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Abstract

Solving the Boltzmann kinetic equation with energy dispersion relation obtained in the tight-

binding approximation, the carrier thermal conductivity Ke of a chiral carbon nanotube (CCNT)

was determined. The dependence of Ke on temperature T, chiral geometric angle fa and overlap

integrals Az and As were obtained. The results were numerically analysed. Unusually high

values of Ke were observed suggesting that ne is nontrivial in the calculation of the thermal

conductivity K of CCNT. More interestingly we noted also that at 104 K and for A2 and As

values of 0.020 eV and 0.0150 eV respectively the ne value is about 41000 W/mK as reported for

a 99.9% pure 12C crystal. We predict that the electron thermal conductivity of CCNT should

exceed 200,000 W/mK at ~ 80 K.



1 Introduction

Due to the numerous applications of carbon nanotubes (CNTs), there has been several publica-

tions on this novel material. The past decade witnessed significant research efforts in efficient

and high-yield nanotube growth methods. The result of which has led to a wide availability of

nanotube materials. CNTs are highly unusual electrical conductors, the strongest known fibres

and excellent thermal conductors. Many potentially important applications have been explored,

including the use of nanotubes as nanoprobe tips [1], fields emitters [2]-[6] (CNTs might soon

be used as field emitters in fiat-screen televisions), storage of filtering media [7] and nanoscale

electronic devices [8]-[19].

Carbon nanotubes, the carbon atoms of which are held together by strong sp2 and sp3 bonds

consist of seamless graphitic cylinders a few nanometers in diameter and closed at either ends

with caps containing pentagonal rings of carbon atoms. CNTs can manifest either metallic or

semiconductor properties, depending on its cross-sectional radius and geometric chiral angle [20]-

[22].

It is known that, as the dimensions of electronic and mechanical devices are shrunk into

nanometer dimensions, the thermal conductivity becomes quite important since functioning

electronic, piezoelectric, and thermogalvanic devices may require that significant energy be dis-

sipated in a small region [23]. Consequently, it is of interest to develop reliable theoretical and

computational methods for predicting the thermal properties of nanoscale materials and devices.

There are two major approaches to theoretical studies of thermal conductivities of materials

(1) The most fundamental approach is to base the calculations on the first principle atomistic

simulations, i.e. using the Green-Kubo relation derived from linear response theory to

extract the thermal conductivity from the energy current correlation functions. Both equi-

librium and nonequilibrium dynamic simulations [24]-[26] have been reported for various

systems. Combination of equilibrium and nonequilibrium molecular dynamics simulations

with accurate carbon potentials have been used to determine the thermal conductivity of

carbon nanotubes and its dependence on temperature [27].

(2) It can also be studied using continuum models and kinetic theories such as the Boltzmann

transport equation. For example, Walkauskas et al. [28] calculated the lattice thermal

conductivity of GaAs wires; Balandin and Weng [29] calculated the thermal conductivity

reduction in the Si quantum well. The advantage of using Boltzmann equation (BE) is

that large systems can be studied reasonably quickly. In addition, solving the integro-

differential BE for general cases is nontrivial.

One can generally partition the thermal conductivity of material into the charge carrier

(i.e. electron or hole) component Ke which depends on the electronic band structure, electron

scattering and electron-phonon interaction, and the lattice (or phonon) component KL which



depends mainly on phonon and phonon scattering. In dielectrics, KL > Ke, while in metals

Ke ~^> KL- In semiconductors the value of Ke is strongly dependent on the composition of the

semiconductor, and the value KI is generally greater than the value of Ke.

Research shows that CNTs are expected to have high thermal conductivity [27, 30, 31].

Experiments have confirmed unusually high thermal conductivity in CNTs [32, 33] and indicated

that thermal conductivity of single walled carbon nanotubes is dominated by phonons at all

temperatures. Moreover the high value of thermal conductivity obtained in an isolated (10,10)

CNT at room temperature by Berber et al. [27] was associated with the long mean free path of

phonons.

In this paper, we calculate electron thermal conductivity of single-walled chiral carbon nan-

otube (SWNTs) using Boltzmann kinetic equation and a model based on infinitely long carbon

atoms wrapped along a base helix of (SWNTs) [34, 35]. We noted an unusually high value of

electron thermal conductivity similar to that obtained by Berber et al. for the lattice thermal

conductivity. This indicates that the contribution of Ke is nontrivial in calculating the thermal

conductivity of (SWNTs). We also want to state that the model used is good as is also confirmed

by [34, 35], where it is stated that the model is good for doped CNTs. We further observed

that Ke strongly depends on the geometric chiral angle ̂ , temperature T, the real overlapping

integrals for jumps along the tubular axis Az and the base helix As. It is worth noting that

varying these parameters can give rise to unusually high electron thermal conductivity. This in

our opinion suggests the use of (CNTs) as efficient thermal conductance.

This paper is organised as follows: in section 2 we establish the theory and solution of the

problem, and in section 3 we discuss the results and draw conclusions.

2 Theory and Results

Single walled-carbon nanotube (SWNT) is considered as an infinitely long chain of carbon atoms

wrapped along a base helix. The problem is considered in the semiclassical approximation,

starting with the Boltzmann kinetic equation [36],

d f ( r , p , t ) | d f ( r , p , t ) | cEdf(r,p,t) = f(r,p,t) - f0(p)
dt dr dp T

Here /(r,p, t) is the distribution function, /o(p) is the equilibrium distribution function, v(p)

is the electron velocity, E is a weak constant applied field, r is the electron position, p is the

electron dynamical momentum, T is the relaxation time and e is the electron charge. The

collision integral is taken in the r approximation and further assumed constant. Eq. (1) is

solved by perturbation approach treating the second term as the perturbation. In the linear

approximation of VT and V/i, fj, is the chemical potential, we obtain
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f(p) = I-1 JQ exp(--)f0(p-eEt)dt + JQ exp --

x ([e(p - eEt) - ,} ̂  + V/i) «(p -

here e(p) is the electron energy.

The thermal current density q is given as

(3)

Substituting Eq(2) into Eq(3) and making the transformation

p - eEt -»• p

we obtain for the thermal current density

q = T-

(p- eEt) -

(4)

We resolve the thermal current density along the tubular axis (z axis) and the base helix repec-

tively, neglecting the interference between the axial and the helical paths connecting a pair of

atoms, so that transverse motion quantizatoin is ignored. Then using the following transforma-

tion:

we obtain

2T— 1 roo / i\ r-j- rf-
Z' = 7TT^2 / exp — )dt I ° dps / ' dpz[e(P-eEt)-n}vz(p-eEt)f0(p)

2Trh) Jo \ r) J- J-(2Trh)

-2-,r
1-nTiY Jo

x {[e (P) -n}^- + VzP<t{vz (p) ̂ ^ \ vz(p - eEt) (5)

and

— 1 roo

2 roo / j.\ rj^ r£

t > 2 / exP — )dt ° dps * dpz [e (p - eEt) - p]
xH) JO \ Tj J-*. J-£

[£ (P) - A*] + VSL «. (p) W5(p - eJBi) (6)



where Z1 and S' are the thermal current along the tubular axis and the base helix respectively.

The integrations are carried out over the first Brillouin zone. Prom these two components, the

axial and circumferential thermal current density is given respectively as

qz = Z1 + S' sin Oh qc = S' cos 0A (7)

where #/, is the geometric chiral angle (GCA).

The energy e(p) of the electrons, calculated using the tight binding approximation is given

as expressed in [34] as follows:

e(p) = e0 - As cos ̂  - A2 cos ̂  (8)
h n

e0 is the energy of an outer-shell electron in an isolated carbon atom, As and Az are the

real overlapping integrals for jumps along the respective coordinates, ps and pz are the carrier

momentum along the base helix and the tubular axis respectively, H is /i/2?r and h is Planck's

constant. ds is the distance between the site n and n + 1 along the base helix and dz is the

distance between the site n and n + N along the tubular axis.

For a non-degenerate electron gas, we use the Boltzmann equilibrium distribution function

/o(p) as expressed in [37], i.e.,

' ' * ' • - • • ( 9 )

where C is determined by the condition

C=

and n0 is charge density, In(x) is the modified Bessel function of order n and k is Boltzmann's

constant.

The components vs and vz of the electron velocity v are given by

de(p) Asds . psdsVs(ps} = ̂  = —sm~r
and

de(p) Azdz . pzdz

Using Eqs. (5)-(ll) and the fact that Es = Ezsm6h, VST = VzTsmOh, and E = -

we obtain the circumferential qc and axial qz thermal current densities after a cumbersome

calculation as follows,

qc = as —
6

k2T
+a,— Sm0h cos 6h {e - 2A^B, - 2A^AZ + (A:)2 Cs

+2&*SA*ZBSA2 + (A;)2 (l - £) } VZT (12)
\ ^Z ' '



+2^SBZAS + (A,*)2 (l - £J J + as sin2 6

-2A;^4, + (A:)2 Cs + 2&*S**ZBSAZ + (A:)2 (1 - ̂  ) | \ VZT (13)

Here

* ~ kT ~'-/0(A*)' l ~A(A|) A*

7l. = i 3 J°(Ai) , 6

A* - Ai

Eqs. (12) and (13) are the results for weak electric field E. The coefficient of V2T in Eqs.

(12) and (13) defines the thermal conductivity. Of interest to us is the axial component of the

thermal conductivity KZ. From Eq. (13), KZ is given by

S + (As*) l - l

(A:)2 Cs + 2AJ A*B^z + (A^2 l - i (14)

3 Results, Discussion and Conclusion

In this paper we analysed the electron thermal conductivity Ke, given by Eq. (14), of a chiral

CNT using the approach adopted in [37, 38]. It is noted that Ke depends on temperature T

chiral geometric angle <f>h and overlap integrals A2 and As. We further analysed the results by

using numerical methods. We sketched the graphs of the dependence of Ke on temperature T

for various values of A2 and As. In Fig.l for example, the graph is for As = 0.0156 eV and

Az = 0.0204 eV. In this figure our calculations suggested that at T = 100 K carbon nanotubes

show an unusually high thermal conductivity value of about 37500 W/mK. This value lies very

close to the highest value observed in any solid, K = 41000 W/mK, that has been reported [39]

for a 99.9% pure 12C crystal at 104 K. Despite of the decrease of ne above 100 K the room

temperature value of about 11000 W/mK is very high and is about 3 times the value reported

for nearly isotopically pure diamond [39].

We want to emphasise that this result compares quite well with that of the lattice thermal

conductivity Ke of (10,10) CNT calculated by Berber et al. [27] see the insertion in figure one.



In Fig.2 we sketched Ke against T for As = 0.0150 eV and varied Az from 0.010 eV to 0.048

eV. Very interestingly we noted that the peak values of Ke shift towards the right from 100 K

to 200 K after which Ke become constant for the changing values of A2. This is to be expected

because thermal conductivity is proportional to the thermal capacity and according to Delong-

Petit law the thermal capacity is constant. When Az = 0.020 eV the peak value of Ke occurs

at 104 K and is about 41000 W/mK as reported in [39] for a 99.9% pure 12 C crystal. Again

the peak values increase with increase of A2. At Az = 0.048 eV we observed a giant electron

thermal conductivity at ~ 80 K of the value of about 200000 W/mK, which corresponds to a

similar observation noted in [39] for 99.9% 12 C diamond crystal.

In Fig.3, we herein examine Ke against T for Az = 0.0159 eV and varying values of As from

0.010 eV to 0.048 eV. We noted that the peak values of Ke decrease with increasing value of As

and also Ke assumes a constant value at high temperatures.

In conclusion, electron thermal conductivity of chiral CNT has been investigated theoreti-

cally. Unusually high values of Ke is reported for varying values of Az and As. Especially for Az

and As values of 0.0150 eV and 0.020 eV respectively and at 104 K the electron thermal con-

ductivity is about 41000 W/mK. We predict giant thermal conductivity value of 200000 W/mK

at about ~ 80 K.
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Figurel The temperature dependence of the electron thermal conductivity for As=0.0156 eV and Az=0.0204 eV

The inserted is the graph obtained by Berber et al for lattice thermal conductivity of (10,10) CNT

11



5«10

4*10

3»10

2*10

I I

^=0.010 eV
^=0.01267

.^=0.014 eV
cA2=0.016eV

5*10

4*10

3-10

2*10

1*10

0 100 200 300 400

T(K)

100 200 300 400

T(K)

5-10

4«10

3«10

2«10

1*10

100 200
T(K)

300 400

2.5'10

2«10

1-10

5«10

-Az=0.039eV
-Az=0.042eV
-^=0.045 eV
^=0.048 eV

0 100 200
T(K)

300 400

Figure 2 The temperature dependence of electron thermal conductivity for A.=0.0150 eV and
Az varied from 0.010 to 0.048 eV.
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Figure 3 The temperature dependence of the electron thermal conductivity for Az=0.0150 eV
and As varied from 0.010 eV to 0.048 eV.
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