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Abstract: In multivariate outlier studies, the sum of squares and cross-product (SSCP) is an important property of the data
matrix. For example, the much used Mahalanobis distance and the Wilk's ratio make use of SSCP matrices. One of the SSCP
matrices involved in outlier studies is the matrix for the set of multiple outliers in the data. In this paper, an explicit expression
for this matrix is derived. It has then been shown that in general the discordancy of multiple outliers is preserved along
Multiple-Outlier Displaying Components with much lower dimensions than the original high-dimensional dataset.
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1. Introduction

The SSCP matrices have important uses in multivariate
data analysis. For example, the well known Wilk's k-outlier
ratio given by

. [Su
O

(1.1)

involve two matrices which are the SSCP of the entire

sample S, and the SSCP for the remaining sample, S I
when a set of k outliers are deleted. A third matrix is the
SSCP of the k-tuple outliers, Aj, . The three matrices are
related by the equation
S = S-A I,
We know that for a p-dimensional random sample
X, X5, X3, **, X, S is given by

(1.2)

n
U
S= (xj—x)(xj—x) , where X =
J=1 J=

n

Xj.

=|»—

Suppose I is an indexed set of k outliers from the sam-
ple. Then the SSCP, S(;,) for the remaining (7 =) ob-

servations, X;, jUZy, is given by

o Jar

n " _ 1 n
Sy =Z("/ ‘iun)("f ‘iun) where X, :nzx/"

Equation (1.2) is usually referred to as an updating for-
mula for S(;,).

It appears that in the multiple outlier case, an expression
for A;, similar to those for S and S(;,) has not been given

the needed attention. That is, direct use for the matrix A,

seems unpopular. In the single outlier case, Aj, is given as

Ap :ﬁ( j _i)("j %), i=12.m

(1.3)

and substituting into Equation (1.2) gives the corres-
ponding updating formula [2]. Caroni and Prescott [3] make
a rather consecutive use of the expression in Equation (1.1)
for the most extreme observation after the previous most
extreme one is deleted. This is equivalent to a consecutive

use of the expression
(x,-%)s7(x, -%)

(see Remark 2.1 for proof). In this case, the k-tuple of
extreme observations are not examined simultaneously. The
objective of the next section is to obtain a more ‘simulta-

D, =1- (1.4)

n—1
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neous' and explicit expression for A 1, . The result would

enable us to concentrate on the k extreme observations each
time instead of the remaining (7 = k) . This will be used in
Section 3 to generalize a result that enables us to obtain a
reduced-dimensional dataset, equivalent of the original
high-dimensional dataset, in which the discordancy of the
k-tuple outlier is preserved. Our approach to discordancy of
outliers follows that of Wilks [12]. Definitions and tests for

discordancy of multivariate outliers are well presented in [2].

The last two sections provide illustration of the concept
developed in the paper and conclusions of the results.

2. Derivation of an Updating Formula

Suppose that in the random matrix X, =[Xi, X2, X3, - X, [
of p-dimensional measurements, k of the observations be-
long to the indexed set I; ={i}, i, -+, i;} of labelled

outliers. Define an #Xn matrix D, by
D, =1 1

n n

n

1,1, (2.1)

where 1, =(,1, ---,1)’'00" (See e.g. [5]; [9]). The
matrices S and S;, may be written as S =x'D,X and
S(,) =X'C X, where C, =diag(D,,_k, 0). From Equation
(2.1)
A, =xD,x-x'Cx
=x(p, -C, )x
If C, =D, -C,, then

A, =x'Cyx (2.2)

Now, partitioning the matrix D, in Equation (2.1) as

D = L _ﬁln—klln—k | _%ln—kllk
_%lklln—k ‘ I _%lkllk
and C, as
L, _%ln—klln—k | O(n—k)Xk
Cl =
ka(n—k) | 0,

Thus, C, is given by
G=D,—C
- I _% ]n—klln—k ‘ _Tl| ln—k1:< | | _ﬁ ln—klln—k ‘ o(n—k)xk
L ‘ I -1, Oy ‘ U

:[(_rll +Tl—k) Lo ‘ 2Ll J

-1171 -1171
nlkln—k ‘ Ik nlklk

(2.3)

The matrix may be written in another useful way as a
2
sum of two matrices which is

nlk ln—klln—k | 0(n—k)xk

1
Cr=——1, 4L, +
n

0k><(n—k) | I

= ‘lln—kl'n—k + diag|:_;1n—k1'n—ka Ik}
n n—k

The matrix C, in Equation (2.3) is of the form

where C}' is of dimension (n=k)x(n=k); C3 isof
dimension (n—k)xk; C3' is of dimension k*(n—k);
C% is of dimension k Xk .

In order to make it comparable to the format of C,,

X'n is partitioned as

X X'
, (I)(n=k)X(n—k) | I(n—k)xk
X =

pxn

X(f){p—(n—k)}x(n—k)| X p~n-k)pek

That is, the last k rows of the data matrix X,x, have
been labelled as the outlier observations, denoted by a
kxp matrix X; and Xy is (n—k)Xp matrix without
the outliers.

Let the general element of the product matrix X'pxncz

be H; . Then H;;, H,, H, and H,, are derived as
follows.

Hy, = ﬁX'(I)(n-k)X(n-k)ln—klln—k _%X'I(n—k)xk 1,1,
= (n(nk_k) X1y k(=) Lk ~ % X (nkyk i ]I'n—k
= {n(:/ik) G xg'1, - % Xtk L ) - % X ket L }l'n—k
= (n Iik is'z(l) - p 1k X'I(n—k)xk 1; jl'n—k
:n 1k OIS
= n ik (ig'z(l)llk - X,I(n—k)xk )lkl'n—k
where x'g(l) is data on the first g dimensions, & <2, and

a

X ) is the first g components of the mean vector. The

H,, clement is
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H, = _;(X'(I)(n—k)x(n—k)ln—kl'k + X'I(n—k)Xklkllk)"' X7k yk

1
=- ( X1y n—kyecn—iy Lnmk + X7 k)Xklk)l + X ok

01 + X7 (nmk ek

The H,, element is

1 1
H, =|—+—
2 ( n n—k

k , 1, .
—5 X1 p~n=-ihyx(n=k) 1, '; X p~(n—h)pxk 1, Jl n—k

' : 1, '
)x([){p—(n—k)}x{n—k) ln—kln—k - ; X]{p—(n—k)}xk lkln—k

n(n

_{ nk 1 1(2) 1 '

1, '
n(n—k) ; Xp-g)tn = X p~(n-h)pxk lk J _; X p~(n—k)pxk lk }ln—k

- <@
- ( x(17-g)

I .
n—k x]{p—(n—k)}xk lk Jln—k

(x(,, - Vel =X] pwz—k)}xklk)l
( o

Xp g)lk XI {p~(n=h)} Xk)l 1,

1(2)

where X(p-g)

is data on the last (p —g) dimensions,
and i(',(72—);;) is the second (p —g) components of the mean
vector.

The last element of X'anCZ is given by

1, ,
H,= _HX(l){p—(n—k)}x(n—k)ln—klk
+ ly 1,1
Xl{p -(n- k)}Xk Xl{p—(n—k)}xk k'k
I
_ 1 X 1y {p-(n-opx(nto In-k I+
- + 1 k xI{p—(n—k) xk
n Xl{p ~(n-k)}xk "k
)]
- X( 1 +Xl{p ~(n—k)}xk
Therefore,

1 . .
— (igi(l)lk _xll(n—k)xk )lkln—k
X;IXnCZ 1

n—

Dy 4o
‘%( 1, X ke

(x(p ol X k)xk)lkln—k

s N
X e M T Xtk

In this matrix, for the ith row of the first pX(n—k) part,

all of the (n—k) columns contain the same element which
is of the form

1 _
n—kaw:(xi -X

The (i, /) element of the second p Xk part is of the
form —(X;

i:l’ 2’ e, p

=X;)- Thus, X,x,Co simplifies as

1
XCZZ{
-

Now partition the data matrix, X,x, ina manner similar
] P

k&u—xb)ﬂ;k ~X1} +x) ).

to the above as

Xoxp = ("(1)<n—k>Xp ‘ X[kxp)

Ay :{ ik(illk _X'Ik)lkl'n—k - X1 +X'1A-}(X(1) | X, ),

e -, }(x;,)ln-k)+ [, +x), ),

Further simplification gives (i,?) element of A I, as

A = e kz(i J:)(Z Xj)= Z(

We substitute

| @24

for ZD; it and note that the first term involving the two
J

summands in the inner brackets is simply z

Jj=1
which is the tth component of the sample mean vector, X.
Equation (2.4) then becomes

Sl
A, 1

()T T ),

[ [l [l

_xt’

Again, observe that ZD; =R
J

+ and then further

simplification gives the (i, #) element of A, as

. nl_lk%(ii_"ﬁ)(ii_xﬁ)
L '
_ li Z(ii —xji)(iIk —le)
n-k

il

(2.5)

Finally, we drop i and t in Equation (2.5), and write A I,
as the difference of the two 2 * P matrices as

r

nr_lkZ(xj_i)(xj_i)

i

A =

RSyt

o

(2.6)

This is the general expression for A 1, which satisfies

Equation (1.2) and is referred to as the updating formula.

2.1. Some Remarks on the Updating Formula
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Relationship between Wilk's One-Outlier Ratio and Ge-
neralized Distance
For the single outlier case, suppose the index set is

I, ={i} (i=1,2, ---,n} . Then X; =X;, and from Equation

(2.6), AII for the ith observation is given as

which is equal to Equation (1.3). In particular, if I; ={n},
then from Equation (1.2), we obtain
S(IA) =S- A11

x5, %)

'

=S-

multiplying both sides by §™' and taking determinant of
both sides, we obtain

‘Suk)

I—nS_lx—ix—i' 2.7
‘ e

n
n—1

Observe that the left hand side of Equation (2.7) is 7, , the
Wilk's ratio. To determine the determinant on the right hand

side, we note that the P * P matrix (Xn —i)(xn —i) is of

rank 1. Thus, §7 (Xn —i)(xn —i)' is also of rank 1, and

hence all except one of its eigenvalues is zero (see, e.g., [6];
[10]). That single non-zero eigenvalue may be written as

r

s (x, ~%)(x, ~%) =(x, ~%) 7 (x, ~)

It follows that

n

1-—trs7(x, -%)x, -%)

n—1

is an eigenvalue of the matrix on the right hand side of
Equation (2.7). The remaining (p —1) eigenvalues are all
equal to 1. The determinant of the matrix on the right hand

side, which is the product of its eigenvalues, is therefore
equal to

This expression is equal to the right hand side of Equation
(1.4) which is r; for one outlier. We note that

(Xn —i)' s (Xn —i) is the Mahalanobis generalized dis-
tance, Uyy of X, from X which in this case is the largest
ofall U . Therefore, for k=1, r; is a direct function of

U(n)- This result shows that for detecting one outlier, both

the Mahalanobis distance and the Wilk's ratio produces the
same result.

3. Discordancy of Multiple Outliers

In this section, we will apply the expression for the SSCP
matrix, A, for a set of k-tuple extreme observations in a

dataset. It will be shown that the value of the Wilks' k-outlier
scatter ratio obtained from the original high-dimensional
dataset is the same as that obtained from a re-
duced-dimensional dataset, equivalent of the original.

Let P,xi denote the matrix of eigenvectors corres-
ponding to the k non-zero eigenvalues of the matrix

E, =S_I[Z(xj -%)(x; —x)’]

Jar

where the indexed set is as defined. The eigenvectors
corresponding to the k non-zero eigenvalues of E; will
generally be referred to as the k-Outlier Displaying Com-
ponents, or k-ODC ([7]; [4])-

Let V; =[V(. 1) V(,2) V(G.3), -, V(. k)] be the
first k columns of the matrix V of eigenvectors associated
with the eigenvalues of E;. Then we have

s“[Z(xj -X)(x; -X)' |[-AL V=0
oI

Consider the projection Y = X,x, *V x, . Then the va-

riance-covariance matrix of Yis Sy = V'SV. This SSCP
matrix is generally of the form

Mk><k ‘ 0k><(p—k)

- 3.1
- N(p—k)x(p—k)]

V'sv :{

where M, =diag(k|, K,, -+, K;) with some positive
numbers &;, i=1, 2, -,k and N is a non-diagonal matrix.
Now divide the jth column of V by the square root of the

corresponding jth diagonal element of V'SV . By this we
transform V into a matrix U such that

Ikxk ‘

) ]
0(p—k>xk‘ G (piyx(p-)

u'su =[ (32)

where G is a non-diagonal matrix with diagonal elements
equal to 1. If U is partitioned as

1

U= (prk | pr(p—k))’

then

P'SP =1,
Q'SQ =G ,;
U'{z (x; =X)(x; _i)'JU =diag (A, Ay, =, A, 0,4, 0)

jo1

P'{z (x, - %)(x, —Y)’]P =diag (A, Ay, o0 Ay)
jor

Q'{Z (x; = %)(x; -Y)’]Q’ =0,

jo1
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where A, A, ---, A, are the k non-zero eigenvalues of
E,.

Define a new set of variables, Z, by the transforma-
tion Z =P'X. By definition, the Wilks' k-tuple outlier test
statistic using Z;y, is

(2)
() — i)

N

where §® =77' and SEIZk)) is the corresponding ma-

trix with observations in the indexed set I, removed from
the sample. Substituting for Z we obtain

rlgl):%:‘P'Suk}P‘ (3.3)

Now from Section 2, we substitute for A 7, in Equation
(1.2) to obtain

Sao :S_ﬁZ(XJ —i)(xj _i)

jor

Thus,

U's, U=USU —ﬁ U’{Z(xl -%)(x,-%) }U

o

S S ) o

i

=USU- nkA" +nEkU'{Z(XJ -%)(x,-%, )}U

n- fil

P'S, P=PSP —n—r_‘k P’[Z(xj -3)(x,-%) }P

[

+ﬁp[z(xi x)(x, -, )lp

o

K o - Y
=1, —nfk/\k +HP {Z(xj —x)(xj —xlk) }P

[5]

and

Hence, obtain

P’Sak)Q:P’SQ—nn_kP’{Z(xJ -3)(x —x)}Q

i1

S o
=Q'S“k)P
=0

QS(IK)Q:QSQ_HZ(Q{Z(XJ‘ _i) (Xj _i)l }Q

+ﬁ0 {;(Xj =[x _:: )JQ

=QsQ

:Gp—k
Since, U= (prk | Qi) ) we obtain
PSP | PS,)Q

Q'SP | QS,)Q

U's,, U= (3.4)

Substituting the relevant results in Equation (3.4) gives

P'S(,k)P‘ 0 ]
o | @s,e

u's, U :[

Taking determinants gives

‘U'S(,k)U‘ = ‘P'S(,k)P“G o]

(3.5)
-|i®
Now from Equation (3.2), since [U'SU|=|G|, we must
have
sjuul=lg|
uuf=lelxg
]

Using this result, the left-hand side of Equation (3.5)
simplifies as

‘U'S(Ik)U‘ = ‘S(1k>“UU'|

:|G|x% (3.6)
=[Glr,

Therefore, from Equations (3.5) and (3.6), we obtain

r,iz) =7

This result means that irrespective of the dimensionality
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of the data matrix X, the statistic, rk(l) for testing the

k-tuple of observations in the set 7, for discordancy in the

transformed data Z is numerically the same as that obtained
from the X. In addition, it can be verified that the eigen-
vectors corresponding to the k non-zero eigenvalues of

E, = S_I(Z(xj -%)(x; —x)’J

Jor

represent suitable dimensions along which the k-tuple of
outliers can be optimally highlighted.

3.1. Remarks on Effect of Dimensionality on Multiple
Outlier Display

In the derivation in this section, it has been noted that the
product matrix U'SU is generally of the form

I,| 0
U'SU =
0’ G
It is clear that if the dimensionality of the dataset is equal
to (k+1) then the matrix is diagonal and G =1. In this

case, U'SU=1,,, which simplifies the proof. It is this case

that has been shown [4] for k& =2 using a 3-dimensional
dataset. The proof also establishes a basic condition that the
number of outliers that can be highlighted on displaying
components cannot exceed the dimensionality of the dataset.

4. Illustration

Single Outlier: Suppose X, is the single outlier. Then
E, =S7'(x, -X)(x, —X)'. It can be shown that the ei-
genvector corresponding to the single non-zero eigenvalue
of E; is V, =87'(x, —=X). which is the 1-ODC. Con-
sider the projection of the mean-corrected data onto V;.

This yields the univariate data (X —%)'S™(x, —X). Now,

max (x; —X)'S7(x, -X)=(x, -X)'S7'(x, - X)

i=1,2
The variation in the univariate projection Y =X*V; is
Var(Y) = V|SV
=(x, —i)'S_IS[S_l (x, —i)]
=(x, ~%)'S™ (x, -%)
which is the same as the generalised distance of the outlier

from the sample mean.
Therefore the Wilks' one-outlier statistic given by

|5<m Ve _
=1-——(x, -x) 87 (x, - %)
8

is therefore equivalent to using the statistic
_ <) -l -
D(s) _(n_l)(xs _X) S (Xs _X)'

which is compare to values of Table XXXII by Barnett
and Lewis [2], assuming multivariate normality. Thus, the
outlier is that observation whose removal optimally reduces
the variation in the univariate data. This is a lot simplifica-
tion of repeated use of the Wilks' ratio.

The plots in Fig. 1 is the projection of the U.S. Food Price
data [11] on 1-ODC and a modified 1-ODC showing ob-
servation 10 as the single outlier.

Figure 1: Projection of Food Pree data on Original (in **')
and Modified (in “x") 1-0DCs

It has been shown [8] that the actual separation of the
single outlier is more effectively highlighted along a mod-

ified component B, =S (X, =X(s). (shownin ‘% " in
Fig 1) which rather involves the mean Xs) of the remaining
observations when X, is deleted from the dataset and its

corresponding SSCP, S ¢). In this dataset, it can be verified
that observation 10 is a discordant outlier at 5 percent level
of significance.

Outlier-pair: The Milk Transportation Cost data ([5]; [1])
is used in the case for k& =2. In this dataset, the pair of
observations {9, 21} are known to be outliers. Fig. 2 gives
the plot of the data along the two eigenvectors (2-ODC)
corresponding to the two non-zero eigenvalues of the matrix
E,.

+ + ® o
- +
* + T4y
A - * '5_ +
o + -
L % 4
#
* * " +

-30 L L L
=i0 -a —& -

= 3 2 F . t

Sacond 2000

Figure 2: Scatter-plot of the Transportation Cost Data Highbghting
Twa Outliers in Two Dimensions
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Outlier-triple: The Iris Virginica dataset (see e.g. [5]; [1])
is used in this case for k£ =3. In this dataset, observations
{19, 18, 32} are known to be the outlier-triple. Fig. 3 gives
the projection of the data along the three eigenvectors
(3-ODC) corresponding to the three non-zero eigenvalues of
the matrix E;. It must be pointed out that generally, a truly
distinct observation in three dimensional space may be dif-
ficult to observe. The coordinates of the point in space could
actually reveal the real position of the point.

-' s
U6 L PN
* o P
a4 1 'ﬂ' . 3
. I I M*-«- E++ &
02 i e % +
P B g
g ¢ +4~;i \&M'*
fé 5 : B & f H *s
= +: *,
e : oy
04 ; I e g
-5 - e :
i + !
l
=25
.,-"J:
~ 15
.—-""ﬁf
. :
Second 2-0DC 55 05 Firet 2-00C

Figure 3: Plot of Projected Ins Virginiea Data m Three Dimenstons

Although observation 1 in Fig. 3 appears distinct, it is not
a member of the outlier triple by our method. It can be ve-
rified that in both datasets, the Wilks' multiple-outlier sta-
tistic in the reduced dimensions is equal to that obtained in
the original dataset.

5. Conclusion

The paper has established two main results. One of the
results was derivation of an updating formula for multiple
outlier detection and display. The paper shows that an ex-

plicit expression for SSCP matrix A 1, , of the set of k out-

liers that satisfies the matrix equation S(Ik) =S- Ay s
given as

r

nr_lkZ(Xj_i)(Xj_i)

o

) (s,

o

The expression suggests that unlike a single outlier, mul-
tiple outliers could be more difficult to detect. In the multiple
outlier case, the formula shows that one needs to take into
consideration the relative position of each observation from
the total sample mean as well as the position from the mean
of the set of outliers.

Using the updating formula, it has been shown that in
general the discordancy of k-tuple outliers is preserved along
k-Outlier Displaying Components with much lower dimen-
sions than the original high-dimensional dataset. The dis-
playing components are the eigenvectors corresponding to
the k& non-zero eigenvalues of the matrix

E, =S_1(Z(xj -%)(x; —x)’j

Jar

where I, ={i}, i, -+, i} } is an indexed set of labelled
most extreme k-tuple of observations in the dataset.

Appendix

Remarks on the Properties of the C2 Matrix

The matrix C, in Equation (2.3) has a number of inter-

esting properties. In the following theorem, we state and
prove these properties.

Theorem

The matrix given by

(_% + nlk )1»1—k1’»1—k

-1 !
n lkln—k

-1 kllk

n - n-

Ly

Satisfies the following the following properties:

C,=C,
C;=C,
CccC, =0,
C,1,x)=0
Proof
Property 1: Clearly C, =C,.
Property 2
c2= (‘%*’ﬁ)ln—kl'n—k ‘ 1,415 (‘%+ﬁ)1n—k1'n—k ‘ s R
’ _%11(1'/1—1( ‘ I _%ll(l'k _%lklrnfk ‘ I _%lkl}(

Let the general element of C ; be (C i ). Then

L1V vl ey
Cll :(_7 + _k) (ln*klnfk)(lnfkln*k)*- 2 (lrrklk)(lklrrk)
n n n

k2
TR (n—-k)

k '
ln—kln—k

k

' '

ln—kln—k + ey ln—kln—k
n

- n(n—k)

1 1
St 1,1
( n I’l_kj"k k
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(1 1 , L ;1 ' '
C,p=— (_* — J(ln—kln—k i) == 1,41, t— (1,100,
n n—k n n

R N R S L)
n

n(n—k) nfz
k , Lk , 1 ,
TS Vi WS Vi WS 1
n n n
1 .
=141
n

C,; can be shown similarly to be equal to C;, . Now

taking C,, we obtain

2
1 ' I 1 1
Cy :_Z(lkln—k)(ln—klk)+(1k __lklkj

n n
—_— n_

k.o ., 2., .1 , .
=——L1; +, ——1,1; +—(1,1;,)1,1})
n n n

n—k , 2 , k ,
:_Zlklk +Ik __lklk +_21k1k

n n n

1 k 2 k

=—1,1, ——zlkl'k +1, ——1,1} +—21k1'k
n n n n

1
=1, —— 1,1
n

Thus,

_l 1 ] _l ]
5 ( T n—k)ln—kln—k | 1, 1

C2 - 1 E
| I _;lklk

-1 '
n lkln—k

which is the same as C,. Therefore, C3 =C, .
Property 3

1, =

1,X=

G(1,x)= [

n

1L,¥= (%1, %1, || %1, | ]X,1,)

Now, partition each 1, 00" in the form

1, | lk)' . Thus,

Xlln—k X21n—k |

X1, |§21k |

Thus,

—1 1 U _1 i
( ;+ﬁ)1n—k1n—k ‘ nln—klk]
X

g | Lt

The product with the ith column vector of 1,X’ gives

ﬁln—krﬂ—kln—k _ﬁln—lelk
X.
l _ﬁlklln—kln—k +1, _%llelk

- %ln—k _%ln—k - 011_—k
i _n;k1k+1k _%lk i 0,

Therefore, C,(1,X)=0.

cc. = L ‘ﬁln—klh-fc‘ (U (‘%J'ﬁ)ln—kl'n—k‘ s S
e ‘ I _%ll(l'k

-1 U
0x(it) ‘ U S L

Let the general element of this product be (t;)-

k k , ,
ti =m(1n—k ~ o ke j(ln—kln—k)
__k o1 ' '
oo
— k ! — !
= —n(n 0 (1, —1,1,)
= On
1 1 , '
t12 = _;(In—k _n__kln—kln—k J(ln—klk)
1 , 1 , ,
=—;1n_k1k +n(n—_k)(ln—k1n—k )(ln—klk)
1 1

= __ln—kllk +_1n—k1’k
n n

=0

n

It can be shown similarly that t,; =ty =0,.
Therefore, C,C, =0, .

Property 4

Let X=(X|,X,, ", X,)) be the p-dimensional mean

vector. Then consider the 7 X P matrix
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