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ABSTRACT. We prove the existence of solutions for the neutral
periodic integro-differential equation with infinite delay

(1) = Gt o0, a(t = 7)) + Q=70 + [ (3 05(6.9) flals)ds,

z(t+T) = x(t).

A Krasnoselskii and Banach’s fixed point theorems are employed in
establishing our results.
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1. INTRODUCTION

In this paper, we consider the neutral integro-differential equation

PO = Gltalt)alt-r(O) + Qe —r0) + [ (X g5l fals)is
o\
z(t+T) = z(t), (1.1)
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where Q : RXR - R, G: RXxRxR =R, f:R—Randg; : RxR—R
for j = 1,...,n are continuous in their respective arguments.

This work is mainly motivated by the work of Althubiti, Makhzoum
and Raffoul [I], in which they obtained sufficient conditions for the ex-
istence of periodic solutions for the equation

() = —a(t)r ()+ Q(txt—v' / D(t,s)f(z(s))ds.
(1.2)

We refer to [1]-[17], and [19] for some qualitative results on neutral
differential equations, integral equations and integro-differential equa-
tions.

The rest of the paper is organized as follows. In section 2, we provide
some preliminary material needed for our work and in section 3 we state
and prove our main results.

2. PRELIMINARIES

Let T > 0 and define the set Pr = {¢ € C(R,R) : ¢(t + T) = ¢(t)},
where C'is the space of continuous real valued functions. Then (Pr, ||.||)
is a Banach space when it is endowed with the supremum norm ||z| =

sup;e(o7) |2(t)]-

In this paper we make the following assumptions.

git+T,s+T)=gj(t,s), forj=1,2,...,n
QUt+T,2)=Q(tx), Git+T,z,y) =G zy),
T(t+T)=7(t). (2.1)

Also, there exist a continuous function h : R — R such that
T
h(t+T) = h(t), / h(s)ds > 0. (2.2)
0

We further assume that the functions Q(¢,x), G(t,z,y) and f(x) are
globally Lipschitz. That is, there exist positive constants K, Ko, K3,
K, such that

| Q(t,z) = Qty) IS K1z —y |, (2.3)

| G(t,z,y) — G(t,w,2) [< Ko ||z —w || +K3 [y — 2z | . (2.4)
and
| flz)—fy) IS Ks|lz—y|l. (2.5)
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Also, there exist a constant K5 such that

t n
/ ‘ Zgj(t,u)‘du < K5 < o0. (2.6)
=

Lemma 2.1. Suppose (2.1)) hold. Let h : R — R be an arbitrary con-
tinuous function such that (2.2)) also hold. If x(t) € Pp, then x(t) is a

solution of equation (1.1)) if and only if

X/t[—M$Q@x@—ﬂ$» @)
t—T

+ h(s)x / (Zgjsu> (u))du

+ G(s,z(s),z(s — 7'(8)))} = IS hlwdugy

Proof. Let x(t) € Pr be a solution of (1.1]). Rewrite (1.1]) as

()~ Qt.att = 7(1))) = —hO(t) ~ Qt, 2t — 7(1)] ~ h(OQUE 2(t — 7(1)))

Multiply both sides of (2.8) by eJo MW)du a0 then integrate from ¢t — T
to t to obtain

/t_T [(m(s) —Q(s,x(s — T(s))))efos h(")d“} ds
-/ [—M@Q@x@—ﬂ@»
t-T
+ h(s)x / (Zg] S,u > (w))du + G(s,x(s),z(s — 7(s )))] eJo hwdu g
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Thus we obtain,

[(2(t) — @ty (e — (1))l M)
—(zt-T)-Qt -T,z(t—T —7(t —T)))e =T h(u)du
= [ [~ me)ts.ats ~ 7(s))
t—T

+ h(s)a(s) + / s (zn: 9i(s, 1)) f(x(u))du
=1
+ G(s,z(s),z(s — T(S)))] eJo hwdugg.

By dividing both sides of the above equation by exp(fg h(u)du) and
using the fact that x(t) = z(t — T') together with condition (2.1, we
obtain the desired result.

Since each step in the above work is reversible, the proof is complete.
O

We next state Krasnoselskii’s Theorem which can be found in [I§].

Theorem 2.2. ( Krasnoselskii’s ) Let M be a closed conver nonempty
subset of a Banach space (S,||.||). Suppose that J and H map M into S
such that

(i) x,y € M, implies Jxr + Hy € M,

(i) H is continuous and HM is contained in a compact set,

(iii) J is a contraction mapping.

Then there exists z € M with z = Jz + Hz.

Define the mappings J : Pr — Pr and H : Pr — Pr by

(Jz)(t) = Qt,=(t —7(t)), (2.9)
and
(Hz)(t) = (1—e Jir h(u)d“)_l / { — h(s)Q(s,z(s — 7(s)))
t—T

S
— 00

+h(s)m(s)+/ (zn:gj(s,u))f(x(u))du
j=1

+ G(s,(s), 2(s — T(s)))} e~ I hu)du gy (2.10)

respectively.
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3. MAIN RESULT

In this section we state and prove our main results.

Lemma 3.1. Assume that (2.1)), (2.3))-(2.6) hold. Assume further that
there exist a continuous function h : R — R such that (2.2) is satisfied.

Then H : Pr — Pr, as defined by (2.10)), is continuous and compact.

Proof. We will first show that H : Pr — Pp, where (Pr, ||.||) is a Banach
space. It must be noted that a subset of Pr which is closed and convex

is defined in Theorem 3.3 and is denoted by M. Evaluating (2.10)) at
T + t we obtain,

t+T

t+T
(H2)(t+T) = (1—e h(u)du)—l/t [~ h()Q(s, (s — 7(s))

+ h(s)a(s) + / (g w) faw)du
=1
+ Gls,(s), 2(s — 7(s)))] e~ T gy,
With k = s —T and v = v — T we obtain,

t+T
h(u)du)—l /t [_ h(s)Q(s,z(s — 7(s)))

t+T

(Hz)(t+T) = (1—e

+ h(s)a(s) + / S (i 9i(s,w) ) f (w(w))du
R =
+ G(s,z(s),z(s — T(S)))] e T hwdu g

t

— (1 —e ftth h(UJFT)dv)*l /
t—T

k+T

[ —h(k+T)Q(k+T,x(k+T —7(k+T)))

+ bk + Tk +T) + /

—00

(D gitk+Tov+T)) flww+T))dv
j=1
+ G+ T2k + ),k +T = 7(k+T)))|e” Sk hlwdu g

T ffTh<v>dv)—1/ [ = h)QE, (k= 7(1)))

t—=T
Enme) 4 [ (D) o)
b3

+ Gk, x(k), (k- T(k)))] e~ i h@)dv g
— (Ha)).
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That is, H : Pr — Pr.
We next show that H is continuous. To this end, we let

T t
n=sup |(1—e o )T p— sup [A(t) ],y = sup e JoHO,
t€[0,T] t€[0,T) tet—T,t]

(3.1)

Let p,v € Pp,and M = nyT[pKl +p+ K5 K4+ Ko+ K3|. Given € > 0,
choose 0 = 7 such that || ¢ — 4 [[< 6. Thus,

t
| He—Hy || < 0y pK1 [ o =1 |
T
+—

tollp—vll+KsKill o= |
+ Ko |l o= |+ || o — o | |dk

- nfyT[pK1+p+K5K4+K2+K3} o=
< Mlle—vd<e

Therefore, H is continuous.

To show that H is compact, we consider the sequence of periodic
functions ¢, € Pr and assume that the sequence is uniformly bounded.
Let R be such that || ¢, ||< R, for all n € N. Then

t . t
| (Hon) || = || (1 —e Jezh@duy 1/

t=T

[_ h(s)Q(s, pn(s — 7(5)))

hlsen(s)+ [ (S aitsiw) f(onlw)du
o\
+ Gls,pn(s), uls — 7(s)) | 10 |

< [ p(1QGnts ) - Q0+ 1 Q0) )
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s n
tollenll+ [ (o) 1Kl on | du
SRS

j=

+ | G(s,0n(8), pn(s — 7(s))) — G(s,0,0) | + | G(s,0,0) | |ds

< m/ttT {p(lﬁ | on |l +61)

s n
tollenll+ [ (o) 1Kl on | du
Siv3

j:
+ Kz || gn || +Ks || gn || +s] ds
< T [,o(KlR + ﬁl) + pR+ KsKiR + KoR + K3R + 52] — D,

where f1 = supycory | Q(£,0) |, and By = sup,coy | G(£,0,0) | . Thus,
the sequence Hp, is uniformly bounded. Differentiating H,, gives

(Hen (1) = —~h(t)(Hen) (1) ~ h(DQU, galt — (1))
+h0e+ [ (D gitw)fenw)da
e

Consequently,

[(HeaY (1) | < pD+p(KiR+B1) + pR + KsKuR + K2R+ KaR + f i= F,

for all n. Thus the sequence { Hp,, } is uniformly bounded and equicontin-
uous. The Arzela-Ascoli Theorem implies that {H,, } uniformly con-
verges to a continuous T-periodic function ¢*. Hence H is compact. [

Lemma 3.2. Let J be defined by (2.9) and
K <1. (3.2)
Then J : Pr — Pr is a contraction.

Proof. Trivially, J : Pr — Pr. For ¢,v9 € Pr, we have

[ Jo—Jb || < Kille—¢]. (3.3)
Hence J defines a contraction mapping with contraction constant Kj.
O

Theorem 3.3. Let f1 = supycoq) | Q(,0) [, and Bz = supejo ) |
G(t,0,0) | . Let n,p, and v be given by (3.1). Suppose (2.2))-(2.6) hold

and there exist an arbitrary continuous function h : R — R such that



44 Ernest Yankson

(2.2)) also hold. Let G be a positive constant such || z ||[< G for x € Pr
and that the inequality

T [p(KiG + 1) + pG + KsKiG + KoG + KsG + o] + KaG + B < G,
(3.4)

holds. Then (1.1)) has a T-periodic solution in M = {¢ € Pr :|| ¢ ||<
G}.

Proof. In view of the fact that M = {¢ € Pr :|| ¢ ||< G}, Lemma 3.1
implies that H is compact and continuous. Also, from Lemma 3.2, J is
a contraction.

We next show that if p,9p € M we have | Hp + J¢ [|[< G. Let
p, ¥ € M, then we have that

I He+ J9 |

IN

e Ji h(u)duy 1 t —h(s)Q(s,p(s— (s
(1 ) [ reQsels - (o)

sns)es)+ [ (g fletw)du
L\
+ Gs,p(s), (s — ()| e I 100as 1+ Qe u(t — 7(1))
T |p(KiG+ By ) + (p+ KsKi + Ko + K3)G +
+ K1G+ 51 < G.

IN

Thus, all the conditions of Krasnoselskii Theorem are satisfied. Thus,
there exist a fixed point z in Ml such that z = Hz 4+ Jz. By Lemma 2.1,
this fixed point is a solution of which is T-periodic. This completes
the proof. O

Theorem 3.4. Suppose (2.2))-(2.6) hold and there exist an arbitrary
continuous function h : R — R such that (2.2) also hold. Let n,p, and

v be given by (3.1). If
K1+T777[/)K1+,0+K4K5+K2+K3} <1, (3.5)

then (L.1) has a unique T—periodic solution.
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Proof. Define the mapping A : Pr — Pr by
— [t h(w)duy —1
(Ap)(t) = Qt.(t —7(1)) + (1 — e Jemr M)

t

<, [ 10 ps = 7))

+ h(s)p(s)

[ (o) fe(w)du+ G, plo). (s = (s s,
SO

Then, for ¢,v € Pr we have,

I =0l < Kille=vl+m [ [pkile-v]
+role—v |l +EKiKs [l = | +K2 | o= |
+ Ky | - | |ds
< (K1+Tm[pK1+ p+K4K5+K2+K3DHso—¢H.
This completes the proof. O
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