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The ground state energy of a polaron in a superlattice was calculated using the double-time
Greenfunctions. The effective mass of the polaron along the planes perpendicular to the
superlattice axis was also calculated. The dependence of the ground state energy and the ef-
fective mass along the planes perpendicular to the superlattice axis on the electron–phonon
coupling constantα and on the superlattice parameters (i.e. the superlattice periodd and
the bandwidth1) were studied. It was observed that if an infinite square-well potential
is assumed, the ground state energy of the polaron decreases (i.e. becomes more negative)
with increasingα andd, but increases with increasing1. For small values ofα, the polaron
ground state energy varies slowly with1, becoming approximately constant for large1.
The effective mass along the planes perpendicular to the superlattice axis was found to be
approximately equal to the mass of an electron for all typical values ofα, d and1.

c© 2001 Academic Press

1. Introduction

Polaronsin bulk materials have been extensively investigated for several years now, and many mathemat-
ical techniques have been used to solve the polaron problem. Mitra, Chatterjee, and Mukhopadhyay [1] and
Peetersand Devreese [2] have given good reviews on polarons in bulk materials.

It is well known that when an electron moves slowly in a heterostructure, such as superlattices (SLs),
heterojunctions, dielectric slabs, quantum wires, quantum box, and quantum-well (QW) structures of polar
crystals, it may cause a distortion of the lattice, establishing a polarization field which acts back on the
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electron, modifying its properties; in particular, the electron acquires a self-energy and an enhancement of
its Bloch effective mass. The single electron, together with its accompanying distortion, is called a polaron.
For example, some SLs, such as GaAs/AlxGa1−xAs SLs, are made up of polar compounds in which the
interaction of an electron with optical phonons is an important mechanism that strongly influences the optical
and transport properties of the SL.

Due to the presence of heterofaces in heterostructures, polaron effects in polar semiconductor heterostruc-
tures are very different from those in bulk materials, and the polaron problem in this case is much more
complicated than the case in bulk materials. Hence approximate methods such as the perturbation theory, the
Lee–Low–Pines (LLP) variational method [3], the Landau and Pekar variational calculation, and the Green
functionmethod are required for its solution.

A number of works have been done on the effects of polarons in heterostructures and we mention a few
of them here. Lin, Chen and George [4] and Hai, Peeters and Devreese [5] investigated the electron–phonon
interactionand the polaron states in a symmetric single QW. Hai, Peeters and Devreese [6] further studied
magnetopolaronsin a GaAs/AlAs symmetric QW. Polarons in a symmetric single QW within an electric
field have been investigated by Chen, Liang and Li [7]. Shiet al. [8] investigated the ground state polaron
energy and the effective mass in asymmetric single and step QWs by using the second-order perturbation
theory and the modified LPP variational method. Magnetopolarons in quantum dots were investigated in [9].
Zhou and Gu [10] investigated magnetopolarons in cylindrical quantum wires. Magnetopolarons in a QW
have been studied in the case of a weak external magnetic field in [11]. Haupt and Wendler [12] studied the
resonant magnetopolaron effects in parabolic QWs. Magnetopolarons in a heterojunction were investigated
by means of the Green function method in [13] and [14]. Licari [15], and Liang, Gu and Lin [16] studied the
polaronstates in a polar slab using second-order perturbation theory. The self-trapping energy of a polaron
in a polar-crystal slab in a magnetic field has been obtained by Wei, Zhao, and Gu [17] using the Larsen
perturbationtheory. Lu and Li [18] studied the properties of a polaron in a polar slab. The polaron effects
in a heterojunction were investigated by Degani and Hipólito [19]. The interface polaron in a heterojunc-
tion in a magnetic field was investigated by Ban, Liang and Zheng [20]. Farias, Degani and Hipólito [21]
studiedbound polarons in a heterojunction. Surface polarons in a bilayer system are given in [22]. Thilagam
andSingh [23] investigated, in the infinite square-well approximation, polarons in quasi-two-dimensional
structuresin which only confined bulk-like longitudinal optical (LO) phonons were considered. In addi-
tion, Zheng, Ban and Liang [24] studied confined bulk-like LO and interface phonons, and investigated the
propertiesof a polaron in an infinite QW. Using the Landau–Pekar theory, a strong coupling theory of quasi-
two-dimensional polarons, in which the contribution of the interface modes to the polaron effect is ignored,
was proposed in [25]. The binding energies of bound polarons in strong magnetic fields in a QW, a quantum-
well wire and a quantum box were given in [26]. Zhou and Gu [27] also studied impurity bound polarons in
aQW. Bound magnetic polarons in a QW were studied in [28].

Thoughquite a number of works have been done on polarons in bulk materials and heterostructures, to the
best of our knowledge, little work has been done on polaron effects in SLs in particular. In our present work,
we shall calculate the ground state energy and the effective mass of a polaron in a SL, using the double-time
Green functions. This approach provides a relatively easier and more convenient way of calculating the shift
in the ground state energy of a polaron formed as a result of electron–phonon interaction in a superlattice.

In this paper it will be indicated that the ground state energy of the polaron depends ond and1, if an
infinite square-well potential is assumed. The ground state energy of the polaron will be shown to decrease
(becomes more negative) with increasingα andd, but increases with increasing1. For small values ofα,
the polaron ground state energy varies slowly with1, becoming approximately constant for large1. On the
other hand, the effective mass along the plane perpendicular to the SL axis will be found to be approximately
equal to the mass of an electron for all typical values ofα, d and1.

The present work is organized as follows. In Sections2 and3, we present the theory and the calculation of
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the shift in the ground state energy of a polaron in a superlattice. The results and its discussion are presented
in Section4. The conclusion is given in Section5.

2. Theory
The Hamiltonian for an electron–phonon interaction in the second quantization formalism is

H = Ho + Hint (1)

with Ho =
∑
p,s

εs
pas†

p as
p +

∑
q

ωqb†
qbq (2)

Hint =
∑
pp′

∑
qss′

〈s,p|V(r)|s′,p′〉as†
p as′

p′(bq+ b†
−q) (3)

εs
p =

p2
⊥

2m
+ εs−1s cos(pzd), s= 1,2, . . . (4)

p2
⊥
= p2

x + p2
y (5)

εs and1s aredetermined by SL parameters [29];pz and p⊥ are,respectively, the components of the crystal
momentum along and perpendicular to the SL axis;d is the SL period,as†

p , as
p are the creation and the

annihilation operators of an electron in thesth miniband;ωq is the phonon frequency with wavevectorq; and
b†

q, bq are the phonon creation and annihilation operators.
The matrix element in eqn (3) is given in [30] as

〈s,p|V(r)|s′,p′〉 =
∫
ψs∗

p (r)V(r)ψ
s′
p′ (r)dr (6)

where

ψs
p =

1

L
exp[i (pxx + pyy)]

1

N

∑
j

ψs(z− f d)exp(i pz f d), (7)

L is the normalized length,N is the number of periods in the SL,ψs(z) is the wavefunction of an electron
in thesth state in one of the one-dimensional potential wells which composes the SL potential. In particular,
the matrix element for a scattering potentialV(r) is

〈s,p|V(r)|s′,p′〉 =
∞∑

n=−∞

CqMss′(qz)δqx,px−p′xδqy,py−p′yδqz,pz−p′z+ng (8)

whereg= (0,0,2π/d) is a reciprocal SL vector.Cq are the Fourier components ofV(r) and

Mss′(qz) =

∫
ψ∗s (z)ψs′(z)e

iqzzdz. (9)

Using eqns (8) and (9), eqn (3) can be written as

Hint =
∑
pqn

∑
ss′

CqMss′(qz)a
s†
p as′

p−q+ng(bq+ b†
−q). (10)

In order to obtain the dispersion relation for electrons we write the equations of motion foras†
p , as

p, b†
q, bq.

i
das

p

dt
= εs

pas
p +

∑
qns′

CqMss′(qz)a
s′
p−q+ng(bq+ b†

−q) (11)

−i
das†

p

dt
= εs

pas†
p +

∑
qns′

CqMss′(qz)a
s′†
p+q−ng(bq+ b†

−q) (12)
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i
dbq

dt
= ωqbq+

∑
pnss′

CqMss′(−qz)a
s†

p−q−ngas′
p (13)

−i
db†
−q

dt
= ωqb†

−q+
∑
pnss′

CqMss′(−qz)a
†
p−q−ngas′

p . (14)

The single particle Green functions of the electron typeGp(t − t ′) aredefined as

Gp(t − t ′) = −i θ(t − t ′)〈{as
p(t),a

s′†
p (t ′)}〉 = 〈〈as

p(t);a
s′†
p (t ′)〉〉 (15)

where{A, B} is the anticommutator ofA andB,

{A, B} = AB+ B A (16)

and

θ(t − t ′) =
{

1 t > t ′

0 t < t ′
(17)

is called the Heaviside step function. Using eqns (11)–(14) the following equation of motion forGp(t − t ′)
is obtained,

i
dGp(t − t ′)

dt
= δ(t − t ′)+ Gp(t − t ′)+

∑
qnl

CqMsl(qz)

×(0p−q,p,q(t − t ′)+ 0′p−q,p,q(t − t ′)) (18)

where0p−q,p,q and0′p−q,p,q aremixed types of Green functions defined, respectively, as

0p−q,p,q(t − t ′) = 〈〈al
p−q+ngbq|t ;a

s′†
p (t ′)〉〉 (19)

0′p−q,p,q(t − t ′) = 〈〈al
p−q+ngb†

−q|t ;a
s′†
p (t ′)〉〉. (20)

By constructing equations of motion for0p−q,p,q and0′p−q,p,q and decoupling the higher-order Green
functions occurring in these equations, we obtain the following equations for0p−q,p,q and0′p−q,p,q, respec-
tively:

i
d0p−q,p,q(t − t ′)

dt
= (εs

p−q+ ωq)0p−q,p,q

+CqMss(qz)(Nq+ 1− f s
p−q)Gp(t − t ′) (21)

i
d0′p−q,p,q(t − t ′)

dt
= (εs

p−q+ ωq)0
′
p−q,p,q

+CqMss(qz)( f s
p−q+ Nq)Gp(t − t ′) (22)

whereNq = 〈b
†
qbq〉 and f s

p−p = 〈a
s†

p−qa
s
p−q〉 are the number density of phonons and electrons respectively.

Writing eqns (18), (21) and (22) in terms of Fourier components of the Green functions, with

Gp(t) =
∫
∞

−∞

Gp(E)e
−i Etdt (23)

0p−q,p,q(t) =
∫
∞

−∞

0p−q,p,q(E)e
−i Etdt (24)

0′p−q,p,q(t) =
∫
∞

−∞

0′p−q,p,q(E)e
−i Etdt (25)

δ(t) =
1

2π

∫
∞

−∞

e−i Etdt, (26)
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one finds that

(E − εs
p)Gp(E) =

1

2π
+

∑
qns

CqMss(qz)(0p−q,p,q(E)+ 0
′
p−q,p,q(E)) (27)

where

0p−q,p,q(E) =
CqMss(q)(Nq+ 1− f s

p−q)Gp(E)

E − εs
p−q− ωq

(28)

0′p−q,p,q(E) =
CqMss(qz)( f s

p−q+ Nq)Gp(E)

E − εs
p−q+ ωq

, (29)

and hence

Gp(E) =
1

2π(E − εs
p− Mp(E))

(30)

where

Mp(E) =
∑
qs

|CqMss(qz)|
2
(

Nq+ 1− f s
p−q

E − εs
p−q− ωq

+
Nq+ f s

p−q

E − εs
p−q+ ωq

)
(31)

is called the mass operator. Equation (30) is the dispersion equation. Assuming the bandgaps are to be wide
suchthat there are no interband transitions, the band labels can be dropped.

Green functions can also be used to obtain the correlation functions [31],

〈a†
p(t
′);ap(t)〉 =

∫
∞

−∞

Jp(ω)e
−iω(t−t ′)dω (32)

whereJp is the spectral intensity given by

Gp(ω + i ε)− Gp(ω − i ε) = −Jp(ω)(e
βω
+ 1). (33)

Inserting eqn (30) into eqn (32), we obtain

Mp(ω ± i ε) = Mp(ω)∓ i γp(ω) (34)

where

γp(ω) = π
∑

q

|CqM(qz)|
2
{(Nq+ 1− fp−q)δ(ω − εp−q− ωq)

+( fp−q+ Nq)δ(ω − εp−q+ ωq)}

is the coefficient of absorption for electrons.
In order to obtain the shift in the ground state energy of an electron as a result of its interaction with

phonons, the mass operatorMp(ω) is expanded in a power series inω at ω = ε̄p, taking into account that
γp(ω) is a slowly varying function, i.e.γp(ω) ≈ γp(ε̄p). This implies that

ε̄p− εp− Mp(ε̄p) = 0, (35)

i.e.

ε̄p− εp− P
∑

q

|CqM(qz)|
2
(

Nq+ 1− fp−q

ε̄o
p − ε̄

o
p−q− ωo

+
fp−q+ Nq

ε̄o
p − ε̄

o
p−q+ ωo

)
= 0. (36)

For weak electron–optical phonon interactions, whereNq� 1 and fp� 1, we obtain

ε̄p− εp = 1εp = P
∑

q

C2
q|M(qz)|

2 1

ε̄o
p − ε̄

o
p−q− ωo

. (37)
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3. Calculation

Usingthe expression in eqn (37) we calculate the change in the ground state energy of the polaron. Chang-
ing the summation overq to integration, using cylindrical polar coordinates, and making the following change
of variables,

q⊥
qp
= x;

qzd

2
= χ;

px

qp
= ηx;

py

qp
= ηy

−
21

ωo
sin

qzd

2
sin

(
pz−

qz

2

)
d = y;

(
2

qpd

)2

= k; qp =
√

2m∗ωo

 , (38)

the shift in ground state energy,1εp = ε̄p− εp, then becomes

1εp = −
α

π2d

(
ωo

2m∗

) 1
2

P
∫ π

2

−
π
2

|m(χ)|2dχ
∫
∞

0

xdx

kχ2+ x2

×

∫ 2π

0

dθ

1+ y+ x2− 2x(ηx cosθ + ηy sinθ)
. (39)

On evaluation of the integrals with respect toθ andx, one finds that

1εp = −
α

πd

(
ωo

2m∗

) 1
2

P
∫ π

2

−
π
2

|m(χ)|2dχ√
(y+ 1− kχ2)2+ 4kχ2(η2

x + η
2
y)

× ln


√
(y+1− kχ2)2+4kχ2(η2

x + η
2
y) · (y+1)+ (y+1)2− kχ2(1+ y−2(η2

x + η
2
y))

kχ2

{√
(y+ 1− kχ2)2+ 4kχ2(η2

x + η
2
y)+ y+ 1− kχ2− 2(η2

x + η
2
y)

}
.

(40)

At low temperatures, when electron–optical phonon interactions result in polaron effects, the electron
momentumis less than that of the phonon, i.e.p< q. This implies that∣∣∣∣ kχ2(η2

x + η
2
y)

(y+ 1− kχ2)2

∣∣∣∣� 1. (41)

Therefore, the expression 1√
(y+1−kχ2)2+4kχ2(η2

x+η
2
y)

in eqn (40) can be expanded in binomial series, retaining

only first- and lower-order terms, i.e.

1√
(y+ 1− kχ2)2+ 4kχ2(η2

x + η
2
y)

∼=
1

y+ 1− kχ2

[
1−

2kχ2(η2
x + η

2
y)

(y+ 1− kχ2)2

]
. (42)

Using this approximation in eqn (40), with

a = kχ2 and b = y+ 1, (43)

1εp is found to be

ε̄p− εp = −
p2

x + p2
y

2m∗

(
Y1

πqpd

)
α −

(
Y2

πqpd

)
αωo (44)

= −
p2
⊥

2m∗
β1(d)α − β2(d)αωo (45)
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where

Y1 = P
∫ π

2

−
π
2

|m(χ)|2dχ

(
a+ b

(a− b)2b
−

2a

(a− b)3
ln

a

b

)
(46)

Y2 = P
∫ π

2

−
π
2

|m(χ)|2dχ
1

a− b
ln

a

b
(47)

β1(d) =
Y1

πqpd
(48)

β2(d) =
Y2

πqpd
. (49)

The effective massm∗pol of the polaron in the planes perpendicular to the SL axis is the reciprocal of the
second derivative of its energy with respect to the component of momentum in the planes perpendicular to
the SL axis. Thus

1

m∗pol
=
∂2ε̄p

∂p2
⊥

=
1

m∗
(1− αβ1(d))

or

m∗pol = m∗(1− αβ1(d))
−1 (50)

and forα � 1,

m∗pol = m∗(1+ αβ1(d)). (51)

4. Results and discussions

It is observed from eqn (44) that the shift in energy, as a result of the formation of a polaron, depends on the
integralsY1 andY2. The effective mass of the polaron also depends onY1 only. BothY1 andY2 depend on the
matrix element of the potential trough or well which appears as a result of the electron–phonon interaction.
Hence one must know the form of the potential in order to evaluate these integrals. In the case of an infinite
square-well potential(Uo → ∞), the model proposed by Shik [30] can be used to show that the matrix
element|m(χ)| of the infinite square-well potential is

|m(χ)|2 =
sin2χ

χ2
. (52)

With this form of the matrix element,Y1 andY2 arenot analytically integrable, therefore these integrals were
evaluated numerically.

Assuming thatωo = 1014 s−1, m∗ = 8.0× 10−31 kg, p⊥ = 10−9 kg m s−1, h̄ = 1.05× 10−34 J s, and
considering that for slow electrons(p< q), pz can be assumed to be negligible, the shift in energy1εp was
obtained as a function ofd and1. Typical values ofd and1 are in the order of 10−8 m (few hundreds of Å)
and 10−19 J, respectively. Typical values ofα for III–V compounds lie within 0.015–0.080, and for II–VII
compounds from 0.39 to 0.65 [32]. The aforementioned limits of theα values for these semiconductor com-
pounds were used in all our calculations. In particular,d = 10−8 m,1 = 0.5× 1.6× 10−19 J andα = 0.39
yielded1εp/h̄ωo = −0.070 or1εp = −0.0046 eV.

In Fig. 1, 1εp/h̄ωo was plotted againstd for α = 0.015, 0.080, 0.39, 0.65 and1 = 0.5 eV. Straight
lines which become steeper asα increases were obtained. This means that the shift in the energy decreases
(becomes more negative) with increasing electron–phonon coupling constant. If the coupling constant is fixed
at 0.39, and1εp/h̄ωo is plotted againstd for 1 = 0.05, 0.5, 1.0 and 2.0 eV (Fig.2), the lines become less
steepas1 increases. Thus the shift in energy increases (becomes more positive) with increasing bandwidth.
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Fig. 1.Thedependence of1εp/h̄ω ond for 1 = 0.5 eV andα = 0.015 (——), 0.080 (- - - ), 0.39 (– –) and 0.65 (– - –).
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Fig. 2.Thedependence of1εp/h̄ωo ond for α = 0.39 and1 = 0.05 eV (——), 0.50 eV (- - - ), 1.00 eV (– –) and 2.00 eV (– - –).
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Fig. 3.Thedependence of1εp/h̄ωo on1 for d = 200 andα = 0.015 (——), 0.080 (- - - ), 0.39 (– –) and 0.65 (– - –).

1εp/h̄ωo was plotted against1 for α = 0.015, 0.080, 0.39, 0.65 andd = 200 Å. The curves obtained
are shown in Fig.3. First, we observed that the curves shift down the1εp/h̄ωo axis asα was increased.
This again confirms the observation made in Fig.1 that1εp decreaseswith increasing coupling constant.
Secondly, we observed that for smallα (α = 0.015)1εp/h̄ωo varies slowly and is almost constant for large
values of1. If α is fixed atα = 0.39 and1εp/h̄ωo is plotted against1 for d = 200, 500, 700 and 1000 Å,
the curves, as observed in Fig.4, shift down the1εp/h̄ωo axisasd increases. Thus1εp depends on the SL
parametersd and1.

The surface plot shown in Fig.5 is a plot of1εp(d,1)/h̄ωo against(d,1) for α = 0.39. This plot
and similar plots forα = 0.015, 0.080 and 0.65 (not shown) indicate that the shift in energy decreases
with increasingα or increasingd, but increases with increasing1, summarizing the observations made in
Figs1–4.

Surface plots of the effective polaron massm∗pol(d,1) against(d,1) for α = 0.015, 0.080, 0.39 and 0.65
gave surfaces through 1 and parallel to thed–1 plane. Thus, the effective mass varies very little with the
coupling constantα and SL parameters,d and1; and the ratio of the polaron effective mass to electron
mass isalmost1 for all values ofα, d and1. To have an idea of the smallness of the difference between the
polaron effective mass and the electron mass, the ratio of the polaron effective mass to electron mass was
evaluated, assumingα = 0.65,d = 100 Å and1 = 0.5 eV. The result obtained is

m∗pol

m∗
= 1+ 1.96657× 10−33 (53)

which is approximately equal to 1, so thatm∗pol ' m∗. Thus the polaron effective mass along the plane
perpendicular to the SL axis is approximately equal to electron mass.



344 Superlatticesand Microstructures, Vol. 29, No. 5, 2001

0

−0.2

−0.4

−0.6

−0.8

−1
0 0.2 0.4 0.6 0.8

Fig. 4.Thedependence of1εp/h̄ωo on1 for α = 0.39 andd = 200 (——), 500 (- - - ), 700 (– –) and 1000 (– - –).
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Fig. 5.Surface plot of1εp(d,1)/h̄ωo for α = 0.39. M is a 21×21 array of points(d,1). On thed-axis, 1 unit: 0.12 Å; on the1-axis,
1 unit: 0.95 eV.

5. Conclusion

The shift 1εp in the ground state energy of an electron whose interaction with a phonon results in the
formation of a polaron is dependent on the SL parametersd and1, and the coupling constantα, if the
potential well in which the electron is trapped is assumed to be an infinite square well. The shift in the
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ground state energy decreases with increasingd andα, but increases with increasing1. For small values of
α, the shift in the ground state energy as a function of1 varies slowly with1, and is approximately constant
for large1.

The effective mass along the planes perpendicular to the SL axis was found to be approximately equal
to the electron mass for all typical values ofd, 1 andα, the difference between the effective mass and the
electron mass being of the order 10−33.
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