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Abstract
The differential thermopower of a chiral carbon nanotube (CNT) was calculated
using a tractable analytical approach. We obtained an expression for the
electrical conductivity σ and the thermopower α. The results were numerically
analysed. We noted from the values of α that the material can behave as a
semimetal, n-type semiconductor and a p-type semiconductor, depending on
the parameters of the CNT. We propose the use of the CNT as a thermoelement.

1. Introduction

Carbon nanotubes (CNTs) belong to the family of carbon-based structures formed by wrapping
graphite sheets into tube-shaped objects. Each CNT is characterized by a chiral index (m, n),
with m and n being two integers which specify it uniquely. This material has recently received
a very big boost [1–3]. This is due to the fact that, depending on the method of gluing, a set
of atomic carbon structures with a wide spectrum of conducting properties is obtained. They
range from insulating, semimetallic or metallic behaviour to semiconductors with a gap of
0–2 eV [4–7]. The unique conducting and capillary properties of the tubulenes make them
promising materials for nanoelectronic devices.

Furthermore, there have been many suggestions to use the material as tips for scanning
microscopy, ultrastrong mechanical fibre pinning sites for high-Tc superconductors and
inclusions in composites for body armour [8]. It is also noted that the CNT is an ideal material
to make field emitters because of its usually high aspect ratio as well as its mechanical and
chemical stability. Many experiments with single-walled CNTs (SWNTs) [9] and multi-walled
CNTs [10, 11] have demonstrated a relatively low threshold voltage of electron emission with
little sample degradation [12].

The electronic properties of SWNTs have recently drawn considerable attention. In [13],
Kim et al studied the electronic density of states (DOS) of a SWNT and characterized sharp
Van Hove singularities (VHS) in the DOS using scanning tunneling microscopy (STM) and
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compared their data to tight binding calculations for specific tube indices. In [14], a quantum-
mechanical treatment of charge-carrier motion in the presence of an external magnetic field
was developed. Electron–photon interaction in CNTs has also been studied theoretically by
Romanov [15], Kibis and Romanov [16], Chico et al [17] and Langer et al [18]. In [19] Woods
and Mahan studied the electron–phonon effects in graphene and an armchair (10,10) SWNT.

As stated in [20], two broad theoretical approaches for electron transport in nanotubes have
emerged. The first approach comprises first principle numerical simulations as exemplified by
Miyamoto et al [22]. The other approach requires the creation of phenomenological models
that yield somewhat rough, but analytically tractable, results [20, 21]. The justification for the
latter approach can be established from the work of Miyamoto et al [22], where they computed
the current excited in carbon and BC2N nanotubes immersed in an electrostatic field. In that
work they established that the current chiral angle (CCA) γ , which is equal to tan−1(jz/jc)

(where jz is the current parallel to the tubular axis, i.e. z-axis and jc is the circumferential
current), can be defined. Moreover, first principle calculation indicated that the CCA is not
equal to π/2 and nor is it equal to the geometric chiral angle (GCA), even though the surface
conductivity of the monatomic curved surface of the CNT was taken to be isotropic. Kasumov
et al [23] and Langer et al [18] measured the resistance of a SWNT, their data being in
qualitative agreement with theoretical results. Most importantly, the two experimental reports
established the validity of the theoretical models.

Thermoelectric properties have been studied in many materials over the past 40 years with
the understanding of determining a very good material for thermo devices. Unfortunately, these
efforts have met with limited success owing to an accompanying degradation in electrical
properties [24]. Relatively recently, attention has been refocused, owing to the appearance
of new materials such as the multiquantum wells and superlattices [25]. Superlattices of
semiconductors and semimetals are expensive for mass production, even though they show
enhancement in the thermoelectric figure of meritZ; hence the need to search for new materials.

In this paper we study the differential thermopower of the chiral CNT. We use the approach
in [25] together with the model developed in [20, 21] to determine the thermopower α of the
CNT. We observe that the thermopower strongly depends on the GCA θh, electric field E,
temperature T , the real overlapping integrals for jumps along the tubular axis �z and the base
helix �s . The manipulation of these parameters can give rise to high thermopower values,
which in our opinion is highly recommendable.

This paper is organized as follows: in section 2 we establish the theory and solution of
the problem, and in section 3 we discuss the results and draw conclusions.

2. Theory

We proceed as in [20, 21] by considering an infinitely long chain of carbon atoms wrapped
along a base helix as a model of a SWNT. The chief merit of this model is its analytical
tractability, which readily yields physically interpretable results. Second, the model yields
correct qualitative descriptions of various electronic processes, which are corroborated by
first-principle numerical simulations.

The problem is considered in the semiclassical approach by commencing with the
Boltzmann kinetic equation [25]:

∂f (r, p, t)

∂t
+ v(p)

∂f (r, p, t)

∂r
+ eE

∂f (r, p, t)

∂p
= −f (r, p, t) − fo(p)

τ
. (1)

Here f (r, p, t) is the distribution function, fo(p) is the equilibrium distribution function, v(p)
is the electron velocity, E is the constant applied electric field, r is the electron position, p
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is the electron dynamical momentum, τ is the electron relaxation time and e is the electron
charge.

The collision integral is taken in the τ approximation and further assumed constant. The
exact solution of (1) presents some difficulties. We therefore solved it using a perturbation
approach with the second term treated as the perturbation. In the linear approximation of ∇T

and ∇µ, we obtain

f (p) = τ−1
∫ ∞

0
exp

(
− t

τ

)
fo(p − eEt) dt +

∫ ∞

0
exp

(
− t

τ

)
dt

×
(

[ε(p − eEt) − µ]
∇T

T
+ ∇µ

)
v(p − eEt)

∂fo(p − eEt)

∂ε
(2)

where ε(p) is the energy of the electron and µ is the chemical potential. The current density
is defined as

j = e
∑
p

v(p)f (p). (3)

Substituting equation (2) into (3) and making the transformation

p − eEt → p

we obtain for the current density

j = eτ−1
∫ ∞

0
exp

(
− t

τ

)
dt

∑
p

v(p − eEt)fo(p)

+e
∫ ∞

0
exp

(
− t

τ

)
dt

∑
P

(
[ε(p) − µ]

∇T

T
+ ∇µ

)

×
(

v(p)
∂fo(p)

∂ε

)
· v(p − eEt). (4)

Now let us resolve the current along the tubular axis (z-axis) and the base helix, respectively
neglecting the interference between the axial and the helical paths connecting a pair of atoms, so
that transverse motion quantization is ignored. We then perform the following transformation:∑

p

→ 2

(2πh̄)2

∫ ∫
dps dpz

and obtained the electron current density along the tubular axis and the base helix as

Z′ = 2e2τ−1

(2πh̄)2

∫ ∞

0
exp

(
− t

τ

)
dt

∫ ∫
vz(pz − eEzt)fo(p) dps dpz

+
2e2

(2πh̄)2

∫ ∞

0
exp

(
− t

τ

)
dt

∫ ∫ (
[ε(p) − µ]

∇zT

T
+ ∇zµ

)

×
(
vz(pz)

∂fo(p)

∂ε

)
vz(pz − eEzt) dps dpz (5)

and

S ′ = 2e2τ−1

(2πh̄)2

∫ ∞

0
exp

(
− t

τ

)
dt

∫ ∫
vs(ps − eEst)fo(p) dps dpz

+
2e2

(2πh̄)2

∫ ∞

0
exp

(
− t

τ

)
dt

∫ ∫ (
[ε(p) − µ]

∇sT

T
+ ∇sµ

)

×
(
vs(ps)

∂fo(p)

∂ε

)
vs(ps − eEst) dps dpz (6)
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where the integrations are carried out over the first Brillouin zone. From these two components,
expressions for the axial and circumferential components of the current density emerge as
follows:

jz = Z′ + S ′ sin θh jc = S ′ cos θh (7)

where θh̄ is the GCA.
The energy of the electrons, as expressed in [20], is given as

ε(p) = εo − �z cos
pzdz

h̄
− �s cos

psds

h̄
(8)

where εo is the energy of an outer-shell electron in an isolated carbon atom, �z and �s are the
real overlapping integrals for jumps along the respective coordinates, pz and ps are the carrier
momentum along the tubular axis and the base helix respectively, h̄ is Planck’s constant, dz is
the distance between the site n and the site n + N along the tubular axis, and ds is the distance
between the site n and n + 1 along the base helix.

To calculate the current density for a non-degenerate electron gas we use the Boltzmann
equilibrium distribution function expressed as

fo(p) = C exp

{
�z cos(pzdz/h̄) + �s cos(psds/h̄) + (µ − εo)

kT

}
(9)

where

C = dzdsno

2 exp[(µ − εo/kT )]I0(�s/kT )I0(�z/kT )

no is the surface charge density, In(x) is the modified Bessel function of order n and k is
Boltzmann’s constant.

The components vz and vs of the electron velocity v are calculated from equation (8) as

vz(pz) = ∂ε

∂pz

= �zdz

h̄
sin

(
pzdz

h̄

)
(10)

and

vs(ps) = �sds

h̄
sin

(
psds

h̄

)
. (11)

With the help of equations (5)–(11) and the fact that Es = Ez sin θh and ∇sT = ∇zT sin θh,
we obtain for the axial jz and circumferential jc currents, after cumbersome calculation, the
following expressions:

jz = (σz(E) + σs(E) sin2 θh)∇z

(
µ

e
− φ

)

−
{
σz(E)

k

e

(
εo − µ

kT
− �∗

z

I0(�
∗
z)

I1(�∗
z)

+ 2 − �∗
s

I1(�
∗
s )

I0(�∗
s )

)

+σs(E)
k

e
sin2 θh

(
εo − µ

kT
− �∗

s

I0(�
∗
s )

I1(�∗
s )

+ 2 − �∗
z

I1(�
∗
z)

I0(�∗
z)

)}
∇zT (12)

jc = (σs(E) sin θh cos θh)∇z

(
µ

e
− φ

)

−σs(E)
k

e
sin θh cos θh

(
εo − µ

kT
− �∗

s

I0(�
∗
s )

I1(�∗
s )

+ 2 − �∗
z

I1(�
∗
z)

I0(�∗
z)

)
∇zT (13)

whereφ is the electrostatic potential. From equations (12) and (13) the electrical conductivities
are given as

σzz = σz(E) + σs(E) sin2 θh (14)

σcz = σs(E) sin θh cos θh (15)
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where

σz(e) = noe
2�zd

2
z τ I1(�

∗
z)

h̄2(1 + (*zτ)2)I0(�∗
z)

σs(e) = noe
2�sd

2
s τ I1(�

∗
s )

h̄2(1 + (*sτ)2)I0(�∗
s )

*z = eEzdz

h̄

*s = eEsds

h̄

�∗
i = �i

kT
i = z, s.

The differential thermoelectric power α is defined as the ratio

|∇((µ/e) − φ)|
|∇T |

in an open circuit. Hence, of interest to us is α along the axial and circumferential directions,
which are obtained from equations (12) and (13) as

αzz =
[

σz(E)

σz(E) + σs(E) sin2 θh

k

e

{
εo − µ

kT
− �∗

z

I0(�
∗
z)

Ii(�∗
z)

+ 2 − �∗
s

I1(�
∗
s )

I0(�∗
s )

}

+
σs(E) sin2 θh

σz(E) + σs(E) sin2 θh

k

e

{
εo − µ

kT
− �∗

s

I0(�
∗
s )

Ii(�∗
s )

+ 2 − �∗
z

I1(�
∗
z)

I0(�∗
z)

}]
(16)

αcz = k

e

[
εo − µ

kT
− �∗

s

I0(�
∗
s )

I1(�∗
s )

+ 2 − �∗
z

I1(�
∗
z)

I0(�∗
z)

]
. (17)

3. Results, discussion and conclusion

In this paper we analysed the differential thermopower of a chiral CNT using the tractable
analytical approach developed in [20, 21]. Unlike [20, 21], we included the spatial derivative
in Boltzmann’s equation and solved this for the distribution function. We calculated the total
current in the presence of both an electric field and a temperature gradient. We obtained the
electrical conductivity σ and the thermopower α. Our expression for σ coincides with that
obtained by [20].

The thermopower α is highly anisotropic, depending on the GCA θh, the electric field E,
temperature T and the real overlapping integrals for jumps along the respective coordinates
�z and �s .

For further understanding of the results, we analysed it numerically. Numerical results for
the thermopower dependence of temperature are shown in figure 1(a) for fixed values of �z

and differing values of �s (measured in electronvolts). �s is varied from 0.015 eV to 0.31 eV.
It is noted that when �s is slightly greater than or equal to �z, i.e. �s = 0.015 eV, 0.018 eV
or 0.02 eV, the thermopower α decreases rapidly with an increase in temperature T , and at
high temperatures it slowly tends to a lower constant value of α, i.e. hyperbolic in nature.
This is as expected for semiconducting tubes which exhibit the behaviour α ∼ 1/T [26].
Meanwhile, when �s is greater than �z, i.e. when �s = 0.031 eV, the thermopower increases
rapidly, gets to a turning point and then decreases slowly to a constant value. The turning
point occurs around 100 K. A similar observation was noted in [27], where the thermopower
of a SWNT was measured. It becomes obvious that the material, under these conditions is
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behaving as a semimetal. The thermopower data in figure 1(a) are positive over the entire
range of temperature, indicating that the contribution from positive (hole) carriers dominates
the response.

Figure 1. The dependence of thermopower α on temperature T for �s equal to 0.015 eV
(——), 0.018 eV (- - - -), 0.020 eV (— —) and 0.031 eV (— – —) for differing values of �z:
(a) �z = 0.015 eV, (b) �z = 0.024 eV, (c) �z = 0.027 eV and (d) �z = 0.041 eV.

As �z is increased from 0.015 eV to 0.024 eV, 0.027 eV and 0.041 eV respectively,
as can be seen in figures 1(b), 1(c) and 1(d), we observed that most curves indicate turning
points at different temperatures, and eventually at �z = 0.027 eV all the curves have turning
points. Comparing our results with the experimentally measured α in [28], we note that the
theoretical curves agree reasonably well with experiment. We believe that a more sophisticated
energy spectrum will be required, but in that case we shall lose the analytical tractability of
the problem. What is striking is that the turning points occur in two situations, i.e. when �z is
greater than �s and vice versa. The turning points shift towards lower temperatures for given
�z, but they shift towards greater temperatures as �z increases. One also notes that there exists
a threshold temperature for which hole conductivity switches over to electron conductivity,
i.e. positive α becomes negative. This can be explained by the fact that graphite has a pair
of weakly overlapping electron and hole sp2 or π bands with near mirror symmetry about the
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(a)

(b)

Figure 2. The dependence of thermopower α on temperature T for �s equal to 0.015 eV
(——), 0.018 eV (- - - -), 0.020 eV (— —) and 0.031 eV (— – —) for (a) �z = 0.049 eV
and (b) �z = 0.085 eV.

Fermi energy EF . Approximately equal numbers of electrons and holes in these symmetric
π bands are consistent with the negative thermopower observed [28]. The threshold value for
the temperature shifts towards lower temperature as we increase �z.
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Figure 3. The dependence of thermopower α on temperature T for �s equal to 0.09 eV (——),
0.15 eV (- - - -), 0.20 eV (— —) and 0.25 eV (— – —) for differing values of �z: (a) �z = 0.1 eV,
(b) �z = 0.25 eV, (c) �z = 0.75 eV and (d) �z = 1.25 eV.

In figures 2(a) and 2(b) it became clear that for greater values of �z the thermopower α
becomes completely n-type and hyperbolic, i.e. α ∼ 1/T [26]. We observed in figure 2(b) that
at about 600 K onwards, α becomes 0 V K−1. A similar observation was made for armchair
symmetry tubes [27]. This was attributed to the mirror symmetry of the coexisting electrons
and holes in the overlapping π bands. Finally, we note in figure 3 that as �z increases
to 1.25 eV, which corresponds to an undoped CNT, the thermopower becomes completely
negative and hyperbolic in nature. This indicates that the material is behaving completely as
n-type semiconductor. Kong et al [29], in their recent report on SWNT chemical sensors,
refer to extrinsic p-type behaviour in their isolated semiconducting SWNT, whilst previously
published large positive thermopower data was attributed to intrinsic SWNT behaviour [30].

Finally, we summarized our results with three-dimensional sketches in figure 4. It is
worth noting that when ds = dz and �s = �z, as stated in [20], we have a transition from a
CNT to a (monolayer) planer graphite sheet as expressed in the isotropic conductivity σ and
thermopower α.

It is known that the choice of materials for thermodevices, be they generators,
thermocouples or refrigerators, is based on the thermoelectric figure of merit Z defined by
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(a) (b)

(c)

Figure 4. Three-dimensional sketches of αz(T ,�z): (a) �s = 0.01 eV and 0.01 eV �
�z � 0.02 eV; (b) �s = 0.01 eV and 0.01 eV � �z � 0.1 eV; (c) �s = 0.03 eV and
0.01 eV � �z � 0.1 eV. In (a), 1 unit 4.0 × 10−4 eV on the �z axis and 1 unit 24 K on the T axis.
In (b) and (c), 1 unit 3.6 × 10−2 eV on the �z axis and 1 unit 24 K on the T axis.

the relation

Z = α2σ

χ

where χ is the thermal conductivity. In our opinion the electrical power factor α2σ involved
in Z can be enhanced drastically in CNT by optimizing the choice of the T , �s , �z and θh as
indicated in the results.

In conclusion, the differential thermopower of a chiral CNT has been investigated
theoretically. An excellent analytical expression has been found forσ andα. The determination
of α can be used to determine whether the CNT is a semimetal or a semiconductor. Again,
the cost in production of CNTs, we hope is cheaper and less sophisticated than a superlattice,
and, hence, can be a good material for use as a thermoelement.
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