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Abstract. We obtain sufficient conditions for the boundedness of solutions of the almost linear 
Volterra difference equation

n — 1

Ax(n) = a(n)h(x(n)) +  L  c(n,k)g(x(k)) 
k=0

using Krasnoselskii’s fixed point theorem. Also, we will display a Lyapunov functional that yield 
boundedness of solution and compare both methods.

1 Introduction

In this paper we consider the scalar equation

n — 1

Ax(n) = a(n)h(x{n)) + c(«, &)#(*(&)), *(0) = x q  , n >  0. (1.1)
k=o
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We assume that the functions h and g are continuous and that there exist positive constants H.H*,G,G* 
such that

\h (x ) -Hx\<H*,  (1.2)

and

| g (x ) -G x  |<  G*. (1.3)

Equation (1.1) will be called almost linear if (1.2) and (1.3) hold. In [3] Burton introduced this con
cept of almost linear equations for the continuous case and studied certain important properties of 
the resolvent kernel of a linear Volterra equation. Recently, Islam and Raffoul in the papers [7] and 
[8] also used the concept of almost linear equations for the continuous case to study boundedness of 
solutions of certain Volterra type equations. Our objective in this work is to extend the concept of 
almost linear equations to Volterra difference equations and prove that the solutions of these Volterra 
difference equations are also bounded if they satisfy (1.2) and (1.3). Due to (1.2) and (1.3) Contraction 
mapping principle can not be used since our mapping can not be made into a contraction. Therefore, 
we result to the use of Krasnoselskii’s fixed point theorem. At the end of the paper we will construct 
a suitable Lyapunov functional and refer to [12] to deduce that all solutions of (1.1) are bounded. It 
turns out that either method has advantages and disadvantages.
This paper is organized as follow. In Section 2, we give a Lemma that is necessary for the construction 
of our mapping so that fixed point theory can be used. In Section 3, we state and prove our results 
by appealing to Krasnoselskii fixed point theorem. In Section 4,we provide an example as an appli
cation to our main results. Finally, in Section 5, we display a suitable Lyapunov functional that yield 
boundedness on all solutions.

2 Preliminaries

We begin this section by proving the following lemma, which is need for the construction of our 
mappings. Consider the general difference equation

Ax(n) —Ha(n)x(n) =  /(« ) , x(0) =  xo, n >  0- (2.1)

Lemma 2.1. Suppose 1 +Ha(n) ^  0 for all n & [0,°°) flZ . Then x(n) is a solution of equation (2.1) 
if and only if

x(n) = x ( 0 ) f j ( l +//«(*)) + £ / ( « )  Y\ (1 +Ha(s))
s=0 «—0 s= u +1

Proof. First we note that (2.1) is equivalent to

rn—1

A [ n ( i+ / /a (5)) *=/(») n o + f f a f a ) ) 1
s=0  J s=0

Summing equation (2.3) from 0 to n -  1 and dividing both sides by

no+*«(,))
s=0

- 1

(2.2)

(2.3)

gives (2.2).



Lemma 2.2. Suppose 1 +Ha(n) ^  0 for all n € [0,°°) DZ. Then x(n) is a solution of equation (1.1) 
if and only if

n —1 n — 1 _ . . n—1
x(n) =  x(0) ]^[(1 +Ha(s)) +  ^  a (u ) (—Hx(u) + h(x(u))j ]^[ (1 +Ha(s)) 

4 = 0  K = 0  S=H +1

+  £  ] T c(k,&) g(x(fc)) — Gx(k) J^[ ( l+ / /a ( j ) )
M =0 /r= 0  4 = M + 1

(2.4)
u = 0 k = 0

Proof. Rewrite equation (1.1) as

4=M+1

Ax(n) — H a(n)x(n) = —Ha(n)x(n) + a(n)h(x(n))

+  £ c(«,£) g(x{k)) -  Gx(k) + Y J c(n,k)Gx{k)
k= 0k= 0

If we let

«-i
/(n )  =  — Ha{ri)x{n) +  a(n)h(x(n)) +  ^  c{n,k) g(x(k)) — Gx(k)

k= 0

n — 1
+  L cM )G x(*),

k=0

then the results follow from Lemma 1.

We next state Krasnoselskii’s fixed theorem which will be used to prove boundedness of solutions
of (1.1).

Theorem 2.1 (Krasnosel’skii). [13] Let M be a closed convex nonempty subset of a Banach space 
(B, 11.11). Suppose that C and B map M into B such that

(i) C is continuous and CM is contained in a compact set,
(ii) B is a contraction mapping.
(iii) c,y £ M, implies Cx + By € M.

Then there exists z £ M with z =  Cz +  Bz.

We rely on the following theorem for the relative compactness criterion since the Arzella-Ascolli 
Theorem can not be utilized here due to the unbounded domain.

Theorem 2.2. [1] Let M be the space of all bounded continuous (vector-valued) functions on [0,°°) 
and S CM.  Then S is relatively compact in M  if the following conditions hold:

(i) S is bounded in M;
(ii) the functions in S are equicontinuous on any compact interval of [0,°°);
(iii) the functions in S are equiconvergent, that is, given 8 >  0, there exists a T = T(e) > 0 such that 

|| (|)(t) — (|>(°°) ||iRn< 8, for all t > T and all (j) £ S.
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In this paper we assume that

lim a(n) =  0,
n—»oo (2.5)

and for some positive constant L,

u- 1
0 < 52 lc (Mi k) | <  L\a(u) | for all u G [0, °°) n  Z ,

k= 0
(2.6)

and

H\a{n)\ <  1 — |l  +Ha(n )| for all n G [0,°°) flZ, (2.7)

Moreover, we assume

E
w—0

re—1
n <>

5=M+1
-Ha(s))

u—1
52 G|c(k,&)| < a  < 1,
k= 0

(2 .8)

and

re—1 n- 1 w— 1
E n d+^W) i«witf*+EG*icM)i <p<'
M—0 S=M+1 Jfc=0

Finally, choose a constant p > 0 such that

(2.9)

re-1
N  J2 [(l+ //a (s ))  +  ap  +  (3 < p

s= 0

for all n >  0. Let 5 be the Banach space of bounded sequences with the maximum norm. Let

M = {\|/g S, \|f(0)=jr0 : | M | < p } .

Then M is a closed convex subset of S.
Define mappings A  : M -> S and $  : M  ->•M  as follows.

re—1 r n— 1

W W  = E a ( “ ) ( - / / < K « ) + A ( < t > ( K ) ) ) l  n  C 1 + # * ( * ) )
M=0 S=M+1

+ e x>m ) «(<k*)) - n (i+//a(5))>

(2.10)

(2.11)

(2.12)

u=0k=0 5=M+1

(®<t>)(B)= j t (o )n ( i+ 7 / f l ( j ) )
s=0

+  E  E  c(«,*)G<K*) f [  (1 +Ha(s)).
u=0 k= 0 i=M+1

(2.13)
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3 Main Results

In this section we state and prove our existence of bounded solutions result. We begin with the fol
lowing lemma.

Lemma 3.1. Suppose (2.8) and (2.10) hold. The map $  is a contraction from M  into M.

Proof. Let <|> E M. It follows from (2.8) and (2.10) that

n - 1

5=0
+  ap < p.

Also, for <J),\|/ £ M, we obtain

l(®<l>)(«)-(®V)(")l <  L  I I  (!+#<*(*)) L Gk M ) | IK > - i
h= 0 s=«-Tl k= 0

<  a |  Id) —

(3.1)

Therefore proving that $  is a contraction from M into M.

Lemma 3.2. The mapping 3T is a continuous mapping on M.

Proof. Let {<()„} be any sequence of functions in M with || <j)„ — <f) ||—> 0 as n -> oo. Then one can easily 
verify that

|| j?<|)„ — 3l(|) ||—> 0 as n —> °o.

Lemma 3.3. Suppose (1.2), (1.3), (2.5), (2.6), and (2.7) hold. Then 3?(Af) is relatively compact.

Proof. We use Theorem 2.2 to prove the relative compactness of 2L(M) by showing that all three 
conditions of Theorem 2.2 hold. Thus to see that Sl{M) is uniformly bounded, we use conditions 
(1.2), (1.3), (2.6), (2.7) to obtain

<

<

H* + LG*
H

H* + LG*
H

H* + LG*
H

H* + LG*
H

E # K « ) I  Y \  (1 + Ha(s))
U = 0  ,S = M + 1

£ ( i - i i + / / a ( « ) i )  n ( i + H fl(j))
u= 0 i= « + l

n i(i+«a(j))i
1 4 = 0  S = U  

n— 1
1 — |(1 +  /7a(s))| :=  o for all n £ [0,°°) flZ.

s=o

Thus showing that J7(M) is uniformly bounded.
To show equicontinuity of without loss of generality, we let n\ >  ni for n\,ri2 G [0,°°) HZ

and use the notations

F (<|>(m)) =  a(u)[H§(u) — /z(d>(w))] -
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and

Then, we may write

Hence we have

U— 1

J(HU)) = sOK*))-<*►(*)
k=0 L

(-*)(«) =E n  (1 + H a ( s ) ) \ F Q ( u ) )  +  J M u ) )
M=0i=«+1

(3.2)

n \— 1 n \ - 1

(A<t»)(/I2)| =  E  n  ( 1 + H a ( s ) )  F( t y{ u) )  +  J( t y(u) )
u=0 s=u+1 L

H2—1 «2~1
- E H  (i+Ha(s)) F(<K«))+y((K«))

M—0 S=«+l 

M2 — 1 r M| —1

e [ n  ( ^ h ))
H=0 S=H+1

«2 — 1

-  n  0 + * « M )  fW «))+A < K «))
i=I/+l

+ |E f f  (i+ )̂)h<K«))+At(«))
M=/Z2 5=M+1 

«2 —1 «2~ 1

= e  n^+M^))
W=0 S=H+1

«1 ~ 1
-  n  ( ^ + H a ( s ) )  F ( t y ( u ) ) + J ( t y ( u ) )

s=u+ 1

+ E n  l(i+^))imn))+y(^(M))
M=«2 S=U~\-1

n2 ~  1 W2~ 1 tl\ — 1

<o e ^K“)i n  i(i+Hfl(j))i- n  i(i+^))i
u= 0 

/?]-!
S=M-fl 

fl]~\
s=u-\-1

+  a E  H \ a {u)\  n  |( l+ H a ( j) ) |
u=n 2 s=u+ 1



«2—1 «2 — 1 n\— 1
< o i[i- ii+ M «)i] n  i( i+ ^ ) ) i-  n  i(i+^w)i

u—0 ,v=«+l s=u+l

+° -  i1+^°(M)i] n  i(i+^a(5))i
u=n 2 s=w +l

«2~1 r«2 — 1 «| — 1 
< ° L  Am f j  | ( l+ / /a ( s ) ) | -  n  |( l+//a(i)) |

U=0 L S=« 1=M

n  K1+^a(5))i

< G

M=«2 5=W
/ll-l 772— 1

2- 2 n i ( i + ^ ) ) i - n i ( i + ^ ) ) i
s=n2 5=0

771-1

+ n  io+Ha(s))\
i= 0

—̂ 0 as H2 —̂ Yl \ .

This shows that Si is equicontinuous.
To see that Si is equiconvergent, we let

■im L n ( 1+//a0)) f  (<!>(«))+A<K“))
a=0J=« L

oo oo

LriO+^O)) (̂<K«))+-/(<K«))
u=0s=u

Then we have
oo oo
E n  (1 +  Ha(s)) F(§(u))+J($(u))
U=0 i=H +l

1  n  (1 + H a ( s ) )  |"f (<|>(k )) +  J ( § ( u))
u=0s=u+1
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e [ n  ( ! + ^ w )
u=0 s=h+1

n- 1

F I (1+Ha(s))  F($(u))+J(ty(u))
■ V = « + l 

oo oo+ E  n  o + ^ o ) )  F ( m ) + m u ) )
u=ns=u+ 1 L

= e | n (i+̂ w)
W—0 i=M+l

OO

-  n ( l+ ffa (s ) )  F M u ) ) + J f t ( u ) )
s=u+ 1

+ c i A u [ m + H a m
u—n Ls=u

< o "f k [n i(i+̂ ))i - n k1+h<°))\
U = 0  L 5 = H  S = U

+  o [ l - f l \ ( \ + H a ( S))\}

< c
n- 1

2-2ni(i+**w)i-ni(i+»«M)i
■s=0

+  |(1 + //a (s )) | - > 0 a s « —>-00,
s=0 J

where we used (2.5) which yields lim„_><x>rC!=„(l + Ha(s)) = 1.

Theorem 3.1. Assume (1.2), (1.3), (2.5)-(2.10) hold. Then (1.1) has a bounded solution. 

Proof. For <j), V(/ e  M, we obtain

n- 1

i w ) ( n ) + ( ® v ) w i  <  koi n o  T  / / q (.v)) +  otp + 13 5; p
s=0

Thus, 3lty + ‘B\\r e  M. Moreover, Lemma 3, Lemma 4 and Lemma 5 satisfy the requirements of Kras- 
noselskii’s fixed point theorem and hence there exists a function x(n) e  M such that

x(n) = J%x(n) + <Bx{n).

This proves that (1.1) has abounded solutionx(n).

4 An Example

Consider the Volterra difference equation
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M « )  =  ~ ^ h ( x ( n ) ) +  £  4 (2 ") /2i g (X^ ) ) ’ * ( ° )  = x ° ’ n  ^  °> (4 -] )

where the functions /z and g satisfy conditions (1.2) and (1.3), respectively. Let H,G,H*, and G* be 
positive constants with G < 1 and H = 1. We choose p > 0 such that for any initial point x0, the 
inequality

n—l

s=0
\xo\ no-2-) +  Gp +  (H* +  G * ) < p

holds. Then (4.1) has abounded solutionx(rt) satisfying ||x|| < p.
We let a{n) =  - ^  and c(n,k) =
Thus,

n— 1 n— 1 au

Y  \c(n,u)\ = V
t o ,M)4(2")«!

< ---- -----(4" -  0
-  4(2")/*! V )

1< — .
-  2"

Thus, showing that condition (2.6) is satisfied with L =  1. Condition (2.5) can easily be verified. 
Moreover,

H\a(n)\ = 2~n = 1 -  (1 -  2 -”) <  1 -  |1 +Ha(n)\, 

thus, showing that condition (2.7) is satisfied. Next, we verify (2.8) as follows.

n—l

I
u= 0

n—l u- 1

n o-2-')ic£
s=n+l k= 0

4*
4(2")nl

n— 1 i

S GI^ = G ( l
u=0 Z

< G <  1

Finally, we verify (2.9) as follows.

« - 1

I
M—0

n—lno
S = K + I

2 " ' )

n—l
2~uH* +52 G*

k= 0

4*
4(2")/*!.

n—l r
< 2~UH* +  G*

u=0

1 '
2" .

= (»*+G*)Ei
n = 0 Z

< (//*  +  G * ) ( l - ^ ) < ( t f *  +  G*).

Thus, by Thecrv ' '.  (4.1) has a bounded solution.
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5 Boundedness Via Lyapunov Functional

In [12] the first author considered the functional difference equation

x(n +  1) =  G(n,x(s); 0 < s < n ) d= G(n,x(-)) (5.1)

where where G : Z+ x —>• Rk is continuous in x, and proved the following theorem

Theorem 5.1. [12] Let <p(/z,s) be a scalar sequence for 0 < 5 < n < °° and suppose that 9 (71,5) > 
0,A „9 (n,s) <  0 ,A.s9(h,s) >  0 and there are constants B and J such that £"=0 9 (77,5) <  B and 
9 (0 ,5) <  J. Also, suppose that for each n0 > 0 and each bounded initial function <]) : [0,n0] ->• Rk, 
every solution x(n) = x(n,no,ty) of (5.1) satisfies

wi(W”)l) < y ( n ,x { ‘)) <  W2(|jc(/i)|) + £  9(n,s)W3(|x(5)|)
s=0

and
AV(5.i)(n,x(-)) <  — pW3(|x(«)|) +  AT

for some constants p and K > 0 and Wj, i =  1,2,3,4 are wedges . Then solutions of (5.1) are uniformly 
bounded.

In this section, we construct a Lyapunov functional and then refer to the above theorem to deduce 
boundedness on all solutions of (5.2). First we rewrite (1.1) as

/1—  1

x (n + 1) =  b(n)h(x(n))+Y, C(n,s)g(x(s)), x(0) = x0, n >  0, (5.2)
5=0

where b(n) = 1 —a(n). Before we state the next theorem we note that as a consequence of (1.2) and 
(1.3) we have , respectively that

| h(x) \ < H \ x \ + H \

and

|s (jc) | < G | jc|+G *.

Theorem 5.2. Suppose (1.2) and (1.3) hold and for some a  6 (0,1), we have that

00

H\b(n)\ + G Y, lc C / » l  -  1 <
j= n + 1

Also, assume that

E E l c u , » ) l  < » ,
s= 0j= n

and
Aj|C(y,s)| >  0

then solutions of (5.2) are bounded.

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)
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Proof. Define
n— 1 oo

V(n,x(-)) =  W « ) l+ L  I!<?(*<»)I- (5-8)
s=0 j= n

Then along solutions of (1.1), we have

n oo
AV(n,*(■)) =  |* (n + 1 )|- |* (n ) | +  £  £  |C(./,s)||s(x(s))|

5=0 j= n + 1

- £  £ |C 0 ‘,s)||g(x(s))|
5=0 j= n

= \b(n)h(x(n))+Y,C(n,s)g(x(s))
5=0 

n oo

-|x (n )| +  £  Y, Ic Cm )IIs (*(j ))I
5=0 j= n + 1

71 —  1 oo

- L  E l c C / » l l s ( * ( s ) ) l
s=0 j= n

oo

< //|fe(n)| +  G £  |C ( ; » | - 1  |x(n)|+M (n)
7=«+i

<  —a|x(n)| +M,

whereM = H*\b(n)\ +  G* Y  |C(./,n)|-
j= n +1

oo
Let (p(rc,s) =  Y  |C (j,s)|. Then, all the conditions of Theorem 5.2 are satished which implies that all

}=n
solutions of (5.2) are bounded.
We note that Theorem 5.2 gives conditions under which all solutions of (5.2) are bounded. Unlike 
Theorem 3.1 from which one can only conclude the existence of a bounded solution.

Next, we use Example 1 and compare the conditions of Theorem 5.2 to those of Theorem 3.1. Let 
a(n),G, and H be given as in Example 1 and consider condition (5.5) for n > 0. Then,

1 4"
H\b(n)HG £  |C ( j » |- l  = | l - - | - l +  £

j= n + 1 j= n + l  '■>'
1 oo , n 1

=  - ^ + 4

=  - ^ + 4" " 1[^ - E  (2^7?]- (5.9)

Next we perform the following calculations by using n! > 2" for n >  4.
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n

-E
7=0

1

M /!
3 1 1 y 1
2 8 48

> _ T 1 1 n iy“  2 8 48 h i 4y)
3 1 1 i i  i « i

4------ b . 4- . V
2 8 48 4 42 43 p x (41)

78 21 l / l - ( l / 4 ) " x
48 43 4 V 1 - 1 / 4  /

Thus, a substitution of (5.10) into (5.9) yields,

(5.10)

>  0, for n — 3.

(1/4)" 
48 1 43 4 V 1 - 1 / 4

(5.11)

This shows that condition (5.5) does not hold for n > 0. Hence, Theorem 5.2 gives no information 
regarding the solutions and yet Theorem 3.1 implies the existence of at least one bounded solution.
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