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FINANCIAL ECONOMICS | RESEARCH ARTICLE

Connectedness of cryptocurrencies and gold 
returns: Evidence from frequency-dependent 
quantile regressions
Peterson Owusu Junior1, Anokye M. Adam2* and George Tweneboah1

Abstract:  This paper explores the symmetric and asymmetric dependency structure of 
decomposed return series of Gold and eight cryptocurrencies to establish the hedging 
and diversification potentials of these asset classes. Daily data spanning 30 April 2013 
to 18 April 2019 are employed within the Ensemble Empirical Mode Decomposition and 
Quantile-in-Quantile regression techniques. Our empirical results provide evidence that 
cryptocurrencies and Gold can both hedge and diversify for each other at different 
conditional distributions of their returns. We also find that cryptocurrencies are not 
purely speculative but can be driven by medium- and long-term fundamentals. In 
addition, both Gold and cryptocurrencies can be hedge and diversifiers for other 
traditional asset classes such as crude oil, fiat currencies, and other commodities.

Subjects: Economics; Finance; Investment & Securities  

Keywords: gold; cryptocurrencies; ensemble empirical mode decomposition; quantile-on- 
quantile; regression 

Jel classificaation: G11; G15; G28: O17

1. Introduction
Digital currencies which rely on cryptographic proofs for confirmation of transactions referred to as 
cryptocurrencies (cryptos) emerged in 1983 following the seminar paper of (Chaum, 1983). These 
currencies differ from fiat currencies by its unique combination of three features: ensuring limited 
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anonymity, independence from a central authority, and double-spending attack protection. The 
interest on cryptos heightened following achievement of these three features by Nakamoto (2008) 
in the paper “A Peer to Peer Electronic Cash System” and the subsequent introduction of Bitcoin on 
3 January 2009 (Lansky, 2018). As of April 2019, over 2000 cryptos were in existence compared to 
a little above 600 in January 2016 (Lansky, 2018) and 1622 as of May 2018 (Klein et al., 2018), with 
a total market capitalisation of over 240 USD billion. This signifies a rapid growth in a short time span. 
According to Klein et al. (2018), cryptos have become attractive due to embodied innovative technol
ogy, high-security architecture, prosperity in functionalities, and investment opportunity as an asset.

The emergence of cryptos has widened the investment and diversification platforms available to 
global investors. Cryptocurrencies have been likened to gold, which for years have been used as 
a hedge and safe-haven against assets like stocks, bonds, and other monetary assets (Baur & Lucey, 
2010; Baur & McDermott, 2010, 2016; Klein et al., 2018). Research on the potential of some cryptos 
(usually Bitcoin) to act as a hedge and safe-haven similar to gold has emerged (Bouri, Gupta et al., 
2017; Bouri, Jalkh et al., 2017). They have become recognised as a new gold in digital form because of 
similarities in traits as highlighted in Dyhrberg (2016). These similarities between cryptos and gold 
include scarcity, the cost involved in the extraction, and non-interference or control by government. 
Cryptocurrencies, however, could differ from gold by exhibiting the characteristics of fiat currency, 
making them hybrid commodities. As a choice of alternative investment, Das and Kannadhasan 
(2018) posit that risk-averse investors may prefer gold, however, investors with speculative motive 
may opt for cryptocurrency, such as Bitcoin. Such dynamics occasion the need to explore further and 
generate a better understanding of the dynamic interactions between cryptos and gold.

This has generated a plethora of studies examining the interdependency structure of some 
cryptos (mostly, Bitcoin) and gold prices (Das & Kannadhasan, 2018; Dyhrberg, 2016; Klein et al., 
2018; Zwick & Syed, 2019). However, the price generation process involves multiple factors that 
relate to economic characteristics of the structure of these markets which make it difficult to 
understand (Di Matteo et al., 2003). The complexity of the price generation process interrogates 
the validity of natural law of scale-invariance or fractals of a self-similar process to reflect the 
behavioural market theory known as the heterogeneous market hypothesisrogeneous market 
hypothesis (HMH) (Müller et al., 1993). The HMH sees market participants as heterogeneous with 
different information, objectives, and varying investment horizons. Such market participants react 
to the information at different times, which makes market data mixed and noisy. This causes the 
price series of cryptocurrency and gold to exhibit non-linearity, non-stationarity, and long memory.

It is clear that the potential of non-linearity in the data generating process of these prices renders 
the use of classical linear models inappropriate. The complex nature of such time series has increased 
time-frequency representations such as Short-time Fourier transform (Yunhong et al., 1998), Wavelet 
transform (Hu et al., 2009), and adaptive optimum kernel time-frequency representation (Liao et al., 
2015; Wang et al., 2011) in modelling the behaviour of the series by determining the frequencies 
present, the strength of the frequencies, and their patterns over time (Nava et al., 2018b, 2018a). 
However, these methods are deficient in handling the complex dynamics of these types of time 
series. For example, Fourier analysis is effective in studying periodic and stationary time series whose 
properties do not change much over time while wavelet transform is inaccurate in detecting the 
event under noisy conditions (Xiao et al., 2017). In addition, these methods require a priori-basis 
selection which confounds the economic interpretation or meaning of the analysis.

Ostensibly, these methods have been used by previous studies in analysing the relationships 
between cryptos and gold prices in spite of the weakness outlined. For example, Das and 
Kannadhasan (2018) employed wavelet-based approach, Zwick and Syed (2019) used threshold 
regression model while Klein et al. (2018) utilized BEKK-GARCH to examine the relationship 
between Bitcoin and gold. This leads to inaccurate identification of hidden structures embedded 
in the data, the validity of a conclusion drawn from the analysis, and its policy implications.
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Recently, the empirical mode decomposition (EMD) method (R. D. Huang et al., 1996; N. E. Huang 
et al., 1999; Huang, 1998) for analysing the non-linear and non-stationary signal data is proposed. 
Unlike the previous methods, such as the wavelet analysis and spectrum analysis, EMD eliminates the 
need for an apriori basis selection and addresses the weakness of competing model to correctly 
identify the hidden structures embedded in the data. According to Huang (1998), the EMD technique 
assumes that the financial time series has many intrinsic mode functions (IMFs) of different oscilla
tions which must satisfy two conditions: (1) it has the same number of extremum and zero-crossing or 
differs by one at the most and (2) it is symmetric with the local zero mean. In spite of these strengths, 
the standard EMD suffers from mode-mixing making physical meaning of individual IMF unclear. As 
a way of improvement, the ensemble empirical mode decomposition (EEMD) which corrects the issue 
of mode-mixing is introduced (Wu & Huang, 2009). The EEMD has been recently applied to financial 
time series decomposition (Li et al., 2018; Wu & Huang, 2009; Xu et al., 2016; N. Zhang et al., 2017).

This study follows Bouri, Gupta et al. (2017) and Das and Kannadhasan (2018) to analyse the 
asymmetric and symmetric dependency structure of decomposed series by quantile-in-quantile 
regression (QQR) but deviates from these studies by using EEMD instead of wavelets decomposition. 
Bouri, Gabauer et al. (2020) also examines the volatility connectedness of cryptocurrencies in the 
midst of investor happiness using the QQR technique without EEMD decomposition (see also 
Tweneboah et al., 2020). Owusu Junior et al. (2020), on the other hand, employ both the EEMD and 
QQR on spot and futures of energy and precious metal prices in India. The advantage of this method 
lies in the strength of EEMD to efficiently decomposed non-linear and non-stationary series which 
improve the quality of the decomposed series. The paper makes two contributions to literature. First, to 
our knowledge this the first paper to employ EEMD-based QQR to analyse the dependency structure of 
cryptos and gold. Second, although there are more than 2000 cryptos available, the extant literature 
concentrated on mostly Bitcoin, this study expands the discussion to seven other cryptos based on 
a longer span of data available. Owusu Junior and Tweneboah (2020) employ the EEMD-based QQR to 
examine the asymmetric linkages between major African stock returns and exchange rates.

Our empirical results reveal that cryptos and gold can both hedge and diversify for each other at 
different conditional distributions of their returns. We also find that cryptos are not purely spec
ulative but can be driven by medium- and long-term fundamentals. In addition, both gold and 
cryptos can be hedge and diversifiers for other traditional asset classes such as oil, currencies, and 
other commodities.

2. Models and methodologies

2.1. Ensemble empirical mode decomposition (EEMD)
We employ the ensemble empirical mode decomposition (EEMD), QR, and QQR techniques for our 
analysis. This involves a two-step approach by which we extract intrinsic mode functions (IMFs) 
from gold and returns of the selected cryptos with EEMD. We then proceed to estimate bi- 
directional regressions with QR the QQR methods at different frequencies. The IMFs, representing 
different time scales, are important in this study given the non-linearity and non-stationarity 
within our series (Ivanov, 2013).

As a potential successor of empirical mode decomposition (EMD), the EEMD improves the former 
by an objective intermittence test on a white noise-added signal (data) which allows the mean to 
be treated as the final true results (Wu & Huang, 2009). The EEMD sifts through the original series 
with a sufficient number of iterations. With the added white noise, it provides a uniform reference 
in the time-frequency space essential in this study and in line with the EEMD. We provide a brief 
description of the EEMD methodology based on Wu and Huang (2009).

The EEMD defines the IMF components as the mean of an ensemble of trials, where each is 
made of the signal (data) and a white noise of finite amplitude. In generic terms, all data x tð Þ are 
a sum of signal (that is actual data, s tð Þ) and noise n tð Þ so that 
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x tð Þ ¼ s tð Þ þ n tð Þ: (1) 

While many data analysis techniques have failed to remove this noise component, the EEMD adds 
white noise to remove weak signals (to keep the true signal). This is based on inspirations from 
Flandrin et al. (2004), Gledhill (2003), and Wu and Huang’s (2009) EEMD improves upon EMD and 
the works of the above authors by using the cancellation (effects) principle1 associated with an 
ensemble of noise-added cases to improve results. This improvement stems from overcoming the 
problems of scale separation and mode mixing2 associated with the EMD without a subjective test 
(known as noise-assisted data analysis (NADA)) on the original data. Scale separation is a problem 
linked to the intermittency test aimed at fixing mode mixing problem based on a subjective 
selection of scales (Wu & Huang, 2009).

From Equation (1) an ith artificial observation, 

xi tð Þ ¼ x tð Þ þ ωi tð Þ (2) 

is realised by adding a white noise of different realisations, ωi tð Þ which avoids mode mixing which 
provides a relatively uniform reference scale distribution to facilitate EMD.

The development of EEMD relies on the properties of EMD of Huang Norden et al. (1998) and 
N. E. Huang et al. (1999) as follows:

(1) Add a white noise to the targeted data to arrive at xi tð Þ

(2) Decompose xi tð Þ into IMFs

(3) Iterate 1 and 2 with varying white noise series and

(4) Obtain the (ensemble) means of corresponding IMFs of the decomposition as the final result.

The desirable features of the EEMD are that the randomly added white noise series will cancel out 
each other in the final rendition of the respective IMFs. Hence, mean IMFs reside within the natural 
dyadic filter windows which sidesteps the mode mixing problem. The largest number of IMFs si 

(and one residual r) of a data set is approximately log2N where N denoted the total number of data 
points. Thus, r can be represented as si � si � 1ð Þ.

2.2. The QR and QQR approaches
The QQR technique is the non-parametric version of quantile regression that empirically justifies 
the conditional quantile relationship between two or more variables. The QQR technique is 
assumed to combine one of quantile regression and non-parametric estimators. To study bearish 
and/or bullish relationship between gold and cryptocurrencies, the QQR technique seems appro
priate. In terms of price patterns, quantiles can describe asymmetry between high and low returns 
as well as capturing possible non-stationarity in the series. In this study, we look at this nexus 
starting with 

GRt ¼ βθ CRtð Þ þ uθ
t (3) 

where GRtand CRt denote the gold and cryptocurrency returns at period t, θ is the θth quantile of 
the conditional distribution of GRtand uθ

t is the error quantile whose θth conditional quantile is 
made-up to be zero, and βθ �ð Þ represents the slope of this relationship. One can view Equation (3) 
as the quantile regression, from which QQR can be derived.

The Equation (3) can be extended by a first-order Taylor expansion of a quantile ofCRτ as follows: 

Owusu Junior et al., Cogent Economics & Finance (2020), 8: 1804037                                                                                                                               
https://doi.org/10.1080/23322039.2020.1804037                                                                                                                                                       

Page 5 of 19



βθ CRtð Þ � βθ CRτð Þ þ βθ0 CRτð Þ CRt � CRτð Þ (4) 

whereβθ0explains the partial derivative of βθ CRtð Þ, indicative of a marginal effect as the slope. We 
see that θ is the functional form of βθ CRτð Þ and βθ0 CRτð Þ while τ is the functional form ofEX and EXτ, 
hence θ and τ are the functional forms of βθ CRτð Þ and βθ0 CRτð Þ. If we represent βθ CRτð Þ and βθ0 CRτð Þ

by β0 θ; τð Þ andβ1 θ; τð Þ, respectively, then 

βθ CRtð Þ � β0 θ; τð Þ þ β1 θ; τð Þ CRt � EXτð Þ (5) 

can suffice. By substituting Equation (5) into (3), we arrive at the Equation (6) as follows: 

GRt ¼ β0 θ; τð Þ þ β1 θ; τð Þ CRt � CRτð Þ þ uθ
t|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�ð Þ

(6) 

where, (*) gives the conditional quantile of θth of gold returns. Further, it reveals the actual associa
tion between the quantile of cryptocurrency returns (θth) and the quantile of gold returns (τth) of 
parameters β0 and β1 with indices of θ and τ. The QQR is based on linear regression in the 
neighbourhood of CRτ at which point stationarity can be relaxed (see Bouri, Gabauer et al., 2020; 
Tweneboah et al., 2020). Further, we can imply local stationarity from Baruník & Křehlík (2018). Hence, 
the QR and QQR estimations can be performed without the need for the series to be stationary.

As in ordinary least squares (OLS), a similar minimisation is applied to arrive at Equation (7) 

min
b0 ;b1

∑
n

i¼1
ρθ GRt � b0 � b1 cCRt � cCR

τ� �h i
K

Fn cCRt

� �
� τ

h

0

@

1

A (7) 

where ρθ uð Þ is the quantile loss function representing as ρθ uð Þ ¼ u θ � I u<0ð Þð Þ, i is the function of 
indicator, K �ð Þ is the kernel density function and h denotes kernel density function bandwidth para
meter. The kernel function weights the observations ofEXτ where the minimal weights are negatively 

related to the distribution function of cCRt as Fn cCRt

� �
¼ 1

n ∑
n

k¼1
IðcCRk<cCRtÞ. In line with Sim and Zhou 

(2015) we use h ¼ 0:05to0:95½ �for empirical QQ analysis which is the bandwidth for the quantiles. The 
bandwidth is the partition of the quantiles and determines the smoothness of the estimation results. 
Smaller bandwidths are preferred to larger ones as the latter may induce bias in the estimated 
coefficients. We note that in the case where gold is the independent variable the equations can be 
modified accordingly. We use the least-squares cross-validation (LSCV) kernel with lag 1, based on 
Breslaw (1992) for estimations in this paper.

By using QR and QQR to quantify the relationship between gold and cryptos with IMFs as inputs, not 
only are we able to capture the time-varying non-linear non-stationary link, we are also able to infer 
the nexus during both bear and bull return episodes at short-, medium-, and long-terms. As the first 
of a few studies of this nature, our paper provides fresh insights for different types of gold investors to 
satisfy their profit-maximising or risk-minimising goals.

3. Data and preliminary analysis
We present the sampled cryptos in Table 1. Selection is based on a large span of available data for 
which the same number of IMFs are obtained. We also consider the market capitalisation in the 
selection of cryptos. For example, Bitcoin (64%), Ethereum (22%), Ripple (5%), Litecoin (2%), and 
others (8%) (Y. Zhang et al., 2019). All cryptos data are gleaned from CoinMarketCap3 but gold data is 
taken from the Bloomberg Terminal; and are quoted in USD. For the purposes of this study, gold is 
matched with each cryptocurrency according to time span and trading days. The return series is 
decomposed into a number of IMFs depending on the length of series and they represent short-term, 
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medium-term, and long-term dynamics. We select IMF 1, IMF 5, and IMF Residual to represent short-, 
medium-, and long-term dynamics, respectively, in line with the extant literature.

We present the summary statistics of gold and returns of the selected cryptos and the number 
of IMFs in Table 2. We find both left and right skewness and excess kurtosis are corroborated by 
the Shapiro-Wilk test of normality. These confirm asymmetries in the distributions of the series. We 
also find similar patterns for the IMFs across the time-scales. Further, IMFs seem to be useful as 
inputs for the regression techniques in the light of frequency-variations in the time series. These 
provide further motivation to employ quantile-based regressions to analyse the gold-cryptos 
nexus. The times series plots presented in Figure A1 (in the Appendices) also show volatility 
clusters and thus an indication of time-varying risk emanating from the series.

4. Empirical results: asymmetric regression results

4.1. QR results
In this study, we surmise a bi-directional nexus between gold and cryptocurrencies and we perform 
regressions accordingly. For clarity of presentation and want of space, we elect to plot the regression 
coefficients, rather than present the actual coefficients in tables.4 These are presented in Figure 1. We 
note that both QR (lines in wine colour) and QQR (lines in blue colour) estimates are in the same plots. 
Apart from Figure 1 providing a pictorial representation of the gold-cryptos link in terms of magnitude 
and direction, it also engenders a basis to validate estimates from the QQR technique—this is further 
explained in Section 4.2. In the plots, we note that the pair with Gold as the first variable and crypto as 
the second variable (e.g., Gold-Bitcoin) implies Gold is the dependent variable and Bitcoin is the 
independent variable (hereafter referred to as from). The reverse is true (hereafter referred to as to). 
Thus, in the QR Gold-Bitcoin implies the quantile returns of Gold are regressed on the returns of Bitcoin. 
But for QQR, the quantile returns of Gold are regressed on the corresponding quantile returns of Bitcoin. 
The same analogy applies to Bitcoin-Gold, for instance.

We advise the reader that the plots in Figure 1 are constructed with the background that the bi- 
directional gold-cryptos link at the composite level (returns without decomposition) and in the short- 
term (IMF1) are mostly insignificant at the conventional5 levels of significance. Significance is attained 
in the medium-term (IMF5) and long-term (IMFR). We further observe that, in the case of Ethereum, 
there is no significant link with gold throughout. This may be quite surprising given the place of 
Ethereum in the cryptos space. For instance, it has attracted a great deal of attention and rivalled 
Bitcoin as the second-ranking crypto in their early years (Mensi et al., 2018). Therefore, we present the 
results for all gold-cryptos pairs in the medium- and long-terms except for Ethereum.

We also present the Augmented Dickey-Fuller (ADF) unit root test to examine the stationarity 
properties of the series (Table 2). For the ADF without drift and trend at lag 1, most of the series 
exhibit stationarity at the 5% significance level. We find that the IMFR for gold is non-stationary 

Table 1. Summary of sample data
Cryptocurrency Period No. of IMFs
Bitcoin (BTC) 30/04/2013–18/04/2019 10

Dash (DASH) 17/02/2014–18/04/2019 10

Ethereum (ETH) 10/08/2015–18/04/2019 10

Litecoin (LTC) 30/02/2014–18/04/2019 10

Monero (XMR) 22/05/2014–18/04/2019 10

NEM (XEM) 02/04/2015–18/04/2019 10

Ripple (XRP) 05/08/2013–18/04/2019 10

Stellar (XLM) 06/08/2014–18/04/2019 10

Cryptocurrencies are arranged in alphabetical order. 
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and this is to be expected since the series represents a trend in the long-term. However, the IMFR 
the cryptos are mostly stationary, except for XRP. Nonetheless, as explained in Section 2.2, we do 
not require strict global stationarity in the series in order to perform the QR and QQR estimations in 
this study. Hence, all the series in Table 2 are used in our estimations and analysis.

It is clear from the coefficient estimates that composite and short-term gold-cryptos links can be 
spurious. Investors may be caught in the frenzy about cryptos (especially Bitcoin) as the new gold 
(Dyhrberg, 2016) in the short-term. Further, from an econometric perspective, a claim by Klein et al. 
(2018) that Bitcoin does not bear a resemblance to any other conventional asset, may be supported. 
Nonetheless, if we follow the definition of a hedge by Baur and Lucey (2010), we can deem these 
insignificant coefficients to imply that gold and cryptocurrencies are uncorrelated, which suggests that 
gold and cryptos can hedge each other at the competitive level and in the short-term. Further, we may 
see the unconditional connectedness between cryptos and gold as negligible as found by (Kurka, 2019). 
However, with time investors may rebalance their portfolios with after a careful assessment of the 
market. This may serve as a reminder that Weber’s (2016) Bitcoin standard may be far-fetched. But this 
could support the assertion that cryptos may not be adopted by states by reason of their risks (Lansky, 
2018). Notwithstanding, this scenario corroborates the findings of Bouoiyour et al. (2016), using EMD that 
Bitcoin, for instance, is driven by long-term fundamentals as opposed to being labelled as a purely 
speculative asset class. Further, Kristoufek (2015) find Bitcoin to possess both speculative and standard 
financial asset properties (see also, Zwick & Syed, 2019). Thus, we surmise that it takes some time and 
detailed analysis for noteworthy relationships between gold and cryptos to be revealed; as we have done 
in this study.

At this juncture, we analyse the QR estimates. We refer to blue colour plots in Figure 1. We 
observe that from and to share a similar pattern in the medium- and long-terms. The coefficients 
of the former are smaller and the plots are smoother than those of the former. However, estimates 
are somewhat smooth until the 75th quantile and take jumps afterwards. In the extreme upper 
tails, we realise the links are strongest. In general, we find that the magnitude of both from 
estimates rise from lower quantiles through to upper quantiles, except for Dash, Litecoin, and 
Ripples (which exhibit a reverse pattern). But for to estimates, links fall from lower quantile to 
upper quantiles; and are steeper after the 75th. Exceptions are noted for Dash, Litecoin, NEM (rise 
steadily), Stellar (in the long-term), Monero (fall, rise, and fall again), and Ripple (fall steadily and 
rise in the medium-term). These patterns show us how the two asset classes are linked as per 
trends in the market. So we see the asymmetric nature of the nexus which should be instructive, in 
generic terms, for investment strategies involving these asset classes.

Having established hedging potential between gold and cryptos (uncorrelated) in the short-term 
and at composite level, we now analyse the direction of the nexus to provide insight into 
diversification possibilities. In this regards, we consider a negative coefficient or inverse relation
ship as one that provides diversification potential but positive coefficient does not. However, Baur 
and Lucey (2010, p. 219) distinguish between hedge and diversifier as follows: “A hedge … 
uncorrelated or negatively correlated … ” and “A diversifier … positively (but not perfectly corre
lated) … ” These two do not possess the specific property risk reduction market turmoils and so 
cannot be safe haven. Therefore, we follow the definitions of Baur and Lucey (2010) to identify 
specific quantiles where gold and cryptos can hedge or diversify for each other.

In the from context, we observe hedging possibilities mostly in the medium-term except for NEM 
which shows only diversifier prospects in both medium-and long-terms. In the long-term gold and 
cryptos mostly have positive relationships and thus may diversify each other. But Monero can 
hedge in the long-term up to the 75th quantile. The specific quantiles where inverse relationships 
are observed (hedging) are as follows: Bitcoin (lower half of distribution), Dash and Stellar (across 
all quantiles but small in magnitude as compared to the others), Monero (up to 15th quantile and 
after the 85th), and Ripple (only after the 65th quantile). It follows that the other quantiles offer 
diversifications instead.
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The to link is comparable with from nexus in the sense that gold and cryptos are hedgers of each 
other mostly in the medium-term but diversifies in the long-term. There are, however, a few exceptions. 
For instance, Ripple cannot hedge at the tails of the distribution in the medium-term but it can diversify 
in the long-term. Monero can also hedge in the long-term in the upper third of the distribution. Lastly, 
NEM can also hedge only at the extreme tails of the distribution, but can otherwise diversify.

Our findings corroborate other studies that find cryptos to act as a hedge under different 
circumstances. For instance, Bouri et al. (2017) support the view under global uncertainty at higher 
quantiles and in the short-term. Bouri et al. (2017) also reveal hedge and diversifier properties for 
Bitcoin against commodities in a time-varying manner. For gold, in particular, Zwick and Syed 
(2019) find both hedge and diversifier features of Bitcoin.

Further, our findings reveal that gold and cryptos, on the hand can hedge or be safe haven under 
market uncertainties. For instance, Selmi et al. (2018) find Bitcoin and gold, rather than oil, as safe- 
haven under global uncertainty. Once more, Al-Yahyaee et al. (2019) document the diversification 
benefits of Bitcoin and gold for oil and Standard & Poor Goldman Sachs Commodity Index (S&P 

Figure 1. Return and IMF plots 
of gold and cryptocurrencies.
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GSCI). Furthermore, given that our variables are denominated in US dollars, we can relate our 
findings to Kliber et al. (2019) who find Bitcoin as a weak hedge in all US dollar-denominated 
investment markets.

We further observe from Figure 1 that, the to (i.e. crypto-gold) links are stronger than from (i.e. 
gold- crypto) links. In other words, when cryptos are the dependent variables they hedge or 
diversify better than when gold is the dependent variable, both in the medium- and long-terms. 
This implies that the conditional quantiles of gold provide stronger hedging and diversification 
potentials on cryptos than the conditional quantiles of cryptos have on gold. We suggest that 
bearish and bullish gold prices are better indicators for hedging and diversification strategies than 
rising and plummetting prices of cryptocurrencies.

We have established the importance of asymmetric dependence connection between gold and 
cryptos for investment strategies. Our finding, however, contravenes that of Charles and Darné 
(2019) who find GARCH-type models to be inappropriate for modelling dynamic asymmetric Bitcoin 
returns. In terms of the hedging ability of cryptos, Kurka (2019) holds a different opinion, that 
market disruptions may be transmitted from Bitcoin to the traditional economy.

4.2. QQR results
The QQR is a non-parametric technique which provides us with no significance of the regression 
coefficients. However, it is possible to infer the validity of the QQR from the QR. Bouri et al. (2017) 
suggest the QQR approach “decomposes” the QR estimates into the specific quantiles of the 
explanatory variables. In Figure 1 we observe that while the QQR and QR estimates are not the 
same, they show similar patterns for the most part. For the gold-crypto link, we find much more 
resemblance, but QQR estimates are subsumed under the QR estimates in the crypto-gold link. 
From these, we can reinforce the validity of the QQR technique in the context of this study. That 
means the analysis pertaining to QR in terms of hedging and diversification apply to the QQR 
estimates as well, only differing in magnitudes.
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Figure 2. Bi-directional gold 
and cryptos QR and QQR.
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Specifically, we observe that in the long-term QQR estimates are essentially zeros as compared 
to QR estimates. Further, in the lower half of the distribution, QR lies above QQR but in the upper 
half, the reverse is true. This holds for the gold-crypto links, except for Ripple. The QR and QQR plots 
diverge after the 15th quantile with QQR rising and QR falling, in the long-term.

5. Conclusions and recommendations
In this study, we examined the asymmetric frequency-varying connection between gold and 
major cryptocurrencies to identify hedging and diversification possibilities between the two 
asset classes. With daily return series, we decomposed the series into short-, medium- and, 
long-term frequencies using EEMD and employed the QR and QQR techniques. The EEMD does 
not only delineate the series into time horizons, but also reduces the noise that may be present 
in the series. The QR and QQR also capture the asymmetries in the relationship at different 
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portions of the return distributing over the time scales (see also Troster et al., 2018). Our 
sampled period spanned 30/04/2013 to 18/04/2019.

We found both QR and QQR as valid models to examine the relationship between gold and cryptos 
at different time-frequency scales. In one sense, our study is unique among many that use noise 
reduction in the context of frequency-dependent asymmetric analysis. Thus, we improve upon 
several studies whose important patterns may be shrouded noise in the data or proffer inaccurate 
results. Among other things, we confirm the HMH in the context of dynamic asymmetric, hedge, 
diversifier as opposed to the efficient market hypothesis (EMH). This partially corroborates Nadarajah 
and Chu (2017) who find only a weak form of efficiency in Bitcoin after an odd integer power 
transformation of the returns. Without this transformation, Bitcoin was starkly inefficient.

Following Baur and Lucey’s (2010) definitions of hedge and diversification, we find that both 
gold and cryptos can hedge and diversify for each other within the medium- and long-terms. 
However, we do not find any significant link between gold and Ethereum at all time scales and in 
the unconditional and conditional distributions of the returns. Our findings corroborate the 
notion of cryptos and gold possessing hedge and diversifier properties under different scenarios 
(see Bouri, Gupta et al., 2017; Bouri, Jalkh et al., 2017; Kliber et al., 2019; Zwick & Syed, 2019; 
etc.). Notwithstanding, Klein et al. (2018) and Kurka (2019) discount these properties for Bitcoin, 
among others.

Further, we support Liu’s (2019) assertion that portfolio diversification across different cryp
tos can improve investment outcomes. Our results indicate that cryptos and gold (together), on 
the one hand, can hedge and diversify for other traditional assets, on the other hand. This 
assertion is corroborated by Selmi et al. (2018) and Al-Yahyaee et al. (2019), among others. In 
the nutshell, we find that there are possibilities of increased reward or risk-reduction in 
portfolios constructed with gold different cryptos. It should, however, be noted that these 
phenomena are asymmetric and occur at different time horizons. Hence, investment decisions 
should be wary of these dynamics. 
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