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The paper addresses the issue of identifying the maximum safe dose in the context of noninferiority trials where several doses
of toxicological compounds exist. Statistical methodology for identifying the maximum safe dose is available for three-arm
noninferiority designs with only one experimental drug treatment. Extension of this methodology for several experimental groups
exists but with multiplicity adjustment. However, if the experimental or the treatment groups can be ordered a priori according
to their treatment effect, then multiplicity adjustment is unneeded. Assuming homogeneity of variances across dose group in
normality settings, we employed the generalized Fieller’s confidence interval method in a multiple comparison stepwise procedure
by incorporating the partitioning principle in order to control the familywise error rate (FWER). Simulation results revealed that
the procedure properly controlled the FWER in strong sense. Also, the power of our procedure increases with increasing sample
size and the ratio of mean differences. We illustrate our procedure with mutagenicity dataset from a clinical study.

1. Introduction

Assessing an investigational substance for mutagenic activity
is one of the vital concerns of genetic toxicologists. This is
because it is unacceptable to declare a substance as nonmuta-
genic when in actual fact it is mutagenic. Hence, the objective
of mutagenicity assay in regulatory toxicology is the decision
on mutagenicity or nonmutagenicity of an investigational
substance (Hothorn et al., [1]). Therefore, it is important
to adopt reliable biostatistical procedure to properly control
(FWER) in a strong sense. However, a deep-seated problem
of a statistical procedure is the possibility of a false decision. A
typical experimental design used in this assay for genotoxicity
assessment in one-way model in 𝑘 + 2 groups is as follows:{𝑁𝑒𝑔𝑎𝑡𝑖V𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙, 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡1, ⋅ ⋅ ⋅ , 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡𝑘,𝑝𝑜𝑠𝑖𝑡𝑖V𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙} . (1)

In this setup, we have two objectives to achieve. Firstly, we
need to assess the sensitivity of the experiment in order to
ensure the validity of the study by comparing the the positive

control to negative control. Secondly, we simultaneously
compare each of the 𝑘 treatments with the negative control.
Statistical decision in this settings involves multiple compar-
ison and stepwise procedures: that is, individual inferences
are made in stepwise manner if the sequence of individual
inferences is in a specific order, as used in Stefensson et al.
[2], Cao et al. [3], Chen [4], and Adjabui et al. [5]. Some
simultaneous inferences remit multiplicity adjustments by
invoking the partition principle proposed by Finner and
Strassburger [6]: where the parameter space is partitioned
into many disjoint subsets and only one of these nonempty
disjoint subsets contains the true parameter of interest, so
that the FWER will be properly controlled. In literature,
mutagenicity dataset has been assessed according to the
proof of safety by utilizing the concept of the maximum
safe dose (Hothorn and Hauschke [7], by numerous authors,
among them Hauschke and Hothorn [8], Hauschke et al. [9],
Hothorn and Bretz [10]).

As a result, this article discusses statistical aspects in
terms of design and analysis using stepwise confidence
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set-based procedure for identification of maximum safe dose:
that is, the highest experiment dose with no biological
relevant increase in safety effect in comparison with neg-
ative control (Hothorn amd Hauschke [9]). We organize
the article as follows. In Section 2, we provide both the
testing and confidence notations, which are essential for the
construction of our proposed stepwise confidence procedure.
We proposed stepwise confidence interval procedure for
identifying maximum safe dose for a normally distributed
data with equal variances across dose group in Section 3. In
Section 4, we carried out simulation studies to investigate the
performance of our stepwise confidence interval procedure
in terms of FWER and power estimation. We apply our
proposed procedure to analyze real dataset as an example in
Section 5. We end with conclusion of our study in Section 6.

2. Preliminaries

2.1. Testing Procedure. Let a random sample𝑋𝑖1 , 𝑋𝑖2, ⋅ ⋅ ⋅ , 𝑋𝑖𝑛𝑖
be the observations from 𝑖𝑡ℎ group (𝑖 = 0, 1, ⋅ ⋅ ⋅ 𝑘 + 1).
Consider a one-way model as follows:𝑋𝑖𝑗 = 𝜇𝑖 + 𝜖𝑖𝑗 𝑖 = 0, 1, 2, ⋅ ⋅ ⋅ 𝑘 + 1, 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝑛𝑖, (2)

where 𝑋𝑖𝑗 represent the genetic response for the 𝑗𝑡ℎ exper-
imental unit, 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝑛𝑖 in the (1, 2, . . . , 𝑘)𝑡ℎ treatment
group, where 𝑖 = 0 denote the negative control group and𝑖 = 𝑘 + 1 denote a positive control group, respectively.
Suppose that the random sample variables 𝑋𝑖𝑗 are mutually
independent and follow a normal distribution with means𝜇𝑖, 𝜇𝑘+1, and 𝜇0 with their respective sample sizes 𝑛𝑖, 𝑛𝑘+1, and𝑛0 which are not necessarily equal. The random error has𝑁(0, 𝜎2), where 𝜎2 is unknown constant variance. Without
loss of generality, assume larger values of𝜇𝑖 imply better safety
of the 𝑖𝑡ℎ treatment group.

The test problem is formulated as𝐻0𝑖 : 𝜇𝑖 − 𝜇𝑘+1 ≥ 𝛿
versus 𝐻1𝑖 : 𝜇𝑖 − 𝜇𝑘+1 < 𝛿

for 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑘, (3)

where 𝛿 is a relevant safety threshold. Practitioners, that is,
genetic toxicologists, are often reluctant to define 𝛿 as an
absolute value. However, Hauschke et al. [12] express the 𝛿
value as a fraction of difference between negative and positive
control groups by 𝛿 = (𝜃 − 1)(𝜇𝑘+1 − 𝜇0), for 𝜃 ∈ (0, 1).
For some ethical reasons, a negative control group can be
included in trial in (3). Therefore, the testing problem can be
written as 𝐻0 : 𝛾𝑖 ≥ 𝜃

versus 𝐻1 : 𝛾𝑖 < 𝜃, (4)

where 𝛾𝑖 is the ratio of difference in means denoted as

𝛾𝑖 = 𝜇𝑖 − 𝜇0𝜇𝑘+1 − 𝜇0 for 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑘. (5)

Equation (4) is valid if and only if 𝜇𝑘+1 − 𝜇0 > 0; this
is inescapable condition and must be determined in the

first step in our stepwise procedure in order to assess the
sensitivity of the trial. We can rearrange and express (3) as

𝐻0𝑖 : 𝜇𝑖 − 𝜃𝜇𝑘+1 − (1 − 𝜃) 𝜇0 ≥ 0
versus 𝐻1𝑖 : 𝜇𝑖 − 𝜃𝜇𝑘+1 − (1 − 𝜃) 𝜇0 < 0. (6)

Let the sample mean estimates be

𝑋𝑖 = 1𝑛𝑖
𝑛𝑖∑
𝑖=1

𝑋𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑘
𝑋𝑘+1 = 1𝑛𝑘+1

𝑛𝑘+1∑
𝑗=1

𝑋𝑘+1,𝑗,
𝑋0 = 1𝑛0

𝑛0∑
𝑗=1

𝑋0,𝑗.
(7)

The unknown and common variance 𝜎2 can be estimated as

𝜎2 = (𝑛𝑖 − 1) 𝑆𝑖 + (𝑛𝑘+1 − 1) 𝑆𝑘+1 + (𝑛0 − 1) 𝑆0𝑛𝑖 + 𝑛𝑘+1 + 𝑛0 − 3
for 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑘, (8)

where 𝜎2 is the pooled estimator of the variance 𝜎2 and𝑆2𝑖 , 𝑆2𝑘+1, and 𝑆20 denote the sample variances for the exper-
iment and positive and negative groups, respectively. Then,
the random variables

𝑇𝑖 = 𝑋𝑖 − 𝜃𝑋𝑘+1 − (1 − 𝜃)𝑋0𝜎 (1/𝑛𝑖 + 𝜃2/𝑛𝑘+1 + (1 − 𝜃2) /𝑛0) (9)

for 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑘 are the test statistics for the testing problem in
(3), which has 𝑡 distribution with ] = 𝑛𝑖+𝑛𝑘+1+𝑛0−3 degrees
of freedom. Pigeot et al. [13] have proved that one can claim
safety if

𝑇𝑖 > 𝑡1−𝛼,] for 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑘, (10)

where 𝑡1−𝛼,] is (1 − 𝛼)-percentile of the central 𝑡- distribution
with ] d.f.There are two approaches in solving the problem in
(2), namely, the p-value approach and the confidence interval
approach. It is noted in literature that the confidence interval
approach is preferred to p-value approach. Therefore, in this
study, we will construct a confidence set-based approach for𝛾𝑖 for 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑘 that remits multiplicity adjustment. The
concept of maximum safe dose (MSD) for the proof of safety
was defined by Hothorn and Hauschke [7] as

𝑀𝑆𝐷 = max {𝑖 : 𝛾𝑖 < 𝜃, 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑘} (11)

which means that 𝐻0 is rejected if 𝑇𝑖 > 𝑡1−𝛼,] (𝛾𝑖 < 𝜃) at a
given level 𝛼. Then, safety can be concluded for treatments𝑖 (𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑘).

In solving the testing problem in (3), we construct simul-
taneous confidence sets using intersection-union principle
formulated by Berger [14]: the global null hypothesis can
be expressed as the union of the subsets {𝐻0𝑖} of the null



Journal of Probability and Statistics 3

hypotheses, 𝐻0 against the intersection of the alternatives
hypotheses𝐻1, that is,

𝐻0 = 𝑘⋃
𝑖=1

𝐻0𝑖
against 𝐻1 = 𝑘⋂

𝑖=1

𝐻1𝑖.
(12)

If 𝐻0𝑖 is rejected, then 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝑖 − 1 are all rejected too
in a stepwise fashion. In this case, no multiplicity adjustment
is needed. Notice that these hypotheses are a priori ordered
according to their importance and one’s interest and beliefs
but they assume no order restrictions.

2.2. Fieller’s Confidence Interval. We employed the general-
ized Fieller’s theorem [15] to construct confidence interval for

𝛾𝑖 for 𝑖 = 1, 2, ⋅ ⋅ ⋅ 𝑘. We need to solve 𝑘 quadratic equations
and then adapt the following notation from Hasler et al. [11]:

𝑍𝑖 = 𝑋𝑖 − 𝑋0
𝑍𝑘+1 = 𝑋𝑘+1 − 𝑋0
𝑌𝑖 = 𝑡21−𝛼,]𝑛𝑖 ,
𝑌𝑘+1 = 𝑡21−𝛼,]𝑛𝑘+1 ,
𝑌0 = 𝑡21−𝛼,]𝑛0 ,

(13)

thus yielding the upper confidence bounds as

𝜃𝑖,1−𝛼 = (−∞, 𝑍𝑖𝑍𝑘+1 − 𝑌0 + √(𝑍𝑖𝑍𝑘+1 − 𝑌0)2 − (𝑍2𝑘+1 − 𝑌𝑘+1 − 𝑌0) (𝑍2𝑖 − 𝑌𝑖 − 𝑌0)𝑍2
𝑘+1
− 𝑌𝑘+1 − 𝑌0 ). (14)

The above confidence interval is only valid as long as𝑍2𝑘+1 > 𝑌𝑘+1 − 𝑌0 by Fieller’s theorem [15]. The upper
confidence limits for one-sided 100(1 − 𝛼)% confidence
interval are

𝜃𝑖 = 𝑍𝑖𝑍𝑘+1 − 𝑌0 + √(𝑍𝑖𝑍𝑘+1 − 𝑌0)2 − (𝑍2𝑘+1 − 𝑌𝑘+1 − 𝑌0) (𝑍2𝑖 − 𝑌𝑖 − 𝑌0)𝑍2
𝑘+1
− 𝑌𝑘+1 − 𝑌0 for 𝑖 = 1, ⋅ ⋅ ⋅ 𝑘 (15)

for the parameters 𝛾𝑖.
3. The Proposed Procedure

3.1. Stepwise Confidence Interval for Identifying Maximum
Safe Dose Based on Ratio of Mean Differences. We identify

maximum safe dose via Hsu-Berger [16] stepwise confidence
set procedure: In the first step, we establish the assay sensi-
tivity of the procedure by proving that 𝑍2𝑘+1 > 𝑌𝑘+1 − 𝑌0.
If not, the procedure stops, indicating that the sensitivity of
experiment is inadequate. We estimate the upper confidence
limits in the second step as

𝜃𝑖 = 𝑍𝑖𝑍𝑘+1 − 𝑌0 + √(𝑍𝑖𝑍𝑘+1 − 𝑌0)2 − (𝑍2𝑘+1 − 𝑌𝑘+1 − 𝑌0) (𝑍2𝑖 − 𝑌𝑖 − 𝑌0)𝑍2
𝑘+1
− 𝑌𝑘+1 − 𝑌0 for 𝑖 = 1, ⋅ ⋅ ⋅ 𝑘, (16)

where 𝑘 is the total number of treatment doses to be tested.
In step three, we start screening the drug by screening the
lowest dose (that is at 𝑖 = 1) for the first safety drug and
sequentially screen the subsequent doses for 𝑖 = 2, 3, ⋅ ⋅ ⋅ 𝑘
without adjusting the𝛼 levels in each of the steps in ascending
manner searching for the first integer𝑀, if it exists {1 ≤ 𝑀 ≤𝑘} such that 𝜃𝑀 < 𝜃 and 𝜃𝑀+1 ≥ 𝜃 (this screens the first unsafe
dose that is inferior to the reference dose). In this set up, dose

level at stepM is estimated as𝑀𝑆𝐷: the highest estimated safe
dose that is noninferior to the reference doses, such that it and
all lower doses at steps 1, 2, ⋅ ⋅ ⋅𝑀 − 1 are also noninferior.

Once dose at step 𝑀 is estimated as 𝑀𝑆𝐷, then the
upper confidence bound for doses at 𝑀 + 2,𝑀 + 3, ⋅ ⋅ ⋅ 𝑘
steps is unneeded and should not be computed. A discernible
property of this procedure is theoretically more powerful
than Bonferroni-Holm step-down procedure (Holm [17]).
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This is because the 𝛼 value in our procedure is inexhaustible
and hence in each step the entire 𝛼 is used without multiplic-
ity adjustment while in Bonferroni-Holm step-down proce-
dure the 𝛼 is exhaustible: that is, 𝛼/𝑘, 𝛼/(𝑘 − 1), ⋅ ⋅ ⋅ , 𝛼/2, 𝛼
is exhausted and hence conservative. This may lead to liberal
decision especially when 𝑘 is large. The conservativeness of
Bonferroni-Holm step-down procedure is overcome by the
partition principle employed in our procedure.

3.2. Validity of the Stepwise Procedure. To construct and
validate 100(1 − 𝛼)% simultaneous confidence sets in the
above procedure in estimating MSD, the individual confi-
dence intervals should have 100(1 − 𝛼)% confidence level.
For a given parameter space Θ, we set Θ𝑐𝑖 = (−∞, 𝜃) as
the rejection region and the alternative Θ𝑖 = [𝜃,∞) as the
acceptance. We can construct simultaneous confidence set
for the parameter vector Γ = {𝛾1, 𝛾2, ⋅ ⋅ ⋅ 𝛾𝑘} by employing
the partitioning principle (Bretz et al. [18]). In identifying
the MSD, the parameter space Θ can be decomposed into
nonempty disjoint subset as follows:

Θ∗1 = Θ1Θ∗2 = Θ𝑐1 ∩ Θ2...
Θ∗𝑖 = Θ𝑐1 ∩ ⋅ ⋅ ⋅ ∩ Θ𝑐𝑖−1 ∩ Θ𝑖......

Θ∗𝑘 = Θ𝑐1 ∩ Θ𝑐2 ∩ ⋅ ⋅ ⋅ ∩ Θ𝑐𝑘−1 ∩ Θ𝑘.

(17)

Therefore, Θ∗1 , Θ∗2 , ⋅ ⋅ ⋅ Θ∗𝑘 partition the entire parameter
spaceΘ.That is,Θ = Θ∗1 ∪Θ∗2 ∪⋅ ⋅ ⋅∪Θ∗𝑘 . Each of these subsetsΘ∗𝑖 is tested at a local level 𝛼 with the conviction that the
true parameter of interest can be found in one and only one
of the nonempty disjoint subsets. This construction leads to
multiple comparison procedure which guarantees the control
of family-wise error in the strong sense. Hence, (12) can be
rewritten as

𝐻0 = 𝑘⋃
𝑖=1

𝛾𝑖 ∈ Θ𝑖
against 𝐻1 = 𝑘⋂

𝑖=1

𝛾𝑖 ∈ Θ𝑐𝑖 .
(18)

Theorem 1. Suppose that 𝜃1, 𝜃2 ⋅ ⋅ ⋅ 𝜃𝑘 are the 100(1 − 𝛼)%
confidence bounds for 𝛾1, 𝛾2 ⋅ ⋅ ⋅ 𝛾𝑘, respectively, with confidence
level 1 − 𝛼. Then, for all 𝛾1, 𝛾2 ⋅ ⋅ ⋅ 𝛾𝑘 ∈ Θ, we have

𝑃 (𝛾1 < 𝜃1, 𝛾2 < 𝜃2 ⋅ ⋅ ⋅ 𝛾𝑀−1 < 𝜃𝑀−1, 𝛾𝑀 < 𝜃𝑀)≥ 1 − 𝛼. (19)

The proof ofTheorem 1 is a direct application ofTheorem
1 of Hsu and Berger [16].

Proof.

Case 1. Let M=1 be the step at which the procedure stops. In
such a situation, the assay sensitivity of the experiment cannot
be assessed

Case 2. 2 ≤ 𝑀 ≤ 𝑘: For j = 1, ⋅ ⋅ ⋅ 𝑘, let
(i) 𝐶𝑗(𝑋) = {𝛾𝑘−𝑗+1 < 𝜃𝑘−𝑗+1}
(ii) Θ1 = {𝛾𝑘 ≥ 𝜃} 𝑎𝑛𝑑 Θ𝑗 = ⋂𝑗−1𝑙=1 {𝛾𝑘−𝑙+1 < 𝜃} ∩ {𝛾𝑘−𝑗+1 ≥𝜃}
for 𝑗 = 2, ⋅ ⋅ ⋅ , 𝑘. Then, the parameter space Θ is parti-

tioned byΘ𝑗, 𝑗 = 1, ⋅ ⋅ ⋅ 𝑘 + 1. Moreover,

𝑘⋃
𝑗=1

(𝐶𝑗 (𝑋) ∩ Θ𝑗) (20)

provides a 100(1−𝛼) confidence set for Γ = {𝛾1 ⋅ ⋅ ⋅ 𝛾𝑘} because
if Γ ∈ Θ then

𝑃Γ{{{Γ ∈
𝑘⋃
𝑗=1

(𝐶𝑗 (𝑋) ∩ Θ𝑗}}} = 𝑃Γ {Γ ∈ 𝐶𝑗 (𝑋)}≥ 1 − 𝛼.
(21)

In this setup, the unionized confidence set can be decom-
posed as follows:

𝑘⋃
𝑗=1

(𝐶𝑗 (𝑋) ∩ Θ𝑗)
= {{{
𝑀−1⋃
𝑗=1

(𝐶𝑗 (𝑋) ∩ Θ𝑗)}}}
∪{{{
𝑘⋃
𝑗=𝑀

(𝐶𝑗 (𝑋) ∩ Θ𝑗)}}} =
𝑘⋃
𝑗=𝑀

(𝐶𝑗 (𝑋) ∩ Θ𝑗)
⊂ (𝐶𝑀 (𝑋) ∩ Θ𝑀) ∪ (𝑀⋂

𝑗=1

{𝛾𝑘−𝑗+1 < 𝜃})
= (𝑀−1⋂
𝑗=1

{𝛾𝑘−𝑗+1 < 𝜃} ∩ {𝛾𝑘−𝑀+1 ≥ 𝜃} ∩ 𝐶𝑀 (𝑋))
∪ (𝑀⋂
𝑗=1

{𝛾𝑘−𝑗+1 < 𝜃})
= (𝑀−1⋂
𝑗=1

{𝛾𝑘−𝑗+1 < 𝜃} ∩ {𝛾𝑘−𝑀+1 ≥ 𝜃} ∩ 𝐶𝑀 (𝑋))
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Table 1: Simulated FWER, given 𝛼 = 0.05, 𝑛𝑅 = 20, 𝑛𝑃 = 20, and, 𝜃 = 0.8.𝑛𝐸1(𝑛𝐸2) HOMO HETRO
5 (6) 0.0252 (0.0250) 0.0299 (0.0305)
7 (8) 0.0249 (0.02480 0.0184 (0.0177)
9 (10) 0.0251 (0.0251) 0.0109 (0.0160)
11 (12) 0.0249 (0.0247) 0.0157 (0.0153)
13 (14) 0.0244 (0.0249) 0.0149 (0.0114)
15 (16) 0.0247 (0.0248) 0.0141 (0.0136)
17 (18) 0.0249 (0.0250) 0.0129 (0.0128)
19 (20) 0.0249 (0.0248) 0.0124 (0.0119)
21 (22) 0.0249 (0.0250) 0.0117 (0.0115)
23 (24) 0.0205 (0.0247) 0.0110 (0.0109)
25 (26) 0.0250 (0.0249) 0.0106 (0.0106)
27 (28) 0.0251 (0.0245) 0.0100 (0.0009)
29 (30) 0.0250 (0.0248) 0.0096 (0.0093)

∪ (𝑀⋂
𝑗=1

{𝛾𝑘−𝑗+1 < 𝜃} ∩ 𝐶𝑀 (𝑋))
= 𝑀−1⋂
𝑗=1

{𝛾𝑘−𝑗+1 < 𝜃} ∩ 𝐶𝑀 (𝑋) .
(22)

Finally, we have

𝑃Γ(Γ ∈ 𝑀−1⋂
𝑗=1

{𝛾𝑘−𝑗+1 < 𝜃} ∩ 𝐶𝑀 (𝑋))
= 𝑃Γ{{{Γ ∈

𝑘⋃
𝑗=1

(𝐶𝑗 (𝑋) ∩ Θ𝑗}}} ≥ 1 − 𝛼.
(23)

Remark 2. The resulting proof of Theorem 1 warrants the
control of FWER at level 1-𝛼 in a strong sense.

For this reason, we state and prove the following propo-
sition.

Proposition 3. The stepwise simultaneous inferences proce-
dure for ratio of difference inmeans strongly controls the FWER
at level 𝛼.
Proof. Let 𝐼 be any unknown subset of {1, 2, ⋅ ⋅ ⋅ 𝑘}. Suppose
that 𝐼 = 0, then no FWER will ever exist. Thus, assume that𝐼 ̸= 0 and 𝐼 = {𝑖1, 𝑖2, ⋅ ⋅ ⋅ 𝑖𝑚}, where 1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑚 ≤ 𝑘.
Without loss of generality, let

𝑃 (Reject one of 𝐻0𝑖, 𝑖 ∈ 𝐼 | 𝐻0𝑖, 𝑖 ∈ 𝐼 is true) = 1− 𝑃 (do not reject all 𝐻0𝑖, 𝑖 ∈ 𝐼 | 𝐻0𝑖, 𝑖∈ 𝐼 is true) ≤ 1 − 𝑃 (do not reject 𝐻0𝑖𝑚 | 𝐻0𝑖, 𝑖∈ 𝐼 is true) the procedure then stops at step 𝑖𝑚

= 1 − 𝑃 ({𝜃𝑖𝑚 ̸⊂ (−∞, 𝜃) | 𝐻0𝑖, 𝑖 ∈ 𝐼 is true) ≤ 1− 𝑃 (𝛾1 < 𝜃1, 𝛾2 < 𝜃2 ⋅ ⋅ ⋅ 𝛾𝑀−1 < 𝜃𝑀−1, 𝛾𝑀 < 𝜃𝑀)≥ 1 − 𝛼 ≤ 1 − (1 − 𝛼) (By Theorem 1) = 𝛼.
(24)

Remark 4. Proposition 3 guarantees that FWER is properly
controlled at prespecified nominal level 𝛼. This is a critical
requirement by Food and Drug Administration (FDA) for
statistical procedures in dose-findings.

To confirm these theoretical results, the following simu-
lation studies were carried out at Section 4.

4. Simulation Studies

4.1. FWER. We conducted simulation studies to investigate
the performance of the (FWER). Without loss of generality,
we set 𝜃 = 0.8, 𝛼 = 0.025. In this study, observations
were generated with 1million replications from a normal
distribution based on the assumption of equal variance across
dose groups. This is indicated in Table 1 as HOMO. We also
explored the effect of violation of this assumption as a way of
comparing the two situations and this is indicated in Table 1
as HETRO. We used Hasler et al. [11] means configuration𝜇𝑃 = 16.5, 𝜇𝑅 = 16.5, 𝜇𝐸1 = 32.66, 𝜇𝐸2 = 32.66. For
HOMO=(𝜎𝑝 = 𝜎𝑅 = 𝜎𝐸𝑖 = 5 for 𝑖 = 1, 2) and the HETRO=
(𝜎𝑝 = 5, 𝜎𝑅 = 12, 𝜎𝐸𝑖 = 9 for 𝑖 = 1, 2). In the simulation study,
we considered only 𝑘 = 2 experimental treatment. Results
from Table 1 indicated that the FWER is properly controlled
at a nominal value 𝛼 = 0.025 in the case of equal variances but
that of unequal variances is seriously conservative because
simulated values are far below or above 0.025, the nominal
level, and hence, poorly controlled the FWER.

4.2. Power Estimation. Power estimation is imperative for
a well-design clinical study. There are many definitions of
power in multiple comparisons procedures, but in this study,
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Table 2: Power Estimation of the confidence intervals for 𝜎𝑅 = 10, 𝜎𝑃 = 10, 𝜎𝐸𝑖 = 10 𝑖 = 1, 2.
Ratio(𝛾𝑖) 𝑛𝐸𝑖=1,2 𝜖 = 0.25 𝜖 = 0.5 𝜖 = 1
0.85 5 0.0623 0.0402 0.0319
0.85 20 0.1161 0.0574 0.00385
0.85 30 0.1409 0.0644 0.0410
0.85 40 0.1606 0.700 0.00429
0.90 5 0.1332 0.0623 0.0402
0.90 20 0.3336 0.1410 0.0573
0.90 30 0.4234 0.1409 0.0645
0.90 40 0.4903 0.1606 0.0700
0.95 5 0.2460 0.0928 0.0503
0.95 20 0.6312 0.2082 0.0828
0.95 30 0.7550 0.2627 0.1085
0.95 40 0.8273 0.3056 0.1086
1.00 5 0.3964 0.1332 0.0623
1.00 20 0.8643 0.3336 0.1161
1.00 30 0.9422 0.4230 0.1409
1.00 40 0.9720 0.4903 0.1606
1.05 5 0.5641 0.11842 0.0764
1.05 20 0.9689 0.4830 0.1578
1.05 30 0.9930 0.5982 0.1961
1.05 40 0.9980 0.6771 0.2266
1.10 5 0.7300 0.2460 0.0928
1.10 20 0.9957 0.6312 0.2082
1.10 30 0.9996 0,7550 0.2630
1.10 40 0.9999 0.8273 0.3057
1.15 5 0.8437 0.3124 0.1113
1.15 20 0.9965 0.7635 0.2672
1.15 30 0.9996 0.9232 0.3335
1.15 40 0.9999 0.9232 0.3951
1.20 5 0.9242 0.3963 0.1332
1.20 20 0.9999 0.8643 0.3335
1.20 30 0.9999 0.9422 0.4235
1.20 40 1.0000 0.9730 0.4903

we will define power in the case of maximum safe dose. The
maximum safe dose 𝑖 is established when 𝜃𝑗 < 𝜃 and 𝜃𝑗+1 ≥ 𝜃
for 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝑖. That is,

𝑃 (𝑀𝑆𝐷 = 𝑖)
= 𝑃( 𝑖⋂

𝑗=1

{𝑇𝑗 > 𝑡1−𝛼,V𝑖} ∩ {𝑇𝑖+1 ≤ 𝑡1−𝛼,V𝑖}) . (25)

Hence, in this setting, power is defined as the probability
of rejecting the incorrect null hypotheses.This power concept
is directly related to all-pairs power definition introduced by
Ramsay [19]. Therefore, (25) expression can be rewritten as

𝑃 (Reject 𝐻𝑗𝑜 for 𝑗 = 1, 2, ⋅ ⋅ ⋅ 𝑖)
= 𝑃( 𝑖⋂

𝑗=1

{𝑇𝑗 > 𝑡1−𝛼,V𝑖}) . (26)

Therefore, (26) can be calculated from a 𝑘 variate noncentral𝑡-distribution with ]𝑖 degree of freedom and noncentrality
parameters for 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑘:

Θ𝑖 = 𝜇𝑖 − 𝜃𝜇𝑘+1 − (1 − 𝜃) 𝜇0𝜎√{1/𝑛𝑖 + 𝜃2/𝑛𝑘+1 + (1 − 𝜃)2 /𝑛0} . (27)

It is possible to express commonvariance𝜎 as a fraction of
difference 𝜇𝑘+1−𝜇0, that is, 𝜎 = 𝜖(𝜇𝑘+1−𝜇0), 𝜖 > 0. Hence, the
following representation of noncentrality parameter based on
the ratio of mean differences is stated as

Θ𝑖 = 𝛾𝑖 − 𝜃𝜖√{1/𝑛𝑖 + 𝜃2/𝑛𝑘+1 + (1 − 𝜃)2 /𝑛0} . (28)

From (28), it is clear that the expected values of power are a
function of 𝛾𝑖, the ratio of mean differences, and the sample
sizes. From Table 2, it can be seen that power increases with
increasing 𝛾𝑖 and sample size but decreases with increasing
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Table 3: Number of micronuclei per animal and 2000 scored cells for the negative control, four doses of hydroquinone and positive control
cyclophosphamide.

Experimental group Mean Standard deviation Sample size
Vehicle control 2.57 1.27 7
Hydro30 3.80 1.10 5
Hydro50 6.30 1.48 5
Hydro75 14.0 3.97 5
Hyro100 20.0 4.06 5
Positive control 25 8.91 4

Table 4: Summary of the test for micronucleus assay data from Hasler et al. [11].

Treatment groups Unadjusted p-values Upper bound
30 mg/kg 0.0088 0.24
50 mg/kg 0.0182 0.35
75 mg/kg 0.0288 0.74
100 mg/kg 0.09639 1.04

values of 𝜖. This is consistent with the results of Pigeot et al.
[13].

5. Example

To illustrate our procedure, we used raw data published
by Adler and Kliesch [20] for a micronucleus assay by
applying 30mg/kg, 50mg/kg, 75mg/kg, and 100mg/kg doses
of hydroquinone (Hydro) with positive control 25mg/kg
cyclophosphamide. Their primary interest is to demonstrate
whether the underlying substance is able to induce chromo-
some damage or interact with spindle apparatus. The male
mice studies results of 24h sampling time are given in Table 3.
and summary of the test for micronucleus assay data from
Hasler et al. [11] is given in Table 4.

In evaluation of the mutagenicity data from Table 3 and
setting 𝛼 = 0.05 and 𝜃 = 0.5, where 𝜃 is the safety threshold,
the following results were obtained:

𝜃1 = 0.24 < 𝜃 = 0.5 we reject 𝐻01𝜃2 = 0.35 < 𝜃 = 0.5 we reject 𝐻02𝜃3 = 0.74 ̸< 𝜃 = 0.5 we do not reject 𝐻03;
(29)

the procedure then stop at step 3, which implies that it is
needless to step it further down.

From this analysis, the doses 30mg/kg and 50mg/kg are
declared safe while doses 75mg/kg and 100mg/kg are unsafe
at level 𝛼. Since 𝜃3 = 0.74 ̸< 𝜃 = 0.5, 50mg/kg is
recommended as the maximum safe dose, which the highest
dose that is noninferior to the reference drug at level 𝛼. Note
that 30mg/kg is also noninferior to the reference drug but
lower.

6. Conclusion

In this paper, we have proposed a stepdown confidence set
approach for identification of maximum safe dose within

the framework of noninferiority clinical trials. The classical
three-arm trial for noninferiority investigations involves
only one experimental treatment but in clinical trials some
therapeutic situations necessitate comparisons with several
experimental compounds. Therefore, the proposed (𝑘 + 2) −𝑎𝑟𝑚 trial is an extended three-arm noninferiority trial with
only one treatment to multiple treatments without multi-
plicity adjustment. Our simulations results revealed strong
control of the familywise type I error rate when we assumed
equal variances across dose groups for a normally distributed
dataset. This was validated by the partitioning principle.
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