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Abstract 
We report on a theoretical investigation of a direct current generation in carbon nanotubes (CNTs) 
that are stimulated axially by terahertz (THz) field. We consider the kinetic approach based on the 
semiclassical Boltzmann’s transport equation with constant relaxation time approximation, to-
gether with the energy spectrum of an electron in the tight-binding approximation. Our results in-
dicate that for strong THz-fields, there is simultaneous generation of DC current in the axial and 
circumferential directions of the CNTs, even at room temperature. We found that a THz-field can 
induce a negative conductivity in the CNTs that leads to the THz field induced DC current. For va-
rying amplitude of the THz-field, the current density decreases rapidly and modulates around zero 
with interval of negative conductivity. The interval decreases with increasing the amplitude of the 
THz-field. We show that the THz-field can cause fast switching from a zero DC current to a finite DC 
current due to the quasi-ballistic transport, and that electron scattering is a necessary condition 
for switching. 
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1. Introduction 
Investigation into the electronic properties of carbon nanotubes (CNTs) has attracted a great deal of interests ev-
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er since the discovery of these quasi-one-dimensional monomolecular structures by Iijima [1]. This may be due 
to their intriguing properties. The oscillatory response of the CNTs to moderate electric field strength makes 
CNTs inherently nonlinear, and as such, can exhibit plethora of transport phenomena. Under different conditions 
of an external electric field, an electron in CNT is predicted to reveal a variety of physical effects such as Bloch 
oscillations, self-induced transparency, negative differential conductivity, absolute negative conductance [2]-[9], 
and many more. Furthermore, CNTs have been shown to exhibit ballistic transport [10]-[12], Coulomb-blockade 
[13] [14], Luttinger Liquid [15] [16] and superconductivity [17] [18]. The unique architecture and physico-
chemical properties have undoubtedly led to CNT which has been identified as a promising candidate for the 
fundamental building block of new generation of nanoelectronics [19]-[22], sensors [23] [24], electrochemical 
capacitors [25]-[27], Li-ion batteries [28]-[30] and terahertz (THz) generation and amplification [31]-[35], just 
to mention a few. There are several reports on CNTs for THz application [31]-[35]. Most of these reports focus 
on room temperature generation of THz radiation. Different proposals of CNTs for THz applications have been 
made. These ranges from multipliers [31] [32], amplifies [33], switches [34] to antennas [35] (see also [36]-[41]). 

However, there are very limited reports on the effect of THz-fields on the transport properties of CNTs. 
In this report, we present a theoretical investigation of the influence of THz-fields on the conductivity of 

CNTs that are stimulated axially, by considering the kinetic approach based on the semiclassical Boltzmann’s 
transport equation with constant relaxation time approximation, together with the energy spectrum of electron in 
the tight-binding approximation, and predict the generation of DC current in both axial and circumferential di-
rections of the CNTs. 

2. Theory 
We start with the Boltzmann equation and proceed as in refs [42]-[44], 
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In accordance with ref. [4]-[6] [11], we find that the distribution function is periodic in the quasimomentum 
and can be written in Fourier series as; 
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where e is electronic charge, the index  ,i γ ξ= ; pγ  and pξ  are components of the electron dynamical mo-
mentum along the axial and tubular axes respectively; ( ); ;f f p p tγ ξ≡  is the distribution function, and 
( );F p pγ ξ  is the equilibrium distribution function; while τ  is the electron relaxation time and assumed to be  

constant. The electric field is related to the vector potential A as 1 AE
c t
∂

=
∂

. mI  is the modified Bessel function  

of the order m and   is Planck’s constant, finally dξ  and dγ  are the distances between along the axis and  
helix respectively. 

The solution of Equation (1) by the method of characteristics is obtained in [5] [6] [11] as; 
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Interesting to us is the situation that 1vt   and Equation (2) reduces to the form 
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We proceed as in [5] [6] by considering an infinitely long chain of carbon atoms wrapped along a base helix 
as a model of a SWNT. This phenomenological model gives analytical tractability, which easily provides physi-
cally interpretable results. Also, the model gives a correct qualitative description of various electronic processes 
which are corroborated by the first principle numerical simulations. Thus, using the simple model of the tight- 
binding approximation, we describe the energy spectrum of the CNTs as ref [5] [6]. 
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where oε  is the energy of an outer-shell electron in an isolated carbon atom, γ∆  and ξ∆  are the real over-
lapping integrals for jumps along the respective coordinates. 

The electron quasi classical velocity components for ( )v pγ γ  and ( )v pξ ξ  are obtained as in refs [5] [13]; 
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and the electron fluxes along the tubular axis and the base helix are given by after making the transformation 

( )ep p A t
c

→ +  as ref [5] [6]; 
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where the integration is done over the first Brilloiun zone. The expressions for the axial and the circumferential 
components are as in [5]; 

sin hjξ ξ γ θ= +                                     (8a) 

cos hjγ γ θ=                                      (8b) 

where hθ  is the chiral angle. We consider the CNTs stimulated by a uniform electric field oE  with a uniform 
sinusoidal THz radiation field of frequency 1ω  and amplitude 1E  i.e., ( ) 1 1cosoE t E E tω= + . Substituting 
Equations (4) and (6) into Equation (7), we obtained the following direct current density expression from Equa-
tion (8) for circumferential and axial directions, respectively. 
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If we re-write expressions (9) in the form of ref [44] and using the simplest case for [5] [6] that Δ Δξ γ= , 
d dξ γ= , Ω Ωo oξ γ=  and ξ γβ β= , we obtain the static current density as; 
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and 
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respectively. 
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Equation (10) show the ac field can open up new transport channel for DC current as a result of multiphoton 
absorption or emission with probability of emission or absorption of photon given by ( )2

iJν β  (see [44]). 
For quasi static case i.e. 1νωτ  , expression (9) reduces to; 
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here ( )0 1 sini hJ Jε θ = +   and ( )0 cos .i hJ Jδ θ=  

From Equation (11) we obtain the normalized differential conductivity as; 
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3. Results and Discussion 
We present the results of the kinetic equation approach of a CNT subjected to inhomogeneous THz field of the 
form ( ) 1 1cosoE t E E tω= + . The Boltzmann’s equation is solved in the framework of constant relaxation time 
approximation. The expressions for the direct current densities along the axial and circumferential directions of 
the chiral CNT are given in Equation (9). The nonlinearity is analyzed using the dependence of the normalized 
direct current density 0i iJ j  as a function of the ac amplitude iβ  for Ω 0.3τ = , 0.5, 0.9, 1 and 2. 

In Figure 1, we show the dependence of the current density 0i iJ j  on the ac amplitude βi, Equation (9), i.e., 
when the CNTs are stimulated axially with a combination of a uniform electric field E0 and a uniform sinusoidal 
THz radiation field of frequency 𝜔𝜔1 and amplitude ( )( )1 1 1cosoE E t E E tω= + . The behavior is similar in the 
axial and circumferential directions. In the region of strong scattering ( 1ωτ < ) the DC conductivity 0i iJ j  
remains positive, but decreases with increasing the strength of the ac amplitude. However, for ( 1ωτ > ), the 
current density decreases strongly with increasing βi and then oscillates around 0 0i iJ j =  with intervals of 
negative conductivity. The arrows in Figure 1 indicate the regions of negative conductivity. We observed that 
the width of the intervals of the negative conductivity is largest at ~ 2ωτ  and decreases with decreasing scat-
tering. The results indicate that negative conductance can be generated in chiral CNTs at room temperature by 
axial stimulation of the CNTs with THz frequencies (→1012 Hz). On the other hand, the stable state with THz 
induced DC current is the region of dynamic localization for ~ 2ωτ  and is indicated by black boxes (see Fig-
ure 2). This suggests that stimulation of chiral CNTs with THz fields at room temperature can lead to switching 
from zero DC current to a finite DC current state, a process of quasi-ballistic electron transport where electron 
scattering is a critical component for the switching. 
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(a) 

 
(b) 

Figure 1. A plot of a normalized DC current density 0i iJ j  of CNTs obtained from expression (9) as a function of 
ac current amplitude iβ  for (a) axial component (b) circumferential component  when 0.1ωτ = , 0.5, and 2.         

 

 
Figure 2. A plot of a DC conductivity i

dc oiσ σ  of CNTs obtained from expression (12) as a function of ac current 
amplitude iβ . The arrows indicate regions of negative conductivity and the black shades show regions of dy-
namical location which is the stable state with THz induced DC current.                                        
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4. Conclusion 
In conclusion, we considered the nonlinear electronic properties in CNTs stimulated by a high frequency THz 
field, i.e., ( ) 1 1cosoE t E E tω= +  using the Boltzmann’s kinetic equation in the constant relaxation time. The 
results indicate the creation of DC current densities along the axial and circumferential directions of the chiral 
CNTs. 
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