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Ground state energy of a polaron in a superlattice
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The ground state energy of a polaron in a superlattice was calculated using the double-time
Greenfunctions. The effective mass of the polaron along the planes perpendicular to the
superlattice axis was also calculated. The dependence of the ground state energy and the ef-
fective mass along the planes perpendicular to the superlattice axis on the electron—phonon
coupling constan& and on the superlattice parameters (i.e. the superlattice peraod!
the bandwidthA) were studied. It was observed that if an infinite square-well potential
is assumed, the ground state energy of the polaron decreases (i.e. becomes more negative)
with increasingy andd, but increases with increasing For small values af, the polaron
ground state energy varies slowly witty becoming approximately constant for large
The effective mass along the planes perpendicular to the superlattice axis was found to be
approximately equal to the mass of an electron for all typical values dfand A.

© 2001 Academic Press

1. Introduction

Polaronsgn bulk materials have been extensively investigated for several years now, and many mathemat-
ical technigues have been used to solve the polaron problem. Mitra, Chatterjee, and Mukhopadhyay [1] and
Peetersand Devreese [2] have given good reviews on polarons in bulk materials.

It is well known that when an electron moves slowly in a heterostructure, such as superlattices (SLs),
heterojunctions, dielectric slabs, quantum wires, quantum box, and quantum-well (QW) structures of polar
crystals, it may cause a distortion of the lattice, establishing a polarization field which acts back on the
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electron, modifying its properties; in particular, the electron acquires a self-energy and an enhancement of
its Bloch effective mass. The single electron, together with its accompanying distortion, is called a polaron.
For example, some SLs, such as GaAg@dy _xAs SLs, are made up of polar compounds in which the
interaction of an electron with optical phonons is an important mechanism that strongly influences the optical
and transport properties of the SL.

Due to the presence of heterofaces in heterostructures, polaron effects in polar semiconductor heterostruc-
tures are very different from those in bulk materials, and the polaron problem in this case is much more
complicated than the case in bulk materials. Hence approximate methods such as the perturbation theory, the
Lee—Low-Pines (LLP) variational method [3], the Landau and Pekar variational calculation, and the Green
functionmethod are required for its solution.

A number of works have been done on the effects of polarons in heterostructures and we mention a few
of them here. Lin, Chen and George [4] and Hai, Peeters and Devigaredstigated the electron—phonon
interactionand the polaron states in a symmetric single QW. Hai, Peeters and Devreese [6] further studied
magnetopolarong a GaAs/AlAs symmetric QW. Polarons in a symmetric single QW within an electric
field have been investigated by Chen, Liang and Li [7]. &tdl. [8] investigated the ground state polaron
enegy and the effective mass in asymmetric single and step QWSs by using the second-order perturbation
theory and the modified LPP variational method. Magnetopolarons in quantum dots were investigated in [9].
Zhou and Gu [10] investigated magnetopolarons in cylindrical quantum wires. Magnetopolarons in a QW
have been studied in the case of a weak external magnetic field in [11]. Haupt and Wen{igufiied the
resonant magnetopolaron effects in parabolic QWs. Magnetopolarons in a heterojunction were investigated
by means of the Green function method in [13] and [14]. Licari [15], and Liang, Gu and Lin [16] studied the
polaronstates in a polar slab using second-order perturbation theory. The self-trapping energy of a polaron
in a polar-crystal slab in a magnetic field has been obtained by Wei, Zhao, and Gu [17] using the Larsen
perturbationtheory. Lu and Li [18] studied the properties of a polaron in a polar slab. The polaron effects
in a heterojunction were investigated by Degani and Hipdlito [19]. The interface polaron in a heterojunc-
tion in a magnetic field was investigated by Ban, Liang and Zhen§j PArias, Degani and Hipolito [21]
studiedbound polarons in a heterojunction. Surface polarons in a bilayer system are given in [22]. Thilagam
and Singh [23] investigated, in the infinite square-well approximation, polarons in quasi-two-dimensional
structuresin which only confined bulk-like longitudinal optical (LO) phonons were considered. In addi-
tion, Zheng, Ban and Liang [24] studied confined bulk-like LO and interface phonons, and investigated the
propertief a polaron in an infinite QW. Using the Landau—Pekar theory, a strong coupling theory of quasi-
two-dimensional polarons, in which the contribution of the interface modes to the polaron effect is ignored,
was proposed in [25]. The binding energies of bound polarons in strong magnetic fields in a QW, a quantum-
well wire and a quantum box were given in [26]. Zhou and Gu [27] also studied impurity bound polarons in
aQW. Bound magnetic polarons in a QW were studied in [28].

Thoughquite a number of works have been done on polarons in bulk materials and heterostructures, to the
best of our knowledge, little work has been done on polaron effects in SLs in particular. In our present work,
we shall calculate the ground state energy and the effective mass of a polaron in a SL, using the double-time
Green functions. This approach provides a relatively easier and more convenient way of calculating the shift
in the ground state energy of a polaron formed as a result of electron—phonon interaction in a superlattice.

In this paper it will be indicated that the ground state energy of the polaron deperttiarahA, if an
infinite square-well potential is assumed. The ground state energy of the polaron will be shown to decrease
(becomes more negative) with increasin@ndd, but increases with increasing. For small values of,
the polaron ground state energy varies slowly withbecoming approximately constant for largeOn the
other hand, the effective mass along the plane perpendicular to the SL axis will be found to be approximately
equal to the mass of an electron for all typical valuea,ad andA.

The present work is organized as follows. In Sectipasnd3, we present the theory and the calculation of
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the shift in the ground state energy of a polaron in a superlattice. The results and its discussion are presented
in Sectiond. The conclusion is given in Sectié@n

2. Theory
The Hamiltonian for an electron—phonon interaction in the second quantization formalism is
H = Ho + Hint 1)
with Ho = > " esasTas + " wqblbg @)
p.s q
Hint=Y_ > (s, pIV(nIs’. p)asTas (bg + b’ ) (3)
pp ass/
p2
£p = ﬁ+ss—Ascos(pzd), s=1,2,... (4)
pl =P+ pf ®)

es andAg aredetermined by SL parameters [29; and p, are,respectively, the components of the crystal
momentum along and perpendicular to the SL adiss the SL periodaﬁT, ag are the creation and the
annihilation operators of an electron in tsth miniband;wq is the phonon frequency with wavevectprand
b@;, by are the phonon creation and annihilation operators.

The matrix element in egn (3) is given in [30] as

s PIVOIS' P = [ 0 OVOUS o (6)
where

1 1
Y = Pli(px + pyy)l D sz — fd)expip, o), 7
J

L is the normalized length) is the number of periods in the Slig(2) is the wavefunction of an electron
in the sth state in one of the one-dimensional potential wells which composes the SL potential. In particular,
the matrix element for a scattering potentglr) is

00
(s,pIV(NIS, P = D CqMss(G2)80,. p—p,a. py— ;0. popj+ng (8)
whereg = (0,0, 2x/d) is a reciprocalngltectocq are the Fourier components \@f(r) and
Msg(0z) = / Vi (@)Y (2)€%dz 9)
Using eqgns (8) and (9), eqn (3) can be written as
Hint= > Y CqMsg(G2)a5Ta3 gy ng(by + b ). (10)
pan ss’

In order to obtain the dispersion relation for electrons we write the equations of motiaﬁf@, ba, by.

_dag /
! d_ip = e3a3+ D CqMss (G2)3) _q4rg(bg +bLg) ()
qns’
-daST s st st T
g T% T Y CaMsg (A28 /g _mg(bg + bl 12

qns’
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dbyg
S = @aba+ ) CaMss(~02)35 g g (13)
pnss
deq t t s
—f— T = a)qb,q + Z CquS(_qz)apqungap . (14)
pnss

The single particle Green functions of the electron t@t — t') aredefined as

Gp(t —t) = —i6(t —t) (a3, a5 Tt))) = (@M): a3 ') (15)
where{ A, B} is the anticommutator oA andB,
(A, B} = AB+ BA (16)
and
t >t
o t)_[0 t<t (€7

is called the Heaviside step function. Using eqns (11)—(14) the following equation of motiGpyfor- t')
is obtained,

dGp(t —t) , p
"T =8(t —t) + Gp(t —t') + Y CqMsi()
gnl
X(Fp_q,p,q(t — t/) =+ F/p_q’p’q(t — t/)) (18)
wherel'y_qpgandly,_q , qaremixed types of Green functions defined, respectively, as
Mp_qpat —t) = ((@_ q+ngbq|t apT(t) (19)
s't
Fh-apat =) = ((@h g glt: 35 ') (20)

By constructing equations of motion féty_g,p g and I’} anddecoupling the higher-order Green

p-—q.,p.q

functions occurring in these equations, we obtain the following equatiori%foy g and Fp q.p.q respec-
tively:
de q.p.qt —t)
— 5 = = (ep_q+ @9 p-qp.q
+CqMss(dz)(Ng + 1 — fps_q)Gp(t —t) (21)
dr{_ (t—t)
i p—g.p.q (oS
—a = (ep—q+ @) Tp_qpq
+Cqus(QZ)(f qT Ng) Gp(t —t) (22)

whereNg = (babq) and frf'_p = (aST_an_q) are the number density of phonons and electrons respectively.
Writing egns (18), (21) and (22) in terms of Fourier components of the Green functions, with

Gp(t) = / ~ Gp(E)e Eldt (23)
Ip—q.p.qt) =/ Tp—q.p.q(E)e Eldt (24)
T qpq® = /_ b qpq(E)e—'E‘dt (25)

OO .
S(t) = 1 f e 'Elgt, (26)
27 J_o
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one finds that

1
(E —£))Gp(E) = o~ + > CqMso(@) (Tp—q.p. E) + Tp.,4(E)) (27)
qns
where
CqMss(q)(Ng + 1 — fps_q)Gp(E)
Ip—q.p.oB) = (28)
E — Es_q — Cl)q
CqMss(a2)(f5_q+ Ng)Gp(E)
r E)= 4 P—q , 29
p_q,p,q( ) E — ngJ_q‘i‘a)q ( )
and hence
1
Gp(E) = 30
p(E) 27(E — &3 — Mp(E)) (30)
where
Ng+1— fS Ng+ fS_
Mp(E) = Y " |CqM 2( P—g 4 P 31
p(E) = D ICqMss(a)| (E—g;q—wq r—— (31)

gs
is called the mass operator. Equation (30) is the dispersion equation. Assuming the bandgaps are to be wide
suchthat there are no interband transitions, the band labah be dropped.

Green functions can also be used to obtain the correlation functiohs [31

(@l (t): ap(t)) = f " J@e oty (32)
—o0
where Jy is the spectral intensity given by
Gp(@ +i€) — Gp(w —i€) = —Jp(@) (e’ + 1). (33)
Inserting egn (30) into egn (32), we obtain
Mp(@ £ i€) = Mp(w) Fiyp(w) (34)
where

W) =n Z |CqM(QZ)|2{(Nq +1- fp_g)d(w — gp—q — wq)
q

is the coefficient of absorption for electrons.

In order to obtain the shift in the ground state energy of an electron as a result of its interaction with
phonons, the mass operafidp(w) is expanded in a power seriesdnat w = &, taking into account that
vp(w) is a slowly varying function, i.exp(w) = yp(&p). This implies that

ie.
) Ng+1— fo_ fp_q+ N
Ep— ep — PZ|CqM(qz)|2<_oq 4 B A >=o. (36)
q €p — &p—q — @Wo sp—sp_q+a)o

For weak electron—optical phonon interactions, whégex 1 and f, « 1, we obtain

1
= _ _ 2 2
Sp—Ep—ASp— PXq:quM(qZN m (37)
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3. Calculation

Usingthe expression in eqn (37) we calculate the change in the ground state energy of the polaron. Chang-
ing the summation ovagto integration, using cylindrical polar coordinates, and making the following change
of variables,

ar . qu_‘ Px . Py
—_X9 —~ = X5 — = 1x; __ny
Up 2 Up Ap (38)
28 ¢in %29 gin % \q 2.\’ k 2mF ’
o0 5 Pz > y apd dp o
the shift in ground state energiep = &p — ¢p, then becomes
1 T
o wo 2 2 2 o0 de
Agp= ——— P d —
2 do
X / —, (39)
o 14 y+x2—2x(nycos + nysing)
On evaluation of the integrals with respecttandx, one finds that
o« (wo\2, (% Im(x)[2dx
” 5 S+ 1— k22 + 420 + n)
| JOF1=kxD2+ 82 0% +13) - (V+ D+ (v + 172 =k 2L+ y = 208 + 1)
x In
kxz{\/(er 1—kx®2+4kx2mz +n3) +y+1—kx2 =2 + ni)}
(40)

At low temperatures, when electron—optical phonon interactions result in polaron effects, the electron
momentunis less than that of the phonon, ie< q. This implies that
kx2(n + 1)

m < 1. 41)

Therefore, the expression L
Ok D24k 20 +15)

only first- and lower-order terms, i.e.

in egn (40) can be expanded in binomial series, retaining

1 N 1 [ 2P + 1) ] @)
JOT kD2 a2z g YTk o1k
Using this approximation in eqn (40), with
a=kx? and b=y+1, (43)
Agp is found to be
2 12
= pszr:rkpy (n:id)a - <n;%>““’° (44)

2
= — 2L pachr — oo (45)
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where
i-r [ 2 |m(x>|2dx( (aafb?zb - s %) (46)
Yo = P/_j mOoPdy = In o (47)
puor = (48)
pod) = 25, (49)

The effective masen’ , of the polaron in the planes perpendicular to the SL axis is the reciprocal of the
second derivative of its energy with respect to the component of momentum in the planes perpendicular to
the SL axis. Thus

L _ %% _ 1 (1— api(d))
T = ——- = — — 1
mpol apjz_ m*
or
Mo = M* (L — apa(d) " (50)
and fora « 1,
Mior = M*(1+ apr(d)). (51)

4. Results and discussions

It is observed from eqgn (44) that the shift in energy, as a result of the formation of a polaron, depends on the
integralsY1 andY». The effective mass of the polaron also dependgioonly. BothY; andY2 depend on the
matrix element of the potential trough or well which appears as a result of the electron—phonon interaction.
Hence one must know the form of the potential in order to evaluate these integrals. In the case of an infinite
square-well potentialU, — o0), the model proposed by Shik [30] can be used to show that the matrix
elementm(y)| of the infinite square-well potential is
ImGOI2 = S')’fzx. (52)

With this form of the matrix elemen¥; andY, arenot analytically integrable, therefore these integrals were
evaluated numerically.

Assuming thatw, = 10 s™1 m* = 8.0x 1031 kg, p, = 10 °kgms? h=1.05x 1034 Js, and
considering that for slow electrorip < ), p; can be assumed to be negligible, the shift in enexgy was
obtained as a function afandA. Typical values ofl andA are in the order of 18 m (few hundreds of A)
and 1019 J, respectively. Typical values of for -V compounds lie within 0.015-0.080, and for I1-VII
compounds from 0.39 to 0.65 [32]. The aforementioned limits obthalues for these semiconductor com-
pounds were used in all our calculations. In particudas 108 m, A =0.5x 1.6 x 10°1°J anda = 0.39
yielded Aep/hwo = —0.070 orAep = —0.0046 eV.

In Fig. 1, Aep/hwo was plotted againgd for o« = 0.015, 0.080, 0.39, 0.65 amd = 0.5 eV. Straight
lines which become steeper @sncreases were obtained. This means that the shift in the energy decreases
(becomes more negative) with increasing electron—phonon coupling constant. If the coupling constant is fixed
at 0.39, andAep/hawy is plotted againstl for A = 0.05, 0.5, 1.0 and 2.0 eV (Fi@), the lines become less
steepasA increases. Thus the shift in energy increases (becomes more positive) with increasing bandwidth.
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Fig. 1. Thedependence ohep/hw ond for A = 0.5 eV andy = 0.015 (—), 0.080 (---), 0.39 (—-) and 0.65 (—--).

0 e T T T
~05f o T
Aey(d)
Roo  -1F SN
-15F —

-2 ! ! !

0 500 1000 1500 2000
d(A)

Fig. 2. Thedependence ohep/hwo ond for o = 0.39 andA = 0.05 eV (—), 0.50 eV (---), 1.00 eV (-—) and 2.00 eV (—--).
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Fig. 3. Thedependence ohep/hwo on A for d = 200 andx = 0.015 (—), 0.080 (---), 0.39 (—-) and 0.65 (---).

Aegp/hwo was plotted againsh for o = 0.015, 0.080, 0.39, 0.65 amtl= 200 A. The curves obtained
are shown in Fig3. First, we observed that the curves shift down ftw/hw, axis asa was increased.

This again confirms the observation made in Righat Aep decreasewith increasing coupling constant.
Secondly, we observed that for smalie = 0.015) Ag/hw, varies slowly and is almost constant for large
values ofA. If « is fixed ate = 0.39 andAep/hw, is plotted against for d = 200, 500, 700 and 1000 A,
the curves, as observed in F#.shift down theAsp/hw, axisasd increases. Thuaep depends on the SL
parametersl andA.

The surface plot shown in Fid is a plot of Agp(d, A)/hwo against(d, A) for o = 0.39. This plot
and similar plots fore = 0.015, 0.080 and 0.65 (not shown) indicate that the shift in energy decreases
with increasingx or increasingd, but increases with increasinty, summarizing the observations made in
Figs1-4.

Surface plots of the effective polaron ma’aﬁol(d, A) against(d, A) for « = 0.015, 0.080, 0.39 and 0.65
gave surfaces through 1 and parallel to theA plane. Thus, the effective mass varies very little with the
coupling constantr and SL parametersl and A; and the ratio of the polaron effective mass to electron
mass isalmostl for all values ofx, d andA. To have an idea of the smallness of the difference between the
polaron effective mass and the electron mass, the ratio of the polaron effective mass to electron mass was
evaluated, assuming= 0.65,d = 100 A andA = 0.5 eV. The result obtained is

sk
mpol
m*

=1+ 1.96657x 103 (53)

which is approximately equal to 1, so thaf,, ~ m*. Thus the polaron effective mass along the plane
perpendicular to the SL axis is approximately equal to electron mass.
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Fig. 5. Surface plot ofAsp(d, A)/hwo for @ = 0.39. M is a 21x 21 array of pointgd, A). On thed-axis, 1 unit: 0.12 A; on ther-axis,
1 unit: 0.95 eV.

5. Conclusion

The shift Agp in the ground state energy of an electron whose interaction with a phonon results in the
formation of a polaron is dependent on the SL parameteasd A, and the coupling constant, if the
potential well in which the electron is trapped is assumed to be an infinite square well. The shift in the
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ground state energy decreases with increadingdc, but increases with increasing. For small values of
«a, the shift in the ground state energy as a functionafaries slowly withA, and is approximately constant
for largeA.

The effective mass along the planes perpendicular to the SL axis was found to be approximately equal
to the electron mass for all typical valuesdfA ande, the difference between the effective mass and the
electron mass being of the order 6.
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