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Abstract: In this paper, we propose a measure for detecting influential outliers in linear regression analysis. The 

performance of the proposed method, called the Coefficient of Determination Ratio (CDR), is then compared with some 

standard measures of influence, namely: Cook’s distance, studentised deleted residuals, leverage values, covariance ratio, and 

difference in fits standardized. Two existing datasets, one artificial and one real, are employed for the comparison and to 

illustrate the efficiency of the proposed measure. It is observed that the proposed measure appears more responsive to 

detecting influential outliers in both simple and multiple linear regression analyses. The CDR thus provides a useful 

alternative to existing methods for detecting outliers in structured datasets.  

Keywords: Coefficient of Determination Ratio, Cook’s Distance, DFFITS, CVR, Studentised Deleted Residuals, 

Leverage Values 

 

1. Introduction

An outlier in a set of data is defined to be an observation 

(or subset of observations) which appears to be inconsistent 

with the remainder of that set of data [1]. Outliers may 

represent data that are contaminated in some way (e.g., a 

recording error, an error in the experimental procedure), or 

they may represent an accurate observation of a rare case [2]. 

It is well known that since the effect of outlying observations 

on parameter estimates and on inferences about models and 

their suitability are to be expected, studies on outliers would 

help to reduce their influence. Outlier identification is done 

relative to a specified model. If the form of the model is 

modified, the status of individual observations as outliers 

may change [3]. Consequentially, when outliers are present 

in a dataset, it leads to misleading results. 

Regression analysis, as we know, is one of the most 

important statistical techniques for model fitting. If a regression 

model is appropriately selected, most observations should be 

fairly close to the regression line or hyperplane. The 

observations which are far away from the regression line or 

hyperplane may not be “ideal” observations for the selected 

model and could potentially be identified as the outliers for the 

model. The least squares method is undoubtedly the most 

popular parameter estimation technique, mainly due to its 

computational simplicity and underlying optimal properties [4, 

5]. It is well known that inferences based on least squares 

regression can be strongly influenced by only a few 

observations in the data, and the fitted model may reflect 

unusual features of those observations rather than the overall 

relationship between the variables, [6].  

Several techniques have been developed for detecting 

problems with dataset in regression analysis. They differ in the 

particular regression result on which the effect of a deletion of 

an observation is measured. For instance, the Cook’s distance 

measures the effect of observations on the estimated regression 

coefficients. Other measures of influence measure the effect of 

observations on the fitted values and the variance-covariance of 

the parameter estimates. This paper is another attempt at 

identifying a more responsive measure for detecting even the 

more subtle suspect outliers. 

In this section, we provide a brief review of the measures 

that are used for detecting influential observations in 

structured data. Then in the next section, we will propose an 

alternative measure for outlier detection. The third section 

then compares the proposed measure with the standard ones 

using some datasets.  
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1.1. Review of Measures of Influence  

In this section, we discuss some standard measures of 

influence. These measures are the leverage value, 

studentised deleted residuals, Cook’s distance, DFFITS, and 

the Covariance Ratio. 

1.1.1. Leverage Values 

Leverage values are employed to identify outliers with 

respect to their x values. This value is a measure of the 

distance between the observation’s x values and the centre of 

the data. If the leverage value of an observation is large, the 

observation is outlying with respect to its x values. The 

diagonal elements of the hat matrix (called leverage values) 

are a useful indicator of whether or not an observation is 

outlying with respect to its x values. The leverage value, , iih  

for the ith observation in the data matrix X is given by 

( ) iiiih xXXx ′′′= −1 ,   ni ,,2,1 ⋯=          (1) 

If the ith observation is outlying in terms of its x values 

and therefore has a large value of iih , it exercises 

substantial weight (leverage) in determining the fitted value 

.ˆ
iy  A leverage value iih  is usually considered to be large, 

if it is more than twice as large as the mean leverage value. 

That is, leverage values greater than nk )1(2 +  are 

considered by this rule to indicate outlying observations 

with regard to their x values. 

1.1.2. Studentised Deleted Residuals 

The studentised deleted residuals, it  is given by  
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Which is calculated from the residuals iε̂ , the error sum 

of squares SSE, and the hat matrix values iih , all for the 

fitted regression based on the n observations. 

We identify as outlying those observations whose 

studentised deleted residuals are large in absolute value. In 

addition, we can conduct a formal test by means of 

Bonferroni test of whether the observation with the largest 

absolute studentised deleted residual is an outlier. If the 

regression model is appropriate, so that no observation is 

outlying because of a change in the model, then each 

studentised deleted residual will follow the t distribution 

with )2( −− kn degrees of freedom. The appropriate 

Bonferroni critical value therefore is 
2;
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observation is considered to be outlier with respect to its y 

value if .
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1.1.3 . Cook’s Distance 

Cook’s distance measures the squared distance between 

the least squares estimate of β  based on all n observations 

and the estimate, ,β )(i obtained when the ith observation is 

removed. Cook’s distance measure is an aggregate influence 

measure, showing the effect of the ith observation on all n 

fitted values. It is given by 
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or by a more computationally convenient form as 
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where 2
ir  is the squared studentised residual, which reflects 

how well the model fits the ith observation, iy . 

For interpreting Cook’s distance measure, a rule of thumb 

is that 
)1(

4

+−
≥

kn
Di  which indicates that the observation 

is influential. 

1.1.4 . DFFITS 

A useful measure of influence that observation i has on the 

fitted value iŷ  is given by: 
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The letters DF denote the difference between the fitted 

value iŷ for the ith observation when all n observations are 

used in fitting the regression function and the corresponding 

predicted value )(ˆ iy  obtained when the ith observation is 

omitted in fitting the regression function. The denominator 

of Equation (5) is the estimated standard deviation of 

,ˆ
iy but it uses the standard error, 

2
)(is , when the ith 

observation is omitted in fitting the regression function for 

estimating the error variance 
2σ . The denominator 

provides standardization so that the value iDFFITS)(  for 

the ith observation represents the amount of increase or 

decrease in the estimated standard deviations of iŷ with 

inclusion of the ith observation in fitting the regression 

model. It can be shown that the DFFITS values can be 

computed by using only the results from the entire dataset, 

as follows:  
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As a guide for identifying influential observations, it is 

suggested to consider an observation as influential if the 

absolute value of DFFITS exceeds 1 for small to medium 

datasets and nk )1(2 +  for large datasets. 

1.1.5 . Covariance Ratio 

One can assess the influence of the ith observation by 

comparing the estimated variance of β̂  and the estimated 
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variance of .β̂ )(i  Mathematically, the Covariance Ratio 

(CVR) is given by 
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Ideally, when all observations have equal influence on the 

covariance matrix, CVRi is approximately equal to one. 

Deviation from unity indicates that the ith observation is 

potentially influential. A rough calibration point for 

Equation (7) is nkCVRi 31 >− . 

2. The Coefficient of Determination 

Ratio 

The general procedure for assessing the influence of an 

observation in a regression analysis is to determine the 

changes that occur when that observation is omitted. Several 

measures of influence have been developed using this 

concept. We now propose a measure of influence that is 

based on the value of the coefficient of determination ( 2R ) 

of the linear regression model.  

To formulate the proposed measure, we first fit a linear 

regression model to the full data and determine the 2R  

value. Secondly, we compute the (
2

)(iR ), the coefficient of 

determination value when the ith observation is deleted from 

the dataset. We then compare the values of 2R  and 
2

)(iR  

by taking their ratio. This measure is what we refer to in this 

paper as the Coefficient of Determination Ratio  (CDR). 

The CDR for the ith observation is defined as 

SSR

SSR

SST

SST

R

R
CDR

i

i

i
i

)(

)(
2

2
)( ×== ,  ni ,,2,1 ⋯=     (8) 

It has been shown (see Appendix D, and [7] ) that a 

suitable expression for )(iSSR  is 
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and that  .22
)( iii ySSTySST −=−′= yy  Substituting these 

into Equation (8), some further algebraic steps gives 
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(See Appendix C for proof). In Equation (9), the quantity  

SST
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2

 is the proportion of total variation contributed by iy ; 

)( 2
iySST −  is the amount of variation in the dataset that 

excludes iy ; and 
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 is the amount of explained 

variation due to iy .  

In computing CDR for each observation in a given dataset, 

there is no need to actually delete observations one after the 

other and refit the linear regression model each time. A 

linear regression analysis is carried out only once, and then 

regression results are used to evaluate CDR for each 

observation. 

As a rule of thumb, if the iCDR  for the ith observation 

deviates from unity, then the ith observation is influential. 

This idea is somewhat general; hence we need to find a 

method which will determine the exact cutoff values for the 

CDR. However, in this paper, we examine all iCDR  values 

graphically. (The use of cutoff rule for the CDR is under 

study). An index plot of iCDR
 
may be a useful graphical 

device for visualizing suspect outliers. When the iCDR  

values are all about the same, no suspect outlying 

observations are present. On the other hand, if there are 

observations with iCDR  values that stand out from the rest, 

these observations can be identified as outliers.  

3. Implementation of CDR  

3.1. Using CDR to Detect Outliers in Simple Linear 

Regression Analysis 

In this section, we illustrate the use of the proposed 

measure ( iCDR ) to detect outliers in simple linear 

regression analysis. The results obtained by iCDR  are 

compared with those from some known influence measures 

reviewed in Section 1. 

The dataset used is an artificial one created by [8] to 

illustrate the features of Mathematical package for 

unmasking regression outliers. We examine for outlying 

observations by considering the observations that do not 

follow the main pattern of the bulk of the data. Even though 

this procedure is an informal way of detecting outliers, it is 

used as a preliminary tool to identify susceptible 

observations. 

A scatter plot for the data is shown in Figure 1. 

 

Figure 1. Scatter plot of Artificial Data 
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From Figure 1, the majority of the observations follow a 

linear pattern. Five observations {28, 29, 30, 31, 32}  lie 

separately from the bulk of the data. These observations are 

suspected to be outliers. Observation 28 is outlying with 

respect to its x value. This observation is not influential 

because, it lies along the pattern of the bulk of the data. It can 

be seen from Figure 1 that observation 29 is outlying with 

respect to its y value, and therefore may be influential. 

Further, observations {30, 31, 32} are outliers with respect 

to their x and y values. These observations are also 

influential. 

A simple regression analysis of the artificial data yields a 

regression model summary which is presented in Table 1. 

Table 1. Regression Model Summary for Artificial Data  

Model R sq Adj. R sq Std Error of Estimate 

1 0.203 0.177 7.647 

From Table 1, it is observed that as low as 20.3% of the 

variation in the response Variable Y is accounted for by the 

predictor variable X. 

We now examine the performances of the measures of 

influence for this dataset. The results are shown in Table 2. 

From Table 2, the iCDR  measure detects observations {28, 

29, 30, 31, 32} as outliers (by means of an index plot, in 

Appendix A, of the values of iCDR ). These observations 

have iCDR  values that markedly deviate from unity. Also, 

each of iD  and iDFFITS )(  detected observations {28, 29, 

30, 31, 32} as outliers. The values of iD  exceed  

the cut-off value if  133.0
232

4

)1(

4 =
−

=
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≥
kn

Di . Also, 

these observations have absolute values of iDFFITS )(  that 

exceed the calibration point  of  0.5. 

The it  measure suggests that observations 28 and 29 are 

outliers since their absolute it  values exceed the cutoff 

point .045.229,05.0 ±=t  In addition, iih  identifies 

observations 28, 30, 31, and 32 to be outlying but not 29. 

Their values are greater than twice the average of all 

leverage values (0.125). Finally, it can be seen that the 

iCDR , just like it , classifies only observations 28 and 29 as 

suspect outliers. The values of iCDR  for observations 28 

and 29 do not fall within the cutoff interval (0.813, 1.188). It 

is worth noting that the ,iCDR  besides iD  and 

,)( iDFFITS  is successful in detecting all the outliers in the 

data. However, iih  identifies all but one outlier. Each of it  

and iCDR  detect only two of the five outliers. 

Next, we consider an assessment of the influence of the 

outlying sets of observations on the value of 2R . The 

results are presented in Table 3. The table gives the change 

in 2R  when the specified observations have been deleted 

from the data for each of the measures.  

Table 2. Influence Measures for Artificial Data 

i iCDR  it  iih  iD  iDF)(  iCVR  

1 0.951 -0.513 0.049 0.007 -0.117 1.106 

2 1.002 0.181 0.031 0.001 0.033 1.102 

3 0.993 -0.083 0.036 0.000 -0.016 1.109 

4 1.000 0.063 0.033 0.000 0.012 1.106 

5 0.991 -0.075 0.038 0.000 -0.015 1.112 

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

9 0.975 0.836 0.037 0.014 0.164 1.060 

10 0.945 -0.356 0.059 0.004 -0.089 1.128 

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

19 0.996 -0.060 0.034 0.000 -0.011 1.108 

20 1.002 0.135 0.032 0.000 0.025 1.104 

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

27 0.988 0.531 0.034 0.005 0.100 1.087 

28 0.405 2.983 0.194 0.849 1.465 0.778 

29 1.579 4.291 0.034 0.205 0.805 0.414 

30 1.310 -1.591 0.208 0.317 -0.817 1.143 

31 1.403 -1.860 0.217 0.444 -0.980 1.091 

32 1.416 -1.923 0.196 0.412 -0.948 1.046 

Table 3. Effect of Deletion of Outlying Observations on 
2R Value  

Measure 
Outlying  

Observations 

2

newR  2R change 

it  28, 29 0.185 -0.018 

iih  28, 30, 31, 32 0.546  0.343 

iCVR  28, 29 0.185 -0.018 

iD  28, 29, 30, 31, 32 0.975 0.772 

iDF  28, 29, 30, 31, 32 0.975 0.772 

iCDR  28, 29, 30, 31, 32 0.975 0.772 

Table 3 indicates that the omission of the observations {28, 

29, 30, 31, 32} from the dataset results in an increase in the 

value of 2R  from 0.203 to 0.975, a substantial increase 

using the CDR. The result is the same for iD
 
and 

,)( iDFFITS denoted iDF  in the table. 

3.2. Using CDR to Detect Outliers in Multiple Linear 

Regression Analysis 

For illustrative purposes, we use the data by Moore [9] (as 

cited in [10]). This data has also been used by [9] to compare 

the performance of various influence measures to detect 

influential observations, high leverage points, and outliers in 

linear regression. The measured variables are: 

Y ― log (oxygen demand in dairy waste), mg/min; 

1X ― biological oxygen demand, mg/litre; 

2X ― total Kjeldahl nitrogen, mg/litre; 

3X ― total solids, mg/litre; 

4X ―total volative solids (a component of 3X ), mg/litre;  

5X ―chemical oxygen demand, mg/litre. 

Correlation analysis of the data shows the presence of 

some linear relationship between Y and each of the predictor 

variables, except 2X . Further, there is somewhat strong 

positive linear relationship between any pair of the variables 

1X , 3X , 4X , and 5X . These linear associations among the 

predictor variables are likely to pose multi-collinearity 

problems. The summary of the fitted regression of Y on the 

five predictors is shown in Table 4.  
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Table 4. Regression Model Summary for Moore’s Data  

Model R sq Adj. R sq Std Error of Estimate 

Full 0.811 0.743 0.262 

Table 5. Influence Measures for Moore’s Data 

i iCDR  it  iih  iD  iDF )(  iCVR  

1 1.028 3.584 0.337 0.589 2.555 0.038 

2 0.978 -0.776 0.502 0.104 -0.780 2.385 

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

6 1.009 0.812 0.371 0.066 0.623 1.843 

7 1.033 -1.475 0.153 0.060 -0.627 0.728 

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

14 0.994 0.093 0.198 0.000 0.046 1.936 

15 1.035 -1.779 0.171 0.094 -0.809 0.510 

⋮  ⋮  ⋮  ⋮  ⋮  ⋮  ⋮  

17 1.010 0.973 0.918 1.779 3.261 12.512 

18 0.986 0.048 0.234 0.000 0.026 2.033 

19 0.999 -1.070 0.364 0.108 -0.810 1.478 

20 1.058 2.105 0.406 0.406 1.742 0.452 

From Table 4, we note that even though the 2R  value is 

high, it may not be a true representation of the explanatory 

power of the fitted regression model. In an ideal situation, 

each observation in the dataset contributes equally to the 

formation of the value of 2R . It is, therefore, legitimate to 

assess each observation vis-à-vis their influence on 
2R value in order to identify unusual ones. 

Table 5 shows the values of various measures of influence 

for Moore’s data when the ith observation is omitted from 

the dataset. 

First, we consider the coefficient of determination ratio 

(CDR) in Table 5. It can be observed that the (CDR) for all 

observations are approximately equal to one except 

observations {1, 7, 15, 20}. The removal of these 

observations from the dataset is expected to substantially 

improve the 2R . Therefore, the observations {1, 7, 15, 20} 

are influential. 

To evaluate the studentised deleted residual it  for an 

observation, we compare this quantity with 
2
αt  based on 

)2( −− kn  degrees of freedom. Specifically, if the it  is 

greater in absolute value than 
2,

2
−−kn

tα , then there is some 

evidence that the observation is an outlier with respect to its 

y value. From Table 5, we see that the it  for observations 1 

and 20 (3.584 and 2.105, respectively) are both greater than 

.771.113,05.0 =t Therefore, we should be very concerned that 

{1, 20} are outliers with respect to their y values. 

For the Moore’s data, there are 20=n  observations and 

since the fitted linear regression model utilizes 

5=k independent variables, twice the average leverage 

value is 0.60. 

From Table 5, we see that the leverage value for 

observation 17 is 0.9182. Since this value is greater than 

0.60, it suggests that observation 17 is an outlier with respect 

to its x values. 

From Table 5, Cook’s distance for each of observations {1, 

17, 20} is greater than the cut-off value 0.267. This means 

that removing the group of observations {1, 17, 20} from the 

dataset would substantially change the least squares estimate 

of the regression parameters. Hence, observations 1, 17, and 

20 are flagged as influential. 

It can be seen in Table 5 that the DFFITS for observations 

1, 17, and 20 exceed the cut-off value of 1.095, and therefore, 

they should be identified as outliers. 

For the Moore’s data, the cutoff values for iCVR  is 

)900.1,100.0( . The cut-off interval is rather conservative in 

that it declares too many observations as outliers. In view of 

this, we use the index plot (see Appendix B) of iCVR  to find 

outliers. Observations 1 and 17 are considered as outliers. 

The iCVR  value for observation 17 is the largest indicating 

that its presence would have the greatest impact on 

increasing the precision of the parameter estimates. The 

iCVR  for observation 1 is the lowest. This shows that the 

presence of observation 1 in the dataset greatly decrease the 

precision of the estimates. 

The influence of the different sets of suspect outlying 

observations, from the various measures of influence, on the 

value of 2R  is displayed in Table 6. 

Table 6. Effect of Deletion of Outlying Observations on 
2R Value  

Measure 
Outlying  

Observations 

2

newR  2R change 

it  1, 20 0.895 0.084 

iih  17 0.819 0.008 

iCVR  1, 17 0.832 0.021 

iD  1, 17, 20 0.893 0.082 

iDF  1, 17, 20 0.893 0.082 

iCDR  1, 7, 15, 20 0.938 0.127 

It is observed from Table 6 that the 2R  value has 

increased as a result of deleting various sets of suspect 

outlying observations. However, the magnitude of the 

increment differs across the sets of outlying observations. 

The greatest change in 2R  value (from 0.811 to 0.938) is 

associated with the omission of the outlying set {1, 7, 15, 

20}, which is based on the iCDR  measure of influence. 

However, the least change in 2R  value is linked with the 

omission of {17}, which is based on the iih  measure of 

influence. A comparison of values of 2R  in Table 6 shows 

that the set of observations {1, 7, 15, 20} detected by iCDR  

is the most influential than those emanating from the other 

measures of influence. The deletion of this set from the 

dataset would subsequently lead to a substantial change in 

the regression estimates. The result shows that the iCDR  is 

more responsive to identifying even the subtle outliers.  
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4. Conclusion and Recommendation 

The main objective of the paper was to assess the standard 

measures for detecting influential outliers in structured data. 

The result shows that the new measure, called  the 

Coefficient of Determination Ratio )( iCDR  identifies 

suspect outliers which all the other measures detect. In 

addition, it has the property to detect other and even more 

subtle suspect outlier observations which other measures do 

not detect. This means that by using the iCDR , any 

observation which is potentially an outliers can be identified 

for assessment. The benefit of using this method is that the 

significance of the model obtained eventually for 

summarising the dataset is more reliable.  

The results also show that  the CDR, iD , and iDF  

detect almost the same sets of influential outliers. However, 

the CDR always perform distinctly from the other influence 

measures such as the it , iih , and iCVR . 

The implementation of the new method relied mostly on 

the scatter plot of the values of the CDR.  Like the other 

measures, it would be more formal to identify suspect 

outliers using exact cut-off values. Future studies in this area 

should focus on obtaining a generalized cut-off value for the 

new measure.  

Appendix A 

Index Plots for Artificial Data  

 

(a)       (b) 

 

(c)       (d) 

 

(e)       (f) 

Appendix B 

Index Plots for Moore’s Data 

 

(a)      (b) 

 

(c)       (d) 

 

(e)       (f) 

Appendix C 

Proof of Coefficient of Determination Ratio 

The CDR for the ith observation is defined as 

2
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Now )()()()()(
ˆˆ

iiiiiSSR βXXβ ′′= . It can be shown ([7]) that 

,)()()( iiiiiSSR xxXXXX ′−′=′= where, )(iSSR  is sum of 

squares due to regression with the ith observation
 
deleted, 

and )(iSST the corresponding sum of squares. We express 
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( ) i
ii

i
i

h
xXXββ

1
)(

1

ˆˆˆ −′
−

−=′ ε
.            (3) 

Substituting ,ˆˆ βXy =  we have 
yy

βXXβ

′
′′

=
ˆˆ

2R   

and
)()(

)()()()(2
)(

ˆˆ

ii

iiii
iR

yy

βXXβ

′
′′

= . Substituting, we have 

)()()()()()()()()(
ˆˆˆˆˆ)(ˆ

iiiiiiiiiiiiiSSR βxxββXXββxxXXβXX ′′−′′=′−′′=′=  

Further substitutions using Eq. (3) gives 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) 







′′

−
−′








′′

−
−′−









′

−
−

′








′

−
−=









′

−
−′′

′








′

−
−−









′

−
−′

′








′

−
−=

−−

−−

−−

−−

ii
ii

i
i

i

ii
ii

i
i

i
ii

i
i

ii

i

i
ii

i
iii

ii

i

i
ii

i
i

ii

i
i

hh

hh

hh

hh
SSR

xXXx
1

ˆ
β̂xxXXx

1

ˆ
β̂x

xXXX
1

ˆ
β̂XxXXX

1

ˆ
β̂X

xXX
1

ˆ
β̂xxxXX

1

ˆ
β̂

xXX
1

ˆ
β̂XXxXX

1

ˆ
β̂

11

11

11

11
)(

εε

εε

εε

εε

 

Substituting ii ŷˆ =′βx
 
and ( ) iiiih xXXx ′′′= −1

 
we have 

( ) ( )










−
−









−
−−









′

−
−








′′′

−
−′′= −−

ii

ii

i
iii

ii

i
i

i
ii

i
i

ii

i
i

h
h

yh
h

y

hh
SSR

1

ˆ
ˆ

1

ˆ
ˆ

xXXX
1

ˆ
β̂XXXXx

1

ˆ
Xβ̂

11
)(

εε

εε

 

Expanding gives 

( ) ( ) ( )

( ) ( )( )

2

2

2

11

2

11
)(

1

ˆ
ˆ

1

ˆ
β̂x

1

ˆ
xβ̂

1

ˆ
β̂XXβ̂

1

ˆ
ˆxXXXXXXx

1

ˆ

β̂XXXXx
1

ˆ
xXX)XX(β̂

1

ˆ
β̂XXβ̂












−
−−












−
+′

−
−′

−
−′′=












−
−−′′′′











−
+

′′′
−

−′′′
−

−′′=

−−

−−

ii
ii

i
i

ii
ii

i
i

ii

i
i

ii

i

ii
ii

i
iii

ii

i

i
ii

i
i

ii

i
i

h
h

y

h
hhh

h
h

y
h

hh
SSR

ε

εεε

εε

εε

 

Substitution for iii yy ε̂ˆ −= , further simplification gives 

( )

( )

2

2

( ) 2

2 2

2

2

2

ˆ ˆ ˆ2 ( )ˆ ˆ ˆ( )
1 1

ˆ ˆ ˆ2 ( )

11

ˆ

1

i i i i ii

i i i

ii ii

i ii i i i ii

iiii

i

i

ii

y h
SSR y

h h

h y h

hh

SSR y
h

ε ε ε ε

ε ε ε

ε

−′ ′= − + − −
− −

−
− +

−−

= − +
−

β X Xβ

  (4) 

Now, 

2
)( ii ySSTSST −= .                  (5) 

Substituting Eq (4) and (5) into Eq (2) yields 

SSR
h

ySSR
ySST

SST
CDR

ii

i
i

i

i 













−
+−

−
=

1

ˆ2
2

2

ε
 

Some few further steps gives 













−
−

−
−

−
=

ii

i
i

ii

i
h

y
ySSTR

SST

y
CDR

1

ˆ

)(

1

1

1
2

2

222

ε
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