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ABSTRACT

In this thesis, we homogenize elliptic equations in the periodically perforated

domain. The two scale convergence method is used in this work for the homog-

enization. In particular, we homogenize the quasilinear elliptic equation with

the dirichlet boundary condition, the time independent incompressible reynolds

equation as well as the elliptic equation of the curl type of which the Maxwell

type equations is a typical example. We obtain the cell problems and the ho-

mogenized equations for the problems which could easily be solved using any

numerical method such as matlab or comsol in place of the original problems

which contain the fast oscillating parameter ε.
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CHAPTER ONE

INTRODUCTION

This chapter is made up of the background of the study, the statement

of the problem, the objectives of this study as well as the organization of the

chapters in the thesis

Background to the Study

Composite materials are very widely used nowadays in civil engineering,

structural engineering, electrotechnics, sporting equipments, defense and the

aerospace industry for spacecrafts. These composites are materials that com-

bine two or more materials (a selected filler or reinforcing elements and com-

patible matrix binder) that have quite different properties that when combined

offer properties which are more desirable than the properties of the individual

materials. The different materials work together to give the composite unique

properties, but within the composite you can easily see the different materials,

they do not dissolve or blend into each other (Olsson, 2008).

They are not a single material but a family of materials whose stiffness,

strength, density, and thermal and electrical properties can be tailored. The

matrix, the reinforcement material, the volume and shape of the reinforcement,

the location of the reinforcement, the fabrication method and others can all be

varied to achieve required properties.

Composite materials (fibred, stratified, porous, among others) play an im-

portant role in many branches of Mechanics, Physics, Chemistry and Engineer-

ing. They are characterised by the fact that they contain two or more finely

mixed constituents. They also have in general a ‘better behaviour’ than the av-

erage behaviour of their individual constituents (Defranchi, 1993). They have

been used extensively in engineering applications due to their high strength

to weight ratios. Natural materials, including wood and human bone tissue,

are also composite materials with complex microstructures optimized for with-

standing functional loads. For example, the low mass composite structures of

bone tissue enable an organism to move efficiently and withstand high structural

1
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loads while minimizing metabolic costs. The prevalence of composite structures

in nature along with their increasing engineering applications suggest that these

materials will become the rule rather than the exception in structural design and

analysis. In the era where there is an increase in the application of compos-

ite materials, there is the need for accurate yet feasible methods for analyzing

composite material mechanics (Hollister & Kikuehi, 1992).

Partial differential equations (PDEs) which govern physical systems such

as electrical, engineering, electromagnetism, geometric theory of diffraction etc.

are mostly solved using numerical methods. Some of these methods are; the

Finite Volume Method, the Finite Element Method, Method of Moments, the

Finite Difference Time Domain Method, among many others. These methods

are able to solve PDEs of big volume at high frequency and also problems with

complicated boundary conditions. However, when the differential operators os-

cillate rapidly due to the heterogeneity of the material, it requires a long compu-

tational time and it is also not able to capture the behaviours within the micro-

scopic structure. The mesh to capture the microscopic behaviour have to be very

fine and this makes the solution very costly with respect to the computational

power. These rapid oscillations tend to make direct numerical solutions of the

PDEs very difficult, sometimes impossible to solve (Alapäa, 2004). In view of

these development and to be able to solve these problems, one has to undertake

asymptotic analysis or averaging methods which lead to the concept of homog-

enization. This theory facilitates the analysis of PDEs with rapidly oscillating

coefficients (Bensoussan et al, 1978). See also Cioranescu and Donato (1999),

Essel (2009) and Tartar (2009).

Homogenization is a branch within mathematics that involves the study of

partial differential equations (PDEs) with rapidly oscillating coefficients. The

homogenization theory is specifically designed to analyze the physics of mi-

crostructured materials (Bensoussan et al., 1978; Sanchez-Palencia, 1980).

Much understanding of the macroscopic behaviours of composite mate-

rials was introduced by Einstein, Maxwell, and Rayleigh who are themselves

2
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physicists (Callister, 2007; Maxwell 1865, 1954). The main problem is to de-

termine effective properties (e.g. heat transfer, elasticity, electric conductivity,

magnetic permeability, flow among others) of strongly heterogeneous multi-

phase materials.

In the seventies, physical problems of material structures both macro-

scopic and microscopic were formulated. These fomulations were made from

a purely mathematical view point which lead to the theory of homogenization.

The first results which De Giorgi and Spagnolo obtained around 1970 are very

significant in this new dicsipline of mathematics. See De Giorgi and Spagnolo

(1973) and Spagnolo (1968, 1976). Since then the theory of homogenization

has developed very rapidly with many researchers researching into this distinct

discipline in mathematics. See the works of Allaire, (1992); Bensoussan et al,

(1978); Persson et al (1993) and Nandakumaran (2007b).

The motivation of this field was from the study of composite materials,

more generally any medium or domain which involves microstructures. The

wording is more or less self-explaining: the limit model has no microstructure

any more since it was eliminated by letting its size ε tend to zero. Thus, it

describes a simpler, homogeneous physical system.

Homogenization in a medium can either be stochastic or deterministic mi-

crostructures and therefore is also between stochastic homogenization or deter-

ministic homogenization. An example for stochastic microstructures is foams.

A special class of Fibre-reinforced composites of where short fibres are ran-

domly embedded into a matrix material also have stochastic microstructes. Car-

bon fibre-reinforced ceramic brakes have this kind of microstructure. Important

references for stochastic homogenization include Bourgeat et al. (1994), Ben-

soussan et al. (1978) and Zhikov et al. (1994).

Deterministic homogenization is mostly concerned with periodic homog-

enization. The homogenization of physical systems where there are periodic

microstructure is often referred to as periodic homogenization. Some research

contributions of Nguetseng (2003, 2004a, 2004b) and Braides et al. (2009) have

3
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however studied certain examples of non-periodic deterministic microstructures.

In simple terms, homogenization is a mathematical procedure to under-

stand heterogeneous materials (or media) with highly oscillating heterogeneties

(at the microscopic level) via a homogeneous material. Mathematically, it is a

limiting analysis (Nandakumaran, 2007a). The physical problems described on

such materials leads to the study of mathematical equations like: differential or

integral equations, optimization problems, spectral problems, and so on, will ex-

hibit high oscillations in the coefficients present in the equation or in the domain.

This high frequency, oscillations, in turn, will reflect in the solutions. Thus, even

if the well posedness of the problems were guaranteed, a numerical computation

(to predict the behaviour of such heterogeneous media) of such solutions will be

highly non-trivial; in fact, it is almost impossible. The homogenization deals

with the study of asymptotic analysis of such solutions and obtain the equation

satisfied by the limit. This limit equation will characterize the bulk/ overall be-

haviour of the material, which does not consist of microscopic heterogenities

and can be solved or computed. This solved and computed solution will then be

a good approximation, in a suitable sense, to the original solution.

It is the purpose of homogenization theory to describe these limit pro-

cesses, when ε tends to zero. More precisely, homogenization deals with the

asymptotic analysis of Partial Differential Equations of Physics in heteroge-

neous materials with a periodic structure, when the characteristic length ε of the

period tends to zero. Thus, the heterogeneous material appears homogeneous as

ε tends to zero as in Figure 1.

Typically, in such materials, the physical parameters (such as conductiv-

ity, elasticity coefficients, ...) are discontinuous and oscillate between the differ-

ent values characterizing each of the components. When these components are

intimately mixed, these parameters oscillate very rapidly and the microscopic

structure becomes complicated. Analyzing large structures on a microstructural

level, however, is clearly an intractable problem.

On the other hand we may think of getting a good approximation of the

4
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Figure 1: Homogenization as ε→ 0

macroscopic behaviour of such a heterogeneous material by letting the parame-

ter ε (which describes the fineness of the microscopic structure) tend to zero in

the equations describing the phenomena such as heat conduction and elasticity.

Figure 2: Homogenization of Composite Materials

According to Fabricius and Wall (2008), homogenization is a mathemat-

ical theory for studying; differential operators with rapidly oscillating coeffi-

cients, equations in perforated domains and also for boundary value problems

with rapidly changing boundary conditions.

The classical methods in homogenization are:

• the multiple scale method which consists of looking (formally) for solu-

tions in the form of asymptotic expansions with respect to the parameter ε

[See books of Benssousan, Lions and Papanicolaou (1978) and Sanchez-

Palencia (1980) ],

5
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• the oscillating test functions (also known as energy method) due to Tartar,

a mathematical method based on the construction, for each problem to be

studied, of appropriate oscillating test functions. The procedure includes

a priori estimates and convergence results,

• the two-scale convergence method (Nguetseng and Allaire), based on a

new notion of convergence that is tested on special test functions.

These methods are all based on the existence of the two scales; where x gives the

position of a point in Ω and y = x/ε describing what happens in the “magnified”

cell Y .

Homogenization techniques include: multiscale convergence, asymptotic

expansion method, Energy method via test functions, G-convergence, Fourier

(Bloch wave) method, Γ-convergence, periodic unfolding method, p-connectedness,

H-convergence, Two Scale (Multi-scale) Convergence, Young measures, com-

pensated compactness and stochastic homogenization (Wall, 2007).

Applications of Homogenization

In this section, we shall name some applications of the homogenization

theory to some science and engineering fields. The increased interest in homog-

enization theory is due the to possible application to other areas in mathematics

and other science and engineering fields. Some areas in mathematics that it has

been applied to are in perturbation theory, optimal control problems, numerical

analysis, phase transitions among others (Persson et al., 1993). For other math-

ematical analysis of different physical and mechanical phenomenon in compos-

ites, perforated media, porous media and similar situations. The results of the

homogenization of several types of partial differential equations with rapidly os-

cillating coefficients have been used in physical and engineering sciences such

as heat conduction, elastic deformations, porous media and acoustics.

It has applications in different fields, e.g. composite engineering, mate-

rial science, geophysics, fluid mechanics, elasticity, viscoelastic multilayered

6

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



composites, in the analysis of vibrations of thin structures Anzellotti, Baldo

and Percivale (1994); Bouchitté and Fragalá (2001); Amaziane, Goncharenko,

Pankratov (2005), Friesecke and James (2002); Environmental Science, Mir-

rahimi and Souganidis (2013). In the study of properties of composites; some

of these properties are structural, electro-magnetic, thermal properties etc. Also

to the study of flow in porous media these include: flow of resins, water through

subsurface, flow of oil, pollution of ground water etc. (Allaire, 1993; Choi et

al., 1990).

Furthermore, in oscillating boundary (electromagnetic waves in a domain

with a rough interface, flows over rough walls, etc.) (Dasht, 2005), Anisotropic

Conduction in Electrocardiology, Kälz (2012).

It has been used extensively to analyze composite materials (Suquet, 1985;

Guedes, 1990; Bakhvalov & Panasenko, 1989), and also in predicting optimal

topology of microstructured materials (Bendsoe and Kikuchi, 1988; Lurie et al.,

1982). In biomechanics, Crolet et al. (1988, 1990) applied the homogenization

theory to model cortical bone mechanics. Hollister et al. (1989) applied ho-

mogenization analysis to trabecular bone mechanics. In orthopaedics, Hamed,

Lee, and Jasiuk (2010) Barkaoui, Chamekh, and Merzouki, 2013; Hage, She-

hadeh, Hamade (2014). In Biomedical Sciences Donovan, Chehreghanianzabi,

Rathinam and Zustiak (2016) focused on a model where the solute is subjected

to obstructed diffusion via stationary spherical obstacles and found that homog-

enization theory results agree well with computationally more expensive Monte

Carlo simulations.

Another field in which homogenization have been applied successfully is

in optimal bounds. The theory is often used to design materials with its desired

properties. Finding the upper and lower bounds is well studied in homoge-

nization theory by Essel, (2008); Dasht, (2005); Lukkassen, Meidell, and Wall

(2007) and Almqvist, Essel, Persson and Wall (2007), the authors concluded

that bounds are a very cost-effective method of estimating the effects of surface

roughness in stationary hydrodynamic lubrication.

7

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



And has in recent times been applied to tribology, Tzandana (2014, 2016);

Almqvist, Essel, Larsson and Wall (2007); Almqvist, Essel, Fabricius and Wall

(2008a, 2008b, 2011), Almqvist, Essel, Persson and Wall (2007) and Canhanga

and Tzandana (2009).

Statement of the Problem

Bensoussan et al., (1978) initiated the theory of homogenization to ana-

lyze the physics of microstructured materials and many other researchers have

since then delved into this area obtaining many results by many methods. Ellip-

tic equations in different domains and boundary conditions have been studied.

For a fixed domain, in a general framework results have been proved for the

G-convergence in Colombini and Spagnolo (1977) and for the H-convergence

in Boccardo and Murat (1982). It has been extended to the case of perforated

domains for the H-convergence of the linearized elasticity system in Donato

and Haddadou (2006) who gave a simple proof for the case of a periodic matrix

field and a periodically perforated domain using important theorems from Cio-

ranescu and Donato (1999), concerning a domain without holes. Cabarrubias

and Donato (2011) gave the existence and uniqueness for a quasilinear elliptic

problem with the Robin condition in the periodically perforated domain.

Artola and Duvau (1982) proved that the (quasilinear) homogenized ma-

trix field satisfies the same kind of assumptions as the original problem. For

the homogenization of a periodic quasilinear elliptic problem with Lipschitz

continuous coefficients in a fixed domain (Cabarrubias & Donato, 2012) was

homogenized in the framework of the H-convergence.

For periodically perforated domains, linear equation with linear Robin

condition has been studied in Cioranescu and P. Donato (1988) and with nonlin-

ear Robin conditions in Cioranescu, Donato & Zaki (2007). The case of quasi-

linear elliptic equation with Lipschitz continuous coefficients and linear Robin

conditions has been studied in Bendib (2004) and Bendib and Tcheugoué Tébou

(1999). Cabarrubias and Donato (2012) prove the existence and the uniqueness

8
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of a solution of the problem. Suitable growth conditions are assumed on the

nonlinear boundary term, as done in Cioranescu, Donato & Zaki (2007). On the

quasilinear term, some assumptions on the modulus of continuity were intro-

duced in Chipot, (2009).

The two-scale convergence method gives a better approximation for bound-

ary value problems with rapidly oscillating coefficients Nguetseng (1989); Cio-

ranescu and Donato (1999). In this study, we use the two-scale convergence

to homogenize elliptic equations which earlier have been homogenized using

the H-convergence. Also the incompressible reynolds equation time indepen-

dent when a fluid is flowing through two surfaces where one is stationary and

the other smooth and moving which was considered using the multiple scale

method in Canhanga and Tzandana (2009).

Many physics and engineering problems are modelled using partial dif-

ferential equations (PDE’s). Their solutions are complicated when solving with

numerical methods such as the Finite element method etc. This makes it difficult

to solve numerically using computers.

A common feature which renders solving such problems numerically dif-

ficult is the occurrence of different length scales associated with such problems.

This is where homogenization comes in. These problems could be solved us-

ing the theory of homogenization. This theory takes into account the different

length scales and using averaging techniques to obtain a homogenized equation

that is relatively easy to solve.

Elliptic equations of the divergence form (The Reynolds and Stokes equa-

tions) have been homogenized using different methods however not much work

have been done on the elliptic equations which are of the curl type.

Objectives of the Study

The objectives of the study are to homogenize elliptic equations using

the two-scale convergence method of homogenization. In particular, we will

homogenize:

9
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• the time independent reynolds equation

∇ · (h3
ε∇pε) = ∧∂hε

∂x1

on Ω,

• the quasilinear elliptic equation with the dirichlet boundary condition

−∇ · (Aε(x, uε)∇uε) = f for x ∈ Ω,

uε(x) = 0, for x ∈ ∂Ω (1.1)

• the elliptic equation of the curl type

∇x × [aε(x)(∇x × uε(x))] + bε0uε(x) = f in Ω

uε(x) = 0 on ∂Ω.

Organisation of the Thesis

This section outlines the contents within the chapters of this thesis and

give a brief description of what is expected in each chapter.

In Chapter One, the background to the study , the problem statement and the ob-

jectives of the study are given. Chapter Two is on the review of literature. Some

definitions, lemmas and theorems etc. are given. These include the boundary

value problems, periodic functions and the Sobolev space.

In Chapter Three, the methods of homogenization which include: the

Multiple Scale expansion, the oscillation test function method, G and H con-

vergences and the two-scale convergence of homogenization are detailed. We

also look at the properties of the two-scale convergence, weak convergence and

its similarities to other convergences.

In Chapter Four, we give without proof the forms of the Reynold’s equa-

tion and use the two scale convergence to homogenize the time independent

10
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incompressible reynolds equation as well as the quasilinear elliptic equation.

The homogenization of the elliptic equation of the curl type is in Chapter Five.

Finally, in Chapter Six, we give a summary of the work and recommen-

dations which will help in future works are drawn in the final chapter. Some of

the observations and results were discussed and appropriate conclusions drawn

from the observations. We finally give some recommendations which would be

necessary for further work.

Chapter Summary

In this chapter, the background to the study was given. Homogenization

theory which is the mathematical procedure to understand heterogeneous ma-

terials with highly oscillating heterogeneities detailed. A brief statement of the

problem as well as the significance, objectives of the study and the organisation

of the rest of the chapters in the work were stated.

11
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CHAPTER TWO

LITERATURE REVIEW

Introduction

In this chapter, we give the mathematical definitions, theorems and spaces

that will be used in the rest of the work. Also, the two scale convergence of

homogenization will be reviewed, its properties, its similarities with the stan-

dard convergences i.e. weak and strong convergences and some examples to

demonstrate this method.

In physics (as is the case in chemistry, materials science, mechanical, elec-

trical, civil and other engineering disciplines) once a certain effect is observed

for the first time, scientists develop theories to explain the effect and employ

mathematical models to describe and predict it quantitatively. It is the way of

things that the pursuing research on the effect requires the refinement of such

theories or even calls for completely new explanations as scientists gain more

and more insight into the mechanisms behind the effect. Often, an evolution

of theories is triggered by the discovery of smaller, formerly undetected length

scales (or time scales) of a physical system. As a consequence, the correspond-

ing mathematical models have to be adapted to capture the newly discovered

scales. While being closer to the actual physical nature, a mathematical model

for a physical system that resolves smaller scales is usually more complicated

and sometimes even virtually impossible to solve.

Homogenization is restricted to some selected approaches and methods

for periodic homogenization that are either very inspiring or microstructured

physical systems where both the macroscale and the microscale are continuous.

Homogenization exclusively applies to microstructured physical systems

with all the scales; macroscale, microscale and other scale which are all contin-

uous (Stelzig, 2012). Yeung et al. (2009) made an interesting progress concern-

ing discrete-to-continuous limits which shows that one can very well pass from

discrete crystalline systems to continuous solids without a priori assuming the

12

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



crystals atoms to be arranged in some kind of periodic microstructure.

Lymphatic capillary drainage of interstitial fluid under both steady-state

and inflammatory conditions is important for tissue fluid balance, cancer metas-

tasis, and immunity. Lymphatic drainage function is critically coupled to the

fluid mechanical properties of the interstitium, yet this coupling is poorly under-

stood. Roose and Swartz (2011) effectively modelled the lymphatic-interstitial

fluid coupling.Using homogenization method, which allows tissue-scale lymph

flow to be integrated with the microstructural details of the lymphatic capil-

laries, thus gaining insight into the functionality of lymphatic anatomy to first

describe flow in lymphatic capillaries using the Navier-Stokes equations and

flow through the interstitium using Darcy’s law. Then used multiscale homoge-

nization to derive macroscale equations describing lymphatic drainage, with the

mouse tail skin as a basis and found that the limiting resistance for fluid drainage

is that from the interstitium into the capillaries rather than within the capillaries.

Also they observed that between hexagonal, square, and parallel tube config-

urations of lymphatic capillary networks, the hexagonal structure is the most

efficient architecture for coupled interstitial and capillary fluid transport; that

is, it clears the most interstitial fluid for a given network density and baseline

interstitial fluid pressure. And concluded that using homogenization theory, one

can assess how vessel microstructure influences the macroscale fluid drainage

by the lymphatics. They demonstrated why the hexagonal network of dermal

lymphatic capillaries is optimal for interstitial tissue fluid clearance.

In 2016, Marigo and Maurel used a homogenization method based on

matched asymptotic expansion technique to derive effective transmission con-

ditions of thin structured films. The method led unambiguously to effective pa-

rameters of the interface which define jump conditions or boundary conditions at

an equivalent zero thickness interface. The homogenized interface model in the

context of electromagnetic waves for metallic inclusions associated with Neu-

mann or Dirichlet boundary conditions for transverse electric or transverse mag-

netic wave polarization. By comparison with full-wave simulations, the model

13
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is shown to be valid for thin interfaces up to thicknesses close to the wavelength.

And also compare the effective conditions with the two-sided impedance condi-

tions obtained in transmission line theory and to the so-called generalized sheet

transition conditions.

An alternative notion of two-scale convergence which gives a more natural

modelling approach to the homogenization of partial differential equations with

periodically oscillating coefficients: while removing the bother of the admissi-

bility of test functions was introduced by Alouges and Di Fratta (2016). It never-

theless simplifies the proof of all the standard compactness results which made

classical two-scale convergence very worthy of interest: bounded sequences

in L2
per[Y, L

2(Ω)] and L2
per[Y,H

1(Ω)] are proven to be relatively compact with

respect to this new type of convergence. The strengths of the notion are high-

lighted on the classical homogenization problem of linear second-order elliptic

equations for which first order boundary corrector-type results are also estab-

lished. Eventually, possible weaknesses of the method are pointed out on a non-

linear problem: the weak two-scale compactness result for S2-valued stationary

harmonic maps.

Using the two-scale homogenization procedure to analyze three dimen-

sion composite structures by the finite element method, Otero, et al (2015) com-

pared the results provided by three numerical models (Micro models, Mixing

and Homogenization approaches), looking into the strengths and weaknesses of

each one of them. It was observed by comparison that for linear analysis, ho-

mogenization is an excellent alternative to the other formulations considered.

Based on the results obtained, they concluded that the homogenization method

is an excellent alternative for the simulation of materials with complex micro

structures.

In this section, we define some important functions and spaces which will

be relevant for the rest of the thesis.
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Dirichlet Problem

A Dirichlet boundary condition is a type of boundary condition when im-

posed on a partial or ordinary differential equation specifies the values a solution

needs to take on the boundary of the domain. For example, u(x) = 0, x ∈ ∂Ω.

In solving a Dirichlet problem, one needs to find a function which solves

a specified partial differential equation in the interior of a given region that takes

prescribed values on the boundary of the region.

Smooth Function

A smooth function is a function that has continuous derivatives up to some

desired order over some domain. A function can therefore be said to be smooth

over a restricted interval such as (a, b) or [a, b]. The number of continuous

derivatives necessary for a function to be considered smooth may vary from two

to infinity. A function for which all orders of derivatives are continuous is called

a C∞ function.

Periodic Functions

A function f : Rn → Rm is Y-periodic if f(x) = f(x + zi) for every

x ∈ Rn and for i = 1, 2, ..., n. In this case, we say that Y is a periodicity

cell of the function f and that zi is the period. If the periodicity cell is the unit

cube with e1, ..., en denoting the canonical basis of Rn then f : Rn → Rm is

p-periodic if f(x) = f(x + ei) for every x ∈ Rn and for i = 1, 2, ..., n. If f(x)

is a function with period p, then f(ax) is periodic with period p
a
, where a is

a positive constant. In general, rapidly oscillating periodic functions converge

weakly to their mean valueMY (f), whereMY (f) is defined by

MY (f) =
1

|Y |

∫
Y

f(y) dy. (2.1)
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Figure 3: A Periodic Domain Ω

Sobolev Space

Let Ω be an open subset of Rn and 1 ≤ p < ∞. The Sobolev space

W 1,p (Ω) is defined as the set of all functions u ∈ Lp such that the weak partial

derivative, Dpu belongs to Lp(Ω). That is,

W 1,p (Ω) = {u ∈ Lp (Ω) : Du ∈ Lp (Ω;Rn)} ,

where Du = (D1u,D2u, ..., Dnu) =
(
∂u
∂x1
, ∂u
∂x2
, ..., ∂u

∂xn

)
denotes the first distri-

butional derivative of the function u.

When p = 2 we get the W 1,2 (Ω) space and is defined as the set of all

u ∈ L2 (Ω) such that all the first partial derivatives ∂u
∂xi
∈ L2 (Ω) . The exponent

1, 2 in W 1,2 (Ω) means the function u and its first partial derivatives of order

1 are square integrable. Functions belonging to W 1,2 (Ω) do not have to be

differentiable at every point. For example, it is enough if they are continuous

with piecewise continuous partial derivatives in the domain of definition and

satisfy the above conditions.

Definition 2.1

Let 1 ≤ p <∞. W 1,p
0 (Ω) denotes the closure ofC∞0 (Ω) inW 1,p (Ω) . W−1,q (Ω)

with 1
p

+ 1
q

= 1 indicates the dual space of W 1,p
0 (Ω) .
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W 1,2
0 (Ω) = {u ∈ W 1,2 (Ω) : u is 0 on the boundary ∂Ω} .

It is the set of all functions u which are elements of the space W 1,2 (Ω) where u

is zero on the boundary ∂Ω.

In particular, the following hold,

W 1,2
0 (Y ) ⊂ W 1,2

per (Y ) ⊂ W 1,2 (Y ) ⊂ L2 (Y )

and

W 1,2
0 (Ω) ⊂ W 1,2 (Ω) ⊂ L2 (Ω) ⊂ L1 (Ω) .

The “W−spaces” are often called Sobolev spaces.

In this space the following definitions hold.

1. The inner product in W 1,2 (Ω)

(u, v)W 1,2(Ω) =

∫
Ω

(uv +∇u · ∇v) dnx (2.2)

where ∇u · ∇v =
n∑
i=1

∂u
∂xi

∂v
∂xi
. If we denote the L2−inner product by

(u, v)L2(Ω) =

∫
Ω

(uv) dnx

then (2.2) reads

(u, v)W 1,2(Ω) = (u, v)L2(Ω) + (∇u,∇v)L2(Ω) (2.3)

2. The norm of the sobolev space is given by

‖u‖2
W 1,2(Ω) = (u, u)W 1,2(Ω) = (u, u)L2(Ω) + (∇u,∇u)L2(Ω)

= ‖u‖2
L2(Ω) + ‖∇u‖2

L2(Ω) (2.4)

=

∫
Ω

(
|u|2 + |∇u|2

)
dnx,
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where ‖∇u‖L2(Ω) =

(
n∑
i=1

∣∣∣ ∂u∂xi ∣∣∣2)
3. The distance (or metric)

d (u, v)W 1,2(Ω) = ‖u− v‖W 1,2(Ω) .

Remarks

1. (a) For the general Sobolev space W (k),2 (Ω) the inner product is given

by

(u, v)Wk,2(Ω) = (u, v)L2(Ω) + (u′, v′)L2(Ω) + ...+
(
uk, vk

)
L2(Ω)

where u′ = ∇u v′ = ∇v.

(b) The norm is given by

‖u‖2
W (k),2(Ω) = (u, u)W (k),2(Ω)

and the metric is given by

d (u, v)W (k),2(Ω) = ‖u− v‖W (k),2(Ω) .

2. The space W (k),2
0 (Ω) is the subspace of W (k),2 (Ω) for which the follow-

ing hold.

u (a) = u′ (a) = .... = u(k−1) (a) = 0

u (b) = u′ (b) = .... = u(k−1) (b) = 0.

That is, u and its (k − 1) derivatives are all zero on the boundary ∂Ω.

Dual space H−1(Ω)

H−1(Ω) defines the dual space of H1
0 (Ω), i.e. the space of bounded, linear
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functionals on H1
0 (Ω). H−1(Ω) is a Banach space with the norm

‖f‖H−1(Ω) = sup{|〈f, v〉| | v ∈ H1
0 (Ω), ‖v‖H1

0 (Ω) ≤ 1} (2.5)

where 〈·, ·〉 denote the pairing between H1
0 (Ω) and H1

0 (Ω). Additionally, the

following holds

|〈f, v〉H−1(Ω),H1
0 (Ω)| ≤ ‖f‖H−1‖v‖H1

0
∀f ∈ H−1(Ω), ∀v ∈ H1

0 (Ω). (2.6)

Sobolev Space H1
per(Y ). We denote by C∞per(Y ) the space of infinitely differen-

tiable functions in Rn that are 1-periodic. Then the space H1
per(Y ) is defined to

be the closure of C∞per(Y ) with respect to the H1-norm. The Poincaré inequality

does not hold in the space H1
per(Y ). This is due to the fact, that for constant

functions the quantity in the Poincaré inequality will vanish, since the derivative

of a constant function is zero. The inequality holds, however, if we add an ad-

ditional condition that eliminates constant functions. The Poincaré inequality is

important in the sense that it builds the framework, in which the Lax-Milgram

theorem is applied in order to ensure the existence and uniqueness of solutions

to boundary value problems. Hence, we define the following space

H = H1
per(Y )/R = {u| u ∈ H1

per(Y )|
∫
Y

udy = 0}. (2.7)

By H we denote the subset of H1(Ω) of all functions u in H1
per(Y ) with mean

value zero over the unit cell Y . As a consequence, the Poincaré inequality now

holds for elements in H , i.e. there exists a constant Cp > 0 such that

‖u‖L2(Y ) ≤ Cp‖∇u‖L2(Y ) ∀ u ∈ H. (2.8)

This means that we can use

‖u‖H = ‖∇u‖L2(Y ) ∀ u ∈ H,
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as the norm in H .

The dual space H∗ of H contains all elements of (H1
per(Y ))∗, which are orthog-

onal to constants:

H∗ = {u ∈ (H1
per(Y ))∗| 〈u, 1〉 = 0} (2.9)

where 〈·, ·〉 denotes the pairing between (H1
per(Y ))∗ and H1

per(Y ). We will see

that the space H1(Ω) and its subsets are appropriate spaces, in which we will

look for weak solutions of boundary value problems for second order elliptic

partial differential equations. The existence and uniqueness of such solutions is

ensured by the Lax-Milgram lemma, which we state now.

Definition 2.2

LetH be a Hilbert space with norm ‖ · ‖ and inner product (·, ·).

A bilinear form B : H × H → R is called continuous (or bounded) if there

exists a constant β ≥ 0 such that

|B(u, v)| ≤ β‖u‖‖v‖ ∀ u, v ∈ H, (2.10)

and coercive if there exists a constant α ≥ 0 such that

B(u, u) ≥ α‖u‖2 ∀u ∈ H. (2.11)

Some Important Definitions and Theorems

Strong Convergence

A sequence {uh} in a normed space X is said to converge strongly, or in

norm, to u if ‖uh − u‖X → 0. This is denoted by uh → u in X.
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Weak Convergence

A sequence {uh} in a normed space X is said to converge weakly to u if

F (uh)→ F (u) for all F ∈ X ′, where X ′ is the dual space of X .

We denote this by uh ⇀ u in X .

Weak∗ Convergence

A sequence {F h} in the dual space X ′ of a normed space is said to con-

verge weakly* to F if

F (uh)→ F (u) for all u ∈ X.

We use the notation

F (uh)
∗
⇀ F (u) for all X ′.

Theorem 2.1

Let X be a reflexive Banach space. Then every bounded sequence {uh}

in X has a weakly convergent subsequence.

Theorem 2.2

Let X be a seperable normed space. Then every bounded sequence {F h}

in X ′ has a weakly* convergent subsequence.

Theorem 2.3

Lp(Ω) is a Banach space for 1 ≤ p ≤ ∞. Furthermore, it is reflexive for

1 < p <∞ and seperable for 1 ≤ p <∞.
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Theorem 2.4

For 1 ≤ p ≤ ∞, W 1,p(Ω) is a Banach space. It is reflexive for 1 < p <∞

and seperable for 1 ≤ p < ∞. Furthermore, the space W 1,p
0 (Ω) is reflexive for

1 < p <∞, and for 1 ≤ p ≤ ∞ it is seperable.

Theorem 2.5

For, 1 ≤ p < ∞, the dual of Lp(Ω) can be identified with the Lq(Ω),

where 1
p

+ 1
q

= 1. Moreover, L1(Ω)′ can be identified with L∞(Ω).

Rellich embedding theorem

Let 1 ≤ p < ∞. If uh ⇀ u in W 1,p(Ω), then uh → u in Lp(Ω). See

proof of the theorem on page 285 of Brezis (2011).

Cauchy-Schwarz inequality

For any u, v in a Hilbert space H it holds that

|(u, v)H | ≤ ‖u‖H‖v‖H . (2.12)

Poincaré Inequality

There exist a constant CΩ such that

‖u‖L2(Ω) ≤ CΩ ‖Du‖L2(Ω) ∀u ∈ W
1,2
0 ,

where CΩ is a constant depending on the diameter of Ω.

Lemma 2.6

Let Ω be a bounded open set and let 1 ≤ p < +∞. Then there exists a constant

C > 0 such that

‖u‖W 1,2
0 (Ω) ≤ C ‖Du‖L2(Ω; Rn) for every u ∈ W 1,p

0 (Ω).
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Proof

The Sobolev norm is defined by

‖u‖W 1,p
0 (Ω) =

(
‖u‖pLp(Ω) + ‖Du‖pLp(Ω)

) 1
p
.

Applying the Poincaré inequality to ‖u‖2
L2(Ω) for p = 2 we get

‖u‖W 1,2
0 (Ω) ≤

(
C2

Ω ‖Du‖
2
L2(Ω) + ‖Du‖2

L2(Ω)

) 1
2

=
((
C2

Ω + 1
)
‖Du‖2

L2(Ω)

) 1
2

(2.13)

=
(
C2

Ω + 1
) 1

2 ‖Du‖L2(Ω)

= K ‖Du‖L2(Ω;Rn) . Where K =
(
C2

Ω + 1
) 1

2 .

This actually proves that the norm ‖u‖W 1,2
0 (Ω) and ‖Du‖L2(Ω;Rn) are equivalent

in W 1,2
0 (Ω). From the sobolev norm, we have that

‖u‖W 1,2
0 (Ω) =

(
‖u‖2

L2(Ω) + ‖Du‖2
L2(Ω)

) 1
2 ≥

(
‖Du‖2

L2(Ω)

) 1
2

⇒ ‖u‖W 1,2
0 (Ω) ≥ ‖Du‖L2(Ω;Rn) (2.14)

Thus from (2.13) and (2.14) we see that the Poincaré inequality implies that

‖u‖W 1,2
0 (Ω) = ‖Du‖L2(Ω) . (2.15)

This equivalence does not hold in W 1,2 (Ω) since for constant functions, the

above quantity vanishes. This equivalence also holds for the subspace of func-

tions with mean zero value.

Poincaré-Wirtinger inequality

Let 1 ≤ p <∞. Then there exists a positive constant C such that

‖u−MΩ(u)‖Lp(Ω) ≤ ‖Du‖Lp(Ω)N , ∀ u ∈ W 1,p(Ω) (2.16)
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whereMΩ(u) denotes the integral mean value of u over Ω.

For Ω to satisfy the above condition, it has to be connected. Conversely, there are

extra conditions to make this property hold. The simplest of such conditions is

that the boundary of Ω be Lipschitz (by the compactness of the Rellich theorem).

Hölder’s inequality

Let u ∈ Lp(Ω) and v ∈ Lq(Ω), where 1 < p < ∞, 1
p

+ 1
q

= 1 and Ω is a

non-empty, measurable set in RN . Then

∣∣∣∣ ∫ u(x)v(x) dx

∣∣∣∣ ≤ ∫
Ω

|u(x)v(x)|dx (2.17)

≤ ‖u‖Lp(Ω)‖v‖Lq(Ω).

Moreover, if u ∈ L1(Ω) and v ∈ L∞(Ω), then (2.17) for p = 1 and q = ∞

gives;

∫
Ω

|u(x)v(x)| dx ≤ ‖u‖Lp(Ω) ‖v‖Lq(Ω) ,

where Lq is the dual space of Lp such that 1
p

+ 1
q

= 1 for 1 < p < +∞.

For p = 2 it is called the Cauchy-Schwarz inequality. Using the Cauchy Schwarz

inequality we have

∫
Ω

|u(x)v(x)| dx ≤ ‖u‖L2(Ω) ‖v‖L2(Ω) .

For proof see Section 4.6 of Brezis (2011).

Bilinear form

Let H be a real Hilbert space. A mapping

a (·, ·) : H ×H −→ R

is called a bilinear form on H if it is linear in both arguments.
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Definition 2.3

Let H be a Hilbert space. A bilinear form a on H is called continuous (or

bounded) if there exists a positive constant K such that

|a (u, v)| ≤ K ‖u‖ ‖v‖ ∀ u, v ∈ H,

and coercive if there exists a positive constant α such that

a (u, u) ≥ α ‖u‖2 ∀ u ∈ H.

Note that a coercive function is a function that grows rapidly at the extremes of

the space on which it is defined. More precisely, a function f : Rn → Rn is

called coercive if

f(x) · x
‖x‖

→ +∞ as ‖x‖ → +∞. (2.18)

Lax-Milgram Theorem

Let a be a bounded, coercive bilinear form on a Hilbert space H . Then for

every bounded linear functional f in H∗ there exists a unique element u ∈ H

such that

a (u, v) = 〈f, v〉 ∀v ∈ H.

Lemma 2.7

Let ξ ∈ Rn. Then

|aε(x)ξ| =
∣∣∣a(x

ε

)
ξ
∣∣∣ = |a (y) ξ| ≤ K |ξ|

for some positive constant K.
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Proof

Let A =max|aij| . Then

|aε(x)ξ|2 = (a11ξ1 + ...a1nξn)2 + ...+ (an1ξ1 + ...annξn)2

≤ n
(
a2

11ξ
2
1 + ...a2

1nξ
2
n

)
+ ...+ n

(
a2
n1ξ

2
1 + ...a2

nnξ
2
n

)
≤ n

((
A2ξ2

1 + ...A2ξ2
n

)
+ ...+

(
A2ξ2

1 + ...A2ξ2
n

))
= n2A2

(
ξ2

1 + ...ξ2
n

)
= n2A2 |ξ|2 = K2 |ξ|2 .

where K = nA. Thus

|aε(x)ξ| ≤ K |ξ| .

This proves boundedness (or continuity) of aε.

See detailed proof in section 3.3 of Emereuwa (2015).

Riesz representation theorem

Let F be a bounded linear functional on the Hilbert space H (i.e. Let

F ∈ H ′). Then there is a unique element u ∈ H such that F (v) = (u, v)H for

every v ∈ H with ‖F‖′H = ‖u‖H .

See proof on page 97 of Brezis (2011).

Variational lemma

Let Ω be a non-empty open set in RN , let u ∈ L2(Ω) and assume that

∫
Ω

u(x)v(x) dx = 0 for every v ∈ C∞0 (Ω). (2.19)

Then u(x) = 0 for almost every x ∈ Ω.
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Lebesgue’s generalised majorized convergence theorem

Let Ω ∈ RN be a measurable set and fh : Ω→ R be measurable for all h

and assume that {fh} converges to f almost everywhere in Ω. Assume also that

there are integrable functions gh : Ω→ R such that |fh(x)| ≤ gh(x) for almost

every x ∈ Ω,

{gh} converges to g almost everywhere in Ω and∫
Ω
gh(x) dx→

∫
Ω
g(x) dx.

Then

lim
h→∞

∫
Ω

fh(x) dx =

∫
Ω

lim
h→∞

fh(x) dx.

Banach-Alaouglu theorem

Every bounded sequence inX∗ has a weak∗ convergent subsequence when-

ever X is a Banach space.

For more theorems and proofs we refer the reader to Chapters 4 to 8 of Brezis

(2011).

To homogenize the elliptic equations of curl type, we introduce the fol-

lowing lemmas.

Lemma 2.8 (Bensoussan et al, 1978)

Let u = u1i + u2j + u3k be a vector function with u1, u2 and u3 having con-

tinuous second partial derivatives. Then the divergence of the curl of u is zero.

That is,

∇x · (∇x × u) = 0. (2.20)
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∇x · (∇x × u)

= ∇x ·

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂x1

∂
∂x2

∂
∂x3

u1 u2 u3

∣∣∣∣∣∣∣∣∣∣
= ∇x ·

[(
∂u3

∂x2

− ∂u2

∂x3

)
i−
(
∂u3

∂x1

− ∂u1

∂x3

)
j +

(
∂u2

∂x1

− ∂u1

∂x2

)
k

]
=

(
∂

∂x1

i +
∂

∂x2

j +
∂

∂x3

k

)
·[(

∂u3

∂x2

− ∂u2

∂x3

)
i−
(
∂u3

∂x1

− ∂u1

∂x3

)
j +

(
∂u2

∂x1

− ∂u1

∂x2

)
k

]
=

(
∂2u3

∂x1∂x2

− ∂2u2

∂x1∂x3

)
−
(

∂2u3

∂x2∂x1

− ∂2u1

∂x2∂x3

)
+

(
∂2u2

∂x3∂x1

− ∂2u1

∂x3∂x2

)

Since u1, u2 and u3 are twice differentiable continuous functions we obtain,

∇x · (∇x × u) =

(
∂2u3

∂x2∂x1

− ∂2u2

∂x3∂x1

)
−
(

∂2u3

∂x1∂x2

− ∂2u1

∂x3∂x2

)
+

(
∂2u2

∂x1∂x3

− ∂2u1

∂x2∂x3

)
=

∂2u3

∂x2∂x1

− ∂2u2

∂x3∂x1

− ∂2u3

∂x1∂x2

+
∂2u1

∂x3∂x2

+

∂2u2

∂x1∂x3

− ∂2u1

∂x2∂x3

=
∂2u1

∂x3∂x2

− ∂2u1

∂x2∂x3

− ∂2u2

∂x3∂x1

+

∂2u2

∂x1∂x3

+
∂2u3

∂x2∂x1

− ∂2u3

∂x1∂x2

= 0

Thus ∇x · (∇x × u) = 0. (2.21)

28

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



Lemma 2.9 (Bensoussan et al, 1978)

Let u = u1i + u2j + u3k be a vector function with u1, u2 and u3 having contin-

uous second partial derivatives. Then

∇y · (∇x × u) = −∇x · (∇y × u). (2.22)

Proof

∇y · (∇x × u)

= ∇y ·

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂x1

∂
∂x2

∂
∂x3

u1 u2 u3

∣∣∣∣∣∣∣∣∣∣
= ∇y ·

[(
∂u3

∂x2

− ∂u2

∂x3

)
i−
(
∂u3

∂x1

− ∂u1

∂x3

)
j +

(
∂u2

∂x1

− ∂u1

∂x2

)
k

]
=

(
∂

∂y1

i +
∂

∂y2

j +
∂

∂y3

k

)
·
[(

∂u3

∂x2

− ∂u2

∂x3

)
i−
(
∂u3

∂x1

− ∂u1

∂x3

)
j

+

(
∂u2

∂x1

− ∂u1

∂x2

)
k

]
=

(
∂2u3

∂y1∂x2

− ∂2u2

∂y1∂x3

)
−
(

∂2u3

∂y2∂x1

− ∂2u1

∂y2∂x3

)
+(

∂2u2

∂y3∂x1

− ∂2u1

∂y3∂x2

)
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Since u1, u2 and u3 are twice differentiable continuous functions we obtain,

∇y · (∇x × u)

=

(
∂2u3

∂x2∂y1

− ∂2u2

∂x3∂y1

)
−
(

∂2u3

∂x1∂y2

− ∂2u1

∂x3∂y2

)
+

(
∂2u2

∂x1∂y3

− ∂2u1

∂x2∂y3

)
= − ∂2u3

∂x1∂y2

+
∂2u2

∂x1∂y3

+
∂2u3

∂x2∂y1

− ∂2u1

∂x2∂y3

+
∂2u2

∂x3∂y1

− ∂2u1

∂x3∂y2

=
∂

∂x1

(
−∂u3

∂y2

+
∂u2

∂y3

)
+

∂

∂x2

(
∂u3

∂y1

− ∂u1

∂y3

)
+

∂

∂x3

(
−∂u2

∂y1

+
∂u1

∂y2

)
= − ∂

∂x1

(
∂u3

∂y2

− ∂u2

∂y3

)
− ∂

∂x2

(
−∂u3

∂y1

+
∂u1

∂y3

)
− ∂

∂x3

(
∂u2

∂y1

− ∂u1

∂y2

)
= − ∂

∂x1

(
∂u3

∂y2

− ∂u2

∂y3

)
− ∂

∂x2

(
∂u1

∂y3

− ∂u3

∂y1

)
− ∂

∂x3

(
∂u2

∂y1

− ∂u1

∂y2

)
= −

(
∂

∂x1

i +
∂

∂x2

j +
∂

∂x3

k

)
·
[(

∂u3

∂y2

− ∂u2

∂y3

)
i

+

(
∂u1

∂y3

− ∂u3

∂y1

)
j +

(
∂u2

∂y1

− ∂u1

∂y2

)
k

]
= −

(
∂

∂x1

i +
∂

∂x2

j +
∂

∂x3

k

)
·
[(

∂u3

∂y2

− ∂u2

∂y3

)
i

−
(
∂u3

∂y1

− ∂u1

∂y3

)
j +

(
∂u2

∂y1

− ∂u1

∂y2

)
k

]
= −∇x ·

[(
∂u3

∂y2

− ∂u2

∂y3

)
i−
(
∂u3

∂y1

− ∂u1

∂y3

)
j

+

(
∂u2

∂y1

− ∂u1

∂y2

)
k

]

= −∇x ·

∣∣∣∣∣∣∣∣∣∣
i j k

∂
∂y1

∂
∂y2

∂
∂y3

u1 u2 u3

∣∣∣∣∣∣∣∣∣∣
= −∇x · (∇y × u).

Thus ∇y · (∇x × u) = −∇x · (∇y × u). (2.23)
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Lemma 2.10

If f is a function of three variables that has continuous second order partial

derivatives, then ∇× (∇f) = 0. The curl of the gradient of f is zero.

A conservative vector field is one for which F = ∇f . If F is conservative,

then ∇ × F = 0. This gives us a way of verifying that a vector field is not

conservative.

Chapter Summary

In this chapter, all the necessary functions and spaces needed for the work

were stated. Important definitions, inequalities, lemmas and theorems from

functional analysis which will be used were all defined. These include; Sobolev

spaces, Riesz representation Theorem and Rellich embedding theorem among

others.
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CHAPTER THREE

RESEARCH METHODOLOGY

Introduction

In this chapter we give the overview of some methods of homogenization.

These include: the two-sacle convergence method, the oscillating test functions

method, the multiple scale method and the G and H convergences.

Two-Scale Convergence of Homogenization

On the introduction of homogenization as a branch of mathematics, many

methods of solving these problems have been used. In 1989, Nguetseng intro-

duced the two-scale convergence method of homogenization. This method was

further developed by Allaire in his works in 1992 and 1994. It is an alterna-

tive way of dealing with the classical task of pairing two weakly convergent

sequences together in an integral expression under special assumptions on one

of the sequences (Flodén, 2009).

When using traditional techniques of compensated compactness type, one has

certain conditions on {uε} and {vε} to obtain that

uε(x)vε(x) −→ u(x)v(x) in D′(Ω), (3.1)

where u and v are the respective weak L2(Ω)N -limits.

Two-scale convergence deviates mainly in two ways from this approach. The

limit contains an extra scale that reflects certain types of micro-oscillations in

{uε}. These micro-oscillations, which are not captured in the weak limit, are

detected by functions {vε} designed for this purpose. Hence, only one of the se-

quences in question needs to obey conditions other than boundedness in L2(Ω).

This is the other major difference compared to compensated compactness, for

which special conditions on the derivatives of {uε} and {vε} are required.

Two-scale convergence is an important tool particularly in periodic ho-
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mogenization theory which helps to overcome the problem of passing to the

limit on a product of two weakly convergent sequences (Francü, 2010).

Two-scale convergence deals with integrals of the form

∫
vε(x)ψ(x,

x

ε
)dx,

where the sequence {vε} is bounded in L2(Ω) and ψ(x, x
ε
) is a smooth function

periodic with respect to y.

It enables us to overcome the following problem:

Let uε and vε be two sequences weakly converging in L2(Ω). What is the limit

of their product uεvε or what is the limit of
∫

Ω
uεvεdx?

If not more than one sequence converges weakly, then limuεvε = limuε lim vε.

If both sequences converges weakly, then we cannot pass to the limit since the

corresponding weak limits do not conserve enough information on the local

behaviour of the functions uε and vε.

For example, the sequences uε = vε = sin(x
ε
), (ε = 1, 1

2
, . . .) converges

weakly to zero functions but the limits limuεvε = 1
2

while limuε lim vε = 0·0 =

0.

When two-scale convergence was first introduced in Nguetseng (1989), it was a

totally new approach in the homogenization of partial differential equations. He

proved that in L2(Ω), bounded sequences have in a certain weak sense, a limit

in L2(Ω × Y ), where the second variable defined on Y represents the micro-

oscillations of uε which are averaged away in the weak limit.

Two-scale convergence involves test functions of the form ψ(x, x
ε
), which

are traces in L2(Ω) of ψ ∈ L2(Ω;Cper(Y )). The properties of ψ are of decisive

importance for the two-scale convergence to work. The choice of test functions

in the definition of the two-scale limit means that ψ should be Y -periodic in

its second variable y = x
ε

for x ∈ Ω fixed. However, the function must still be

measurable after y is replaced with x
ε
.
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Definition 3.1 (Test function)

A test function ψ is a smooth function with compact support ψ ∈ C∞0 (Ω). Test

functions are needed for theoretical purposes only.

Definition 3.2 (Admissible Test function)

A function ψ(x, y) ∈ L2(Ω) is called an admissible test function if it satisfies

lim
ε→0

∫
Ω

[ψ(x,
x

ε
)]2dx =

1

|Y |

∫
Ω

∫
Y

[ψ(x, y)]2dydx. (3.2)

Lemma 3.1 (Cioranescu and Donato, 1999)

(i) Let ϕ ∈ Lp[Ω;Cper(Y )] with 1 ≤ p <∞. Then ϕ(·, ·
ε
) ∈ Lp(Ω) with

‖ϕ(·, ·
ε

)‖Lp(Ω) ≤ ‖ϕ(·, ·)‖Lp[(Ω);Cper(Y )]

and

ϕ(·, ·
ε

) ⇀
1

|Y |

∫
Y

ϕ(·, y)dy weakly in Lp(Ω) (3.3)

In particular, if ϕ ∈ L2[Ω;Cper(Y )], then

lim
ε→0

∫
Ω

[ϕ(x,
x

ε
)]2dx =

1

|Y |

∫
Ω

∫
Y

[ϕ(x, y)]2dydx. (3.4)

(ii) Suppose that ϕ(x, y) = ϕ1(x)ϕ2(y), ϕ1 ∈ Ls(Ω), ϕ2 ∈ Lrper(Y ) with

1 ≤ r, s <∞ and such that

1

r
+

1

s
=

1

p
,

then ϕ(·, ·
ε
) ∈ Lp(Ω) and

ϕ(·, ·
ε

) ⇀
ϕ1(·)
|Y |

∫
Y

ϕ2(y)dy weakly in Lp(Ω).
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Theorem 3.2

Assume that v(x, y) = v1(x)v2(y), where v1 ∈ Ls(Ω) and v2 ∈ Ltper(Y ) with

1 ≤ s, t ≤ ∞, such that 1
s

+ 1
t

= 1
2
. Then v(x, x

ε
) ∈ L2(Ω) and

v(x,
x

ε
) ⇀ v1(x)

∫
Y

v2(y)dy in L2(Ω). (3.5)

Definition 3.3 (Lukkassen, Nguetseng & Wall, 2002)

Let {vε} be a sequence of functions in L2(Ω). We say that {vε} two-scale

converges to v0 = v0(x, y) ∈ L2 and we write vε 2
⇀ v0 if for every admissible

test function ψ = ψ(x, x
ε
) ∈ C∞0 [Ω;C∞per(Y )], one has

lim
ε→0

∫
vε(x)ψ(x,

x

ε
)dx =

1

|Y |

∫
Y

∫
Ω

v0(x, y)ψ(x, y)dxdy. (3.6)

Definition 3.4

Let u0 be an element of L2(Ω × Y ). We say that a sequence uε from L2(Ω),

two-scale converges strongly to u0 if uε 2
⇀ u0 and in addition,

lim
ε→0

∫
Ω

|uε(x)|2dx =

∫
Ω

∫
Y

|u0(x, y)|2dydx, (3.7)

i.e. uε → u0.

Lemma 3.3

If uε → u0 and vε ⇀ v0 where u0, v0 ∈ L2(Ω× Y ), then also

lim
ε→0

∫
Ω

uε(x)vε(x)dx =

∫
Ω

∫
Y

u0(x, y)v0(x, y)dydx. (3.8)

Proposition 3.4

Let {uε} be a bounded sequence in L2(Ω) such that

lim
ε→0

∫
Ω

uε(x)vε(x)dx =

∫
Ω

∫
Y

u0(x, y)v0(x, y)dydx, (3.9)
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for every v ∈ D(Ω;C∞per(Y )). Then {uε} two-scale converges to u0.

A sequence of functions uε is said to strongly two-scale converge to a limit

u0(x, y) ∈ Lp(Ω × Y ) with respect to the scale {ε} if it converges two-scale

weakly and moreover,

‖uε‖Lp(Ω) →
1

|Y |1/p
‖u0‖Lp(Ω×Y ). (3.10)

Basic properties of two-scale convergence

Let X be a finite dimensional normed space, uε a sequence in Lp(Ω;X),

and U ∈ Lp(RN × Y ;X) with U = 0 almost everywhere outside Ω × Y and

1 < p <∞.

1. If uε is two-scale weakly convergent in Lp(Ω× Y ;X) as ε→ 0 then it is

bounded in Lp(Ω;X) as ε→ 0.

2. If uε is bounded in Lp(Ω;X) then uε is two-scale weakly convergent in

Lp(Ω× Y ;X) along a suitable sequence εn → 0.

3. uε
2→ U two-scale strongly in Lp(Ω × Y ;X) as ε → 0 if and only if

uε
2
⇀ U two-scale weakly converges in Lp(Ω×Y ;X) and ‖uε‖Lp(Ω;X) →

‖uε‖Lp(RN×Y ;X) as ε→ 0.

4. If uε
2
⇀ U two-scale weakly in Lp(Ω× Y ;X) as ε→ 0 then

lim
ε→0

∫
Ω

uε(x)ψ(x,
x

ε
)dx =

∫
Ω

∫
Y

U(x, y)ψ(x, y)dxdy,

for every ψ ∈ Lq(Ω;C0
per(Y ;X)).

5. If uε
2
⇀ U two-scale weakly converges in Lp(Ω × Y ) and vε

2→ V two-

scale strongly converges in Lq(Ω× Y ),

lim
ε→0

∫
Ω

uεvεdx =

∫
Ω

∫
Y

UV dxdy.
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6. The weak or strong two-scale limit u0 is unique as an element of Lp(Ω×

Y ).

7. The weak or strong two-scale convergence of uε to u0(x, y) implies weak

convergence in Lp(Ω) of uε to the limit u∗(x) = 1
|Y |

∫
Y
u0(x, y)dy.

Remark

(i) C∞0 [Ω;C∞per(Y )] is dense in Lq[Ω;C∞per(Y )] means that a sequence ϕn of

functions in C∞0 [Ω;C∞per(Y )] converges to ϕ ∈ Lq[Ω;C∞per(Y )].

(ii) Due to density properties, it is easily seen that if {vε} two-scale converges

to v0, (3.6) holds for any ψ of the form

ψ(x, y) = ψ1(y)ψ2(x, y)

with ψ1(y) ∈ L∞(Y ) and ψ2(x, y) ∈ L2
per[Y ;C(Ω)].

(iii) For the same reason, convergence in (3.6) is still true for any function ψ

of the form ψ(x, y) = ϕ1(x)ϕ2(y), where ϕ1 and ϕ2 are the same as in

statement (ii) of Lemma 3.1.

Proposition 3.5

Two-scale convergence implies weak convergence in L2(Ω).

Proof

If in Definition 3.3 we take ψ independent of y, that is, if ψ(x, y) = ψ(x), then

(3.6) reads as the following weak convergence

lim
ε→0

∫
vε(x)ψ(x)dx =

1

|Y |

∫
Ω

∫
Y

v0(x, y)ψ(x)dxdy

=
1

|Y |

∫
Ω

(∫
Y

v0(x, y)dy

)
ψ(x)dx

=
1

|Y |

∫
Ω

v0(x)ψ(x)dx
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where v0(x) =
∫
Y
v0(x, y)dy i.e.(vε, ψ)Lp(Ω),Lq(Ω) ⇀ (v0, ψ)Lp(Ω),Lq(Ω). Thus,

vε ⇀ v0 =
1

|Y |

∫
Y

v0(x, y)dy weakly in L2(Ω).

Definition 3.5

Let {vε} be a sequence in L2(Ω) that two-scale converges to v0 ∈ L2(Ω × Y ).

Then,

vε ⇀

∫
Y

v0(x, y)dy weakly in L2(Ω). (3.11)

Even though the two-scale limit belongs to another space from the sequence

converging to it, all elements in L2(Ω × Y ) are actually two-scale limits for

some sequence in L2(Ω).

Proposition 3.6

For every v ∈ L2(Ω;Cper(Y )), it holds that

v(x,
x

ε
) ⇀

∫
Y

v(x, y) dy in L2(Ω). (3.12)

Proof

If g ∈ L1(Ω;Cper(Y )), then

lim
ε→0

∫
Ω

g

(
x,
x

ε

)
dx =

∫
Ω

∫
Y

g(x, y)dydx. (3.13)

Since vw ∈ L1(Ω;Cper(Y )) when v ∈ L2(Ω;Cper(Y )) andw ∈ L2(Ω;Cper(Y )),

it holds that

lim
ε→0

∫
Ω

v

(
x,
x

ε

)
w(x)dx =

∫
Ω

∫
Y

v(x, y)w(x)dydx, (3.14)

for all w ∈ L2(Ω).

Clearly, the weak and the two-scale limits are equal if the two-scale limit does

not depend on y or it is independent of y. This implies that if a sequence {vε}

38

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



two-scale converges, then it is bounded in L2(Ω). This follows from the propo-

sition which says that every weakly convergent sequence is bounded.

Theorem 3.7 (Flodén, 2009)

The two-scale limit is unique.

Proof

Assume that a sequence uε ∈ L2(Ω) converges to two different functions η0 and

γ0 in L2(Ω× Y ), i.e. we have

lim
ε→0

∫
Ω

uε(x)v(x,
x

ε
)dx =

∫
Ω

∫
Y

η0(x, y)v(x, y)dxdy (3.15)

and

lim
ε→0

∫
Ω

uε(x)v(x,
x

ε
)dx =

∫
Ω

∫
Y

γ0(x, y)v(x, y)dxdy, (3.16)

for every v ∈ L2(Ω;Cper(Y )).

Taking the difference between (3.15) and (3.16)

∫
Ω

∫
Y

η0(x, y)v(x, y)dxdy −
∫

Ω

∫
Y

γ0(x, y)v(x, y)dxdy = 0∫
Ω

∫
Y

(
η0(x, y)− γ0(x, y)

)
v(x, y)dxdy = 0.

This implies from the variational lemma that η0(x, y)− γ0(x, y) = 0 and we get

η0(x, y) = γ0(x, y) almost everywhere in L2(Ω× Y ).

Theorem 3.8 (Flodén et al, 2013)

Let {uε} be a bounded sequence in L2(Ω). Then it holds for some u0 ∈ L2(Ω×

Y ) and up to a subsequence that

uε
2
⇀ u0(x, y).
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See detailed proof in Flodén, et al (2013). We will give a simple proof here:

Let

F ε(v) =

∫
Ω

uε(x)v

(
x,
x

ε

)
dx

where v ∈ L2(Ω;Cper(Y )). By the Hölder’s inequality, we have that

|F ε(v)| =
∣∣∣∣ ∫

Ω

uε(x)v

(
x,
x

ε

)
dx

∣∣∣∣ ≤ ‖uε‖L2(Ω)

∥∥∥∥v(x, xε
)∥∥∥∥

L2(Ω)

≤ C

∥∥∥∥v(x, xε
)∥∥∥∥

L2(Ω)

.

By Property (iii) of Theorem ??, {F ε} is bounded in X ′ and hence, up to a

subsequence,

F ε ∗⇀ F in X ′.

The property (iv) in the same theorem gives

|F (v)| ≤ C lim
ε→0

∥∥∥∥v(x, xε
)∥∥∥∥

L2(Ω)

= C‖v(x, y)‖L2(Ω×Y ).

Hence, F ∈ L2(Ω× Y )′ by the Riesz representation theorem

F (v) =

∫
Ω

∫
Y

u0(x, y)v(x, y)dydx (3.17)

for every v ∈ X and a unique u0 ∈ L2(Ω× Y ).

The proposition below yields that sequences created from admissible test

functions two-scale converge.

Proposition 3.9

If u ∈ Ψ(Ω, Y ), then

u

(
x,
x

ε

)
2
⇀ u(x, y). (3.18)

See Page 49 of Floden (2009) for proof.
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Definition 3.6 (Ciouranescu and Donato, 1999)

Let {un} be a sequence in Lp(Ω) with 1 < p < ∞. The weak convergence

un ⇀ u weakly in Lp(Ω) signifies that

∫
Ω

unψdx ⇀

∫
Ω

uψdx ∀ψ ∈ Lq(Ω),

with 1
p

+ 1
q

= 1.

If p = 1, then q = ∞. If p = ∞, we take q = 1 and the convergence is called

weak-* convergence in L∞(Ω).

Proposition 3.10

Let 1 < p < ∞ and {un} be a sequence in Lp(Ω). Then the following equiva-

lence hold.

(a) un ⇀ u weakly ∈ Lp(Ω)⇔

(b) (i) ‖un‖Lp(Ω) ≤ c (independently of n)

(ii)
∫
I
undx→

∫
I
udx for any I ⊂ Ω.

Proposition 3.11

Let {un} be a sequence weakly convergent to x in E. Then

(i) {xn} is a bounded sequence in E, i.e. there exists a constant C independent

of n such that ∀ n ∈ N . That is, ‖xn‖E ≤ C,

(ii) the norm on E is lower semi-continuous with respect to the weak conver-

gence. That is,

||x||E ≤ lim inf
n→∞

‖xn‖E.
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Lemma 3.12

Consider a function vε ∈ L2(Ω) which admits the following two-scale expan-

sion

vε(x) = v0(x,
x

ε
) + εv1(x,

x

ε
) + ... (3.19)

where vj(x, y) ∈ L2(Ω;Cper(Y )), j = 0, 1, ..., N, Ω being a bounded domain

in Rn. Then vε 2
⇀ v0.

Proof

It is enough to consider the case where N = 1. Let ψ(x, y) ∈ L2[Ω;Cper(Y )]

and we define

fj(x, y) = vj(x, y)ψ(x, y), j = 0, 1. (3.20)

f εj (x) = fj(x,
x

ε
). (3.21)

Multiplying the two-scale expansion (3.19) by ψ(x, x
ε
) and integrating over Ω,

we obtain

∫
Ω

vε(x)ψ(x,
x

ε
)dx =

∫
Ω

v0(x,
x

ε
)ψ(x,

x

ε
)dx+

∫
Ω

εv1(x,
x

ε
)ψ(x,

x

ε
)dx+ · · ·

=

∫
Ω

f0(x,
x

ε
)dx+

∫
Ω

εf1(x,
x

ε
)dx+ · · ·

=

∫
Ω

f ε0 (x)dx+

∫
Ω

εf ε1 (x)dx+ · · · (3.22)

By Lemma 3.1, f ε0 (x) converges to its average over Y =
∫
Y
f0(x, y)dy weakly

in L2(Ω). We take notice that 1 ∈ L2(Ω) since Ω is a bounded subset of Rn.

Moreover,
∫

Ω
1dx = |Ω|. Choosing ψ = 1 we obtain

∫
Ω

f ε0 (x)dx→
∫

Ω

∫
Y

f0(x, y)dydx (3.23)

=

∫
Ω

∫
Y

v0(x, y)ψ(x, y)dydx.

42

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



We then consider the integral
∫

Ω
εf ε1 (x)dx. Since the sequence f ε1 is

weakly convergent in L2(Ω), it is bounded by Proposition (3.10).

Using the boundedness of Ω and the Cauchy-Schwarz inequality, we obtain

∫
Ω

εf ε1 (x) ≤ C‖f ε1‖L2(Ω) (3.24)

≤ εC −→ 0,

as ε −→ 0.

Substituting (3.23) and (3.24) into (3.22) we obtain

∫
Ω

vε(x)ψ(x,
x

ε
)dx −→

∫
Ω

∫
Y

v0(x, y)ψ(x, y)dydx.

Hence, vε two-scale converges to v0.

Lemma 3.13 (Ciouranescu and Donato, 1999)

Compactness Lemma

Each bounded sequence vε in the dual space of a separable normed space (Ba-

nach space) contains a subsequence which converges weak*. The subsequence

is still denoted by ε.

Theorem 3.14

Let {vε} be a bounded sequence in L2(Ω). Then there exists a subsequence, still

denoted by {vε} and a function v0(x, y) ∈ L2(Ω× Y ) such that {vε} two-scale

converges to v0(x, y).

Proof

Let X denote the space L2[Ω;Cper(Y )]. Also, let ψ ∈ X , then from Lemma

3.13, we have that

‖ψ(·, ·
ε

)‖Lp(Ω) ≤ ‖ψ(·, ·)‖X .
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1. From the Hölder inequality we have

∣∣∣∣ ∫
Ω

vεψ(x,
x

ε
)dx

∣∣∣∣ ≤ ‖vε‖L2(Ω)‖ψ‖L2(Ω)

≤ C‖ψ(x, y)‖X . (3.25)

2. From the above equation (3.25), we deduce that
∫

Ω
vεψ(x, x

ε
)dx defines a

bounded linear functional over x, i.e. vε can be regarded as the element

V ε of the dual spaces of X (there exists vε ∈ X∗) such that

〈V ε, ψ〉X∗,X =

∫
Ω

vεψ(x,
x

ε
)dx ∀ψ ∈ X.

Taking the supremum over all x ∈ Ω we obtain

‖V ε‖∗X = sup
‖ψ‖=1

|〈V ε, ψ〉|X∗,X

≤ C sup
‖ψ‖=1

|〈ψ〉|X

≤ C.

Since X is a seperable Banach space, we can extract a weak∗ convergent

subsequence still denoted by V ε such that V ε ⇀ V 0 weakly∗ in X∗ for

some V 0 ∈ X∗. Consequently,

lim
ε→0

∫
vε(x)ψ(x)dx = lim

ε→0
〈V ε, ψ〉X∗,X −→ 〈V 0, ψ〉. (3.26)

On the other hand, from the boundedness of {vε}, the Hölder inequality

and convergence in Lemma 3.12 we find that

lim
ε→0
|
∫
vε(x)ψ(x)dx| ≤ C lim

ε→0
‖ψ(x,

x

ε
)‖L2(Ω) = C‖ψ‖L2(Ω) (3.27)

From (3.26) and (3.27) we obtain

〈V 0, ψ〉X∗,X ≤ C‖ψ‖X ∀ψ ∈ X. (3.28)
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Since X is dense in L2(Ω× Y ) this implies that (3.28) actually holds for

every ψ ∈ L2(Ω × Y ). Hence 〈V 0, ψ〉X∗,X can be extended to become

a bounded linear functional on L2(Ω × Y ). Since this is a Hilbert space,

the Riesz representation theorem holds. This enables us to identify the

limiting bounded linear functional by a unique element v0(x, y) of L2(Ω×

Y ):

〈V 0, ψ〉X∗,X =

∫
Ω

∫
Y

v0(x, y)ψ(x, y)dydx ∀ψ ∈ X (3.29)

=

∫
Ω×Y

v0(x, y)ψ(x, y)dydx ∀ψ ∈ X.

From (3.26) and (3.29) we have that

∫
Ω

vεψ(x,
x

ε
)dx −→

∫
Ω×Y

v0(x, y)ψ(x, y)dydx ∀ψ ∈ X

which implies that v0 is the two-scale convergence limit of the sequence

vε.

See other proof in Theorem 9.7 of Ciouranescu and Donato (1999).

Proposition 3.15

The space X = L2(Ω;Cper(Y )) have the following properties.

i The space X is seperable.

ii The space X is dense in L2(Ω× Y ).

iii If v ∈ L2(Ω;Cper(Y )). Then the function x 7→ v(x, x
ε
) defined on Ω is

measurable and

∥∥∥∥v(x,
x

ε
)

∥∥∥∥
L2(Ω)

≤
(∫

Ω

‖v(x, ·)‖2
Cper(Y )dx

) 1
2

= ‖v‖X , (3.30)
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iv For every v ∈ X , one has

lim
ε→0

∫
Ω

∣∣∣∣v(x, xε
)∣∣∣∣2dx =

∫
Ω

∫
Y

|v(x, y)|2dydx. (3.31)

Theorem 3.16

LetBp(Ω, Y ), 1 ≤ p ≤ ∞ denote any of the spacesLp(Ω;Cper(Y ), Lploc(Y ;C(Ω̄)),

C(Ω;Cper(Y )). Then Bp(Ω, Y ) has the following properties:

(i) Bp(Ω, Y ) is a seperable Banach space.

(ii) Bp(Ω, Y ) is dense in Lp(Ω× Y )

(iii) For every f ∈ Bp(Ω, Y ), the function x 7→ f(x, x
ε
) defined on Ω is mea-

surable and

∥∥∥∥f(x,
x

ε
)

∥∥∥∥
Lp(Ω)

≤ ‖f‖Lp(Ω;Cper(Y )) =

(∫
Ω

‖f(x, ·)‖pCper(Y )dx

) 1
p

(3.32)

(iv.) For every f ∈ Bp(Ω, Y ) we have,

lim
ε→0

∫
Ω

∣∣∣∣f(x, xε
)∣∣∣∣pdx =

∫
Ω

∫
Y

|f(x, y)|pdydx. (3.33)

For Ω bounded, L2(Ω;Cper(Y )), L2
loc(Y ;C(Ω̄)), C(Ω;Cper(Y )) are spaces of

admissible test functions. We denote any of the spaces by Ψ(Ω, Y ). The tech-

niques used to prove the compactness results for two-scale convergence of se-

quences in L2(Ω) given in this work apply for all these spaces. The functions in

the spaces above generate weakly convergent sequences in L2(Ω).

Remark

The functions in the space L2(Ω;Cper(Y )) can be used as test functions also for

Ω unbounded, e.g. for Ω = Rn; see Lemma 2.3 in Allaire (1993).

Proposition 3.6 holds true for all the spaces of test functions in Proposition

3.16. Just note that (iii) in Theorem 3.15 means that for v in any of those spaces,
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{v(x, x
ε
)} is bounded in L2(Ω) and that for any w ∈ D(Ω), vw remains in the

space of admissible test functions containing v.

Theorem 3.17

Let {vε} be a sequence of functions in L2(Ω) which two-scale converges to

v0 ∈ L2(Ω× Y ). Suppose further that the admissible test function

lim
ε→0

∫
Ω

|vε(x)|2dx =
1

|Y |

∫
Ω

∫
Y

|v0(x, y)|2dydx (3.34)

holds, then for any sequence {wε} that two-scale converges to a limit w0 ∈

L2(Ω× Y ), we have

vεwε −→ 1

|Y |

∫
Y

v0(·, y)w0(·, y)dy. (3.35)

Proof

Since the space L2(Ω;Cper(Y )) is dense in L2(Ω×Y ) and that there exists

a sequence {ϕn} ⊂ L2(Ω;Cper(Y )), such that as n→∞,

ϕn → v0 strongly in L2(Ω× Y ). (3.36)

We then consider the integral

Iεn =

∫
Ω

[vε(x)− ϕn(x,
x

ε
)]2dx

=

∫
Ω

[vε(x)]2dx− 2

∫
Ω

vε(x)ϕn(x,
x

ε
)dx+

∫
Ω

[ϕn(x,
x

ε
)]2dx,

and we let ε −→ 0.

From (3.34) the first term will converge, while the second term will also con-

verge by the two-scale definition. Also by Lemma 3.6 the third term will con-
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verge. We then obtain

lim
ε−→0

Iεn =
1

|Y |

∫
Ω

∫
Y

[v0(x, y)]2dxdy − 2
1

|Y |

∫
Ω

∫
Y

v0(x, y)ϕn(x, y)dxdy

+
1

|Y |

∫
Ω

∫
Y

[ϕn(x, y)]2dxdy

=
1

|Y |

∫
Ω

∫
Y

[v0(x, y)− ϕn(x, y)]2dxdy.

Due to (3.36) the last integral converges to 0 as n→∞. So that

lim
n−→∞

Iεn =
1

|Y |
lim
n−→∞

∫
Ω

∫
Y

[v0(x, y)− ϕn(x, y)]2 = 0.

Also for any ψ ∈ C∞(Ω) one has that

∫
Ω

vε(x)wε(x)ψ(x)dx =

∫
Ω

[vε(x)− ϕn(x,
x

ε
)]wε(x)ψ(x)]dx

+

∫
Ω

ϕn(x,
x

ε
)wε(x)ψ(x)dx

we then make ε −→ 0 and then n −→ ∞. To do so, we observe that if a

sequence {vε} two-scale converges, and therefore converges weakly then it is

bounded in L2(Ω). By Proposition 3.11 and the Hölder’s inequality, we obtain

lim
n−→∞

lim
ε−→0

∣∣∣∣ ∫
Ω

[vε(x)− ϕn(x,
x

ε
)]wε(x)ψ(x)dx

∣∣∣∣
≤ C lim

n−→∞
lim
ε−→0

{∫
Ω

[vε(x)− ϕn(x,
x

ε
)]2dx

} 1
2

= 0. (3.37)

From the assumption that wε two-scale converges to w0, we have that

lim
n−→∞

lim
ε−→0

∫
Ω

[ϕn(x,
x

ε
)]wε(x)ψ(x)dx

= lim
n−→∞

1

|Y |

∫
Ω

∫
Y

w0(x, y)ϕn(x, y)ψ(x)dxdy

=
1

|Y |

∫
Ω

∫
Y

w0(x, y)v0(x, y)ψ(x)dxdy.
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Therefore, from (3.37) we obtain

∫
Ω

vε(x)wε(x)ψ(x)dx =
1

|Y |

∫
Ω

∫
Y

w0(x, y)v0(x, y)ψ(x)dxdy. (3.38)

So that with the necessary conditions,

vεwε −→ 1

|Y |

∫
Y

v0(x, y)w0(x, y)dy. (3.39)

Theorem 3.18

Let {uε} be a sequence in L2(Ω) that two-scale converges to u0. Then

lim
ε→0

∫
Ω

uε(x)v

(
x,
x

ε

)
dx =

∫
Ω

∫
Y

u0(x, y)v(x, y)dydx (3.40)

for all v ∈ Ψ(Ω, Y ) and for all v of the form v(x, y) = v1(x)v2(y), v1 ∈

Ls(Ω), v2 ∈ Ltper with 1 ≤ s, t ≤ ∞ and such that 1
s

+ 1
t

= 1
2
.

Relations between the weak, two-scale and strong convergences

There exists relations between the two-scale convergence and the other

convergence. This convergences include the strong and weak convergence as

well as other convergences. Strong convergences do not have oscillations which

can affect the two-scale limit. The two scale limit of a sequence {uε} converges

to the strong limit u in L2(Ω) if this limit exists. A sequence {uε} that converges

strongly will also converge two scale and the limits are the same. For a sequence

{uε} in the space L2(Ω), there are weak, strong and two-scale convergences.

The relation that exists between these convergences are as below:

Strong convergence =⇒ two-scale convergence =⇒weak convergence

The converse is however not true. i.e.

Weak Convergence ; Two-scale Convergence ; Strong convergence

The relation is between the convergences in Lp(Ω) can simply be written as:

strong⇒ strong two-scale⇒ weak two-scale⇒ weak.
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See also Proposition 3.2 of Giacomini and Musesti (2011), Ganesh and Nan-

dakumaran (2010) and Theorem 6.2 of Francü (2010) for other properties.

Theorem 3.19

If uε converges strongly to u0 in L2(Ω), then uε(x)
2
⇀ u0(x).

Proof

We know from Analysis that if a sequence converges strongly, then it converges

weakly and that both limits are the same. This theoerem is however its two-scale

version.

Let ψ ∈ L2(Ω;Cper(Y )). Then

∣∣∣∣∫
Ω

uε(x)ψ(x,
x

ε
)dx−

∫
Ω

∫
Y

u0(x)ψ(x, y)dydx

∣∣∣∣≤ ‖uε − u0‖L2(Ω)

∥∥∥∥ψ(x,
x

ε
)

∥∥∥∥
L2(Ω)

+

∣∣∣∣∫
Ω

u0(x)ψ(x,
x

ε
)dx−

∫
Ω

∫
Y

u0(x)ψ(x, y)dydx

∣∣∣∣
≤ C‖uε − u0‖L2(Ω) +

∣∣∣∣∫
Ω

u0(x)

(
ψ(x,

x

ε
)dx− ψ(x, y)

)
dydx

∣∣∣∣.
The first term of the right hand side goes to zero since {uε} converges strongly.

Since u0(x) is in L1(Ω;Cper(Y )) and that the limit is unique, the second term

also will go to zero. Therefore, the left hand side becomes zero and we conclude

that the two-scale limit will also converge and converges to u0. And we obtain

that

∣∣∣∣∫
Ω

uε(x)ψ(x,
x

ε
)dx−

∫
Ω

∫
Y

u0(x)ψ(x, y)dydx

∣∣∣∣→ 0

which gives the required result that if uε converges strongly to u0 in L2(Ω), then

uε(x)
2
⇀ u0(x).

Theorem 3.20

If {uε} is a sequence in L2(Ω) and uε
2
⇀ u0(x, y), then uε ⇀ uweakly in L2(Ω)

where, u(x) =
∫
Y
u0(x, y)dy and {uε} is bounded.
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Proof

By definition of the two-scale convergence, it follows that

∫
Ω

uε(x)φ(x,
x

ε
) −→

∫
Ω

∫
Y

u(x, y)φ(x, y)dydx, (3.41)

for every φ ∈ Lq(Ω;Cper(Y )). For φ independent of y we obtain that

∫
Ω

uε(x)φ(x) −→
∫

Ω

∫
Y

u(x, y)φ(x)dydx. (3.42)

Since every function in Lq(Ω) can be identified with φ ∈ Lq(Ω;Cper(Y )) inde-

pendent of y the result follows. That {uε} is bounded in Lp(Ω) follows from the

well-known fact that every weakly convergent sequence is bounded.

Remark

Usually the choice of the test function Lq(Ω;Cper(Y )) is very essential for The-

orem 3.20 to hold. The definition of two-scale convergence was given by taking

the test function space D(Ω;C∞per(Y )) instead of L2(Ω;Cper(Y )). Such a defi-

nition will not be defined for Theorem 3.20.

Example 3.1

Let Ω = (0, 1), u(x, y) = 0 and define

uε(x) =


1
ε

if 0 < x < ε,

0 if ε < x < 1.

(3.43)

Then,

∫
Ω

uε(x)φ(x,
x

ε
) −→

∫
Ω

∫
Y

u(x, y)φ(x, y)dydx = 0, (3.44)

for all φ in D(Ω;C∞per(Y )). But {uε} is neither bounded nor does it converge

to 0 weakly in Lp(Ω). Choosing the function g in the dual as g ≡ 1,

lim
ε→0

∫ 1

0

uεgdx = 1. (3.45)
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It is even not possible to also use a bigger space C(Ω;C∞per(Y )) in place of

D(Ω;C∞per(Y )).

Example 3.2

Let Ω = (0, 1) and uε be defined as

uε(x) =


ũε(

x
ε
) if 1

4
< x ≤ 3

4
,

0 otherwise
(3.46)

where ũε is the (0,1)-periodic extension to R of the function defined in Example

3.1 and

u(x) =


1 if 1

4
< x ≤ 3

4

0 otherwise.
(3.47)

Then

∫
Ω

uε(x)ψ(
x

ε
)dx→

∫
Ω

∫
Y

u(x, y)ψ(x, y)dydx, (3.48)

is satisfied for all ψ(x, y) in C(Ω;C∞per(Y )), but uε does not converge to v(x) =∫
Y
u(x, y)dy weakly in Lp(Ω) and is certainly not bounded. Note that {uε} is

not bounded in L2(Ω).

The following result shows that it is possible to replace Lq(Ω;Cper(Y )) by

D(Ω;C∞per(Y )) in the definition of two-scale convergence provided we add the

assumption that {uε} is bounded in Lp(Ω).

Proposition 3.21

Let {uε} be a bounded sequence in Lp(Ω) such that

∫
Ω

uε(x)ψ(
x

ε
)dx→

∫
Ω

∫
Y

u(x, y)ψ(x, y)dydx, (3.49)
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for every ψ ∈ D(Ω;C∞per(Y )). Then {uε} two-scale converges to u(x).

Example 3.3

Considering the sequence {uε = sin(x
ε
)}, it has a two-scale limit, that is u0 =

sin(y). The sequence however does not converge strongly in L2(Ω).

In order to see the global and the microscopic cell oscillative behaviour of

a sequence {uε} are treated in the limit in the cases of weak convergence and

two-scale convergence, consider

uε(x) = 2x+ x sin(2πεx), x ∈ Ω,

where Ω = (0, 1).

Concerning the weak convergence of {uε} to some u in L2(Ω), this is equivalent

to saying that {uε} is bounded in L2(Ω) and
∫
I
u.

∫
I

uε(x)dx→
∫
I

u(x)dx

for any I ⊂ Ω.

We will prove that u(x) = 2x, x ∈ Ω, is the weak limit. First we have

‖uε‖2
L2(Ω) =

∫
Ω

|uε(x)|2dx

=

∫ 1

0

(2x+ x sin(2πεx))2dx

=
3

2
− 2

πε
− 1

16π2ε2

≤ 3

2
∀ ε ∈ Z+,

(3.50)

i.e. the boundedness property is satisfied.
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Next, for the integral convergence property we have for any I = (a, b) ⊂ Ω,

∫
I

uε(x)dx =

∫ b

a

(2x+ x sin(2πεx))dx

= x2 +
x cos(2πxε)

2πε
+

sin(2πxε)

(2πε)2

∣∣∣∣b
a

= (b2 − a2)− b cos(2πbε)− a cos(2πaε)

2πε

+
sin(2πεb)− sin(2πεa)

4π2ε2

−→ b2 − a2 =

∫ b

a

2xdx =

∫
I

u(x)dx as ε→∞.

(3.51)

The weak limit of uε(x) = 2x+ x sin(2πεx) is u(x) = 2x.

Hence we have verified that uε ⇀ u in L2(Ω).

The weak convergence mode is incapable of capturing the rapid oscillations. In-

stead, the weak convergence seems to be ideal to describe the global behaviour.

When the sequences of functions which are bounded in L2 have rapid os-

cillations in only one microscale, then the two-scale is enough for the study. In

the case where there are two microscales then the three-scale convergence will

do. However, if the functions under study contains more than one microscale,

then the two-scale convergence is will not be enough. A wider concept of mul-

tiscale convergence would then be needed. With the introduction of more than

one scale, the multiscale convergence now covers all the microcscales. The idea

is the same as that of the two-scale convergence, the only difference however,

is that instead of the one local variable y, there are now many other variables

y1, y2, . . . , yn, introduced in the problem under study. These variables take care

of the oscillations in all for each microscales.

In 1996, Allaire and Briane made a generalization of two-scale conver-

gence, to cover all the microscales. Which is known as the multiscale conver-

gence. For more details on the concept of the multiscale convergence, we refer

the reader to Section 4.2 of Flodén (2009).
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Example 3.4

For example, both sequences uε(x) = x sin(2πx/ε),

vε(x) = v(x, x
ε
) = 1

x
sin(2πx/ε) will converge weakly to u = v = 0 as ε → 0

as seen in the graph below, but uε(x)vε(x) = sin2(2πx/ε) and that for periodic

Figure 4: uε For ε = 0.1, With Its Weak Limit.

Figure 5: vε For ε = 0.1, With Its Weak Limit.
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functions

uε(x)vε(x) = sin2(2π
x

ε
) ⇀

∫
Y

sin2(2πy)dy = 0.5 in L2(Ω), (3.52)

and hence in D′(Ω).

Figure 6: uεvε for ε = 0.1, With Its Weak Limit uv.

So we see that

∫
Ω

uε(x)vε(x)dx9
∫

Ω

u(x)v(x)dx = 0. (3.53)

There is however no information about the respective sequence contribution to

the limit provided. The D′(Ω) limit also does not give any enlightenment about

the oscillations of uεvε. The two-scale convergence solves this problem. We

observe that

uε(x)
2
⇀ u0(x, y) = x sin(2πy) (3.54)

and that vε emanates from an admissible test function V . We now obtain using
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the two-scale convergence,

∫
Ω

uε(x)v(x,
x

ε
)dx −→

∫
Ω

∫
Y

u0(x, y)v(x, y)dydx

=

∫
Ω

∫
Y

x sin(2πy) · 1

x
sin(2πy)dydx

=

∫
Ω

∫
Y

sin2(2πy)dydx,

as ε→ 0. Hence the impact of the respective sequence is revealed. The product

of two weakly convergent sequences will in general not converge to the product

of their respective weak limit and hence

∫
Ω

uε(x)vε(x)dx9
∫

Ω

(∫
Y

u0(x, y)dy

∫
Y

v(x, y)dy

)
dx. (3.55)

Whereas we have by the two-scale convergence that

∫
Ω

uε(x)vε(x)dx −→
∫

Ω

∫
Y

u0(x, y)v(x, y)dy. (3.56)

The two-scale convergence handles the information about what the two se-

quences can do together.

Bounded Sequences in H1(Ω) and their two-scale limits

Theorem 3.22 (Ganesh & Nandakumaran, 2010)

Let {uε} be a sequence in H1(Ω) such that uε ⇀ u weakly in H1(Ω). Then

1. The sequence {uε} two-scale converges to u.

2. There exists a subsequence of ε and u1 ∈ L2(Ω;H1
per(Y )/R) such that

∇uε
2
⇀ ∇xu(x) +∇yu1(x, y). (3.57)

Proof

As the sequence {uε} converges weakly in H1(Ω), it is a bounded sequence. As

a consequence {uε} and {∇uε} are bounded sequences in L2(Ω) and L2(Ω)n
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respectively. By the compactness lemma 3.13, there exists a subsequence (still

denoted by ε), u0 ∈ L2(Ω× Y ) and ξ0 ∈ L2(Ω× Y )n such that

uε
2
⇀ u and ∇uε

2
⇀ ξ0.

By Theorem 3.20 we know that u(x) =
∫
Y
u0(x, y)dy.

If we prove that u0 does not depend on y ∈ Y , we get that the whole

sequence two-scale converges to u. This follows from the uniqueness of the

weak limit. Let Ψ ∈ [D(Ω;C∞per(Y ))]n. Then

∫
Ω

∇uε(x) ·Ψ(x,
x

ε
)dx =

∫
Ω

uε(x)

[
∇x ·Ψ(x,

x

ε
)

]
dx+

1

ε

∫
Ω

uε(x)∇y ·Ψ(x,
x

ε
)dx

=

∫
Ω

uε(x)
[
∇x ·Ψ(x,

x

ε
)
]
dx.

Multiplying by ε and then passing to the limit on both sides as ε→ 0 we obtain

0 =

∫
Ω

∫
Y

u0(x, y)∇y ·Ψ(x, y)dydx.

This shows that u0 is independent of y.We further assume that Ψ also satisfies

∇yΨ(x, y) = 0. Then we have

∫
Ω

∇uε(x) ·Ψ(x,
x

ε
)dx =

∫
Ω

uε(x)
[
∇x ·Ψ(x,

x

ε
)
]
dx. (3.58)

Passing to the limit as ε→ 0 on both sides, we get

∫
Ω

∫
Y

ξ0(x, y)Ψ(x, y)dydx =

∫
Ω

∫
Y

u(x)∇xΨ(x, y)dydx.

Hence

∫
Ω

∫
Y

[ξ0(x, y)−∇xu(x)]Ψ(x, y)dydx = 0,

for all divergence free Ψ.
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It is well known that a vector field orthogonal to divergence free vector fields

must be a gradient. Thus there exists u1(x, y) such that

ξ0(x, y)−∇u(x) = ∇yu1(x, y).

This complete the proof of Theorem 3.22.

Theorem 3.23

If vε(x) is a sequence in W 1,2
0 (Ω) such that vε(x)

2
⇀ v0(x, y) and ∇vε(x)

2
⇀

∇v0(x) + ∇v1(x, y), then the weak two-scale limit v0 is independent of y and

belong to W 1,2
0 (Ω), i.e. v0(x, y) = v0(x) ∈ W 1,2

0 (Ω), and v1 ∈ L2[Ω;W 1,2
per(Y )].

Theorem 3.24

Assume that {vε} is a bounded sequence in H1(Ω). Then up to a subsequence

we have that

vε ⇀ v0 in H1(Ω), (3.59)

and ∇vε 2
⇀ ∇v0 +∇yv1, (3.60)

for some vo ∈ H1(Ω) and some v1 ∈ L2(Ω;H1(Y )/R).

Theorem 3.25

Every bounded sequence in L2(Ω) has a subsequence which is two-scale con-

vergent. See proof in Persson, et al (1993).

The norm of the two-scale limit

The oscillations captured by the two-scale limit u0 may cause the norm of

u0 to become larger than the norm of the weak L2(Ω)-limit u.
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Theorem 3.26 (Lukkassen, Nguetseng & Wall, 2002)

Let {uε} be a sequence in L2(Ω) that two-scale converges to u0 ∈ L2(Ω × Y ).

Then we have

lim
ε→0
‖uε‖L2(Ω) ≥ ‖u0‖L2(Ω×Y ) ≥ ‖u‖L2(Ω), (3.61)

where u(x) =
∫
Y
u0(x, y)dy and that uε(x) ⇀ u(x) in L2(Ω).

We will give a short proof for this theorem. We refer the reader to other proofs

in Zhikov (2000), Theorem 17 of Lukkassen, Nguetseng & Wall (2002) and

Theorem 1.24 of Ganesh & Nandakumaran (2010).

Proof

Note that uε(x) can be written as

uε(x) = u(x) + ũε(x) (3.62)

where

ũε(x) ⇀ 0 in L2(Ω), (3.63)

and that a similar decomposition

u0(x, y) = u(x) + ũ(x, y) (3.64)

where

∫
Y

ũ(x, y)dy = 0, (3.65)

is possible for the two-scale limit. Here u provides the global tendency while ũε

and ũ reflect the rapid oscillations.

It is a well-known result in L2(Ω) weak convergence theory that if a sequence
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{uε} converges weakly to u, then

‖u‖L2(Ω) ≤ lim inf
ε→0

‖uε‖L2(Ω). (3.66)

Considering the classical inequality (3.66), it holds that

lim inf
ε→0

‖uε‖2
L2(Ω) = lim inf

ε→0

∫
Ω

u2(x) + 2u(x)ũε(x) + (ũε(x))2dx (3.67)

where (3.63) makes the middle term vanish as ε→ 0, and hence

lim inf
ε→0

‖uε‖2
L2(Ω) =

∫
Ω

u2(x) + lim inf
ε→0

∫
Ω

(ũε(x))2dx ≥ ‖u‖2
L2(Ω). (3.68)

When the inequality is strict, this must be due to the oscillations ũε(x). If

lim
ε→0

∫
Ω

(ũε(x))2dx = 0, (3.69)

we have from (3.68) that

lim
ε→0
‖uε‖L2(Ω) = ‖u‖L2(Ω) (3.70)

and thus a strong convergence in L2(Ω).

In a similar way, with

‖u0‖2
L2(Ω×Y ) =

∫
Ω

∫
Y

u2
0(x, y)dydx

=

∫
Ω

u2(x)dx+

∫
Ω

∫
Y

2u(x)ũ(x, y)dydx+

∫
Ω

∫
Y

ũ2dydx.

The middle term will go to zero due to (3.65) and we get for the second inequal-

ity in (3.68).

‖u0‖2
L2(Ω×Y ) =

∫
Ω

u2(x)dx+

∫
Ω

∫
Y

ũ2dydx ≥ ‖u‖2
L2(Ω) (3.71)

The appearance of a strict inequality depends on ũ, that is, on the oscillations

captured by the two-scale limit.
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Finally, we consider the left-hand inequality

lim inf
ε→0

‖uε‖L2(Ω) ≥ ‖u0‖L2(Ω×Y ) (3.72)

which can, using (3.68) and (3.71), be expressed as

∫
Ω

u2(x)dx+ lim inf
ε→0

∫
Ω

(ũε(x))2dx ≥
∫

Ω

u2(x)dx+

∫
Ω

∫
Y

ũ2dydx

⇒ lim inf
ε→0

∫
Ω

(ũε(x))2dx ≥
∫

Ω

∫
Y

ũ2dydx (3.73)

and thus

lim inf
ε→0

‖ũε‖L2(Ω) ≥ ‖ũ‖L2(Ω×Y ). (3.74)

This means that the limit of the L2(Ω)-norm of the oscillations ũε will always

be greater than or equal to the L2(Ω× Y )-norm for the oscillations ũ of the

two-scale limit.

For the special case when

uε(x) = û

(
x

ε

)
,

where û ∈ L2(Ω;Cper(Y )), we have by Proposition ??, that

uε(x) = û

(
x

ε

)
2
⇀ û(x, y) = u0(x, y).

Rewriting (3.64) we get, for u the weak L2(Ω)-limit to uε,

ũ(x, y) = û(x, y)− u(x)

which means that ũ ∈ L2(Ω;Cper(Y )) and from (iv) in Proposition 3.15 we

obtain,

∫
Ω

(ũε(x))2dx = ũ2

(
x,
x

ε

)
dx→

∫
Ω

∫
Y

ũ2(x, y). (3.75)
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The oscillations contained in ũε and ũ, respectively, are of the same magnitude

and we get

lim inf
ε→0

‖uε‖L2(Ω) = ‖û‖L2(Ω×Y ) = ‖u0‖L2(Ω×Y ). (3.76)

In this case there is a perfect match between the oscillations in uε and those of

the test function v(x, x
ε
) and the two-scale limit captures the oscillations in uε

completely. The same holds true for any û ∈ Ψ(Ω, Y ).

Theorem 3.27

Let {uε} be a sequence in Lp(Ω) which two-scale converges to u ∈ Lp(Ω× Y ).

Then

lim inf
ε→0

‖uε‖Lp(Ω) ≥ ‖u0‖Lp(Ω×Y ) ≥ ‖v‖Lp(Ω), (3.77)

where v(x) =
∫
Y
u(x, y)dy. See also Theorem 1.24 of Ganesh & Nandaku-

maran (2010) and Flodén (2009) for more details.

The Oscillating Test Function Method

In this section, we give an overview of the oscillating test function method

and use it to homogenize the general elliptic equation. The oscillating test func-

tion method (also known as the energy method) is a very elegant and efficient

method for rigorously homogenizing partial differential equations. This method

was introduced by Tartar (1977). It is very general and does not require any

geometric assumptions on the behaviour of the partial differential equation co-

efficients neither periodicity nor statistical properties like ergodicity.

We give an overview of the method and refer the reader to Tartar (2009), Allaire

(2012) and Emereuwa (2015) for a more detailed account of this method.
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Given the elliptic equation

−∇x ·
(
A

(
x

ε

)
∇uε

)
= f in Ω

uε = 0 on ∂Ω,

(3.78)

where f(x) ∈ L2(Ω) is the source term.

Applying the Lax-Milgram theorem, (3.78) admits a unique solution uε in the

space H1
0 (Ω) which satisfies the apriori estimate

‖uε‖H1
0 (Ω) ≤ C‖f‖L2(Ω), (3.79)

where C is a positive constant independent of ε.

This implies that the sequence uε, indexed by a sequence of periods ε → 0 is

bounded in the sobolev space H1
0 (Ω). Therefore up to a subsequence it con-

verges weakly to a limit u in H1
0 (Ω).

To obtain (3.79), we multiply (3.78) by uε and integrate by parts then apply the

Poincaré inequality. The variational formulation of (3.78) is given by

∫
Ω

A(
x

ε
)∇uε(x) · ∇ϕ(x)dx =

∫
Ω

f(x)ϕ(x)dx, (3.80)

where ϕ ∈ H1
0 (Ω) is any test function. By the apriori in (3.79) a subsequence

still denoted by ε can be extracted, such that uε converges weakly to a limit u

in H1
0 (Ω). However, the left hand side of (3.80) involves the product of two

weakly converging sequences in L2(Ω), A(x
ε
) and∇uε(x), for which their limit

may not converge to their product as its weak limit. We then need further argu-

ments to pass to the limit in (3.80).

The idea of this method is to replace the fixed test function ϕ in (3.80) by a

weakly converging sequence ϕε (the so-called oscillating test function), cho-

sen in a way such that the left hand side of (3.80) can pass to its limit. This

phenomenon is an example of the compensated compactness theory which was

developed by Murat (1978) and Tartar (1979), which allows one to pass to the
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limit in some products of weak convergences under additional conditions. The

key idea of this method is the choice of the oscillating test function ϕε.

Let ϕ(x) ∈ D(Ω) be a smooth function with compact support in Ω. Taking the

first two terms of the asymptotic expansion of uε, the oscillating test function

ϕε is defined by:

ϕε(x) = ϕ(x) + ε

N∑
i=1

∂ϕ

∂xi
(x)w∗i (

x

ε
), (3.81)

where w∗i (y) are solutions of the dual cell problems defined by


−∇y · (At(y)(ei +∇yw

∗
i )) = 0 in Y

y 7→ w∗i (y) Y − periodic.
(3.82)

Lemma 3.28

Let w(x, y) be a continuous function in x, square integrable and Y -periodic in

y, i.e. w(x, y) ∈ L2
] (Y,C(Ω)). Then, the sequence w(x, x

ε
) converges weakly in

L2(Ω) to
∫

Ω
w(x, y)dy.

By periodicity in Y of w∗i , it is easily seen that εw∗i (
x
ε
) is a bounded se-

quence in H1(Ω) which converges weakly to zero.

We replace ϕ by ϕε which is the oscillating test function in (3.80) to obtain

∫
Ω

A(
x

ε
)∇uε(x) · ∇ϕε(x)dx =

∫
Ω

f(x)ϕε(x)dx. (3.83)

To take advantage of equation (3.82), we develop and integrate (3.83) by parts.

We remark that

∇ϕε =
N∑
i=1

∂ϕ(x)

∂xi

(
ei +∇yw

∗
i

(x
ε

))
+ ε

N∑
i=1

∂∇ϕ
∂xi

w∗i
(x
ε

)
. (3.84)

65

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



Substituting (3.84) into the left hand side of (3.83) gives∫
Ω

A(
x

ε
)∇uε(x) · ∇ϕε(x)dx

=

∫
Ω

(
A(
x

ε
)∇uε(x) ·

N∑
i=1

∂ϕ(x)

∂xi
(ei +∇yw

∗
i (
x

ε
))

+ ε

N∑
i=1

∂∇ϕ
∂xi

w∗i (
x

ε
)

)
dx

=

∫
Ω

A(
x

ε
)∇uε(x) ·

N∑
i=1

∂ϕ(x)

∂xi
(ei +∇yw

∗
i (
x

ε
))dx

+ ε

∫
Ω

A(
x

ε
)∇uε(x) ·

N∑
i=1

∂∇ϕ
∂xi

w∗i (
x

ε
)dx.

(3.85)

Making the substitution I = I1 + I2 where

I1 =

∫
Ω

A(
x

ε
)∇uε(x) ·

N∑
i=1

∂ϕ(x)

∂xi
(ei +∇yw

∗
i (
x

ε
))dx (3.86)

and

I2 = ε

∫
Ω

A(
x

ε
)∇uε(x) ·

N∑
i=1

∂∇ϕ
∂xi

w∗i (
x

ε
)dx. (3.87)

Solving the equations term by term, we see that I2 is bounded by a constant and

thus it will be approaching zero as ε→ 0. Whereas,

I1 =

∫
Ω

A(
x

ε
)∇uε(x) ·

N∑
i=1

∂ϕ(x)

∂xi
(ei +∇yw

∗
i (
x

ε
))dx

=−
∫

Ω

uε(x)∇ ·
(
At(

x

ε
)

N∑
i=1

∂ϕ(x)

∂xi
(ei +∇yw

∗
i (
x

ε
))

)
dx

(3.88)

Simplifying the divergence which is a function of x and y = x
ε
,

∇ ·
(
At(

x

ε
)

N∑
i=1

∂ϕ(x)

∂xi
(ei +∇yw

∗
i (
x

ε
))

)
dx

=
N∑
i=1

∂∇ϕ(x)

∂xi
· At(y)(ei +∇yw

∗
i (y))

+
1

ε

N∑
i=1

∂ϕ(x)

∂xi
∇y · At(Y )(ei +∇yw

∗
i (y))).

(3.89)

66

© University of Cape Coast     https://erl.ucc.edu.gh/jspui

Digitized by Sam Jonah Library



By (3.82), the second term of (3.89) is zero and we obtain,

∇ ·
(
At(

x

ε
)

N∑
i=1

∂ϕ(x)

∂xi
(ei +∇yw

∗
i (
x

ε
))

)
dx

=
N∑
i=1

∂∇ϕ(x)

∂xi
· At(y)(ei +∇yw

∗
i (y))

(3.90)

Therefore the divergence is bounded in L2(Ω) and since it is a periodically os-

cillating function, it converges weakly to its mean value. We then obtain

I1 =−
∫

Ω

uε(x)
N∑
i=1

∂∇ϕ(x)

∂xi
· At(y)(ei +∇yw

∗
i (y)) (3.91)

The left hand of (3.83) reduces to

I =−
∫

Ω

uε(x)
N∑
i=1

∂∇ϕ(x)

∂xi
· At(y)(ei +∇yw

∗
i (y)). (3.92)

The main point of this simplification is that we are now able to pass to

the limit in the right hand side of (3.88). Since uε is bounded in H1
0 (Ω), by

application of Rellich theorem, there exists a subsequence (still indexed by ε

for simplicity) and a limit u ∈ H1
0 (Ω) such that uε converges strongly to u in

L2(Ω). The right hand side of (3.88) is the product of a weak convergence and

a strong one {uε}, and thus its limit is the product of the two limits. In other

words,

lim
ε→0

∫
Ω

A(
x

ε
)∇uε(x) · ∇ϕε(x)

= −
∫

Ω

u(x)∇x ·
(∫

Y

At(y)
N∑
i=1

∂ϕ

∂xi
(x)(ei +∇yw

∗
i (y))dy

)
dx

= −
∫

Ω

u(x)∇x ·
(
A∗t∇ϕ(x)

)
dx,

(3.93)

where

A∗ =

∫
Y

A(y)(ei +∇yw
∗
i (y))dy.
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Taking the limit after integrating by parts yields

lim
ε→0

∫
Ω

A(
x

ε
)∇uε(x) · ∇ϕε(x) =

∫
Ω

A∗∇u(x) · ∇ϕ(x)dx. (3.94)

Hence we obtain the variational formulation of (3.83) as

∫
Ω

A∗∇u(x) · ∇ϕ(x)dx =

∫
Ω

f(x)ϕdx. (3.95)

By density of smooth functions in H1
0 (Ω), (3.95) is valid for any test function

ϕ ∈ H1
0 (Ω). SinceA∗ satisfies the same coercivity condition asA, Lax-Milgram

lemma shows that (3.95) admits a unique solution in H1
0 (Ω). This last result

proves that any subsequence of uε converges to the same limit u. Therefore, the

entire sequence uε, and not only a subsequence, converges to the homogenized

solution u.

G – Convergence

This is a method considered by Spagnolo’s (1968) early work in this field

for second order elliptic and parabolic operators. It was introduced in the late

sixties and developed further by Murat (1978, 1997) Murat and Tartar (1997).

See also Chiadó Piat, Dal Maso, Defranceschi (1990) and Pankov (1997).

The G means Green since this type of convergence corresponds roughly

to the convergence of the associated Green functions.

It is a more general concept than the periodic homogenization developed

to express the convergence of partial differential operators. A key difference is

that the G- convergence does not include any technique for calculating the coef-

ficient in the limit operator. The main result of the G-convergence is a compact-

ness theorem in the homogenization theory which states that, for any bounded

and uniformly coercive sequence of coefficients of a symmetric second order

elliptic equation, there exist a subsequence and a G-limit (i.e. homogenized

coefficients) such that, for any source term, the corresponding subsequence of

solutions converges to the solution of the homogenized equation. In practical
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terms, it means that the mechanical properties of an heterogeneous medium (like

its conductivity, or elastic moduli) can be well approximated by the properties

of a homogeneous or homogenized medium if the size of the heterogeneities are

small compared to the overall size of the medium. The G-convergence can be

seen as a mathematically rigorous version of the so-called representative vol-

ume element method for computing effective or averaged parameters of hetero-

geneous media (Allaire, 2012). It is an operator convergence defined as follows.

A sequence {Aε} ⊂ M(α, β,Ω) G-convergences to A0 denoted by Aε
G
⇀ A0 if

and only if for any g ∈ H−1(Ω) the uε of

−∇x · (Aε∇uε) = g in Ω

uε = 0 on ∂Ω

(3.96)

is such that uε ⇀ u0 in H1
0 (Ω), where u0 is the unique solution of

−∇x · (A0∇u0) = g in Ω

u0 = 0 on ∂Ω.

(3.97)

The matrix A0 is called the G-limit of the sequence {Aε}. The G-limit has

properties that make (3.97) solvable. G- convergence handles problems with

symmetric matrices only and periodicity is not a necessary condition.

H – Convergence

The H-convergence is a generalization of the G-convergence to the case of

non-symmetric operators. The G-convergence is a notion of convergence asso-

ciated to sequences of symmetric operators. The H stands for Homogenization

since it is an important tool of that theory. For the sake of simplicity, we restrict

ourselves to the case of symmetric operators (i.e. diffusion equations with sym-

metric coefficients). In such a case, G- and H-convergence coincide. Therefore

in the sequel, we use only the notation G-convergence. A sequence of matrices

H-converges to {A0} if it G-converges and in addition, for any g ∈ H−1(Ω) we
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have

Aε∇uε ⇀ A0∇u0 weakly in (L2(Ω))n. (3.98)

where uε and u0 are as in (3.97).

Let Aε ∈M(a, b,Ω), Bε ∈M(c, d,Ω) and χiε be a function with properties:

χiε ⇀ xi weakly in H1(Ω)

Aε∇χiε ⇀ A0ei weakly in (L2(Ω))n

∇ · Aε(∇χiε) converges strongly in H−1(Ω) and

Dεei = ∇χεi .

Also let Aε H-converge to A0 then the following are true.

(i) There exists a B] (depending only on {Aε} and {Bε}) such that:

tDεBεDε ⇀ B] in (D)n×n.

Definition 3.7

Let gε be a sequence in H−1(Ω) which converges to g strongly in H−1(Ω). If vε

is the solution of
−∇ · (A(x,

x

ε
)∇vε) = gε in Ω,

v0 = 0 on ∂Ω,

(3.99)

then, there exists v0 and a matrix A0 such that

vε ⇀ v0 weakly in H0
1 (Ω)

A(x,
x

ε
)∇vε ⇀ A0∇v0 weakly in (L2(Ω))n.

(3.100)
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Here, v0 ∈ H1
0 (Ω) is the unique solution of the homogenized problem


−∇ · (A0∇v0) = g in Ω,

v0 = 0 on ∂Ω.

(3.101)

Further, the ijth entry of the matrix A0 is given by

(A0)ij =

∫
Y

A(x, y)[∇yµi(x, y) + ei] · [∇yµj(x, y) + ej]dy.

The function µi, for 1 ≤ i ≤ n, is the solution of the cell problem.


−∇y(A(x, y)[∇yui(x, y) + ei]) = 0 in Y,

y 7→ µi(x, y) is Y-periodic,
(3.102)

where {e1, e2, . . . , en} is the standard basis Rn.
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Multiple Scale Expansion

We will use the multiple scales method to homogenize an elliptic partial

differential equation with Dirichlet boundary conditions. Let

−∇x · (Aε∇xu
ε) = f for x ∈ Ω (3.103)

uε(x) = 0, for x ∈ ∂Ω,

where the matrix

Aε(x) =

 aε11(x) aε12(x)

aε21(x) aε22(x)

 = A(
x

ε
).

We work out for the homogenized equation together with the cell prob-

lems. To do this we make the following assumptions.

We take Ω ∈ R2, open, bounded with its boundary smooth. We will

assume that the coefficients A(y) = {aij(y)}2
i,j=1 are smooth, 1-periodic and

uniformly elliptic. Furthermore, let f(x) be smooth and independent of ε. We

collect all the assumptions made as below.

aij(y), f(x) ∈ C∞(R2), i, j = 1, 2 , (3.104)

aij(y + êk) = aij(y), i, j, k = 1, 2 , (3.105)
2∑

i,j=1

aij(y)ξiξj ≥ α|ξ|2, α > 0,∀ y ∈ Y ∀ ξ ∈ R2. (3.106)

In order to study the asymptotic behaviour of the solutions to the problem

(3.103) an efficient technique consists in applying asymptotic expansions us-

ing multiple scales.

We thus assume a solution of the form:

uε = u0(x,
x

ε
) + εu1(x,

x

ε
) + ε2u2(x,

x

ε
) + · · · (3.107)

where uj(x, y), j = 0, 1, . . . are periodic in y.
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In order to solve equations of the form

A0u = h,where u is 1-periodic (3.108)

and A0 = −∇y · (A∇y), where A is a periodic matrix function, we need the

following lemmas.

Lemma 3.29 (Pavliotis, 2007)

Let F (y) be 1-periodic function and also a smooth. Then

∫
Y

∇yF (y)dy = 0. (3.109)

This is a result of the fundamental theorem of calculus and the periodicity of Y .

Lemma 3.30

A necessary condition for the existence of a solution to equations of the form

A0u = h, (3.110)

u being 1-periodic is that

∫
Y

h(y)dy = 0. (3.111)

This is known as the solvability condition.

Proof

Let u be a solution to (3.110). Integrating the left hand side of (3.110) and using

Lemma 3.29, we obtain

∫
Y

A0udy = −
∫
Y

∇y(A∇yu)dy,

= 0 (by Lemma 3.29),

=

∫
Y

h(y)dy.
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This makes sense only if (3.111) holds.

Corollary 3.31

Let F (y) and G(y) be smooth 1-periodic functions. Then using the integration

by parts formula becomes:

∫
Y

(
∇yF (y)

)
G(y)dy = −

∫
Y

F (y)

(
∇yG(y)

)
dy. (3.112)

Proposition 3.32

The only solutions of the homogeneous equation

A0u = 0, (3.113)

are constants in y.

Proof

Let u be a solution of (3.113). Multiplying through by u and integrating over Y

using Corollary 3.31, we have

0 =

∫
Y

uA0udy

= −
∫
Y

∇y ·
(
A∇yu

)
u dy.

Applying Corollary 3.31, we obtain

0 =

∫
Y

(
A∇yu

)
∇yu dy

=

∫
Y

A|∇yu|2dy

≥ α

∫
Y

|∇yu|2dy

⇒
∫
Y

|∇yu|2dy ≤ 0.

This is true only if u is a constant in y. Thus the only solutions of the homoge-

neous equation (3.113) are constants in y.

From the above proposition, we state and prove the following corollary
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Corollary 3.33

All solutions of (3.110) differ by a constant in y.

Proof

Let u1 and u2 be two solutions of (3.110) and let u = u1 − u2. Then, u is also a

solution to (3.110). Since A0u1 = h; A0u2 = h

A0(u1 − u2) = h− h = 0

A0(u1 − u2) = A0u = 0

and so proposition 3.32 implies that u = u1 − u2 is a constant in y.

The assumption that all terms in the expansion above depend on both x and x
ε

explicitly is the underlying fact for one to use the multiple scale expansion.

Furthermore, since the coefficients of the PDE are periodic functions of

x
ε
, it is reasonable to expect that the solution is also a periodic function of its

argument x
ε
.

The variable x represents the “slow” (macroscopic) and y = x
ε

the “fast”

(microscopic) scales of the problem. The scales are assumed to be separated.

As ε→ 0 the variable y changes much more rapidly than x and we can think of

x as being a constant, when looking at the problem on the microscopic scale.

The fact that y = x
ε

implies that the partial derivatives with respect to xj become

∂

∂xj
→ ∂

∂xj
+

1

ε

∂

∂yj
, j = 1, ..., d (3.114)

In other words, the total derivative (abusing slightly notation) of a function

f ε(xj) := f(xj,
xj
ε

) can be expressed as

df ε(xj)

dxj
=
∂f(xj, yj)

∂xj

∣∣∣∣yj=xj
ε

+
1

ε

∂f(xj, yj)

∂yj

∣∣∣∣yj=xj
ε
, (3.115)

where the notation f(x, y)|y=z is the value of f(x, y) at y = z. In gradient form

(3.115) becomes

∇xf
ε = ∇xf +

1

ε
∇yf. (3.116)
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Let Aε = −∇x ·
(
Aε(x)∇x

)
in (3.103). Then plugging in (3.116) we get

Aε = −∇x · (A∇x)

= −(∇x + ε−1∇y) ·
(
A(∇x + ε−1∇y)

)
= − 1

ε2
[∇y · (A∇y)]− 1

ε
[∇x · (A∇y) +∇y · (A∇x)]

−[∇x · (A∇x)]

= 1
ε2
A0 + 1

ε
A1 +A2,

(3.117)

where

A0 = −∇y · (A∇y) (3.118)

A1 = −∇y · (A∇x)−∇x · (A∇y) (3.119)

A2 = −∇x · (A∇x). (3.120)

Substituting (3.117) into (3.103), we obtain

(
1

ε2
A0 +

1

ε
A1 +A2)uε = f, for x ∈ Ω (3.121)

uε(x) = 0, for x ∈ ∂Ω.

By the power series expansion in (3.107) we have

(
1

ε2
A0 +

1

ε
A1 +A2

)(
u0(x,

x

ε
) + εu1(x,

x

ε
) + ε2u2(x,

x

ε
) + . . .

)
= f

1

ε2
A0u0+

1

ε
(A0u1+A1u0)+(A0u2+A1u1+A2u0)+ε(A1u2+A2u1)+ε2A2u2+. . . = f

Equating the powers of ε of order -2, -1 and 0, the following sequence of prob-

lems is obtained:

A0u0 = 0 (3.122)

A0u1 +A1u0 = 0 (3.123)

A0u2 = −A1u1 −A2u0 + f (3.124)
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which we now solve to obtain the homogenized equation and the cell prob-

lem. From (3.122) and Proposition 3.32, we see that A0u0 = 0 implies that

u0(x, y) = u0(x). Thus, u0(x, y) is independent of y.

From (3.123), we have that

A0u1 = −A1u0

= −A1u0(x)

= −[−∇y ·
(
A∇xu0(x)

)
−∇x ·

(
A∇yu0(x)

)
]

= ∇y ·
(
A∇xu0(x)

)
+∇x ·

(
A∇yu0(x)

)
However, u0 is a function of x and that ∇x ·

(
A∇yu0(x)

)
= 0 which gives

A0u1 = ∇y ·
(
A∇xu0(x)

)
(3.125)

It is possible to solve for u1 in (3.125) since it satisfies Lemma 3.30.

i.e.
∫
Y

A0u1dy =

∫
Y

∇y ·
(
A(y)∇xu0(x)

)
dy

= ∇xu0(x)

∫
Y

∇y ·
(
A(y)

)
dy = 0 (3.126)

A0u1 =
∂u0(x)

∂x1

∂A(y)

∂y1

+
∂u0(x)

∂x2

∂A(y)

∂y2

=

(∂u0(x)
∂x1

∂u0(x)
∂x2

)
·
(∂A(y)

∂y1
∂A(y)
∂y2

)
= ∇xu0(x) · ∇yA(y)

= ∇xu0(x)v(y).
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From (3.125) the following deductions can be made

A0u1 = ∇y ·
(
A∇xu0(x)

)

=

 ∂
∂y1

∂
∂y2

 ·

 a11(y) a12(y)

a21(y) a22(y)


 ∂u0

∂x1

∂u0
∂x2




=

 ∂
∂y1

∂
∂y2

 ·
 a11(y)∂u0

∂x1
+ a12(y)∂u0

∂x2

a21(y)∂u0
∂x1

+ a22(y)∂u0
∂x2


=

∂

∂y1

(
a11(y)

∂u0

∂x1

+ a12(y)
∂u0

∂x2

)
+

∂

∂y2

(
a21(y)

∂u0

∂x1

+ a22(y)
∂u0

∂x2

)
=

∂u0

∂x1

(
∂a11(y)

∂y1

+
∂a21(y)

∂y2

)
+
∂u0

∂x2

(
∂a12(y)

∂y1

+
∂a22(y)

∂y2

)
= v1(y)

∂u0

∂x1

+ v2(y)
∂u0

∂x2

=
2∑
j=1

vj(y)
∂u0

∂xj
.

Thus, by linearity and Proposition 3.32, u1(x, y) has a solution of the form,

u1(x, y) = v1
∂u0

∂x1

+ v2
∂u0

∂x2

+ û1(x). (3.127)

Substituting (3.127) into (3.125), we obtain

A0

(
v1
∂u0

∂x1

+ v2
∂u0

∂x2

+ û1(x)

)
= ∇y ·

(
A∇xu0

)
.

But A0û1(x) = 0 since A0 is a differential operator involving y only.

∴ A0

(
v1
∂u0

∂x1

+ v2
∂u0

∂x2

)
= ∇y ·

(
A∇xu0

)
also, ∇xu0(x) =

∂u0

∂x1

e1 +
∂u0

∂x2

e2

A0

(
v1
∂u0

∂x1

+ v2
∂u0

∂x2

)
= ∇y ·

(
A(

∂u0

∂x1

e1 +
∂u0

∂x2

e2)

)
∇y ·

(
A∇y[v1

∂u0

∂x1

+ v2
∂u0

∂x2

]

)
= ∇y ·

(
A(

∂u0

∂x1

e1 +
∂u0

∂x2

e2)

)
.

Expanding and comparing coefficients, we obtain the following equations which
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give the cell problems as;

∇y ·
(
A∇yv1

)
= ∇y ·Ae1,

∇y ·
(
A∇yv2

)
= ∇y ·Ae2, (3.128)

where vi = vi(x, y) are their solutions.

We then solve (3.124). Averaging over the period Y , we have

∫
Y

A0u2dy =

∫
Y

(−A1u1 −A0u2 + f)dy. (3.129)

By periodicity,
∫
Y
A0u2dy = 0 and thus, we have

∫
Y

(A2u0 +A1u1)dy =

∫
Y

fdy (3.130)

f =

∫
Y

(A2u0 +A1u1)dy

= −
∫
Y

[
∇y ·

(
A∇xu1) +∇x ·

(
A∇yu1) +∇x ·

(
A∇xu0)

]
dy

= −
∫
Y

[
∇x ·

(
A∇yu1) +∇x ·

(
A∇xu0)

]
dy.

Since
∫
Y
∇y ·

(
A∇xu1)dy = 0.

f = −
∫
Y

[
∇x ·

(
A∇y

(
v1
∂u0

∂x1

+ v2
∂u0

∂x2

+ û1(x)
)
) +∇x ·

(
A∇xu0)

]
dy

= −
∫
Y

[
∇x ·

(
A∇y

(
v1
∂u0

∂x1

+ v2
∂u0

∂x2

))
+∇x ·

(
A(

∂u0

∂x1

e1 +
∂u0

∂x2

e2)
)]
dy

= −∇x ·
∫
Y

[(
A∇y

(
v1
∂u0

∂x1

+ v2
∂u0

∂x2

))
+

(
A
(∂u0

∂x1

e1 +
∂u0

∂x2

e2

))]
dy

= −∇x ·
(∫

Y

A(y)
[
∇yv1 + e1

]
dy
∂u0

∂x1

+

∫
Y

A(y)
[
∇yv2 + e2

]
dy
∂u0

∂x2

)
= −∇x ·

(
∂u0

∂x1

∫
Y

A(y)
(
∇yv1 + e1

)
dy +

∂u0

∂x2

∫
Y

A(y)
[
∇yv2 + e2

]
dy

)
.
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We let b11(x)

b12(x)

 =

∫
Y

A(y)
(
∇yv1 + e1

)
dy,

 b21(x)

b22(x)

 =

∫
Y

A(y)
(
∇yv2 + e2

)
dy, (3.131)

and substitute back into the above equation to obtain

f = −∇x ·
[
∂u0

∂x1

 b11(x)

b21(x)

+
∂u0

∂x1

 b12(x)

b22(x)

]

= −∇x ·
[ b11(x) b12(x)

b21(x) b22(x)


 ∂u0

∂x1

∂u0
∂x1

]
f = −∇x · {B(x)∇xu0}, (3.132)

which is the homogenized equation of (3.103), where

B(x) =

 b11(x) b12(x)

b21(x) b22(x)

 . (3.133)

To obtain the solution of the homogenized equation (3.132), the following steps

will be taken. First, the cell problem (3.128) will be solved. Then, calculate

the integrals in (3.131) and compute the effective coefficients B(x) by evalu-

ating the integrals. Finally, we solve the homogenized equation (3.132) after

substituting the results of the cell problem and the integrals into (3.132) to solve

the homogenized equation. Depending of course on the domain Ω, it is not so

difficult to solve the homogenized equation. The above shows that it is very ad-

vantageous to solve the homogenized equation (3.132) which does not contain

the oscillating coefficients, as opposed to solving the original equation (3.103).
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Chapter Summary

We defined in this chapter the two-scale convergence and gave some of

its properties, stated other existing methods of homogenization and the multiple

scale method as well, which is the method of homogenization to be used in the

work.
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CHAPTER FOUR

HOMOGENIZATION OF ELLIPTIC EQUATIONS IN THE DIVERGENCE

FORM

Introduction

Elliptic equations of the divergence form are homogenized in this chapter.

Specifically, we review the forms of the Reynolds equation and homogenize the

time independent incompressible Reynolds equation using the multiple scale

convergence method. Finally, the quasilinear elliptic equation with boundary

conditions is also homogenized using the two-scale convergence method.

Homogenization of Reynolds Equations

In this section the concept of homogenization that enables efficient analy-

sis of the effects of surface roughness representations obtained by measurements

in applications modelled by the Reynolds equation is introduced.

Reynolds equation is the mathematical statement of the classical theory

of lubrication. Physically, the Reynold’s equation can be thought of as an ex-

pression of conservation principles for a system made up of lubricant flowing in

between two surfaces which are parallel.

Examples of such applications are trust-bearings and journal- bearings.

The numerical analysis of these types of applications requires an extremely

dense computational mesh in order to resolve the surface roughness, suggest-

ing some type of averaging.

The generalised Reynolds equation is given by

∇ ·
[
ρ(p(x))h3(x)

12η
∇p(x)

]
=
u1 + u2

2

∂

∂x1

[
ρ(p(x))h(x)

]
. (4.1)

The terms on the right hand side represent flows which are induced by motions

of the bounding surfaces and shear induced flow by the sliding velocities u1

and u2 while the terms on the left-hand side of the equation are the flow due
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to pressure gradients across the entire domain. Reynolds equations are mostly

applicable in the field of tribology.

Tribology is a multidisciplinary field, which deals with the science, prac-

tice and technology of lubrication, wear prevention and friction control in ma-

chines. This enable lubrication engineers to minimize cost of moving parts. In

this way machinery can be made more efficient, more reliable and more cost

effective. In the field of hydrodynamic lubrication, the flow of fluid through

machine elements such as bearings, gearboxes and hydraulic systems may be

governed by the Reynolds equation.

Reynolds equations are often used in analysing the influence of texture

and surface roughness on the hydrodynamic performance of different machine

elements when a lubricant is flowing through it. Figure 7 shows a bearing with

two smooth surfaces s1 and s2 with a fluid flowing through the surfaces.

Figure 7: Bearing With Two Smooth Surfaces s1 and s2

The two surfaces through which a lubricant flows, may have any of the

following characteristics:

(i) both surfaces are smooth and moving,

(ii) both surfaces are smooth and stationary,

(iii) both surfaces are rough and moving,

(iv) both surfaces are rough and stationary,

(v) one surface is rough and stationary while the other is smooth and moving,
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(vi) one surface is rough and moving while the other is smooth and moving,

(vii) one surface is rough and stationary while the other is rough and moving,

(viii) one surface is smooth and moving while the other is smooth and station-

ary, among others

In Case (v), the governing Reynolds type equation will be time independent.

This is due to the fact that the film thickness at any position xwithin the machine

element remains the same at any time t. In Case (iii), due to the motion of the

rough surfaces, the governing Reynolds equation will be time dependent. As a

result of this motion, the film thickness h will be changing rapidly with respect

to position x and time t, thus giving rise to a rapidly oscillating (changing)

lubricant pressure within the machine element. In both cases, due to the surface

roughness, the coefficient h in the Reynolds equation will be oscillating rapidly

and therefore we may consider the possibility of solving the problem by using

an averaging process, and here homogenization theory is a very useful method.

The generalized Reynolds equation is one of the models used for thin film

lubricant flow when it is flowing between two parallel surfaces. The Reynolds

equation is a simplified statement of several conservation principles. It is de-

rived by solving the equation of continuity (expresses conservation of mass),

∂ρ
∂t

+ div(ρv) = 0, simultaneously with the simplified Navier-Stokes Equations

(express conservation of linear momentum).

When a fluid flows between two surfaces s1 and s2, the governing equation

is given by

∇ ·
[
ρ(p(x))h3(x)

12η
∇p(x)

]
=
u1 + u2

2

∂

∂x1

[
ρ(p(x))h(x)

]
. (4.2)

Where,

u1, u2 as the velocities of the surfaces s1 and s2,

η is the viscosity of the lubricant,

ρ density of the lubricant,
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Figure 8: One Rough Stationary Surface and One Smooth Moving Surface

Figure 9: Both Surfaces Rough and Moving

h(x) the film thickness between the two surfaces s1 and s2,

p(x) the pressure built up between the surfaces when the lubricant passes through

it, and

ε the roughness wavelength.

The bearing domain is Ω and the space variable x ∈ Ω ⊂ R2. The density
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of the lubricant ρ is a function of the pressure, i.e., ρ = ρ(p(x)). So that with

a converging film thickness h(x), the pressure also changes and as the pressure

changes, the density also changes. Due to the periodic roughness of s2, the film

thickness will depend on the roughness wavelength ε. Where ε is a positive

sequence which converges to zero as n increases. (For example, ε = 1
2n

).

As a result, we replace h(x) by hε(x) in (4.2) to obtain

∇ ·
[
ρ(pε(x))h3

ε(x)

12η
∇pε(x)

]
=
u1 + u2

2

∂

∂x1

[
ρ(pε(x))hε(x)

]
. (4.3)

For, hε(x) = h(x, x
ε
) = h(x, y), pε(x) = p(x, x

ε
) = p(x, y) and ε describes how

fast (rapid) the oscillations are. We then homogenize the system as ε→ 0+.

Equation (4.3) is then the Reynolds equation, which takes into account the

roughness contribution to the pressure build up in the bearing. Assuming that

the rough surface is stationary, while the moving surface is smooth, then the

film thickness hε(x) at any position x within the bearing will remain the same

at any time t and, hence, hε(x) will be independent of time t. This explains

why the Reynolds equation (4.3) does not involve time. Figure 9 is a pictorial

description of case (iii) above. Here we consider the case where both surfaces

are rough and moving. As a consequence of this motion, the film thickness will

be changing rapidly, depending on the relative positions of the corresponding

rough surfaces.

In Figure 10, we see that the film thickness hε(x) at the position x is

different for the two time steps t1 and t2. This is due to the relative positions

of the corresponding rough surfaces. This shows clearly that the film thickness

hε(x) which is dependent on ε, is a function of both x and t in case (iii), i.e.,

hε(x, t) = h(x, t, x/ε, t/ε) = h(x, t, y, τ),

pε(x, t) = p(x, t, x/ε, t/ε) = p(x, t, y, τ), where y = x/ε and τ = t/ε.
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Figure 10: Time Dependent Surfaces in Motion

The Reynolds equation describing such a time dependent situation is given by

∂

∂t
[ρ(pε(x, t))hε(x, t)] = ∇ ·

[
(ρ(pε(x, t)))h

3
ε(x, t)

12η
∇pε(x, t)

]
−(

u1 + u2

2

)
∂

∂x1

[ρ(pε(x, t))hε(x, t)]. (4.4)

In both the time independent and time dependent cases described above,

we can deduce that the pressure varies rapidly due to the rapidly changing nature

of the film thickness. As the roughness wavelength ε tends to zero, we expect

to have a rapidly oscillating pressure. This means that we will need such a fine

mesh that it is impossible to solve it directly with any numerical method.

Forms of the Reynolds Equation

1. Time independent (stationary) compressible Reynolds equation

∇ ·
(
h3
ε∇wε(x)

)
= λ

∂

∂x1

(
wε(x)hε(x)

)
in Ω, (4.5)

where λ = 6ηµβ−1 and wε(x) is a dimensionless density function as

wε(x) = ρ(pε(x))
ρa

.

2. Time independent (stationary) incompressible Reynolds equation
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The compressibility of the fluid depends on ρ
(
pε(x)

)
. If ρ(pε) is a con-

stant then from equation (4.3) we have that

∇ ·
[
h3
ε(x)

12η
∇pε(x)

]
=

u1 + u2

2

∂

∂x1

[
hε(x)

]
∇ · h3∇p = 6η(u1 + u2)

∂

∂x1

[
hε(x)

]
∇ · h3∇p = Λ

∂

∂x1

hε(x)

∇ ·
(
h3
ε∇pε(x)

)
= Λ

∂

∂x1

(
hε(x)

)
on Ω ⊂ R2, (4.6)

where Λ = 6ηu and u = u1 + u2.

3. Time dependent (unstationary) compressible Reynolds equation

γ
∂

∂t

(
wε(x, t)hε(x, t)

)
= ∇·

(
h3
ε(x, t)∇wε(x, t)

)
−λ ∂

∂x1

(
wε(x, t)hε(x, t)

)
(4.7)

where γ = 12ηβ−1 and λ = 6ηuβ−1.

4. Time dependent (unstationary) incompressible Reynolds equation

If ρ(p) is a constant, then we have that

Γ
∂

∂t

(
ρhε(x, t)

)
= ∇ ·

(
h3
ε(x, t)∇pε(x, t)

)
−

Λ
∂

∂x1

hε(x, t). (4.8)

Linearization of Equation (4.3)

We note that the incompressible equations (4.3) and (4.4) are nonlinear.

This makes them more difficult to solve. They could be linearized under

the assumption that the dependence of ρ on pressure obeys the relation

ρ(pε(x)) = ρae
pε−pa
β (4.9)
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Here, ρ is the atmospheric density of fluid at atmospheric pressure pa

β the bulk modulus of the liquid, (β > 0).

This assertion is valid for reasonably low pressures.

We define a dimensionless density function wε(x) as:

wε(x) =
ρ(pε(x))

ρa
. (4.10)

Substituting (4.9) into (4.10), we obtain

wε(x) =
ρae

pε−pa
β

ρa
= e

pε−pa
β (4.11)

so that

∇wε(x) = e
pε−pa
β
∇pε
β

=
1

β
e
pε−pa
β ∇pε

=
1

βρa
ρae

pε−pa
β ∇pε

=
1

βρa
ρ(pε(x))∇pε(x)

= β−1ρ−1
a ρ(pε(x))∇pε(x)

⇒ βρa∇wε(x) = ρ(pε(x))∇pε(x). (4.12)

From (4.10), we have that

ρ

(
pε(x)

)
= ρawε(x). (4.13)
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Substituting (4.12) and (4.13) into (4.3)

∇ ·
[
ρ(pε(x))h3

ε(x)

12η
∇pε(x)

]
=

u1 + u2

2

∂

∂x1

(
ρ(pε(x))hε(x)

)
∇ ·
[
ρawε(x)h3

ε(x)

12η

βρa∇wε(x)

ρa(wε(x))

]
=

u1 + u2

2

∂

∂x1

(
ρawε(x)hε(x)

)
∇ ·
(
h3
ε(x)∇wε(x)

)
βρa
12η

= ρa
u1 + u2

2

∂

∂x1

(
wε(x)hε(x)

)
∇ ·
(
h3
ε(x)∇wε(x)

)
β

12η
=

u1 + u2

2

∂

∂x1

(
wε(x)hε(x)

)
∇ ·
(
h3
ε(x)∇wε(x)

)
=

6η

β
(u1 + u2)

∂

∂x1

(
wε(x)hε(x)

)
∇ ·
(
h3
ε(x)∇wε(x)

)
= λ

∂

∂x1

(
wε(x)hε(x)

)
(4.14)

where λ = 6vηβ−1 and v = u1 + u2.

Also, substituting (4.12) and (4.13) into (4.4)

γ
∂

∂t

(
(wε(x, t)hε(x, t)

)
= ∇ ·

(
h3
ε(x)∇wε(x)

)
− λ ∂

∂x1

(
(wε(x, t)hε(x, t)

)
, (4.15)

where γ = 12vηβ−1, λ = 6vηβ−1 and v = u1 + u2.

Multiple Scale Expansion of Reynolds Equation

The Reynolds equation given by

∇ ·
(
h3
ε∇wε(x)

)
= λ

∂

∂x1

(
wε(x)hε(x)

)
in Ω (4.16)

is used to describe the flow of thin fluids between two surfaces in relative mo-

tion. We will use the multiple scale expansion to derive the homogenized equa-

tion which does not contain fast oscillating roughness wavelength ε which can

then be solved using any numerical method. We will however assume that the

stationary surface is rough.
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Figure 11: Bearing Geometry and Surface Roughness

It is possible to model the film thickness hε by

hε(x) = h(x,
x

ε
), ε > 0.

To express the thickness of the film, we introduce the auxilliary function

h(x, y) = h0(x) + h1(y).

Here,

h0 describes the global film thickness

h1 represents the roughness contribution of the surface and is assumed to be

periodic

ε describes the roughness wavelength.

We express the multiple scale expansion of the solutionwε(x) in the power

series form as

wε(x) = w0(x,
x

ε
) + εw1(x,

x

ε
) + ε2w2(x,

x

ε
) + · · · (4.17)
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where wi(x, y) is periodic, i = 1, 2, . . .

If yj =
xj
εj

then applying the chain rule on the smooth function ψε(x) =

ψε(x,
x
ε
)

dψε(xj)

dxj
=
∂ψ(xj, yj)

∂xj

∣∣∣∣yj=xj
ε

+
1

ε

∂ψ(xj, yj)

∂yj

∣∣∣∣yj=xj
ε
,

which we can re-write in the gradient form as

∇xψ = ∇xψ +
1

ε
∇yψ. (4.18)

Substituting equations (4.17) and (4.18) into equation (4.16) we obtain

(∇x +
1

ε
∇y) · [h3(∇x +

1

ε
∇y)](w0 + εw1 + ε2w2 + · · · )

= λ

(
∂

∂x1

+
1

ε

∂

∂y1

)
(hw0 + εhw1 + ε2hw2 + · · · ) (4.19)

If we let

A0 = ∇y · (h3∇y) (4.20)

A1 = ∇y · (h3∇x) +∇x · (h3∇y) (4.21)

A2 = ∇x · (h3∇x) (4.22)

and expanding (4.19), we then obtain

(ε−2A0 + ε−1A1 +A2)(w0 + εw1 + ε2w2 + · · · )

= ε−1λ
∂

∂y1

(hw0) + λ

(
∂

∂x1

(hw0) +
∂

∂y1

(hw1)

)
+

ελ

(
∂

∂y1

(hw2) +
∂

∂x1

(hw1)

)
+ ε2λ

∂

∂x1

(hw2) + · · · (4.23)
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Equating the powers of ε,

A0w0 = 0, (4.24)

A1w0 +A0w1 = λ
∂

∂y1

(hw0), (4.25)

A0w2 +A1w1 +A2w0 = λ

(
∂

∂x1

(hw0) +
∂

∂y1

(hw1)

)
. (4.26)

We now solve (4.24)- (4.26).

From (4.20), the operator A0 involves derivatives with respect to y and

therefore x is parameter in the solution of (4.20). So, we let w0(x, y) = w0(x).

(i.e., w0 is a constant in y.)

From (4.25) we have that

A1w0 +A0w1 = λ
∂

∂y1

(hw0) (4.27)

A0w1 = λ
∂

∂y1

(hw0) − A1w1.

Substituting (4.20), (4.21) into (4.27) we have

∇y · (h3∇yw1) = λ
∂

∂y1

(hw0)−∇y · (h3∇xw0)−∇x · (h3∇yw0).

(4.28)

But w0 is a function of x and therefore, ∇x · (h3∇yw0) = 0. Thus we have that

∇y · (h3∇yw1) = λ
∂

∂y1

(hw0)−∇y · (h3∇xw0) (4.29)

Since the right hand side of (4.29) consists of three terms, then by superposition,

we expect that w1(x, y) should be a linear function of three terms. So we let

w1(x, y) =
∂w0

∂x1

v1(x, y) +
∂w0

∂x2

v2(x, y) + w0v3(x, y) (4.30)

and write vi = vi(x, y) for i = 1, 2, 3. Substituting (4.30) into (4.29) we have
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that

∇y ·
(
h3∇y

(
∂w0

∂x1
v1 + ∂w0

∂x2
v2 + w0v3

))
(4.31)

= λ ∂
∂y1

(hw0)−∇y · (h3∇xw0).

But

∇y · (h3∇xw0) = ∇y ·
(
h3∂w0

∂x1

e1 + h3∂w0

∂x2

e2

)
(4.32)

where {e1, e2} is the canonical basis in R2.

Substituting (4.30) and (4.32) into (4.31) we obtain

∇y ·
[
h3∇y

(
∂w0

∂x1

v1 +
∂w0

∂x2

v2 + w0v3

)]
= λ

∂

∂y1

(hw0)−∇y ·
(
h3∂w0

∂x1

e1 + h3∂w0

∂x2

e2

)
(4.33)

Comparing the corresponding terms we obtain the following three local cell

problems

∇y ·
(
h3∇yv3

)
= λ

∂

∂y1

(h)

∇y ·
(
h3∇yv1

)
= −∇y · (h3e1) (4.34)

∇y ·
(
h3∇yv2

)
= −∇y · (h3e2).

From (4.26) we have that

A0w2 +A1w1 +A2w0 = λ
∂

∂x1

(hw0) + λ
∂

∂y1

(hw1). (4.35)

Averaging over the period Y we get

∫
Y

(
A0w2 +A1w1 +A2w0 − λ

∂

∂x1

(hw0)− λ ∂

∂y1

(hw1)

)
dy = 0. (4.36)
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Substituting (4.20)-(4.22) into (4.36) then

∫
Y

(
∇y · (h3∇yw2)+∇y · (h3∇xw1)+∇x · (h3∇yw1)+∇x · (h3∇xw0)−

λ
∂

∂x1

(hw0) − λ ∂

∂y1

(hw1)

)
dy = 0 (4.37)

which we rewrite as

∫
Y

(
∇y ·(h3∇yw2)+∇x ·(h3∇yw1)+∇y ·(h3∇xw1)+∇x ·(h3∇xw0)

)
dy

=

∫
Y

(
λ
∂

∂x1

(hw0) + λ
∂

∂y1

(hw1)

)
dy. (4.38)

By periodicity,
∫
Y
∇y · (h3∇yw2)dy = 0 and we have that

∫
Y

(
∇x · (h3∇yw1) +∇y · (h3∇xw1) +∇x · (h3∇xw0)

)
dy

=

∫
Y

(
λ
∂

∂x1

(hw0) + λ
∂

∂y1

(hw1)

)
dy. (4.39)

Now, h3∇xw1 and hw1 are periodic in Y so that
∫
Y
∇y · (h3∇xw1)dy = 0 and

that ∂
∂y1

(hw1)dy = 0.

Therefore (4.39) reduces to

∫
Y

(
∇x · (h3∇yw1) +∇x · (h3∇xw0)− λ ∂

∂x1

(hw0)

)
dy = 0 (4.40)

Substituting (4.30) into (4.40) for w1, we have

∫
Y

[
∇x·
(
h3∇y(

∂w0

∂x1

v1+
∂w0

∂x2

v2+w0v3)

)
+∇x·(h3∇xw0)−λ ∂

∂x1

(hw0)

]
dy = 0

(4.41)

∫
Y

[
∇x ·

(
h3∇y(

∂w0

∂x1

v1 +
∂w0

∂x2

v2)

)
+∇x · (h3∇xw0)+

∇x · h3∇yw0v3 − λ
∂

∂x1

(hw0)

]
dy = 0 (4.42)
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⇒
∫
Y

[
∇x ·

(
h3∇y(

∂w0

∂x1

v1 +
∂w0

∂x2

v2)

)
+∇x · (h3∇xw0)

]
dy

=

∫
Y

(
λ
∂

∂x1

(hw0) −∇x · h3∇yw0v3

)
dy (4.43)

and that

∫
Y

∇x ·
[
h3∇y(

∂w0

∂x1

v1 +
∂w0

∂x2

v2)

]
dy +

∫
Y

∇x · (h3∇xw0)dy

=

∫
Y

(
λ
∂

∂x1

(hw0)−∇x · h3∇yw0v3

)
dy. (4.44)

We note that
∇xw0 = ∂w0

∂x1
e1 + ∂w0

∂x2
e2,

λ ∂
∂x1

(hw0) = ∇x ·

λhw0

0

 (4.45)

Substituting (4.45) into (4.44), we have

∫
Y

∇x ·
[
h3∇y(

∂w0

∂x1

v1 +
∂w0

∂x2

v2)

]
dy+

∫
Y

∇x ·
[
h3(

∂w0

∂x1

e1 +
∂w0

∂x2

e2)

]
dy

=

∫
Y

(
λ
∂

∂x1

(hw0) −∇x · h3∇yw0v3

)
dy. (4.46)

Simplifying gives

∇x ·
∫
Y

[
h3∇y(

∂w0

∂x1

v1 +
∂w0

∂x2

v2)

]
dy +∇x ·

∫
Y

[
h3(

∂w0

∂x1

e1 +
∂w0

∂x2

e2)

]
dy

=

∫
Y

(
λ
∂

∂x1

(hw0)−∇x · h3∇yw0v3

)
dy (4.47)

⇒ ∇x ·
[
∂w0

∂x1

∫
Y

(h3e1 + h3∇yv1)dy +
∂w0

∂x2

∫
Y

(h3e2 + h3∇yv2)dy

]

= ∇x ·
∫
Y

[λhw0

0

−
h3w0

∂v3

∂y1

h3w0
∂v3

∂y2

]dy, (4.48)
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We define a matrix function B(x) = bij(x) in terms of v1 and v2 by b11(x)

b21(x)

 =

∫
Y

(h3e1 + h3∇yv1)dy,

 b12(x)

b22(x)

 =

∫
Y

(h3e2 + h3∇yv2)dy, (4.49)

and C(x) = (ci(x)) as a vector function defined in terms of v3 by

 c1(x)

c2(x)

 =

 ∫
Y
λh− h3 ∂v3

∂y1
dy∫

Y
−h3 ∂v3

∂y2
dy

 . (4.50)

Therefore (4.48) gives

∇x ·
[
∂w0

∂x1

 b11(x)

b21(x)

+
∂w0

∂x2

 b12(x)

b22(x)

]= ∇x · w0

∫Y λh− h3 ∂v3

∂y1
dy∫

Y
−h3w0

∂v3

∂y2
dy

 ,

which from (4.50) reduces to

∇x ·
[
∂w0

∂x1

 b11(x)

b21(x)

+
∂w0

∂x2

 b12(x)

b22(x)

]= ∇x · w0

 c1(x)

c2(x)

 ,

∇x ·
[ b11(x) b12(x)

b21(x) b22(x)


 ∂w0

∂x1

∂w0

∂x2

]= ∇x · w0

 c1(x)

c2(x)

 . (4.51)

The homogenized equation for (4.16) is then given by

∇x · [B(x)∇w0] = ∇x · [w0C(x)], (4.52)

which describes the global behaviour of the solutions of (4.16) for a small value

of ε. We then solve the homogenized equation which gives the approximate

solution of the original equation given.
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Homogenization of Reynold’s Equation by Two-scale Convergence

Let Ω be an open bounded subset of R2 and Y the unit cube. Also let

h : Ω × R2 −→ R be of the form h(x, y) = h0(x) + h1(y), where h0 ∈ C(Ω),

h1 ∈ L∞(RN) and h1 is a periodic function.

We also assume that there exists a constant α > 0 such that h(x, y) ≥ α. Define

hε(x) = h(x,
x

ε
) = h0(x) + h1(

x

ε
). (4.53)

Consider the Reynold’s equation: Find pε ∈ W 1,2
0 such that

div(h3
ε∇pε) = ∧∂hε

∂x1

on Ω. (4.54)

We choose φ = pε as test function in (4.54),

∫
Ω

h3
ε[∇pε]2dx = ∧

∫
Ω

hε
∂pε
∂x1

dx ≤ ∧
∫

Ω

hε∇pεdx.

By the assumption on h0 and h1, it follows that there exists a constant c such

that

α‖∇pε‖2
L2(Ω:R2) ≤

∫
Ω

h3
ε[∇pε]2dx = ∧

∫
Ω

hε
∂pε
∂x1

dx

≤ ∧
∫

Ω

hε∇pεdx

≤ ∧‖hε‖L2(Ω)‖∇pε‖L2(Ω:R2)

≤ C‖∇pε‖L2(Ω:R2)

⇒ ‖∇pε‖L2(Ω) ≤ c.

We take note that hε is bounded from the assumption that h0 ∈ C(Ω), h1 ∈

L∞(RN).

By the Poincaré inequality, we have that

‖pε‖L2(Ω) ≤ c‖∇pε‖L2(Ω)2 ≤ c
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which implies that the sequences {pε} is bounded in L2(Ω) and {∇pε} is also

bounded in L2(Ω)2.

From this inequality, the sequences {pε} and {∇pε} is also bounded in

the L2(Ω) and L2(Ω)2 respectively. By Theorem 3.23, there exists a subse-

quence such that pε
2
⇀ p0(x, y) and ∇pε(x)

2
⇀ ∇p0(x) + ∇p1(x, y), where

p1 ∈ L2[Ω,W 1,2
per(Y )] and p0(x, y) = p0(x) ∈ W 1,2

0 (Ω).

Moreover, by (3.25),

h3(x,
x

ε
)∇pε(x)

2
⇀ h3(x, y)[∇p0(x) +∇yp1(x, y)]. (4.55)

Since weak two-scale convergence implies weak convergence in L2(Ω) we have

that

h3(x,
x

ε
)∇pε(x)→

∫
Y

h3(x, y)[∇p0(x) +∇yp1(x, y)]dy. (4.56)

We can now pass to the limit (4.57).

By definition, pε is a solution of (4.54) if the following integral identity

holds:

∫
Ω

(h3
ε∇pε · ∇φ)dx = ∧

∫
Ω

hε
∂φ

∂x1

dx, ∀φ ∈ W 1,2
0 (Ω) (4.57)

and obtain

∫
Ω

∫
Y

h3(x, y)[∇p0(x) +∇yp1(x, y)]dy · ∇φdx = Λ

∫
Ω

∫
Y

h(x, y)
∂φ

∂x1

dx,

(4.58)

for every φ in C∞0 (Ω).

We let wε(x) = εψ(x)w(x
ε
) where ψ ∈ C∞0 (Ω) and w ∈ C∞0 (Y ). Then

wε(x) ∈ C∞0 (Ω) and can thus be used as a test function in (4.57). Since wε is a
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product, we differentiate by the product rule to obtain

∇wε(x) = ∇[εφ(x)w(
x

ε
)]

= εφ(x)∇w(
x

ε
) · 1

ε
+ ε∇φ(x)w(

x

ε
) (4.59)

= φ(x)∇w(
x

ε
) + ε∇φ(x)w(

x

ε
),

which we substitute into (4.54) to obtain

∫
Ω

(
h3(x,

x

ε
)∇pε·

[
φ(x)∇w(y)+ε∇φ(x)w(y)

])
dx = ∧

∫
Ω

hε
∂φ

∂x1

dx, ∀φ ∈ W 1,2
0 (Ω).

(4.60)

As ε→ 0, (4.60) then reduces to

lim
ε→0

∫
Ω

h3(x,
x

ε
)∇pε · φ(x)∇w(

x

ε
)dx = lim

ε→0

∫
Ω

h3(x,
x

ε
)dx. (4.61)

We note however that w(x/ε) is a rapidly oscillating function, it converges to

its mean value

∂

∂x1

w(x/ε)dx→ 1

|Y |

∫
Y

∂w

∂y1

(y)dy (4.62)

Since φ ∈ C∞0 (Ω) is arbitrary, we have that p1(x, y) is a solution of the periodic

problem, we then find p1 ∈ L2(Ω;W 1,2
per(Y )) such that

∫
Y

h3(x,
x

ε
)[∇p0(x) +∇yp1(x, y)] · ∇w(y)dy

= ∧
∫

Ω

∫
Y

h(x, y)
∂w

∂y1

(y)dxdy for any w ∈ C∞per(Y ). (4.63)

We expand to obtain

∫
Y

h3(x,
x

ε
)∇p0(x)∇w(y)dy +

∫
Y

h3(x,
x

ε
)∇yp1(x, y)∇w(y)dy

= ∧
∫

Ω

∫
Y

h(x, y)
∂w

∂y1

(y)dxdy for any w ∈ C∞per(Y ), (4.64)
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which we re-write as

∫
Y

h3(x,
x

ε
)∇yp1(x, y)∇w(y)dy = ∧

∫
Ω

∫
Y

h(x, y)
∂w

∂y1

(y)dxdy

−
∫
Y

h3(x,
x

ε
)∇p0(x)∇w(y)dy for any w ∈ C∞per(Y ). (4.65)

By linearity, p1 is of the form

p1(x, y) = v1(x, y)
∂p0

∂x1

+ v2(x, y)
∂p0

∂x2

+ v3(x, y), (4.66)

where vn ∈ L2

(
Ω;W 1,2

per(Y )

)
, n = 1, 2, 3 solves a corresponding periodic

problem

∫
Y

h3∇yv1(x, y)∇w(y)dy = −
∫
Y

h3 ∂w

∂y1

(y)dy, ∀ w ∈ C∞per(Y )(4.67)∫
Y

h3∇yv2(x, y)∇w(y)dy = −
∫
Y

h3 ∂w

∂y2

(y)dy, ∀ w ∈ C∞per(Y )(4.68)∫
Y

h3∇yv3(x, y)∇w(y)dy = −
∫
Y

h
∂w

∂y1

(y)dy, ∀ w ∈ C∞per(Y ) (4.69)

We substitute (4.66) into (4.58) to obtain

∫
Ω

∫
Y

h3

[
∇p0(x)+∇y

(
v1(x, y)

∂p0

∂x1

+v2(x, y)
∂p0

∂x2

+v3(x, y)

)]
dy·∇φdx

= Λ

∫
Ω

∫
Y

h(x, y)
∂φ

∂x1

dydx. (4.70)

But

∇p0(x) =
∂p0

∂x1

e1 +
∂p0

∂x2

e2

and (4.70) gives

∫
Ω

∫
Y

h3

[
∂p0

∂x1

e1 +
∂p0

∂x2

e2 +∇y

(
v1(x, y)

∂p0

∂x1

+ v2(x, y)
∂p0

∂x2

+

v3(x, y)

)]
dy · ∇φdx = Λ

∫
Ω

∫
Y

h(x, y)
∂φ

∂x1

dydx

(4.71)
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which by rearranging gives∫
Ω

{
∂p0

∂x1

(∫
Y

h3(e1 +∇yv1)dy

)
+
∂p0

∂x2

(∫
Y

h3(e2 +∇yv2)dy

)}
·∇φdx

=

∫
Ω

∫
Y

Λh
∂φ

∂x1

dydx−
∫

Ω

∫
Y

h3∇yv3dy · ∇φdydx

=

∫
Ω

∫
Y

Λhe1 · ∇φdydx−
∫

Ω

∫
Y

h3∇yv3dy · ∇φdydx (4.72)

=

∫
Ω

(∫
Y

(Λhe1 − h3∇yv3)dy

)
·∇φdx.

Let  b11(x)

b21(x)

 =

∫
Y

(h3e1 + h3∇yv1)dy,

 b12(x)

b22(x)

 =

∫
Y

(h3e2 + h3∇yv2)dy, (4.73)

 c1(x)

c2(x)

 =

∫
Y

(Λh− h3∇yv3)dy. (4.74)

Substituting (4.73) and (4.74) into (4.72), we obtain

∫
Ω

{
∂p0

∂x1

(
b11(x)

b21(x)

)
+
∂p0

∂x2

(
b12(x)

b22(x)

)}
· ∇φdx =

∫
Ω

(
c1(x)

c2(x)

)
· ∇φdx

∫
Ω

(
b11(x) b12(x)

b21(x) b22(x)

)( ∂p0
∂x1

∂p0
∂x2

)
· ∇φdx =

∫
Ω

(
c1(x)

c2(x)

)
· ∇φdx (4.75)

which we simplify to obtain

∫
Ω

B(x)∇p0(x) · ∇φdx =

∫
Ω

c(x)∇p0(x) · ∇φdx (4.76)

where the matrix

B(x) =

(
b11(x) b12(x)

b21(x) b22(x)

)
and c(x) =

(
c1(x)

c2(x)

)
with c1(x) =

∫
Y

(Λh− h3 ∂v3
∂y1

)dy and c2(x) =
∫
Y

(−h3 ∂v3
∂y2

)dy.
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The sequence of solutions pε of (4.54) converges weakly in W 1,2
0 (Ω) of the

homogenized equation

∫
Ω

B(x)∇p0 · ∇φdx =

∫
Ω

c(x) · ∇φdx ∀φ ∈ C∞per(Ω), (4.77)

where B(x) and c(x) are defined as in (4.73)-(4.74).

Moreover, ∇pε(x)
2
⇀ ∇p0(x) + ∇yp1(x, y), where p1 ∈ L2[Ω;W 1,2

per(Y )] may

be expressed in the solutions of the periodic problems (4.67)-(4.69) having the

form,

p1(x, y) = v1(x, y)
∂p0

∂x1

+ v2(x, y)
∂p0

∂x2

+ v3(x, y) (4.78)

We note that B(x) is symmetric and that there is a constant k > 0 such that

k−1|ξ|2 ≤ B(x)ξ · ξ ≤ k|ξ|2. (4.79)

From this it follows by the Lax-Milgram theorem that the homogenized equation

(4.77) has a unique solution and thus the theorem holds for the whole sequence.

Two Scale Convergence of Quasilinear Elliptic Equation

Given the following quasilinear elliptic problem:

−∇ · (Aε(x, uε)∇uε) = f for x ∈ Ω,

uε(x) = 0, for x ∈ ∂Ω. (4.80)

The space variable x ∈ Ω ⊂ R3. The cell of periodicity is denoted by Y (i.e.

the unit cube in R3) .
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Let the matrix

Aε(x, uε) =


aε11(x) aε12(x) aε13(x)

aε21(x) aε22(x) aε23(x)

aε31(x) aε32(x) aε33(x)

 = A(x).

The unique solution can be obtained by solving the equation

−∇ · (Aε(x, uε)∇uε) = f for x ∈ Ω∗ε. (4.81)

Let us choose an arbitrary test function v ∈ V,

−∇ · Aε(x, uε)∇uε∇v = fv (4.82)

−
∫

Ω

∇ · Aε(x, uε)∇uε∇vdx =

∫
Ω

fvdx (4.83)

Integrating over Ω, we obtain
∫

Ω
A(x)∇uε(x) · ∇vdx =

∫
Ω
f(x, y, uε)v(x)dx

for all v ∈ V = W 1,2
0 (Ω). We choose for the test function v ∈ V , the function

εψ(x)v(x/ε), where ψ ∈ C∞0 (Ω) and v ∈ C∞per(Y ).

Then we get that

∫
Ω

A(x)∇uε(x)·∇[εψ(x)v(x/ε)]dx = ε

∫
Ω

f(x, y, uε(x))ψv(x/ε)dx. (4.84)

Simplifying ε
∫

Ω
A(x)∇uε(x)·[∇ψ(x)v(x/ε)]dx = ε

∫
Ω
f(x, y, uε)ψ(x)v(x/ε)dx

As ε −→ 0, we find that

∫
Ω

∫
Y

[A(x)(∇u(x) +∇Y ũ(x, y) · [ψ(x)∇v(y)]dydx = 0. (4.85)

Since ψ ∈ C∞0 (Ω) is arbitrary, we have that (for almost every x) ũ(x, y) is the

unique solution of the following periodic problem.

Find ũ(x, y) ∈ [L∞(Ω),W 1,2
per(Y )] such that

∫
Y

[A(x)(∇u(x) +∇Y ũ(x, y))] · ∇v(y)dy = 0 (4.86)
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for almost all x ∈ R.

Rearranging, we obtain

∫
Y

A(x)∇Y ũ(x, y) · ∇v(y)dy = −
∫
Y

A(x)∇u(x) · ∇v(y)dy (4.87)

= −
∫
Y

A(x)
∂u

∂x1

∂v

∂y1

dy −
∫
Y

A(x)
∂u

∂x2

∂v

∂y2

dy

−
∫
Y

A(x)
∂u

∂x3

∂v

∂y3

dy.

By linearity,

ũ(x, y) = w1(x, y)
∂u

∂x1

+ w2(x, y)
∂u

∂x2

+ w3(x, y)
∂u

∂x3

+ w4(x) (4.88)

where wi ∈ L∞(Ω), i = 1, 2, 3.

Which we substitute into (4.87) thereby obtaining

∫
Y

A(x)∇Y [w1(x, y)
∂u

∂x1

+ w2(x, y)
∂u

∂x2

+ w3(x, y)
∂u

∂x3

+ w4(x)] · ∇v(y)dy

= −
∫
Y

A(x)∇u(x) · ∇v(y)dy

−
∫
Y

A(x)
∂u

∂x1

∂v

∂y1

dy −
∫
Y

A(x)
∂u

∂x2

∂v

∂y2

dy −
∫
Y

A(x)
∂u

∂x3

∂v

∂y3

dy

∫
Y

A(x)∇Y [w1(x, y)
∂u

∂x1

+ w2(x, y)
∂u

∂x2

+ w3(x, y)
∂u

∂x3

+ w4(x)] · ∇v(y)dy

= −
∫
Y

A(x)
∂u

∂x1

∂v

∂y1

dy −
∫
Y

A(x)
∂u

∂x2

∂v

∂y2

dy −
∫
Y

A(x)
∂u

∂x3

∂v

∂y3

dy

Which reduces to

∫
Y

A(x)∇Y [w1(x, y)
∂u

∂x1

+ w2(x, y)
∂u

∂x2

+ w3(x, y)
∂u

∂x3

] · ∇v(y)dy

= −
∫
Y

A(x)
∂u

∂x1

∂v

∂y1

dy −
∫
Y

A(x)
∂u

∂x2

∂v

∂y2

dy −
∫
Y

A(x)
∂u

∂x3

∂v

∂y3

dy
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Since w4(x) is independent of y.

Simplifying gives

∫
Y

A(x)∇Y [w1(x, y)
∂u

∂x1

+ w2(x, y)
∂u

∂x2

+ w3(x, y)
∂u

∂x3

] · ∇v(y)dy

= −
∫
Y

(
A(x)[

∂u

∂x1

e1 +
∂u

∂x2

e2 +
∂u

∂x3

e3]

)
· ∇v(y) dy

∫
Y

{A(x)[(∇Yw1(x, y) + e1)
∂u

∂x1

+ (∇Yw2(x, y) + e2)
∂u

∂x2

+(∇Yw3(x, y) + e3)
∂u

∂x3

]} · ∇v(y)dy = 0

Which gives the following periodic problems

∫
Y

A(x)(∇Yw1(x, y) + e1) · ∇v(y)dy = 0, (4.89)∫
Y

A(x)(∇Yw2(x, y) + e2) · ∇v(y)dy = 0, (4.90)∫
Y

A(x)(∇Yw3(x, y) + e3) · ∇v(y)dy = 0, (4.91)

where w1, w2, w3 ∈ L2(Ω,W 1,2
per(Y )) are the solutions of the periodic problems.

To homogenize the equation, we insert (4.88) into (4.86) to obtain

∫
Ω

∫
Y

A(x)

[
∇u(x, y) +∇Y ũ(x, y)

]
· ∇v(x)dydx =

∫
Ω

∫
Y

f(x, y)v(x)dydx

∫
Ω

∫
Y

A(x)

[
∇u(x, y) +∇Yw1

∂u

∂x1

+∇Yw2
∂u

∂x2

+∇Yw3
∂u

∂x3

]
· ∇v(x)dydx

=

∫
Ω

∫
Y

f(x, y)v(x)dydx. (4.92)

But

∇u(x, y) =
∂u

∂x1

e1 +
∂u

∂x2

e2 +
∂u

∂x3

e3
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where {e1, e2, e3} is the canonical basis in R3. Which we substitute into (4.92)

to obtain

∫
Ω

∫
Y

A(x)

[
∂u

∂x1

e1 +
∂u

∂x2

e2 +
∂u

∂x3

e3 +∇Yw1
∂u

∂x1

+∇Yw2
∂u

∂x2

+∇Yw3
∂u

∂x3

]
·

∇v(x)dydx =

∫
Ω

∫
Y

f(x, y)v(x)dydx.

Simplifying, we obtain

∫
Ω

∫
Y

A(x)[(∇Yw1 + e1)
∂u

∂x1

+ (∇Yw2 + e2)
∂u

∂x2

+(∇Yw3 + e3)
∂u

∂x3

] · ∇v(y)dydx =

∫
Ω

∫
Y

f(x, y)v(x)dydx.

∫
Ω

{∫
Y

A(x)(∇Yw1 + e1)dy
∂u

∂x1

+

∫
Y

A(x)(∇Yw2 + e2)dy
∂u

∂x2

+

∫
Y

A(x)(∇Yw3 + e3)dy
∂u

∂x3

}
· ∇v(x)dx =

∫
Ω

∫
Y

f(x, y)v(x)dydx.

∫
Ω

{
∂u

∂x1

(∫
Y

A(x)(∇Yw1 + e1)dy
)

+
∂u

∂x2

(∫
Y

A(x)(∇Yw2 + e2)dy
)

+
∂u

∂x3

(∫
Y

A(x)(∇Yw3 + e3)dy
)}
· ∇v(x)dx =

∫
Ω

∫
Y

f(x, y)v(x)dydx.

∫
Ω

{
∂u

∂x1


b11(x)

b12(x)

b13(x)

+
∂u

∂x2


b21(x)

b22(x)

b23(x)

+
∂u

∂x3


b31(x)

b32(x)

b33(x)


}
· ∇v(x)dx

=

∫
Ω

∫
Y

f(x, y)v(x)dydx.

∫
Ω

{
b11(x) b21(x) b31(x)

b12(x) b22(x) b32(x)

b13(x) b23(x) b33(x)




∂u
∂x1

∂u
∂x2

∂u
∂x3


}
· ∇v(x)dx

=

∫
Ω

∫
Y

f(x, y)v(x)dydx.
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which reduces to

∫
Ω

B(x)∇u · ∇v(x)dx =

∫
Ω

∫
Y

f(x, y)v(x)dydx, (4.93)

where the matrix B(x) = (bij(x))i,j=1,2,3 is defined by
b11(x)

b12(x)

b13(x)

 =

∫
Y

A(x)(∇Yw1 + e1)dy,


b21(x)

b22(x)

b23(x)

 =

∫
Y

A(x)(∇Yw2 + e2)dy

and
b31(x)

b32(x)

b33(x)

 =

∫
Y

A(x)(∇Yw3 + e3)dy.

If we let f̃(x) =
∫
Y
f(x, y)dy, then (4.93) gives

∫
Ω

B(x)∇u · ∇v(x)dx =

∫
Ω

f̃(x)v(x)dx, (4.94)

which is the homogenized equation of (4.82).

Also, along the boundary we have that u0(x) = 0.

Chapter Summary

In this section, the elliptic equation of the divergence form were homoge-

nized using the multiple-scale asymptotic expansion. The forms of the Reynold

equation discussed, the time independent incompressible Reynolds equation and

the quasi linear elliptic equation were homogenized to obtain the cell problems

and the homogenized equation.
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CHAPTER FIVE

RESULTS AND DISCUSSION

Introduction

In the previous chapters, we reviewed the homogenization of elliptic equa-

tions, in particular the Reynolds Equation which were in the divergence form.

In this main work below, we will homogenize the elliptic type equation of the

curl type to obtain the cell problem and the homogenized equation.

Homogenization of Elliptic Equations of the Curl Type

Theorem 5.1

The homogenized boundary value problem for the deterministic boundary value

problem

∇x × [aε(x)(∇x × uε(x))] + bε0uε(x) = f in Ω

uε(x) = 0 on ∂Ω

(5.1)

is given by

∇x × [a0(x)(∇x × u0(x))] + λu0(x) = f in Ω

u0(x) = 0 on ∂Ω.

(5.2)

Proof

Let Ω be an open bounded subset of R3, Y = (0, 1)3.

Introducing the auxiliary matrix a = (aij) where aij = aij(x, y), and i, j =

1, 2, 3 are smooth functions which are Y-periodic in y. Assuming that there

exists a constant α > 0 such that

3∑
i,j=1

aij(x, y)ξiξj ≥ α|ξ|2 for every ξ ∈ R3.

Let ε > 0, defining the matrix aε(x) as
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aε(x) =


aε11(x) aε12(x) aε13(x)

aε21(x) aε22(x) aε23(x)

aε31(x) aε32(x) aε33(x)

 = a(x, x
ε
) = a(x, y),

bε0 = λI, λ > 0, where y = x
ε
.

In (5.1) let the operator Aε be defined by

Aε = ∇x ×
[
aε(∇x × •) + λI

]
. (5.3)

Then (5.1) is of the form

Aεuε = f in Ω. (5.4)

And this is an elliptic equation defined in terms of curl. Such equations are

often described as Maxwell type equations. As the value of ε become smaller,

the coefficients in (5.1) are rapidly oscillating. This suggest some type of aver-

aging or asymptotic analysis. We shall prove that uε → u0 as ε → 0 and that

the solution u0 can be found by solving a so-called homogenized equation (5.69)

which does not contain any rapid oscillations. This means that u0 may be used

as an approximation of the solution uε for small values of ε. The multiple scale

expansion method shall be used to derive a homogenized equation for (5.1).

We assume that the solution of uε in (5.4) has an expansion which is of the form

uε(x, y) = u0(x,
x

ε
) + εu1(x,

x

ε
) + ε2u2(x,

x

ε
) + · · · =

∞∑
i=0

εiui(x,
x

ε
) (5.5)

with ui(x, y), y = x
ε

for i = 0, 1, 2, . . . such that ui(x, y) is defined for x ∈ Ω

and y ∈ Y and that ui(·, y) is Y-periodic.

Next we let φ = φ(x, y) be a function depending on two variables ofR2. Denote

also φε(x) by the following: φε(x) = φ(x, x
ε
) = φ(x, y), where y = x

ε
.
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Then by the chain rule we have

∂φ(x)

∂xi
=

∂

∂xi
φ(x, y) +

∂

∂yi
φ(x, y)

dy

dx
(5.6)

=
∂

∂xi
φ(x, y) +

1

ε

∂

∂yi
φ(x, y) (5.7)

=

(
∂

∂xi
+

1

ε

∂

∂yi

)
φ(x, y). (5.8)

Which can be written in gradient notation as

∇xφ
ε(x) = (∇x +

1

ε
∇y)φ(x, y). (5.9)

Thus in general,

∇x = (∇x +
1

ε
∇y). (5.10)

Substituting (5.10) into (5.3), we obtain

Aε = (∇x +
1

ε
∇y)×

(
a

[
∇x +

1

ε
∇y

]
×
)

+ λI

= ∇x × (a∇x×) +
1

ε
∇x × (a∇y×) +

1

ε
∇y × (a∇x×)

+
1

ε2
∇y × (a∇y×) + λI

=
1

ε2
∇y × (a∇y×) +

1

ε
[∇x × (a∇y×) +∇y × (a∇x×)]

+∇x × (a∇x×) + λI

=
1

ε2
A0 +

1

ε
A1 +A2

(5.11)

where

A0 = ∇y × (a∇y×) (5.12)

A1 = ∇x × (a∇y×) +∇y × (a∇x×) (5.13)

A2 = ∇x × (a∇x×) + λI (5.14)

Aε =
1

ε2
A0 +

1

ε
A1 +A2 (5.15)
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Substituting (5.15) into (5.4), we obtain

(
1

ε2
A0 +

1

ε
A1 +A2

)
uε = f, for x ∈ Ω. (5.16)

By substituting the power series expansion (5.5) in (5.15) we have

(
1

ε2
A0 +

1

ε
A1 +A2

)(
u0(x,

x

ε
) + εu1(x,

x

ε
) + ε2u2(x,

x

ε
) + · · ·

)
= f

Rearranging we see that

1

ε2
A0u0 +

1

ε
(A0u1 +A1u0) + (A0u2 +A1u1 +A2u0)

+ε(A1u2 +A2u1) + ε2A2u2 + . . . = f

Equating the powers of ε of order −2,−1 and 0, the following sequence

of problems are obtained:

A0u0 = 0 (5.17)

A0u1 +A1u0 = 0 (5.18)

A0u2 +A1u1 +A2u0 = f (5.19)

which we solve in place of the original equation given in (5.1) to obtain the cell

problems and the homogenized equation.

We shall make use of the following well known result in solving (5.17)–(5.19)

Γm = P has a solution if and only if

∫
Y

Pdy = 0. (5.20)

A case for which m is unique up to an additive constant.

Here Γ represents one of the operators A0,A1,A2, . . .. (Persson et al, 1993).

We solve (5.17) as follows,

A0u0 = ∇y × a(∇y × u0) = 0. (5.21)
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Taking the scalar product of (A0u0, u0) in L2(Y )2 we have,

(A0u0, u0) =

∫
Y

(
a(∇y × (∇y × u0)) · u0

)
dy

=

∫
Y

a(∇y × u0) · (∇y × u0)dy = 0.

(5.22)

Since a is a non zero matrix, we have that (A0u0, u0) = 0 only if

∇y × u0 = 0. (5.23)

Next we consider equation (5.18),

A0u1 +A1u0 = 0

∇y × a(∇y × u1) +∇x × a(∇y × u0) +∇y × a(∇x × u0) = 0.

(5.24)

By substituting (5.23) into (5.24) we obtain

∇y × [a(∇y × u1)] +∇y × [a(∇x × u0)] = 0, (5.25)

which can further be written as

∇y ×
(
a(∇y × u1) + a(∇x × u0)

)
= 0. (5.26)

Finally, from (5.19) we have that

∇y × (a∇y × u2) +∇x × (a∇y × u1) +∇y × (a∇x × u1)

+∇x × (a∇x × u0) + λu0 = f.

(5.27)

Taking the divergence with respect to y on both sides of (5.27), we find that

∇y · (∇y × (a∇y × u2)) +∇y · (∇x × (a∇y × u1)) +∇y · (∇y × (a∇x × u1))

+∇y · (∇x × (a∇x × u0)) + λ∇y · u0 = ∇y · f
(5.28)
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∇y · (∇y × (a∇y × u2)) +∇y · (∇x × (a∇y × u1)) +∇y · (∇y × (a∇x × u1))

+∇y · (∇x × (a∇x × u0)) + λ∇y · u0 = 0

(5.29)

The right hand side of (5.28) equals zero since ∇y · f(x) = 0.

Making use of Lemma 2.8 in (5.29) we obtain

∇y · (∇x × (a∇y × u1)) +∇y · (∇x × (a∇x × u0)) + λ∇y · u0 = 0

∇y ·
(
∇x × (a∇y × u1) +∇x × (a∇x × u0)

)
+ λ∇y · u0 = 0

∇y ·
[
∇x ×

(
(a∇y × u1) + (a∇x × u0)

)]
+ λ∇y · u0 = 0 (5.30)

Applying the result of Lemma 2.9 to (5.30) we see that

−∇x ·
[
∇y ×

(
(a∇y × u1) + (a∇x × u0)

)]
+ λ∇y · u0 = 0. (5.31)

Substituting (5.26) into (5.31), we find that

λ∇y · u0 = 0 or ∇y · u0(x, y) = 0 (5.32)

which implies that

u0(x, y) = u0(x). (5.33)

i.e. u0(x, y) is independent of y.

Substituting the result of (5.33) into (5.26) we can rewrite (5.26) as

∇y ×
(
a(∇y × u1) + a(∇x × u0(x))

)
= 0. (5.34)

In (5.34), we let

w = a
(
∇y × u1 +∇x × u0(x)

)
, (5.35)
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so that we have

∇y × w = 0. (5.36)

Multiplying both sides of (5.35) by a−1 we obtain

a−1w =
(
∇y × u1 +∇x × u0(x)

)
. (5.37)

Taking the divergence of both sides, we get

∇y · (a−1w) = ∇y ·
(
∇y × u1 +∇x × u0(x)

)
= ∇y ·

(
∇y × u1) +∇y ·

(
∇x × u0(x)

)
.

(5.38)

By Lemma 2.8 the first term on the right hand side is zero. Moreover, since

∇x×u0(x) is a function of x only, its divergence with respect to y is zero hence

the second term is also zero. Thus,

∇y · (a−1w) = 0. (5.39)

Integrating (5.35) over Y and making use of Y-periodicity yields

wy =

∫
Y

wdy =

∫
Y

a
(
∇y × u1)dy +

∫
Y

a(∇x × u0(x)
)
dy. (5.40)

But
∫
Y
a
(
∇y × u1)dy = 0 by Y-periodicity.

Hence

wy =

∫
Y

a(∇x × u0(x)
)
dy. (5.41)

Rearranging the terms we see that

wy =∇x × u0(x)

∫
Y

ady

=a∇x × u0(x)
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where
∫
Y
dy = 1 for Y being 1-periodic and a = a(x) after integrating over Y.

Since a(∇x × u0(x)) is a function of x only, let a(∇x × u0(x)) = w̃(x) = w̃.

Thus,

wy = w̃(x) = w̃ (5.42)

Since from (5.36)∇y×w = 0 andwy = w̃(x), it follows that∇y×(w−w̃) = 0.

And so by Lemma 2.10 there exists a Y-periodic function say ψ(x, y) such that

w − w̃ = −∇yψ. (5.43)

Making w the subject in (5.43) gives,

w = w̃ −∇yψ. (5.44)

Substituting (5.44) into (5.39) and simplifying we obtain

∇y · (a−1(w̃ −∇yψ)) = 0

∇y · (a−1w̃ − a−1∇yψ) = 0

∇y · (a−1w̃)−∇y · (a−1∇yψ) = 0

−∇y · (a−1∇yψ) = −∇y · (a−1w̃). (5.45)

By linearity we let ψ(x, y) be such that ψ = v1w1 + v2w2 + v3w3 =
∑3

i=1 v
iwi.

Let w̃(x) = w1e1 + w2e2 + w3e3 , v = (v1, v2, v3) and e1 = (1, 0, 0), e2 =

(0, 1, 0) and e3 = (1, 0, 0) are the canonical basis.

Plugging w̃(x) and v into (5.45), we find that

∇y ·
(
a−1∇y(v

1w1+v2w2+v3w3)

)
= ∇y ·

(
a−1(w1e1+w2e2+w3e3)

)
. (5.46)
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Comparing like terms we obtain the following cell problems

∇y ·
(
a−1∇y(v

1w1)

)
= ∇y ·

(
a−1(w1e1)

)
, (5.47)

∇y ·
(
a−1∇y(v

2w2)

)
= ∇y ·

(
a−1(w2e2)

)
, (5.48)

∇y ·
(
a−1∇y(v

3w3)

)
= ∇y ·

(
a−1(w3e3)

)
. (5.49)

Taking (5.47), we have

∇y ·
(
a−1∇y(v

1w1)

)
−∇y ·

(
a−1(w1e1)

)
= 0

∇y ·
(
a−1∇y(v

1w1)− a−1(w1e1)

)
= 0

∇y ·
[
a−1

(
∇y(v

1w1)− (w1e1)

)]
= 0

w1

[
∇y ·

(
a−1∇yv

1 − e1

)]
= 0

which implies that

∇y ·
[
a−1

(
∇yv

1 − e1

)]
= 0, (5.50)

with a weak formulation given by

∫
Y

a−1(∇yv
1 − e1) · ∇yµdy = 0 ∀ µ ∈ C∞per(Y ).

Similarly, the weak formulation of (5.48) and (5.49) are

∫
Y

a−1(∇yv
2 − e2) · ∇yµdy = 0 ∀ µ ∈ C∞per(Y )

and

∫
Y

a−1(∇yv
3 − e3) · ∇yµdy = 0 ∀ µ ∈ C∞per(Y ).
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Generalizing we have the following cell problem whose solution vi, i = 1, 2, 3

will be needed in obtaining the homogenized problem. That is,

∫
Y

a−1(∇yv
i − ei) · ∇yµdy = 0 ∀ µ ∈ C∞per(Y ) (5.51)

where i = 1, 2, 3.

With ψ(x, y) = v1(y)w1(x) + v2(y)w2(x) + v3(y)w3(x)

=


v1(y)

v2(y)

v3(y)

 ·


w1(x)

w2(x)

w3(x)


= v(y) · w̃(x)

= vw̃

ψ(x, y) = vw̃. (5.52)

Substituting (5.52) into (5.44), we have

w =w̃ −∇y(vw̃)

=w̃ − v∇yw̃ − w̃∇yv(y).

Since w̃ = w̃(x) is a function of x only ∇yw̃ = 0. So that

w =w̃ − w̃∇yv(y)

=(I−∇yv)w̃.

(5.53)

Multiplying (5.53) by a−1, we see that

a−1w =a−1(I−∇yv)w̃. (5.54)
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Integrating (5.54) with respect to y yields

(a−1w)
y

=

∫
Y

[a−1(I−∇yv)w̃]dy

=w̃

∫
Y

[a−1(I−∇yv)]dy

=A(x)w̃,

(5.55)

where A(x) =
∫
Y

[a−1(I−∇yv(y))]dy.

Also from (5.35)

w = a[
(
∇y × u1) + (∇x × u0(x))

]
, (5.56)

a−1w = (∇y × u1) + (∇x × u0(x)). (5.57)

Integrating (5.57) over Y gives

(a−1w)
y

=
∫
Y

(∇x × u0(x)) dy +

∫
Y

(∇y × u1) dy

=
∫
Y

(∇x × u0(x)) dy,

where
∫
Y

(∇y × u1) dy = 0 by periodicity.

(a−1w)
y

=
∫
Y

(∇x × u0(x)) dy

= (∇x × u0(x))|Y |

= ∇x × u0(x)

since |Y | = 1. Thus we have the following relation:

∇x × u0(x) = (a−1w)
y (5.58)

Substituting (5.55) into (5.58) we obtain

∇x × u0(x) = A(x)w̃. (5.59)
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Making w̃ the subject, we have

w̃ =[A(x)]−1(∇x × u0(x))

=a0(x)(∇x × u0(x)).

(5.60)

Where a0(x) = [A(x)]−1 is the homogenized matrix corresponding to the deter-

ministic matrix aε(x) in (5.1).

Finally to obtain the homogenized equation, we integrate each term of (5.19)

with respect to y and simplify the terms before eventually plugging into (5.60).

∫
Y

(A0u2 +A1u1 +A2u0)dy =

∫
Y

fdy

∫
Y

A0u2dy +

∫
Y

A1u1dy +

∫
Y

A2u0dy =

∫
Y

fdy (5.61)

Integrating term by term and making use of Y periodicity gives,

∫
Y

A0u2dy =

∫
Y

∇y × a(∇y × u2)dy = 0. (5.62)

∫
Y

A1u1dy =

∫
Y

∇x × a(∇y × u1)dy +

∫
Y

∇y × a(∇x × u1)dy

=

∫
Y

∇x × a(∇y × u1)dy

(5.63)

since
∫
Y
∇y × (a∇x × u1)dy = 0 by Y-periodicity.

Furthermore, the third term on the left hand side of (5.61) can be analyzed as

follows,

∫
Y

A2u0dy =

∫
Y

(
∇x × (a∇x × u0(x)) + λu0(x)

)
dy

=

∫
Y

(
∇x × (a∇x × u0(x)

)
dy +

∫
Y

λu0(x)dy

=

∫
Y

(
∇x × (a∇x × u0(x)

)
dy + λu0(x)|Y |

=

∫
Y

(
∇x × (a∇x × u0(x)

)
dy + λu0(x)

(5.64)
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Substituting (5.62) – (5.64) into (5.61), we obtain

∫
Y

∇x×a(∇y×u1)dy+

∫
Y

(
∇x×a(∇x×u0(x))

)
dy+λu0(x) = f |Y | (5.65)

∫
Y

∇x ×
(

(a∇y × u1) + (a∇x × u0(x))

)
dy + λu0(x) = f |Y |

∫
Y

∇x × a
(
∇y × u1 +∇x × u0(x)

)
dy + λu0(x) = f. (5.66)

Substituting (5.35) into (5.66), we find that

∫
Y

(
∇x × w

)
dy + λu0(x) = f

(
∇x ×

∫
Y

w dy

)
+ λu0(x) = f

(
∇x × wy

)
+ λu0(x) = f. (5.67)

But from (5.42), wy = w̃(x) = w̃ and so (5.67) can be written as

∇x × w̃ + λu0(x) = f. (5.68)

Inserting (5.60) into (5.68) we finally obtain ,

∇x ×
[
a0(x)(∇x × u0(x))

]
+ λu0(x) = f in Ω, (5.69)

u0(x) = 0 on ∂Ω

as the homogenized equation corresponding to the deterministic boundary value

problem given by (5.1) and has

∇x ×
(
a0(x)(∇x × •)

)
+ λ

as the homogenized operator.
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Chapter Summary

In this chapter the elliptic equations of the curl type was homogenized, the

cell problems and the homogenized equation obtained.
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CHAPTER SIX

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Overview

The thesis is summarized in this chapter, conclusions drawn from the work

and some future works which could be explored listed.

Summary

In this thesis, we studied the homogenization of elliptic equations in pe-

riodic domains. We give the overview of the homogenization by the multiple

scale and the two-scale convergences. The reynolds equation which is used in

the flow of fluid through machine elements such as bearings, gearboxes and hy-

draulic systems was also homogenized.

In particular, we homogenize the quasi-linear elliptic equation using the two-

scale convergence method to obtain the cell problems and the homogenized

equation

∫
Ω

B(x)∇u · ∇v(x)dx =

∫
Ω

f̃(x)v(x)dx, (6.1)

which is the homogenized equation of

−∇ · Aε(x, uε)∇uε∇v = fv (6.2)

−
∫

Ω

∇ · Aε(x, uε)∇uε∇vdx =

∫
Ω

fvdx. (6.3)

The elliptic equation of the curl form of which has the Maxwell type equation

as an example was also homogenized to obtain the homogenized equation after

obtaining the cell problems.

The homogenized boundary value problem for the deterministic boundary value
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problem

∇x × [aε(x)(∇x × uε(x))] + bε0uε(x) = f in Ω

uε(x) = 0 on ∂Ω

(6.4)

was also homogenized to obtain

∇x × [a0(x)(∇x × u0(x))] + λu0(x) = f in Ω

u0(x) = 0 on ∂Ω,

(6.5)

with the cell problem as

∫
Y

a−1(∇yv
i − ei) · ∇yµdy = 0 ∀ µ ∈ C∞per(Y ). (6.6)

where i = 1, 2, 3. and vi, i = 1, 2, 3 will be needed in solving the homogenized

problem.

Conclusions and Recommendations

The quasilinear elliptic equation and the elliptic equation of the curl type

were homogenized using the two scale convergence method of homogenization.

The cell problems as well as the homogenized equations were obtained. In order

to study the asymptotic expansion behaviour of uε as ε→ 0, we have considered

the case where aε0 = λI, λ > 0. The more general case of the elliptic equations

in the curl type be studied and other elliptic equations be homogenized using the

two-scale method of homogenization. Also other researchers can consider the

case where λ is complex.
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