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Wind speed/power has received increasing attention around the earth due to its renewable nature as well as environmental
friendliness. With the global installed wind power capacity rapidly increasing, wind industry is growing into a large-scale business.
Reliable short-term wind speed forecasts play a practical and crucial role in wind energy conversion systems, such as the dynamic
control of wind turbines and power system scheduling. In this paper, an intelligent hybrid model for short-term wind speed
prediction is examined; the model is based on cross correlation (CC) analysis and a support vector regression (SVR) model that
is coupled with brainstorm optimization (BSO) and cuckoo search (CS) algorithms, which are successfully utilized for parameter
determination.Theproposed hybridmodels were used to forecast short-termwind speeds collected from fourwind turbines located
on a wind farm in China.The forecasting results demonstrate that the intelligent hybridmodels outperform singlemodels for short-
term wind speed forecasting, which mainly results from the superiority of BSO and CS for parameter optimization.

1. Introduction

In recent decades, increasing attention has been paid to
renewable energy around the world due to the limited
reserves of nonrenewable resources and the emerging crisis
of global climate warming resulting from large amounts of
greenhouse gases emission generated by fossil fuel combus-
tion [1, 2]. The cumulative installed wind capacity in China
was reported to be 91412.89MW in 2013, up 21.4% over the
previous year. Adoption will not slow because increased wind
power capacity goals have been set as promising solutions to
the energy crises in many countries [3]. With the installed
capacity of wind energy increasing, resulting in the large-
scale integration of wind power into electrical power systems,
additional problems and challenges have appeared, including
power stability, quality, and, especially, power dispatching [4].

Uncertainties related to wind power can put power
quality and system reliability at risk as the penetration of
wind power increases, and major grid integration issues such
as reserve capacities and balance management also arise [5].
Because wind power is proportional to the cube of wind
speeds and a 10%deviation of the expectedwind speed results
in an approximately 30% deviation in the expected wind
power production [6], the prediction error of wind energy
largely depends on the accuracy of wind speed forecasts.
Accurate wind speed predictions for each of the farm’s
turbines are critical for themanagement of wind farms, which
is usually the basis of wind power prediction and effective
wind power utilization [7] and can increase the reliability of
the power grid and reduce operating costs [8].

However, accurate and reliable wind speed forecasts are
a significant challenge due to its stochastic nature with high
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rates of change, highly nonlinear behaviorwith no typical pat-
terns [9], and dependency on elevation, terrain, atmospheric
pressure, and temperature, which results in large uncertain-
ties of wind speeds. Extensive efforts have been devoted to
develop efficient wind speed forecasting models. To date,
many forecasting models have been examined and proposed
by applying different predictive methods and techniques
performed on different forecasting horizons. According to
the length of the prediction horizon, wind speed forecasting
can be classified into long-term forecasting and short-term
forecasting. The former can provide critical information for
site location, windmill planning, and proper wind turbine
sections for specific wind farms [10]. Precise short-term
wind speed forecasts can minimize scheduling errors that
can exert a large impact on grid reliability and market-
based ancillary costs [11]. According to these approaches,
wind speed prediction can be clustered into two main
categories, that is, physical methods and statistical methods
[12].

Physical methods, which take into account physical fac-
tors, that is, temperature, pressure, wind farm layout, and
local terrain, are based on numerical weather prediction
(NWP) tools that provide weather forecasts by utilizing
mathematical models of the atmosphere [2, 13–15]; these
models require long operation times and large amounts of
computational resources. Landberg initially proposed the
concept of applying NWP tools as an input; tools such as
the wind atlas analysis and application program (WAsP) and
PARK are now used for wind prediction correction [13].

Statisticalmethods that are used to determine the relation
between historical wind speeds by generally recursive tech-
niques can be utilized for short-term wind speed forecasting.
Many models have been developed to improve wind speed
forecasting accuracy, including autoregression (AR), autore-
gressive moving average (ARMA), autoregressive integrated
moving average (ARIMA), artificial neural networks (ANN),
fuzzy logic (FL), support vector machine (SVM), and spatial-
temporal models [16]. Torres et al. [17] used ARMA and
persistence models to forecast the hourly wind speed up to
10 h ahead.TheARIMAandANNapproaches have been used
for wind speed time series forecasting on the south coast
of the state of Oaxaca, Mexico [18]. Three types of ANN
models, namely, adaptive linear element, back propagation,
and radial basis function, were investigated for hourly mean
wind speed forecasting at two observational sites in North
Dakota [19]. A fuzzy model was proposed for wind speed
prediction and provided wind speed forecasts from 30min
to 2 h ahead [20]. Zhou et al. [21] suggested a systematic
study on fine-tuning least-squares support vector machines
(LS-SVM) model parameters for one-step-ahead wind speed
forecasting for the first time. A methodology to characterize
the stochastic processes applied for wind speed at different
geographical locations via scenarios was provided [22].

Moreover, hybrid models that hybridize multiple fea-
tures of different predictive models are usually adopted
for wind speed forecasting because this type of model can
comprehensively capture the intricate characteristics of wind
speed series. Combining several forecasting methodologies
is another strategy that can significantly improve predictive

performance by taking advantage of each method’s perfor-
mance with respect to data sets, capability of describing
nonlinearity and linearity, as well as prediction horizons;
these combined models can be superior to individual models
[12]. Li et al. proposed a hybrid model consisting of the
ANN and Bayesian approaches, and the results indicated that
the hybrid approaches produced forecasting errors that were
always smaller than those produced by ANN [23]. Monfared
et al. [24] developed an ANN and FL hybrid model to predict
actual wind speed time series sampled in Rostamabad from
2002 to 2005, which demonstrated that this approach requires
less computational time and provides better prediction per-
formance. Salcedo-Sanz et al. [25] combined a hybridized
ANN with a mesoscale model, and this combined strategy
produced superior forecasting results. Additionally, Cadenas
and Rivera investigated hybridmodels that consisted of ANN
and ARIMA and concluded that the hybrid models outper-
formed the individual ANN and ARIMA approaches [26].

Based on the aforementioned research, predictive models
with different relative weaknesses and strengths have been
widely studied and developed. Among these models, the
potential for applying the combined approaches over a much
wider application area has a special significance because
individual models perform well only under specific and
corresponding conditions and may therefore require the use
of different models [12]. In this paper, an intelligent hybrid
forecasting model based on support vector regression (SVR),
brainstorm optimization (BSO), and the Cuckoo search
(CS) algorithm is proposed. Firstly, to determine the spatial
and temporal relations of wind speed series collected from
different wind turbines, cross correlation (CC) analysis was
performed to discover information about the auto- and cross
correlations of thewind speed time series.Then, the proposed
hybrid models were applied for wind speeds prediction 1-
or 3-step ahead based on averaged hourly and 10min wind
speed series, respectively. The applicative case studies show
that the proposed approach has far better performance for
short-term wind speeds forecasting, which can assist wind
power scheduling and wind farm management.

The remainder of the paper is organized as follows.
Section 2 describes the related methodology. Section 3
presents the case study analysis. The conclusions are
summarized in Section 4. Finally, acknowledgments and
references are presented.

2. Methodology

2.1. Cross Correlation Analysis. In time series analysis, cross
correlation refers to the correlations between two time series
𝑋
1
and 𝑋

2
, while the autocorrelation of a random vector

𝑋
1
is the correlation of the series 𝑋

1
with itself. Cross

correlation is a measure of the similarity of two time series
as a function of a time-lag applied to one of them, with the
correlation ranging from−1 to +1.Moreover, cross correlation
is useful to determine the time delay between two time series;
the maximum value indicates the point in time where the
signals are best aligned [27].Detailed information about cross
correlation can be found in [28].
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2.2. Elman Recurrent Neutral Network (ERNN). The Elman
recurrent neural network (ERNN), first proposed by Elman
in 1990 [29], is a partial recurrent network model and lies
somewhere between a classic feed-forward perception and
a pure recurrent network. Recurrent neural networks have
superior temporal and spatial behaviors, such as stable and
unstable fixed points and limits cycles, and chaotic behaviors.
These behaviors can be utilized to model certain cogni-
tive functions, such as associative memory, unsupervised
learning, self-organizing maps and temporal reasoning [30].
Detailed information about ERNN can be found in [31].

The recurrent Elman architecture was chosen for this
comparative work due to its nonlinear mapping ability,
which can also be used to describe wind speed nonlinear
patterns. A simple Elman artificial neural network structure
is described in Figure 1. Because the dynamic characteristics
of an Elman network are provided by internal connections,
it does not need to use the state as an input or training
signal, which makes ERNN superior to static feed-forward
networks and explains why it is widely used in dynamic
system identification.

2.3. Support Vector Regression (SVR). SVR is an adaptation of
a recently developed machine learning theory (MLT) known
as support vector machines (SVM) proposed by Vapnik et al.
[32]. In the SVR model, a regression function 𝑦 = 𝑓(𝑥) is fit,
and it is then applied to predict the outputs based on a new
input set. A brief review of SVR is introduced as follows [33–
35].

Step 1. A nonlinear mapping 𝜑(⋅) : R𝑛 → R𝑛ℎ is defined to
solve a nonlinear regression problem bymapping the training
sets {(x

𝑖
, 𝑦
𝑖
)}
𝑁

𝑖=1
into a high dimensional feature spaceR𝑛ℎ .

Step 2. In the high-dimensional feature space, the nonlinear
regression problem in the lower dimension space is trans-
formed into a linear one by a linear function, namely, the SVR
function

𝑓 (x) = w𝑇 ⋅ 𝜑 (x) + 𝑏, (1)

where𝑓(x) denotes the forecasting values and the coefficients
w (w ∈ R𝑛ℎ) and 𝑏 (𝑏 ∈ R) are adjustable.

Step 3. Define the empirical risk, 𝑅emp(𝑓),

𝑅emp (𝑓) =
1

𝑁

𝑁

∑

𝑖=1

Θ
𝜀
(𝑦
𝑖
,w𝑇𝜑 (x

𝑖
) + 𝑏) , (2)

where Θ
𝜀
(y, 𝑓(x)) is the 𝜀-intensive loss function given by

Θ
𝜀
(y, 𝑓 (x)) = {

󵄨󵄨󵄨󵄨𝑓 (x) − y󵄨󵄨󵄨󵄨 − 𝜀, if 󵄨󵄨󵄨󵄨𝑓 (x) − y󵄨󵄨󵄨󵄨 ≥ 𝜀

0, otherwise.
(3)

The 𝜀-intensive loss function is utilized to control the
sparsity of the solutions and the generalization of the models.

Step 4. Determine the overall training errors between the
training data and the 𝜀-insensitive loss function, which can be

x1 x2 xn

z1 z2 zn

c1

c2

cn

y1 y2 yn

b1

b2

Hidden layer

Input layer

Output layer

Contex layer

· · ·

· · ·

· · ·

...

Figure 1: Elman recurrent neural network structure.

defined as a quadratic optimization problem with inequality
constraints

Min
w,𝑏,𝜉∗,𝜉

𝑅
𝜀
(w, 𝜉∗, 𝜉) = 1

2
w𝑇w + 𝐶

𝑁

∑

𝑖=1

(𝜉
𝑖
+ 𝜉
∗

𝑖
) , (4)

subject to y
𝑖
− w𝑇𝜑 (x

𝑖
) − 𝑏 ≤ 𝜀 + 𝜉

∗

𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

w𝑇𝜑 (x
𝑖
) − y
𝑖
+ 𝑏 ≤ 𝜀 + 𝜉

𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

𝜉
∗

𝑖
, 𝜉
𝑖
≥ 0, 𝑖 = 1, 2, . . . , 𝑁.

(5)

Thefirst term in (4) is employed to regularizeweight sizes,
penalize large weights, and maintain regression function
flatness. The second term in (4) penalizes training errors of
𝑓(x) and y by exploiting the 𝜀-intensive loss function. Herein,
𝐶 is a parameter to balance those two terms. The training
errors below –𝜀 are denoted as 𝜉

𝑖
; otherwise they are denoted

as 𝜉∗
𝑖
.

Step 5. Obtain the parameter vector w by solving the
quadratic optimization problem defined in Step 4

w =

𝑁

∑

𝑖=1

(𝛽
∗

𝑖
− 𝛽
𝑖
) 𝜑 (x
𝑖
) , (6)

where 𝛽∗
𝑖
and 𝛽

𝑖
are the Lagrangian multipliers.

Step 6. Establish the SVR regression function by the follow-
ing equation:

𝑓 (x) =
𝑁

∑

𝑖=1

(𝛽
∗

𝑖
− 𝛽
𝑖
)𝐾 (x

𝑖
, x
𝑗
) + 𝑏,

𝐾 (x
𝑖
, x
𝑗
) = exp (−𝜆 󵄩󵄩󵄩󵄩󵄩x𝑖 − x

𝑗

󵄩󵄩󵄩󵄩󵄩

2

) , 𝜆 > 0,

(7)

where 𝐾(x
𝑖
, x
𝑗
) is the kernel function and 𝐾(x

𝑖
, x
𝑗
) = 𝜑(x

𝑖
) ∘

𝜑(x
𝑗
). In this paper, the radial basis function (RBF) was
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If()

End
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Keep the best solution;
Rank the solutions and find the current bests;

End while
Post process of results and visualization;
End

Pseudo code for CS algorithm

Generate initial population of n host nest,;

Replace j by the new solution

Le�y ∼ u = t−𝜆, (1 < 𝜆 ≤ 3)

a = a0(x
(t)
j − x(t)

i )

x(t+1)
i = x(t)

i + a ⊕ (𝜆)

Get a cuckoo randomly by Lévy flight

Levy

While (t < Max Generation or stop criterion)

Choose a nest among n(say, j) randomly

A fraction (Pa) of worst nest occurs;

A Lévy flight in 2-dimensional plane

Figure 2: The basic procedure of the CS algorithm [38, 41].

selected as the kernel function due to its strong capability
for nonlinearly mapping the training sets into an infinite-
dimensional space, which is suitable to handle nonlinear
relationship problems.

2.4. Cuckoo Search (CS) Algorithm. TheCS algorithm, which
was inspired by the breeding behavior of cuckoos, is a
metaheuristic algorithm recently developed by Yang and Deb
[36]. For an optimization problem, the quality or fitness of
a solution can simply be proportional to the value of the
objective function. In the present study, the CS algorithmwas
used for parameter optimization. The CS is described briefly
as follows.

When generating new solutions 𝑥(𝑡+1)
𝑖

for, say, a cuckoo 𝑖,
a Levy flight is performed

𝑥
(𝑡+1)

𝑖
= 𝑥
(𝑡)

𝑖
+ 𝑎 ⊕ Levy (𝜆) , (8)

where 𝛼 > 0 is a step size that should be related to the scales
of the problem of interest. Based on the constraints imposed
by the optimization problem, 𝛼must be tuned to the desired
step size. Usually, 𝛼 is utilized, as in the following equation
(9):

𝛼 = 𝛼
0
(𝑥
(𝑡)

𝑗
− 𝑥
(𝑡)

𝑖
) , (9)

where 𝛼
0
is the initial step change. The above equation

is essentially the stochastic equation for a random walk.
In general, a random walk is a Markov chain whose next
status/location only depends on the current location (the first
term in the above equation) and the transition probability
(the second term). The product ⊕ means entrywise multipli-
cation. This entrywise product is similar to that used in PSO,
but here the random walk via a Levy flight is more efficient
in exploring the search space, as its step length is ultimately
much longer.

The Levy flight essentially provides a random walk while
the random step length is drawn from a Levy distribution

Levy ∼ 𝑢 = 𝑡
−𝜆
, (1 < 𝜆 ≤ 3) , (10)

which has an infinite variance with an infinite mean. Here,
the steps essentially form a random walk process with

a power-law step-length distribution with a heavy tail. Some
of the new solutions should be generated by a Levy walk
around the best solution obtained so far, which will speed up
the local search. However, a substantial fraction of the new
solutions should be generated by far-field randomization,
whose locations should be far enough from the current best
solution; this will ensure that the system will not be trapped
in a local optimum (Figure 2).

2.5. The Brainstorm Optimization (BSO) Algorithm. We can
describe the brainstorm optimization (BSO) algorithm as
follows [37].

Step 1. Randomly select a population of 𝑛 individuals that are
feasible for the problem. An individual can be represented
by a vector 𝑥

𝑖
= (𝑥
𝑖1
, 𝑥
𝑖2
, . . . , 𝑥

𝑖𝑑
) 𝑖 = 1, 2, . . . , 𝑛, where 𝑑 is

the number of dimensions for the individuals. Generally, we
initialize the individuals by using𝑥

𝑖𝑗
= 𝑏
𝑙
+(𝑏
𝑟
−𝑏
𝑙
)⋅rand,where

𝑏
𝑙
and 𝑏
𝑟
represent the left boundary and the right boundary

of the variable and rand is a random value selected from 0 to
1.

Step 2. Divide the 𝑛 individuals into 𝑚 groups by using the
𝑘-means cluster method.

Step 3. Calculate the fitness function value for each individ-
ual and take the individual that has the best value in the group
as the center for the group.

Step 4. Randomly select a number value 𝑟
1
between 0 and

1 and compare it with a predetermined probability 𝑝
1
. If

𝑟
1
< 𝑝
1
, randomly select a group center and then randomly

generate an individual to replace it.

Step 5. To update the individuals, first randomly select a
number value 𝑟

2
from 0 to 1 and then continue according

the following description. If 𝑟
2
is less than a predetermined

probability 𝑝
2
, choose a random value 𝑟

3
between 0 and 1.

(a1) If its value is less than a stationary probability 𝑝
3
,

select the group center and add random values to it
for updating the individuals.
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(a2) Otherwise, choose an individual randomly from this
group and update it by adding a random value.

Otherwise, generate a random value 𝑟
4
between 0 and 1.

(b1) If its value is less than a stationary probability 𝑝
4
,

select two centers of two groups randomly and com-
bine them; then add random values to update the
individual.

(b2) Otherwise, choose two individuals from two selected
groups randomly and combine them, then add ran-
dom values to update the individual.

(b3) Compare the fitness function values obtained by
the new updated individuals with the corresponding
original individuals, then save the better one and
consider it as the new individual.

Step 6. Repeat Step 5 until the all of the individuals have been
updated.

Step 7. When the termination criterion has been reached, end
the process; otherwise, go to Step 2 and repeat.

It is clear that the individual update in Step 5 is vital to the
BSO process.The replacement of the individual in this step is
carried out by

𝑃updated = 𝑃selected + 𝜙 ∗ 𝑛 (𝜇, 𝜎) , (11)

where 𝑃selected and 𝑃updated represent the selected and updated
individual, respectively, 𝑛(𝜇, 𝜎2) is the normal random func-
tion of which 𝜇 is the mean and 𝜎

2 is the variance, and the
coefficient 𝜙 is determined by

𝜙 =
1

1 + exp [(0.5 ∗max iteration − current iteration) /𝑘]

∗ rand,
(12)

where max iteration and current iteration represent the
maximum iteration number and the current iteration num-
ber, respectively, rand is a value randomly chosen between 0
and 1, and 𝑘 is a predetermined value.

2.6. The Proposed BSO- and CS-Based Hybrid Model. In this
study, an intelligent hybrid model is proposed for short-term
wind speed forecasting by integrating intelligent optimization
algorithms with a support vector regression model with
inputs determined by spatial-temporal correlation analysis. It
is well known that the forecasting accuracy of a SVR model
largely relies on the reasonable assignment of the kernel
parameter 𝜎 and hyper parameter 𝐶. Therefore, the determi-
nation of these parameters is a significant issue [38].However,
there is neither a structural approach nor any shortage of
opinions on how to determine efficient parameters. A grid
search, which is a noninteractive traversal algorithm, is the
basic method for determining both the kernel parameter 𝜎
and hyper parameter 𝐶. The parameters largely depend on
the size of a grid. On the one hand, a confined grid can be well

suited for determining accurate parameters for SVR, but the
large workload and computational time results in poormodel
efficiency and practicability. On the other hand, use of a wider
grid rarely chooses precise parameters, which can then lead to
poor model performance. Lately, the problem of determining
a suitable kernel parameter and hyper parameter is often
solved using artificial intelligent optimization algorithms due
to their superiority in addressing optimization problems
when the objective function is nondifferentiable or has a great
number of local minima. Artificial intelligence optimization
algorithms have been proposed and rapidly developed. Thus,
to improve the forecasting efficiency and performance of
the SVR model, two recently developed artificial intelligence
algorithms (BSO and CS) were adopted to identify the SVR
parameters.

To determine accurate short-term wind speed forecasts
using an intelligent hybrid model ensemble, two different
SVR models were considered: BSO-SVR and CS-SVR. BSO-
SVR was utilized with an averaged hourly wind speed series
at sites 𝑆

1
and 𝑆
2
. BSO-SVR was used for 10min wind speed

prediction with 3-steps ahead. The main structures of the
proposed models are shown in Figure 3.

3. Case Study and Analysis

3.1. Performance Evaluation Criteria. To evaluate the per-
formance of the different models, three error evaluation
criteria,mean absolute error (MAE), rootmean squared error
(MSE), and the mean absolute percentage error (MAPE),
were adopted; the corresponding definitions are given by

MAE =
1

𝑇

𝑇

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑦 (𝑖) − 𝑦 (𝑖)
󵄨󵄨󵄨󵄨 ,

MSE =
1

𝑇

𝑇

∑

𝑖=1

(𝑦 (𝑖) − 𝑦 (𝑖))
2

,

MAPE =
1

𝑇

𝑇

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦 (𝑖) − 𝑦 (𝑖)

𝑦 (𝑖)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× 100%,

(13)

where 𝑦(𝑖) and 𝑦(𝑖) are the actual value and the forecasted
value at time 𝑖, respectively.

3.2. Wind Speed Data Description. In our case study, a wind
park located in a reference region in China was selected, and
10min wind speed series 𝑉

1
, 𝑉
2
, 𝑉
3
, 𝑉
4
over a period of time

were collected from four wind turbines installed at 𝑆
1
, 𝑆
2
,

𝑆
3
, 𝑆
4
in the park, respectively. Because the time units of the

wind speed time series are 10min, short-term forecasts at
future times that are multiple time units ahead are calculated.
As shown in Figure 4, the observed data reveal that the
wind speeds at the study sites 𝑆

1
, 𝑆
2
, 𝑆
3
, 𝑆
4
exhibited similar

fluctuations and trends.
The available wind speed data were divided into training

sets and test sets, which were utilized to determine the
model’s structure and to evaluate its predictive performance,
respectively. In this paper, we were able to assume that
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ideas;

𝜎

x
(t+1)
i

= x
(t)
i

+ a ⊕ Levy (𝜆)

a = a0(x
(t)
j

− x
(t)
i )

∼ u = t−𝜆 , (1 < 𝜆 ≤ 3)Levy

Step 1: get together a
brainstorming group;

Step 2: generate many ideas;
Step 3: pick up better ideas;
Step 4: generate more ideas;
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the object as clues, 

Step 7: have the owners to 
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Hourly wind speed forecasting

Shifted to another
area by long jump
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with smaller step

10-min wind speeds prediction

CS-SVR BSO-SVR

Prameter optimization

Feature space
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Input space
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mapping
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ideas generated in step 3;

generate more ideas;

Step 5: pick up several better

Y Y

𝜀

𝜀
𝜀

K(xx )
K(xi , xj) = exp(−𝜆‖ ‖xi − xj

2), 𝜆 > 0
f(x) =

N

∑
i=1

(𝛽∗
i − 𝛽i)K(xi , xj) + b

(a) SVR

(b) Cuckoo search algorith
(c) BSO algorithm

with 3-step ahead in site S3 and S4 in site S1 and S2

𝜀

𝜀

𝜀

Figure 3: The structure of the proposed intelligent hybrid models.

the distances between sites 𝑆
𝑖
and 𝑆
𝑗
(𝑖 ̸= 𝑗) are short, which

indicates that a wind speed value occurring at 𝑆
𝑖
at time 𝑡

may occur in 𝑆
𝑗
at the same time or at a delayed time. As

a result, it is reasonable to assume that there are strong and
weaker spatial-temporal relations between two wind speed
series. The native predictor suggests that as the forecasting
time lag increases, the correlation with past measurements
becomes negligible [39]. Before constructing the models,
we first examined the effects of spatial-temporal correlation
between two sites.

3.3. Spatial-Temporal Correlation (STC) Analysis. A cross
correlation-based STC analysis was performed to explore the
time delays between the different wind speeds (𝑉

𝑖
and 𝑉

𝑗
),

which were referenced for the model inputs; this is critical
for accurate forecasting model building.

From Figure 5, the coefficients between 𝑆
1
and 𝑆

2
, 𝑆
1

and 𝑆
3
, 𝑆
1
and 𝑆

4
, 𝑆
2
and 𝑆

3
, 𝑆
2
and 𝑆

4
, and 𝑆

3
and 𝑆

4
, are

0.9931, 0.9520, 0.9342, 0.8937, 0.8973 and 0.9577, respectively.
This indicates that the spatial relationships between two sites
are highly correlated, as the corresponding coefficients are
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Figure 4: Observed wind speed series 𝑉
1
, 𝑉
2
, 𝑉
3
, 𝑉
4
at the corresponding sites 𝑆

1
, 𝑆
2
, 𝑆
3
, 𝑆
4
, which are illustrated in subplot (a), (b), (c), (d),

respectively.

Table 1: The quantified cross correlation values.

Lags Quantified cross correlation (QCC)
(𝑉
1
, 𝑉
1
) (𝑉

1
, 𝑉
2
) (𝑉

1
, 𝑉
3
) (𝑉

1
, 𝑉
4
) (𝑉

1
, 𝑉
5
) (𝑉

2
, 𝑉
2
) (𝑉

2
, 𝑉
3
) (𝑉

2
, 𝑉
4
) (𝑉

3
, 𝑉
3
) (𝑉

3
, 𝑉
4
)

−10 0.77 0.71 0.77 0.76 0.72 0.74 0.74 0.80 0.79 0.80
−9 0.78 0.72 0.78 0.78 0.73 0.75 0.75 0.82 0.81 0.82
−8 0.80 0.73 0.80 0.79 0.75 0.76 0.76 0.83 0.83 0.83
−7 0.82 0.76 0.82 0.81 0.77 0.78 0.78 0.86 0.84 0.85
−6 0.84 0.78 0.84 0.83 0.80 0.79 0.80 0.87 0.86 0.87
−5 0.86 0.82 0.85 0.85 0.81 0.80 0.81 0.88 0.88 0.88
−4 0.88 0.82 0.87 0.87 0.84 0.82 0.83 0.90 0.89 0.90
−3 0.90 0.84 0.88 0.88 0.86 0.83 0.85 0.91 0.91 0.91
−2 0.92 0.86 0.90 0.90 0.89 0.85 0.87 0.93 0.92 0.93
−1 0.95 0.89 0.92 0.92 0.93 0.87 0.89 0.95 0.94 0.96
0 1.00 0.93 0.95 0.93 1.00 0.89 0.90 1.00 0.96 1.00
1 0.95 0.90 0.92 0.92 0.93 0.86 0.88 0.95 0.94 0.96
2 0.92 0.87 0.90 0.90 0.89 0.84 0.86 0.93 0.92 0.93
3 0.90 0.85 0.88 0.89 0.86 0.83 0.85 0.91 0.91 0.91
4 0.88 0.83 0.87 0.87 0.86 0.81 0.83 0.90 0.89 0.90
5 0.86 0.81 0.86 0.86 0.81 0.79 0.81 0.88 0.88 0.88
6 0.84 0.80 0.84 0.84 0.80 0.78 0.79 0.87 0.86 0.87
7 0.82 0.78 0.83 0.83 0.77 0.76 0.77 0.86 0.85 0.85
8 0.80 0.76 0.81 0.81 0.75 0.74 0.76 0.83 0.83 0.83
9 0.78 0.74 0.79 0.80 0.73 0.73 0.75 0.82 0.82 0.82
10 0.77 0.73 0.78 0.79 0.72 0.71 0.73 0.80 0.80 0.80

approximately equal to or larger than 0.9. Moreover, certain
winds measured at 𝑆

𝑖
are expected to have arrived at 𝑆

𝑗
after a

time delay and, to some extent, with decreasing wind speed.
A traditional method of identifying the time delays between
a local site and other sites, is to consider the cross correlation
derived from the wind speeds. Figure 6 intuitively illustrates
the CC between 𝑉

𝑖
and 𝑉

𝑗
for different time delays, and the

quantified values are listed in Table 1. In Figure 6, the degree
of correlation is indicated using distinctive colors. The red or
hot color indicates a stronger correlation, while the blue color
indicates a weaker correlation. When the lag is equal to zero,
it implies a spatial correlation of (𝑉

𝑖
, 𝑉
𝑗
) with no time delay.

Moreover, if the lag 𝑘 is larger or smaller than zero, a temporal

correlation exists between 𝑉
𝑖
and 𝑉

𝑗
with one time delayed

or prior to the other. As can be visualized from each subplot
of Figure 6, if the winds at site 𝑆

𝑖
are strong at 𝑆

𝑗
, there is a

high correlation between 𝑉
𝑖
and 𝑉

𝑗
for a time delay within 5

units with the color of the region ranging from red to color.
Additionally, the majority of the quantitative correlations of
(𝑉
𝑖
, 𝑉
𝑗
) for different time delays are 0.8, which demonstrates

a high spatial-temporal correlation (STC) between 𝑆
𝑖
and 𝑆
𝑗
.

In this study the principal objective is to forecast wind
speed at site 𝑆

𝑖
multiple time steps ahead. Then, we assume

that the wind speed forecast series 𝑉
𝑖
should be composed

of the historical data of the wind speeds at 𝑆
𝑖
and the

wind speeds at previous times measured at the other sites
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Figure 5: Scatter mapping of the measured wind speeds𝑉
𝑖
and𝑉

𝑗
at the corresponding sites 𝑆

𝑖
and 𝑆

𝑗
(𝑖 ̸= 𝑗). (a)–(f) denotes the relationship

between 𝑉
1
and 𝑉

2
, 𝑉
1
and 𝑉

3
, 𝑉
1
and 𝑉

4
, 𝑉
2
and 𝑉

3
, 𝑉
2
and 𝑉

4
, and 𝑉

3
and 𝑉

4
, respectively.
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Figure 6: Cross correlation (CC). (a)–(j) denote cross correlation between two wind series𝑉
𝑖
and𝑉

𝑗
.𝑉
𝑖
, 𝑉
𝑗
denote the measured wind speeds

at sites 𝑆
𝑖
and 𝑆

𝑗
(𝑖, 𝑗 = 1, 2, 3, 4). (a) RC(𝑉

1
, 𝑉
1
); (b) RC(𝑉

1
, 𝑉
2
); (c) RC(𝑉

1
, 𝑉
3
); (d) RC(𝑉

1
, 𝑉
4
); (e) RC(𝑉

2
, 𝑉
2
); (f) RC(𝑉

2
, 𝑉
3
); (g) RC(𝑉

2
, 𝑉
4
);

(h) RC(𝑉
3
, 𝑉
3
); (i) RC(𝑉

3
, 𝑉
4
); (j) RC(𝑉

4
, 𝑉
4
).
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𝑆
𝑗
(𝑗 ̸= 𝑖, 𝑗 = 1, 2, 3, 4). Thereby, an advanced predictive

model providingmultiple-stepswind forecasts, can be formu-
lated as follows:

𝑉̂
𝑖
(𝑡 + ℎ) = 𝑓

𝑖
(𝑉
1
(𝑡) , 𝑉
2
(𝑡) , 𝑉
3
(𝑡) , 𝑉
4
(𝑡)) , (𝑖 = 1, 2, 3, 4) ,

(14)

where 𝑉̂
𝑖
(𝑡 + ℎ) denotes the ℎ-step ahead forecasting wind

speed, and 𝑉
1
(𝑡), 𝑉
2
(𝑡), 𝑉
3
(𝑡) and 𝑉

4
(𝑡) are the past values of

the measured wind speeds.

3.4. Analysis of Forecasting Results. In this section, four cases
were used to validate the performance of the proposed
BSO-based and CS-based SVR models. Firstly, the examined
10min wind speed data at sites 𝑆

1
and 𝑆

2
were averaged

over 1 h intervals, with 258 pairs of data for model training
and 30 pairs for model testing. Furthermore, owing to the
cross correlation, the input sets were lagged time steps of the
current values of thewind speeds at the local and remote sites.

For SVR-based models, to avoid excessive errors during
the training stages, the cross validation (CV) technique was
utilized. It is well known that the predictive accuracy of a
SVR model largely relies on reasonable values of the kernel
parameter 𝜎 and hyper parameter 𝐶. Then, for the purpose
of improving the forecasting capacity of the SVR, the BSO
algorithm and the CS method were used to optimize the
parameter selection of the SVR model. The radial basis
function (RBF) was selected as the kernel function because
of its ability to nonlinearly map the training sets onto an
infinite dimensional space, which is suitable to handle linear
and nonlinear relationship problems.

For the sake of comparison, in addition to the proposed
model another model was tested, namely the Elman recur-
rence neural network (ERNN). The ERNN, a modified form
of the artificial neutral networks with an internal layer of self-
recurrent neurons, is a nonlinear mapping function that can
capture the nonlinearity of the studied wind speed series.
Then, for fair comparison, both models with their corre-
spondingmapping capacity were chosen for comparisonwith
the proposed model. Based on the STC analysis discussed
in the above subsection, the inputs to the models were the
wind values from each one of the four measurement sites at
several lag times. Thereby, both the local and the remote past
information were introduced into these models for adequate
periods of 1 h and 30min behind.

3.4.1. BSO-Based SVR Forecasting Model: Two Cases for Aver-
aged over 1 h Interval. Herein, we established the proposed
and comparison models based on the same wind speed
dataset and obtained simulation and forecasting results to
compare the models. Referring to Section 3.1, the evaluation
criteria adopted in this paper are MAPE, MAE andMSE.The
forecasted values and errors for the proposed BSO-SVR, basic
SVR and ERNNmodels are shown in Figure 7 and Table 2.

As shown in Figure 7, over the predictive horizon the tim-
ing and range of variation of the forecasted series approximate
the measured series, but some forecasted values slightly over-
or underestimate the actual values. To evaluate the models’
forecasting performance quantitatively, the evaluation errors

Table 2: Forecasting errors over the prediction horizon: averaged
over 1-h interval for Case 1 and Case 2.

Criteria Case 1 Case 2
BSO-SVR SVR ERNN BSO-SVR SVR ERNN

MAE 0.37 0.79 0.89 0.55 1.03 1.09
MSE 0.52 1.03 1.05 1.23 1.75 1.74
MAPE 4.56% 9.59% 10.61% 7.35% 13.49% 14.23%

Table 3: Forecasting errors over the prediction horizon: averaged
over 10-min interval for Case 3 and Case 4.

Criteria Case 3 Case 4
CS-SVR SVR ERNN CS-SVR SVR ERNN

MAE 0.63 0.72 0.63 0.47 0.83 0.78
MSE 0.83 0.89 0.73 0.61 0.98 1.02
MAPE 7.13% 8.20% 7.20% 6.01% 8.15% 7.73%

over the prediction horizon are listed in Table 2. For both
case studies, the smallest values of MAPE, MAE, and MSE
were obtained by the proposed BSO-SVR model, which
demonstrates that BSO-SVR outperforms the other two
models. As shown in Figures 7(c)–7(e) and 7(f)–7(h), for
both cases the forecasting errors obtained by the BSO-SVR
model were much lower than that of single SVR model;
MAPE, MAE and MSE decreased by 5.03%, 0.42 (m/s) and
0.51 (m/s) for Case 1, and 6.14%, 0.58 (m/s) and 0.52 (m/s) for
case 2, respectively. Lower values of the error criteria indicate
better forecasting results. Thus, it can be concluded that the
forecasting performance of the BSO-based SVR model was
significantly improved because of the strong ability of BSO
algorithm to optimize parameters, and the proposed method
can be well utilized for short-term wind speed forecasting
over 1 h ahead.

3.4.2. CS-Based SVR Forecasting Model: Two Cases for Aver-
aged over 10min Interval. The Cuckoo Search (CS) SVR
model, which is based on a recently proposed artificial
intelligence optimization algorithm, was studied using the
10min wind speeds at sites 𝑆

3
and 𝑆

4
. Forecasts using the

ERNN, single SVR and the proposed CS-SVR are compared
in Figure 8 and Table 3.

As shown in Figure 8, the timing and range of variation
of the forecasted series mostly agree with the actual series,
but some forecasted values were significantly underestimated
and overestimated. Each model’s forecasting performance
can be quantitatively evaluated based on the errors over the
performance horizon. Table 3 gives the predictive error values
for both case studies; the smallest value of MAPE, MAE,
and MSE was obtained by the proposed CS-SVR model,
which demonstrates that the CS-SVR had better forecasting
performance. As listed in Table 3, the forecasting errors
obtained by CS-SVR model were much smaller than those
of the single SVR model; MAPE, MAE and MSE decreased
by 1.07%, 0.09 (m/s) and 0.06 (m/s) for Case 1, and 2.14%,
0.36 (m/s) and 0.37 (m/s) for case 2, respectively. However,
the forecasting errors of the ERNN model are approximately
the same as the CS-SVR errors, which means that ERNN
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Figure 7: Forecasting values over the prediction horizon: averaged over 1 h interval for Case 1 (a) and Case 2 (b). (c)–(h): the corresponding
histogram of the forecasting errors. (a) and (f): MAE; (d) and (g): MSE; (e) and (h): MAPE %.

performed well in Case 3. These results do not indicate that
a particular method was determined to be superior to the
others; model performance under specific conditions should
be analyzed and understood, and incremental improvements
should be made based on the knowledge gained [40]. How-
ever, on the whole, the CS-based SVRmodel was significantly
improved, and the proposedmethod can be utilized for short-
term wind speed forecasting over 45min ahead.

The proposed BSO-SVR forecastingmodel outperformed
the other two models when using average hourly wind speed
data. The CS-SVR model performed well in 10min wind
speed forecasting. Based on the STC analysis results, we
believe that the developed two models can be applied to
the other two data sets because of their similar distributions
and statistical characteristics.

4. Conclusions

As one of the promising forms of renewable energy, wind
power has been growing rapidly over the world. Given
the significant influence of wind speed on wind power,
considerable efforts have been devoted to wind speed predic-
tion.

In this study, two intelligent hybrid models are proposed
for short-term wind speed forecasting by integrating intelli-
gent optimization into a SVR model with inputs determined
by a CC-based analysis of spatial-temporal relationships.
To determine the spatial and temporal relations between
wind speed series collected from different wind turbines, CC
analysis provided adequate information about the auto- and
cross correlations of the wind speed time series. For accurate
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short-term forecasts of wind speeds using an intelligent
hybrid model ensemble, two different SVR models were
considered: BSO-SVR and CS-SVR. BSO-SVR was used
with averaged hourly wind speed series at sites 𝑆

1
and 𝑆

2
.

BSO-SVR was used for 10min wind speed prediction for
3-steps ahead. The results of this study demonstrated that
the proposed hybrid models were efficient when conducting
short-term wind prediction compared to the single SVR
and ERNN models, which indicates that the hybrid mod-
els can improve model prediction and enhance forecasting
efficiency.
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Coast of Oaxaca, México,” Renewable Energy, vol. 32, no. 12, pp.
2116–2128, 2007.

[19] G. Li and J. Shi, “On comparing three artificial neural networks
for wind speed forecasting,” Applied Energy, vol. 87, no. 7, pp.
2313–2320, 2010.

[20] I. G. Damousis, M. C. Alexiadis, J. B. Theocharis, and P. S.
Dokopoulos, “A fuzzy model for wind speed prediction and
power generation in wind parks using spatial correlation,” IEEE
Transactions on Energy Conversion, vol. 19, no. 2, pp. 352–361,
2004.

[21] J. Zhou, J. Shi, and G. Li, “Fine tuning support vector machines
for short-term wind speed forecasting,” Energy Conversion and
Management, vol. 52, no. 4, pp. 1990–1998, 2011.

[22] J. M.Morales, R. Mı́nguez, and A. J. Conejo, “Amethodology to
generate statistically dependent wind speed scenarios,” Applied
Energy, vol. 87, no. 3, pp. 843–855, 2010.

[23] G. Li, J. Shi, and J. Zhou, “Bayesian adaptive combination of
short-term wind speed forecasts from neural network models,”
Renewable Energy, vol. 36, no. 1, pp. 352–359, 2011.

[24] M.Monfared, H. Rastegar, and H.M. Kojabadi, “A new strategy
for wind speed forecasting using artificial intelligent methods,”
Renewable Energy, vol. 34, no. 3, pp. 845–848, 2009.

[25] S. Salcedo-Sanz, E. G. Ortiz-Garćıa, A. Portilla-Figueras, L. Pri-
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