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Abstract: In this paper, we prove that the Wronskian W (λ) of the boundary
condition functions for the following boundary value problem π:

π : Lφ ≡ φ(4) (x) + P2 (x)φ
(2) (x) + P3 (x)φ

(1) (x) + P4 (x)φ (x) = λφ (x)

φ (a) = φ/ (a) = φ (b) = φ/ (b) = 0

is asymptotically equivalent for large values of |λ|, to the Wronskian of the
boundary condition functions of the corresponding Fourier problem πF given
by

πF : φ(4) (x) = λφ (x) ,

φ (a) = φ/ (a) = φ (b) = φ/ (b) = 0.

AMS Subject Classification: 35B40, 34B05
Key Words: Wronskian, Boundary condition functions, fourth order bound-
ary value problem and asymptotic behavior

1. Introduction

Boundary condition functions have been studied widely by many mathemati-
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cians for some years now. The use of boundary condition functions for boundary
value problems was first considered by Kodaira in [1]. Since then, quite a num-
ber authors including [12] and [13] have worked on Boundary value problems.

In [5], D. N. Offei proved that the boundary condition functions, the Wron-
skian of the boundary conditions and the Green’s function for the boundary-
value problem:

Lφ = i3φ(3) + p2 (x)φ
(1) (x) + p3 (x)φ (x) = λφ (x)

φ (a) = φ (b) = φ(1) (b) = 0,

are asymptotically equivalent, for suitably large values of |λ|, to the correspond-
ing functions, associated with the corresponding Fourier problem.

In [15] M. Bonsu Osei, Samuel Asiedu-Addo, considered the Asymptotic
behaviour of Wronskian of boundary condition functions for a second order
boundary value problem.IeJPAM, 1(1), ( 2010), 93-101.

In [14], E. K. Essel et.al proved that the boundary condition functions
of the Fourth order boundary value problem are asymptotically equivalent to
the boundary condition functions of the corresponding Fourth order Fourier
problem.

2. Notations

In this section we give some properties of the linear differential expression L
and some notations used in subsequent sections of this paper.

1. (a) For a suitable set of functions, the symbol Φ (x) denotes the 4 x 4

Wronskian matrix
[

φ
(s−1)
r (x)

]

, (1 ≤ r, s,≤ 4) .

Φ (x) =











φ1 (x) φ2 (x) φ3 (x) φ4 (x)

φ
(1)
1 (x) φ

(1)
2 (x) φ

(1)
3 (x) φ

(1)
4 (x)

φ
(2)
1 (x) φ

(2)
2 (x) φ

(2)
3 (x) φ

(2)
4 (x)

φ
(3)
1 (x) φ

(3)
2 (x) φ

(3)
3 (x) φ

(3)
4 (x)











.

and W (φ1φ2φ3φ4) (x) ≡ detΦ (x) . A similar notation is used if φ is
replaced by another symbol; the respective capital always represent-
ing the Wronskian matrix.

(b) If φ1 (x, λ) , φ2 (x, λ) , φ3 (x, λ) , φ4 (x, λ) are the solutions of Lφ =
λφ and if x0, x1 ∈ [a, b] , then

W (φ1φ2φ3φ4) (x1) =W (φ1φ2φ3φ4) (x0) exp

∫ x1

x0

−
P1 (t)

P0 (t)
dt, (1)
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(see chap. 3, [8]). If P1 (x) = 0 for x ∈ [a, b] then it follows from (1)
that W (φ1φ2φ3φ4) (x) is independent of x ∈ [a, b] .

2. Given the linear expression defined by

Lφ ≡ P0φ
(4) (x) + P1 (x)φ

(3) + P2 (x)φ
(2) (x)

+P3 (x)φ
(1) (x) + P4 (x)φ (x) ; (a ≤ x ≤ b) ,

the Lagrange adjoint of L is denoted by L+ and is defined as

L+ψ ≡ (−1)4
(

P̄0ψ
)(4)

+ (−1)3
(

P̄1ψ
)(3)

+ (−1)2
(

P̄2ψ
)(2)

+(−1)
(

P̄3ψ
)(1)

+ P̄4 (x)ψ.

3. (a) For suitable pairs of functions f and g

∫ b

a

{

ḡLf − fL+g
}

dx = [fg] (b)− [fg] (a) .

Here [fg] (x) is a bilinear form in

(

f, f (1), f (2), f (3)
)

,

and
(

ḡ, ḡ(1), ḡ(2), ḡ(3)
)

,

given by

[fg] (x) =

4
∑

j=1

4
∑

k=1

Bjk (x) ḡ
(j−1) (x) f (k−1) (x)

= ĝ∗ (x)B (x) f̂ (x)

where f̂ (x) represents the column vector with components

(

f (x) , f (1) (x) , ..., f (n−1)(x)
)

,

and ĝ∗ (x) denotes the row vector with components

(

ḡ (x) , ḡ(1) (x) , ..., ḡ(n−1)(x
)

),
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and

B (x) =











P11 (x) P12 (x) P13 (x) P14 (x)

−P2 + 2P
(1)
1 − 2P

(2)
0 −P1 − 2P

(1)
0 −P0 0

P1 − 3P
(1)
0 P0 0 0

−P0 0 0 0











where

P11 (x) = P
(3)
3 (x)− P

(1)
2 (x) + P

(2)
1 (x)− P

(2)
0 (x)− P

(3)
0 (x)

P12 (x) = P2 (x)− P
(1)
1 (x) + P

(2)
0 (x)

P13 (x) = P1 (x)− P
(1)
0 (x)

P14 (x) = P0 (x) .

(b) If P1 (x) , P2 (x) and P3 (x) are identically zero in some neighbour-
hood of a and b and P0 is a constant independent of x then

B (a) = B (b) =









0 0 0 P0

0 0 −P0 0
0 P0 0 0

−P0 0 0 0









. (2)

(c) The notation 〈φ,ψ〉 is used to denote
∫ b
a φ (x)ψ (x)dx and the ex-

pression
∫

{

ḡLf − fL+g
}

dx may be written as 〈Lf, g〉 − 〈f, L+g〉 .

(d) The Lagrange adjoint of L+ is L and for suitable pair of functions g
and f

∫ b

a

{

f̄L+g − gLf
}

dx = [gf ] (b)− [gf ] (a)

where

{gf}(x) =

4
∑

j=1

4
∑

k=1

Ajk (x) f̄
(j−1) (x) g(k−1) (x)

= f̂∗ (x)A (x) ĝ (x) .

The Ajk are dependent on the coefficients of the differential expres-
sion L+ and A (x) = [Ajk] .
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4. If φ (x, λ) is a solution of Lφ = λφ and ψ (x, λ) is a solution of L+ψ =
λ̄ψ then,

[φψ] (x2)− [φψ] (x1) =

∫ x2

x1

{

ψ̄Lφ− φL+ψ
}

dx, (a ≤ x1 ≤ x2 ≤ b)

=

∫ x2

x1

{

ψ̄λφ− φλψ
}

dx

= 0

and hence,
[φψ] (x2) = [φψ] (x1) .

Thus,
[φ (x, λ)ψ (x, λ)] (x)

is independent of x ∈ [a, b].

Similarly,
{ψ (x, λ)φ (x, λ)} (x)

is independent of x ∈ [a, b].

This implies that [φ (x, λ)ψ (x, λ)] (x) and {ψ (x, λ)φ (x, λ)} (x) may be
denoted by [φψ] and {ψφ}, respectively.

(a) If there is a constant K such that |fx| ≤ Kφ for x ≥ x0 we write

f = O (φ) .

(b) If f(x)
φ(x) → l, x→ ∞ where l 6= 0 we write f ∼ lφ.

3. Preliminaries

In this paper we consider the boundary value problem

π : Lφ ≡ φ(4) (x) + P2 (x)φ
(2) (x)

+P3 (x)φ
(1) (x) + P4 (x)φ (x)

= λφ (x) (3)

φ (a) = φ/ (a) = φ (b) = φ/ (b) = 0 (4)
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which is a special case of the boundary value problem

π : Lφ ≡ φ(4) (x) + P2 (x)φ
(2) (x)

+P3 (x)φ
(1) (x) + P4 (x)φ (x)

= λφ (x)

4
∑

s=1

mrsφ
(s−1) (a) = 0, (r = 1, 2)

4
∑

s=1

nrsφ
(s−1) (b) = 0, (r = 3, 4) .

The Fourier problem corresponding to (3) - (4) is given by

πF : φ(4) (x) = λφ (x) (5)

φ (a) = φ/ (a) = φ (b) = φ/ (b) = 0. (6)

In this special case where,

φ (a) = φ/ (a) = φ (b) = φ/ (b) = 0,

the matrix M = [mrs] and N = [nrs] in

4
∑

s=1

mrsφ
(s−1) (a) = 0, (r = 1, 2)

and
4

∑

s=1

nrsφ
(s−1) (b) = 0, (r = 3, 4)

are given respectively by

M =









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









and N =









0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0









. (7)

Substituting P0 = 1 from (3) into (2) (i.e., Notation 3(b))

we see that
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B (a) = B (b) =









0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0









. (8)

We now state some Lemmas that will enable us to prove our main result.

Lemma 1.

(i)

ψFr (a/x, λ) =
4

∑

s=1

m̄rsfs (a/x, λ)

(ii)

χFr (b/x, λ) =

4
∑

s=1

n̄rsgs (b/x, λ)

(iii) Let fs (x) = fs (a/x, λ) , gs (x) = gs (b/x, λ) . Then,

fs (x) = (−1)(s−1) f
(s−1)
1 (x) 2 ≤ s ≤ 4

gs (x) = (−1)(s−1) g
(s−1)
1 (x) 2 ≤ s ≤ 4

See [14] for proof.

Lemma 2.

(a) (i) ψ
(s−1)
r (a/x, λ) = ψ

(s−1)
Fr (a/x, λ) +O

(

|P |s−2 eσ(x−a)
)

as |λ| → ∞

(ii) ψ
(s−1)
Fr (a/x, λ) = O

(

|P |s−1 eσ(x−a)
)

as |λ| → ∞, (1 ≤ r, s ≤ 4)

(iii) (i) and (ii) =⇒

ψ(s−1)
r (a/x, λ) ∼ ψ

(s−1)
Fr (a/x, λ) as |λ| → ∞

(b) (i) χ
(s−1)
r (b/x, λ) = χ

(s−1)
Fr (b/x, λ) +O

(

|P |s−2 eσ(x−a)
)

as |λ| → ∞

(ii) χ
(s−1)
Fr (b/x, λ) = O

(

|P |s−1 eσ(b−x)
)

as |λ| → ∞, (1 ≤ r, s ≤ 4)

(iii) (i) and (ii) =⇒

χ(s−1)
r (b/x, λ) ∼ χ

(s−1)
Fr (b/x, λ) .

See [14] for proof.
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4. Main Result

Let

W (λ) = W (η1η2η3η4) (x) ,
(

ηr = ηr
(

x, λ̄
))

WF (λ) = W (ηF1ηF2ηF3ηF4) (x) ,
(

ηFr = ηFr

(

x, λ̄
))

.

Then

W (λ) ∼WF (λ)

for suitably large values of |λ| .

We prove our main result via two theorems.

4.1. Theorem 1

WF (λ) =
(

O |P | e2σ(b−a)
)

as |λ| → ∞

Proof. Let {ψFr (a/x, λ, χFr (b/x, λ))} be the boundary condition function for
πF . Then ψFr (a/x, λ) , χFr (b/x, λ) , 1 ≤ r ≤ 4 are solutions of ψ(4) (x) =
λ̄ψ (x) such that

ΨFr (a) = B (a)M∗ and χFr (b) = B (b)N∗ (9)

where B (a) and B (b) are as in (8) . Substituting (7) and (8) into (9) we have











ψF1 (a) ψF2 (a) ψF3 (a) ψF4 (a)

ψ
(1)
F1 (a) ψ

(1)
F2 (a) ψ

(1)
F3 (a) ψ

(1)
F4 (a)

ψ
(2)
F1 (a) ψ

(2)
F2 (a) ψ

(2)
F3 (a) ψ

(2)
F4 (a)

ψ
(3)
F1 (a) ψ

(3)
F2 (a) ψ

(3)
F3 (a) ψ

(3)
F4 (a)











=









0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0









·









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









=









0 0 0 0
0 0 0 0
0 1 0 0
−1 0 0 0









, (10)
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and










χF1 (b) χF2 (b) χF3 (b) χF4 (b)

χ
(1)
F1 (b) χ

(1)
F2 (b) χ

(1)
F3 (b) χ

(1)
F4 (b)

χ
(2)
F1 (b) χ

(2)
F2 (b) χ

(2)
F3 (b) χ

(2)
F4 (b)

χ
(3)
F1 (b) χ

(3)
F2 (b) χ

(3)
F3 (b) χ

(3)
F4 (b)











=









0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0









·









0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0









=









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1









. (11)

From Lemma 1, with the matrices M and N as in (7) we have

ηF1 (x, λ) = ψF1 (a/x, λ) = f1 (a/x, λ) (12)

ηF2 (x, λ) = ψF2 (a/x, λ) = f2 (a/x, λ)

ηF3 (x, λ) = χF3 (b/x, λ) = g2 (b/x, λ)

ηF4 (x, λ) = χF4 (a/x, λ) = g1 (a/x, λ)

ψF3 (a/x, λ) = 0, ψF4 (a/x, λ) = 0

χF1 (b/x, λ) = 0, χF2 (b/x, λ) = 0.

By definition
WF (λ) =W (ηF1ηF2ηF3ηF4) (x, λ) (13)

Substituting (12) into (13) we see that

WF (λ) =W (ψF1ψF2χF3χF4) (x, λ) (14)

is independent of x ∈ [a, b] (see notation1(b)). Comparing corresponding ele-
ments on the right and left hand sides of (11) we see that for x = b, (14) reduces
to

WF (λ) = W (ψF1ψF2χF3χF4) (b, λ)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψF1 (b) ψF2 (b) ψF3 (b) ψF4 (b)

ψ
(1)
F1 (b) ψ

(1)
F2 (b) ψ

(1)
F3 (b) ψ

(1)
F4 (b)

ψ
(2)
F1 (b) ψ

(2)
F2 (b) ψ

(2)
F3 (b) ψ

(2)
F4 (b)

ψ
(3)
F1 (b) ψ

(3)
F2 (b) ψ

(3)
F3 (b) ψ

(3)
F4 (b)

∣

∣

∣

∣

∣

∣

∣

∣

∣
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=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψF1 (b) ψF2 (b) 0 0

ψ
(1)
F1 (b) ψ

(1)
F2 (b) 0 0

ψ
(2)
F1 (b) ψ

(2)
F2 (b) 1 0

ψ
(3)
F1 (b) ψ

(3)
F2 (b) 0 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (15)

Evaluating we have

WF (λ) = ψ
(1)
F1 (b)ψF2 (b)− ψF1 (b)ψ

(1)
F2 (b) . (16)

Using Lemma 2 (ii) we find that

ψ
(1)
F1 (b) = O

(

|P | eσ(b−a)
)

as |P | → ∞, (17)

ψ
(1)
F2 (b) = O

(

|P | eσ(b−a)
)

as |P | → ∞,

ψF2 (b) = O
(

eσ(b−a)
)

as |P | → ∞,

ψF1 (b) = O
(

eσ(b−a)
)

as |P | → ∞,

Substituting all of (17) in (16) we see that

WF (λ) = O
(

|P | e2σ(b−a)
)

as |λ| → ∞. (18)

4.2. Theorem 2

W (λ) =WF (λ) +O
(

e2σ(b−a)
)

as |λ| → ∞.

Proof. Let {ψr (a/x, λ, χr (b/x, λ))} be the boundary condition function for π.
Then ψr (a/x, λ) , χr (b/x, λ) , 1 ≤ r ≤ 4 are solutions of L+ψ = λ̄ψ such that

Ψr (a) = B (a)M∗ and χr (b) = B (b)N∗ (19)

where B (a) and B (b) are as in (8) . Substituting (7) and (8) into (19) we obtain











ψ1 (a) ψ2 (a) ψ3 (a) ψ4 (a)

ψ
(1)
1 (a) ψ

(1)
2 (a) ψ

(1)
3 (a) ψ

(1)
4 (a)

ψ
(2)
1 (a) ψ

(2)
2 (a) ψ

(2)
3 (a) ψ

(2)
4 (a)

ψ
(3)
1 (a) ψ

(3)
2 (a) ψ

(3)
3 (a) ψ

(3)
4 (a)










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=









0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0









·









1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0









=









0 0 0 0
0 0 0 0
0 1 0 0
−1 0 0 0









, (20)

and










χ1 (b) χ2 (b) χ3 (b) χ4 (b)

χ
(1)
1 (b) χ

(1)
2 (b) χ

(1)
3 (b) χ

(1)
4 (b)

χ
(2)
1 (b) χ

(2)
2 (b) χ

(2)
3 (b) χ

(2)
4 (b)

χ
(3)
1 (b) χ

(3)
2 (b) χ

(3)
3 (b) χ

(3)
4 (b)











=









0 0 0 1
0 0 −1 0
0 1 0 0
−1 0 0 0









·









0 0 0 1
0 0 1 0
0 0 0 0
0 0 0 0









=









0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1









. (21)

Using similar deductions as in (12) we have

η1 (x, λ) = ψ1 (a/x, λ) (22)

η2 (x, λ) = ψ2 (a/x, λ)

η3 (x, λ) = χ3 (b/x, λ)

η4 (x, λ) = χ4 (a/x, λ)

ψ3 (a/x, λ) = 0, ψ4 (a/x, λ) = 0

χ1 (b/x, λ) = 0, χ2 (b/x, λ) = 0.

By definition,
W (λ) =W (η1η2η3η4) (x, λ) , (23)

and by substituting (22) into (23) it reduces to

W (λ) =W (ψ1ψ2χ3χ4) (b, λ) .
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That is,

W (λ) = W (ψ1ψ2χ3χ4) (b, λ)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψ1 (b) ψ2 (b) ψ3 (b) ψ4 (b)

ψ
(1)
1 (b) ψ

(1)
2 (b) ψ

(1)
3 (b) ψ

(1)
4 (b)

ψ
(2)
1 (b) ψ

(2)
2 (b) ψ

(2)
3 (b) ψ

(2)
4 (b)

ψ
(3)
1 (b) ψ

(3)
2 (b) ψ

(3)
3 (b) ψ

(3)
4 (b)

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

ψF1 (b) ψF2 (b) 0 0

ψ
(1)
F1 (b) ψ

(1)
F2 (b) 0 0

ψ
(2)
F1 (b) ψ

(2)
F2 (b) 1 0

ψ
(3)
F1 (b) ψ

(3)
F2 (b) 0 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ψ
(1)
1 (b)ψ2 (b)− ψ1 (b)ψ

(1)
2 (b) . (24)

Using Lemma 2, we find that for s = 1, 2 we have

ψr (a/x, λ) = ψFr (a/b, λ) +O
(

|P |−1 eσ(x−a)
)

as |λ| → ∞

ψ
(1)
r (a/x, λ) = ψ

(1)
Fr (a/b, λ) +O

(

eσ(x−a)
)

as |λ| → ∞

}

. (25)

Put r = 1, 2 and x = b in (25) and substitute into (24) to obtain

W (λ) (26)

=
[

ψ
(1)
F1 (a/b, λ) +O

(

eσ(b−a)
)]

×
[

ψF2 (a/b, λ) +O
(

|P |−1 eσ(b−a)
)]

−
[

ψF1 (a/b, λ) +O
(

|P |−1 eσ(b−a)
)]

×
[

ψ
(1)
F2 (a/b, λ) +O

(

eσ(b−a)
)]

.

The product of the first two expressions of (26) is obtained as follows:

[

ψ
(1)
F1 (a/b, λ) +O

(

eσ(b−a)
)]

×
[

ψF2 (a/b, λ) +O
(

|P |−1 eσ(b−a)
)]

= ψ
(1)
F1 (a/b, λ)ψF2 (a/b, λ) + ψ

(1)
F1 (a/b, λ)O

(

|P |−1 eσ(b−a)
)

+ψF2 (a/b, λ)O
(

eσ(b−a)
)

+O
(

eσ(b−a)
)

O
(

|P |−1 eσ(b−a)
)

(27)
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Applying Lemma 2a (ii) on the 2nd and 3rd terms on the right hand side of
(27) we get

= ψ
(1)
F1 (a/b, λ)ψF2 (a/b, λ) +O (φ1 + φ2 + φ3) ,

where
φ1 =

(

|P | eσ(b−a)
)

(

|P |−1 eσ(b−a)
)

=
(

e2σ(b−a)
)

φ2 =
(

eσ(b−a)
) (

eσ(b−a)
)

=
(

e2σ(b−a)
)

φ3 =
(

eσ(b−a)
)

(

|P |−1 eσ(b−a)
)

=
(

|P |−1 e2σ(b−a)
)

.















(28)

Substituting (28) into (27) we find that
[

ψ
(1)
F1 (a/b, λ) +O

(

eσ(b−a)
)]

×
[

ψF2 (a/b, λ) +O
(

|P |−1 eσ(b−a)
)]

= ψ
(1)
F1 (a/b, λ)ψF2 (a/b, λ) +O (φ1 + φ2 + φ3)

= ψ
(1)
F1 (b, λ)ψF2 (b, λ) +O

(

e2σ(b−a)
)

as |λ| → ∞. (29)

Similarly the product of the last two expressions of (26) is obtained as follows:

[

ψF1 (a/b, λ) +O
(

|P |−1 eσ(b−a)
)]

·
[

ψ
(1)
F2 (a/b, λ) +O

(

eσ(b−a)
)]

= ψF1 (b, λ)ψ
(1)
F2 (b, λ) +O

(

e2σ(b−a)
)

as |λ| → ∞. (30)

Substituting (29) and (30) into (26) we obtain

W (λ) = ψ
(1)
F1 (b, λ)ψF2 (b, λ)− ψF1 (b, λ)ψ

(1)
F2 (b, λ) (31)

+O
(

e2σ(b−a)
)

Substituting (16) into (31) we get

W (λ) =WF (λ) +O
(

e2σ(b−a)
)

as |λ| → ∞. (32)

If follows from the results of Theorem 1 (i.e., (18)) and Theorem 2 (i.e., (32))
that

W (λ) ∼WF (λ)
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5. Conclusion

We have succesfully proved through Theorem 1 and Theorem 2, that the Wron-
skian of the boundary condition functions of the fourth order boundary value
problem is asymptotically equivalent to the corresponding Wronskian of the
fourth order Fourier problem.
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