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Modelling spatio-temporal heterogeneities in

groundwater quality in Ghana: a multivariate

chemometric approach

Frederick Ato Armah, Arnold Paintsil, David Oscar Yawson,

Michael Osei Adu and Justice O. Odoi
ABSTRACT
Chemometric techniques were applied to evaluate the spatial and temporal heterogeneities in

groundwater quality data for approximately 740 goldmining and agriculture-intensive locations in

Ghana. The strongest linear and monotonic relationships occurred between Mn and Fe. Sixty-nine

per cent of total variance in the dataset was explained by four variance factors: physicochemical

properties, bacteriological quality, natural geologic attributes and anthropogenic factors (artisanal

goldmining). There was evidence of significant differences in means of all trace metals and

physicochemical parameters (p< 0.001) between goldmining and non-goldmining locations. Arsenic

and turbidity produced very high value F’s demonstrating that ‘physical properties and chalcophilic

elements’ was the function that most discriminated between non-goldmining and goldmining

locations. Variations in Escherichia coli and total coliforms were observed between the dry and wet

seasons. The overall predictive accuracy of the discriminant function showed that non-goldmining

locations were classified with slightly better accuracy (89%) than goldmining areas (69.6%). There

were significant differences between the underlying distributions of Cd, Mn and Pb in the wet and

dry seasons. This study emphasizes the practicality of chemometrics in the assessment and

elucidation of complex water quality datasets to promote effective management of groundwater

resources for sustaining human health.
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INTRODUCTION
Although groundwater is generally less susceptible to con-

tamination than surface waters, it is usually more highly

mineralized in its natural state (Chapman ). As water

moves slowly through the ground it can remain for extended

periods of time in contact with minerals present in the soil

and bedrock and become saturated with dissolved solids

from these minerals (Chapman ). This dissolution pro-

cess continues until chemical equilibrium is reached

between the water and the minerals with which it is in con-

tact. The types and relative concentrations of the chemical
constituents in groundwater provide information on the

evolution of groundwaters, age (residence time), solubility,

rates of movement, flow history, and sources of recharge

and pollution (Chapman ; Edmunds et al. ;

Purtschert ). According to Morris et al. (), an esti-

mated two billion people across the world depend on

aquifers for a drinking water supply. In a rural context,

groundwater provides the mainstay for agricultural irriga-

tion and will be the key to providing additional resources

for food security (Foster & Chilton ; Morris et al.
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; Arias-Estévez et al. ). In urban centres, ground-

water supplies are important as a source of relatively low

cost and generally high quality municipal and private dom-

estic water supply (Foster & Chilton ; Morris et al.

; Arias-Estévez et al. ). The importance of ground-

water quality has become increasingly recognized as

development of groundwater continues to expand in devel-

oping countries such as Ghana. Monitoring of

groundwater quality is concomitantly becoming more

important because of natural and anthropogenic contami-

nation concerns and development of new equipment and

techniques for measuring contaminants in minute concen-

trations (Jordana & Piera ; Pinder & Celia ;

Armah ).

The need to expand research and monitoring efforts and

develop a comprehensive, consistent, and reliable database

from which to better understand and characterize existing

conditions in groundwater, identify existing and potential

problems, establish priorities, and develop viable ground-

water policies and strategies is at the very least compelling

but it is a complex challenge. In this context, Gazzaz et al.

() mention that water analyses usually generate bulky

and complex datasets constituting large numbers of samples

and water quality parameters whose analysis and interpret-

ation using univariate and bivariate statistical methods can

be far from complete. This brings into sharp focus the impor-

tance of chemometric approaches. Previous research has

demonstrated that chemometric techniques are useful tools

for the extraction of considerable, meaningful information

from environmental data (Zhou et al. ; Giridharan

et al. ; Wu et al. ; Gazzaz et al. ; Kumari

et al. ). Such techniques help in identifying possible fac-

tors that affect water quality and also help in determining

solutions to these problems (Varol et al. ).

Notwithstanding the utility of chemometrics in the

assessment of water quality data at the multivariate level,

currently our understanding of groundwater quality is par-

tial with a substantial assortment of missing pieces.

Existing programs of acquiring and managing groundwater

monitoring data in developing countries such as Ghana

are inadequate to meet groundwater quality challenges. Fur-

thermore, with few exceptions (see Armah ), only a few

studies have assessed groundwater quality in Ghana using a

combination of multivariate statistical approaches to elicit a
s://iwaponline.com/jwh/article-pdf/15/4/658/393551/jwh0150658.pdf
comprehensive picture of the spatial and temporal distri-

butions and the complex interplay of physicochemical

factors, trace metals, and bacteriological parameters. This

is a fundamental motivation for this study. Three broad

objectives were formulated to guide this study. The first

was to assess zero-order relationships among physicochem-

ical and trace metals in the original and transformed

groundwater data from 738 locations in Ghana. This was

achieved via Spearman and Pearson product moment corre-

lations, respectively. Second, the study evaluated the spatial

and temporal variability of groundwater quality parameters.

This objective was met using principal component analysis/

factor analysis (PCA/FA) and Wilcoxon rank-sum (Mann–

Whitney) test, respectively. Third, the pollution status of

each location was investigated using negative log-log

regression and discriminant analysis (DA).
MATERIALS AND METHOD

Study area

The exact location from which groundwater tests were col-

lected and a thorough exposition of the study site as well

as an exhaustive representation of the study zone are very

much archived by Armah (). Briefly, the monitoring

locales for this study were of the following distribution:

Ayanfuri (16), Savelugu (173), Tolon (47), Damang (6),

Teberebie (85), Bogoso (40), Prestea (166), and Tarkwa

(205). Ayanfuri together with Bogoso, Damang, Tarkwa,

Prestea, and Teberebie constitute the localities in southwes-

tern Ghana, as shown in Figure 1. The geographical

physiognomies of this zone is exemplified by greenstone

belts made out of mafic volcanic rocks and mediating

basins commonly comprising fine-grained, subterranean

marine silt transformed at greenschist facies. Three funda-

mental gold deposits, including placer or alluvial deposits,

non-sulphidic pale placer or free milling mineral ore, and

oxidized mineral ore are found in the region (Kortatsi

; Bhattacharya et al. ). Alluvial deposits are found

in stream-depleting regions with gold-containing deposits

occurring in places especially in Biriminan rock zones

where the bedrock has marginally been transformed

and influenced by Dixcove sandstone (Kortatsi ).



Figure 1 | Map of water quality sampling areas.
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Non-sulphidic pale placer ore predominantly occurs in hard

rock, and mostly is associated with series conglomerate

within the Tarkwaian sedimentary formation (Kortatsi

). Oxidized ores, whose stem includes sulphides,

arsenopyrite, realgar (AsS), and opiment (As2S3) pyrites,

occur in weathered rocks (Kortatsi ). The northern

zone, made up of Savelugu and Tolon, is characterized by

conglomerates which range in age from Precambrian to

Paleozoic and thus has two unambiguous geologic attri-

butes: Precambrian basement rocks and Palaeozoic rocks
om https://iwaponline.com/jwh/article-pdf/15/4/658/393551/jwh0150658.pdf
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of the Voltaian sedimentary basin. The Voltaian Formation

is an asymmetrical epicontinental interior sag basin com-

prising mostly shallow marine to continental sediments

with sub-horizontal beds of sandstones, shale, mudstone,

sand, and pebbles (Dapaah-Siakwan & Gyau-Boakye

). The sediments of this basin are for the most part pro-

tected by a dainty (<30 m) weathered layer that

fundamentally influences the hydrogeologic attributes of

the aquifer. The area within the Voltaian basin used for

this study (i.e., Tolon and Savelugu zone), a transcendently
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rural agricultural zone, is astoundingly level, shaping a deli-

cately moving low-lying relief with topographic rises

running from 120 m to 180 m above mean sea level.

Sampling and laboratory analysis of bacteriological and

chemical parameters

The procedures of water sampling and laboratory analysis of

groundwater quality adopted for this study has extensively

been described by Armah (). Geo-satellite positioning of

the exact locations of all the groundwater zones were resolved

with aGarminEtrexGPS (Garmin International, Inc., Olathe,

Kansas, USA). Acceptable sampling protocol standards

(APHA , ) were followed during sampling of all the

738 samples that were collected. Before sampling, bottles

were washed twicewith detergent and rinsed with 10% hydro-

chloric acid and de-ionized (DI)water. Furthermore, at eachof

the sampling sites, the bottles were flushed with DI water to

diminish or totally dispose of any pollution that might be pre-

sent. At each location, the water was left running for

approximately 3 minutes to cleanse the system before it was

collected. One millilitre (1 mL) of concentrated nitric acid

(HNO3) was introduced to samples being prepped for metal

analyses to acidify the same. The samples were promptly put

into coolers containing ice (around 4 WC) and sent to the lab-

oratory for analysis. This was necessary to prevent growth of

microbes, flocculation and lessen any adsorption on container

surfaces, processes which could confound the results of the

analysis. Globally acknowledged and standard laboratory

techniques were followed in the analysis of the samples

(APHA ). At every sampling position, physicochemical

water quality parameters, such as pH, electrical conductivity

(EC), temperature, and turbidity were measured in situ utiliz-

ing the AQuanta multi-parameter water quality meter

(Hydrolab Corporation, USA). Standard methods prescribed

for the analysis of various elements and parameters (APHA

) were adopted for the laboratory analysis. Two 500 mL

of water samples were collected at each location into two

labelled bottles and were sent to two independent laboratories

for analysis. To guarantee quality control and reproducibility

of the results, each of the laboratories were sent a full comp-

lement of tests to examine. The samples were evaluated for

nutrients (nitrates) and other water quality parameters, such

as coliform microbes, pH, electrical conductivity, dissolved
s://iwaponline.com/jwh/article-pdf/15/4/658/393551/jwh0150658.pdf
solids, and turbidity. Flame atomic absorption spectropho-

tometry, as described by Armah et al. (a, b) and

Armah (), was employed to determine elemental concen-

trations of As, Cd, Fe, Mn, and Pb. In the present study,

standard reference materials were utilized to check the pre-

cision of metal analysis in total concentration and the

sequential extractions.Heavymetals recovery rates in the stan-

dard reference material were around 85–110%. Furthermore,

the total concentrations of metals in sediments of successive

extraction were equivalent to the independent aggregate con-

centrations, with recovery rates of 82–104%. Blanks for

reagents were likewise utilized for error calculation and back-

ground corrections. No less than one duplicate was run for

every six specimens to affirm the accuracy of the successive

extraction technique. In all the analyses conducted, the pre-

cision and biasness were below 10%.

Data treatment and multivariate statistics

All statistical analyses were performed in STATA 13 (Stata-

Corp, College Station, TX, USA). The standardized skewness

and standardized kurtosis were determined to assess whether

the samples originate from a normal distribution. Values of

these statistics outside the range of �2 to þ2 indicated signifi-

cant departures fromnormality. The statistical analyses of data

were carried out on all variables in the original or transformed

dataset depending on the specific objectives. Multivariate

analysis of the groundwater quality data was carried out

using Spearman rho (original data), Pearson product

moment correlation (normalized data), PCA/FA (normalized

data), and discriminant analyis (DA) (original data) (see

Simeonov et al. , ; Shrestha & Kazama ; Armah

et al. b; Armah & Gyeabour ). In addition, negative

log-log regression model was used to assess the pollution

status of each groundwater location based on the magnitude

of each of the water quality indicators.

Spearman rho and Pearson product moment correlation

Spearman’s correlation coefficient (rs) is a statistical

measure of the strength of amonotonic relationship between

paired data. This effect size measure was used to determine

the nature of the relationships between the physicochemical

parameters and trace metals in the original data without
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imposing the assumption of normality (non-parametric). A

value of zero implies no (monotonic) correlation, however

it does not suggest there is no relationship between the

variables. A perfect quadratic relationship may exist even

though rs¼ 0. Pearson’s correlation coefficient is a statistical

measure of the strength of a linear relationship between

paired data. This effect size indicator was used for variables

that were interval or ratio level, linearly related, and bivari-

ate normally distributed. Variables that did not fully satisfy

the assumption of normality were transformed prior to the

determination of Pearson’s correlation.
PCA/FA

Prior to the use of PCA/FA, correlation analysis was carried

out. This was utilized to find an internal structure and assist

in the identification of pollutant sources not accessible at first

glance. Similarly, to determine the factorability of inter-corre-

lation matrix or suitability of the data for PCA/FA, Bartlett’s

test of sphericity and Kaiser–Meyer–Olkin (KMO) measure of

sampling adequacy were performed on subsets and the entire

variables. The KMO ranged between 0.60 and 0.76 indicating

that the degree of common variance among the 12 variables

is ‘mediocre’ bordering on ‘middling’ (see Varol et al. ). If

a factoranalysis is conducted, the factors extractedwill account

for a fair amount of variance but not a substantial amount. PCA

andFAwere applied to the altered data standardized through z-

scale transformation to avoid misclassification due to wide

differences in data dimensionality (see Shrestha & Kazama

; Armah et al. a; Mustapha &Aris ). Furthermore,

the standardization procedure eliminated the influence of

different units of measurements and rendered the data dimen-

sionless. PCA reduces the dimensionality of a dataset

consisting of a large number of interrelated variables, while

retaining as much of the variability present in a dataset as poss-

ible (Filik Iscen et al. ). This reduction is achieved by

transforming the dataset into a new set of variables, the princi-

pal components (PCs), which are orthogonal (non-correlated)

and arranged in decreasing order of importance.

DA

DA, a multivariate statistical technique, is commonly used

to build a predictive or descriptive model of group
om https://iwaponline.com/jwh/article-pdf/15/4/658/393551/jwh0150658.pdf
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discrimination based on observed predictor variables and

to classify each observation into one of the groups as

shown in Equation (1):

f Gið Þ ¼ Kiþ
Xn

J¼1

Wijð Þ Pijð Þ (1)

where i is the number of groups (G), ki is the constant

inherent to each group, n is the number of parameters

used to classify a set of data into a given group, wj is the

weight coefficient, assigned by DA to a given selected par-

ameters (pj). In DA, multiple quantitative attributes are

used to discriminate a single classification variable (Musta-

pha & Aris ). DA is different from the cluster analysis

because prior knowledge of the classes, usually in the

form of a sample from each class, is required. In this

study, there were two classes: goldmining and non-goldmin-

ing locations. The common objectives of DA are: (i) to

investigate differences between groups; (ii) to discriminate

groups effectively; (iii) to identify important discriminating

variables; (iv) to perform hypothesis testing on the differ-

ences between the expected groupings; and (v) to classify

new observations into pre-existing groups. In order to deter-

mine the most parsimonious way to distinguish between

goldmining and non-goldmining locations on the basis of

the physicochemical properties of the study locations, DA

was applied. This descriptive technique indicates which

water quality parameters contribute most to group separ-

ation and successively identifies the linear combination of

attributes known as canonical discriminant functions

(equations) which contribute maximally to group separation

(see Singh et al. ; Mustapha & Aris ; Devic et al.

). DA was performed based on the standard, forward

stepwise and backward stepwise modes to evaluate the

spatial variations in groundwater quality. The best discrimi-

nant functions for each mode were constructed considering

the quality of the classification matrix and the number of

parameters.
Wilcoxon rank-sum (Mann–Whitney) test

In this study, two seasons (rainy and dry) were used as

proxies of temporal distribution of physicochemical par-

ameters and trace metals. The main wet season is typically
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from March to July whereas the dry season lasts from

December to March (see McSweeney et al. ). Two-

sample Wilcoxon rank-sum (Mann–Whitney) test was used

to assess whether the levels of the physicochemical

parameters and trace metals differ based on seasonality. It

tests the null hypothesis that data in the wet season and

dry season are samples from continuous distributions with

equal medians, against the alternative that they are not.

The test assumes that the two samples are independent.
Negative log-log regression

The outcome variable used for the analysis of pollution status

was dichotomous. Sampling locations that complied with all

the drinking water quality standards of the World Health

Organization and the Ghana Water Company (see Armah

et al. a) were assigned a value of 0 indicating that they

were not polluted, otherwise a value of 1 (polluted) was allo-

cated. Based on this criterion, the sampling locations were

unevenly or asymmetrically distributed. Approximately 27%

of sampling locations were coded as 1 whereas 73% were

coded as 0. A generalized linear model was then fitted to the

binary response variable using the physicochemical par-

ameters and trace metals as covariates. For the generalized

linear model in which the dependent variable is binary, a

probit or logit link function that assumes a symmetrical distri-

bution could produce biased parameter estimates (see Armah

). Diagnosis of three candidate regressionmodels (logistic,

negative log-log, and complementary log-log) revealed that the

negative log-log model fits much better than the other two

models, as evaluated by Akaike information criterion (AIC)

or Bayesian information criterion (BIC) statistics. Hence, the

negative log-log model was the most parsimonious.
Table 1 | Descriptive statistics of the groundwater quality parameters

pH EC TDS Turbidity Nitrates As

Mean 7.095 675.134 268.55 78.91 13.3399 0.238

Std. dev. 1.195 1,353.768 397.71 253.699 104.718 3.627

Skewness 0.367 7.069 12.56 6.418 16.953 19.50

Kurtosis 0.507 59.986 228.91 51.698 312.116 387.0

Minimum 4.06 23.9 12.1 0 0 0

Maximum 11.33 14,920 8,206 2,940 2,120 78

s://iwaponline.com/jwh/article-pdf/15/4/658/393551/jwh0150658.pdf
RESULTS AND DISCUSSION

Summary statistics of groundwater quality parameters

Table 1 shows the measures of central tendency (mean),

measures of dispersion (minimum andmaximum values, stan-

dard deviation) and measures of distribution (skewness and

kurtosis) of the concentration of groundwater quality par-

ameters. Skewness indicated that most of the variables

exhibited asymmetryanddeviation fromanormal distribution.

All the water quality parameters had skewness greater than

zero (right skewed) indicating that most values are concen-

trated on the left of the mean, with extreme values to the

right. Kurtosis signifies flattening or ‘peakedness’ of the distri-

bution of each of the groundwater quality indicators. Kurtosis

of pH is less than 3 and signifies a platykurtic distribution, flat-

ter than a normal distribution with a wider peak. The

probability for extreme values is less than for a normal distri-

bution, and the values are wider spread around the mean.

Kurtosis of all other variables in Table 1 is greater than 3 and

suggests leptokurtic distributions characterized by sharper

than a normal distribution, with values concentrated around

the mean and thicker tails. This means high probability for

extreme values. None of the variables had kurtosis of 3, imply-

ing that none of the distribution was mesokurtic.
Monotonic and linear relationships between

groundwater quality parameters

The purpose of this section is to determine strong correlation

between two parameters. This is useful in source apportion-

ment and the identification of the origin of the bacteriological

and physicochemical parameters. From Table 2, it can be
Cd Fe Mn Pb Total coliform E. coli

0.0045 1.0332 0.7148 0.0242 63.142 21.1954

0.012 2.864 1.981 0.054 334.96 199.945

6 18.358 6.805 6.024 4.99 6.72 10.852

1 416.527 61.497 52.645 30.342 44.263 121.394

0 0.001 0 0 0 0

0.276 37.628 26.8 0.497 2,419.6 2,419.6



Table 2 | Pearson’s product moment correlation coefficients (parametric) and Spearman’s rho (non-parametric)

pH Conductivity TDS Turbidity Nitrate As Cd Fe Mn Pb Total coliform E. coli

Pearson’s product moment correlation coefficients (parametric)

pH 1 0.624** 0.633** �0.01 0.033 �0.052 0.056 0.015 �0.304** 0.038 0.209** �0.138

Conductivity 1 0.882** �0.220** �0.105** �0.179** 0.005 �0.118** �0.136** �0.072 0.008 �0.008

TDS 1 �0.208** �0.053 �0.166** �0.021 �0.109** �0.130** �0.064 0.063 0.116

Turbidity 1 0.431** 0.343** �0.024 0.574** 0.383** 0.169** 0.236** �0.176

Nitrate 1 0.338** 0.122** 0.207** 0.039 0.096** 0.105 �0.148

As 1 0.205** 0.128** 0.196** 0.256** �0.088 0.185

Cd 1 0.003 �0.015 0.224** 0.118 �0.145

Fe 1 0.459** 0.127** 0.219** �0.055

Mn 1 0.097** �0.178* �0.034

Pb 1 0.214** 0.462**

Total coliform 1 0.870**

E. coli 1

Spearman’s rho (non-parametric)

pH 1 0.732** 0.721** �0.116** �0.014 �0.132** 0.132** �0.064 �0.346** 0.025 �0.105** �0.051

Conductivity 1 0.900** �0.227** �0.116** �0.204** 0.069 �0.128** �0.152** �0.04 �0.245** �0.106**

TDS 1 �0.223** �0.073* �0.215** 0.051 �0.110** �0.154** �0.046 �0.229** �0.083*

Turbidity 1 0.376** 0.292** �0.097** 0.594** 0.376** 0.099** 0.473** 0.185**

Nitrate 1 0.266** 0.117** 0.183** �0.01 0.099** 0.249** 0.083*

As 1 0.072 0.144** 0.180** 0.310** 0.393** 0.015

Cd 1 �0.105** �0.191** 0.257** �0.232** �0.125**

Fe 1 0.485** 0.05 0.346** 0.128**

Mn 1 0.029 0.274** 0.062

Pb 1 0.120** 0.002

Total coliform 1 0.413**

E. coli 1

*Correlation is significant at the 0.05 level (2-tailed).

**Correlation is significant at the 0.01 level (2-tailed).
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deduced that when analysing Pearson’s and Spearman’s coeffi-

cients simultaneously, it is logical to expect that the significance

of one would imply the significance of the other. However, a

reverse implication does not necessarily seem to be logically

true. It is also possible to encounter a situationwhere Pearson’s

coefficient is negative whereas Spearman’s coefficient is posi-

tive, as evidenced in the relationship between Mn and total

coliform bacteria.

In all, the set of data contains nine correlations above

0.50, including four generated by Spearman’s method

(Table 2). The five Pearson’s correlations with values

higher than 0.50 were also above 0.50 when the Spearman’s

method was used. The only inconsistency is the relationship

between Escherichia coli and total coliform bacteria. There-

fore, a relationship appears to exist between the following

parameters: pH/electrical conductivity, pH/total dissolved

solids (TDS), electrical conductivity/total dissolved solids,

and Fe/turbidity, although to varying degrees of strength

and statistical significance.

Fifty-one locations had pH values greater than 9.0.

Twenty-three of the locations were in Tarkwa and 15 were

found in Prestea. The remainder were distributed as follows:

Bogoso (4), Savelugu (3), and Teberebie (6). Eight locations

simultaneously recorded high pH values and high levels of

turbidity. These were distributed as follows: Tarkwa (3),

Teberebie (3), and Prestea (2). Turbidity increased with

increasing iron concentration. This finding is consistent

with the literature. It has been suggested that turbidity is

attributable to the colloidal organic and inorganic matter

from water, which does not settle in time (Lefebvre &

Legube ; Likens ; Khraisheh et al. ). Further-

more, in the marginally alkaline pH conditions observed

in natural groundwater, coagulation and sedimentation of

iron compounds does not occur. They remain in the water-

body culminating in increased turbidity. Consequently,

increased concentrations of iron in water at high pH con-

tributes to increased water turbidity (Lefebvre & Legube

; Likens ; Khraisheh et al. ). Primary contribu-

tors to turbidity include clay, silt, finely divided organic and

inorganic matter, soluble coloured organic compounds,

plankton, and microscopic organisms (APHA ).

Regardless of the technique used, the strongest corre-

lation was observed between total dissolved solids, a good

indicator of the mineralized character of the water and
s://iwaponline.com/jwh/article-pdf/15/4/658/393551/jwh0150658.pdf
conductivity suggesting a common origin. Conductivity of

groundwater, defined as the ratio of the current density

(electrolytic) to the electric field strength, is particularly

influenced by the quality of the soil. The average conduc-

tivity of groundwater in areas that are covered with clay

was higher (1,400 μS cm�1) than areas covered with gravel

or sand (360 μS cm�1).

It is remarkable that most of the correlations between

tracemetal concentrations were statistically significant; how-

ever, nonewashigher than 0.5 notwithstanding the technique

used. In both Pearson’s and Spearman’s correlations, the

strongest linear and monotonic relationships occurred

between Mn and Fe. According to Thurman (), in oxi-

dized natural waters, the largest amount of iron is found as

a complex compound bound to humus, a colloidal precipitate

or bound to solid matter (such as micro-organisms). Only in

conditions that are devoid of oxygen or in highly acidic

waters is all iron found in an ionic form.

PCA/FA

PCA/FA was performed on the normalized data to compare

the compositional pattern between the groundwater samples

and to identify the factors influencing each one. PCA of the

complete dataset (Table 3) exposed four PCs with eigen-

values >1 that explained approximately 69% of the total

variance in the groundwater quality dataset. The scree plot

of eigenvalues (not shown) confirms this cut-off point. The

first PC, which accounted for 22.3% of the total variance

was correlated (loading >0.75) with electrical conductivity,

total dissolved solids, and pH. The second PC accounting

for 20.8% of total variance was correlated with E. coli and

total coliform bacteria. The third PC, which accounted for

13.4% of total variance, was correlated with Fe, whereas

the fourth PC accounted for 12.3% of the total variance

and was correlated with As.

Based on the factor loadings after varimax rotation,

variance factor 1 reflects the natural variability of physicochem-

ical properties in groundwater. In the groundwater dataset, the

physicochemical properties varied markedly and reflect both

natural and anthropogenic influences. Previous research has

established that these physicochemical properties are influ-

enced by solubility, adsorption, degradation, volatility, soil

texture, organic matter content, soil permeability, depth to



Table 3 | PCs, total variance and rotated component matrix

Total variance explained Varimax rotated component matrixa

Component

Initial eigenvalues Extraction sums of squared loadings Rotation sums of squared loadings Component

Total
% of
variance

Cumulative
% Total

% of
Variance

Cumulative
% Total

% of
variance

Cumulative
% 1 2 3 4

1 2.796 23.302 23.302 2.796 23.302 23.302 2.682 22.346 22.346 pH 0.77 �0.013 0.147 0.074

2 2.539 21.16 44.462 2.539 21.16 44.462 2.5 20.836 43.183 Conductivity 0.958 0.019 �0.052 0.018

3 1.564 13.037 57.499 1.564 13.037 57.499 1.611 13.425 56.608 TDS 0.946 0.151 �0.065 0.02

4 1.375 11.462 68.961 1.375 11.462 68.961 1.482 12.353 68.961 Turbidity 0.39 �0.311 0.233 �0.213

5 0.924 7.703 76.665 Nitrate �0.044 �0.367 �0.004 0.668

6 0.821 6.839 83.504 As 0.213 0.179 0.201 0.765

7 0.66 5.504 89.007 Cd �0.029 �0.178 0.66 0.125

8 0.533 4.438 93.446 Fe 0.04 0.034 0.847 0.037

9 0.467 3.895 97.341 Mn 0.193 0.039 0.562 �0.539

10 0.231 1.922 99.263 Pb 0.18 0.687 �0.135 �0.265

11 0.087 0.721 99.984 Total
coliform

�0.008 0.945 �0.011 �0.068

12 0.002 0.016 100 E. coli �0.055 0.903 �0.022 0.132

Component transformation matrix

1 0.868 0.481 0.08 �0.091

2 0.444 �0.826 0.317 0.142

3 �0.183 0.088 0.761 �0.616

4 �0.127 0.28 0.56 0.769

aRotation converged in five iterations.

Extraction method: principal component analysis. Rotation method: Varimax with Kaiser normalization.
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groundwater, rainfall, and geologic conditions (Chapman ;

Nosrati & Van Den Eeckhaut ; Barringer & Reilly ;

Devic et al. ).

Based on the strong positive factor loadings onE. coli and

total coliform, variance factor 2 reflects the microbiological

aspect of groundwater. It is well documented that a funda-

mental microbiological problem in groundwater, especially

where many dispersed, shallow dug wells or boreholes pro-

vide protected but untreated domestic water supplies, is the

health hazard emanating from faecal matter contamination.

It has been argued that of the four types of pathogens con-

tained in human excreta, only bacteria and viruses are

likely to be minute enough to be transported through the

soil and aquifer matrix to groundwater bodies (see Chapman

; Graham & Polizzotto ). In this context, the pres-

ence or absence of oxygen is, consequently, one of the most

significant attributes affecting microbial activity. Previous

studies suggest that microbe populations are largest in the

nutrient-rich humic upper parts of the soil, and decline with

decreasing nutrient supply and oxygen availability at greater

depths (see Chapman ; Barringer & Reilly ). In the

presence of organic material, anaerobic microbial activity

can occur far below the soil and has been observed at

depths of hundreds and even thousands of metres. The

depth to which such activity is likely is contingent on the

nutrient supply, pH, salt content, groundwater temperature,

and the permeability of the aquifer (Chapman ; Barringer

& Reilly ; Devic et al. ).

Variance factor 3, which has strong factor loadings on Fe,

epitomizes the natural geologic attributes of the groundwater.

This finding is consistent with the previous work by Armah

et al. (b). The distribution and origin of Fe in groundwater

has been studied in various contexts across the world. Iron is

abundant in most of the study areas in the form of pyrite and

arsenopyrite ores (see Armah et al. ). According to Chap-

man (), high iron levels in groundwater are widely

reported from developing countries, where they are often an

important water quality issue. The magnitude and distribution

of Fe in groundwater is influenced by a plethora of factors

including the redox condition, pH values, the components of

aquifer media, runoff conditions, and characteristics of over-

lying soils (see Chapman ; Appelo & Postma ).

Variance factor 4 hada strong positive factor loading onAs

and reflects the goldmining activities in some of the study
s://iwaponline.com/jwh/article-pdf/15/4/658/393551/jwh0150658.pdf
locations. This is consistent with the findings of Armah et al.

(b). It hasbeen suggested that in instanceswhere the spatial

extent of As contamination of groundwater is wide, the sources

of the As are likely to be geogenic (see Smedley & Kinniburgh

; Barringer & Reilly ). The speciation of arsenic is an

important determining factor of its mobility, reactivity, and

potential bioavailability in arsenic- and goldmine impacted

regions. Arsenic speciation in these complex natural systems

is, moreover, influenced by a number of physical, geological,

and anthropogenic variables (see Bowell et al. ;

Palumbo-Roe et al. ; Cancès et al. ). Previous research

identified mining of arsenic and metal ores and natural geolo-

gic sources of arsenic as dominant environmental conditions

that trigger inputs of As to groundwater (Nordstrom ;

Eisler ; Barringer & Reilly ). Several biochemical

mechanisms determine the mobility of As in groundwater.

These include oxidation of pyrite, arsenopyrite, and arsenite

(Morin & Calas ), reduction of sulphate and formation

of sulphide (Nriagu et al. ), and microbially mediated pre-

cipitation of orpiment (Ehrlich & Newman ).

DA

ADAwas conducted to predict whether a particular ground-

water sample was obtained from a goldmining area or not.

Predictor variables were conductivity, total dissolved solids,

turbidity, nitrate, heavy metal concentrations (arsenic, cad-

mium, iron, manganese, lead), and pH. Significant mean

differences were observed for all the predictors on the depen-

dent variable. While the log determinants were quite similar,

Box’s M indicated that the assumption of equality of covari-

ance matrices was violated. However, given the large

sample, this problem is not regarded as serious. The discrimi-

nate function revealed a significant association between

groups and all predictors, accounting for 41.09% of between

group variability, although closer analysis of the structure

matrix revealed two significant predictors, namely turbidity

(0.650) and arsenic (0.560). The cross-validated classification

showed that overall 82.0% were correctly classified.

We initially examined whether there were any significant

differences between goldmining andnon-goldmining locations

based on the trace metal concentrations and physicochemical

parameters using group means and analysis of variance

(ANOVA) results data. The results of group statistics and
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tests of equality of group means indicated significant group

differences. For example, mean differences between pH

scores and turbidity scores suggest that these may be good dis-

criminators as the separations are large. Table 4 provides

strong statistical evidence of significant differences between

means of goldmining and non-goldmining locations for all

trace metals and physicochemical parameters (p< 0.0001)

with arsenic and turbidity producing very high value Fs. The

pooled within-group matrices (Table 4) also support use of

these independent variables as inter-correlations are low.

The pooled within-group matrices, Wilks’ lambda,

standardized canonical discriminant functions, and the coeffi-

cients of structure matrix are depicted in Table 4. The log

determinants appear similar and Box’s M was 782.135 with

F¼ 13.931 which is significant at p< 0.0001 indicating that

the null hypothesis that the groups do not differ cannot be

retained. The eigenvalues provide information on each of the

discriminate functions (equations) produced. The canonical

correlation is the multiple correlations between the predictors

and the discriminant function, which provides an index of over-

allmodelfit, interpreted as theproportionof variance explained

(R2). A canonical correlation of 0.641 was obtained suggesting

that themodel explains 41.09% of the variation in the grouping

variable, i.e., whether a location is in a goldmining area or not.

Wilks’ lambda indicates a highly significant function

(p< 0.0001) and provides the proportion of total variability

not explained, i.e., it is the converse of the squared canonical

correlation; that is, 58.9% unexplained. The interpretation of

the discriminant coefficients (or weights) is similar to mul-

tiple regressions. Table 4 provides an index of the

importance of each predictor. The sign indicates the direction

of the relationship. Arsenic (As) was the strongest predictor

while cadmium (Cd) was next in importance as a predictor.

These two variables with large coefficients stand out as

those that strongly predict allocation to the goldmining or

non-goldmining category. All the other factors were less suc-

cessful as predictors. The structure matrix table (Table 4)

shows the correlations of each variable with each discrimi-

nate function. These Pearson coefficients are structure

coefficients or discriminant loadings. They serve as factor

loadings in factor analysis. Based on the largest loadings for

turbidity and arsenic, it can be deduced that ‘physical proper-

ties and chalcophilic elements’ was the function that most

discriminated between non-goldmining and goldmining
om https://iwaponline.com/jwh/article-pdf/15/4/658/393551/jwh0150658.pdf
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locations. Generally, just like factor loadings, 0.30 is seen as

the cut-off between important and less important variables.

From the coefficients of the canonical discriminant

function in Table 4:

D ¼ �0:308�Condð Þ þ �0:842�TDSð Þ þ 0:406�Turbidityð Þ
þ 0:154�Nitrateð Þ þ 0:757�Asð Þ þ �1:526�Cdð Þ
þ 0:162�Feð Þ þ 0:131�Mnð Þ þ �0:035�Pbð Þ
þ 0:182�pHð Þ � 1:064

The discriminant function coefficients b or standardized

form beta both indicate the partial contribution of each

variable to the discriminate function controlling for all

other variables in the equation. This is useful to assess each

variable’s unique contribution to the discriminate function

and therefore provide information on the relative importance

of each variable. The classification results revealed that

83.6% of sampling locations were classified correctly into

goldmining or non-goldmining groups. This overall predictive

accuracy of the discriminant function, the ‘hit ratio’, indi-

cated that non-goldmining locations were classified with

slightly better accuracy (89%) than goldmining areas

(69.6%). This is not entirely surprising given that the human

activities (agriculture, ore mining, etc.) in goldmining areas

are complex. It is problematic to isolate anthropogenic influ-

ences from natural background concentrations of trace

metals in groundwater, and effectively characterize the pro-

cesses controlling trace and toxic heavy metal mobilization

and transport in goldmining localities.

Wilcoxon rank-sum (Mann–Whitney) test

The results of the Wilcoxon rank-sum (Mann–Whitney) test

suggest that there is a statistically significant difference between

the underlying distributions of Cd (z¼�6.358, p¼ 0.0001),

Mn (z¼ 2.012, p¼ 0.0442), and Pb (z¼�3.600, p¼ 0.0003)

in the wet seasons and dry seasons. In all three instances,

the sum of the wet season scores was higher than the

sum of the dry season scores. There were no observed sea-

sonal variations in As and Fe concentrations in

groundwater samples. However, E. coli and total coli-

forms were higher in the dry season than in the wet

season. These results are counter-intuitive and inconsist-

ent with the literature. Previous studies indicate that



Table 4 | Standardized canonical discriminant functions and coefficients of structure matrix

Tests of equality of
groups means Correlation (pooled within-groups)

Standardized
canonical
discriminant
function
coefficients

Canonical
discriminant
function
coefficients

Structure
matrix

Function Function Function
Wilks’
lambda F Conductivity TDS Turbidity Nitrate As Cd Fe Mn Pb pH 1 1 1

Conductivity 0.909 68.532 1 0.865 �0.105 �0.027 �0.08 �0.05 �0.049 �0.075 �0.05 0.633 �0.14 �0.308 �0.38

Total
dissolved
solids

0.912 66.03 1 �0.093 0.028 �0.07 �0.073 �0.042 �0.067 �0.043 0.642 �0.344 �0.842 �0.373

Turbidity 0.772 200.794 1 0.352 0.193 0.07 0.509 0.302 0.162 0.037 0.356 0.406 0.65

Nitrate 0.923 57.203 1 0.26 0.191 0.139 �0.03 0.079 0.065 0.148 0.154 0.347

Arsenic 0.82 149.12 1 0.324 0.022 0.136 0.242 �0.042 0.587 0.757 0.56

Cadmium 0.957 30.316 1 0.073 0.04 0.243 0.003 �0.539 �1.526 �0.253

Iron 0.898 77.644 1 0.408 0.125 0.032 0.155 0.162 0.404

Manganese 0.935 47.273 1 0.086 �0.289 0.121 0.131 0.316

Lead 0.991 6.519 1 0.03 �0.021 �0.035 0.117

pH 0.988 8.089 1 0.214 0.182 �0.131
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bacteriological concentrations in shallow groundwater are

usually considerably higher during the wet season than

during the dry season (see Alemayehu et al. ; Shrestha

et al. ). In this context, Shrestha et al. () attributed

the seasonal variations in microbial quality to a high level

of faecal material infiltration during the rainy season.

Negative log-log regression

A generalized linear (log-log regression) model was fitted to

binary dependent variable (polluted or not polluted)

depending on whether the location was compliant for the

WHO drinking water quality standards or not. The physico-

chemical parameters and trace metals were introduced as

covariates in the multivariate model.

All physicochemical parameters and trace metals (except

Mn) were significant predictors of the pollution status of

sampling locations. Monitoring sites with higher pH values

were approximately 22%more likely to be polluted compared

with locations with lower pHvalues (Table 5). As predictors of

pollution status, monitoring sites with higher conductivity, tur-

bidity, and total dissolved solids were no different from their

counterparts where turbidity, conductivity, and total dissolved

solids were low. Locations in which As concentrations were

higher had significantly far higher odds of being polluted

(OR¼ 27.68, CI: 5.08–150.59) compared with areas where

As concentrations were lower. Monitoring sites with higher
Table 5 | Multivariate relationship between pollution status and selected covariates

Pollution status
Odds
ratios

Robust std.
err. P> z

[95% confidence
interval]

pH 1.215 0.0849 0.005 1.060–1.394

Conductivity 0.999 0.0004 0.008 0.998–1.000

Total dissolved
solids

0.998 0.0007 0.027 0.997–1.000

Turbidity 1.002 0.0004 0.000 1.001–1.002

Nitrates 1.010 0.0038 0.007 1.003–1.018

Arsenic 27.680 23.9210 0.000 5.088–150.593

Cadmium 0.000 0.0000 0.000 0.000–0.000

Iron 1.068 0.0253 0.005 1.020–1.119

Manganese 1.036 0.0315 0.240 0.976–1.100

Lead 6.820 8.1872 0.110 0.649–71.711

Constant 0.323 0.1340 0.006 0.143–0.728

Statistically significant relationships are shown in bold font.

om https://iwaponline.com/jwh/article-pdf/15/4/658/393551/jwh0150658.pdf
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Fe concentration were approximately 7% more likely to be

polluted compared with sampling sites with lower Fe concen-

tration. Similarly, locations with higher Pb concentrations

had higher odds of being polluted (OR¼ 6.82, CI: 0.64–

71.71) compared with areas where Pb concentrations were

lower, although this was not statistically significant. Monitor-

ing sites where Cd concentrations were less likely to be

polluted compared with areas where Cd levels were lower.
CONCLUSION

Chemometric approaches including PCA/FAandDAaswell as

generalized linear modelling (negative log-log regression) were

used to assess the spatial and temporal variability of ground-

water quality parameters in almost 740 locations in Ghana.

This was complemented with parametric (Pearson’s product

moment correlation) and non-parametric measures of associ-

ation (Spearman’s correlation, Wilcoxon rank-sum test) to

elicit a nuanced understanding of the complex relationship

betweenphysicochemical and bacteriological factors in ground-

water. Although to varying degrees of strength and statistical

significance, clear and persistent relationships occur between

almost all the physicochemical parameters. However, the

weak relationships between trace metals were rather weak.

The strongest linear and monotonic relationships occurred

betweenMn and Fe. Four factors representing the natural varia-

bility of physicochemical properties, bacteriological quality,

natural geologic attributes, and anthropogenic factors (artisanal

goldmining) were extracted from the groundwater data. Cross-

validated classification in DA showed that overall 82.0% of

locations were correctly classified as either goldmining or

non-goldmining based on the means of conductivity, total dis-

solved solids, turbidity, nitrate, trace metal concentrations

(arsenic, cadmium, iron, manganese, and lead), and pH.

Arsenic (As) was the strongest predictor followed by cad-

mium (Cd). These two variables had large coefficients and

stood out as those that strongly predicted allocation to the

goldmining or non-goldmining category. Although there

were no observed seasonal variations in As and Fe concen-

trations in groundwater samples, E. coli and total

coliforms were unexpectedly higher in the dry season than

in the wet season. Except for Cd, groundwater monitoring

sites with higher pH values, As, Fe, and Pb had higher
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odds of being polluted. On the whole, goldmining locations

were more likely to be polluted compared with non-gold-

mining areas.

The foregoing suggests that interactions between surface

water and groundwater resources are often intertwined such

that active cross-sector dialogue and integrated vision are also

needed to stimulate sustainable surface and groundwater man-

agement. To be effective policies on groundwater quality must

be tailored to local hydrogeological settings, artisanal

goldmining activities, and agro-economic realities.

Furthermore, the implementation of such policies

demands appropriate institutional arrangements with

distinct emphasis and statutory power for groundwater

management, full involvement of the goldmining community,

and more mainstreaming of industrial development goals

with groundwater quality.
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