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Abstract. We prove that the totally nonlinear second-order neutral differential equation

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)h(x(t)) =

d

dt
c(t, x(t− τ(t))) + f(t, ρ(x(t)), g(x(t− τ(t))))

has positive periodic solutions by employing the Krasnoselskii-Burton hybrid fixed point
theorem.
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1. INTRODUCTION

The study of existence of positive periodic solutions of neutral differential equations
has gained the attention of many researchers in recent times, see [4,6,12,13,16,18,20].

We prove the existence of positive periodic solutions for the totally nonlinear
second-order neutral differential equation of the form

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)h(x(t)) =

=
d

dt
c(t, x(t− τ(t))) + f(t, ρ(x(t)), g(x(t− τ(t)))),

(1.1)

where p and q are positive continuous real-valued functions. The functions
f : R× R× R→ R, c : R× R→ R, and h : R→ R are continuous in their respective
arguments.
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This work is mainly motivated by the papers [1, 2, 21] and particularly the work
of Yankson in [20], in which the existence of positive periodic solutions of the second
order neutral delay differential equation

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) = c

d

dt
x(t− τ(t)) + f(t, ρ(x(t)), g(x(t− τ(t)))) (1.2)

is proved. The neutral term d
dtc(t, x(t − τ(t))) in (1.1) produces non-linearity in the

derivative term d
dtx(t − τ(t)), whereas the neutral term d

dtx(t − τ(t)) in (1.2) enters
linearly. Also, h(x(t)) in (1.1) is equal to x(t) in (1.2), thus making (1.1) totally
nonlinear. In view of the above differences between (1.1) and (1.2), our analysis is
different from that in [20]. We refer to [5, 7–11, 14, 15], and [19] for results on some
qualitative properties of neutral functional differential equations.

The rest of the paper is organized as follows. In Section 2, we provide some pre-
liminary results needed in later sections. We also give the Green’s function of (1.1),
and provide without proof a statement of the Krasnoselskii-Burton hybrid fixed point
theorem. Our main results are presented in Section 3.

2. PRELIMINARIES

For T > 0, let PT be the set of continuous scalar functions x that are periodic in t,
with period T . Then (PT , ‖ · ‖) is a Banach space with the supremum norm

‖x‖ = sup
t∈R
|x(t)| = sup

t∈[0,T ]

|x(t)|.

In this paper we make the following assumptions:

p(t+ T ) = p(t), q(t+ T ) = q(t), τ(t+ T ) = τ(t), (2.1)

with τ being a scalar function, continuous, and τ(t) ≥ τ∗ > 0. Also, we assume that

T∫

0

p(s)ds > 0,

T∫

0

q(s)ds > 0. (2.2)

We also assume that f(t, ρ, g) and c(t, x) are periodic in t with period T , that is,

f(t+ T, ρ, g) = f(t, ρ, g), c(t+ T, x) = c(t, x). (2.3)

The following result is found in [13] and will be used to obtain the Green’s function
for (1.1).

Lemma 2.1. Suppose that (2.1) and (2.2) hold and

R1[exp(
∫ T
0
p(u)du)− 1]

Q1T
≥ 1, (2.4)
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where

R1 = max
t∈[0,T ]

∣∣∣∣∣

t+T∫

t

exp(
∫ s
t
p(u)du)

exp(
∫ T
0
p(u)du)− 1

q(s)ds

∣∣∣∣∣,

Q1 =

(
1 + exp

( T∫

0

p(u)du
))2

R2
1.

Then there are continuous and T -periodic functions a and b such that b(t) > 0,∫ T
0
a(u)du > 0, and

a(t) + b(t) = p(t),
d

dt
b(t) + a(t)b(t) = q(t), for t ∈ R.

The following result displays the Green’s function, G(t, s), which is found in [19]
and is used in the inversion of (1.1).

Lemma 2.2. Suppose the conditions of Lemma 2.1 hold and φ ∈ PT . Then the
equation

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) = φ(t)

has a T -periodic solution. Moreover, the periodic solution can be expressed as

x(t) =

t+T∫

t

G(t, s)φ(s)ds,

where

G(t, s) =

∫ s
t
exp[

∫ u
t
b(v)dv +

∫ s
u
a(v)dv]du+

∫ t+T
s

exp[
∫ u
t
b(v)dv +

∫ s+T
u

a(v)dv]du

[exp
( ∫ T

0
a(u)du

)
− 1][exp

( ∫ T
0
b(u)du

)
− 1]

.

The next result which is found in [19] contains properties of the Green’s function,
G(t, s), needed in the inversion of (1.1) and in later sections.

Corollary 2.3. Green’s function G satisfies the following properties

G(t, t+ T ) = G(t, t), G(t+ T, s+ T ) = G(t, s),

∂

∂s
G(t, s) = a(s)G(t, s)− exp

( ∫ s
t
b(v)dv

)

exp
( ∫ T

0
b(v)dv

)
− 1

,

∂

∂t
G(t, s) = −b(t)G(t, s) + exp

( ∫ s
t
a(v)dv

)

exp
( ∫ T

0
a(v)dv

)
− 1

.

We next state and prove the following lemma which will play an essential role in
obtaining our results.
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Lemma 2.4. Suppose (2.1)–(2.4) hold. If x ∈ PT , then x is a solution of (1.1) if and
only if

x(t) =

t+T∫

t

G(t, s)q(s)[x(s)− h(x(s))]ds+

+

t+T∫

t

[
c(s, x(s− τ(s)))[E(t, s)− a(s)G(t, s)]+

+G(t, s)f(s, ρ(x(s)), g(x(s− τ(s))))
]
ds,

(2.5)

where

E(t, s) =
exp(

∫ s
t
b(v)dv)

exp(
∫ T
0
b(v)dv)− 1

. (2.6)

Proof. Let x ∈ PT be a solution of (1.1). Rewrite (1.1) as

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) = q(t)[x(t)− h(x(t))] + d

dt
c(t, x(t− τ(t)))+

+ f(t, ρ(x(t)), g(x(t− τ(t)))).

From Lemma 2.2 we have

x(t) =

t+T∫

t

G(t, s)q(s)[x(s)− h(x(s))]ds+

+

t+T∫

t

G(t, s)
[ ∂
∂s
c(s, x(s− τ(s))) + f(s, ρ(x(s)), g(x(s− τ(s))))

]
ds.

(2.7)

Integrating by parts, we have

t+T∫

t

G(t, s)
∂

∂s
c(s, x(s− τ(s)))ds = −

t+T∫

t

[ ∂
∂s
G(t, s)

]
c(s, x(s− τ(s)))ds =

=

t+T∫

t

c(s, x(s− τ(s)))[E(t, s)− a(s)G(t, s)]ds,

(2.8)

where E is given by (2.6). Then substituting (2.8) in (2.7) completes the proof.

The next result contains minimum and maximum values for obtaining bounds for
the functions G(t, s) and E(t, s) and its proof is found in [19].

Lemma 2.5. Let A =
∫ T
0
p(u)du, B = T 2 exp

(
1
T

∫ T
0
ln(q(u))du

)
. If

A2 ≥ 4B, (2.9)
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then

min

{ T∫

0

a(u)du,

T∫

0

b(u)du

}
≥ 1

2
(A−

√
A2 − 4B) := l,

max

{ T∫

0

a(u)du,

T∫

0

b(u)du

}
≤ 1

2
(A+

√
A2 − 4B) := m.

The bounds for the functions G(t, s) and E(t, s) are given in the following result
which is found in [19].

Corollary 2.6. Functions G and E satisfy

T

(em − 1)2
≤ G(t, s) ≤ T exp

( ∫ T
0
p(u)du

)

(el − 1)2
, |E(t, s)| ≤ em

el − 1
.

To simplify notation, we introduce the constants

β =
em

el − 1
, α =

T exp
( ∫ T

0
p(u)du

)

(el − 1)2
, γ =

T

(em − 1)2
. (2.10)

Next we provide definitions for large contraction and equicontinuity. We then state
the Krasnoselskii-Burton hybrid fixed point theorem which constitutes a basis for our
main result. We refer to [17] for Krasnoselskii’s fixed point theorem.

Definition 2.7. Let (M, d) be a metric space and B : M→M. B is said to be a large
contraction if ψ,ϕ ∈ M, with ψ 6= ϕ then d(Bϕ,Bψ) < d(ϕ,ψ) and if for all ε > 0
there exists δ < 1 such that

[ψ,ϕ ∈M, d(ϕ,ψ) ≥ ε]⇒ d(Bϕ,Bψ) ≤ δd(ϕ,ψ).

Definition 2.8. Let U be an interval on R and let {fn} be a sequence of functions
with fn : U → Rd. Denote by | · | any norm on Rd. Then {fn} is equicontinuous
if for any ε > 0 there exist δ > 0 such that t1, t2 ∈ U and |t1 − t2| < δ imply
|fn(t1)− fn(t2)| < ε for all n.

Theorem 2.9 ([3]). Let M be a closed bounded convex non-empty subset of a Banach
space (S, ‖ · ‖). Suppose that A, B map M into M and that:

(i) for all x, y ∈M⇒ Ax+By ∈M,
(ii) A is continuous and AM is contained in a compact subset of M,
(iii) B is a large contraction.

Then there is a z ∈M with z = Az +Bz.

For some non-negative constant K and a positive constant L we define the set

D = {ϕ ∈ PT : K ≤ ϕ ≤ L},
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which is a closed convex and bounded subset of the Banach space PT . In addition we
assume that there exists non-negative constants σ, c∗ and µ such that

σ < E(t, s) for all (t, s) ∈ [0, T ]× [0, T ], (2.11)

c∗ ≤ c(t, t− τ(t)), (2.12)

‖c(t, x)‖ ≤ µ, (2.13)

βµT < L, c∗σT < K, (2.14)

and for all s ∈ R, φ, ϕ ∈ D

K − c∗σT
γT

≤ q(s)[φ(s)− h(φ(s))] + f(s, ρ(ϕ), g(ϕ))− a(s)c(s, ϕ) ≤ L− βµT
αT

.

(2.15)

To apply Theorem 2.9 we define A : D→ D and B : D→ D, respectively, by

(Aϕ)(t) =
t+T∫

t

[
c(s, ϕ(s− τ(s)))[E(t, s)− a(s)G(t, s)]+

+G(t, s)f(s, ρ(ϕ(s)), g(ϕ(s− τ(s))))
]
ds,

(2.16)

and

(Bϕ)(t) =
t+T∫

t

G(t, s)q(s)[ϕ(s)− h(ϕ(s))]ds. (2.17)

We end this section by making the following assumptions on the function
h : R→ R. Let U represent the closed interval [K,L]. Then:

(H1) h is continuous and differentiable on U ,
(H2) h is strictly increasing on U ,
(H3) sups∈U h

′(s) ≤ 1.

3. EXISTENCE OF POSITIVE PERIODIC SOLUTIONS

In this section we present our main result. In order to establish our main result we
first prove the following lemmas.

We begin this section by stating the following result which is found in [1], and is
required for proving that B is a large contraction.

Lemma 3.1. Let h : R → R be a function satisfying (H1)–(H3) and
z = ϕ(s)− h(ϕ(s)). Then z : D→ D is a large contraction on the set D.

The next result gives a relationship between the mappings z and B in the sense
of a large contraction.
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Lemma 3.2. Suppose that condition (2.15) holds, then Bϕ ∈ D for all ϕ ∈ D.
Moreover, if z is a large contraction on D, and

α‖q‖T ≤ 1, (3.1)

then so is the mapping B.

Proof. It is easy to check that (Bϕ)(t+T ) = (Bϕ)(t). Observe that if c(t, x) = 0 then
in view of (2.12) and (2.13) we have that c∗ = µ = 0. Therefore, condition (2.15) with
f(t, ρ, g) = 0 becomes

K

γT
≤ q(s)[ϕ(s)− h(ϕ(s))] ≤ L

αT
. (3.2)

Now, let ϕ ∈ D, then

(Bϕ)(t) ≤ αT
( L

αT

)
= L.

On the other hand,

(Bϕ)(t) ≥ γT
( K
γT

)
= K.

Thus showing that Bϕ ∈ D for all ϕ ∈ D.
If z is a large contraction on D, then for x, y ∈ D, with x 6= y, we have

‖zx−zy‖ ≤ ‖x− y‖. Thus,

|Bx(t)− By(t)| ≤ α‖q‖T‖x− y‖ ≤ ‖x− y‖.

Thus,
‖Bx−By‖ ≤ ‖x− y‖.

Also, let ε ∈ (0, 1). Then for the δ of the proof of Theorem 3.4 in [1], we have that
‖zx−zy‖ ≤ δ‖x− y‖. Thus,

‖Bx− By‖ ≤ δα‖q‖T‖x− y‖ ≤ δ‖x− y‖.

The proof is complete.

Lemma 3.3. Suppose that conditions (2.1)–(2.3), and (2.11)–(2.15) hold. Then the
image of A is contained in a compact set and A is continuous.

Proof. Let A be defined by (2.16). It is easy to see that (Aϕ)(t+T ) = (Aϕ)(t). Using
Corollary 2.3, and conditions (2.13), (2.15) we obtain that for t ∈ [0, T ] and for ϕ ∈ D

(Aϕ)(t) ≤ µβT + αT
(L− βµT

αT

)
≤ L.
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Also, in view of Corollary 2.3, and conditions (2.11), (2.12), (2.13) we have that

(Aϕ)(t) ≥ c∗σT + γT
(K − c∗σT

γT

)
≥ K.

Thus Aϕ ∈ D for all ϕ ∈ D.
Moreover, Corollary 2.3 and conditions (2.13), (2.15) give

|(Aϕ)(t)| ≤
∣∣∣∣
t+T∫

t

c(s, ϕ(s− τ(s)))E(t, s)ds

∣∣∣∣+

+

∣∣∣∣
t+T∫

t

G(t, s)
[
f(s, h(ϕ(s)), g(ϕ(s− τ(s))))− a(s)c(s, ϕ(s− τ(s)))

]
ds

∣∣∣∣ ≤

≤ µβT + αT
(L− βµT

αT

)
≤ L.

Thus from the estimation of |(Aϕ)(t)| we have that

‖Aϕ‖ ≤ L.

This shows that A(D) is uniformly bounded. We next show that A(D) is equicon-
tinuous by first computing d

dt (Aϕn(t)). We obtain by taking the derivative in (2.14)
that

d

dt
(Aϕ)n(t) =

exp
( ∫ t+T

t
b(v)dv − 1

)

exp
( ∫ T

0
b(v)dv

)
− 1

c(t, ϕn(t− τ(t)))+

+

t+T∫

t

c(s, ϕn(s− τ(s)))
[
− b(t)E(t, s)− a(s)

(
− b(t)G(t, s)+

+
exp(

∫ s
t
a(v)dv)

exp(
∫ T
0
a(v)dv)− 1

)]
ds+

+

t+T∫

t

(
− b(t)G(t, s) + exp(

∫ s
t
a(v)dv)

exp(
∫ T
0
a(v)dv)− 1

)
×

× f(s, h(ϕn(s)), g(ϕn(s− τ(s))))ds =
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=
exp

( ∫ t+T
t

b(v)dv − 1
)

exp
( ∫ T

0
b(v)dv

)
− 1

c(t, ϕn(t− τ(t)))+

+

t+T∫

t

c(s, ϕn(s− τ(s)))
[
− b(t)E(t, s)− a(s) exp(

∫ s
t
a(v))dv

exp(
∫ T
0
a(v)dv)− 1

]
ds+

+

t+T∫

t

exp(
∫ s
t
a(v)dv)

exp(
∫ T
0
a(v)dv)− 1

f(s, h(ϕn(s)), g(ϕn(s− τ(s))))ds+

+

t+T∫

t

−b(t)G(t, s)
[
f(s, h(ϕn(s)), g(ϕn(s− τ(s))))−

− a(s)c(s, ϕn(s− τ(s)))
]
ds.

Consequently, by invoking (2.10), (2.13) and (2.15) we obtain
∣∣∣ d
dt

(Aϕ)(t)
∣∣∣ ≤ βµ+ Tµ[‖b‖β + ‖a‖β] + Tβ

(L− βµT
αT

)
+ ‖b‖αT

(L− βµT
αT

)
≤M,

for some positive constant M . Hence (Aϕ) is equicontinuous. Then by the
Ascoli-Arzelà theorem we obtain that A is a compact map. Due to the continuity
of all the terms in (2.16), we have that A is continuous. This completes the proof.

Theorem 3.4. Let α, β and γ be given by (2.10). Suppose that conditions (2.1)–(2.4),
(2.11)–(2.15) hold, then equation (1.1) has a positive periodic solution z satisfying
K ≤ z ≤ L.
Proof. Let ϕ,ψ ∈ D. Using (2.16) and (2.17) we obtain

(Bψ)(t) + (Aϕ)(t) =

=

t+T∫

t

G(t, s)q(s)[ψ(s)− h(ψ(s))]ds+
t+T∫

t

[
c(s, ϕ(s− τ(s)))[E(t, s)− a(s)G(t, s)]+

+G(t, s)f(s, h(ϕ(s)), g(ϕ(s− τ(s))))
]
ds =

=

t+T∫

t

c(s, ϕ(s− τ(s)))E(t, s)ds+

+

t+T∫

t

G(t, s)
(
q(s)[ψ(s)− h(ψ(s))]+

+ f(s, h(ϕ(s)), g(ϕ(s− τ(s))))− a(s)c(s, ϕ(s− τ(s)))
)
ds ≤

≤ βµT + αT
(L− βµT

αT

)
= L.
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On the other hand,

(Bψ)(t) + (Aϕ)(t) =
t+T∫

t

c(s, ϕ(s− τ(s)))E(t, s)ds+

+

t+T∫

t

G(t, s)
(
q(s)[ψ(s)− h(ψ(s))]+

+ f(s, h(ϕ(s)), g(ϕ(s− τ(s))))−
− a(s)c(s, ϕ(s− τ(s)))

)
ds ≥

≥ c∗σT + γT
(K − c∗σT )

γT

)
= K.

This shows that Bψ +Aϕ ∈ D. Thus all the hypotheses of Theorem 2.9 are satisfied
and therefore equation (1.1) has a periodic solution in D. This completes the proof.

Remark 3.5. The problem considered in this paper can be extended to a system of
totally nonlinear neutral functional delay equations.

Finally, we provide an example to illustrate our results.

4. EXAMPLE

Let a(t) = 2
π cos2(t) and b(t) = 2

π . Then p(t) =
2
π cos2(t) + 2

π and q(t) = 4
π2 cos

2(t).
Thus, the neutral second order differential equation

d2

dt2
x(t) + p(t)

d

dt
x(t) + q(t)x(t) =

=
1

100 000

d

dt

(
sin2(t)x(t− π)

)
+

0.0006 cos2(t)

x2(t− π) + 1
+

1

10 000

(4.1)

has a positive π periodic solution x satisfying 0 ≤ ‖x‖ ≤ 10. To see this, we have

f(u, ρ) =
0.0006 cos2(u)

ρ2 + 1
+

1

10 000
, c(u, ρ) =

1

100 000

(
sin2(u)ρ

)
, and T = π.

A simple calculation yields l = 1,m = 2, β = 4.3, µ = 1
200 and α = 66.931 71.
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Let K = 0, and L = 10 and define the set D = {φ ∈ Pπ : 0 ≤ ‖φ‖ ≤ 10}. Then for
ρ ∈ [0, 10] we have

q(u)[φ(u)− h(φ(u))] + f(u, h(ϕ), g(ϕ))− a(u)c(u, ϕ) =

= [− sin(u) + sin(u)(cos(u) + 1)](ρ− ρ) + 0.0006 cos2(u)

ρ2 + 1
+

+
1

10000
− 1

100000
sin3(u)ρ ≤

≤ 0.0006 +
1

10000
+

10

100000
= 0.0008 ≤

≤ L− βµT
αT

= 0.047.

On the other hand, with c∗ = 0 we have

q(u)[φ(u)− h(φ(u))] + f(u, h(ϕ), g(ϕ))− a(u)c(u, ϕ) =

= [− sin(u) + sin(u)(cos(u) + 1)](ρ− ρ) + 0.0006 cos2(u)

ρ2 + 1
+

+
1

10000
− 1

100000
sin3(u)ρ ≥

≥ 0.0006

101
+

1

10000
− 10

100000
= 0.000005941 ≥

≥ K − c∗σT
γT

= 0.

By Theorem 3.4, equation (4.1) has a positive π periodic solution x such that
0 ≤ ‖x‖ ≤ 10.
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