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Abstract

Acoustomagnetoelectric Effect (AME) in Graphene Nanoribbon (GNR) in

the presence of an external electric and magnetic fields was studied using

the Boltzmann kinetic equation. On open circuit, the Surface Acoustomag-

netoelectric field ( ~ESAME) in GNR was obtained in the region ql >> 1, for

energy dispersion ε(p) near the Fermi level. The dependence of ~ESAME on

the magnetic field strength (η), the sub-band index (pi), and the width (N)

of GNR were analysed numerically. For ~ESAME versus η, a non-linear graph

was obtained. From the graph, at low magnetic field strength (η < 0.62),

the obtained graph qualitatively agreed with that experimentally observed

in graphite. However, at high magnetic field strength (η > 0.62), the ~ESAME

falls rapidly to a minimum value. We observed that in GNR, the maximum

~ESAME was obtained at magnetic field H = 3.2Am−1. The graphs obtained

were modulated by varying the sub-band index pi with an inversion observed
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when pi = 6. The dependence of ~ESAME on the width N for various pi was

also studied where, ~ESAME decreases for increase in pi. To enhanced the

understanding of ~ESAME on the N and η, a 3D graph was plotted. This

study is relevant for investigating the properties of GNR.

Introduction

The study of Acoustomagnetoelectric Effect (AME) in Semiconductors

and its related materials have generated lot of interest recently . AME in

materials such as Superlattices [1, 2, 3], Quantum Wires [4], Carbon Nan-

otubes [5] deals with appearance of a d.c electric field in the Hall direction

when the sample is on open circuit. Studies have shown that the propaga-

tion of acoustic waves causes the transfer of energy and momentum to the

conducting electrons [3]. When the build up of the acoustic flux exceeds the

velocity of sound it causes the formation and propagation of Acoustoelec-

tric field [6, 7]. Other effects such as Acoustoelectric Effect (AE) [1, 2, 8],

Acoustothermal Effect [9], and Acoustoconcentration Effect can occur. The

AE was predicted by Grinberg and Kramer [10] for bipolar semiconductors

and experimentally observed in Bismuth by Yamada [11]. By applying the

sound flux ( ~W ), electric current (~j), and magnetic fields ( ~H) perpendicu-

larly to the sample, it is interesting to note that, with the sample opened in

direction perpendicular to the Hall direction, can leads to a non-zero Acous-

tomagnetoelectric Effect AME [12]. Mensah et. al [1] studied these effect in

Superlattice in the hypersound regime, Bau et. al. [13] studied the AME of

cylindrical quantum wires. Also, AME effect in mono-polar semiconductor

for both weak and quantizing field were studied [14]. Experimentally, AME
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has been observed in n-InSb [15], and in graphite [16] for ql << 1. In this pa-

per, AME in graphene nanoribbon is studied. There are differences between

graphene and graphite.

Graphene[17] is a single layer of carbon atoms with zero band-gap. Within

the low energy range (ε < 0.5eV ), carriers in graphenes are massless relativis-

tic particles with effective speed of VF ≈ 106ms−1 (VF being the Fermi veloc-

ity). One of the major limitations of graphene sheet is lack of band gap in its

energy spectrum [18]. To overcome this, stripes of Graphene called Graphene

Nanoribbons (GNRs) whose characteristics are dominated by the nature of

their edges (the armchair (AGNRs) and Zigzag (ZGNRs)) with well-defined

width are proposed [18]. By patterning graphene into narrow ribbons creates

an energy gap where GNR behaves like semiconductor [19, 20, 21]. However,

graphite (bunch of graphene) have planar structures with a semimetallic be-

haviour having a band overlap of about 4.1MeV . Its thermal, acoustic and

electronic properties are highly anisotropic, which means that phonons travel

much easily along the planes than they do through the planes [23]. Graphene

therefore have a very high electron mobility thus offers a much better level of

electronic conduction. In this paper, the Boltzmann kinetic equation is used

to study the SAME in GNR. This is achieved by applying sound flux ( ~W )

to the GNR sample in the presence of electric field ( ~E) and magnetic fields

( ~H). With the sample open (j = 0), give the ESAME in GNR. This paper is

organised as follows: In section 2, the theory of SAME in GNRs is outlined.

In section 3, the numerical calculations are presented; and while section 4

deals with the conclusion.
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Theory

The configuration for suface Acoustomagnetoelectric field in GNR will

be considered with the acoustic phonon ~W , the magnetic field ~H and the

measured ESAME lying in the same plane. Based on the method developed

in [22], the partial current density generated in the sample is solved from the

Boltzmann transport equation given as

−
(
e ~E

∂f~p
∂~p

+ Ω[~p, ~H],
∂f~p
∂~p

)
= −f~p − f0(ε~p)

τ(ε~p)
+

π∆2 ~W

ρV 3
s

{[f~p+~q − f~p]δ(ε~p+~q − ε~p − h̄ω~q) + [f~p−~q − f~p]δ(ε~p−~q − ε~p + h̄ω~q)} (1)

where ql >> 1 is utilised. Here, f0(ε(~p)) is the equilibrium distribution

function, ~E is the constant electric field, ω~q is the fequency of the acoustic

wave, ~W is the density of the acoustic flux, and ~p the characteristic quasi-

momentum of the electron. ρ is the density of the sample, ∆ is the constant

of deformation potential, e the electronic charge, and Vs is the speed of

sound. The relaxation time on energy is τ(ε~p) and the cyclotron frequency,

Ω = µH/h̄c (H is the magnetic field, µ is the electron mobility and c is the

speed of light in vacuum). The energy dispersion relation ε(~p) for GNRs

band near the Fermi point is expressed as [18, 24]

ε(~p) =
Eg
2

√
[(1 +

~p2

h̄2β2
)] (2)

where the energy gap Eg = 3tac−cβ with β being the quantized wave vector

given as β = 2π
a
√

3
[ pi
N+1
− 2

3
], where pi is the sub-band index and N is the width

of the GNR. t = 2.7eV is the nearest neighbour Carbon-Carbon C-C tight

binding overlap energy and ac−c = 1.42Ȧ is the (C-C) bond length.
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Multiplying the Eqn.(1) by ~pδ(ε−ε~p) and summing over ~p gives the kinetic

equation as
~R(ε)

τ(ε)
+ Ω

[
~h, ~R(ε)

]
= ~Λ(ε) + ~S(ε) (3)

where ~R(ε) is the partial current density given as

~R(ε) ≡ e
∑
~p

~pf~pδ(ε− ε~p) (4)

with ~Λ(ε) and ~S(ε) given as

~Λ(ε) = −e
∑
~p

(
~E,
∂f~p
∂~p

)
~pδ(ε− ε~p) (5)

~S(ε) =
π∆2 ~W

ρV 3
s

∑
~p

~pδ(ε− ε~p){[f~p+~q − f~p]δ(ε~p+~q − ε~p − h̄ω~q) + [f~p−~q − f~p]

δ(ε~p−~q − ε~p + h̄ω~q)} (6)

Considering f~p → f0(ε~p) with ~p→ −~p , f~p ≡ f0(ε~p) = f0(ε−~p), Eqn.(5) and

Eqn.(6) can be respectively expressed to

~Λ(ε) = ~E

(
2h̄2β2

h̄~q
α− h̄~q

2

)
∂f0

∂ε

Θ (1− α2)√
1− α2

(7)

~S(ε) =
2π ~W

ρVsα
Γ0

(
2h̄2β2

h̄~q
α− h̄~q

2

)
Θ (1− α2)√

1− α2

1

f0(ε)

∂f0

∂ε
(8)

with α = h̄ω~q/Eg, Γ0 = (E2
g∆

2α2/2V 2
s )f0(ε) and Θ is the Heaviside step

function given as

Θ(1− α2) =

1 if (1− α2) > 0

0 if (1− α2) < 0
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Substituting Eqn.(7) and Eqn.(8) into Eqn.(3) and solving for ~R(ε) gives

~R(ε) = { 2π

ρVsα
Γ0

(
2h̄2β2

h̄~q
α− h̄~q

2

)
Θ (1− α2)√

1− α2

1

f0(ε)

∂f0

∂ε
×

{ ~Wτ(ε) + Ω[~h, ~W ]τ(ε)2 + Ω2~h(~h, ~W )τ(ε)3}+

(
2h̄2β2

h̄~q
α− h̄~q

2

)
∂f0

∂ε

Θ (1− α2)√
1− α2

×

{ ~Eτ(ε) + Ω[~h, ~E]τ(ε)2 + Ω2τ(ε)3~h(~h, ~E)}}{1 + Ω2τ(ε)2}−1 (9)

The current density [6] is given as

~j = −
∫ ∞

0

~R(ε)dε (10)

With ∆ =
(

2h̄2β2

h̄~q
α− h̄~q

2

)
, substituting Eqn.(9) into Eqn.(10) yields

~j =
∆Γ0

ρVsα

Θ (1− α2)√
1− α2

{〈〈 τ(ε)

1 + Ω2τ(ε)2
〉〉 ~W + Ω〈〈 τ(ε)2

1 + Ω2τ(ε)2
〉〉[~h, ~W ] +

Ω2〈〈 τ(ε)

1 + Ω2τ(ε)2
〉〉~h(~h, ~W )}+ ∆

Θ (1− α2)√
1− α2

{〈 τ(ε)

1 + Ω2τ(ε)2
〉 ~E + Ω〈 τ(ε)2

1 + Ω2τ(ε)2
〉[~h, ~E] +

Ω2〈 τ(ε)3

1 + Ω2τ(ε)2
〉~h(~h, ~E)}(11)

The Eqn.(11) can further be simplified with the following substitution g =

1/1 + Ω2τ(ε)2, γk ≡ 〈gτ(ε)k〉, and η ≡ 〈〈gτ(ε)k〉〉 where k = 1, 2, 3. This

yields

~j =
∆Γ0

ρVsα

Θ(1− α2)√
1− α2

{
η1
~W + Ωη2[~h, ~W ] + Ω2η3

~h(~h, ~W )
}

+

∆
Θ (1− α2)√

1− α2

{
γ1
~E + γ2Ω[~h, ~E] + Ω2γ3

~h(~h, ~E)
}

(12)

With the sample opened (~j = 0), and ignoring higher powers of Ω gives

γ1
~Ex − γ2Ω ~Ey = −γ1

~Eα (13)

γ2Ω ~Ex + γ2Ω ~Ey = −γ2Ω ~Eα (14)
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where Eα = Γ0

ρSα
. Making the ~Ey the subject of the equation yields

~Ey = ~EαΩ

{
η1γ2 − η2γ1

γ2
1 + γ2

2Ω2

}
(15)

substituting the expressions for η1, η2, γ1, γ2 into Eqn.(15), with ~Ey = ~ESAME

gives

~ESAME = ~EαΩ

〈
τ(ε)2

1+Ω2τ(ε)2
〉〈〈 τ(ε)

1+Ω2τ(ε)2
〉〉 − 〈〈 τ(ε)2

1+Ω2τ(ε)2
〉〉〈 τ(ε)

1+Ω2τ(ε)2
〉

〈 τ(ε)
1+Ω2τ(ε)2

〉
2

+ 〈 τ(ε)2

1+Ω2τ(ε)2
〉
2
Ω2

 (16)

In Eqn(16), the following averages were used

〈....〉 = −
∫ ∞

0

(....)
∂f0

∂ε
dε

〈〈....〉〉 = − 2π

f0(ε)

∫ ∞
0

(....)
∂f0

∂ε
dε

Where f0 = [1−exp(− 1
kT

(ε−εF ))]−1 is the Fermi-Dirac distribution function.

Numerical analysis and Discussions

In solving for Eqn.(16), the following were assumed: At low temperature

kT << 1, and ∂f0
∂ε

= −1
kβT

exp(− ε−µ
kβT

). The equation for ~ESAME simplifies to

~ESAME =
Eg ~Wh̄ω~qη

2ρV 3
s

{
F(−1/2,η2)F(−3/2,η2) − F(0,η2)F(−2,η2)

}
×{

3
√
π

4
F 2

(−1/2,η2) +
9π

16
η2F 2

(0,η2)

}−2

(17)

with Fm,n =
∫∞

0
xm

1+Ω2τ(ε)2xn
∂f0(ε)
∂x

dx. From Eqn.(17), the ~ESAME is a function

of the following parameters: magnetic field strength (η = Ωτ); α; and the

energy gap Eg = 3tac−cβ. The Eg depends on the quantized wave vector

β. The parameters used in the numerical calculations are τ = 10−12s, ωq =
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Figure 1: Dependence of ~ESAME versus the magnetic field strength η for (a) N = 7-

GNR at different sub-bands. The insert shows the experimental observation of ~EAME in
graphite [16]. (b) an extended graph of ~ESAME against η

1010s−1, s = 5 ∗ 103ms−1, q = 2.23 ∗ 106cm. In analysing the Eqn.(17), the

condition ((1 − α2) > 0) was considered. Figure 1a, shows the dependence

of ~ESAME against the magnetic field strength η at various sub-bands for

η << 1. Generally, ~ESAME increased to a maximum value for three different

values of pi. The results obtained (see Figure 1a) qualitatively agreed with

an experrimental graph measured in graphite. Figure 1b is the general case

when there is no limitation on η. It can be seen that, ~ESAME decreased

rapidly after the maximum point to a minimum value. For pi = 6, there is

an inversion of the graph. Figure 2, shows the dependence of ~ESAME against

the width N with different sub-band indices (pi). For further illucidation of

the graphs obtained, a 3D graph of ~ESAME versus η at pi = 1 and width

at pi = 6 are presented (see Figure 3 a and b) where Figure 3b shows an

inversion of Figure 3a.
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Figure 2: (a) The ~ESAME versus width for p = 1, 3, 5.

Figure 3: A 3D graph of ~ESAME on width of GNR and η (a) p = 1 and (b) p = 6.
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Conclusions

The Acoustomagnetoelectric field ESAME in Graphene Nanoribbon (GNR)

was studied. The dependence of ESAME on the magnetic field strength η and

the width N were numerically studied. The ESAME obtained for low mag-

netic field strength in GNR qualitatively agreed with experimentally observed

graph in graphite but for strong magnetic fields, the ESAME rapidly falls to

a minimum. The graph is modulated by varying the sub-band index pi with

an inversion occuring at pi = 6. or the width N of GNR. At the maximum

point, a magnetic field of H = 3.2Am−1 was calculated which is far lower

than that measured in graphite. The ESAME also varies when plotted against

the Width of GNR at various sub-band indices pi.
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