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Abstract 

An investigation of laser stimulated thermopower in chiral CNT is presented. The thermopower of 
a chiral CNT is calculated using a tractable analytical approach. This is done by solving the Boltzmann 
kinetic equation with energy dispersion relation obtained in the tight binding approximation to determine 
the electrical and thermal properties of chiral carbon nanotubes. The differential thermoelectric power 
along the circumferential αcz and axial αzz are obtained. The results obtained are numerically analyzed and α 
is found to oscillate in the presence of laser radiations. We have also noted that Laser source above 4.6 x 
107V/m lowered the thermopower otherwise there is no change. Varying ∆s and ∆z the thermopower 
changes from positive to negative. 
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1. Introduction 

It is well known that a circuit made from two dissimilar metals, with junctions at different 
temperatures induces an electrical current in the circuit. The temperature difference produces an electric 
potential (voltage) which can drive an electric current in a closed circuit. The voltage produced is 
proportional to the temperature difference between the two junctions. The proportionality constant S is 
defined as the Seebeck coefficient or thermoelectric power and is obtained from the ratio of the voltage 

generated ∆� to the applied temperature difference ∆� (i.e. � = ∆�
∆�� ) [1]. Lyeo et al. in [2] have 

reported on an experimental technique called Scanning Thermoelectric Microscopy (SThEM) that can 
probe thermoelectric transport at nanoscales. Reference [2] demonstrated this by mapping out the 
thermopower of a pn homojunction and had a remarkable result which showed the spatial resolution to be 
on the order of 2 to 4 nm in highly doped semiconductors. This creates the possibility of probing 
semiconductor nanostructures for thermoelectricity. Interestingly, this resolution is of the order of the 
nanostructure size discovered by Hsu et al. [3] for AgPb18SbTe20.  

Thermoelectric (TE) power has been reported for a random array of carbon nanotubes (CNT) [4-6] 
as well as for individual tubes [7]. Similar investigations were made on quantum wires [8, 9] and artificial 
nanostructures, such as superlattices [10]. Mensah and Buah-Bassuah [11] have investigated the 
photostimulated thermomagnetic effect by electrons in a semiconductor superlattice (SL). They indicated 



2 
 

the possibility of controlling the thermopower α, the electron thermal conductivity χ, and the 
electroconductivity σ of the SL with the help of laser radiation. They found the parameters α, χ, and σ to 
oscillate in the presence of laser therefore are amplitude dependent.  

 Past work on CNT was mostly made on randomly dispersed tubes but Shamim M. et al. [12] 
reported on the TE properties of cross aligned and co aligned junctions made between functionalized 
single-wall CNTs (SWCNTs) and multiwall CNTs (MWCNTs). 

Mensah et al. have studied the differential thermopower of the chiral carbon nanotube [13]. They 
used the approach stated in [14] together with the model developed in [15] to determine the thermopower α 
of the chiral CNT. The approach requires the creation of phenomenological models that yield analytically 
tractable results [15]. The justification for this approach can be established from the work of Miyamoto et 
al. [16], where they computed the current excited in carbon and BC2N nanotubes immersed in an 
electrostatic field. They observed in [13] that the thermopower strongly depends on the geometric chiral 
angle (GCA) θh, electric field E, temperature T, the real overlapping integrals for jumps along the tubular 

axis z∆  and the base helixs∆
 
. In this work, we will use the approach in [13] to investigate theoretically 

the laser stimulated thermopower in chiral CNTs.  
The paper is organized as follows: section one deal with the introduction; in section two, we 

establish the theory and solutions; results obtained will be discussed in section three and finally we draw 
our conclusions.  
 
 
2. Theory 

 

The carrier (electron or hole) current density j, electrical conductivity σ and thermopower α of a 
chiral SWNT are calculated as functions of the geometric chiral angle θh, temperature T, the real 
overlapping integrals for jumps along the nanotube axis ∆z and along the base helix ∆s. The calculation is 
done using the approach in reference [14] together with the phenomenological model of a SWNT 
developed in references [15] and [17]. This model yields physically interpretable results and gives correct 
qualitative descriptions of various electronic processes, which are corroborated by the first-principle 
numerical simulations of Miyamoto et al [16]. 
Following the approach of [13], we consider a SWNT under a temperature gradient ∇T and in an electric 
field applied along the nanotube axis. Employing the Boltzmann kinetic equation  
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where f(r, p, t) is the distribution function, f0(p) is the equilibrium distribution function, v(p) is the electron 
velocity, �	
� = �� + ��cos 	�
� is the magnitude of the electric field, with E0 being constant electric 
field and ��cos 	�
� being monochromatic laser source, r is the electron position, p is the electron 
dynamical momentum, t is time elapsed, τ is the electron relaxation time and e is the electron charge and 
taken the collision integral in the τ approximation and further assumed constant, the exact solution of 
Equation (1) is solved using perturbation approach where the second term is treated as the perturbation. In 
the linear approximation of ∇T and ∇µ, the solution to the Boltzmann kinetic equation is  
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ε(p) is the tight-binding energy of the electron, and µ is the chemical potential. The carrier current density j 
is defined as 

                                 ( ) ( ) ( )tpfpvetj
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Substituting Eq. (2) into Eq. (3) we have 
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Making the transformation  
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we obtain for the current density 
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Using the phenomenological model [15,17,18], a SWNT is considered as an infinitely long periodic chain 
of carbon atoms wrapped along a base helix and the current density is written in the form 

                                          zs uZuSj '' +=                                                                          (6) 

where S′ and Z′ are respectively components of the current density along the base helix and along the 
nanotube axis. The motion of electrons in the SWNT is resolved along the nanotube axis in the direction of 
the unit vector uz and a unit vector us tangential to the base helix. uc is defined as the unit vector tangential 
to the circumference of the nanotube  and θh is the geometric chiral angle (GCA). uc is always 
perpendicular to uz, therefore us can be resolved along uc and uz as  
                                             us = uc cos θh + uz sin θh                                                                      (7) 

Therefore, j can be expressed in terms of uc and uz as 
                              j = uc (S′ cos θh) + uz (Z′ + S′ sin θh) ≡ jc uc + jz uz                                             (8) 

which implies that, 
                             jc = S′ cos θh                                                                                                         (9) 
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                                   jz = Z′ + S′ sin θh                                                                                         (10) 

The interference between the axial and helical paths connecting a pair of atoms is neglected so that 
transverse motion quantization is ignored [15,17]. This approximation best describes doped chiral carbon 
nanotubes, and is experimentally confirmed in [19]. 
Thus if in Eq (5) the transformation 
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is made, Z′ and S′ respectively become, 
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and 
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where the integrations are carried out over the first Brillouin zone, h is Planck’s constant, vs, ps, Es, ∇sT, 
and ∇sµ are the respective components of v, p, E, ∇T and ∇µ along the base helix, and vz, pz, Ez, ∇zT, and 
∇zµ are the respective components of v, p, E, ∇T and ∇µ along the nanotube axis. 
The energy dispersion relation for a chiral nanotube obtained in the tight binding approximation [16] is 
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where εo is the energy of an outer-shell electron in an isolated carbon atom, ∆z and ∆s are the real 
overlapping integrals for jumps along the respective coordinates, ps and pz are the components of 
momentum tangential to the base helix and along the the nanotube axis, respectively. The components vs 
and vz of the electron velocity v are respectively calculated from the energy dispersion relation Eq (13) as 
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and 
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To calculate the carrier current density for a non-degenerate electron gas, the Boltzmann equilibrium 
distribution function f0(p) is expressed as 
 

      

( )
















 −+∆+∆
=

kT

dPdP

Cpf

zz
z

ss
s 0

0

coscos
exp

εµ
hh                                      (18) 

 
 
 



6 
 

 
 
 
Where C is found to be 
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and n0 is the surface charge density, In(x) is the modified Bessel function of order n defined by 
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Now, we substituted Eqs (13) - (18) into Eqs (11) and (12), and carried out the integrals and also averages 
over t to obtain the following expressions 
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Where we have defined *snE  as 
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Here ��	�� is the Bessel function of the n order. 
Substituting Eq (20) into Eq (9) gives circumferential current density jc as 
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Similarly, the axial current density jz was obtained after substituting Eq (21) into Eq (10) as, 
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Then Eqs (23) and (24) respectively become 
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Eqs (26) and (27) define the carrier current density. The circumferential σcz and axial σzz components of the 
electrical conductivity in the CNT are obtained from Eqs (26) and (27) respectively. In fact the coefficients 

of the electric field *
znE−  in these equations define σcz and σzz as follows, 
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setting jc to zero in Eq (23), the thermoelectric power αcz along the circumferential direction is obtained as 
follows 
 

( ) *cossin0 znhhs EE θθσ−= ( ) { } TAB
e

k
E zzzsshhs ∇∆−∆−− **cossin ξθθσ  

 

( ) ( ) { } TAB
e

k
EEE zzzsshhsznhhs ∇∆−∆−−= *** cossincossin ξθθσθθσ  



8 
 

 

                     
( ) { }

( ) hhs

zzsshhs

z

zn

E

AB
e

k
E

T

E

θθσ

ξθθσ

cossin

cossin **
* ∆−∆−

−=
∇

 

 

                        { }zzss
z

zn
cz AB

e

k

T

E **
*

∆−∆−=
∇

= ξα                                                  (30) 

 
Similarly, the thermoelectric power αzz along the axial direction is obtained from Eq (43) as follows (i.e. 
when jz = 0)  
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In summary, the analytical expressions obtained for the carrier current density j and thermopower 
α depend on the geometric chiral angle θh, temperature T, the real overlapping integrals for jumps along the 
tubular axis ∆z and the base helix ∆s.  
When the Laser source is switched off i.e. Es = 0 and w = 0 the thermopower expression in Eq (31) reduces 
to 
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these expressions were obtained in [13] 
 
Results, Discussion and Conclusion 
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Using Boltzmann kinetic equation, the expressions of the carrier current density and thermopower of chiral 
SWNT was obtained. 

We observed from Eqs (30) and (31) that the thermoelectric power of a chiral CNT is dependent 
on the electric fields Es and Eo, temperature T, GCA θh, and the overlapping integrals ∆s and ∆z for jumps 
along the circumferential and axial directions. . To further understand how these parameters affect the 
thermopower, we sketched Eq (31) using MATLAB. 

Figure (1a) represents the dependence of thermopower αzz on temperature for a fixed value of ∆z = 
0.015eV and values of ∆s varied from 0.015eV to 0.025eV. It was observed that the thermopower decreases 
rapidly with increasing temperature for values of ∆s between 0.015eV and 0.018eV. For values of ∆s above 
0.018eV, the thermopower increases rapidly to a maximum value and then start decreasing gradually with 
increasing temperature. At   high temperatures above 500K, thermopower assumes a lower constant value 
for all values of ∆s.  A similar behavior was observed by J. Hone et al. in [19], where they measured the 
thermopower of a SWNT experimentally. 
The hyperbolic curves obtained in Figure (1a) are similar to the characteristic thermopower behavior 
expected for semiconducting CNTs [20]. We noted that when ∆s values are equal or slightly above ∆z, i.e. 
∆s values between 0.015eV and 0.020eV, the thermopower α decreases with increasing temperature T, 
which give hyperbolic curves.  These conditions make the chiral CNT behaves as a semimetal. The fact that 
thermopower values in Figure (1a) are positive over the entire range of temperature indicates that the 
contribution from positive (hole) carriers dominates the response. 
The dependence of thermopower on temperature is also sketched for fixed values of ∆z = 0.024eV, 0.027eV 
and 0.041eV as Figures (1b), (1c) and (1d) respectively. In all cases, ∆s is varied from 0.015eV to 0.025eV.  

In Figures (1b) and (1c), the thermopower was found to increase rapidly to a maximum value, then 
decreases slowly to a constant value as temperature rises. All the curves were observed to have turning 
points at different temperatures. 

Comparing our results obtained with the experimentally measured thermopower in reference [21], 
it was noted that the theoretical curves agree reasonably well with the experimental values. Careful study of 
all the curves obtained revealed that the turning points shift toward lower temperatures for a given ∆z and 
increasing ∆s, but they shift towards greater temperatures as ∆z increases. 

Interestingly, it came to light that there exists a threshold temperature for which hole conductivity 
switches over to electron conductivity. It means that positive thermopower of the chiral CNT becomes 
negative. The threshold value for the temperature shifts towards lower temperature as ∆z is increased. This 
can be explained by the fact that graphite has a pair of weakly overlapping electron and hole sp2 or π bands 
with near mirror symmetry about the Fermi energy EF. Approximately equal numbers of electrons and 
holes in these symmetric π bands are consistent with the negative thermopower observed [5].  

Looking at Figures (1e) and (1f), it is clear that values of ∆z greater than 0.085eV render the 
thermopower completely negative and hyperbolic [20]. Under this condition, the chiral CNT becomes 
completely n-type material. It was observed in Figure (1e) that at a temperature above 600 K, thermopower 
becomes zero. A similar observation was made for armchair CNTs [19]. This was attributed to the mirror 
symmetry of the coexisting electrons and holes in the overlapping π bands. An observation made from 
Figure (1f) shows that when ∆z is greater than 0.25eV, increasing ∆s does not affect the thermopower. 

The thermopower dependence on temperature in the presence and also absence of Laser is 
sketched and presented as Figure (2). We noted that when the Laser source Es is between 0 and 4.6 x 
107V/m, the thermopower values does not change and this is revealed in Figure 2a where αz (Laser off) and 
αz (Laser on) overlaps. Interestingly, Figure 2b showed a decrease in thermopower when Es values go 
beyond 4.6 x 107V/m. 

A sketch of thermopower against chiral angle in Figure (3a) showed a rapid decrease in 
thermopower to a constant value at 7o. It therefore indicates that any effect resulting from the thermopower 
will be extremely small in dependence on the chiral angles beyond 7o.  
We also sketched thermopower with varying Es field at a fixed temperature of 300K in Figure (3b). It is 
interesting to note that as Es increases, the thermopower shows distinctive peaks. The dependence of 
thermopower on Es was found to be oscillatory. Furthermore, thermopower was found to decrease as Eo 
increases.   
 

 



10 
 

 

 

Figure 1a: The dependence of αzz on temperature T for ∆s equal to 0.015eV, 0.018eV, 0.020eV, 0.025eV, 

∆z = 0.015eV, E1 =5 x 107V/m, Eo =.1.38 x 108V/m. 

 

Figure 1b: The dependence of αzz on temperature T for ∆s equal to 0.015eV, 0.018eV, 0.020eV, 0.025eV, 

∆z = 0.024eV, E1 =5 x 107V/m, Eo =.1.38 x 108V/m.. 
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Figure 1c: The dependence of αzz on temperature T for ∆s equal to 0.015eV, 0.018eV, 0.020eV, 0.025eV, 

∆z = 0.027eV, E1 =5 x 107V/m, Eo =.1.38 x 108V/m.. 
 

 

Figure 1d: The dependence of αzz on temperature T for ∆s equal to 0.015eV, 0.018eV, 0.020eV, 0.025eV, 
∆z = 0.041eV, E1 =5 x 107V/m, Eo =.1.38 x 108V/m. 
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Figure 1e: The dependence of αzz on temperature T for ∆s equal to 0.015eV, 0.018eV, 0.020eV, 0.025eV, 
∆z = 0.085eV, E1 =5 x 107V/m, Eo =.1.38 x 108V/m. 

 
 

 
Figure 1f: The dependence of αzz on temperature T for ∆s equal to 0.015eV, 0.018eV, 0.020eV, 0.025eV, ∆z 
= 0.25eV, E1 =5 x 107V/m, Eo =.1.38 x 108V/m.. 
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 Figure 2a: The dependence of αz on temperature T for ∆s = 0.018eV,∆z = 0.024eV, Eo =.1.38 x 108V/m. . 
E1 =4. 5 x 107V/m and GCA θh = 4.0o   

 

Figure 2b 
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Figure 3a: The dependence of αzz on chiral angle at temperature T = 300K, ∆s = 0.015eV,  ∆z = 0.024eV,   
Eo=1.38 X 108 V/m and E1 = 5 x 107V/m.  

 

 
Figure 3b: The dependence of αzz on Es for temperature T = 300K for E = Eo, 2Eo and 4Eo, where Eo = 
6.9063x 107V/m ∆s = 0.018eV,  ∆z = 0.024eV,  

 
Conclusions 

 
The thermopower α of chiral CNT induced with monochromatic laser have been investigated. The 

chiral CNT parameters ∆s ∆z, θh, the d.c. electric field Eo and the laser source Es were found to have 
influence on the thermopower α of chiral CNT.  
 Our results show that the chiral CNT can exhibit semiconducting properties. It became clear that 
as ∆z values increase beyond 0.040eV, the chiral CNT shifts from a p-type to an n-type semiconducting 
material. We noted that when the Laser source Es is above 4.6 x 107V/m, the thermopower values decrease. 
Interestingly, varying the Laser source caused the thermopower of  the chiral CNT to oscillate. 
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