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1. Introduction

G.H. Hardy in [2] proved the following classical inequality: For any p > 1 and any integrable function f(x) >0 on (0, c0),
the inequality

00 X p 00

1 p p
/(; / f(t)dt) dx < (pTl) /fp(X)dX (1.1)
0 0 0

holds, where the constant (ﬁ)p is the best possible. Inequality (1.1) is generally known as Hardy’s inequality and it has
an interesting prehistory and history (see [3,6,7]). Because of the fundamental importance of this inequality in analysis and
its applications, many interesting extensions, generalizations, variants and alternative proofs of (1.1) have appeared in the
literature (see for instance [3,5-7,9] and the references cited therein). A well-known simple fact is that (1.1) can equivalently

1 1
(via the substitution f(x) = h(xl_F)x_F ), be rewritten in the form

717 Pox T d
b% b%
/<_ /hmdt) B o (12)
X X X
0 0 0
and in this form it even holds with equality when p = 1. In this form we see that Hardy’s inequality is a simple consequence

of Jensen’s inequality but this was not discovered in the dramatic period when Hardy discovered in [1] and finally proved
his inequality in 1925 (see [2,3,7]). Guided by this fact, in this paper the weighted Hardy-type inequality
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X1...Xn

- . dxa [ [ dxy ... dx,
/.../@(AKf()q,...,x,,))u()q,...,xn)%g/.../di'(f(xl,...,xn))v(x],...,xn)u (1.3)
0 0 )

will be studied, where @ is a convex function and Ag and its dual Ak« are general Hardy-type (arithmetic mean) operators
defined by

X1 Xn
1
AKf(X1,...,Xn)2=7‘/.../]{()(1,...,Xn,l'l,...,l’n)f(tl,...,tn)dﬁ4..dtn (1.4)
K(x1,...,%)
0 0
and
; 00 00
A f(X1, ..., %) :=~4/...[k()(1,...,Xn,ﬁ,...,l'n)f(ﬁ,...,tn)dﬁ...dtn (1.5)
K(x1,....%n)
X1 Xn

with K(xq,...,x,) and k(}q,...,xn) given by

X1 Xn
K(x1,...,%) ::/.../Ic(xl,...,xn,tl,...,tn)dtl ... dty (1.6)
0 0
and
(o8] [o¢]
K(xl,...,xn):=/.../1<(x1,...,xn,t1,...,rn)dn...dtn, (1.7)
X1 Xn
respectively (here k = k(x1, ..., Xn, t1,...,ts) is a kernel, i.e. a locally integrable and positive function in R2").

In this paper we prove and discuss some new multidimensional Hardy-type inequalities involving arithmetic mean oper-
ators with general positive kernels. We remark that our condition is only sufficient (but see also Remark 3.4). Our approach
is to use a convexity argument, which is completely different from the classical ones used by Hardy and others (see e.g. [3]
and [6]). In particular, our results further generalize and complement some recent results in [4].

This paper is organized as follows: The results are presented and proved in Section 2. In Section 3 we present some
illustrative examples and remarks.

Notations. All functions in this paper are assumed to be measurable and expressions of the form 0.c0, g, X L (@eR)

0’ oo
are taken to be equal to zero. Finally, as usual, by a weight u = u(xy,...,X;) we mean a nonnegative measurable function
on a subset of R}

2. Results
In this section we state and prove the results of this paper.

Proposition 2.1. Letn € N, k(x1,...,Xn,t1,...,tn) and u(xq, ..., xn) be weight functions and assume that

k(x1,..., %0, t1, ..., tpU(X1, ..., Xn)
X1...xnK(X1,...,Xn)

is locally integrable and for each (t1, ..., tn), ti € (0, b;), define v by

by by
k(x1. ..., %0, t1, ..., tu(X1, ..., Xp) dx1...dx
v(xl,...,xn):ﬁ...tn/...f (x1, m 1 nu (1 n) dx1 " < 0. (21)
t1 th

K(X1,...,%n) X1...Xn

(i) If @ is positive and convex on (a, c), —oo0 < a < ¢ < 0o, then

b] bn bl bn
dxq...dx dxq...dx
/.../q>(AKf(x1,...,xn))u(xh...,xn)#</...f@(f(m,...,xn))v(xl,...,xn)¥ (2.2)
X1...Xn X1...Xn
0 0 0 0

forall f witha< f(x1,...,xp) <c,0<x;<bj,i=1,2,...,n.
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(ii) If @ is positive and concave on (a, ¢), —0o < a < ¢ < 00, then

b] n b] bn
dx, dx ...dxy
/ / (Ak 1, %) uxa, ... X ) Xx 2/.../¢(f(x1,...,xn))v(x1,...,xn)H (2.3)
0 0

forall f witha< f(x1,...,xp) <c,0<x;<bj,i=1,2,...,n
Here Ak and K (x1, ..., xn) are as defined by (1.4) and (1.6), respectively.

Remark 2.1. For the case n =1 Proposition 2.1 (i) coincides with Theorem 4.1 in [4]. Moreover, for the case k=1 in
Proposition 2.1 we obtain Proposition 2.1 in [8].

Proof. (i) By applying Jensen’s inequality and Fubini’s theorem to the left-hand side of (2.2) we have that

by by
dxq...dx
/.../¢(A1<f(x1,.‘.,xn))u(xl,...,xn)¥
X1...Xn
0 0
by by 1 X1 Xn d d
=/..,/q> —/.../k(m,...,xn,tl,...,tn)f(ﬁ,...,tn)dﬁ...dtn Ui, ... xy) LT
K(x1,...,%n) X1...Xp
0 0
i dx; ...d
</ / /k()q,...,xn,ﬁ,...,tn)@(f(ﬁ,...,tn))dtl...dtn UK, ..., X)L CXn
K(xl,.. L, Xn) X{...Xp
0

1...Xn

by

0

by b
0

bl n
dxq ...dx
f(tl,.. Jth) (/ /K k(x1...xn,t1,...,tn)u(x1,...,xn)¥>dt1...dtn
(X1,...,Xn X

...dx
/ / (fa, ..o x))v(x1, ..., % ) xx.

(ii) The proof is completely similar to the proof of (i). We only note that in this case, since the function @ is concave
and, hence, the inequality sign is reversed. The proof is complete. O

Proposition 2.2. Lletn e N4, 0< b; <X;, tj <oo,i=1,2,...,n, and let k(xq ...Xq, t1,...,ty) and u(x1, ..., X)) be weight func-
tions such that
k(x1, ..., %0, t1, ..., t)u(xX1, ..., Xp)
X1 X K(X1, ..., %)

is locally integrable and for each (t1, ..., tn), ti € (b;, 00), define v by

15}
v(xl,...,xn):ﬁ...t]/...
by

(i) If @ is positive and convex on (a,c), —oo < a < ¢ < oo and Ak is the general dual Hardy operator defined by (1.5), then the

< 00. (2.4)

tl'l
/k(xl,...,xn,ﬁ,...,tn)u(xl,...,xn)dxl...dxn
E()q,...,xn) X1...Xp

by

inequality
X1 ...dX, X1 ...0X,
/.../@(A,«f(xl,...,xn))u(xl,...,xn)¥</.../q>(f(x1,...,xn))v(x1,...,xn)M (2.5)
X1...Xn X1...Xn
b] bn bl bn

holds for all f witha < f(x1,...,Xxp) <c, 0<x;<bj,i=1,2,...,n
(ii) If @ is positive and concave on (a, c), —oo < a < ¢ < oo and Ak« is the general dual Hardy operator defined by (1.5), then the
inequality

ror dxy...dxa [ [ dxy ....dxy
/.../(D(AK*f(xl,...,xn))u(xL...,xn)%2/.../¢(f(x1,.‘.,xn))v(xl,...,xn)¥ (2.6)
1 n

1...Xn
b1 by

holds for all f witha < f(x1,...,%;) <c,0<x; <b;,i=1,2,...,n, andf(xl,...,xn) is as defined by (1.7).
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Proof. (i) By applying Jensen’s inequality and Fubini’s theorem to the left-hand side of (2.5) we find that

- dx ...dx,
/.../Qf'(AK*f(X],...,Xn))u(XL...,Xn)u

X1...Xn
by by

=/.../q> ~7/.../k(x1,...,xn,t1,...,tn)f(ﬁ,...,tn)dt]...dtn u(xl,...,xn)M
K(x1,...,%n) X1...Xn
X1 Xn

by

=

n

o0
dxq...dx
/( / /Ic(x1,.. Xt )@ (. ) diy drn)u(xb...,xn)#
K(X1,...,%n) X1...Xn

N
.\8

by by
[’} %) t th 1 d d
X1...dX
=/.../¢(f(t1,...,tn)) /.../~—k(X1,...,Xn,tl,...,tn)u(x1,...,xn)—n dti...dt,
KX1,...,%n) X1 ...Xp
by by by by
- d d
X1 ...dx
=/.../d>(f(x1,...,xn))v(xl,...,xn)i1 iy
X1...Xn
by by

(ii) The proof is completely similar to the proof of (i). As before we note that the function @ is concave and, thus, the
inequality sign is reversed. The proof is complete. O

In order to be able to prove the final (and main) result of this paper we need to formulate the following Minkowski type
inequality of independent interest:

Lemma 21. Let p > 1, —oo < a; <b; <00, k=k(X1...X,t1,...,tn) be alocally integrable kernel and @ and ¥ be positive and
measurable functions. Then

1
p
(/ /(/ /k(xl,” X b )P (Y, Y dY - n) <D(X1,...,xn)dX1...dxn)

by by by by 1
/ /(/ /@(xl,.. CXOKP (X1, .o X, by, . ) dXg L xn> ¥ (Y1,...,yn)dy1...dyy,. (2.7)
an Y1 Yn

For the readers convenience we include a simple proof of this lemma in the following a little more general form:

Proposition 2.3. Let p > 1, —oco < a; <b; <00, and —oco <¢j <dj<oo,n=1,2,...,n(n€Zy). Then

by by, di  dn

1
p
(/ /(/ [k(xl,.. X Y1, -+, Yn)dy1 - yn) dxh.dxn)
d] n bl n
/ /(/ /kp()q,.. X, V1, oo Yn)dxq .. xn) dyq...dyy. (2.8)

Remark 2.2. We see that Lemma 2.1 is a special case of Proposition 2.3 by choosing k = k(X1 ...Xs, ¥1,...,Yn) in the
following way

1
k= k&, Xt )P (Y, Y) PP (R, Xn), G S Yi <X <Dy,
0, elsewhere.
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Proof. By using the fact that we can have equality in Holder’s inequality we find that

by by , dy dyn p il
10::(/.../(/.../k(}q,...,xn,y1,...,yn)dy1...dyn> dx1...dxn>
aip an C1 Cn
b] bn d] dn
= sup/.../go(xl,...,xn)/...[k(xl,...,xn,yl,...,yn)dyl...dyndxl..ldxn, (2.9)
¢>Oa1 an C1 Cn
where the supremum is taken over all ¢ such that
bl bn
/.../(p(xl,...,xn)dxl..,dxnzl.
a an

Hence, by Fubini’s theorem, a trivial estimate and using (2.9) again, we find that
dy dn by by

IO:sup/...//.l./k()q,..4,xn,y1,...,yn)w(xl,...,xn)dm4..dxndy1...dyn
C1 an

@>0
Ch M
dq dp by by
</ (sup/.../k(;q,...,xn,y1,...,yn)g0(x1,...,xn)dx1...dxn>dy1...dyn
C1 Cn (p>0a1 an

dl dn bl bn %
=/.../(/.../kp(xl,...,xn,y],...,yn)dx1...dxn> dyq...dyn.
(o8] Cn a an

The proof is complete. O

Theorem 2.1. Let 1 < p<q<o00,0<b; <00, s1,...,5€(1,p),i=1,2,...,n, and let @ be a convex function on (a, c), —oo <
a < ¢ < 0. Let Ak be the general Hardy operator defined by (1.4) and let u(xq, ..., X) and v(x1, ..., X,) be weight functions, where
v(X1,...,Xn) is of product type i.e. v(X1,...,Xn) = V(X1).v(X2) ... v(xp). Then the inequality
ror d d g
X1...dx
(/.../[(P(AKf(x],...,xn))]qu(xl,...,xn)H')
X1...Xn
0 0
o dxi . du )’
X1 ...dx
<C(/.../db"(f(x],...,xn))v(x1,...,xn)¥> (2.10)
X1...Xn
0 0
holds for all functions f(x1,...,xn), a < f(X1,...,Xy) <¢, if
bl bn ] q
K(X1s -y Xy V1o enes
A(s1,...,50) = sup //[ ta n 1 y")] UX, ...y Xn)
0<ty...tn<bq...by I<(X], ---,Xn)
t th
1
a(p—s1) a(p—sn) dx1 . dx. \ T st sn—1
xVy PV ” (Xn)% VP (t)...Vy? (ta) <00 (2.11)
1.-..-Xn
holds, where
X
Vi(><f)=/v1“’/dt,~, i=1,2,...,n, (212)

0
and p’ = p’%]. Furthermore, if C is the best possible constant in (2.10), then

1 1
7

C<  inf (p_1>w.n<p_l)pA@L””%) (2.13)

1<si...sp<p\ P — S1 D —Sn

Remark 2.3. For the case n =1 Theorem 2.1 coincides with Theorem 4.4 in [4].
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Proof. By applying Jensen’s inequality to the left-hand side of (2.10) we obtain that

bq bn g
dx1...dxy \*
(B -

by 7
=</ / { / /k(x1,.. X E1 e ) (1t dE n} u(x1,...,xn)dx1"'dx”>
KX1,...,%n) X1...Xp

n

by
(/ /{K(xh.. xn)./ /k(xl,.. Xyt )@ (f(t, L ) de }

dxy...dxp \°
xu(xl,...,xn)u> . (214)
X1...Xn
The proof will be completed if we can prove that
by by d d cll
X1 ...dx
/ / / /k(X1,.. Xt )P (f(Er, L ) dEy Lty u(xl,...,xn)M
K(x1,,. xn) X1...Xp
T dxr . dxn\?
<C</.../¢p(f(x1,...,xn))v(x1,...,xn)u) . (2.15)
X1...Xn
0 0
Define g so that ®P(f(xq,.. XH))% @(g(x1,...,%y)) and (2.15) can equivalently be rewritten as
b] n
1
k(xq, .. S, ) DP t1,...,¢t
<Of f{mh__ Xn)f /(xl st )P (g0, )

trotn \? ! dxy...dxg \°
1...In P X1...dxp
———— ) dt;...dt Xy ————1
x <v(t1,...,tn)> ! n} ux *n) X1...Xn )

(71 /" D (g(x1, ... xn)) )1. (2.16)

By applying Holder’s inequality and Lemma 2.1 with p replaced by to the left-hand side of (2.16) and using the fact that

V(X1,...,X) =V1(X1)...Vn(Xy) and = _1—p we find that

n

by
L_(/ /|:K(x1,.. Xn)./ /k()q,.. X b1, .. tn)tbp((ﬁ,.. )

- —(s1-1 —(sn—=1)

(tl) n” tVv, " ...V, "’ (tn)le(tl) (tn)
1o ! AN
Xty ..ty dt1...dtni| u(xl,...,xn)u)
X1...Xn
by bn x1 Xn %
< (/.../[/.../k”(}q,...,xn,t1,...,tn)q§(g(t1,.. D)V (). 5”_1(tn)dt1...dtn:|
0 0 0 0

q 1
/ 7

X1 Xn , =
A R =2/ Gn=1) -z v LA PuX1, ..., Xn) dx1...dxnp \ 1
><|:/.../V1 Pt Ve P vy P ) v Pt Lt dn...dtn] L L
0 0

K9(X1,...,X) X1...Xp
1\
(ely (/ /[/ [ st
" 0

0 0

I
N
T |
L1
G
N——

'E\‘.—A
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P
<D(g(t1,...,tn))Vfl_l(ﬁ)..,Vﬁ"1(tn)dt1..,dtn:| v,

q(p—sq) q(p—sn)

LX) dxq ...

(x1)...Vy P ()

1 1
—1\7 4
<<5_51>”...( _S) (/ / (gt )V ) VT ()

Xn, b1, ..

q(p—sy) qp Sn)
/ / Po(x).. P xuxg, ..
1 by
/

1\7 1 7
g(p_ ) ...(p_ ) A(s1,..,,sn)</.../¢
pP—5 P —Sn )

0

Hence, (2.16) and, thus, (2.15) hold and the proof is complete. O

3. Concluding examples and remarks

,Xn)<k(x1

K(X],...,

(8(t1,....t))dty ...dtn>

1
P

.,tn))qd)q
Xn) X]1...

dty... dtn>

L, Xn) X1...

o=

417

By using our results in special cases and making suitable variable transformation as that in the introduction (showing

that (1.1

kernel k =1, then Proposition 2.1 with @ (u) = uP implies the following result

Example 3.1. Let 0 <d;j < o0, i=1,2,...,n (n€Zy).

(i) If p>1or p <0, then,

[ 165

Yn

0

dq dn

p \™ yi\'7
_P p _ (2
g(p_]) 0/‘...‘/‘g(yl,...,yn)(l (d1) )

0

for each positive measurable function g.
(ii) f 0 < p <1, then

Yn

dl n p
/ ( / /g(s1,...,sn)ds1...dsn) dyi...

Y1

0
b = i i y pTTl
_r p ()1
2(1-;;) /~--/g(y1,...,yn)(l <d1> )
0 0

for every positive measurable function g.

Remark 3.1. This result was also proved in [4].

P
/ ./g(sl,...,sn)dsl...dsn) dyq...

dyn

(17 (?) ’ >dy1...dy,1
n

) and (1.2) are equivalent) we obtain directly some multidimensional Hardy-type inequalities. For example if the

Moreover, by choosing @ (u) =expu and replacing f by In fP for any p € R we obtain the following multidimensional

version of Pélya-Knopp’s inequality:

Example 3.2. The assumptions of Proposition 2.1 yields that

by by Xn
/ /u(xl,.. , Xn) exp / ./k(xl,...,xn,tl,...,tn)lnf(n,...,tn)dt]...dtn
K(xl,... Xn)

0

by by
dxq...d
g/.../v(xl,...,xn)fp(x1,...,xn)u.
0

X1...Xn

>p

dX]...
X1...

dxy,
Xn

(3.1)
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In particular, if u(xq,...,xp) =1, k(x1,...,Xn, t1,...,tg) =1, and f(t1,...,ty) is replaced by % then (3.1) reduces to
Corollary 2.3 in [4].

Remark 3.2. Inequality (3.1) is a multidimensional generalization of Pélya-Knopp type inequality (4.2) in [4] and Example 3.1
is a (formal) generalization of Corollary 2.2 in [4].

Remark 3.3. For the case k =1 another proof of the multidimensional Minkowski inequality in Lemma 2.1 was presented
and proved in the PhD thesis of A. Wedestig [10, Lemma 4.4]. However, our proof here is different and much simpler.

Remark 3.4. In the main result of this paper (Theorem 2.1) we have only obtained a sufficient condition for the multidi-
mensional Hardy-type inequality (2.10) to hold for a general positive kernel. Even in the one-dimensional case we have
necessary and sufficient conditions only for very special kernels (satisfying e.g. the Oinarov condition, see [5, p. 89]). We
conjecture that also our condition (2.11) is necessary and sufficient if we impose additional properties on the kernel but we
leave this as an open question.
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