κ+µ)
(3.57)

Dividing (3.56c) through by κ gives

− pβΛ

R0µκ
+

(µ+δ)

κ
− p(1−R0)µ

κ
> 1.

Thus,
−pβΛ+(µ+δ)R0µ− pR0µ(1−R0)µ

R0µκ
> 1 (3.58)

From (3.57) and (3.58)

−pβΛ+(µ+δ)R0µ− pR0µ(1−R0)µ
R0µκ

> 1>
(1− p)R0µ(1−R0)µ+(1− p)βΛ

R0µ(κ+µ)
(3.59)

Expanding and simplifying (3.59) gives

−pβΛR0µκ− pβΛR0µ2− pR 2
0 µ3(1−R0)κ− pR 2

0 µ4(1−R0)+

(µ+δ)(κ+µ)R 2
0 µ2 > βΛR0µκ− pβΛR0µκ+
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R 2
0 µ3(1−R0)κ− pR 2

0 µ3(1−R0)κ

−pβΛµ− pR0µ3(1−R0)+(µ+δ)(κ+µ)R0µ > βΛκ+R0µ2(1−R0)κ

⇒−pβΛµ−βΛκ+(µ+δ)(κ+µ)R0µ > R0µ2(1−R0)κ+

pR0µ3(1−R0)

−βΛ(µp+κ)+R0µ(µ+δ)(κ+µ) > R0µ2(1−R0)(µp+κ)

− βΛ(µp+κ)

R0µ(µ+δ)(κ+µ)
+

(R0µ(µ+δ)(κ+µ))
(R0µ(µ+δ)(κ+µ))

>
R0µ2(1−R0)(µp+κ)

R0µ(µ+δ)(κ+µ)

−1+1 >
µ(1−R0)(µp+κ)

(µ+δ)(κ+µ)

0 > µ(1−R0)(µp+κ)

R0 > 1

This shows that the Endemic Equilibrium point is locally asymptotically stable

if R0 > 1.

Chapter Summary

In the earlier part of the chapter, we looked at some definitions, theorem

and methods that will be needed for the study. We investigated the local stability

of both the disease free and endemic equilibria of SEIR, SEIRS, an HIV/AIDS

and a Tuberculosis models in the latter part of chapter. It was observed that no

matter the state or the dimension of the system or matrix this corollary can be

used to analyse the local stability for both disease free and endemic equilibrium,

by establishing that if R0 < 1, this means that the Jacobian matrix will have

negative or negative real part eigenvalues. Thus, disease free equilibrium is

stable but if R0 > 1, the endemic equilibrium is stable.
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CHAPTER FOUR

MODEL FORMULATION

Introduction

In this chapter, we formulate a deterministic mathematical model for the

transmission and control of malaria. The motivation for our models comes from

the fact that, in a closed environment, an optimal combination of prevention

and treatment can reduce both the number of infected humans and infected

mosquitoes, and eventually eliminate the disease from the community. The

main innovation in our model is that, in addition to the natural death rate of

the vector (mosquito), a proportion of the prevention effort also contributes to a

reduction of the mosquito population.

There are many infectious diseases for which there is a cure, yet they re-

main endemic in many communities around the world. Malaria is one of such

infectious disease. In spite of the fact that there is not yet a vaccine for malaria,

there a number of preventive measures which, when properly administered, can

play the role of ”vaccination”, by reducing considerably, the size of the sus-

ceptible class. The key to eradicating any infectious disease lies in effective

treatment for the infected population, plus a rapid reduction in the susceptible

class below a certain threshold.

Malaria Transmission

Malaria is an infectious disease mainly found in tropical areas such as

Sub-Saharan Africa, Central and South America, the Indian subcontinent, South

East Asia and the Pacific islands which are called malaria regions. Malaria is

caused by parasites called the genus Plasmodium - a protozoan parasite trans-

mitted by an infectious female Anopheles mosquito that are transmitted to peo-

ple through the bites of infected mosquitoes. There are five parasite species
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that cause malaria in human; P. falciparum, P. vivax, P. malarie, P. ovale and P.

knowlesi (WHO, 2019). It is possible to get infected with more than one type of

Plasmodium parasite. Each parasite causes a slightly different type of illness.

Malaria parasites spread by infecting successively two types of hosts: humans

and the female Anopheles mosquito.

In human, the parasites grow and multiply first in the liver cells where

they under go multiple asexual fission [schizogony] and then in the red cells of

the blood where successive broods parasites grow and destroy them, releasing

daughter parasites (”merozoties”) that continue the cycle by invading other red

cells. After being released from the liver cells, apart from the P. falciparum, the

merozoites either infect other liver cells, thus continuing the pre-erythrocytic

state, or attach to erythrocytes and penetrate these cells (Agyepong, 2008). In-

side the erythrocyte, the plasmodium begins to enlarge as uninucleate cell called

trophozoite. The trophozoite’s nucleus then divides asexually to produce a sch-

izont that has 6-24 nuclei. The schizont divides and produces mononucleated

merozoites (Aikawa & Seed, 1998). This erythrocytic stage is cyclic and repeats

itself approximately every 48 to 72 hours or longer, depending on the species

of plasmodium involved. Occasionally merozoites differentiate into macro and

micro gametocytes, which do not rapture the erythrocyte. The symptoms of

malaria are cause by the blood stage parasites (gametocytes, which occur in

male and female forms).

In mosquito, when certain forms of blood parasites are ingested during

blood feeding by a female Anopheles mosquito. In the mosquito’s gut, the in-

fected erythrocytes lyse and gametes fuse to form a diploid zygote known as

ookinete (Aikawa & Seed, 1998). The ookinete migrates to the mosquito’s gut

wall, penetrates and forms an oocyst on its outer surface. In the process called

sporogony, the oocyst undergoes meiosis and forms a form of the parasite called

a sporozoite that migrate to the mosquito’s salivary glands after about 10-18
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days (CDC, 2019). When the Anopheles mosquito bites another human for

blood meal, it inject anticoagulant saliva together with sporozoite which mi-

grate to the liver, thereby beginning the new cycle. Thus the infected mosquito

carries the disease from one human to another (acting as a ’vector’), while in-

fected humans transmit the parasite to the mosquito, in contrast to the human

host, the mosquito vector does not suffer from the presence of the parasites.

The common first symptoms of malaria are a headache, aching muscles,

tummy ache and weakness or lack of energy. A day or so later, the body tem-

perature may rise (up to 40 degrees Celsius) and the patient may have: a fever,

shivers, mild chills, severe headache, vomiting, diarrhoea, and loss of appetite

(Adiku, 2013). However, it takes at least six days for symptoms to appear. The

time it takes symptoms to appear can vary with the type of parasite that the

mosquito was carrying.

A Malaria Transmission Model Without Exposed Compartment

We formulate a malaria transmission model as an SIRS for the host pop-

ulation and SI for the vector population. The total human population Nh(t) is

divided into the susceptible Sh(t), the infectious Ih(t) and the recovered Rh(t).

The total vector population Nv(t) is split into susceptible Sv(t) and infectious

Iv(t). It is assumed that, a susceptible host becomes infectious after a bite by an

infected mosquito and the susceptible mosquito becomes infectious after it bites

an infected host. The key to controlling the spread of any infectious disease lies

in effective treatment (if one is available) and effective prevention (if a vaccine

is available). In the case of malaria, there are a variety of treatment available.

Even though there is no vaccine for malaria, implementation of effective treat-

ment strategies can be used to effectively control the transmission. We denote

the prevention rate by α, then cα is the proportion of the prevention effort, that

contribute to the reduction of the vector populations. The human population
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decreases through a density-dependent per capita emigration and natural death

rate, and through a per capita disease-induced death rate.

Figure 4 shows the transition diagram for a malaria transmission model without

exposed compartment.

Figure 4: A Flow Chart of a 5-Staged States Malaria Model

Table 4: The State Variables for a 5-Staged State Malaria Transmission Model

Populations Description

Sh Number of susceptible human

Ih Number of infectious human

Rh Number of Recovered human

Sv Number of Susceptible vector

Iv Number of infectious vector

Nh Total human population

Nv Total vector population
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Table 5: Model Parameters and Their Interpretations

Parameters Description

Λh Humans recruitment birth rate

µh Humans death rate

γ recovery rate of human

α Prevention rate

βh Transmission rate of host

(product of biting rate and probability of transmission of disease)

δ Disease-induced death rate for humans

ρ Rate of loss of immunity for humans

λv Vector birth rate = vector death rate

cα proportion of prevention effort that

contributes to vector death rate 0≤ c≤ 1

βv Transmission rate of vector

(product of biting rate and probability of transmission of disease)

Assumptions

The following assumptions are made in order to formulate the equations of the

model:

• The development of malaria starts when the infectious female mosquito

bites the human host.

• The infective human population recovers with temporary immunity with

clinical treatment.

• Mosquitoes do not die from the infection.

• There is no super infection of the disease.

• All new borns are susceptible.
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• Certain proportion of the prevention strategies contribute to the death rate

of the mosquitoes.

Applying the assumptions, definitions of state variables and parameters above,

the system of non-linear differential equations which describe the dynamics of

a malaria model without exposed compartment are formulated as:

dS̄h

dt
= Λh−βhS̄h

Īv

Nv
+ρR̄h−µhS̄h−αS̄h

dĪh

dt
= βhS̄h

Īv

Nv
− γĪh−µhĪh−δĪh

dR̄h

dt
= γĪh−µhρR̄h +αS̄h

dS̄v

dt
= Av−βvS̄v

Īh

Nh
− (λv + cα)S̄v

dĪv

dt
= βvS̄v

Īh

Nh
− (λv + cα)Īv

(4.1)

with total human and vector populations given respectively by

N̄h = S̄h + Īh + R̄h,

and

N̄v = S̄v + Īv.

Adding the first three equations of equation(4.1) gives

dN̄h

dt
=

dS̄h

dt
+

dĪh

dt
+

dR̄h

dt

= Λh−Nhµ−δIh

In the absence of the disease induced death, that is, δ = 0, we have

¯dNh

dt
= Λh−µhN̄h

¯dNh

dt
+µhN̄h = Λh (4.2)

Solving equation (4.2) we obtain,

N̄h(t)eµht =
Λheµht

µh
+C,
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where C is the constant of integration. Thus,

N̄h(t) =
(

Λheµht

µh
× 1

eµht

)
+Ce−µht

=
Λh

µh
+Ce−µh

Using the initial conditions, N̄h(0) = N̄h0:

N̄h0 =
Λh

µh
+C

it follows that C = N̄h0−
Λh

µh
.

so,

N̄h(t)+
(

Λh

µht
− N̄h0

)
e−µht =

Λh

µh
(4.3)

This means that,

N̄h(t)≤
Λh

µh
, provided N̄h(0)≤

Λh

µh
for t ≥ 0. (4.4)

Similarly, adding the last two equations of equation(4.1) gives

dN̄v

dt
=

dS̄v

dt
+

dĪv

dt

= Av−Nv(λv + cα) (4.5)

Solving equation (4.5) we have,

N̄h(t)e(λv+cα)t =
Ave(λv+cα)t

(λv + cα)
+M

where M is the constant of integration

N̄v(t) =
(Ave(λv+cα)t

(λv + cα)
× 1

e(λv+cα)t

)
+Me−(λv+cα)t

=
Av

(λv + cα)
+Me−(λv+cα)t

Using the initial condition N̄v(0) = N̄v0 we obtain

N̄v0 =
Av

(λv + cα)
+C

it follows that M = N̄v0−
Av

(λv + cα)
.
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Thus,

N̄v(t)+
( Av

(λv + cα)t
− N̄v0

)
e−(λv+cα)t =

Av

(λv + cα)t
(4.6)

This implies that,

N̄v(t)≤
Av

(λv + cα)
, provided N̄v(0)≤

Av

(λv + cα)
for t ≥ 0. (4.7)

For positivity of solutions, we apply the theorem that follows

Theorem 4.1. Let the initial data be {(Sh(0),Sv(0))> 0,(Ih(0),Rh(0), Iv(0))≥

0} ∈ Ω). Then the solution set {Sh, Ih,Rh,Sv, Iv} of the system (4.1) is positive

for all t > 0.

Proof. From the first equation in the model (4.1), we have

dSh

dt
= Λh−βhShIv−αSh +ρRh−µhSh

≥ −βhShIv−αSh−µhSh

Using separation of variables and integrating both sides gives∫ dSh

Sh
≥

∫
(−βhIv−α−µh)dt∫ dSh

Sh
≥

∫
(−βhIvdt−

∫
α+µh)dt

lnSh ≥ −
∫

(βhIv)dt +(−α−µh)t +C

⇒ Sh ≥ e−
∫
(βhIv)dt× e−(α+µh)t× eC

≥ (e−
∫
(βhIv)dt× e−(α+µh)t)× eC

≥ (e−
∫
(βhIv)dt× e−(α+µh)t)×M

≥ M(e(−
∫
(βhIv)dt−(α+µh)t))

using the initial conditions: t = 0, Sh(0)≥M

⇒ Sh ≥ Sh(0)(e(−
∫
(βhIv)dt−(α+µh)t))≥ 0

Therefore,

Sh ≥ Sh(0)(e(−
∫
(βhIv)dt−(α+µh)t))≥ 0
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From the second equation we have

dIh

dt
= βhShIv− (γ+µ+δ)Ih

≥ −(γ+µ+δ)Ih

dIh

dt
≥ −(γ+µ+δ)Ih

Using separation of variables and integrating both sides gives∫ dIh

Ih
≥

∫
−(γ+µ+δ)dt

ln Ih ≥ −(γ+µ+δ)t + c

⇒ Ih ≥ e−(γ+µ+δ)t+c

≥ Pe−(γ+µ+δ)t

≥ Ih(0)e−(γ+µ+δ)t

where P = Ih(0)

Ih ≥ Ih(0)e−(γ+µ+δ)t ≥ 0

similarly, it can be shown that the remaining equations of the system (4.1) are

positive for all t > 0.

Positive Invariant Region

The positive invariant region is obtained in the following theorem.

Theorem 4.2. The solutions of the system (4.1) are feasible for all t > 0 if they

enter the invariant region Ω = Ωh×Ωv

Proof. Let Ω= (S̄h, Īh, R̄h, S̄v, Īv)∈R5
+ be any solution of system (4.1) with non-

negative initial conditions.

From (4.4) all feasible solutions set of the human population of the model (4.1)

enters the region.

Ωh =
{
(Sh, Ih,Rh) ∈ R3

+ : Sh > 0, Ih ≥ 0,Rh ≥ 0,Nh(t)≤
Λh

µh

}
.
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Similarly, from (4.7) the feasible solutions set of the mosquito enters the region

Ωv =
{
(Sv, Iv) ∈ R2

+ : Sh > 0, Ih ≥ 0, N̄v(t)≤
Av

(λv + cα)

}
.

Therefore, the feasible solutions set for the model (4.28) is given by

Ω =
{
(Sh, Ih,Rh,Sv, Iv) ∈ R5

+ : (Sh,Sv)> 0,(Ih,Rh, Iv)≥ 0;

N̄h(t)≤
Λh

µh
; N̄v(t)≤

Av

(λv + cα)

}
.

Therefore, the region Ω is positively-invariant ( i.e. solutions remain positive for

all times, (t) and the model (4.1) is biologically, epidemiologically meaningful

and mathematically well-posed in the domain Ω.

Now, let Sh =
S̄h

Λh/µh
, Ih =

Īh

Λh/µh
,Rh =

R̄h

Λh/µh
,

Similarly, let Sv =
S̄v

Av/(λv + cα)
, Iv =

Īv

Av/(λv + cα)
.

System (4.1) can be written as the equivalent form:

Ṡh = µh−βhShIv +ρRh−µhSh−αSh

İh = βhShIv− γIh−µhIh−δIh

Ṙh = γIh−µhRh−ρRh +αSh

Ṡv = (λv + cα)−βvSvIh− (λv + cα)Sv

İv = βvSvIh− (λv + cα)Iv.

(4.8)

Let µc = (λv + cα), then equation (4.8) becomes

Ṡh = µh−βhShIv +ρRh−µhSh−αSh

İh = βhShIv− γIh−µhIh−δIh

Ṙh = γIh−µhRh−ρRh +αSh

Ṡv = µc−βvSvIh−µcSv

İv = βvSvIh−µcIv.

(4.9)
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Equilibrium Pints of the Model

The two equilibrium points of the system (4.9) are

(a) Disease Free equilibrium (S0
h, I

0
h ,R

0
h,S

0
v , I

0
v )

=
( (µh +ρ)

(α+µh +ρ)
,0,

α

(α+ρ+µh)
,1,0

)
(b) Endemic equilibrium (E1)= ((S∗h, I

∗
h ,R
∗
h,S
∗
v , I
∗
v )) S∗h = µc(γ+µh+δ)(δρµc+

δµcµh + γµcµh +ρβvµh +ρµcµh +βvµhµh +µcµ2
h)/

((αδµhµc+αγµhµc+αµ2
hµc+δρβhµc+δρµhµc+δβhµhµc+δµ2

hµc+γρµhµc+

γβhµ2
h + γµ2

hµc +ρβhµhµc +ρµ2
hµc +βhµ2

hµc +µcµ3
h)βv),

I∗h =−(αδ(µc)
2µh+αγ(µc)

2µh+α(µc)
2µ2

h+δρ(µc)
2µh+γρ(µc)

2µh+γ(µc)
2µ2

h−

ρβhβvµhµc +δ(µc)
2µ2

h +ρ(µc)
2µ2

h−βhβvµhµhµc +(µc)
2µ3

h)/

βv(αδµhµc+αγµhµc+αµ2
h+δρβhµc+δρµhµc+δβhµhµc+δµ2

hµc+γρµhµc+

γβhµhµc + γµ2
hµc +ρβhµhµc +ρµ2

hµc +βhµ2
hµc +µ3

hµc),

R∗h = −(−αδ2(µc)
2−αδγ(µc)

2−αδβvµh(µc)
2−2αδ(µc)

2µh−αγβvµhµc−

αγµcµh−αβvµhµhµc−α(µc)
2µ2

h +

δγ(µc)
2µh + γ2(µc)

2µh− γβhβvµcµc + γ(µc)
2µ2

h)/

βv(αδµhµc+αγµhµc+αµ2
hµc+δρβhµc+δρµhµc+δβhµhµc+δµ2

hµc+γρµhµc+

γβhµhµc + γµ2
hµc +ρβhµhµc +ρµ2

hµc +βhµ2
hµc +µ3

hµc),

S∗v = µc(αδµhµc +αγµhµc +αµ2
hµc +δρβhµc +δρµhµc +µcδβhµh +δµ2

hµc +

γρµhµc + γβhµhµc + γµ2
hµc +ρβhµhµc +ρµ2

hµc +βhµ2
hµc +µ3

hµc)/

(βh[δρµc +δµcµh + γµcµh +ρβvµc +ρµcµh +µcβvµh +µcµ2
h]),

I∗v =−(αδ(µc)
2µh +αγ(µc)

2µh +α(µc)
2µ2

h +δρ(µc)
2µh +

δ(µc)
2µ2

h + γρ(µc)
2µh + γ(µc)

2µ2
h − ρβhβvµcµh + ρ(µc)

2µ2
h − µcµhβhβvµh +

(µc)
2µ3

h)/(δρµc +δµcµh + γµcµh +ρβvµc +ρµcµh +µhβvµh +µcµ2
h)βhµc)
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Computation of R0 using Next Generation Matrix Approach

This system (4.8) has two infectious states, Ih, and Iv given by

İh = βhShIv− γIh−µhIh−δIh (4.10)

İv = βvSvIh−µcIv

and three uninfected states, Sh, Rh and Sv. At the infection-free steady state

I0
h = I0

v = 0,

S0
h =

(µh +ρ)

(α+µh +ρ)
,

R0
h =

α

(α+ρ+µh)

and

S0
v = 1.

Recall from Chapter three that Fi is the rate of appearance of new infections in

compartment i, V+
i (x) is the rate of transfer of individuals into compartment i

by all means, V−i (x) is the rate of transfer of individuals out of compartment i

and Vi =V−i −V+
i .

The vectors Fi and Vi are given respectively by

Fi =

 βhShIv

βvSvIh

 (4.11)

and

Vi =V−i −V+
i =

 (γ+µh +δ)Ih

µcIv

 (4.12)

We now define the matrices,

F =

[
∂Fi

∂x j

]
x j=x0

(4.13)

and

V =

[
∂Vi

∂x j(x0)

]
x j=x0

(4.14)
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where x j = (Sh, Ih,Rh,Sv, Iv) and x0 = (S0
h, I

0
h ,R

0
h,S

0
v , I

0
v ) denotes the disease-free

equilibrium and the indices i, j = 1, ...,m. The entries of the matrix.

From equation (4.10), we obtain

F =

 0 βhS0
h

βvS0
v 0

 ,

V =

 (γ+µh +δ) 0

0 µc


and

V−1 =


1

γ+µh +δ
0

0
1
µc


The Next Generation Matrix K is two-dimensional and given by

K = FV−1

=

 0 βhS0
h

βvS0
v 0




1
(γ+µh +δ)

0

0
1
µc



=

 0
βhS0

h
µc

βvS0
v

(γ+µh +δ)
0



The eigenvalues of K are given by

λ1 =

√
βhβvS0

hS0
v

µc(µh + γ+δ)
and λ2 =−

√
βhβvS0

hS0
v

µc(µh + γ+δ)
.

The basic reproduction number R0(α) is the spectral radius of K given as

=

√
βhβv

µc(µh + γ+δ)
.

(µh +ρ)

(α+µh +ρ)
,

since S0
h =

(µh +ρ)

(α+µh +ρ)
and S0

v = 1.

But
(µh +ρ)

(α+µh +ρ)
≤ 1. It is obvious that

R 2
0 (α) =

βhβv(µh +ρ)

µc(µh + γ+δ)(α+µh +ρ)
≤ βhβv

µc(µh + γ+δ)
= R 2

0 (0)
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The inequality above indicate that the basic reproduction number with preven-

tion is less than the basic reproduction without prevention.

The Endemic equilibrium (E1) can be expressed in terms of the basic reproduc-

tion number (R 2
0 ) as

(E1) = (S∗h, I
∗
h ,R
∗
h,S
∗
v , I
∗
v ) (4.15)

given (S∗h, I
∗
h ,R
∗
h,S
∗
v , I
∗
v ) by

S∗h =
µcβvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2

h +ρµh)(γ+µh +δ)

βv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

I∗h =
(1−R 2

0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

R∗h =−
(1−R 2

0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

βv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

S∗v =
µc[βh(δρ+δµh + γµh +ρµh +µ2

h)+µh(γ+µh +δ)(α+µh +ρ)]

βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)]

I∗v =
(1−R 2

0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)

Local Stability Analysis of the Equilibrium Points

We investigate the local stability of the equilibrium points. The jacobian

matrix for the system (4.9) is given as

J =



−βhIv−α−µh 0 ρ 0 −βhSh

βhIv −(µh + γ+δ) 0 0 βhSh

0 γ −(µh +ρ) 0 0

0 −βvSv 0 −Ihβv−µc 0

0 βvSv 0 Ihβv −µc


(4.16)

Local Stability Analysis at the Disease Free Equilibrium

We now investigate the local stability of the disease free equilibrium.
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Theorem 4.3. The disease free equilibrium point is locally asymptotically sta-

ble if R0(0)< 1.

Evaluating the Jacobian matrix at the disease free equilibrium point (E0)

with α = 0 gives

J0 =



−µh 0 ρ 0 −βh

0 −(µh + γ+δ) 0 0 βh

0 γ −(µh +ρ) 0 0

0 −βv 0 −µc 0

0 βv 0 0 −µc


(4.17)

From columns 1,3 and 4, we obtain these three eigenvalues λ1 = −µh,λ2 =

−(µh +ρ) and λ3 = µc.

The remaining matrix is given as

Jr =

 −(µh + γ+δ) βh

βv −µc

 (4.18)

From the Routh-Hurwitz criterion,

det(Jr)> 0

This implies,

(µh + γ+δ)µc−βhβv > 0

(µh + γ+δ)µc > βhβv

1 >
βhβv

(µh + γ+δ)µc

but
βhβv

µc(µh + γ+δ)
= R 2

0 (0),

this implies that

R0(0)< 1.

we conclude that the disease free equilibrium is locally stable.
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Local Stability Analysis at the Endemic Equilibrium Point

We investigate the local stability of the endemic equilibrium point.

Theorem 4.4. The Endemic equilibrium (E1) is locally asymptotically stable if

R0(α)> 1.

Proof. Evaluating the Jacobian matrix at the endemic equilibrium gives

J1 =



a−α−µh 0 −ρ −b

−a −(µh + γ+δ) 0 0 b

α γ −(µh +ρ) 0 0

0 −c 0 d−µc 0

0 c 0 −d −µc


(4.19)

Using the corollary of Gershgorin’s circle theorem, the matrix (J1) will

have negative eigenvalues if the following inequalities are satisfied. Thus,

aii <−
n

∑
j=1, j 6=i

| ai j | .

So,

(i) From row 1
(1−R 2

0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)

−α−µh <

−
βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2

h +ρµh)](γ+µh +δ)

βv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

(ii) From row 2

−(µh + γ+δ)<−
( (1−R 2

0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

βvµh(µh +ρ)µc(δρ+δµh + γµh +µ2
h +ρµh)

+
βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2

h +ρµh)](γ+µh +δ)

βv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

)

(iii) From row 3

−(ρ+µh)<−(α+ γ)
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(iv) From row 4( (1−R 2
0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

−µc

)
<

−
µcβv[βh(δρ+δµh + γµh +ρµh +µ2

h)+µh(γ+µh +δ)(α+µh +ρ)]

βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)]

(v) From row 5

−µc <−
( (1−R 2

0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

+

µcβv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)]

)
Rearranging (i)- (v) give

(i*) α+µh >
(1−R 2

0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)

+
βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2

h +ρµh)](γ+µh +δ)

βv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

(ii*) (µh + γ+δ)>
(1−R 2

0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)

+
βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2

h +ρµh)](γ+µh +δ)

βv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

(iii*) (ρ+µh)> (α+ γ)

(iv*) µc >
(1−R 2

0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

+

µcβv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)]

(v*) µc >−
(1−R 2

0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

+

µcβv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)]

Dividing the left hand terms by the right hand terms each from (i∗) - (v∗), we
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obtain

1 >
( (1−R 2

0 (α))µhµc(γ+µh +δ)(α+µh +ρ)

βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)

+

βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)](γ+µh +δ)

βv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

1
(α+µh)

)
× 1
(α+µh)

(4.20a)

1 >
(1−R 2

0 (α))µhµc(α+µh +ρ)

βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)

(4.20b)

+
βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2

h +ρµh)]

βv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

1 >
(α+ γ)

(ρ+µh)
(4.20c)

1 >
(1−R 2

0 (α))µh(γ+µh +δ)(α+µh +ρ)

[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

(4.20d)

+
βv[βh(δρ+δµh + γµh +ρµh +µ2

h)+µh(γ+µh +δ)(α+µh +ρ)]

βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)]

1 > −
(1−R 2

0 (α))µh(γ+µh +δ)(α+µh +ρ)

[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

(4.20e)

+
βv[βh(δρ+δµh + γµh +ρµh +µ2

h)+µh(γ+µh +δ)(α+µh +ρ)]

βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)]

From equation (4.20b) let

U =
(1−R 2

0 (α))µhµc(α+µh +ρ)

βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)

and

V =
βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2

h +ρµh)]

βv[βh(δρ+δµh + γµh +ρµh +µ2
h)+µh(γ+µh +δ)(α+µh +ρ)]

so that

1
V

=
βv[βh(δρ+δµh + γµh +ρµh +µ2

h)+µh(γ+µh +δ)(α+µh +ρ)]

βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)]
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Equation (4.20b) becomes

1 >U +V (4.21)

Adding (4.20d) and (4.20e) gives

1 >
βv[βh(δρ+δµh + γµh +ρµh +µ2

h)+µh(γ+µh +δ)(α+µh +ρ)]

βh[βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)]

(4.22)

which can be rewritten as

1 >
1
V

(4.23)

or

−1 >−V (4.24)

Adding equation (4.21) and (4.24) gives

0 >U (4.25)

That is,

0 > (
(1−R 2

0 (α))µhµc(α+µh +ρ)

βvµh(µh +ρ)+µc(δρ+δµh + γµh +µ2
h +ρµh)

(4.26)

Equation (4.26) holds⇔

R 2
0 (α)> 1 (4.27)

In the next section, we formulate a 7-staged states malaria model with exposed

compartment

A Malaria Transmission Model With Exposed Compartment

In the previous section, we formulated a malaria transmission model with-

out the exposed classes. In this section, we formulate and analyze a malaria

model with exposed class as an SEIRS for the host population and SEI for the

vector population similar to that of (N. R. Chitnis, 2005) by combining biting
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rate and transmission rate as βh for host and βv for vector, describing the trans-

mission of malaria. It is also assumed that a certain proportion of the prevention

strategies contribute to the death rate of the mosquito. The human population is

divided into: susceptible, Sh(t), exposed or latent, Lh(t), infectious, Ih(t), and

recovered (immune), Rh(t) classes. People are born (at a constant per capita

rate) or immigration (at a constant rate) into the susceptible class. When an

infectious mosquito bites a susceptible human, symptoms usually appear 10-15

days after the bite (WHO, 2019). This period is called the incubation or exposed

period before the person becomes clinically ill and it is termed a exposed com-

partment or class. Progress to the infectious class from the exposed class at a

rate that is the reciprocal of the duration of the latent period. About seven days

of proper treatment, the infectious humans recover and move to the recovered

class. The recovered humans have some immunity to the disease and do not get

clinically ill. After some months, they lose their immunity and return to the sus-

ceptible class. The prevention strategies also remove people directly from the

susceptible class to the removed class. The human population decreases through

a density-dependent per capita emigration and natural death rate, and through a

per capita disease-induced death rate.

The mosquito population is divided into: susceptible, Sv(t), exposed or

latent, Lv(t), and infectious, Iv(t) classes. Female mosquitoes (we do not include

male mosquitoes in our model because only female mosquitoes bite animals for

blood meals) are born or migrate to the susceptible class through birth. The

parasite, with some probability, when the mosquito bites an infectious human or

a recovered human (the probability of transmission of infection from a recovered

human is much lower than that from an infectious human), the mosquito moves

from the susceptible to the exposed class. After some period of time, dependent

on the ambient temperature and humidity, the parasite develops into sporozoites

and enters the mosquito’s salivary glands; and the mosquito moves from the
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exposed class to the infectious class. The mosquito remains infectious for life.

Mosquitoes leave the population through a per capita density-dependent natural

death rate and an effect of prevention effort.

Figure 5: Transition Diagram for a Malaria Transmission Model With Exposed

Compartment

Table 6: The State Variables for a 7-Staged State Malaria Transmission Model

Populations Description

Ih Number of infectious human

Sh Number of susceptible human

Lh Number of exposed or latent humans

Rh Number of Recovered human

Iv Number of infectious vector

Sv Number of Susceptible vector

Lv Number of exposed mosquito

Nh Total human population

Nv Total mosquito population
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Table 7: Model Parameters and Their Interpretations

Parameters Description

Λh Humans recruitment birth rate

µh Humans death rate

κ Progression rate for humans

exposed class to infectious class at time t

γ recovery rate of human

α Prevention rate

βh Transmission rate of host

(product of biting rate and probability of transmission of disease)

δ Disease-induced death rate for humans

ρ Rate of loss of immunity for humans

λv Vector birth rate = vector death rate

cα proportion of prevention effort that

contributes to vector death rate 0≤ c≤ 1

θ Progression rate for vector

βv Transmission rate of vector

(product biting rate and probability of transmission of disease)

We model the effect of preventive strategies on the vector population and

apply the same assumptions used in previous section, the system of non-linear

differential equations which describe the dynamics of a malaria model with ex-
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posed compartment as:

dS̄h

dt
= Λh−βhS̄h

Īv

Nv
−αS̄h +ρR̄h−µhS̄h

dL̄h

dt
= βhS̄h

Īv

Nv
− (κ+µh)L̄h

dĪh

dt
= κL̄h− (γ+µh +δ)Īh

dR̄h

dt
= γĪh−µhR̄h +αS̄h−ρR̄h

dS̄v

dt
= Av−βvS̄v

Īh

Nh
− (cα+λv)S̄v

dL̄v

dt
= βvS̄v

Īh

Nh
− (θ+λv + cα)L̄v

dĪv

dt
= θL̄v− (cα+λv)Īv

(4.28)

with

N̄h = S̄h + L̄h + Īh + R̄h,

and

N̄v = S̄v + L̄v + Īv.

The total human population can be determined from

dN̄h

dt
=

dS̄h

dt
+

dL̄h

dt
+

dĪh

dt
+

dR̄h

dt

= Λh−Nhµ−δIh

In the absence of the disease induced death, that is, δ = 0, we have

¯dNh

dt
= Λh−µhN̄h

¯dNh

dt
+µhN̄h = Λh (4.29)

Solving equation (4.29) we obtain,

N̄h(t)eµht =
Λheµht

µh
+C
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where C is the constant of integration

N̄h(t) =
(

Λheµht

µh
× 1

eµht

)
+Ce−µht

=
Λh

µh
+Ce−µh

Using the initial conditions, N̄h(0) = N̄h0:

N̄h0 =
Λh

µh
+C

⇒C = N̄h0−
Λh

µh
.

so,

N̄h(t)+
(

Λh

µht
− N̄h0

)
e−µht =

Λh

µh
(4.30)

This means that,

N̄h(t)≤
Λh

µh
, provided N̄h(0)≤

Λh

µh
for t ≥ 0. (4.31)

Similarly, the total vector population can be determined from

dN̄v

dt
=

dS̄v

dt
+

dL̄v

dt
+

dĪv

dt

= Av−Nv(λv + cα) (4.32)

Solving equation (4.32) we obtain,

N̄h(t)e(λv+cα)t =
Ave(λv+cα)t

(λv + cα)
+M

where M is the constant of integration

N̄v(t) =
(Ave(λv+cα)t

(λv + cα)
× 1

e(λv+cα)t

)
+Ce−(λv+cα)t

=
Av

(λv + cα)
+Me−(λv+cα)t

Using the initial conditions, N̄v(0) = N̄v0:

N̄v0 =
Av

(λv + cα)
+M

⇒M = N̄v0−
Av

(λv + cα)
.
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Thus,

N̄v(t)+
( Av

(λv + cα)t
− N̄v0

)
e−(λv+cα)t =

Av

(λv + cα)t
(4.33)

This implies that,

N̄v(t)≤
Av

(λv + cα)
, provided N̄v(0)≤

Av

(λv + cα)
for t ≥ 0. (4.34)

For positivity of solutions, we apply the theorem that follows.

Theorem 4.5. Let the initial data be

{(Sh(0),Sv(0))> 0,(Lh(0), Ih(0),Rh(0),Lv(0), Iv(0))≥ 0} ∈ D).

Then the solution set {Sh,Lh, Ih,Rh,Sv,LvIv} of the system (4.28) is positive for

all t > 0.

Proof. From the first equation in the model (4.28), we have

dSh

dt
= Λh−βhShIv−αSh +ρRh−µhSh

≥ −βhShIv−αSh−µhSh

Using separation of variables and integrating both sides gives∫ dSh

Sh
≥

∫
(−βhIv−α−µh)dt∫ dSh

Sh
≥

∫
(−βhIv)dt−

∫
(α+µh)dt

lnSh ≥ −
∫

(βhIv)dt +(−α−µh)t +C

⇒ Sh ≥ e−
∫
(βhIv)dt× e−(α+µh)t× eC

≥ (e−
∫
(βhIv)dt× e−(α+µh)t)× eC

≥ (e−
∫
(βhIv)dt× e−(α+µh)t)×N

≥ N(e(−
∫
(βhIv)dt−(α+µh)t))

using the initial conditions: t = 0, Sh(0)≥ N

⇒ Sh ≥ Sh(0)(e(−
∫
(βhIv)dt−(α+µh)t))≥ 0
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Therefore,

Sh ≥ Sh(0)(e(−
∫
(βhIv)dt−(α+µh)t))≥ 0

From the second equation we have,

dLh

dt
= βhShIv− (κ+µh)Lh

≥ −(κ+µh)Lh

dLh

dt
≥ −(κ+µh)Lh

Using separation of variables and integrating both sides gives

∫ dLh

Lh
≥

∫
−(κ+µh)dt

lnLh ≥ −(κ+µh)t + c

⇒ Lh ≥ e−(κ+µh)t+c

≥ He−(κ+µh)t

≥ Ih(0)e−(κ+µh)t

where H = Lh(0)

Ih ≥ Lh(0)e−(γ+µh)t ≥ 0

similarly, it can be shown that for all t > 0, the remaining equations of the system

(4.28) are positive.

Positive Invariant Region

The positive invariant region is obtained in the following theorem.

Theorem 4.6. The solutions of the system (4.28) are feasible for all t > 0 if they

enter the invariant region D = Dh×Dv

Proof. Let D = (S̄h, L̄h, Īh, R̄h, S̄v, L̄v, Īv) ∈ R7
+ be any solution of system (4.28)

with non-negative initial conditions.

From (4.31) all feasible solutions set of the human population of the model
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(4.28) enters the region.

Dh =
{
(Sh,Lh, Ih,Rh) ∈ R4

+ : Sh > 0,Lh ≥ 0, Ih ≥ 0,Rh ≥ 0,Nh(t)≤
Λh

µh

}
.

Similarly, from (4.34) the feasible solutions set of the mosquito enters the region

Dv =
{
(Sv,Lv, Iv) ∈ R3

+ : Sv > 0,Lv ≥ 0, Iv ≥ 0, N̄v(t)≤
Av

(λv + cα)

}
.

The feasible solutions set for the model (4.28) is given by

D =
{
(Sh,Lh, Ih,Rh,Sv,Lv, Iv) ∈ R7

+ : (Sh,Sv)> 0,(Lh, Ih,Rh,Lv, Iv)≥ 0;

N̄h(t)≤
Λh

µh
; N̄v(t)≤

Av

(λv + cα)

}
.

Therefore, the region D is positively-invariant ( i.e. solutions remain positive for

all times, (t) and the model (4.1) is biologically, epidemiologically meaningful

and mathematically well-posed in the domain D.

Let Sh =
S̄h

Λh/µh
,Lh =

L̄h

Λh/µh
, Ih =

Īh

Λh/µh
,Rh =

R̄h

Λh/µh
,

Similarly,Let Sv =
S̄v

Av/(λv + cα)
,Lv =

L̄v

Av/(λv + cα)
, Iv =

Īv

Av/(λv + cα)
.

system (4.28) in the invariant space D can be written as the equivalent seven-

dimensional non-linear system of ODEs:

Ṡh = µh−βhShIv−αSh +ρRh−µhSh

L̇h = βhShIv− (κ+µh)Lh

İh = κLh− (γ+µh +δ)Ih

Ṙh = γIh−µhRh +αSh−ρRh

Ṡv = (λv + cα)−βvSvIh− (λv + cα)Sv

L̇v = βvSvIh−θLv− (λv + cα)Lv

İv = θLv− (λv + cα)Iv

(4.35)
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Let µc = (λv + cα), now, the model becomes

Ṡh = µh−βhShIv−αSh +ρRh−µhSh

L̇h = βhShIv− (κ+µh)Lh

İh = κLh− (γ+µh +δ)Ih

Ṙh = γIh−µhRh +αSh−ρRh

Ṡv = µc−βvSvIh−µcSv

L̇v = βvSvIh−θLv−µcLv

İv = θLv−µcIv

(4.36)

the feasible solutions set for the model (4.64)is given by

Ω =
{
(Sh,Lh, Ih,Rh,Sv,Lv, Iv) ∈ R7

+ : (Sh,Sv)> 0,(Lh, Ih,Rh,Lv, Iv)≥ 0;

N̄h(t)≤ 1; N̄v(t)≤ 1
}
.

Equilibrium Points of the Model

The system (4.35) has two equilibrium points namely;

(a) Disease Free equilibrium p∗ = (S0
h,L

0
h, I

0
h ,R

0
h,S

0
v ,L

0
v , I

0
v )

=
( (µh +ρ)

(α+µh +ρ)
,0,0,

α

(α+ρ+µh)
,1,0,0

)
(b) Endemic equilibrium (p∗) = see equation (12)

Computation of R0 using Next Generation Approach

This system (4.35) has four infected states, Lh, Ih, Lv, and Iv given by

L̇h = βhShIv− (κ+µh)Lh

İh = κLh− (γ+µh +δ)Ih

L̇v = βvSvIh−θLv−µcLv

İv = θLv−µcIv

(4.37)

93

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



and Three uninfected state, Sh. At the infection-free steady state L0
h = I0

h = L0
v =

I0
v = 0 and S0

h =
(µh +ρ)

(α+µh +ρ)
.

The vectors Fi and Vi are given respectively by

Fi =



βhShIv

0

βvSvIh

0


, (4.38)

and

Vi =



(κ+µh)Lh

−κLh +(γ+µh +δ)Ih

θLv +µcLv

−θLh +µcIv


(4.39)

The partial derivatives of (4.38) with respect to (Lh, Ih,Lv, Iv) and the Ja-

cobian matrix of Fi is given as

F =



0 0 0 βhSh

0 0 0 0

0 βvSv 0 0

0 0 0 0


,

Similarly, the partial derivatives of (4.39) with respect to (Lh, Ih,Lv, Iv) and

the Jacobian matrix of V at the disease-free equilibrium point E0 is given as

V =



(κ+µh) 0 0 0

−κ (γ+µh +δ) 0 0

0 0 (θ+µc) 0

0 0 −θ µc


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The inverse of the matrix V is given as:

V−1 =



1
(κ+µh)

0 0 0

κ

(κ+µh)(γ+µh +δ)

1
(γ+µh +δ)

0 0

0 0
1

(θ+µc)
0

0 0
θ

(θ+µc)µc

1
µc


The Next Generation Matrix K is given by

K = FV−1

=



0 0 0 βhS0
h

0 0 0 0

0 βvS0
v 0 0

0 0 0 0





1
(κ+µh)

0 0 0

a∗∗∗ b∗∗∗ 0 0

0 0 c∗∗∗ 0

0 0 d∗∗∗
1
µc



=



0 0
βhS0

hθ

(θ+µc)µc

βhS0
h

µc

0 0 0 0
κβvS0

v
(κ+µh)(γ+µh +δ)

κβvS0
v

(γ+µh +δ)
0 0

0 0 0 0



where a∗∗∗ =
κ

(κ+µh)(γ+µh +δ)
, b∗∗∗ =

1
(γ+µh +δ)

,

c∗∗∗ =
θ

(θ+µc)µc
and d∗∗∗ =

1
(θ+µc)

The eigenvalues of K are given by

λ1 = 0,λ2 = 0,λ3 =−

√
βhβvSvS0

hθκ

µc(κ+µh)(µh + γ+δ)(θ+µc)
,

and λ4 =

√
βhβvSvS0

hθκ

µc(κ+µh)(µh + γ+δ)(θ+µc)

The basic reproduction number R0 is the positive real eigenvalue of K which is

at least as large in modulus as all eigenvalues of K.

R0 =

√
βhβvSvS0

hθκ

µc(κ+µh)(µh + γ+δ)(θ+µc)
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=

√
βhβvθκ

µc(κ+µh)(µh + γ+δ)(θ+µc)
.

(µh +ρ)

(α+µh +ρ)

=

√
βhβvθ(µh +ρ)κ

µc(κ+µh)(µh + γ+δ)(θ+µc)(α+µh +ρ)

Since at the infection-free steady state S0
v = 1 and S0

h =
(µh +ρ)

(α+µh +ρ)
.

The Endemic equilibrium (p∗) can be expressed in terms of the basic Reproduc-

tion number (R 2
0 ) and simplified as

(p∗) = (S∗h,L
∗
h, I
∗
h ,R
∗
h,S
∗
v ,L
∗
v , I
∗
v ) (4.40)

given (S∗h,L
∗
h, I
∗
h ,R
∗
h,S
∗
v ,L
∗
v , I
∗
v ) by

S∗h =
a
b

a = (µh +κ)(µc +θ)(γ+µh +δ)
(

κβv(ρ+µh)+µc(δκρ+δκµh +δρµh +δµ2
h +

γκµh + γρµh + γµ2
h +κρµh +κµ2

h +ρµ2
h +µ3

h)
)

b = κβv

(
µh(µh+κ)(µh+α+ρ)θ(γ+µh+δ)+βhθ(δκρ+δκµh+δρµh+δµ2

h+

γκµh + γρµh + γµ2
h +κρµh +κµ2

h +ρµ2
h +µ3

h)
)

L∗h =
−c
d

−c =
(
(R 2

0 (α)−1)µcµh(µh +κ)(µc +θ)(γ+µh +δ)(µh +α+ρ)
)
(γ+µh +δ)

d = κβv

(
µcµh(µh + κ)(µh +α+ ρ)(µc + θ)(γ+ µh + δ)+ µcβhθ(δκρ+ δκµh +

δρµh +δµ2
h + γκµh + γρµh + γµ2

h +κρµh +κµ2
h +ρµ2

h +µ3
h)
)

I∗h =
−e
f

−e = (R 2
0 (α)−1)µc(µh +κ)(µc +θ)(γ+µh +δ)(µh +α+ρ)

f = κβv

(
µh(µh+κ)(µh+α+ρ)(µc+θ)(γ+µh+δ)+µcβhθ(δκρ+δκµh+δρµh+

δµ2
h + γκµh + γρµh + γµ2

h +κρµh +κµ2
h +ρµ2

h +µ3
h)
)

R∗h =
k
t

k =−(R 2
0 (α)−1)µcµh(µh +κ)(µc +θ)(γ+µh +δ)(µh +α+ρ)

t = κβv

(
µh(µh+κ)(µh+α+ρ)(µc+θ)(γ+µh+δ)+µcβhθ(δκρ+δκµh+δρµh+

δµ2
h + γκµh + γρµh + γµ2

h +κρµh +κµ2
h +ρµ2

h +µ3
h)
)

S∗v =
g
h
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g = µc

(
(µh(µh+κ)(µc+θ)(γ+µh+δ)(µh+α+ρ)+βhθ(δκρ+δκµh+δρµh+

δµ2
h + γκµh + γρµh + γµ2

h +κρµh +κµ2
h +ρµ2

h +µ3
h)
)

h= βhθ

(
κβv(ρ+µh)+µc(δκρ+δκµh+δρµh+δµ2

h+γκµh+γρµh+γµ2
h+κρµh+

κµ2
h +ρµ2

h +µ3
h)
)

Lv =
−n
m

−n = µc(R 2
0 (α)−1)µcµh(µh +κ)(µc +θ)(γ+µh +δ)(µh +α+ρ)

m = βh(θ + µc)
(

κβv(ρ + µh) + µc(δκρ + δκµh + δρµh + δµ2
h + γκµh + γρµh +

γµ2
h +κρµh +κµ2

h +ρµ2
h +µ3

h)θ
)

Iv =
−q
r

−q = (R 2
0 (α)−1)µcµh(µh +κ)(µc +θ)(γ+µh +δ)(µh +α+ρ)

r = βh(θ+µc)
(

κβv(ρ+µh)+µc(δκρ+δκµh+δρµh+δµ2
h+γκµh+γρµh+γµ2

h+

κρµh +κµ2
h +ρµ2

h +µ3
h)
)

Local Stability Analysis of the Equilibrium Points

We investigate the local stability of the equilibrium points. The jacobian

matrix for the system (4.35) is given as

J =



n∗ 0 0 ρ 0 0 −βhSh

βhIv −m∗ 0 0 0 0 βhSh

0 κ −(µh + γ+δ) 0 0 0 0

α 0 γ −p∗ 0 0 0

0 0 −βvSv 0 −t∗ 0 0

0 0 βvSv 0 βvIh −q∗ 0

0 0 0 0 0 θ −µc



(4.41)

where n∗ = βhIv− (α+ µh), m∗ = (κ+ µh), p∗ = (µh + ρ), q∗ = (θ+ µc) and

t∗ = βvIh−µc.
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Local Stability Analysis of the Disease Free Equilibrium Point

Now, we investigate the local stability of the disease free equilibrium point

with α = 0, since R0(α)< R0(0)

Theorem 4.7. The disease free equilibrium (E0) with α = 0 is locally asymp-

totically stable if R 2
0 (α)< R 2

0 (0)< 1.

Proof.

J0 =



−µh 0 0 ρ 0 0 −p∗

0 −m∗ 0 0 0 0 p∗

0 κ −(µh + γ+δ) 0 0 0 0

0 0 γ −p∗ 0 0 0

0 0 −βv 0 −µc 0 0

0 0 βv 0 0 −q∗ 0

0 0 0 0 0 θ −µc



(4.42)

where p∗ =−βh, m∗ = (κ+µh), p∗ = (µh +ρ), q∗ = (θ+µc)

From rows 1,4 and 5, we get three of the eigenvalues λ1 =−µh,λ2 =−(µh+ρ)

and λ3 =−λv which are negatives. We have the remaining matrix as

Js =



−(κ+µh) 0 0 p∗

κ −(µh + γ+δ) 0 0

0 βv −(θ+µc) 0

0 0 θ −µc


(4.43)

Using the corollary of Gershgorin’s circle theorem, the matrix (J0) will

have negative eigenvalues if the following inequalities are satisfied. Thus,

aii <−
n

∑
j=1, j 6=i

| ai j | .

Therefore,

From row 1

−(κ+µh)<−βh (4.44a)
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From row 2

−(µh + γ+δ)<−κ (4.44b)

From row 3

−(θ+µc)<−βv (4.44c)

From row 4

−µc <−θ (4.44d)

Which is the same as

(κ+µh)> βh (4.45a)

(µh + γ+δ)> κ (4.45b)

θ+µc > βv (4.45c)

µc > θ (4.45d)

from (4.45a) we have,

1 >
βh

(κ+µh)
. (4.46)

And from (4.45b) we obtain,

µh + γ+δ

κ
> 1. (4.47)

It can be seen from (4.46) and (4.47) that

µh + γ+δ

κ
> 1 >

βh

(κ+µh)

⇒ µh + γ+δ

κ
>

βh

(κ+µh)

1 >
κβh

(κ+µh)(µh + γ+δ)
(4.48)

Also from (4.45c) and (4.45d) we obtain,

1 >
βv

θ+µc
(4.49)

99

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



and
µc

θ
> 1 (4.50)

It can be seen from (4.49) and (4.50) that,

µc

θ
> 1 >

βv

θ+µv
.

This implies
µc

θ
>

βv

θ+µc
,

thus
µc(θ+µc)

θβv
> 1 (4.51)

From (4.48) and (4.51) we get,

µc(θ+µc)

θβv
> 1 >

κβh

(κ+µh)(µh + γ+δ)
(4.52)

This implies
µc(θ+µc)

θβv
>

κβh

(κ+µh)(µh + γ+δ)
.

This is the same as

1 >
κβhθβv

µc(θ+µc)(κ+µh)(µh + γ+δ)

Hence

R 2
0 (0) < 1

=⇒ R0(0) < 1

Local Stability Analysis of Endemic Equilibrium Point

Theorem 4.8. The Endemic equilibrium (E1) is locally asymptotically stable if

R0(α)> 1.
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Proof. The Jacobian matrix evaluating at the Endemic equilibrium (E0) gives

Je =



a∗−α−µh 0 0 ρ 0 0 −b∗

−a∗ x∗ 0 0 0 0 b∗

0 κ u∗ 0 0 0 0

α 0 γ v∗ 0 0 0

0 0 −c∗ 0 d∗−µc 0 0

0 0 c∗ 0 −d∗ w∗ 0

0 0 0 0 0 θ −µc



(4.53)

u∗ =−(µh + γ+δ), x∗ =−(κ+µh), v∗ =−(µh +ρ), w∗ =−θ−µc,

a∗ =
a1

b1

a1 = (1−R 2
0 (α))µcµh(µh +κ)(µc +θ)(γ+µh +δ)(µh +α+ρ)

b1 = βh(θ+ µc)
(

κβv(ρ+ µh) + µc(δκρ+ δκµh + δρµh + δµ2
h + γκµh + γρµh +

γµ2
h +κρµh +κµ2

h +ρµ2
h +µ3

h)
)

b∗ =
a2

b2

a2 = βh(µh + κ)(µc + θ)(γ + µh + δ)
(

κβv(ρ + µh) + µc(δκρ + δκµh + δρµh +

δµ2
h + γκµh + γρµh + γµ2

h +κρµh +κµ2
h +ρµ2

h +µ3
h)
)

b2 = κβv

(
µh(µh+κ)(µh+α+ρ)(µc+θ)(γ+µh+δ)+βhθ(δκρ+δκµh+δρµh+

δµ2
h + γκµh + γρµh + γµ2

h +κρµh +κµ2
h +ρµ2

h +µ3
h)
)

c∗ =
a3

b3

a3 = βvµc

(
(µh(µh + κ)(µc + θ)(γ + µh + δ)(µh + α + ρ) + βhθ(δκρ + δκµh +

δρµh +δµ2
h + γκµh + γρµh + γµ2

h +κρµh +κµ2
h +ρµ2

h +µ3
h)
)

b3 = βhθ

(
κβv(ρ + µh) + µc(δκρ + δκµh + δρµh + δµ2

h + γκµh + γρµh + γµ2
h +

κρµh +κµ2
h +ρµ2

h +µ3
h)
)

d∗ =
a4

b4

a4 = (1−R 2
0 (α))µc(µh +κ)(µc +θ)(γ+µh +δ)(µh +α+ρ)

b4 =
(

κβv(ρ+ µh)+ (δκρ+ δκµh + δρµh + δµ2
h + γκµh + γρµh + γµ2

h +κρµh +

κµ2
h +ρµ2

h +µ3
h)
)

Using the corollary of Gershgorin’s circle theorem, the matrix (Je) will have
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negative eigenvalues if the following inequalities are satisfied. Thus,

aii <−
n

∑
j=1, j 6=i

| ai j | .

Therefore, Je we obtain the following.

From row 1

(a∗−µh−α)<−(ρ+b∗) (4.54a)

From row 2

µh +κ <−(a∗+b∗) (4.54b)

From row 3

−(δ+µh + γ)<−κ (4.54c)

From row 4

−(µh +ρ)<−(α+ γ) (4.54d)

From row 5

−µc <−(d∗− c∗) (4.54e)

From row 6

−(θ+µc)< (−d∗+ c∗) (4.54f)

From row 7

−µc <−θ. (4.54g)

The (4.55a) to (4.55g) can be rewritten as

µh +α > ρ+a∗+b∗ (4.55a)

1 >
a∗

µh +κ
+

b∗

µh +κ
(4.55b)

δ+µh + γ

κ
> 1 (4.55c)

α+ γ

µh +ρ
> 1 (4.55d)

µc > d∗+ c∗ (4.55e)
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θ+µc >−d∗+ c∗ (4.55f)

µc > θ (4.55g)

From (4.55b) and (4.55c) we get

δ+µh + γ

κ
> 1 >

a∗

µh +κ
+

b∗

µh +κ

δ+µh + γ

κ
>

a∗

µh +κ
+

b∗

µh +κ

1 >
a∗κ

(µh +κ)(δ+µh + γ)
+

b∗κ
(µh +κ)(δ+µh + γ)

(4.56)

Let a∗∗ =
a1κ

(µh +κ)(δ+µh + γ)
and b∗∗ =

b1κ

(µh +κ)(δ+µh + γ)

Then (4.56) becomes

1 > a∗∗+b∗∗ (4.57)

Adding (4.55e) and (4.55f) yields

θ+2µc > 2c∗ (4.58)

If

θ+2µc > 2c∗

then

2θ+2µc > 2c∗

so

2(θ+µc)> 2c∗

θ+µc > c∗

1 >
c∗

θ+µc

(4.59)

also from (4.55g) we get
µc

θ
> 1 (4.60)

From (4.59) and (4.60) we have

µc

θ
> 1 >

c∗

θ+µc
,
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this implies

1 >
c∗θ

(θ+µc)µc
.

But
c∗1θ

(θ+µc)µc
=

1
b∗∗

This implies (4.60) becomes

1 >
1

b∗∗

b∗∗ > 1

−1 > −b∗∗ (4.61)

Adding (4.57) and (4.61) gives

a∗∗ =
a11

b11

a11 = κ(1−R 2
0 (α))µcµh(µh +κ)θ(γ+µh +δ)(µh +α+ρ)

b11 = βh(θ+λv)
(

κβv(ρ+ µh)+ µc(δκρ+ δκµh + δρµh + δµ2
h + γκµh + γρµh +

γµ2
h +κρµh +κµ2

h +ρµ2
h +µ3

h

)
(µh +κ)(δ+µh + γ))

0 > a∗∗

0 > (1−R 2
0 (α))

R 2
0 (α) > 1 (4.62)

=⇒ R0(α) > 1 (4.63)

This implies that,

R 2
0 (0)> R 2

0 (α)> 1.

This shows that, if adequate and timely steps such as prevention, treat-

ment, educational and enlightenment campaign, etc. are taken in the course of

the epidemic, vector-host diseases such as malaria could be reduced or possibly

eradicated from our communities.
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Global Stability Analysis of the Malaria Model With Exposed Class

For a nonlinear population models, the eigenvalues of the linearized sys-

tem are normally used to establish their stability. These methods only estab-

lish the infinitesimal perturbations (local stability) of the initial state but the

real world populations are subjected to large perturbations, therefore it is very

important for a model to be stable relative to large perturbations in the initial

state. In this section, we deal with global properties of the malaria model with

exposed compartment using the approach given in Castillo-Chavez, Feng, and

Huang (2002) for the Disease Free Equilibrium.

Global stability conditions for the Disease Free Equilibrium

We have established that the disease-free equilibrium is locally asymptotic

stable (l.a.s) whenever R0 < 1 and unstabl when R0 > 1. Now, we want to

establish the global stability of the disease-free equilibrium.

According the Castillo-Chavez et al. (2002), for the system

Ṡh = µh−βhShIv−αSh +ρRh−µhSh

L̇h = βhShIv− (κ+µh)Lh

İh = κLh− (γ+µh +δ)Ih

Ṙh = γIh−µhRh +αSh−ρRh

Ṡv = µc−βvSvIh−µcSv

L̇v = βvSvIh−θLv−µcLv

İv = θLv−µcIv

(4.64)

with disease-free equilibrium E0 : (S0
h,L

0
h, I

0
h ,R

0
h,S

0
v ,L

0
v , I

0
v ) =( (µh +ρ)

(α+µh +ρ)
,0,0,

α

(α+ρ+µh)
,1,0,0

)
.

The two conditions that follow must be met in order to guarantee the global

asymptotic stability of the disease-free state. First, System (4.64) must be writ-
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ten in the form:

ẋ = F(x,I) (4.65)

Ė = G(x,I) G(x,0) = 0

where x ∈ R3 denotes (its components) the number of susceptible human, sus-

ceptible vector and recovered human(that is, uninfected individuals) and I ∈R4

denotes (its components) the number of latent human, infectious human, latent

vector and infectious vector (that is, infected individuals including latent and

infectious) E0 = (S0
h,L

0
h, I

0
h ,R

0
h,S

0
v ,L

0
v , I

0
v ) denotes the disease-free equilibrium

of this system. And the conditions (1) and (2) below must be met to guarantee

global asymptotic stability.

1. For
dx
dt

= F(x,0), x∗ is the globally asymptotic stable (g.a.s)

2. G(x,I) = AI− Ĝ(x,I), Ĝ(X,I)≥ 0 for (x,I) ∈ D,

where A = D1G(x∗,0) is an M-matrix (the off diagonal elements of A are non-

negative) and D is the region where the model makes biological sense. If System

(4.65) satisfies the above two conditions then the following theorem holds:

Theorem 4.9. The equilibrium point E0 is a globally asymptotic stable (g.a.s.)

equilibrium of (4.65) provided that R0 < 1 (l.a.s.) and that assumptions (l) and

(2) are satisfied.

Considering the system (4.64),

F(x,0) = ((ρ+µh)−Sh((α+ρ+µh)),α−Rh((α+ρ+µh)),1,0,0,0)

G(x,I) = AI− Ĝ(x,I)

A =



−(κ+µh) 0 0 βh

κ −(γ+µh +δ 0 0

0 βv −(θ+λv) 0

0 0 θ −λv


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Ĝ(x =



g1(x)

g2(x)

g3(x)

g4(x)


=



βhIv(1−Sh)

0

βvIh(1−Sv)

0


Since 0≤ Sh ≤ 1, and 0≤ Sv ≤ 1, it is clear that Ĝ(x)≥ 0.

It is also clear that, x∗ =
(

(ρ+µh)

((α+ρ+µh))
,

α

((α+ρ+µh))
,1,0,0,0,0

)
is a g.a.s

equilibrium of
d(x)
dt

= F(x,0). Hence, by the above theorem E0 is g.a.s.

Chapter Summary

We analysed the systems of five and seven non-linear differential equa-

tions which described the dynamics of malaria models with 3 variables for hu-

mans and 2 variables for mosquitoes and 4 variables for humans and 3 variables

for mosquitoes respectively. We demonstrated that there exists a domain where

the models are epidemiologically and mathematically well-posed.

We perform local stability analysis of the model. The next generation method is

used to derive the basic reproduction number, R0 , a threshold quantity that de-

termines whether a disease be eradicated or not. We investigated that if R0 < 1

then the disease-free equilibrium is stable and the disease can be eradicated

from the population by applying a corollary of Gershgorin’s circle theorem. We

have proved that the disease-free equilibrium is locally asymptotically stable if

R0 < 1 and unstable when R0 > 1 . And the endemic equilibrium point which

is locally asymptotically stable when R0 > 1. We used the (Castillo-Chavez et

al., 2002) approach for the global stability analysis.
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CHAPTER FIVE

PARAMETER ESTIMATIONS AND SIMULATIONS

Introduction

In this chapter, the malaria model with exposed compartment proposed in

Chapter Four is used to estimate parameters, perform sensitivity analysis and

carry out numerical simulations with data on confirmed malaria cases obtained

from the Central Regional Health Directorate of the Ghana Health Service. A

sensitivity analysis is carried out to determine the effect of each parameter on the

basic reproduction number R0. Numerical simulations are performed to deter-

mine an optimal combination of treatment and prevention needed to effectively

control malaria.

Estimating the Parameters for the Model

After formulating a model, one of the most important steps is to compare

the model with data or perform what is often referred to as validation. Model

validation is the process of determining the degree to which a mathematical

model is an accurate representation of the real-world data. It is very impor-

tant to link our models to data as this helps us to gain more confidence in the

model formulated and to obtain realistic estimates of the parameters. One of

the biggest challenge in epidemic modelling is the estimation of parameters in

the model validation process. There are different methods of estimating param-

eters. Commonly used methods are; Method of moments, Method of maximum

likelihood, Method of minimum χ2, Method of least squares and others.

A suitable curve for the model is obtained using the data by applying

Least Squares Estimation method. The method of least squares is about esti-

mating parameters by minimizing the squared discrepancies between observed

data and their expected values. It is a form of mathematical regression analysis
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that finds the line of best fit for the data set, providing a visual demonstration of

the relationship between the data points. Its aim is to create a straight line that

minimizes the sum of squares of the errors generated by the results of the asso-

ciated equations, such as the square residual values and the values anticipated

based on the model. Non-linear least squares is a form of least square analysis

used to fit a set of m observations with a model that is non-linear in n unknown

parameters.

Consider the system of ODEs,

dy
dt

= f(t,y;p), y(0) = y0, (5.1)

where y ∈ Rn, f ∈ Rn, and p = (p1, p2, · · · , pm) ∈ Rm, is the vector of unknown

parameters. Suppose, we have a collection of k data points: (t1,Y1),(t2,Y2), · · ·(tk,Yk).

The least squares method determines the optimal parameters, by minimizing the

sum of the squares of the residuals

E(p) =
k

∑
i=1
‖y(ti;p)−Yi‖2

2, (5.2)

where y(ti;p) is the parameter-dependent solution of (5.1) evaluated at the time

points ti, and Yi is the vector of observed values at times ti. In this notation, the

model (4.64) can be written in the form y(t;p) =



Sh(t,p)

Eh(t,p)

Ih(t,p)

Rh(t,p)

Sv(t,p)

Ev(t,p)

Iv(t,p)



,
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which is the state vector, and p =



Λh

βh

...

...

c


∈ Rm, is the parameter vector.

The nonlinear least-squares (nonlinear data-fitting) problem given in Equa-

tion (5.2) is implemented in a number of routines in MATLAB’s Optimization

Toolbox, including namely; lsqcurvefit, lsqnonlin, fminsearch and nlinfit. We

estimated the parameters of our model using lsqcurvefit.

Demographic Parameters

Most demographic parameters are well-known for a given population. In

the following, the parameters in the model (4.64) were estimated using data on

confirmed malaria cases from the Central Regional Health Directorate of the

Ghana Health Service from the year 2013 to 2017 (see appendix1A) and demo-

graphic statistics of Ghana. The population of the central region is 2,201,863

according to the 2010 population census (Service, 2013). With a growth rate of

3.1% per annum (www.indexmundi (2017 est) accessed 23/07/2018), it is esti-

mated that the population of the central region for year 2017 is 2,567,369. The

mean population from 2009 to 2017 is 2,567,369.

The mean of the data on confirmed malaria cases is given as; 58745,56029,

55069,55819, 58773,67299, 67621,60664, 51910,58955,57289, 57501

Figure 6 shows the plot of the mean of the data on confirmed malaria cases in

months.
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Figure 6: A Plot of the Mean of the Data on Confirmed Malaria Cases.

A fourth order Runge-Kutta numerical scheme is used to perform numer-

ical simulations in Matlab

The natural mortality for human µ : The natural mortality is postulated to be

equal to the inverse of the life expectancy at birth, Life expectancy at birth

in Ghana for the year 2018 is 63.5 (WHO 2018 accessed 07/10/2018), that is

µ =
1

(63.5)(365.25)
per day.

Recovery rate γ : It is assumed that it will take 7 days for humans to recover

from malaria infection through proper treatment process, that is, γ =
1
7

per day.

Lost of immunity ρ : It is also assumed that a person who has completely recov-

ered from malaria will lose his/her malaria acquired immunity after 6 months

based on information received from medical malaria researchers in Ghana, so

ρ =
1

180
per day.

The natural mortality for mosquito λv : The life expectancy of an adult anophe-

les mosquito is assumed to be 25 days (N. R. Chitnis, 2005), which means
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λv =
1

25
per day.

Finally, the mosquitoes population is taken to be five times that of the human

population. Therefore, Nh = 2,567,369 and Nv = 12,836,845.

Table 8 shows the estimated parameters and their sources for model (4.64). The

rates are given per day.

Table 8: Model Parameters and Values

Parameters Value Unit Source

µh 0.0000431 day−1 WHO2018 accessed 07/10/2018

κ 0.140705 day−1 Estimated

γ
1
7

day−1 Estimated

βh 0.837773 day−1 Estimated

α 0.5 day−1 Estimated

δ 0.000008 day−1 Estimated

ρ 0.0056 day−1 Calculated

λv 0.033 day−1 Calculated

θ 0.291499 day−1 Estimated

βv 0.729255 day−1 Estimated

Sensitivity Analysis

The assessment of the changes associated with model outcomes as the

model parameters are varied is the main goal of sensitivity analysis. This method

is very important because it helps us to identify the weak points in the model.These

can then be strengthened by experimentation, or simply noted and caution taken

in any application. For a simple model, it is done by differentiate the outcome

with respect to each parameter in turn. The derivatives give the exact rate of
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change of predictions with respect to the parameters.

To know how best to reduce or eradicate an infectious disease such as malaria,

and to minimize it mortality, it is essential to know the relative importance of

different factors responsible for its transmission and prevalence. Since errors

normally occur in data collection and presumed estimation parameter and ini-

tial condition values used for fitting is often subject to variation, we determine

the relative importance of the model on parameter disease transmission by per-

forming the sensitivity analysis. Moreover, because, the prefixed parameters are

selected from a range, the fitted parameters may also vary in a range. Hence,

a variation in the parameters varies the output of the model, but the question

lies in determining the parameters which has the most significant impact on the

output. There are several ways in which one can perform sensitivity analysis,

either by performing it on a dynamical system or on static quantities such as

the reproduction number or equilibrial prevalence. In order to perform sensitiv-

ity analysis of a dynamical system, we assume that there is a dependence of a

parameter say p by the differential equations, such that:

z
′
i(t) = fi(z1, ...,zn, t, p), i = 1, ...,n.

The parameter p represents one of the coefficients in the system or in the

initial conditions. Thus, the solution of the initial value problem takes into ac-

count the function of both the time variable t and the parameter p : zi(t, p), i =

1, ...,n.

Initial disease transmission is directly related to R0, and disease prevalence is

directly related to the endemic equilibrium point, specifically the sizes of Eh, Ih,

Rh, Ev and Iv. These sizes represent the individuals (humans and mosquitoes)

who have some life stage of Plasmodium in their bodies. The fraction of infec-

tious humans, Ih, is especially important because it represents the people that

suffer the most and is directly related to the total number of malaria deaths. We
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calculate the sensitivity indices of the reproductive number, R0, to the different

parameters in the model. These indices tell us how crucial each parameter is

to disease transmission and prevalence. In conducting the sensitivity analysis,

we use methods described by (N. Chitnis et al., 2008). The normalized forward

sensitivity index of a variable to a parameter is the ratio of the relative change in

the variable to the relative change in the parameter. When the variable is a dif-

ferentiable function of the parameter, the sensitivity index may be alternatively

defined using partial derivatives.

Definition 5.1. A parameter is said to be sensitive if small change in the param-

eter value produce a large changes in the solution of the differential equations.

The derivative of the solution for the parameter is used to examine a change in

the solution of the model with respect to the particular parameter. The partial

derivatives may be used to define the sensitivity index.

Definition 5.2. The normalized forward sensitivity index of a variable, u, that

depends continuously on a parameter, p, is defined as:

ϒ
u
p =

∂u
∂p

.
p
u

The sensitivity indices of the model 5.3 and model 4.64 are computed for

each parameter involved in our R0. The numerical values obtained after solving

the respective partial derivative for the parameters in our R0.
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Table 9: R0(α) Values With Respect to Model Parameters for (4.64) and (5.3)

Parameters sign Value of R0 with cα Value of R0 with c = 0

c - 0.4547 0

µh - 0.0071 0.9240

κ + 0.2044 0.8985

γ - 0.9996 0.9990

α - 1.4437 0.9890

δ - 0.000056 0.000056

ρ + 0.9813 0.000051

λv - 0.7276 1.3640

θ - 0.1823 0.6983

βh + 1 1

βv + 1 1
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The dynamics of these parameters by the use of box plots are shown be-

low:

Figure 7: The Box Plot for the Parameters With Their Influence on The R0 For

Malaria Model With cα.

Figure 8: The Box Plot for the Parameters With Their Influence on The R0 for

Malaria Model Without cα.

The sensitivity index with negative signs indicates that, for an increase in
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the corresponding parameters there is a decrease in the value of the reproduction

number R0 while parameters with positive signs implies that the value of the re-

production number increases when the corresponding parameters are increased.

It is noted that the sensitivity index of R0 with respect to βv and βh do not depend

on the values of the parameters because ϒ
R0
βv

=
∂R0

∂βv
.
βv

R0
and ϒ

R0
βh

=
∂R0

∂βh
.
βh

R0
are

always exactly equal to 1.

For the model (4.64), the most sensitive parameter is the prevention rate

α which is
(

ϒ
R0
α =

∂R0

∂α
.

α

R0
= −1.4437

)
, the basic number R0 decreases as

prevention rate increases which support the claim that prevention rate has effect

on both human and vector populations. The second sensitive parameter is treat-

ment rate γ that is,
(

ϒ
R0
γ =

∂R0

∂γ
.

γ

R0
=−0.9996

)
, the basic reproduction number

R0, decreases as treatment increase.For the model (5.3), the most sensitive pa-

rameter is the mosquito birth rate λv which is
(

ϒ
R0
λv

=
∂R0

∂λv
.
λv

R0
= −1.3640

)
,

the basic reproduction number decreases as the mosquito birth rate increases.

We would expect R0 to increase because increasing λv increases the number

of mosquitoes. However, the mosquito birth rate is density dependent. As

the birth rate increases and the number of mosquitoes increases, the death rate

also increases because the environment can only support a certain number of

mosquitoes. Therefore, the average lifespan of the mosquito also decreases.

Mathematically, at equilibrium population size, the per capita birth rate, λv ,

is equal to the per capita death rate. Thus, at equilibrium, λv is also the per

capita death rate; and with an exponential distribution for the death rate,
1
λv

is

the expected lifespan of the mosquitoes. As the latent period of Plasmodium

in mosquitoes is of the same order as the lifespan of the mosquitoes, shorten-

ing the lifespan of the mosquito reduces the reproductive number. Thus any

changes in λv have two opposite effects. Increasing λv increases the mosquitoes

population which tends to increase R0, and also decreases the mosquito lifespan

which tends to reduce R0. The second sensitive parameter is treatment rate γ that
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is,
(

ϒ
R0
γ =

∂R0

∂γ
.

γ

R0
= −0.9990

)
, the basic reproduction number R0, decreases

as treatment increase. This means that, as more infected humans are treated the

disease reduces.

The sensitivity index of R0 with respect to the control parameter α is,
(

ϒ
R0
α =

∂R0

∂α
.

α

R0
=−0.9890

)
, which means alpha has a great impact on the reduction of

the disease malaria as expected. For almost all parameters, the sign of the sen-

sitivity indices of R0 (i.e., whether R0 increases or decreases when a parameter

increases) corresponds with an intuitive expectation.

Basic Reproduction Number, R0(α)

The basic reproduction number with α = 0.5, γ =
1
7

and other parameter

values taking from Table 8 is

R0(α) = 0.7746

The Relationship Between R0(α) and R0(0)

From Chapter Four, we have

R 2
0 (α) = 0.8221 < R 2

0 (0) = 10.3366

and it true because from the calculation, This shows that if there is no prevention

strategy in place, the communities as well as the regions and the country will

be endemic but if proper prevention strategies (α) are adopted and we get the

estimated number of people needed to stick to the prevention strategies, the

infectious disease malaria could be eradicated from our communities.

Numerical Simulations

In this section, we present the numerical analysis of the model. A numeri-

cal simulation of the model is conducted to find out the dynamics of the disease
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in the human and vector populations. The simulations were conducted using

MATLAB’s ode45.

The initial conditions used are proportions of the total humans and mosquito

populations given as Sh = 0.7961, Eh = 0, Ih = 0.2039, Rh = 0, Sv =

0.89, Ev = 0, Iv = 0.11.

The plots tells us the impact of the current interventions we are practicing

in the country.
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Figure 9: A Plot Illustrating the Changes in the Four State Variables of the

Malaria Model Showing the Dynamics With Time, of Susceptible Hu-

mans, Exposed Humans, Infected Humans and Shows the Dynamics

of Recovered Humans.
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Figure 10: A Plot Illustrating the Changes in the Three State Variables of the

Malaria Model Showing the Dynamics With Time, of Susceptible,

Exposed and Infectious Mosquitoes.

In Figure 9 and Figure 10, the curves of the two disease classes of the

human population and the three vector classes are decreasing as time increases,

which is positive for the current interventions in the human population, but there

is still more work to be done in the human population. Therefore, we will con-

sider the effects of varying the main parameters responsible for malaria control

after considering malaria prevalence rate in the population now.

Prevalence in the Malaria Model

Prevalence is defined as the ratio of the number of cases of a disease in a

population and with the number of individuals in a population at a given time.
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Figure 11: A Plot Illustrating changes of Prevalence with Time.

Figure 11 shows that the prevalence rate as of now is high which confirms

that there is more work to be done if we want to achieve malaria free society.

The main strategy that will be considered for controlling malaria is to find

the right combinations of preventative measures and treatment needed to reduce

or eradicate malaria by considering:

1. The percentage of people needed to carry out the preventative strategies

in order to eradicate malaria.

2. The percentage of infected people needed to seek proper treatment to help

eradicate malaria.

Our simulations examine the effect of different combinations of treatment

and preventative measures on the transmission of the disease.
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Effect of Treatment on the Infected Human and Vector Populations (4.64)

In this section, we examine the effect of treatment on the infected human

and vector populations . The analysis of the effect of increasing the treatment

rate at some levels of ”prevention” is done by keeping prevention rate constant

and varying treatment rate. This gives different values of R0 for fixed values

of alpha (prevention) and varying values of gamma (treatment). Specifically,

gamma assumed the values 0.1,0.2,0.4,0.6,0.8 for each fixed value of alpha.
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Table 10: R0(α) values for Fixed α and Varying γ for (4.64)

alpha values gamma values R0(α) with c = 0.05

0.1 0.1 2.5055

0.1 0.2 1.7718

0.1 0.4 1.2530

0.1 0.6 1.0231

0.1 0.8 0.8860

0.2 0.1 1.6911

0.2 0.2 1.1959

0.2 0.4 0.8457

0.2 0.6 0.6905

0.2 0.8 0.5980

0.4 0.1 1.0834

0.4 0.2 0.7662

0.4 0.4 0.5418

0.4 0.6 0.4424

0.4 0.8 0.3831

0.6 0.1 0.8095

0.6 0.2 0.5724

0.6 0.4 0.4048

0.6 0.6 0.3305

0.6 0.8 0.2863

0.8 0.1 0.6476

0.8 0.2 0.4580

0.8 0.4 0.3239

0.8 0.6 0.2644

0.8 0.8 0.2290
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From Table 10, it can be observed that some R0(α) values are less than

1, which imply that if we have those levels of prevention and treatment, there is

the possibility of reducing or eradicating this infectious disease.

Plots showing the effect of keeping prevention rate constant and varying treat-

ment rate on the infected human population.
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Figure 12: Plot of Infected Human Population Against Time With α = 0.1.
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Figure 13: Plot of Infected Human Population Against Time With α = 0.2.

Time(days)

10 20 30 40 50 60 70 80 90 100

In
fe

c
te

d
 h

u
m

a
n

 p
o

p
u

la
ti
o

n

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

← γ =0.1,α = 0.4

← γ = 0.2, α = 0.4

← γ = 0.4, α = 0.4

← γ = 0.6, α = 0.4

← γ = 0.8, α = 0.4

Figure 14: Plot of Infected Human Population Against Time With α = 0.4.
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Figure 15: Plot of Infected Human Population Against Time With α = 0.6.
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Figure 16: Plot of Infected Human Population Against Time With α = 0.8.

From Figure 12 to 16, it can be observed that, holding the prevention rate

constant and increasing treatment rate from 0.1 through to 0.8, for each constant
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prevention rate, the number of infected humans increases to a maximum and

then decreases to a certain minimum. For instance, with α= 0.1 and γ= 0.1, the

proportion of infected human population increases to 0.27 and then decreases

to about 0.01. The R0(α) values for γ = 0.1,0.2,0.4,0.6 are all greater than 1

except γ = 0.8. This means they will all converge to the endemic equilibrium

except γ = 0.8 which converges to the disease free equilibrium.

Also, with α= 0.2 and γ= 0.1 and 0.2 the infected human population con-

verge to the endemic equilibrium but for γ > 0.4 the infected human population

converge to the disease free equilibrium.

For α = 0.4 the infected human population converge to the disease free

equilibrium accept for γ≥ 0.2. and γ = 0.1 which converge to the endemic equi-

librium. But for α = 0.6 and 0.8, the infected human population converge to

the disease free equilibrium for all levels of γ. That is all curves converges to

disease free equilibrium. The Figure 17 to Figure 21 shows the effect of keep-

ing prevention rate constant and varying treatment rate on the infected vector

population
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Figure 17: Plot of Infected Vector Population Against Time With α = 0.1.
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Figure 18: Plot of Infected Vector Population Against Time With α = 0.2.
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Figure 19: Plot of Infected Vector Population Against Time With α = 0.4.
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Figure 20: Plot of Infected Vector Population Against Time With α = 0.6.
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Figure 21: Plot of Infected Vector Population Against Time With α = 0.8.

From figures 17 to 21, we display the effect of various rates of treatment

of the infected human on the infected mosquito population. The figures show

that increasing the rate of treatment decreases the infected mosquito popula-

tion. Fix prevention rates and varying values of treatment rate from 0.1 to 0.8

for each fix prevention rate yield significant drop in the proportion of infected

mosquitoes number. This means that there will be less infected mosquitoes and

less susceptible humans to propagate the disease.

Effect of a Prevention on the Infected Human and Vector Populations for

Model (4.64)

We examine the effect of prevention on the infected populations by keep-

ing treatment constant and varying prevention rate (α = 0.1,0.2,0.4,0.6,0.8 ).

The table and diagrams below, show the effect of increasing the prevention rate

at some constant levels of ”treatments”. Thus, it gives different values of R0 as

gamma (treatment) is fixed and alpha (prevention) varied.
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Table 11: R0(α) Values for Fixed γ and Varying α for (4.64)

gamma values alpha values R0(α) with c = 0.05

0.1 0.1 2.5055

0.1 0.2 1.6911

0.1 0.4 1.0834

0.1 0.6 0.8095

0.1 0.8 0.6476

0.2 0.1 1.7718

0.2 0.2 1.1959

0.2 0.4 0.7662

0.2 0.6 0.5724

0.2 0.8 0.4580

0.4 0.1 1.2530

0.4 0.2 0.8457

0.4 0.4 0.5418

0.4 0.6 0.4048

0.4 0.8 0.3239

0.6 0.1 1.0231

0.6 0.2 0.6905

0.6 0.4 0.4424

0.6 0.6 0.3305

0.6 0.8 0.2644

0.8 0.1 0.8860
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Figure 22: Plot of Infected Human Population Against Time With γ = 0.1.
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Figure 23: Plot of Infected Human Population Against Time With γ = 0.2.
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Figure 24: Plot of Infected Human Population Against Time With γ = 0.4.
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Figure 25: Plot of Infected Human Population Against Time With γ = 0.6.

133

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



Time(days)

10 20 30 40 50 60 70 80 90 100

In
fe

c
te

d
 h

u
m

a
n

s
 p

o
p

u
la

ti
o

n

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

←  α  =0.1,γ  =0.8

←  α  = 0.2, γ  = 0.8

←  α  = 0.4, γ = 0.8

←  α  = 0.6, γ  = 0.8

←  α = 0.8, γ = 0.8

Figure 26: Plot of Infected Human Population Against Time With γ = 0.8.

Figures 22 to 26, show the effect of ”prevention” on the infected human

population. Holding treatment rate at fixed values and varying the prevention

from 0.1 to 0.8, the infected humans population dropped. The plot of vector

population against time by keeping gamma constant and varying alpha.
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Figure 27: Plot of Infected Vector Population Against Time With γ = 0.1.
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Figure 28: Plot of Infected Vector Population Against Time With γ = 0.2.
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Figure 29: Plot of Infected Vector Population Against Time With γ = 0.4.
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Figure 30: Plot of Infected Vector Population Against Time With γ = 0.6.
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Figure 31: Plot of Infected Vector Population Against Time With γ = 0.8.

In Figures 27 to 31, we examine the effect of increasing the prevention

rate of the infected human on the infected mosquito population, Iv . It can be

observed that, holding the ”treatment rate” constant at some fixed values and

increasing prevention rate from 0.1 through to 0.8 decreases the number of in-

fected mosquito. The implication is that, the susceptible mosquitoes find it dif-

ficult to find an infected human to bite and the prevention rate also contribute to

the death of mosquitoes in all the class. If the cycle continues, it will decreasing

their population in the long run and the end result will be a malaria-free society.

Effect of Treatment With Constant Alpha and Increasing Values Of c

In this section, the value of c is increased form 0 to 0.25 with constant

alpha value of 0.4 and varying gamma values 0.1,0.2,0.4,0.6,0.8. The value of

R0(α) for each c is computed and the graph for each c value draw.
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Table 12: Table Showing the Value of R0(α) for Each c Values With Fixed α

Values and Varying γ for Model (4.64)

alpha values 0.1 0.2 0.4 0.6 0.8

gamma values 0.4 0.4 0.4 0.4 0.4

R0(α) for c = 0.1 0.9127 0.6454 0.4564 0.3726 0.3227

R0(α) for c = 0.15 0.7952 0.5623 0.3976 0.3247 0.2812

R0(α) for c = 0.2 0.7080 0.5007 0.3541 0.2891 0.2504

R0(α) for c = 0.2 0.6401 0.4527 0.3201 0.2614 0.2264
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Figure 32: Plot of Infected Human Population Against Time With α = 0.4.
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Figure 33: Plot of Infected Vector Population Against Time With c = 0.1.
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Figure 34: Plot of Infected Vector Population Against Time With c = 0.15.
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Figure 35: Plot of Infected Vector Population Against Time With c = 0.2.
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Figure 36: Plot of Infected Vector Population Against Time With c = 0.25.

From Figure 33 to Figure 36 it can be seen that as the value of c increases

the infected vector population decreases to zero faster. For instance, from Figure
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33, it takes about 70 days before the infected vector population decreases to

zero whiles in Figure 36 it takes just 42 days for the infected vector to decrease

to zero. Also, from Table 12, the value of R0(α) decreases as the value of c

increases, which confirms that cα contribute to the death rate of mosquitoes.

Effect of Varying cα with Fixed gamma

We examine the effect of increasing prevention rate while keeping treat-

ment constant. The Table 13 show the corresponding R0(α) values of c as c

increase form 0 to 0.25 with constant gamma value of 0.4 and varying alpha

values 0.1,0.15,0.2,0.25. and the graph for each c value draw .

Table 13: R0(α) Values for Different c With γ = 0.4 and Varying α for (4.64)

alpha values 0.4 0.4 0.4 0.4 0.4

gamma values 0.1 0.2 0.4 0.6 0.8

R0(α) for c = 0.1 0.89436 0.64103 0.45641 0.37353 0.32386

R0(α) for c = 0.15 0.779241 0.55851 0.397667 0.32544 0.282176

R0(α) for c = 0.2 0.69384 0.497308 0.354087 0.28978 0.251253

R0(α) for c = 0.25 0.627311 0.44962 0.320134 0.261996 0.22716
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Figure 37: Plot of Infected Human Population Against Time With c = 0.1.
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Figure 38: Plot of Infected Vector Population Against Time With c = 0.1.

142

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



Time(days)

10 20 30 40 50 60 70 80 90 100

In
fe

c
te

d
 v

e
c
to

r 
p

o
p

u
la

ti
o

n

0

0.05

0.1

0.15

0.2

0.25

0.3

alpha = 0.1

alpha = 0.2

alpha = 0.4

alpha = 0.6

alpha = 0.8

Figure 39: Plot of Infected Vector Population Against Time With c = 0.15.
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Figure 40: Plot of Infected Vector Population Against Time With c = 0.2.
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Figure 41: Plot of Infected Vector Population Against Time With c = 0.25 .

From Figure 38 to Figure 41, it can be observed that as c increases the

infected vector population decreases to zero. And, from Table 13, the value of

R0(α) decreases as the value of c increases, which indicate that cα has effect on

the death rate of mosquitoes.

Analysis of Model Without Effect of Prevention Effort on Vector Population

In the previous section, we looked at the graphs and basic reproduction

numbers on the effect of prevention and treatment on a malaria model with effect

of prevention strategies on the vector population. In this section, we compare

the graphs and basic reproduction numbers on the effect of prevention strategies

and treatment of the malaria model with c = 0 of equation (4.64). If c = 0, then
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the model (4.64) becomes;

Ṡh = µh−βhShIv−αSh +ρRh−µhSh

L̇h = βhShIv− (κ+µh)Lh

İh = κLh− (γ+µh +δ)Ih

Ṙh = γIh−µhRh +αSh−ρRh

Ṡv = λv−βvSvIh−λvSv

L̇v = βvSvIh− (θ+λv)Lv

İv = θLv−λvIv

(5.3)

Effect of Treatment on the Infected Human and Vector Populations for

Model (5.3)

The effect of prevention on the infected human and vector populations

is determine for model (5.3). Different values of R0 for fixed values of alpha

(prevention) whiles the values of gamma (treatment) are varied. Specifically,

gamma assumed the values 0.1,0.2,0.4,0.6,0.8 for each fixed value of alpha

are shown the Table 14.
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Table 14: R0(α) Values for Fixed α and Varying γ for (5.3)

alpha values gamma values R0(α) with c = 0.05

0.1 0.1 2.6774

0.1 0.2 1.8934

0.1 0.4 1.3390

0.1 0.6 1.0933

0.1 0.8 0.9468

0.2 0.1 1.9190

0.2 0.2 1.3571

0.2 0.4 0.9597

0.2 0.6 0.7836

0.2 0.8 0.6786

0.4 0.1 1.3663

0.4 0.2 0.9663

0.4 0.4 0.6833

0.4 0.6 0.5579

0.4 0.8 0.4832

0.6 0.1 1.1182

0.6 0.2 0.7908

0.6 0.4 0.5592

0.6 0.6 0.4566

0.6 0.8 0.3954

0.8 0.1 0.9695

0.8 0.2 0.6857

0.8 0.4 0.4849

0.8 0.6 0.3959

0.8 0.8 0.3429
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Figure 42: Plot of Infected Human Population Against Time With α = 0.1.
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Figure 43: Plot of Infected Human Population Against Time With α = 0.2.
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Figure 44: Plot of Infected Human Population against Time with α = 0.4.
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Figure 45: Plot of Infected Human Population Against Time With α = 0.6.
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Figure 46: Plot of Infected Human Population Against Time With α = 0.8.

The Figures 47 to Figure 51 show the effect of keeping prevention rate

fixed and varying treatment rate on the infected vector population.
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Figure 47: Plot of Infected Vector Population Against Time With α = 0.1.
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Figure 48: Plot of Infected Vector Population Against Time With α = 0.2.
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Figure 49: Plot of Infected Vector Population Against Time With α = 0.4.
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Figure 50: Plot of Infected Vector Population Against Time With α = 0.6.
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Figure 51: Plot of Infected Vector Population Against Time With α = 0.8.
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Effect of Prevention on the Infected Human and Vector Populations for

Model (5.3)

We determine the effect of treatment on the infected populations. The Ta-

ble 15 and diagrams that follow, analyze the effect on increasing the prevention

rate at some fixed levels of ”treatments”. Table 15 shows different values of R0

as gamma (treatment) is fixed for some values and alpha (prevention) varied.
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Table 15: R0(α) Values for Fixed γ and Varying α For (5.3)

gamma values alpha values R0(α) with c = 0.05

0.1 0.1 2.6774

0.1 0.2 1.9190

0.1 0.4 1.3663

0.1 0.6 1.1182

0.1 0.8 0.9695

0.2 0.1 1.8934

0.2 0.2 1.3571

0.2 0.4 0.9663

0.2 0.6 0.7908

0.2 0.8 0.6857

0.4 0.1 1.3390

0.4 0.2 0.9597

0.4 0.4 0.6833

0.4 0.6 0.5592

0.4 0.8 0.4849

0.6 0.1 1.0933

0.6 0.2 0.7836

0.6 0.4 0.5579

0.6 0.6 0.4566

0.6 0.8 0.3959

0.8 0.1 0.9468

0.8 0.2 0.6786

0.8 0.4 0.4832

0.8 0.6 0.3954

0.8 0.8 0.3429
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It can be observed that, the values for R0 in Table 10 and Table 11 are less

than the R0 values for Table 14 and Table 15. This means that cα has an impart

on the value of R0.
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Figure 52: Plot of Infected Human Population Against Time With γ = 0.1.
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Figure 53: Plot of Infected Human Population Against Time With γ = 0.2.
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Figure 54: Plot of Infected Human Population Against Time With γ = 0.4.
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Figure 55: Plot of Infected Human Population Against Time With γ = 0.6.
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Figure 56: Plot of Infected Human Population Against Time With γ = 0.8.

Figure 52 to Figure 56, show the effect of ”prevention” on the infected

human population. Holding treatment rate constant at 0.1, 0.2, 0.4, 0.6, and

156

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



0.8, and varying the prevention from 0.1 to 0.8 for each fix gamma, the infected

humans population dropped.
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Figure 57: Plot of Infected Vector Population Against Time With γ = 0.1.
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Figure 58: Plot of Infected Vector Population Against Time With γ = 0.2.
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Figure 59: Plot of Infected Vector Population Against Time With γ = 0.4.
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Figure 60: Plot of Infected Vector Population Against Time With γ = 0.6.
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Figure 61: Plot of Infected Vector Population Against Time With γ = 0.8.

It can be observed that, R0 values for model (4.64) are less all the R0

values for model (5.3), this confirms that the model (4.64) which is malaria

model with effect of prevention α with effect on the vector population gives

a better result than model (5.3). Comparing Figures (17-21) to Figures (47-51)

show the impact of prevention rate α on the vector population. It can be seen that

for the graphs of the model (4.64, the infected population get to zero faster than

the graphs of model (sevens). This means that through a concerted effort with

treatment level of about 40% (that is ,if about 40% of the infected human seek

proper treatment) and about 50% and above prevention rate (which is if 50% or

more of the population adhere to the prevention strategies ) it will help to reduce

or eradicate malaria in the small neighbourhood which is the communities and

country as whole.
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Chapter Summary

The parameters for the model (4.64) were estimated and the estimated

parameters were used to compute for the basic reproduction and for numeri-

cal simulation. Graphs were plotted and comparisons were done between the

graph of malaria model with the effect of prevention parameter on the vector to

malaria model without the effect of prevention parameter on the vector. Sen-

sitivity analysis was also done for the models considered in this thesis and the

results discussed.
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CHAPTER SIX

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

In this chapter, the summary and conclusion of the study is presented.

Some recommendations based on the work done is also presented.

Summary

The main objective of this thesis was to formulate mathematical models

of some selected infectious disease and analyse the behaviour of these models

at their equilibrium point (i.e Local and Global stability analysis). A mathemat-

ical model for effective control of a vector host (malaria model) with exposed

compartment was also formulated.

The main method used to analyse the local stability of the equilibrium

points of epidemic models is the Lyapunov’s indirect method, that is, to de-

termine whether the eigenvalues of the Jacobian matrix evaluated at the equilib-

rium points of the system are negative or have negative real part (that is, lie in

the left half of the complex plane).

Since the characteristic equation for an n− dimensional system is a poly-

nomial equation of degree n for which it may be difficult or impossible to find

all roots explicitly, the Routh-Hurwitz criterion is widely used in analyzing the

stability of the equilibrium point. The Routh Hurwitz criterion gives necessary

and sufficient conditions for the eigenvalues to lie in the left half of the complex

plane. While the Routh-Hurwitz criterion may be useful on occasion (ie small

system or system of low order), it is complicated to apply in problem of many

dimensions (Brauer & Castillo-Chaves, 2000). The Routh-Hurwitz condition

also becomes intractable especially when the number of states exceed 3.
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In this study, a corollary of Gershgorin’s circle theorem (3.1) was used to

establish the local stability of some selected epidemic models.

The second part of Chapter Three was devoted to investigating local sta-

bility of some general epidemic models (SIR, SEIR and SEIRS models) using

a Corollary of Gershgorin’s Circle Theorem. The investigation of local stability

of some selected infectious diseases ( an HIV/AIDS model and a Tuberculo-

sis model) using a corollary of Gershgorin’s circle theorem was also done in

the latter part of the chapter. In the Chapter Four, formulation and analysis

of a mathematical model to better understand the transmission and spread of a

vector-host model (malaria) was done. Mathematically, malaria model without

exposed compartment is formulated (that is, SIRS for the host population and

SI for the vector population) and malaria model similar to that of (N. R. Chit-

nis, 2005) with exposed compartment (that is, SEIRS for the host population

and SEI for the vector population) but there is an effect of prevention rate to the

vector population were modelled. It was shown that there exists a domain where

the model is epidemiologically and mathematically well-posed.

A basic reproductive number, (R0) was defined, which is epidemiolog-

ically accurate in that it provides the expected number of new infections (in

mosquitoes or humans) from one infectious individual (human or mosquito)

over the duration of the infectious period given that all other members of the

population are susceptible. The basic reproduction numbers R0(0) of the vector-

host models without α was compared to basic reproduction numbers with α

(R0(α)). A corollary of Gershgorin’s circle theorem was used to established

that the disease free equilibrium is locally asymptotical stable if R0 < 1, which

means the disease can not persist and the endemic equilibrium is also locally

asymptotical stable if R0 > 1, which implies the disease can persist.

The conditions used by (Castillo-Chavez et al., 2002) was used to es-

tablished that the disease free equilibrium is globally asymptotically stable if
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R0 < 0. From the data on confirmed malaria cases from the Central Regional

Directorate of Ghana Health Service, the unknown Parameters in the malaria

model with exposed compartment were estimated. The estimated values and

known values from literature for the parameters were used to perform numer-

ical simulations using MATLAB’s ode45 and sensitivity analysis of the model

was also performed. Sensitivity analysis of the parameters to the basic repro-

duction number to known how sensitive each of the parameter in the formula for

the R0 towards the eradication of the malaria was carried out. Conclusions were

drawn based on the values of the control parameters. The values of R0(α) and

R0(0) were calculated and the two results were compared. The result showed

that if proper prevention strategy (α) are adopted, the infectious disease malaria

could be eradicated from our communities.

Some ways of reducing man-vector contact and treatment were looked at,

that is, the right combinations of the levels of ”the preventive measures pro-

gram” and ”treatment rate” needed to reduce or possibly eradicate the malaria.

Conclusions

A corollary of the Gershgorin’s circle theorem was used to establish the

local stability of different epidemic models. It was observed that no matter the

state or the dimension of the system or matrix this corollary can be used to

analyse local stability for both disease free and endemic equilibrium, by estab-

lishing that if R0 < 1, the Jacobian matrix will have negative or negative real

part eigenvalues. Thus, disease free equilibrium is stable but if R0 > 1, the Ja-

cobian matrix will have negative or negative real part eigenvalues making the

endemic equilibrium is stable.

The comparison of the basic reproduction numbers (R0) of the malaria

models without α to the model with α was done. It was observed that, the

basic reproduction number R0(α) was less than R0(0). This means that if the
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prevention strategy stated in chapter two is followed properly, malaria will go

on extinction in our communities and the country as a whole. Because from

the value of R0(0) if there is no prevention strategy in place, the communities

as well as the regions and the country will be endemic but if right levels of

prevention strategies (α) are adopted and if the estimated number of people

stick to the prevention strategies, then malaria could be eradicated from our

communities.

From the sensitivity analysis, for the model (4.64), the most sensitive pa-

rameter is the prevention rate α = −1.4437, the basic number R0 decreases as

prevention rate increases which support the claim that prevention rate has ef-

fect on both human and vector populations. The second sensitive parameter is

treatment rate γ = −0.9996, the basic reproduction number R0, decreases as

treatment increase. For the model (5.3), the most sensitive parameter is the

mosquito birth rate λv = −1.3640, the basic reproduction number decreases

as the mosquito birth rate increases. We would expect R0 to increase because

increasing λv increases the number of mosquitoes. However, the mosquito

birth rate is density dependent. As the birth rate increases and the number of

mosquitoes increases, the death rate also increases because the environment can

only support a certain number of mosquitoes. Therefore, the average lifespan

of the mosquito also decreases. Mathematically, at equilibrium population size,

the per capita birth rate, λv , is equal to the per capita death rate. Thus, at equi-

librium, λv is also the per capita death rate; and with an exponential distribution

for the death rate,
1
λv

is the expected lifespan of the mosquitoes. As the la-

tent period of Plasmodium in mosquitoes is of the same order as the lifespan of

the mosquitoes, shortening the lifespan of the mosquito reduces the reproduc-

tive number. Thus any changes in λv have two opposite effects. Increasing λv

increases the mosquitoes population which tends to increase R0, and also de-

creases the mosquito lifespan which tends to reduce R0. The second sensitive
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parameter is treatment rate γ =−0.9990, the basic reproduction number R0, de-

creases as treatment increase. This means that, as more infected humans are

treated the disease reduces.

The sensitivity index of R0 with respect to the control parameter α =

−0.9890, which means alpha has a great impact on the reduction of malaria

as expected. For almost all the parameters, the sign of the sensitivity indices of

R0 (i.e., whether R0 increases or decreases when a parameter increases) corre-

sponds with an intuitive expectation.

Some ways of reducing man-vector contact and treatment were carried

out. It was observed that, if all ”the preventive measures programme” stated are

carried out properly to cover at least 40% of the entire population and around

50% or more of the infected population are diagnosed and treated early, malaria

cases in these sets of closed neighbourhoods (is, the communities) and the en-

tire region (Central Region) as well as the whole country will be brought to the

barest minimum. Because from Figure 22, the infected human populations in-

crease and it takes a longer time before it decreases, but with Figures 14 and 24,

the infected human populations decrease and approach zero within the shortest

possible time. For instance, from Figure 12, for γ = 0.1 and α = 0.1, the in-

fected human populations increase to about 0.27 before it decreases to 0.01 in

more than 100 days and it still converges to the endemic equilibrium, while in

Figure 16, for γ = 0.8 and α = 0.8, the infected human populations decrease

to 0 in just about 25 days. This means for γ = 0.8 and α = 0.8, there will be

no infectious humans available for susceptible mosquitoes to become infectious

after 25 days of applying the stated control strategies properly.

Also, in Figure 17 for γ = 0.1 and α = 0.1, it takes more than 100 days

for the infected vector population to reduces to 0.01 whiles form Figure 16 for

γ = 0.8 and α = 0.8, it takes about 65 days for the infected vector population

to reduces to 0 which is the disease free equilibrium but Figure 17 with γ = 0.1
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and α = 0.1, converges to the endemic equilibrium. This means for γ = 0.8

and α = 0.8, there will be no infectious vector available for susceptible human

to become infected. Similarly, in Figure 27 for γ = 0.1 and α = 0.1, it takes a

longer time for the infected vector population reduces to 0.01 while it takes a

shorter time in Figure 31 for γ = 0.8 and α = 0.8, to get to 0.

Thus, the existence of mosquitoes will not necessarily increase the rate

of malaria infection. Humans and mosquitoes can co-exist in the communities

without malaria because mosquitoes are also needed in the food chain and may

have some economical importance to human.

Different values of c were picked with fixed α value of 0.4, varying values

of gamma from 0.1 to 0.8 and c from 0.1 to 0.25 and fixed gamma value of 0.4,

varying values of alpha from 0.1 to 0.8 with the same c values, it was observed

that, as c increases the infected vector population decreases to zero faster. For

instance, from Figure 33 to Figure 36 and Figure 38 to Figure 41, as the value

of c increases the vector population decreases to zero faster. Looking at Figure

33, it takes about 70 days before the vector population decreases to zero whiles

in Figure 36 it takes just 42 days for the vector to decrease to zero. Similarly, in

Figure 38 it takes about 45 days for the infected vector population to decrease to

zero but in Figure 41 it take just 25 for the infected vector population to decrease

to zero. Also, from Table 12 and Table 13, the values of R0(α) decreases as

the value of c increases, which confirms that cα contribute to the death rate of

mosquitoes.

Since cα is the proportion of preventive measure that contribute to the

death rate of the vector population, it is suggested that if by concerted effort

about 40% and above of the people in the closed neighbourhood (that is, the

communities) apply due diligence to the preventive measures states in Chapter

three and about 40% and above of the infected human are treated well, there will

be no infected human to infect the mosquitoes. Also, since the mosquito’s life
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expectancy is just 30, all the infected mosquitoes will die out and this will help

humans and mosquitoes to co-exist in the communities without malaria. There

are many places in the world such as Cape Town in South Africa and Maryland

in USA where mosquitoes abound but has not yet recorded malaria cases.

Furthermore, it can seen From Figure 17 to Figure 21 and Figure 27 to

Figure 31 that it takes a shorter time for the infected vector population to de-

crease to zero or the minimum value while from Figure 47 to Figure 51 and

Figure 57 to Figure 61 it takes longer time for the infected vector population to

decrease to the zero or the minimum value. These graphs show the impact of

prevention rate α on the vector population.

Recommendations

From the results of this work, it is recommended that, the corollary of

Gershgorin’s circle theorem that gives a necessary condition for the eigenvalues

to lie in the left half of the complex plane (that is, the eigenvalues of the matrix

(A) are negative or have negative real part) provides a simple way out in local

stability analysis. Since it does not matter the state or the dimension of the

system or matrix it can be used to investigate epidemic models without struggle.

Because the characteristic equation for an n− dimension system is a polynomial

equation of degree n for which it may be difficult or impossible to find all roots

explicitly, and the Routh-Hurwitz condition also becomes intractable especially

when the number of states exceed 3.

Also, Malaria eradication continues to pose a big challenge to National

Malaria Control Programme in most developing countries, hence there is the

need to strengthen the control strategies at hand as well as looking for some new

ones, because observations from Figures 24 to 26 show that increasing clinical

treatment rate has positive impact on controlling the disease because increasing
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treatment rate reduces the basic reproduction. Prompt and effective diagnosis

and treatment of infected individuals can avoid severe or complicated malaria

and reduce malaria related deaths. Intermittent prophylactic treatment should

be encouraged during pregnancy and for infants.

The prevention measures campaign should be intensified, because from

Figures 14 to 16, it can be seen that increasing prevention rate also has positive

impact on controlling the disease.

The prevention strategies stated in chapter two and the treatment should

go hand in hand in the eradication process.

Future Work

The model will be eventually validated by applying it to malaria data of

the entire country (Ghana). Bifurcation analysis to model applied to the data for

the entire country will also be studied. Furthermore, application of optimal con-

trol method to obtain cost effective combinations of prevention and treatment

levels is needed to control the disease that can drastically reduce the disease and

possibly eradicate it.
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Gómez, D. (2006). A more direct proof of gerschgorin´ s theorem.
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APPENDICES

APPENDIX A : Data and code for the Plot of Curve of Best Fit

Period Total Malaria Cases

January February March April May June July August September Oct.

Nov. December

2013 82680 73049 66203 66874 77111 91850 99551 86145 74224 95954 87150

83686

2014 61574 71532 63776 51730 57725 65101 53835 52198 43329 44244 42266

42836

2015 46936 42645 51483 57158 47945 61312 71619 57932 49113 50718 51645

56601

2016 53604 46633 45839 57347 53266 59300 53888 54201 48209 56671 53185

46943

2017 48933 46285 48044 45988 57817 58930 59213 52844 44674 47190 52201

57438

Mean 58745 5602 55069 55819 58773 67299 67621 60664 51910 58955 57289

57501

function sevenODE˙lsqcurvefitFB2

clear all

function Y = Bigode(p, t)

%% y0=[2508655;0;58745;0;12540120;3780;293000];

y0=[1267369;0;58836;0;12740000;6120;90725;];

%Initial states
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[T,Yv]=ode45(@sevenfun,t,y0);

%

function dY = sevenfun(t,y)

f1=p(1);

f2=p(2);

% Daily Parameters estimates

%% a1=0.000215;a2=0.007;b1=(1/17);b2=(1/18);g=0.05;

%% d1=0.0000548;d2=(1/30);e1=(0.001);e2=(1/200);r=0.2;

%

% Monthly parameter Estimates

%a1=0.00645;a2=0.21;b1=30/17;b2=30/18;g=0.05;

%d1=0.001644;d2=1;e1=0.065;e2=30/200;r=0.2;

%a1=0.00152;a2=0.21;b1=30/11;b2=30/18;g=0.04;

%d1=0.001284;e2=30/200;r=0.3;e1=0.0594;%d2=30/25;

a1=0.00152;a2=0.21;b1=30/14;b2=30/11;g=0.1;

d1=0.00128;e1=0.0594;e2=30/200;r=0.25;%d2=30/25;

N=2567700;

M=12836900;

%% N =2567369;

%% M= 2332390;
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Sh=y(1);

Eh=y(2);

Ih=y(3);

Rh=y(4);

Sm=y(5);

Em=y(6);

Im=y(7);

c=0.05;

dydt = zeros (size(y));

dydt(1) = a1- f1*Sh*(Im/M) - (d1 +r)*Sh + e2*Rh;

dydt(2) = f1*Sh*(Im/M) - (b1 + d1)*Eh;

dydt(3) = b1*Eh - (g + d1 + e1)*Ih;

dydt(4) = g*Ih - (e2 +d1)*Rh +r*Sh;

dydt(5) = a2 - f2*Sm*(Ih/N) - (a2+c*r)*Sm;

dydt(6) = f2*Sm*(Ih/N) - (b2 + a2+c*r)*Em;

dydt(7) = b2*Em -( a2+c*r)*Im;

dY = dydt;

%dydt = [dydt(1); dydt(2); dydt(3);““

dydt(4); dydt(5); dydt(6); dydt(7)];

end

Tpts=T;

Y=Yv(:,3);

sizeYv=size(Yv)

Y˙v=Yv

end

t=[1 2 3 4 5 6 7 8 9 10 11 12]’;
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y= [58745,56029,55069,55819, 58773,67299,““

67621,60664, 51910,58955,57289, 57501]’;

p0=[0.8 0.5 ]’;

[p,Rsdnrm,Rsd,ExFlg,OptmInfo,Lmda,Jmat]=““

lsqcurvefit(@Bigode,p0,t,y);

fprintf(1,’“tRate Constants:“n’)

for k1 = 1:length(p)

fprintf(1, ’“t“tp(%d) = %8.5f“n’, k1, p(k1))

end

P=p

normRsd=Rsdnrm

tv = linspace(min(t), max(t));

Yfit = Bigode(P, tv);

sizeYfit=size(Yfit);

Yfit˙data = Bigode(P, t)

err = Yfit˙data - y

figure(1)

plot(t, y, ’o’)

hold on

hlp = plot(tv, Yfit);

hold off
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%grid

xlim([1,12])

ylim([40000,80000])

title(’plot of mean of monthly data’)

xlabel(’Time(months)’)

ylabel(’infected human’)

%legend(hlp, ’Y˙1(t)’, ’Location’,’N’)

legend(’data’,’bestfit ’)

figure(2)

plot(t,Yv(:,1),’r’,t,Yv(:,2),’g’,t,Yv(:,3),’b’,t,

Yv(:,4),’y’)

title(’Plot of human population against time’)

xlim([1,12])

xlabel(’Time(years)’)

ylabel(’Number of People’)

legend(’Susceptible ’,’Exposed ’,’Infectious ’,

’Recovered ’,2)

figure(3)

plot(t,Yv(:,5),’r’,t,Yv(:,6),’g’,t,Yv(:,7),’b’)

title(’Plot of vector population against time’)

xlim([1,12])

xlabel(’Time(months)’)

ylabel(’Number of vectors’)

legend(’Susceptible vector ’,’Exposed vector’,

’Infectious vector’,2)
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figure(4)

plot(t,Yv(:,1),’r’)

title(’Plot of susceptible human population

against time’)

xlim([1,12])

xlabel(’Time(months)’)

ylabel(’Number of humans’)

figure(5)

plot(t,Yv(:,2),’b’)

title(’Plot of exposed human population

against time’)

xlim([1,12])

xlabel(’Time(months)’)

ylabel(’Number of humans’)

figure(6)

plot(t,Yv(:,3),’y’)

title(’Plot of infected human population

against time’)

xlim([1,12])

xlabel(’Time(months)’)

ylabel(’Number of humans’)

figure(7)

plot(t,Yv(:,4),’g’)

title(’Plot of recovered human population
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against time’)

xlim([1,12])

xlabel(’Time(months)’)

ylabel(’Number of humans’)

figure(8)

plot(t,Yv(:,5),’b’)

title(’Plot of susceptible vector population

against time’)

xlim([1,12])

xlabel(’Time(months)’)

ylabel(’Number of vectors’)

figure(9)

plot(t,Yv(:,6),’g’)

title(’Plot of exposed vector population

against time’)

xlim([1,12])

xlabel(’Time(months)’)

ylabel(’Number of vectors’)

figure(10)

plot(t,Yv(:,7),’r’)

title(’Plot of infected vector population

against time’)

xlim([1,12])

xlabel(’Time(months)’)

ylabel(’Number of vectors’)
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%R0 = sqrt(((d1+e2)*f2*f1*a1*b2*b1)/((r+d1+e2)*““

(b1+d1)*(g+d1+e1)*(b2+a2)*a2))

end
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APPENDIX B: Matlab code for Parameter Estimation

function sevenALL˙lsqcurvefitFBopt2

function t2c

clear all

%% format long

function Y = Bigode(p, t)

y0=p(10:16);

%% y0=[2507000;1655;58745;0;12740120;3780;93000];

%y0=[204;0;53;0;1019;3;262;];

%% y0=[1200000;800000;523565;0;11188475;1617825;

30600];

% y0=[1750000;250000;523565;0;12188475;648425; 0];

%% y0=[1544135;500000;523565;0;10030600;2188475;

617825;];

%%y0=[2567369;0;58836;0;12740000;6120;90725;]; ““

%Initial states

[T,Yv]=ode45(@sevenfun,t,y0);

%

function dY = sevenfun(t,y)

%% b˙h=p(1); Transmission rate for humans

%% b˙v=p(2); Transmission rate for mosquitoes

%% a1=p(3); Recruitment rate for humans

%% a2=p(4); Recruitment rate for mosquitoes

%% b1=p(5); Progression rate for humnas
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%% b2=p(6); Progression rate for mosquitoes

%% c=p(7); vaccination rate

%% r=p(8); Recovery rate

%% e1=p(9); Disease induced death rate

%% e2=p(10); Loss of immunity

%% d1=p(11); Natural death rate for humans

%% d2=p(12); Natural death rate for mosquitoes

N=1;

M=1;

%

Sh=y(1);

Eh=y(2);

Ih=y(3);

Rh=y(4);

Sm=y(5);

Em=y(6);

Im=y(7);

%

p(3)= 0.000047467;

%% p(3)=0.0217/(360);

%%indexmundi(2017 est) 29/03/2019

p(4)=0.04;

p12=0.0002373;

%p(4)=;

%p(5)=0.1;
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%p(6)=0.091;

%p(7)=0.02;

%p(8)=0.7;

%p(9)=0.0035%

p10=1/(180);

p11=1/(63.5*365);

% p(11)=1/(63.5);

%%WHO2018 07/10/2018

% p(4)=1/30;

c=0.05;

dydt = zeros (size(y));

dydt(1) = p(3)- p(1)*Sh*(Im/M) - (p11 +p(7))*Sh + p10*Rh;

dydt(2) = p(1)*Sh*(Im/M) - (p(5) + p11)*Eh;

dydt(3) = p(5)*Eh - (p(8) + p11 + p(9))*Ih;

dydt(4) = p(8)*Ih - (p10+p11)*Rh +p(7)*Sh;

%%dydt(5) = p(4)*M- p(2)*Sm*(Ih/N) - p(4)*Sm;

dydt(5) = p12 - p(2)*Sm*(Ih/N) - (p(4)+c*p(7))*Sm;

dydt(6) = p(2)*Sm*(Ih/N) - (p(6) + p(4)+c*p(7))*Em;

dydt(7) = p(6)*Em - (p(4)+c*p(7))*Im;

dY = dydt;

end

Tpts=T;

Y=Yv(:,3);

sizeYv=size(Yv)

Y˙v=Yv

end

y=(1.0e+05/2567700) *[5.2356 5.5507 5.8657 6.286295 6.70685 ““
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7.127405 7.54796 7.831035...

8.1141 8.466846 8.819582 9.172318 9.525054 9.87779 ““

8.9960 9.201738...

8.525686 7.849634 7.173582 6.49755 6.3853 6.2731 6.2785...

6.2838 6.2307 6.1776]’;

% Initial parameter guesses

% [p(1) P(2) p(3) p(4) p(5) p(6) p(7) p(8) p(9) p(10) p(11) p(12)];

% [b˙h b˙v a1 a2 b1 b2 c r e1 e2 d1 d2]

%

%format long

%y0=[1750000 250000 523565 0 12188475 648425 0];

pt0 = [p0 y0]’;

%lb=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]’;

%ub=[1 1 1 1 1 1 1 1 1 2.6*10ˆ6 10ˆ6 10ˆ6 10ˆ6 13*10ˆ6

10ˆ6 10ˆ6]’;

lb=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]’;

ub=[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ]’;

[p,Rsdnrm,Rsd,ExFlg,OptmInfo,Lmda,Jmat]=lsqcurvefit““

(@Bigode,pt0,t,y,lb,ub);

P=p

fprintf(1,’“tRate Constants:“n’)

for k1 = 1:length(P)
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fprintf(1, ’“t“tP(%d) = %8.6f“n’, k1, P(k1))

end

sizeRsd = size(Rsd)

Residual=Rsd

tv = linspace(min(t), max(t));

Yfit = Bigode(P, tv);

size˙tv= size(tv)

size˙Yfit=size(Yfit)

Yfit˙data = Bigode(P, t)

err = Yfit˙data - y

normRsd=Rsdnrm

figure(1)

plot(t, y, ’o’)

hold on

hlp = plot(tv, Yfit);

hold off

%grid

xlim([1,26])

%ylim([50000,68000])

title(’plot of mean of monthly data’)

xlabel(’Time(months)’)

ylabel(’infected’)

%legend(hlp, ’Y˙1(t)’, ’Location’,’N’)

legend(’data’,’bestfit ’)

figure(2)
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% plot(tv,Yfit(:,1),’r’,tv,Yfit(:,2),’g’,tv,Yfit(:,3),““

’b’,tv,Yfit(:,4),’k’)

plot(t,Yv(:,1),’r’,t,Yv(:,2),’g’,t,Yv(:,3),’b’,

t,Yv(:,4),’y’)

title(’Plot of human populations against time’)

xlim([1,26])

%ylim([40000,3000000])

xlabel(’Time(years)’)

ylabel(’Humna Populations’)

legend(’Susceptible ’,’Exposed ’,’Infectious ’,

’Recovered ’,2)

figure(3)

%% plot(tv,Yfit(:,5),’r’,tv,Yfit(:,6),’g’,

tv,Yfit(:,7),’b’)

plot(t,Yv(:,5),’r’,t,Yv(:,6),’g’,t,Yv(:,7),’b’)

title(’Plot of vector population against time’)

xlim([1,26])

%ylim([40000,13000000])

xlabel(’Time(months)’)

ylabel(’Vector Populations’)

legend(’Susceptible vector ’,’Exposed vector’,““

’Infectious vector’,2)

figure(4)

plot(t,Yv(:,1),’r’)

title(’Plot of susceptible human population

against time’)
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xlim([1,26])

xlabel(’Time(months)’)

ylabel(’Number of humans’)

figure(5)

plot(t,Yv(:,2),’b’)

title(’Plot of exposed human population against time’)

xlim([1,26])

xlabel(’Time(months)’)

ylabel(’Number of humans’)

figure(6)

plot(t,Yv(:,3),’g’)

title(’Plot of infected human population against time’)

xlim([1,26])

xlabel(’Time(months)’)

ylabel(’Number of humans’)

figure(7)

plot(t,Yv(:,4),’k’)

title(’Plot of recovered human population against time’)

xlim([1,26])

xlabel(’Time(months)’)

ylabel(’Number of humans’)

figure(8)

plot(t,Yv(:,5),’b’)
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title(’Plot of susceptible vector population against time’)

xlim([1,26])

xlabel(’Time(months)’)

ylabel(’Number of vectors’)

figure(9)

plot(t,Yv(:,6),’m’)

title(’Plot of exposed vector population against time’)

xlim([1,26])

xlabel(’Time(months)’)

ylabel(’Number of vectors’)

figure(10)

plot(t,Yv(:,7),’g’)

title(’Plot of infected vector population against time’)

xlim([1,26])

xlabel(’Time(months)’)

ylabel(’Number of vectors’)

% Calculate R˙0

P(10)=1/(200);

P(11)=1/(63.5*365);

P(12)=1/30;

b˙h=P(1); b˙v=P(2); a1=P(3); a2=P(4); b1=P(5); b2=P(6);
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c=P(7); r=P(8); e1=P(9); e2=P(10); d1=P(11); d2=P(12);

R0 = sqrt(((d1+e2)*b˙h*b˙v*a1*b2*b1)/((r+d1+e2)*““

(b1+d1)*(c+d1+e1)*(b2+a2)*a2))

end
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APPENDIX C: Simulations

format long

tspan =1:180;

%%y0=[1200000;800000;523565;0;9648380;““

1617825;1570695];

%y0=[2414793;172179;515271;1000000;12999030;““

1504;233168;];

%y0=[0.709817;0.265597;0.206593;0.405566;0.966447;““

0.089243;0.000113;];

%y0=[0.989062;0.187707;0.207499;0.346842;0.998910;““

0.000079;0.067232;];

%y0=[0.709817;0.265597;0.206593;0.405566;0.966447;““

0.089243;0.000113;];

%y0=[0.95;0;0.05;0;0.98;0;0.02;];

y0=[0.7961 0 0.2039 0 0.89 0 0.11];

% Integrate the ODEs with the optimal parameter values

[t,y] = ode45(@cg514,tspan,y0,[])

%lsqcurvefit

%loading data

%y=[523565 586574 754796 811411 987779 649753 627307

628384 617765];

%I=x(2:end,3) - data’;

%p(7) = 0.1;

%p(8) = 0.1;

tspan = (0:.1:180);

t˙vals = (1:180);
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figure(1)

plot(t,y(:,1),’r’,t,y(:,2),’g’,t,y(:,3),’b’,t,y(:,4),’k’)

%title(’Plot of human population against time’)

xlim([1,180])

%xlim([1,365])

%ylim(0,1])

xlabel(’Time(days)’)

ylabel(’human populations’)

legend(’Susceptible ’,’Exposed ’,’Infectious ’,’Recovered ’,2)

figure(2)

plot(t,y(:,5),’r’,t,y(:,6),’g’,t,y(:,7),’b’)

%title(’Plot of vector population against time’)

xlim([1,180])

%ylim(0,1])

%xlim([1,365])

%ylim([40000,13000000])

xlabel(’Time(days)’)

ylabel(’vector population’)

legend(’Susceptible vector ’,’Exposed vector’,’Infectious vector’,2)

figure(3)

plot(t,y(:,1),’r’)

%title(’Plot of susceptible human““

population against time’)

%xlim([1,365])

xlim([1,180])
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%ylim([0,1])

xlabel(’Time(days)’)

ylabel(’susceptible human population’)

figure(4)

plot(t,y(:,2),’b’)

%title(’Plot of exposed human population against time’)

%xlim([1,365])

xlim([1,180])

%ylim([0,1])

xlabel(’Time(days)’)

ylabel(’exposed human population’)

figure(5)

plot(t,y(:,3),’k’)

%title(’Plot of infected human ““

population against time’)

%xlim([1,365])

xlim([1,180])

%ylim([0,1])

%ylim([0,0.35])

xlabel(’Time(days)’)

ylabel(’infected human population’)

figure(6)

plot(t,y(:,4),’g’)
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%title(’Plot of recovered human ““

population against time’)

%xlim([1,365])

xlim([1,180])

xlabel(’Time(days)’)

ylabel(’recovered human population’)

figure(7)

plot(t,y(:,5),’b’)

%title(’Plot of susceptible vector ““

population against time’)

%xlim([1,365])

xlim([1,180])

xlabel(’Time(days)’)

ylabel(’susceptible vector population’)

figure(8)

plot(t,y(:,6),’g’)

%title(’Plot of exposed vector ““

population against time’)

%xlim([1,365])

xlim([1,180])

xlabel(’Time(days)’)

ylabel(’exposed vector population’)

figure(9)

plot(t,y(:,7),’r’)

%title(’Plot of infected vector ““

194

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



population against time’)

xlim([1,180])

%xlim([1,365])

xlabel(’Time(days)’)

ylabel(’infected vector population’)

figure(10)

plot(t,y(:,1),’r’,t,y(:,2),’g’,t,y(:,3),““

’b’,t,y(:,4),’k’,t,y(:,5),’y’,t,y(:,6),’m’,t,y(:,7),’c’)

%title(’Plot of all solutions’)

%xlim([1,365])

xlim([1,180])

%ylim([40000,3000000])

xlabel(’Time(days)’)

ylabel(’all populations’)

legend(’Susceptible host ’,’Exposed host’,““

’Infectious host’,’Recovered host’, ’Susceptible vector““

’,’Exposed vector ’,’Infectious vector’,2)
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APPENDIX D: Matlab code for the Plot of fixed alpha and varying gamma

Matlab code for the plot of infected human““

and vector population against time with““

fixed values of alpha and varying gamma values““

format long

tspan =1:360;

%y0=[0.722376;0.269204;0.204495;0.277203;...

0.962685;0.151393;0.003099;];

%y0=[2177829;160723;516646;1000000;12579547;

0;333719;];

%y0=[2414793;172179;515271;1000000;12999030;

1504;233168;];

%y0=[0.709817;0.265597;0.206593;0.405566;

0.966447;0.089243;0.000113;];

%y0=[0.7961 0 0.2039 0 0.89 0 0.11];

%y0=[0.95;0;0.05;0;0.98;0;0.02;];

y0=[0.7961 0 0.2039 0 0.89 0 0.11];

% Integrate the ODEs with the optimal

parameter values

tspan = (0:.1:100);

t˙vals = (1:100);

figure(1)

[t,y] = ode45(@c11,tspan,y0,[])
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plot(t,y(:,3),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.1’;

%txt = ’“leftarrow gamma = 1’;

text(17,0.24,txt)

%title(’infected human population

against time with varying gamma and constant

alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

xlabel(’Time(days)’)

ylabel(’Infected human population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@c12,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(12,0.15,txt)

%m(1).color=’red’;

plot(t,y(:,3),’b’)

%hold on

%[t,y] = ode45(@c13,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.3, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

%text(12,0.1,txt)
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%m(1).color=’red’;

%plot(t,y(:,3),’m’)

hold on

[t,y] = ode45(@c14,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(13,0.07,txt)

plot(t,y(:,3),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@c16,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(10,0.05,txt)

plot(t,y(:,3),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@c18,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(19,0.02,txt)

plot(t,y(:,3),’c’)

%legend(’v=0.4’,2)

hold off
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figure(2)

[t,y] = ode45(@c11,tspan,y0,[])

plot(t,y(:,7),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.1’;

%txt = ’“leftarrow gamma = 1’;

text(15,0.43,txt)

%title(’infected human population

against time with varying gamma and constant

alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

xlabel(’Time(days)’)

ylabel(’Infected vector population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@c12,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(15,0.38,txt)

%m(1).color=’red’;

plot(t,y(:,7),’b’)

%hold on

%[t,y] = ode45(@c13,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.3, “alpha = 0.1’;
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%txt = ’“leftarrow gamma = 1’;

%text(18,0.32,txt)

%m(1).color=’red’;

%plot(t,y(:,7),’m’)

hold on

[t,y] = ode45(@c14,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(24,0.24,txt)

plot(t,y(:,7),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@c16,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(28,0.17,txt)

plot(t,y(:,7),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@c18,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(36,0.11,txt)

plot(t,y(:,7),’c’)

%legend(’v=0.4’,2)
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figure(3)

[t,y] = ode45(@c21,tspan,y0,[])

plot(t,y(:,3),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.2’;

%txt = ’“leftarrow gamma = 1’;

text(13,0.2,txt)

%title(’infected human population

against time with varying gamma and constant

alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

ylim([0,0.25])

xlabel(’Time(days)’)

ylabel(’Infected human population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@c22,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(2,0.15,txt)

%m(1).color=’red’;

plot(t,y(:,3),’b’)
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%hold on

%[t,y] = ode45(@c23,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.3, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

%text(4,0.1,txt)

%m(1).color=’red’;

%plot(t,y(:,3),’m’)

hold on

[t,y] = ode45(@c24,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(5,0.07,txt)

plot(t,y(:,3),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@c26,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(12,0.03,txt)

plot(t,y(:,3),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@c28,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;
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text(16,0.015,txt)

plot(t,y(:,3),’c’)

%legend(’v=0.4’,2)

hold off

figure(4)

[t,y] = ode45(@c21,tspan,y0,[])

plot(t,y(:,7),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.2’;

%txt = ’“leftarrow gamma = 1’;

text(16,0.38,txt)

%title(’infected human population

against time with varying gamma and constant

alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

%ylim([0,0.5])

xlabel(’Time(days)’)

ylabel(’Infected vector population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@c22,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(17,0.32,txt)
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%m(1).color=’red’;

plot(t,y(:,7),’b’)

%hold on

%[t,y] = ode45(@c23,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.3, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

%text(18,0.27,txt)

%m(1).color=’red’;

%plot(t,y(:,7),’m’)

hold on

[t,y] = ode45(@c24,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(19,0.23,txt)

plot(t,y(:,7),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@c26,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(22,0.17,txt)

plot(t,y(:,7),’r’)

%legend(’v=0.4’,2)

hold on
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[t,y] = ode45(@c28,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(26,0.12,txt)

plot(t,y(:,7),’c’)

%legend(’v=0.4’,2)

%figure(5)

%[t,y] = ode45(@c31,tspan,y0,[])

%plot(t,y(:,3),’k’)

%txt=’“leftarrow “gamma =0.1,“alpha =0.3’;

%txt = ’“leftarrow gamma = 1’;

%text(9,0.18,txt)

%title(’infected human population

against time with varying gamma and constant

alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

%xlim([1,100])

%xlabel(’Time(days)’)

%ylabel(’Infected human population’)

%legend(’v=0.1’,2)

%hold on

%[t,y] = ode45(@c32,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.2, “alpha = 0.3’;
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%txt = ’“leftarrow gamma = 1’;

%text(2,0.15,txt)

%m(1).color=’red’;

%plot(t,y(:,3),’b’)

%hold on

%[t,y] = ode45(@c33,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.3, “alpha = 0.3’;

%txt = ’“leftarrow gamma = 1’;

%text(2,0.12,txt)

%m(1).color=’red’;

%plot(t,y(:,3),’m’)

%hold on

%[t,y] = ode45(@c34,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.4, “alpha = 0.3’;

%txt = ’“leftarrow gamma = 1’;

%text(6,0.06,txt)

%plot(t,y(:,3),’g’)

%legend(’v=0.3’,2)

%hold on

%[t,y] = ode45(@c36,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.6, “alpha = 0.3’;

%txt = ’“leftarrow gamma = 1’;

%text(4,0.04,txt)

%plot(t,y(:,3),’r’)

%legend(’v=0.4’,2)
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%hold on

%[t,y] = ode45(@c38,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.8, “alpha = 0.3’;

%txt = ’“leftarrow gamma = 1’;

%text(9,0.02,txt)

%plot(t,y(:,3),’c’)

%legend(’v=0.4’,2)

%hold off

%figure(6)

%[t,y] = ode45(@c31,tspan,y0,[])

%plot(t,y(:,7),’k’)

%txt=’“leftarrow “gamma =0.1,“alpha =0.3’;

%txt = ’“leftarrow gamma = 1’;

%text(15,0.35,txt)

%title(’infected human population against time

with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

%xlim([1,100])

%xlabel(’Time(days)’)

%ylim([0,0.5])

%ylabel(’Infected vector population’)

%legend(’v=0.1’,2)

%hold on
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%[t,y] = ode45(@c32,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.2, “alpha = 0.3’;

%txt = ’“leftarrow gamma = 1’;

%text(16,0.29,txt)

%m(1).color=’red’;

%plot(t,y(:,7),’b’)

%hold on

%[t,y] = ode45(@c33,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.3, “alpha = 0.3’;

%txt = ’“leftarrow gamma = 1’;

%text(17,0.24,txt)

%m(1).color=’red’;

%plot(t,y(:,7),’m’)

%hold on

%[t,y] = ode45(@c34,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.4, “alpha = 0.3’;

%txt = ’“leftarrow gamma = 1’;

%text(19,0.2,txt)

%plot(t,y(:,7),’g’)

%legend(’v=0.3’,2)

%hold on

%[t,y] = ode45(@c36,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.6, “alpha = 0.3’;

%txt = ’“leftarrow gamma = 1’;

%text(22,0.14,txt)
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%plot(t,y(:,7),’r’)

%legend(’v=0.4’,2)

%hold on

%[t,y] = ode45(@c38,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.8, “alpha = 0.3’;

%txt = ’“leftarrow gamma = 1’;

%text(26,0.1,txt)

%plot(t,y(:,7),’c’)

%legend(’v=0.4’,2)

figure(5)

[t,y] = ode45(@c41,tspan,y0,[])

plot(t,y(:,3),’k’)

txt=’“leftarrow “gamma =0.1,“alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(7,0.17,txt)

%title(’infected human population

against time with varying gamma and

constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

xlabel(’Time(days)’)

ylabel(’Infected human population’)
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%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@c42,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(2,0.15,txt)

%m(1)8olor=’red’;

plot(t,y(:,3),’b’)

%hold on

%[t,y] = ode45(@c43,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.3, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

%text(2,0.12,txt)

%m(1).color=’red’;

%plot(t,y(:,3),’m’)

hold on

[t,y] = ode45(@c44,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(3,0.09,txt)

plot(t,y(:,3),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@c46,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.4’;
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%txt = ’“leftarrow gamma = 1’;

text(3,0.06,txt)

plot(t,y(:,3),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@c48,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(7,0.02,txt)

plot(t,y(:,3),’c’)

%legend(’v=0.4’,2)

hold off

figure(6)

[t,y] = ode45(@c41,tspan,y0,[])

plot(t,y(:,7),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.4’;

%txt = ’“leftarrow gamma = 1’;

text(15,0.32,txt)

%title(’infected human population

against time with varying gamma and

constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

ylim([0,0.45])
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xlabel(’Time(days)’)

ylabel(’Infected vector population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@c42,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(15,0.27,txt)

%m(1).color=’red’;

plot(t,y(:,7),’b’)

%hold on

%[t,y] = ode45(@c43,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.3, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

%text(17,0.21,txt)

%m(1).color=’red’;

%plot(t,y(:,7),’m’)

hold on

[t,y] = ode45(@c44,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(21,0.16,txt)

plot(t,y(:,7),’g’)

%legend(’v=0.3’,2)
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hold on

[t,y] = ode45(@c46,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(23,0.11,txt)

plot(t,y(:,7),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@c48,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(31,0.06,txt)

plot(t,y(:,7),’c’)

%legend(’v=0.4’,2)

figure(7)

[t,y] = ode45(@c61,tspan,y0,[])

plot(t,y(:,3),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.6’;

%txt = ’“leftarrow gamma = 1’;

text(2,0.18,txt)

%title(’infected human population

against time with varying gamma and

constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;
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xlim([1,100])

xlabel(’Time(days)’)

ylabel(’Infected human population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@c62,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(2.5,0.14,txt)

%m(1).color=’red’;

plot(t,y(:,3),’b’)

%hold on

%[t,y] = ode45(@c63,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.3, “alpha = 0.6’;

%%txt = ’“leftarrow gamma = 1’;

%text(3,0.1,txt)

%%m(1).color=’red’;

%plot(t,y(:,3),’m’)

hold on

[t,y] = ode45(@c64,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(3.5,0.07,txt)

plot(t,y(:,3),’g’)
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%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@c66,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(3,0.05,txt)

plot(t,y(:,3),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@c68,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(4,0.02,txt)

plot(t,y(:,3),’c’)

%legend(’v=0.4’,2)

hold off

figure(8)

[t,y] = ode45(@c61,tspan,y0,[])

plot(t,y(:,7),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.6’;

%txt = ’“leftarrow gamma = 1’;

text(12,0.29,txt)

%title(’infected human population

against time with varying gamma and

constant alpha = 0.1’)

%xlim([1,365])
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%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

xlabel(’Time(days)’)

ylabel(’Infected vector population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@c62,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(13,0.24,txt)

%m(1).color=’red’;

plot(t,y(:,7),’b’)

%hold on

%[t,y] = ode45(@c63,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.3, “alpha = 0.6’;

%%txt = ’“leftarrow gamma = 1’;

%text(14,0.20,txt)

%%m(1).color=’red’;

%plot(t,y(:,7),’m’)

hold on

[t,y] = ode45(@c64,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;
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text(16.5,0.15,txt)

plot(t,y(:,7),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@c66,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(19.5,0.1,txt)

plot(t,y(:,7),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@c68,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(25,0.06,txt)

plot(t,y(:,7),’c’)

%legend(’v=0.4’,2)

figure(9)

[t,y] = ode45(@c81,tspan,y0,[])

plot(t,y(:,3),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.8’;

%txt = ’“leftarrow gamma = 1’;

text(2,0.18,txt)

%title(’infected human population against
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time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

xlabel(’Time(days)’)

ylabel(’Infected humans population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@c82,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(2.5,0.14,txt)

%m(1).color=’red’;

plot(t,y(:,3),’b’)

%hold on

%[t,y] = ode45(@c83,tspan,y0,[])

%txt=’“leftarrow “gamma = 0.3, “alpha = 0.8’;

%%txt = ’“leftarrow gamma = 1’;

%text(2.5,0.11,txt)

%%m(1).color=’red’;

%plot(t,y(:,3),’m’)

hold on

[t,y] = ode45(@c84,tspan,y0,[])
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txt=’“leftarrow “gamma = 0.4, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(3.5,0.07,txt)

plot(t,y(:,3),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@c86,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(3.5,0.04,txt)

plot(t,y(:,3),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@c88,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(7.5,0.01,txt)

plot(t,y(:,3),’c’)

%legend(’v=0.4’,2)

hold off

figure(10)

[t,y] = ode45(@c81,tspan,y0,[])

plot(t,y(:,7),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.8’;

%txt = ’“leftarrow gamma = 1’;

text(12,0.25,txt)
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%title(’infected human population against

time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

ylim([0,0.35])

xlabel(’Time(days)’)

ylabel(’Infected vector population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@c82,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(13.5,0.2,txt)

%m(1).color=’red’;

plot(t,y(:,7),’b’)

hold on

[t,y] = ode45(@c83,tspan,y0,[])

txt=’“leftarrow “gamma = 0.3, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(16,0.15,txt)

%m(1).color=’red’;

plot(t,y(:,7),’m’)
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hold on

[t,y] = ode45(@c84,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(18,0.11,txt)

plot(t,y(:,7),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@c86,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(21,0.07,txt)

plot(t,y(:,7),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@c88,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(30,0.03,txt)

plot(t,y(:,7),’c’)

%legend(’v=0.4’,2)

function dY = c11(t,y)

%% b˙h=p(1); Transmission rate for humans

%% b˙v=p(2); Transmission rate for mosquitoes
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%% a1=p(3); Recruitment rate for humans

%% a2=p(4); Recruitment rate for mosquitoes

%% b1=p(5); Progression rate for humnas

%% b2=p(6); Progression rate for mosquitoes

%% c=p(7); vaccination rate

%% r=p(8); Recovery rate

%% e1=p(9); Disease induced death rate

%% e2=p(10); Loss of immunity

%% d1=p(11); Natural death rate for humans

%% d2=p(12); Natural death rate for mosquitoes

%N=2567700;

%M=12836900;

N=1;

M=1;

Sh=y(1);

Eh=y(2);

Ih=y(3);

Rh=y(4);

Sm=y(5);

Em=y(6);

Im=y(7);

%p(3)=3.1/(100*365);

%p(3)=2.18/(100);

%%indexmundi(2017 est) 07/2018

%p(4)=;
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%p(5)=0.1;

%p(6)=0.091;

%p(7)=0.02;

%p(8)=0.7;

%p(9)=0.0035%

%p(10)=1/(200);

p(11)=1/(63.5*365);

% p(11)=1/(63.5);

%%WHO2018 07/10/2018

%p(4)=1/30;

%p(1) = 0.015472;

%p(2) = 0.049326;

%p(3) = 0.000085;

%p(4) = 0.033000;

%p(5) = 0.360425;

%p(6) = 0.000538;

%p(7) = 0.021030;

%p(8) = 0.120961;

%p(9) = 0.000002;

%p(10)=1/(200);

%p(11)=1/(63.5*365);

c=0.05;

p(1) = 0.837773;

p(2) = 0.729255;

p(3) = 0.000047;

p(4) = 0.040000;

p(5) = 0.140705;
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p(6) = 0.291499;

p(7) = 0.1;

p(8) = 0.1;

p(9) = 0.000008;

p(10)=1/(180);

p(11)=1/(63.5*365);

p(12)=0.0002373;

%p(12)=0.03;

dydt = zeros (size(y));

dydt(1) = p(3)- p(1)*Sh*(Im/M) - (p(11) +p(7))*Sh + p(10)*Rh;

dydt(2) = p(1)*Sh*(Im/M) - (p(5) + p(11))*Eh;

dydt(3) = p(5)*Eh - (p(8) + p(11) + p(9))*Ih;

dydt(4) = p(8)*Ih - (p(10) +p(11))*Rh +p(7)*Sh;

dydt(5) = p(12)- p(2)*Sm*(Ih/N) - (p(4)+c*p(7))*Sm;

%% dydt(5) = d2*M - p(2)*Sm*(Ih/N) - p(12)*Sm;

dydt(6) = p(2)*Sm*(Ih/N) - (p(6) + p(4)+c*p(7))*Em;

dydt(7) = p(6)*Em -(p(4)+c*p(7))*Im;

dY = dydt;

%%p0 = [0.2 0.4 3.1/(100*365) 0.033 0.1 0.091 0.05

0.2 0.0026 1/200 1/(63.5*365)]’;

function dY = c12(t,y)

%% b˙h=p(1); Transmission rate for humans

%% b˙v=p(2); Transmission rate for mosquitoes
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%% a1=p(3); Recruitment rate for humans

%% a2=p(4); Recruitment rate for mosquitoes

%% b1=p(5); Progression rate for humnas

%% b2=p(6); Progression rate for mosquitoes

%% c=p(7); vaccination rate

%% r=p(8); Recovery rate

%% e1=p(9); Disease induced death rate

%% e2=p(10); Loss of immunity

%% d1=p(11); Natural death rate for humans

%% d2=p(12); Natural death rate for mosquitoes

%N=2567700;

%M=12836900;

N=1;

M=1;

Sh=y(1);

Eh=y(2);

Ih=y(3);

Rh=y(4);

Sm=y(5);

Em=y(6);

Im=y(7);

%p(3)=3.1/(100*365);

%p(3)=2.18/(100);

%%indexmundi(2017 est) 07/2018

%p(4)=;
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%p(5)=0.1;

%p(6)=0.091;

%p(7)=0.02;

%p(8)=0.7;

%p(9)=0.0035%

%p(10)=1/(200);

p(11)=1/(63.5*365);

% p(11)=1/(63.5);

%%WHO2018 07/10/2018

%p(4)=1/30;

%p(1) = 0.015472;

%p(2) = 0.049326;

%p(3) = 0.000085;

%p(4) = 0.033000;

%p(5) = 0.360425;

%p(6) = 0.000538;

%p(7) = 0.021030;

%p(8) = 0.120961;

%p(9) = 0.000002;

%p(10)=1/(200);

%p(11)=1/(63.5*365);

c=0.05;

%p(12)=0.03;

p(1) = 0.837773;

p(2) = 0.729255;

p(3) = 0.000047;
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p(4) = 0.040000;

p(5) = 0.140705;

p(6) = 0.291499;

p(7) = 0.1;

p(8) = 0.2;

p(9) = 0.000008;

p(10)=1/(180);

p(11)=1/(63.5*365);

p(12)=0.0002373;

%p(12)=0.03;

dydt = zeros (size(y));

dydt(1) = p(3)- p(1)*Sh*(Im/M) - (p(11) +p(7))*Sh + p(10)*Rh;

dydt(2) = p(1)*Sh*(Im/M) - (p(5) + p(11))*Eh;

dydt(3) = p(5)*Eh - (p(8) + p(11) + p(9))*Ih;

dydt(4) = p(8)*Ih - (p(10) +p(11))*Rh +p(7)*Sh;

dydt(5) = p(12)- p(2)*Sm*(Ih/N) - (p(4)+c*p(7))*Sm;

%% dydt(5) = d2*M - p(2)*Sm*(Ih/N) - p(12)*Sm;

dydt(6) = p(2)*Sm*(Ih/N) - (p(6) + p(4)+c*p(7))*Em;

dydt(7) = p(6)*Em -(p(4)+c*p(7))*Im;

dY = dydt;

%%p0 = [0.2 0.4 3.1/(100*365) 0.033 0.1 0.091 0.05 0.2

0.0026 1/200 1/(63.5*365)]’;

function dY = c14(t,y)
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%% b˙h=p(1); Transmission rate for humans

%% b˙v=p(2); Transmission rate for mosquitoes

%% a1=p(3); Recruitment rate for humans

%% a2=p(4); Recruitment rate for mosquitoes

%% b1=p(5); Progression rate for humnas

%% b2=p(6); Progression rate for mosquitoes

%% c=p(7); vaccination rate

%% r=p(8); Recovery rate

%% e1=p(9); Disease induced death rate

%% e2=p(10); Loss of immunity

%% d1=p(11); Natural death rate for humans

%% d2=p(12); Natural death rate for mosquitoes

%N=2567700;

%M=12836900;

N=1;

M=1;

Sh=y(1);

Eh=y(2);

Ih=y(3);

Rh=y(4);

Sm=y(5);

Em=y(6);

Im=y(7);

%p(3)=3.1/(100*365);

%p(3)=2.18/(100);
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%%indexmundi(2017 est) 07/2018

%p(4)=;

%p(5)=0.1;

%p(6)=0.091;

%p(7)=0.02;

%p(8)=0.7;

%p(9)=0.0035%

%p(10)=1/(200);

p(11)=1/(63.5*365);

% p(11)=1/(63.5);

%%WHO2018 07/10/2018

%p(4)=1/30;

%p(1) = 0.015472;

%p(2) = 0.049326;

%p(3) = 0.000085;

%p(4) = 0.033000;

%p(5) = 0.360425;

%p(6) = 0.000538;

%p(7) = 0.021030;

%p(8) = 0.120961;

%p(9) = 0.000002;

%p(10)=1/(200);

%p(11)=1/(63.5*365);

c=0.05;

p(7) = 0.1;

p(8)=0.4;

%c=0.01;
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%p(12)=0.03;

p(1) = 0.837773;

p(2) = 0.729255;

p(3) = 0.000047;

p(4) = 0.040000;

p(5) = 0.140705;

p(6) = 0.291499;

%p(7) = 0.1;

%p(8) = 0.2;

p(9) = 0.000008;

p(10)=1/(180);

p(11)=1/(63.5*365);

p(12)=0.0002373;

%p(12)=0.03;

dydt = zeros (size(y));

dydt(1) = p(3)- p(1)*Sh*(Im/M) - (p(11) +p(7))*Sh + p(10)*Rh;

dydt(2) = p(1)*Sh*(Im/M) - (p(5) + p(11))*Eh;

dydt(3) = p(5)*Eh - (p(8) + p(11) + p(9))*Ih;

dydt(4) = p(8)*Ih - (p(10) +p(11))*Rh +p(7)*Sh;

dydt(5) = p(12)- p(2)*Sm*(Ih/N) - (p(4)+c*p(7))*Sm;

%% dydt(5) = d2*M - p(2)*Sm*(Ih/N) - p(12)*Sm;

dydt(6) = p(2)*Sm*(Ih/N) - (p(6) + p(4)+c*p(7))*Em;

dydt(7) = p(6)*Em -(p(4)+c*p(7))*Im;

dY = dydt;
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%%p0 = [0.2 0.4 3.1/(100*365) 0.033 0.1 0.091

0.05 0.2 0.0026 1/200 1/(63.5*365)]’;

function dY = c16(t,y)

%% b˙h=p(1); Transmission rate for humans

%% b˙v=p(2); Transmission rate for mosquitoes

%% a1=p(3); Recruitment rate for humans

%% a2=p(4); Recruitment rate for mosquitoes

%% b1=p(5); Progression rate for humnas

%% b2=p(6); Progression rate for mosquitoes

%% c=p(7); vaccination rate

%% r=p(8); Recovery rate

%% e1=p(9); Disease induced death rate

%% e2=p(10); Loss of immunity

%% d1=p(11); Natural death rate for humans

%% d2=p(12); Natural death rate for mosquitoes

%N=2567700;

%M=12836900;

N=1;

M=1;

Sh=y(1);

Eh=y(2);

Ih=y(3);

Rh=y(4);

Sm=y(5);
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Em=y(6);

Im=y(7);

%p(3)=3.1/(100*365);

%p(3)=2.18/(100);

%%indexmundi(2017 est) 07/2018

%p(4)=;

%p(5)=0.1;

%p(6)=0.091;

%p(7)=0.02;

%p(8)=0.7;

%p(9)=0.0035%

%p(10)=1/(200);

%p(11)=1/(63.5*365);

% p(11)=1/(63.5);

%%WHO2018 07/10/2018

%p(4)=1/30;

%p(1) = 0.015472;

%p(2) = 0.049326;

%p(3) = 0.000085;

%p(4) = 0.033000;

%p(5) = 0.360425;

%p(6) = 0.000538;

%p(7) = 0.021030;

%p(8) = 0.120961;

%p(9) = 0.000002;

%p(10)=1/(200);

%p(11)=1/(63.5*365);
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c=0.05;

p(7) = 0.1;

p(8) = 0.6;

p(1) = 0.837773;

p(2) = 0.729255;

p(3) = 0.000047;

p(4) = 0.040000;

p(5) = 0.140705;

p(6) = 0.291499;

%p(7) = 0.1;

%p(8) = 0.2;

p(9) = 0.000008;

p(10)=1/(180);

p(11)=1/(63.5*365);

p(12)=0.0002373;

%p(12)=0.03;

dydt = zeros (size(y));

dydt(1) = p(3)- p(1)*Sh*(Im/M) - (p(11) +p(7))*Sh + p(10)*Rh;

dydt(2) = p(1)*Sh*(Im/M) - (p(5) + p(11))*Eh;

dydt(3) = p(5)*Eh - (p(8) + p(11) + p(9))*Ih;

dydt(4) = p(8)*Ih - (p(10) +p(11))*Rh +p(7)*Sh;

dydt(5) = p(12)- p(2)*Sm*(Ih/N) - (p(4)+c*p(7))*Sm;

%% dydt(5) = d2*M - p(2)*Sm*(Ih/N) - p(12)*Sm;

dydt(6) = p(2)*Sm*(Ih/N) - (p(6) + p(4)+c*p(7))*Em;

dydt(7) = p(6)*Em -(p(4)+c*p(7))*Im;
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dY = dydt;

%%p0 = [0.2 0.4 3.1/(100*365) 0.033 0.1 0.091 0.05 0.2

0.0026 1/200 1/(63.5*365)]’;

function dY = c18(t,y)

%% b˙h=p(1); Transmission rate for humans

%% b˙v=p(2); Transmission rate for mosquitoes

%% a1=p(3); Recruitment rate for humans

%% a2=p(4); Recruitment rate for mosquitoes

%% b1=p(5); Progression rate for humnas

%% b2=p(6); Progression rate for mosquitoes

%% c=p(7); vaccination rate

%% r=p(8); Recovery rate

%% e1=p(9); Disease induced death rate

%% e2=p(10); Loss of immunity

%% d1=p(11); Natural death rate for humans

%% d2=p(12); Natural death rate for mosquitoes

%N=2567700;

%M=12836900;

N=1;

M=1;

Sh=y(1);

Eh=y(2);

Ih=y(3);

Rh=y(4);
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Sm=y(5);

Em=y(6);

Im=y(7);

%p(3)=3.1/(100*365);

%p(3)=2.18/(100);

%%indexmundi(2017 est) 07/2018

%p(4)=;

%p(5)=0.1;

%p(6)=0.091;

%p(7)=0.02;

%p(8)=0.7;

%p(9)=0.0035%

%p(10)=1/(200);

p(11)=1/(63.5*365);

% p(11)=1/(63.5);

%%WHO2018 07/10/2018

%p(4)=1/30;

%p(1) = 0.015472;

%p(2) = 0.049326;

%p(3) = 0.000085;

%p(4) = 0.033000;

%p(5) = 0.360425;

%p(6) = 0.000538;

%p(7) = 0.021030;

%p(8) = 0.120961;

%p(9) = 0.000002;

%p(10)=1/(200);
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%p(11)=1/(63.5*365);

c=0.05;

p(7) = 0.1;

p(8) = 0.8;

p(1) = 0.837773;

p(2) = 0.729255;

p(3) = 0.000047;

p(4) = 0.040000;

p(5) = 0.140705;

p(6) = 0.291499;

%p(7) = 0.1;

%p(8) = 0.2;

p(9) = 0.000008;

p(10)=1/(180);

p(11)=1/(63.5*365);

p(12)=0.0002373;

%p(12)=0.03;

dydt = zeros (size(y));

dydt(1) = p(3)- p(1)*Sh*(Im/M) - (p(11) +p(7))*Sh + p(10)*Rh;

dydt(2) = p(1)*Sh*(Im/M) - (p(5) + p(11))*Eh;

dydt(3) = p(5)*Eh - (p(8) + p(11) + p(9))*Ih;

dydt(4) = p(8)*Ih - (p(10) +p(11))*Rh +p(7)*Sh;

dydt(5) = p(12)- p(2)*Sm*(Ih/N) - (p(4)+c*p(7))*Sm;

%% dydt(5) = d2*M - p(2)*Sm*(Ih/N) - p(12)*Sm;

dydt(6) = p(2)*Sm*(Ih/N) - (p(6) + p(4)+c*p(7))*Em;
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dydt(7) = p(6)*Em -(p(4)+c*p(7))*Im;

dY = dydt;

%%p0 = [0.2 0.4 3.1/(100*365) 0.033 0.1 0.091 0.05 0.2

0.0026 1/200 1/(63.5*365)]’;
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APPENDIX E: Matlab code for the Plot of fixed gamma and varying alpha

format long

tspan =1:360;

%y0=[0.722376;0.269204;0.204495;0.277203;0.962685;

0.151393;0.003099;];

%y0=[2177829;160723;516646;1000000;12579547;

0;333719;];

%y0=[2414793;172179;515271;1000000;12999030;

1504;233168;];

%y0=[0.709817;0.265597;0.206593;0.405566;

0.966447;0.089243;0.000113;];

%y0=[0.7961 0 0.2039 0 0.89 0 0.11];

%y0=[0.95;0;0.05;0;0.98;0;0.02;];

y0=[0.7961 0 0.2039 0 0.89 0 0.11];

% Integrate the ODEs with the optimal

parameter values

tspan = (0:.1:100);

t˙vals = (1:100);

figure(1)

[t,y] = ode45(@cg11,tspan,y0,[])

plot(t,y(:,3),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.1’;

%txt = ’“leftarrow gamma = 1’;

238

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



text(21,0.2,txt)

%title(’infected human population against

time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

xlabel(’Time(days)’)

ylabel(’Infected human population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@cg12,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(12,0.15,txt)

%m(1).color=’red’;

plot(t,y(:,3),’b’)

hold on

[t,y] = ode45(@cg14,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(9,0.08,txt)

plot(t,y(:,3),’g’)
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%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@cg16,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(10,0.05,txt)

plot(t,y(:,3),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@cg18,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(18,0.02,txt)

plot(t,y(:,3),’c’)

%legend(’v=0.4’,2)

hold off

figure(2)

[t,y] = ode45(@cg11,tspan,y0,[])

plot(t,y(:,7),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.1’;

%txt = ’“leftarrow gamma = 1’;

text(18,0.4,txt)

%title(’infected human population against

time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;
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%p(8) = 0.01;

xlim([1,100])

xlabel(’Time(days)’)

ylabel(’Infected vector population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@cg12,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(19,0.35,txt)

%m(1).color=’red’;

plot(t,y(:,7),’b’)

hold on

[t,y] = ode45(@cg14,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(23,0.25,txt)

plot(t,y(:,7),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@cg16,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(26,0.19,txt)
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plot(t,y(:,7),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@cg18,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.1’;

%txt = ’“leftarrow gamma = 1’;

text(31,0.13,txt)

plot(t,y(:,7),’c’)

%legend(’v=0.4’,2)

figure(3)

[t,y] = ode45(@cg21,tspan,y0,[])

plot(t,y(:,3),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.2’;

%txt = ’“leftarrow gamma = 1’;

text(12,0.15,txt)

%title(’infected human population against

time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

ylim([0,0.25])

xlabel(’Time(days)’)

ylabel(’Infected human population’)
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%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@cg22,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(10,0.12,txt)

%m(1).color=’red’;

plot(t,y(:,3),’b’)

hold on

[t,y] = ode45(@cg24,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(14,0.06,txt)

plot(t,y(:,3),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@cg26,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(18,0.03,txt)

plot(t,y(:,3),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@cg28,tspan,y0,[])
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txt=’“leftarrow “gamma = 0.8, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(28,0.01,txt)

plot(t,y(:,3),’c’)

%legend(’v=0.4’,2)

hold off

figure(4)

[t,y] = ode45(@cg21,tspan,y0,[])

plot(t,y(:,7),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.2’;

%txt = ’“leftarrow gamma = 1’;

text(19,0.35,txt)

%title(’infected human population against

time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

%ylim([0,0.5])

xlabel(’Time(days)’)

ylabel(’Infected vector population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@cg22,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;
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text(19,0.3,txt)

%m(1).color=’red’;

plot(t,y(:,7),’b’)

hold on

[t,y] = ode45(@cg24,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(22,0.20,txt)

plot(t,y(:,7),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@cg26,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(26,0.12,txt)

plot(t,y(:,7),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@cg28,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.2’;

%txt = ’“leftarrow gamma = 1’;

text(34,0.05,txt)

plot(t,y(:,7),’c’)
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%legend(’v=0.4’,2)

figure(5)

[t,y] = ode45(@cg41,tspan,y0,[])

plot(t,y(:,3),’k’)

txt=’“leftarrow “gamma =0.1,“alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(10,0.078,txt)

%title(’infected human population against

time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

ylim([0,0.16])

xlabel(’Time(days)’)

ylabel(’Infected human population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@cg42,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(8,0.06,txt)

%m(1)8olor=’red’;
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plot(t,y(:,3),’b’)

hold on

[t,y] = ode45(@cg44,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(11,0.03,txt)

plot(t,y(:,3),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@cg46,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(11,0.02,txt)

plot(t,y(:,3),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@cg48,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(15,0.01,txt)

plot(t,y(:,3),’c’)

%legend(’v=0.4’,2)

hold off
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figure(6)

[t,y] = ode45(@cg41,tspan,y0,[])

plot(t,y(:,7),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.4’;

%txt = ’“leftarrow gamma = 1’;

text(17,0.29,txt)

%title(’infected human population against

time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

ylim([0,0.45])

xlabel(’Time(days)’)

ylabel(’Infected vector population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@cg42,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(16,0.25,txt)

%m(1).color=’red’;

plot(t,y(:,7),’b’)

hold on
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[t,y] = ode45(@cg44,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(22,0.15,txt)

plot(t,y(:,7),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@cg46,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(24,0.1,txt)

plot(t,y(:,7),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@cg48,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.4’;

%txt = ’“leftarrow gamma = 1’;

text(30,0.05,txt)

plot(t,y(:,7),’c’)

%legend(’v=0.4’,2)

figure(7)

[t,y] = ode45(@cg61,tspan,y0,[])

plot(t,y(:,3),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.6’;

%txt = ’“leftarrow gamma = 1’;

text(9,0.05,txt)
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%title(’infected human population against

time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

ylim([0,0.12])

xlabel(’Time(days)’)

ylabel(’Infected human population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@cg62,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(8,0.038,txt)

%m(1).color=’red’;

plot(t,y(:,3),’b’)

hold on

[t,y] = ode45(@cg64,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(10,0.02,txt)

plot(t,y(:,3),’g’)

%legend(’v=0.3’,2)

hold on
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[t,y] = ode45(@cg66,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(9,0.015,txt)

plot(t,y(:,3),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@cg68,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(10,0.01,txt)

plot(t,y(:,3),’c’)

%legend(’v=0.4’,2)

hold off

figure(8)

[t,y] = ode45(@cg61,tspan,y0,[])

plot(t,y(:,7),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.6’;

%txt = ’“leftarrow gamma = 1’;

text(18,0.23,txt)

%title(’infected human population against

time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])
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ylim([0,0.31])

xlabel(’Time(days)’)

ylabel(’Infected vector population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@cg62,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(20,0.18,txt)

%m(1).color=’red’;

plot(t,y(:,7),’b’)

hold on

[t,y] = ode45(@cg64,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(25,0.1,txt)

plot(t,y(:,7),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@cg66,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(31,0.05,txt)

plot(t,y(:,7),’r’)
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%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@cg68,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.6’;

%txt = ’“leftarrow gamma = 1’;

text(38,0.02,txt)

plot(t,y(:,7),’c’)

%legend(’v=0.4’,2)

figure(9)

[t,y] = ode45(@cg81,tspan,y0,[])

plot(t,y(:,3),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.8’;

%txt = ’“leftarrow gamma = 1’;

text(10,0.035,txt)

%title(’infected human population against

time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

xlabel(’Time(days)’)

ylabel(’Infected humans population’)

%legend(’v=0.1’,2)
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hold on

[t,y] = ode45(@cg82,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(7,0.028,txt)

%m(1).color=’red’;

plot(t,y(:,3),’b’)

hold on

[t,y] = ode45(@cg84,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(9,0.015,txt)

plot(t,y(:,3),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@cg86,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(9,0.01,txt)

plot(t,y(:,3),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@cg88,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.8’;
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%txt = ’“leftarrow gamma = 1’;

text(15,0.004,txt)

plot(t,y(:,3),’c’)

%legend(’v=0.4’,2)

hold off

figure(10)

[t,y] = ode45(@cg81,tspan,y0,[])

plot(t,y(:,7),’k’)

txt=’“leftarrow “gamma =0.1,“alpha =0.8’;

%txt = ’“leftarrow gamma = 1’;

text(17,0.2,txt)

%title(’infected human population against

time with varying gamma and constant alpha = 0.1’)

%xlim([1,365])

%p(7) = 0.1;

%p(8) = 0.01;

xlim([1,100])

ylim([0,0.35])

xlabel(’Time(days)’)

ylabel(’Infected vector population’)

%legend(’v=0.1’,2)

hold on

[t,y] = ode45(@cg82,tspan,y0,[])

txt=’“leftarrow “gamma = 0.2, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(19,0.16,txt)
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%m(1).color=’red’;

plot(t,y(:,7),’b’)

hold on

[t,y] = ode45(@cg84,tspan,y0,[])

txt=’“leftarrow “gamma = 0.4, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(24,0.09,txt)

plot(t,y(:,7),’g’)

%legend(’v=0.3’,2)

hold on

[t,y] = ode45(@cg86,tspan,y0,[])

txt=’“leftarrow “gamma = 0.6, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(28,0.05,txt)

plot(t,y(:,7),’r’)

%legend(’v=0.4’,2)

hold on

[t,y] = ode45(@cg88,tspan,y0,[])

txt=’“leftarrow “gamma = 0.8, “alpha = 0.8’;

%txt = ’“leftarrow gamma = 1’;

text(31,0.03,txt)

plot(t,y(:,7),’c’)

%legend(’v=0.4’,2)
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function dY = cg11(t,y)

%% b˙h=p(1); Transmission rate for humans

%% b˙v=p(2); Transmission rate for mosquitoes

%% a1=p(3); Recruitment rate for humans

%% a2=p(4); Recruitment rate for mosquitoes

%% b1=p(5); Progression rate for humnas

%% b2=p(6); Progression rate for mosquitoes

%% c=p(7); vaccination rate

%% r=p(8); Recovery rate

%% e1=p(9); Disease induced death rate

%% e2=p(10); Loss of immunity

%% d1=p(11); Natural death rate for humans

%% d2=p(12); Natural death rate for mosquitoes

%N=2567700;

%M=12836900;

N=1;

M=1;

Sh=y(1);

Eh=y(2);

Ih=y(3);

Rh=y(4);

Sm=y(5);
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Em=y(6);

Im=y(7);

%p(3)=3.1/(100*365);

%p(3)=2.18/(100);

%%indexmundi(2017 est) 07/2018

%p(4)=;

%p(5)=0.1;

%p(6)=0.091;

%p(7)=0.02;

%p(8)=0.7;

%p(9)=0.0035%

%p(10)=1/(200);

p(11)=1/(63.5*365);

% p(11)=1/(63.5);

%%WHO2018 07/10/2018

%p(4)=1/30;

%p(1) = 0.015472;

%p(2) = 0.049326;

%p(3) = 0.000085;

%p(4) = 0.033000;

%p(5) = 0.360425;

%p(6) = 0.000538;

%p(7) = 0.021030;

%p(8) = 0.120961;

%p(9) = 0.000002;

%p(10)=1/(200);

%p(11)=1/(63.5*365);
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c=0.05;

p(7) = 0.1;

p(8) = 0.1;

p(1) = 0.837773;

p(2) = 0.729255;

p(3) = 0.000047;

p(4) = 0.040000;

p(5) = 0.140705;

p(6) = 0.291499;

%p(7) = 0.1;

%p(8) = 0.2;

p(9) = 0.000008;

p(10)=1/(180);

p(11)=1/(63.5*365);

p(12)=0.0002373;

%p(12)=0.03;

dydt = zeros (size(y));

dydt(1) = p(3)- p(1)*Sh*(Im/M) - (p(11) +p(7))*Sh + p(10)*Rh;

dydt(2) = p(1)*Sh*(Im/M) - (p(5) + p(11))*Eh;

dydt(3) = p(5)*Eh - (p(8) + p(11) + p(9))*Ih;

dydt(4) = p(8)*Ih - (p(10) +p(11))*Rh +p(7)*Sh;

dydt(5) = p(12)- p(2)*Sm*(Ih/N) - (p(4)+c*p(7))*Sm;

%% dydt(5) = d2*M - p(2)*Sm*(Ih/N) - p(12)*Sm;

dydt(6) = p(2)*Sm*(Ih/N) - (p(6) + p(4)+c*p(7))*Em;

dydt(7) = p(6)*Em -(p(4)+c*p(7))*Im;
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dY = dydt;

%%p0 = [0.2 0.4 3.1/(100*365) 0.033 0.1 0.091 0.05 0.2““

0.0026 1/200 1/(63.5*365)]’;

function dY = cg12(t,y)

%% b˙h=p(1); Transmission rate for humans

%% b˙v=p(2); Transmission rate for mosquitoes

%% a1=p(3); Recruitment rate for humans

%% a2=p(4); Recruitment rate for mosquitoes

%% b1=p(5); Progression rate for humnas

%% b2=p(6); Progression rate for mosquitoes

%% c=p(7); vaccination rate

%% r=p(8); Recovery rate

%% e1=p(9); Disease induced death rate

%% e2=p(10); Loss of immunity

%% d1=p(11); Natural death rate for humans

%% d2=p(12); Natural death rate for mosquitoes

%N=2567700;

%M=12836900;

N=1;

M=1;

Sh=y(1);

Eh=y(2);

Ih=y(3);
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Rh=y(4);

Sm=y(5);

Em=y(6);

Im=y(7);

%p(3)=3.1/(100*365);

%p(3)=2.18/(100);

%%indexmundi(2017 est) 07/2018

%p(4)=;

%p(5)=0.1;

%p(6)=0.091;

%p(7)=0.02;

%p(8)=0.7;

%p(9)=0.0035%

%p(10)=1/(200);

p(11)=1/(63.5*365);

% p(11)=1/(63.5);

%%WHO2018 07/10/2018

%p(4)=1/30;

%p(1) = 0.015472;

%p(2) = 0.049326;

%p(3) = 0.000085;

%p(4) = 0.033000;

%p(5) = 0.360425;

%p(6) = 0.000538;

%p(7) = 0.021030;

%p(8) = 0.120961;

%p(9) = 0.000002;
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%p(10)=1/(200);

%p(11)=1/(63.5*365);

c=0.05;

p(7) = 0.1;

p(8) = 0.2;

p(1) = 0.837773;

p(2) = 0.729255;

p(3) = 0.000047;

p(4) = 0.040000;

p(5) = 0.140705;

p(6) = 0.291499;

%p(7) = 0.1;

%p(8) = 0.2;

p(9) = 0.000008;

p(10)=1/(180);

p(11)=1/(63.5*365);

p(12)=0.0002373;

%p(12)=0.03;

dydt = zeros (size(y));

dydt(1) = p(3)- p(1)*Sh*(Im/M) - (p(11) +p(7))*Sh + p(10)*Rh;

dydt(2) = p(1)*Sh*(Im/M) - (p(5) + p(11))*Eh;

dydt(3) = p(5)*Eh - (p(8) + p(11) + p(9))*Ih;

dydt(4) = p(8)*Ih - (p(10) +p(11))*Rh +p(7)*Sh;

dydt(5) = p(12)- p(2)*Sm*(Ih/N) - (p(4)+c*p(7))*Sm;

%% dydt(5) = d2*M - p(2)*Sm*(Ih/N) - p(12)*Sm;
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dydt(6) = p(2)*Sm*(Ih/N) - (p(6) + p(4)+c*p(7))*Em;

dydt(7) = p(6)*Em -(p(4)+c*p(7))*Im;

dY = dydt;

%%p0 = [0.2 0.4 3.1/(100*365) 0.033 0.1 0.091 0.05 ““

0.2 0.0026 1/200 1/(63.5*365)]’;

function dY = cg14(t,y)

%% b˙h=p(1); Transmission rate for humans

%% b˙v=p(2); Transmission rate for mosquitoes

%% a1=p(3); Recruitment rate for humans

%% a2=p(4); Recruitment rate for mosquitoes

%% b1=p(5); Progression rate for humnas

%% b2=p(6); Progression rate for mosquitoes

%% c=p(7); vaccination rate

%% r=p(8); Recovery rate

%% e1=p(9); Disease induced death rate

%% e2=p(10); Loss of immunity

%% d1=p(11); Natural death rate for humans

%% d2=p(12); Natural death rate for mosquitoes

%N=2567700;

%M=12836900;

N=1;

M=1;
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Sh=y(1);

Eh=y(2);

Ih=y(3);

Rh=y(4);

Sm=y(5);

Em=y(6);

Im=y(7);

%p(3)=3.1/(100*365);

%p(3)=2.18/(100);

%%indexmundi(2017 est) 07/2018

%p(4)=;

%p(5)=0.1;

%p(6)=0.091;

%p(7)=0.02;

%p(8)=0.7;

%p(9)=0.0035%

%p(10)=1/(200);

p(11)=1/(63.5*365);

% p(11)=1/(63.5);

%%WHO2018 07/10/2018

%p(4)=1/30;

%p(1) = 0.015472;

%p(2) = 0.049326;

%p(3) = 0.000085;

%p(4) = 0.033000;

%p(5) = 0.360425;

%p(6) = 0.000538;
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%p(7) = 0.021030;

%p(8) = 0.120961;

%p(9) = 0.000002;

%p(10)=1/(200);

%p(11)=1/(63.5*365);

c=0.05;

p(7) = 0.1;

p(8) = 0.4;

p(1) = 0.837773;

p(2) = 0.729255;

p(3) = 0.000047;

p(4) = 0.040000;

p(5) = 0.140705;

p(6) = 0.291499;

%p(7) = 0.1;

%p(8) = 0.2;

p(9) = 0.000008;

p(10)=1/(180);

p(11)=1/(63.5*365);

p(12)=0.0002373;

%p(12)=0.03;

dydt = zeros (size(y));

dydt(1) = p(3)- p(1)*Sh*(Im/M) - (p(11) +p(7))*Sh + p(10)*Rh;

dydt(2) = p(1)*Sh*(Im/M) - (p(5) + p(11))*Eh;

dydt(3) = p(5)*Eh - (p(8) + p(11) + p(9))*Ih;

265

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



dydt(4) = p(8)*Ih - (p(10) +p(11))*Rh +p(7)*Sh;

dydt(5) = p(12)- p(2)*Sm*(Ih/N) - (p(4)+c*p(7))*Sm;

%% dydt(5) = d2*M - p(2)*Sm*(Ih/N) - p(12)*Sm;

dydt(6) = p(2)*Sm*(Ih/N) - (p(6) + p(4)+c*p(7))*Em;

dydt(7) = p(6)*Em -(p(4)+c*p(7))*Im;

dY = dydt;

%%p0 = [0.2 0.4 3.1/(100*365) 0.033 0.1 0.091 0.05 ““

0.2 0.0026 1/200 1/(63.5*365)]’;

function dY = cg16(t,y)

%% b˙h=p(1); Transmission rate for humans

%% b˙v=p(2); Transmission rate for mosquitoes

%% a1=p(3); Recruitment rate for humans

%% a2=p(4); Recruitment rate for mosquitoes

%% b1=p(5); Progression rate for humnas

%% b2=p(6); Progression rate for mosquitoes

%% c=p(7); vaccination rate

%% r=p(8); Recovery rate

%% e1=p(9); Disease induced death rate

%% e2=p(10); Loss of immunity

%% d1=p(11); Natural death rate for humans

%% d2=p(12); Natural death rate for mosquitoes

%N=2567700;

%M=12836900;
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N=1;

M=1;

Sh=y(1);

Eh=y(2);

Ih=y(3);

Rh=y(4);

Sm=y(5);

Em=y(6);

Im=y(7);

%p(3)=3.1/(100*365);

%p(3)=2.18/(100);

%%indexmundi(2017 est) 07/2018

%p(4)=;

%p(5)=0.1;

%p(6)=0.091;

%p(7)=0.02;

%p(8)=0.7;

%p(9)=0.0035%

%p(10)=1/(200);

p(11)=1/(63.5*365);

% p(11)=1/(63.5);

%%WHO2018 07/10/2018

%p(4)=1/30;

%p(1) = 0.015472;

%p(2) = 0.049326;

%p(3) = 0.000085;

%p(4) = 0.033000;
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%p(5) = 0.360425;

%p(6) = 0.000538;

%p(7) = 0.021030;

%p(8) = 0.120961;

%p(9) = 0.000002;

%p(10)=1/(200);

%p(11)=1/(63.5*365);

c=0.05;

p(7) = 0.1;

p(8) = 0.6;

p(1) = 0.837773;

p(2) = 0.729255;

p(3) = 0.000047;

p(4) = 0.040000;

p(5) = 0.140705;

p(6) = 0.291499;

%p(7) = 0.1;

%p(8) = 0.2;

p(9) = 0.000008;

p(10)=1/(180);

p(11)=1/(63.5*365);

p(12)=0.0002373;

%p(12)=0.03;

dydt = zeros (size(y));

dydt(1) = p(3)- p(1)*Sh*(Im/M) - (p(11) +p(7))*Sh + p(10)*Rh;
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dydt(2) = p(1)*Sh*(Im/M) - (p(5) + p(11))*Eh;

dydt(3) = p(5)*Eh - (p(8) + p(11) + p(9))*Ih;

dydt(4) = p(8)*Ih - (p(10) +p(11))*Rh +p(7)*Sh;

dydt(5) = p(12)- p(2)*Sm*(Ih/N) - (p(4)+c*p(7))*Sm;

%% dydt(5) = d2*M - p(2)*Sm*(Ih/N) - p(12)*Sm;

dydt(6) = p(2)*Sm*(Ih/N) - (p(6) + p(4)+c*p(7))*Em;

dydt(7) = p(6)*Em -(p(4)+c*p(7))*Im;

dY = dydt;

%%p0 = [0.2 0.4 3.1/(100*365) 0.033 0.1 0.091 0.05““

0.2 0.0026 1/200 1/(63.5*365)]’;

function dY = cg18(t,y)

%% b˙h=p(1); Transmission rate for humans

%% b˙v=p(2); Transmission rate for mosquitoes

%% a1=p(3); Recruitment rate for humans

%% a2=p(4); Recruitment rate for mosquitoes

%% b1=p(5); Progression rate for humnas

%% b2=p(6); Progression rate for mosquitoes

%% c=p(7); vaccination rate

%% r=p(8); Recovery rate

%% e1=p(9); Disease induced death rate

%% e2=p(10); Loss of immunity

%% d1=p(11); Natural death rate for humans

%% d2=p(12); Natural death rate for mosquitoes

%N=2567700;

%M=12836900;
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N=1;

M=1;

Sh=y(1);

Eh=y(2);

Ih=y(3);

Rh=y(4);

Sm=y(5);

Em=y(6);

Im=y(7);

%p(3)=3.1/(100*365);

%p(3)=2.18/(100);

%%indexmundi(2017 est) 07/2018

%p(4)=;

%p(5)=0.1;

%p(6)=0.091;

%p(7)=0.02;

%p(8)=0.7;

%p(9)=0.0035%

%p(10)=1/(200);

p(11)=1/(63.5*365);

% p(11)=1/(63.5);

%%WHO2018 07/10/2018

%p(4)=1/30;

%p(1) = 0.015472;

%p(2) = 0.049326;

%p(3) = 0.000085;
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%p(4) = 0.033000;

%p(5) = 0.360425;

%p(6) = 0.000538;

%p(7) = 0.021030;

%p(8) = 0.120961;

%p(9) = 0.000002;

%p(10)=1/(200);

%p(11)=1/(63.5*365);

c=0.05;

p(7) = 0.1;

p(8) = 0.8;

p(1) = 0.837773;

p(2) = 0.729255;

p(3) = 0.000047;

p(4) = 0.040000;

p(5) = 0.140705;

p(6) = 0.291499;

%p(7) = 0.1;

%p(8) = 0.2;

p(9) = 0.000008;

p(10)=1/(180);

p(11)=1/(63.5*365);

p(12)=0.0002373;

%p(12)=0.03;

dydt = zeros (size(y));
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dydt(1) = p(3)- p(1)*Sh*(Im/M) - (p(11) +p(7))*Sh + p(10)*Rh;

dydt(2) = p(1)*Sh*(Im/M) - (p(5) + p(11))*Eh;

dydt(3) = p(5)*Eh - (p(8) + p(11) + p(9))*Ih;

dydt(4) = p(8)*Ih - (p(10) +p(11))*Rh +p(7)*Sh;

dydt(5) = p(12)- p(2)*Sm*(Ih/N) - (p(4)+c*p(7))*Sm;

%% dydt(5) = d2*M - p(2)*Sm*(Ih/N) - p(12)*Sm;

dydt(6) = p(2)*Sm*(Ih/N) - (p(6) + p(4)+c*p(7))*Em;

dydt(7) = p(6)*Em -(p(4)+c*p(7))*Im;

dY = dydt;

%%p0 = [0.2 0.4 3.1/(100*365)

%0.033 0.1 0.091 0.05 0.2 0.0026

% 1/200 1/(63.5*365)]’;
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APPENDIX F: Maple code for computing equilibrium points and R0

dS[h] := -S[h]*Y[m]*“beta[h]-“alpha*S[h]+

“rho*R[h]-S[h]*“mu[h]+“Lambda[h]

dL[h] := “beta[h]*S[h]*Y[m]-(“kappa+“mu[h])*L[h]

dY[h] := -“delta*Y[h]-“gamma*Y[h]+“kappa*L[h]-Y[h]*“mu[h]

dR[h] := “alpha*S[h]+“gamma*Y[h]-“rho*R[h]-R[h]*“mu[h]

dS[m] := -S[m]*Y[h]*“beta[m]-S[m]*“lambda[m]+“lambda S[m]

dL[m] := “beta[m]*S[m]*Y[h]-(“theta+“lambda[m])*L[m]

dY[m] := “theta*L[m]-Y[m]*“lambda[m]

eqPts := solve(–dL[h], dL[m], dR[h], dS[h], dS[m],

dY[h], dY[m]˝,

[S[h], L[h], Y[h], R[h], S[m], L[m], Y[m]])

DFE := eqPts[1]

EE := eqPts[2]

with(LinearAlgebra);

with(linalg);

J := jacobian([dS[h], dL[h], dY[h], dR[h], dS[m],

dL[m], dY[m]],

[S[h], L[h], Y[h], R[h], S[m], L[m], Y[m]]);

J0 := subs(DFE, op(J))

J1 := subs(EE, op(J))

B := matrix([[“kappa+“mu[h], 0, 0, 0],

[-“kappa, “gamma+“mu[h]+“delta, 0, 0],

[0, 0, “theta+“lambda[m], 0], [0, 0, -“theta,

“lambda[m]]])

V := inverse(B)

F := matrix([[0, 0, 0, “beta[h]*(“rho+“mu[h])*
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“Lambda[h]

/((“alpha+“rho+“mu[h])*“mu[h])],

[0, 0, 0, 0], [0, “beta[m], 0, 0], [0, 0, 0, 0]])

M := multiply(F, V)

eigenvals(M)
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APPENDIX G: Sage code for computing R0 with respect to parameter

(beta˙h, beta˙v, theta, mu˙h, rho,

k,lambda˙v, gamma,

delta, alpha, S˙h, R˙h, I˙v, L˙v,

I˙h, L˙h) = var(’beta˙h’, ’beta˙v’,

’theta’, ’mu˙h’, ’rho’,’k’,’lambda˙v’,

’gamma’, ’delta’,

’alpha’,’S˙h’, ’R˙h’, ’I˙v’, ’L˙v’, ’I˙h’, ’L˙h’)

R0=sqrt(beta˙h*beta˙v*theta*(mu˙h+rho)

*k/((lambda˙v+c*alpha)*(k+mu˙h)*

(mu˙h+gamma+delta)*(theta+(lambda˙v+c*alpha))*

(alpha +mu˙h + rho)))

show(R0)

A = diff(R0, beta˙h)*beta˙h/R0

show(A)

B = diff(R0, beta˙v)*beta˙v/R0

show(B)

C = diff(R0,theta)*theta/R0

show(C)

D = diff(R0,mu˙h)*mu˙h/R0

show(D)
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E = diff(R0,rho)*rho/R0

show(E)

%F = diff(R0,Lambda˙h)*Lambda˙h/R0

%show(F)

G = diff(R0,k)*k/R0

show(G)

H = diff(R0,lambda˙v)*lambda˙v/R0

show(H)

GAMMA = -gamma/(delta+gamma+mu˙h)

show(GAMMA)

I = diff(R0,gamma)*gamma/R0

show(I)

DELTA = -delta/(delta+gamma+mu˙h)

show(DELTA)

J = diff(R0,delta)*delta/R0

show(J)

ALPHA = -alpha/(alpha+mu˙h+rho)

show(ALPHA)

M = diff(R0,alpha)*alpha/R0

show(M)
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APPENDIX H: Python code for sensitivity graphs

%PYTHON CODE FOR SENSITIVITY GRAPHS

#!/usr/bin/python

import matplotlib.pyplot as plt

import numpy as np

import math as m

#objects = ( r’$“alpha$’, r’$“beta˙v$’,

’$“gamma$’, r’$“beta˙h$’, ’$“delta$’,““

r’$“theta$’,r’$“mu˙h’,’$“kappa$’,

’“lambda˙v’, r’$“rho$’)

#y˙pos = np.arange(len(objects))

#performance = [-0.989035258, 1,

-0.999642077, 1, -0.0000055980,

0.6983396737, -0.9240220809, 0.8985017125,

-1.0, 0.0000513152 ]

objects = (r’$“alpha$’, r’$“beta˙v$’,

’$“gamma$’, r’$“beta˙h$’, ’$“delta$’,““

r’$“theta$’,r’$“mu˙h’,’$“kappa$’,

’“lambda˙v’, r’$“rho$’, ’c’)

y˙pos = np.arange(len(objects))

performance = [-1, 1, -0.999642077, 1,

-0.000055980, 0.1823284259, 0.0070905130, ““

0.2043701746, -0.7275815124, 0.9812896997, ““

-0.4547389852]

277

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



barlist = plt.bar(y˙pos, performance,

align=’center’, alpha = 1)

barlist[0].set˙color(’black’)

barlist[1].set˙color(’b’)

barlist[2].set˙color(’black’)

barlist[3].set˙color(’b’)

barlist[4].set˙color(’black’)

barlist[5].set˙color(’b’)

barlist[6].set˙color(’black’)

barlist[7].set˙color(’b’)

barlist[8].set˙color(’black’)

barlist[9].set˙color(’b’)

barlist[10].set˙color(’black’)

#plt.setp(y˙pos, xticks=[0.1, 0.5, 0.9],

xticklabels=[’$““epsilon˙I$’,

’$““sigma˙M$’, ’$““theta$’, ’$““mu˙B$’, ’$““mu˙I$’,

’$““mu˙M$’],yticks=[0.0001, 0.0002, 0.0003])““

plt.xticks(y˙pos, r’objects’,““

fontsize=15, weight = ’bold’)

plt.ylabel(’Index’, fontsize=15)““

plt.title(’Sensitivity Index Profile

for $R˙0$’, fontsize = 17, weight = ’bold’)

plt.show()
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